
BACHELOR THESIS

Walter Herold Veedla

Automatic analysis of squash straight
drives accuracy from a single camera

view

Department of Software and Computer Science Education

Supervisor of the bachelor thesis: doc. RNDr. Elena Šikudová, Ph.D.
Study programme: Computer Science

Study branch: Artificial Intelligence

Prague 2023

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I would like to thank my supervisor doc. RNDr. Elena Šikudová, Ph.D. for her
patience and supervision during the project.

ii

Title: Automatic analysis of squash straight drives accuracy from a single camera
view

Author: Walter Herold Veedla

Department: Department of Software and Computer Science Education

Supervisor: doc. RNDr. Elena Šikudová, Ph.D., Department of Software and
Computer Science Education

Abstract: Squash is a racket and ball sport with an estimated 20 million players
worldwide. Compared to sports like tennis and golf, squash tracking and analysis
systems are relatively underdeveloped and performance analysis is often done
by manual instruction or by pencil-and-paper. While in the recent years more
advanced squash specific technology has become available, it requires high-cost
specialized hardware and does not capture the location of the bounce of the ball
on the floor. This project attempts to tackle this gap of existing squash analysis
tools by using computer vision techniques to automate the collection of shot
data of a common squash training drill ”straight drives”, where the ball is being
repeatedly hit parallel to a side-wall of the court.

An analytics program is developed that can process a video file of a player per-
forming the ”straight drives” drill and produce accuracy metrics from the video.
The result of this work is a computer program that allows an easy way for the
user to get feedback from their training and track their progress.

Keywords: image processing, video, sport

iii

Contents

Introduction 3

1 Introduction of squash 4
1.1 Relevance of straight drives . 5

2 Related work 7
2.1 State of sport analytics in squash 7

2.1.1 Court augmentation . 7
2.1.2 Wearables . 8
2.1.3 Human analysis . 9

2.2 Related research . 9
2.3 Community projects . 9

3 Dataset 11

4 Implementation 12
4.1 Constraints on input video . 12
4.2 Building blocks of the application pipeline 12

4.2.1 Pre-processing and detection 13
4.2.2 Ball position estimation 16
4.2.3 Ball contour tracking . 17
4.2.4 Ball bounce detection . 19

4.3 Implementation of the Application 22
4.3.1 Platform and Programming Languages 22
4.3.2 Setup and calibration . 22
4.3.3 Detection . 23
4.3.4 Ball position estimation 23
4.3.5 Ball tracking . 24
4.3.6 Ball bounce detection . 24
4.3.7 Application outputs . 25

5 Evaluation 30
5.1 Obtaining Ground Truth Data . 30
5.2 Detector . 31
5.3 Estimator . 32
5.4 Tracker . 33
5.5 Bounce Detection . 33
5.6 Application Performance . 34

Conclusion 36

Bibliography 37

List of Figures 40

List of Tables 41

1

List of Abbreviations 42

A Attachments 43
A.1 Source code . 43
A.2 Video data . 43
A.3 Annotation and evaluation source code 43
A.4 User documentation . 43

A.4.1 Pre-requisite . 43
A.4.2 How to launch the application 43
A.4.3 Video selection . 44
A.4.4 Setting up . 44
A.4.5 Processing view . 48
A.4.6 Output view . 49

A.5 Developer Documentation . 49
A.5.1 Used tools, libraries and environment 49
A.5.2 Ball detection component 50
A.5.3 Ball position estimation component 51
A.5.4 Ball tracking component 51
A.5.5 Ball bounce detection component 52
A.5.6 Statistics tracking component 52
A.5.7 Utilities . 52
A.5.8 Application pipeline . 53
A.5.9 Graphical user interface 53

2

Introduction
Squash is a competitive racket and ball sport played by millions of players

around the world. Unlike in tennis where the ball is hit over a net, in squash
the ball is hit against a wall from which it rebounds. Being able to hit the ball
and make it travel parallel to the wall is considered one of the most important
skills in playing squash. This skill is generally developed by practicing alone and
training with partners.

Tracking accuracy metrics in squash is important not only for professional
players but also for amateur players. However, tracking these metrics can be
tedious and time-consuming, often requiring a human annotator to manually
record data. Without an external annotator, players may have trouble accurately
assessing their own performance as their focus is divided between performing well
in the moment and tracking their overall progress. An automated solution for
collecting straight drive performance data in squash could help players track
their progress and get an objective view of their results. This thesis presents a
solution to this problem by outlining the design and implementation of a tool for
visualizing and calculating statistical metrics on straight drive accuracy in squash.
The tool uses a video recording of a player performing the straight drive exercise
to automatically extract data on the number of shots that land in the target area.
This allows players to focus on maximizing their performance without worrying
about tracking their own data.

Chapter 1 provides an overview of the game of squash and explains why
straight drives are an important aspect of the sport. Chapter 2 gives an overview
of the existing research on squash analytics and discusses the current state of the
art in this field. Chapter 3 describes the dataset that was used to develop and
test the application. Chapter 4 covers the design and implementation of the tool
in detail, and Chapter 5 evaluates the effectiveness of the algorithms used.

3

1. Introduction of squash
Squash is a racket and ball sport played by an estimated 20 million players in

over 185 countries (US Squash). Unlike tennis, to which it is most often compared
to, the game is played by two players in a shared four-walled court with a small
and semi-soft rubber ball. The aim of the game is to hit the ball in such a way
that the opponent is unable to produce a valid return before the ball bounces off
the ground twice. In squash, players are allowed to exploit the geometry of the
court and as such, the ball may be hit any side wall and change direction multiple
several times during its flight, on condition that it bounces off the front wall once.
These factors play a role in characterizing squash as a complex physical, technical,
and tactical sport (Jones et al. [2018]). Squash has also been once described as
the world’s healthiest sport by Forbes magazine (Santelmann [2003]).

Figure 1.1: Illustration of World Squash Federation squash court specification
(World Squash Federation [2016]).

As of January 2023, there are more than 950 players registered with the Profes-
sional Squash Association (Professional Squash Association [2022]) (abbreviated
PSA) and a series of tournaments are held regularly around the world with prize
purses ranging from a few thousand up to a million dollars. Though bidding,
squash is not yet a part of the Olympic Games program.

Squash has many different types of shots, and while this thesis focuses specif-
ically on straight drives, it can be beneficial to provide an overview of the general

4

terminology of shots for the reader. Some examples of the various types of shots
in squash include:

Shot Description

Drive ”A shot played after the ball has bounced off the floor and is hit at
the front wall with speed”

Cross ”A drive played at an angle such that the ball is hit across the
body”

Boast ”A shot played such that the ball hits a side or back wall before the
front wall”

Drop ”A shot that is hit such that the ball hits the front wall (gently)
and lands close to the front wall”

Lob ”A shot that is hit off the front wall with a high arc, such that it
lands near the back of the court”

Table 1.1: Definition of shot types (Williams et al. [2017])

1.1 Relevance of straight drives
As a competitive racket and ball sport, squash requires a range of skills in

order to be successful. One of the most important of these skills is the ability to
hit the ball and make it travel parallel to the wall - a straight drive. This type of
shot is not only the most common in professional squash matches (Vučković et al.
[2013]), but is also considered by some experts to be the most important skill in
the game. For example, Ross Norman, a former world number two, has been
quoted as saying that developing the ability to hit the ball straight down the wall
is the key to success in squash (McKenzie [1993]). This follows, because as the
ball is traveling close to the wall, it leaves the opponent less room to maneuver
and can force them into making a weak return.

The importance of straight drive accuracy is supported by recent academic
research. In a study by Williams et al. [2017], the researchers administered
the Hunt Squash Accuracy Test, which includes four skill tests that measure a
player’s straight drive accuracy. The study found significant correlations between
a player’s tournament rank and their score on the drive tests, further emphasizing
the importance of straight drive accuracy in squash.

By focusing on straight drive accuracy, this thesis aims to provide information
and statistics for players interested in improving their performance in squash. By
automating the tracking and analysis of straight drives, the aim is to make it
easier for players to track their progress and identify areas for improvement,
ultimately helping them to succeed in the game of squash.

5

Figure 1.2: Illustration of the solo straight drives exercise (Inside Squash).

6

2. Related work
In this chapter, the author will discuss the analysis technologies that are

available and currently used in both recreational as well as professional squash.
In addition, this chapter explores research papers related to the present work and
relevant projects that have been developed by independent developers outside of
an academic context. The author explains ways of how this research has been
applied and how these technologies are being used to improve the experience of
players and spectators alike.

2.1 State of sport analytics in squash
The use of sports analytics in the game of squash has not had a long and well-

documented history. In most cases, analysis of squash matches has been done by
analyzing replays of squash matches, with an emphasis on either understanding
a particular opponent’s playing patterns or self-analysis of how the player them-
self reacts in different situations. It is only in recent years that more public-
facing analysis of professional play has become available, and still, this analysis is
typically performed through human analysis of the game and manual annotation.

According to the best knowledge of the author, external analysis of single-
player exercises, such as solo straight drives, is not very common, since it is done
by the player at the time of performing the exercise as training. For external
analysis, a video is usually recorded and then analyzed afterwards.

However, as new technologies continue to emerge, they are being increasingly
incorporated into the analysis of squash games, providing more sophisticated and
comprehensive ways for spectators to examine and for players to improve in the
sport. In the following sections a general overview of such technologies is given.

2.1.1 Court augmentation
Launched in 2016, there exists a software-and-hardware ”smart-court” solu-

tion ”InteractiveSQUASH” that can retroactively be fitted to almost any squash
court (InteractiveSQUASH [2022]). The InteractiveSQUASH hardware solution
consists of:

• a central console
• a camera using infra-red light for ball detection
• a specialized front tin with infra-red sensors for ball detection on the front

wall
• cameras for recording and player detection
• a camera using infra-red light for ball detection.

This system provides a racket-and-ball user interface for selecting various ap-
plications which are then displayed on the front wall of the court by the projector.
These applications include training tools that provide instant visual feedback,
such as highlighting the location of ball hits on the front wall or drawing target
areas among many others. There also exist adaptations of other sports games

7

Figure 2.1: Illustration of the InteractiveSQUASH system (InteractiveSQUASH
[2022]).

such as darts or even computer games, like Space Invaders (InteractiveSQUASH
[2022]). Such games are especially popular for skill development among chil-
dren. Overall, this system provides a versatile and engaging platform for users
to improve their squash skills and have fun at the same time.

Recognizing the push for integrating technology into sports, the Professional
Squash Association has been collaborating with InteractiveSQUASH since 2018
for developing the “MoTrack” system to showcase statistics such as player move-
ment speed and positional heat-maps for added spectator entertainment dur-
ing high-profile events (Professional Squash Association [2018]). While such a
hardware-software system is flexible and extensible in its usage of software, the
disadvantage of such a specialized system is its high cost.

2.1.2 Wearables
According to (Mencarini et al. [2019]) the use of wearable analytics tools in

sports can be divided into two main categories: those that are related to physical
performance and those that are related to the acquisition of motor skills. In
squash, performance-related tools such as heart-rate monitors and smartwatches
are commonly used to track physiological metrics like the intensity of the exercise,
the number of steps, and the duration of exercise. In contrast, tools related to
motor skills acquisition in squash offer detailed insights into the technical aspects
of the game, such as the swing mechanics of a striker. Currently, there exists just
a single device for squash that is capable of providing such data: the Racketware
sensor. Racketware produces small battery-powered sensors, that are attachable
to squash rackets and sample motion at 600 times per second. Using the raw
sampled data and machine learning algorithms, it can give the user high-level
statistics such as points won and lost or provide data on the intricacies of the
user’s squash swing with live feedback through its mobile app (Racketware [2022]).

8

2.1.3 Human analysis
More generally, squash analysis is performed through manual annotation, with

the most prominent example being York-based Cross-Court Analytics, which pro-
vides in-depth analysis and statistics of squash games. This type of analysis is
carried out by human annotators (Dale [2022]). Alternatively, there are also anno-
tation tools specifically designed for squash, such as ’SquashTrack’ (SquashTrack
[2018]) for the purpose of streamlining the annotating process.

2.2 Related research
Rozumnyi et al. [2017] conducted research on the detection of fast-moving

objects in which the study included detecting the movement of squash balls.
However, when the methods developed by the authors were applied on their
dataset of squash matches, the methods failed in detecting the ball. In their
dataset, the ball was white in color, which is uncommon for most squash matches,
and was very small when seen from the perspective of the camera. Hrabalik [2017]
created a modified version of this algorithm to run in real-time on mobile devices,
however, the proposed method in this thesis did not improve the detection of
squash balls. It was concluded that the method was unsuccessful due to the size
of the ball in the dataset’s video. Nevertheless, their methods are still of interest
if applied to less complex data.

Work of Judd and Wu [2014] aims to track both the players and the ball in
a squash match. They discussed trade-offs between placing the camera behind
the players or above the court, ultimately opting for analysis from a top-down
view. To implement ball detection, the authors used background subtraction
with respect to an input frame to identify an object in the foreground with min-
imum size and maximum roundness. They also acknowledge the challenge of
accurately tracking the ball due to its high speed, which caused it to disappear
from frames and use the Kalman filter for ball position estimation. However, they
concluded that their method did not yield effective results for obtaining accurate
ball location data in the video. The result of their work is being able to provide
information on how the players are moving at each point in time.

This thesis mainly builds on the work done by (Sachdeva [2019]), where the
author conducted a comprehensive review of related work done in the field of
ball detection and tracking and devised an efficient method for tracking a squash
ball for machines with low-computation power. The author discusses in detail
the methodology and steps for detecting contours, eliminating non-ball contours,
and evaluates the system on footage of professional squash matches.

2.3 Community projects
There have been multiple hobby projects that combine computer vision and

deep learning approaches to extract court-coverage data from video recordings
of squash matches. According to (McKenzie [1993]) the player who controls the
center of the court the most is the player in the advantageous position and this
metric is therefore of interest in analyzing squash matches.

9

Both authors tackled this problem and achieved comparable results using deep
learning techniques. Dixon used a pre-trained pose estimation model DeepPose
to identify joints of the players in the frame, followed by k-means clustering
on the output of the model to identify players (Dixon [2018]), whereas Pretto
employed the YOLOv3 (Redmon and Farhadi [2018]) algorithm for identifying
players (Pretto [2020]). Dixon would then use the joints of the player to accurately
map the position of the player based on their feet and Pretto would estimate the
position of the player based on the estimated location of the player’s torso in
the detected contour by his employed detector. Both authors would then use
homography to map the movements of the players into 2D space and generate
individualized heat-maps of the players’ movements. The results are comparable
to what is produced by the MoTrack system employed by the PSA.

A system built by (Mullaney [2020]) attempts to take the work done by the
previously mentioned authors even further by in an addition to player tracking,
incorporating ball tracking and trying to infer points won and lost by the players.

10

3. Dataset
The dataset utilized for the testing of the application was captured by the

author of this thesis. The videos were recorded using the personal smartphone of
the author, as this was perceived to be the most realistic use case for the appli-
cation. Both videos were captured using the default settings of the camera and
by finding a suitable area in the environment for its placement. For more precise
positioning the camera could be mounted on a tripod. Both videos were trimmed
using the video editor available on the smartphone to only include footage of the
straight drives exercise being performed, with the setup and tear-down of the
camera being excluded from the final video.

The initial dataset was recorded using an iPhone 7 prior to the commencement
of the application’s development and was heavily used throughout the process.
The final video was two minutes and three seconds in duration, featuring the
author playing a total of sixty-one forehand drives, with sixty bounces visible on
camera. The playing area in the video was illuminated by LED lighting.

In order to verify the application’s suitability as a general-purpose tool for the
analysis of squash drives, a second set of videos was captured as the development
of the application neared its conclusion. These videos were captured in a different
squash center that featured a large presence of natural sunlight as well as halogen-
bulb lighting of the playing area. In the final trimmed recording, ninety-six
backhand drive shots were hit, of which ninety-two bounced within the field of
view of the camera, over a duration of three minutes and thirteen seconds.

The files were transferred wirelessly to a computer for analysis. For the pur-
pose of speed during development, the video was downscaled to 480p to facilitate
faster processing.

In conclusion, the dataset utilized for the testing of the application was col-
lected in a realistic common-use scenario to allow for the accurate testing of the
application’s performance and to confirm its effectiveness as a tool for the analysis
of squash drives.

(a) Frame from the
first dataset.

(b) Frame from the
second dataset.

Figure 3.1: Example frames from both datasets.

11

4. Implementation
This chapter presents the theory and implementation of the application. It

is divided into two major parts. In the first part, an overview of the theory and
steps involved in ball detection, position estimation, tracking, and bounce detec-
tion is given. Algorithms at each step are described and their weaknesses and
trade-offs are discussed. Followed in the second part of this chapter, where the
implementation of the application is described, including the choice of program-
ming language, libraries, and the usability features that make the application
user-friendly.

4.1 Constraints on input video
The application has defined a small set of requirements for the input video:

• the camera must be placed behind the player

• the point of contact of the ball with the floor must be visible

• the rear boundary of the court must be visible.

The author deems these requirements as reasonable, as most squash courts have
back-walls made of glass for allowing a referee to see inside the court. In cases
where the back wall is made of non-see-through material, there is usually an alter-
nate area, such as above the court, with a view compliant with the requirements
is visible and a camera can be placed for recording.

The application cannot validate that these requirements are met, and it is up
to the user to conform to them for the optimal performance of the application.

4.2 Building blocks of the application pipeline
The core of the application is divided into four categories, each with distinct

responsibilities. As a preliminary step, a detector is used for telling apart the
foreground of the image from the background of the image. Secondly, an estimator
is used for producing hypotheses of the ball’s location based on its history. The
former and latter data are then combined and given to the tracker from which
a selection is made for which contour becomes a part of the tracked trajectory.
Lastly, the reliable tracking of the trajectory plays an integral part in producing
accurate results with the bounce detector, which at each time step outputs a
decision on whether and where a bounce of the ball has occurred.

12

Figure 4.1: Illustration of the algorithmic pipeline of the application.

The following chapters describe the algorithms used and the rationale for
accomplishing the steps described above.

4.2.1 Pre-processing and detection
In this thesis, a modified pre-processing method described in (Sachdeva [2019])

is employed in the role of the detector. The main goal of this step is to extract
the contour of the ball from a frame. This method involves several steps: first, a
window of three consecutive frames is collected and converted from a 3-channel
RGB (Red-Green-Blue) representation to a single-channel grayscale image. The
images are then smoothed using Gaussian blurring to remove noise from the
image, after which the consecutive frames are pair-wise differenced from each
other. Those processed frames are then combined using a boolean ”and” operator
and then binarized using thresholding. Finally, morphological closing is applied.

13

Figure 4.2: Illustration of the detection pipeline.

For Sachdeva, the three-frame differencing approach is motivated by robust-
ness to various sources of noise during competition broadcast videos. These can
include various reflections of the glass environment, advertisements, and specta-
tor movements among others (Sachdeva [2019]). However, this approach is also
welcome in non-professional videos, as structural elements of the glass back-wall
of the court tend to pick up reflections from many external sources and produce
visible noise in the video. Formally this approach can be described as follows,

D1 = |It − It−1| (4.1)
D2 = |It − It+1| (4.2)
D = D1 ∧D2 (4.3)

where It denotes the input image at frame t, D denotes a differential image
and the operator ∧ is the common boolean AND operator.

Compared to the original use-case of this pipeline, which was to analyze pro-
fessional squash matches, the nature of the input data that we are analyzing is
more static, and therefore there can occur large class imbalances between fore-
ground and background pixels. Consequently, in this case, the suitability of
Otsu’s thresholding is not a given according to (Kittler and Illingworth [1985]).

14

The authors of that paper also propose a solution by modifying the thresholding
algorithm.

A simpler approach to address the issue was found for use in this thesis instead.
During development when tackling this issue the author observed that telling
that thresholding had fundamentally failed in distinguishing the foreground and
the background did not in this case require study of the frame’s histogram nor
seeing the result of the operation, but was distinguishable from a low thresholding
value. This hypothesis was confirmed, when testing on the second dataset where
the issue was even more pronounced.

The chosen approach was found experimentally and is simple in nature: If the
thresholding value as calculated by Otsu’s algorithm is small, then this value is
discarded and a higher one is used, otherwise use the calculated value.

Algorithm 1: Image binarization algorithm
Input: frame
Data: minimum otsu value ≥ 0
Data: overriden threshold value ≥ 0
Result: binarized frame
threshold value← calculate otsu threshold();
if threshold value ≤ minimum otsu value then

binarized frame←
binarize image(frame, overriden threshold value);

else
binarized frame← binarize image(frame, threshold value);

Figure 4.3: Regular frame (left), Otsu thresholded frame (middle), overriden
thresholding(right).

Another distinction from Sachdeva’s implementation put forward by the na-
ture of the input data is that compared to the dynamic play of professional squash

15

matches, the player when practicing straight drives, tends to be fairly still. As
this is not recoverable using the employed frame differencing method, then the
contour of the player’s body is often fragmented into small pieces. As a remedy,
a large number of morphological dilations are used to enlarge the white blobs
and close gaps between them, followed by erosion for removing unwanted small
objects (Szeliski [2022]).

The ideal result of the described process is the extraction of two contours - the
player and the ball. Nevertheless, failure from the ideal is probable in two distinct
ways such as not detecting the ball or detecting multiple ball-like contours. Cases,
where the ball is not visible, are commonly caused by occlusion by the racket or
when there is little movement from the view of the camera. This perception can
occur for example when the ball is moving parallel to the view-plane of the camera
or the ball is in contact with the front wall and is changing direction. Situations,
where there are multiple probable candidates, are more common and occur due
to reflections from the environment and poor segmentation of the player contour.

Figure 4.4: Normal frame (left) and extracted foreground from the background
with two ball candidates(right).

4.2.2 Ball position estimation
Ball position estimation in this thesis relates to the process of forecasting the

position of the ball in the future based on past observations. The presence of
such a step in the pipeline is justified as long as the detector is not perfect and
consequently is employed precisely as a fallback-mechanism in cases of detector
failure, which were briefly analysed in the previous chapter.

The choice of algorithm for position estimation was Holt’s double exponential
smoothing. A key trait of this forecasting technique is that it accounts for trend

16

in the data (Holt [2004]). It was first applied in the field of ball tracking by
Sachdeva and was observed to provide smoother and more accurate trajectories
compared to those of the Kalman filter (Sachdeva [2019]). The inclusion of the
trend component in the estimation is desirable, as when playing straight drives,
hits of the ball sends it traveling towards the front wall followed by the bounce
and return of the wall back to the striker, exhibiting periods of trending (see
figure 4.5).

Figure 4.5: Snapshot of ball trajectory from the forehand dataset.

The formulas for performing double exponential smoothing are described be-
low, with St signifying the smoothed value and bt the trend value at time step
t. The symbols α and β stand for pre-chosen constants for the data smoothing
factor and for the trend smoothing factor in the range [0, 1]. The symbol yt is a
true data-point at time t and yi is a prediction made for time step i (Sachdeva
[2019]).

St = α ∗ yt + (1− α)(St−1 + bt−1) (4.4)
bt = β(St − St−1) + bt−1(1− β) (4.5)

yi = St + i ∗ bt (4.6)

4.2.3 Ball contour tracking
Tracking the ball contour is divided into two steps: candidate elimination and

candidate selection (see figure 4.6). In short, candidate elimination is performed
by joining nearby contours and then filtering them based on their area. The
rationale behind this lies in the assumption that nearby contours belong to the
same object and once that object is re-created by the join, area-based filtering
is more robust against false positive observations. On the other hand, candidate
selection relies on the fact that the trajectory of a squash ball is continuous
and assumes that observations are pair-wise close to each other. Based on that
assumption, a limited history of observations is searched for a most-continuous
path, with other heuristics also applied, to label a contour as a ball.

17

Figure 4.6: Illustration of steps employed in the tracker.

The first step in tracking the ball is minimizing the search-space for the later
parts of the tracking algorithm. Effectively the search-space consists of sequences
of bounding-rectangles of contours as seen by the detector, with the most common
scenario being at each step many false positives and a single true positive detec-
tion. The rectangle-join algorithm employed at this step addresses this common
case by actively trying to reduce the number of false positives by joining contours
that lie within a certain distance threshold from each other (see figure 4.7).

Figure 4.7: Rectangle-join illustration.

While this approach proved to be effective in minimizing the number of pos-
sible ball candidates, it also poses the risk of joining the ball with some other
sufficiently close contour and removing a true positive from the observations.
This drawback is later implicitly addressed in the tracking algorithm. Secondly,
the candidate elimination step uses the fact that the size of the ball contour
stays mostly consistent in its area. This allows for another cheap operation of
discarding candidates with area-based filtering employed on bounding boxes (see
figure 4.8). If it so happens that no candidates remain as a result of the filtering
then the estimator’s predicted contour is used as step-in ball contour (Sachdeva
[2019]).

Once the search-space has been reduced, then tracking is based firstly on
finding the shortest path across sequences of observations and secondly based on
the shape of the observations. Also, it is recognized that this process at times can
be working with incomplete information, and if the shortest path exhibits a jump
greater than the previous shortest path plus a threshold, then the continuity

18

Figure 4.8: Rectangle area based filtering illustration.

assumption is deemed as violated and it is assumed that the true positive is
missing. In that case, the prediction is returned instead.

In this process, the length of the observation history and the shape play an
important role in the accuracy of the tracking algorithm. The length of the ob-
servation history controls the number of layers of observations. A shorter history
is subject to more noise as noise is likely to persist for only a few frames, whereas
a longer history contains more information and is, therefore, more robust with
respect to false positives at the expense of increased computational cost. The
shape is considered useful since the resulting contour of the ball after morpho-
logical manipulation often resembles a square and provides a useful feature for
distinguishing between contours. Thus when traversing through the observations
the distance between the observation is scored by the sum of the euclidean dis-
tance and the ”square-ness” penalty of the data-point. The ”square-ness” value
is used for penalizing non-square contours by inflating the distance score and is
obtained by evaluating |width−height|. The algorithm is described in algorithm
two.

4.2.4 Ball bounce detection
We define the bounce of the ball as the action of the ball rebounding off the

floor after its contact with the front wall (see figure 4.5 again for visualization of
ball trajectory). For detecting bounces, the patterns exhibited by the ball bounc-
ing are used and for localizing bounces the bounce detector applies homography
to map between the 2D image-coordinates and the 2D top-down view coordinates.

Homography, also known as a perspective transform, is a linear transformation
that preserves straight lines. The perspective transform mapping is obtained
between homogeneous coordinates in the images by calculating x̃′ = Hx̃, where
H is the 3×3 homography matrix. A direct mapping between pixels of the source
and destination planes requires normalizing x̃′ according to:

19

Algorithm 2: Ball tracking via most-continuous path
Data: History of contours at each time-step: history
Data: Previous shortest distance through history:

previous shortest dist
Data: Distance cut-off cut off
Data: Prediction contour: prediction
Data: All possible shortest links between nodes: path
Result: Ball contour
/* iterate over all layers of observations */
for timestep in history do

/* assume that the true trajectory goes through the given point */
for observation i in timestep do

best distance←∞;
nearest node← None;
squareness← |widthi − heighti|;
/* find which point in the previous layer is nearest */
for observation j at previous timestep do

distance←
√︂

(xi − xj)2 + (yi − yj)2 + squareness;
if distance ≤ best distance then

best distance = distance;
nearest node = j;

end
end
add (nearest node, i, best distance) to path;

end
end
best dist, ball contour ← find shortest sum through path of same length
as history

/* If the obtained best distance through the history is greater than
the previous distance + cutoff distance then we assume that a
failure occurred */

if best dist− cut off ≥ previous shortest dist then
/* Inflate the previous shortest distance to avoid getting stuck in

a loop */
previous shortest dist← 1.2 ∗ previous shortest dist;
return prediction;

end
previous shortest dist← best dist;
return ball contour;

20

x′ = H0,0x + H0,1y + H0,2

H2,0x + H2,1y + H2,2
(4.7)

y′ = H1,0x + H1,1y + H1,2

H2,0x + H2,1y + H2,2
(4.8)

(Szeliski [2022]).
The homography matrix is calculated using correspondence points between the

two images. Fortunately, squash courts contain many intersecting lines, making
selecting such points simple in this case. The correspondence points, that we are
interested in, are those that encompass the target area when practicing straight
drives. More specifically, we would like to capture the upper corners of the service
box and the lower boundary of the court (see figure 4.9).

Figure 4.9: Illustration of forehand dataset reference points for homography map-
ping.

By obtaining the homography matrix and finding the ball contour in the input
frame, we gain the ability to calculate the position of the ball in the top-down
projection of the court, and thus, localize the bounce positions.

For detecting the occurrences of ball bounces, it is useful to distinguish all
three possible trajectory patterns that can occur with a ball bounce and valid
return.

21

1. Ball bounces on the floor and bounces off the back wall or bounces on the
floor and is hit back at the front wall (see figure 4.10a).

2. Ball bounces on the floor, experiences a peak, and falls onto the back wall
(see figure 4.10b).

3. Ball bounces off the glass wall and then contacts the floor (see figure 4.10c).

Each of these three cases exhibit a consistent pattern with respect to the peak
y-coordinates from the view of the projected top-down frame.

(a) Trajectory when the ball bounces on the floor and bounces off the back wall or bounces on
the floor and is hit back at the front wall

(b) Trajectory when the ball bounces on the floor, experiences a peak, and falls onto the back
wall.

(c) Trajectory when the ball bounces off the glass wall and then contacts the floor.

Figure 4.10: Example frames from both datasets.

22

In figure 4.10a we can distinguish two prominent peaks in the y-coordinate.
The first peak corresponds to the bounce of the ball off the floor with enough
velocity that the ball arcs only following the bounce off the glass wall, drawing
the second peak. A similar pattern is exhibited when the ball bounces off the
floor and is hit back at the front wall without contacting the back wall. In figure
4.10b the first peak represents the bounce of the ball off the floor, however in
this case the ball has smaller velocity, arcs mid-air, and drops onto the back
wall, drawing the second peak. The third peak corresponds to the ball dropping
towards the floor after contacting the glass fall, before being hit towards the front
wall. Figure 4.10c reveals that the bouncing of the ball off the back wall does
not manifest from the projection view and in this case only the prominent peak,
corresponding to the bounce of the ball off the floor, must be detected.

Through case-by-case analysis of figure 4.10, the issue of bounce detection
has been reduced to finding the first peak in the sequence, barring noise, and
discarding the following subsequent peaks. The details are discussed in the im-
plementation part of bounce detection (section 4.3.6).

4.3 Implementation of the Application
In this section, various implementation details of the complete application

pipeline are discussed more closely (see figure 4.11).

4.3.1 Platform and Programming Languages
This project heavily utilizes the open-source computer vision library OpenCV.

OpenCV is written in C++ and offers optimized implementations of various com-
puter vision algorithms, making it a common choice for computer vision projects.
Furthermore, OpenCV allows for interoperability with the Python programming
language through the use of OpenCV-Python bindings (OpenCV Documentation
[2022]). The advantage of using Python over C++ is its more concise, English-like
syntax, which simplifies the process of reading and writing programs.

In addition to its user-friendly syntax, Python was also selected due to the
abundance of available packages. The graphical user interface was developed
using the cross-platform library Tkinter, which is often bundled with Python
installations (Python Software Foundation [2022]). Furthermore, popular pack-
ages such as MatPlotLib were utilized during development for visualizing and
identifying patterns in the data.

Taking all of these factors into account, as well as the author’s familiarity
with the language, Python was ultimately chosen as the development language
of choice for this project.

4.3.2 Setup and calibration
Contrary to initial intuition, in this application, we are not concerned with

real-world coordinates of the bounces, but rather we opt for mapping points from
the image-plane to a top-down image of the court. The latter view is chosen as
it provides the clearest scene for visual analysis of the results.

23

Figure 4.11: Illustration of the full application pipeline.

24

The research done by Brumann and Kukuk [2022] explores automatic camera
calibration based on the known geometry of the squash court. The latter is spec-
ified by the World Squash Federation and is an accepted standard around the
world. For this, they successfully use genetic algorithms but warn that the effec-
tiveness is related to the quality of the image and the success of edge-detection
in preprocessing. They further clarify that whether this automated approach is
reasonable to use depends on the use case of the application and that the current
technology is more suited for coarse-grained calibration. Since accurate calibra-
tion is crucial for this application, the author opted for a manual calibration
method.

The manual calibration method is also based on the known geometry of a
singles squash court, however, localizing the points is relegated to the human
user. The calibration is carried out by clicking on a set of six points:

• 4 corners of the service box

• rear corner of the court

• any point along the rear of the court.

Figure 4.12: Six calibration points on the right side of the court depicted in green
marking (World Squash Federation [2016]).

Whereas a homography transformation requires a minimum of four points,
the selection of the aforementioned six points is used instead to make the capture
of the four points depicted in figure 4.9 more accurate. This approach is used,
since the precise clicking of such points is very difficult by hand compared to
leveraging the geometry of the court. By capturing the service box and the rear

25

of the court, the selection shown in figure 4.9 is re-created by constructing lines
from the selected points and calculating their intersections.

To facilitate accurate clicking, the user interface features a side-by-side view
with a magnified view of the cursor position.

Figure 4.13: Normal view on the left and magnified view on the right.

The order of clicking the points is unimportant as long as the service box
geometry is marked first, as the points are sorted and re-assigned based on the
assumptions of the input video. The application also tries to infer which side of
the court was marked based on the image coordinates of the marked points. If
the guess is incorrect then the value is overrideable in the user interface with a
button.

4.3.3 Detection
Functionality for extracting the foreground from the image is implemented

using the deque data structure from Python’s standard library as a frame-buffer.
It is a convenient option for such a use-case as it automatically discards the last
frame before adding a new one. The extraction steps related to image manipu-
lation are assembled using optimized implementations from the OpenCV library.
Kernels for blurring and morphological operations were chosen based on experi-
mental results on the first dataset.

4.3.4 Ball position estimation
In this thesis Holt’s double exponential smoothing was implemented as a

Python class based on the equations given in section 4.2.2. The class was tweaked

26

for use in this specific application and provided the functionality of estimating
the future positions of the bounding-rectangle of the ball. To achieve this, the
estimation is performed independently in two variables at the same time, namely
for x- and y-coordinates in the image coordinate system. Values for the width
and height of the predicted rectangle are not estimated, as it increases compu-
tational overhead with negligible effect for a mostly constant-area ball contour.
The results from the previous true observation are used for the width and height
of the prediction.

Initialization of the estimator is performed during object creation, with the
initial true observation artificially placed at the origin of the image coordinate
system.

4.3.5 Ball tracking
The tracker is implemented as a standalone class that operates on binary im-

ages and returns the rectangle of the hypothesized ball contour. It consists of
two main subroutines: one for candidate elimination and one for candidate selec-
tion. The methodology for each is discussed section 4.2.3. There are, however,
important parameters that were not discussed in detail in the aforementioned
chapter.

The candidate elimination routine consists of bounding rectangle joining and
area-based filtering, each of which have parameters that play an integral role in
the algorithm and lie on the assumptions made on camera placement being behind
the player. Firstly, for joining nearby bounding boxes, thresholds must be set on
joining distances in both x- and y-coordinates. Since the flight path of the ball
is mainly along the y-axis of the image, then avoiding unwanted joins with the
ball contour was implemented by providing a more lenient joining threshold on
the y-axis. The weakness of such an approach is its coupling with the resolution
of the video and an approach employing some clustering algorithm on contours
could be used as a more robust alternative. Secondly, area-based filtering is based
on a pre-existing constant, which is an estimate of the ball contour’s area in the
input video.

Values for aforementioned parameters were set during development on the
forehand dataset and confirmed to be effective without modification on the back-
hand dataset.

4.3.6 Ball bounce detection
Ball bounce detection is implemented based on the methodology described

in section 4.2.4. The homography matrix is calculated based on the source and
target coordinates obtained during application setup and is calculated based on
an optimized implementation provided by OpenCV.

Bounce detection is implemented using a buffer of past observations and a
cool-down period. A minimum of three observations are required to detect a peak
in the sequence, however such a short history is subject to noise. To counteract
this, a buffer of length five was chosen, with the sequence subject to the following
condition 4.9 for a bounce detection.

27

xi−2 ≤ xi−1 < xi > xi+1 ≥ xi+2 (4.9)

After condition 4.9 has been met, a bounce is said to have been detected, and the
location of the ball is obtained by finding the center of the top-down projected
ball contour. After a detection, a hard cool-down period is applied, during which,
no detections take place for the purpose of discarding subsequent non-relevant
peaks.

4.3.7 Application outputs
The outputs of the application are first and foremost the results of the analysis.

These results are presented in a drawn image, where each ball bounce is marked
by a semi-transparent circle for providing a heat-map-like visualization, with
overlapping bounces looking darker and others looking lighter. Analytics are
displayed in a textual format based on the target regions in the image and presents
statistics based on bounces within the areas (see figure 4.14).

Figure 4.14: Analysis results of the forehand dataset

During setup the user also is presented with an option to enable or disable
the view of of the analysis for visual verification of the program. This view (see
figure 4.15) presents the output of the tracker and estimator, by outlining the
estimated and tracked ball contour in the video and draws the detected bounces
on the court-projection in real time. During processing a progress bar is also
displayed.

28

Figure 4.15: Processing with view enabled on the forehand dataset.

29

5. Evaluation
In this chapter, we look at how the components of the system perform at their

tasks in isolation as well as how they perform in unison. A detailed description
of the data on which the application was tested on is described in chapter 3. For
each part of the evaluated system, the methodology is described individually.

5.1 Obtaining Ground Truth Data
In order to systematically evaluate the performance of the application, it was

necessary to annotate the more than 15,000 frames in the captured dataset. Given
the large number of annotations required, the author decided to develop a custom
annotation script that was suitable for quickly annotating the frames given the
nature of the required annotations (illustrated in figure 5.1).

For annotating ball contours in the image the tool utilized the existing building
blocks of the application, such as the detector and tracker. The annotation
process involved writing the following data for each bounding rectangle of the
ball contour into a CSV file:

• number of the frame

• x-coordinate of the top left corner of the bounding rectangle of the contour

• y-coordinate of the top left corner of the bounding rectangle of the contour

• the width of the contour

• the height of the contour.

This data was then used to evaluate the performance of the detector, estimator
and tracker.

In performing that annotation process, the author visually confirmed that the
tracker had correctly identified the ball contour, and only made corrections when
the tracker had made an error and locked onto an incorrect contour, or when the
detector failed and the estimator’s guess was too broad. This approach allowed
for the efficient and sufficiently accurate capture of the necessary ground truth
data for evaluating parts of the application.

For evaluating bounce detections, the author used a simplified version of the
script and simply annotated the number of the frame in which the bounce was
perceived. The annotations do not include only ball bounces from straight drives,
but also those instances when the ball was bounced on the floor and thus the
number of annotations is greater than the number of drives played.

Since the ground truth data for the location of the ball bounce was too difficult
to capture, it was only evaluated visually to be sufficiently accurate.

30

Figure 5.1: Screen-capture of the trajectory annotation script.

5.2 Detector
The effectiveness of the detector is evaluated by assessing its ability to cor-

rectly identify the presence of a ball contour in a given frame, as well as its ability
to avoid identifying other contours.

The output of the detector was captured by using it to classify regions of the
image as the foreground, creating bounding rectangles around detected contours
and saving the results into a CSV file in the format as described in section 5.1. The
output of the detector was then compared frame-by-frame against the ground-
truth annotations using a script written by the author.

Naturally, we define true positives as instances where the detector correctly
identifies the location of a ball contour in a frame. For this evaluation we defined
the minimum threshold for a true positive overlap at 33%. False positives refer
to instances where the detector incorrectly identifies a non-ball contour as a ball
contour and false negatives refer to instances where the detector fails to identify
the presence of a ball contour in a frame even though one is present.

The results of this evaluation are presented in table 5.1.

Metric Forehand dataset Backhand dataset
True Positives 5418 7036
False Positives 13638 23471
False Negatives 1695 4073

Precision 0.28 0.23
Recall 0.76 0.63

F1-score 0.41 0.34

Table 5.1: Evaluation of the detector on the forehand and backhand datasets.

31

This analysis reveals that the recall score of the detector on both datasets is
mediocre, with the detector failing to identify the presence of a ball contour in
roughly 25% to 35% of cases. A poor precision score is expected, as the strategy
of the utilized detector is to capture all moving elements in the frame that are
subject to filtering later in the pipeline. However, it is worth noting that on that
dataset, the false negatives most often occur due to the occlusion of the ball by
the racket or when the ball is stationary from the perspective of the camera. The
latter case happens most when the ball contacts the front wall and bounces back.

The evaluation metrics could be improved by increasing the history of the
background or by using a different strategy and dividing detection into multi-
ple steps and using a combination of detectors during the detection step at the
expense of computational cost.

5.3 Estimator
The effectiveness of the estimator was evaluated by assessing its ability to

predict the location of the ball in subsequent frames. This evaluation was per-
formed in two ways: by measuring whether the prediction overlapped with the
annotated contour and by calculating the average distance between the center of
mass of the predictions and the annotations.

The estimator was assessed using the annotated data of ball positions in
frames. The contours of the ball were input to the estimator, and the estimator
was then used to predict the future location of the ball. After making a predic-
tion, the internal state of the estimator was updated using the annotated ground
truth contour. The evaluator was run in the same way that it would be used in
the application, simulating predictions of the ball’s location, assuming that the
detector has not detected the contour for one, two, and three consecutive frames.

The output of the detector was compared to the ground truth annotations us-
ing a Python script written by the author. In this comparison, true positives were
defined as contours that overlapped between the prediction and the annotation,
and false positives were defined as contours that did not overlap. False negatives
were not considered in this evaluation, as they do not exist in the annotations.
In addition, the mean distance between the predicted position of the ball and
the annotation was measured in pixels to gauge the accuracy of estimation. A
lower mean distance indicates better performance than a higher distance, with
a score of zero indicating a perfect score in following the annotated path of the
ball. The letter ”T” in the table 5.2 below refers to the timestep used to predict
the number of frames in the future.

The table shows that the double-exponential estimator is relatively accu-
rate when tasked with predicting just a single frame ahead, however, the table
presents a clear trend of dropping precision as predictions are made for future
time steps. Higher accuracy could be achieved by a systematic search of the
trend- and smoothing parameter values that would maximize precision, however
in the context of this thesis that would risk over-fitting the estimator for the
example dataset given the amount of testing data.

32

Dataset T TP FP Precision Mean Distance
Forehand 1 6350 423 0.94 10.52
Forehand 2 6035 739 0.89 14.48
Forehand 3 5705 1070 0.84 18.89
Backhand 1 9552 1134 0.89 17.83
Backhand 2 8926 1761 0.84 23.24
Backhand 3 8297 2391 0.78 29.57

Table 5.2: Evaluation of the double-exponential estimator on the forehand and
backhand datasets.

5.4 Tracker
In this work, the tracker is inherently linked to the detector and estimator, and

as such, there was no optimal way to test the tracker in isolation. Therefore, this
evaluation aims to assess the ability of the tracker to utilize imperfect detections
and ball position estimations in order to generate a coherent trajectory of the
ball’s movement. This directly evaluates the tracking performance in a common
use-case scenario. The trajectories were generated by providing the tracker with
the contours produced by the detector and double-exponential estimator. The
output was stored in a CSV file in the common format outlined in the introductory
section of this chapter. These simulated data were then compared to annotations,
with a true positive instance requiring 50% overlap with an annotated contour
and false positives and false negatives defined in the same way as in the detector
evaluation. The results are presented in table 5.3.

Dataset TP FP FN Prec. Recall F1 Mean Distance
Forehand 4835 1760 232 0.73 0.95 0.83 14.26
Backhand 8349 2530 208 0.77 0.98 0.86 16.03

Table 5.3: Evaluation of the tracker on the forehand and backhand datasets.

Given that the detector produces a lot of hypotheses of ball positions, then
the tracker is able to consolidate them with the predictions of the estimator quite
well, achieving F1-scores over 0.90 on both datasets. Given that false positives
are mostly introduced when the failure of the detector and failure of the estimator
coincide, improvements in either would in turn improve the tracker.

5.5 Bounce Detection
The bounce detection used in this thesis has two aspects that should be quanti-

fied: the accuracy of detecting bounces and the accuracy of localizing the bounce.
As mentioned in the introduction of this chapter, the author did not manage to ob-
tain objective ground-truth data on bounce locations and only visually inspected
the localization to be accurate. Therefore, only the ability to detect bounces of
the ball was evaluated.

For obtaining the simulated data, the author initialized the detector with
the appropriate source and destination coordinates for each video in the dataset

33

and proceeded with the simulation by applying the detector on the annotated ball
trajectories. The output of the simulation was a CSV file that contained numbers
of each frame when a bounce was detected, which was then compared against the
annotations. Since the accuracy of the annotations can slightly vary due to the
attention of the annotator, then the results were evaluated with a window of error
of 10 frames, meaning that the bounce detected by the detector must be within
10 frames of the annotated bounce to be counted as a true positive. Bounces that
occurred outside the field of view of the camera are represented as true negatives.

Dataset TP FP FN TN Accuracy Precision Recall F1
Forehand 56 4 4 1 0.85 0.93 0.90 0.92
Backhand 78 4 14 4 0.81 0.95 0.85 0.90

Table 5.4: Evaluation of the bounce detector on the forehand and backhand
datasets.

In conclusion, even though the bounce detector achieved less than ideal F1-
scores, the results provided are usable due to relatively good precision values.
While the detector was designed to detect the bounce pattern of straight drives
and would expectedly miss consecutive ball bounces between the racket and ball,
the number of missed detections on the backhand dataset suggests that the de-
tector might need further calibration.

5.6 Application Performance
For testing the complete application pipeline, the program was run on both

videos in the dataset with the processing view enabled, during which, the bounce
detections were visually analyzed. All bounces that were detected and localized
correctly were marked as true positives, whereas bounces not visible were in-
stances of true negatives. Cases deemed false positives were instances, when the
ball did not bounce, yet a bounce was detected and false negatives, when the ball
bounced, but was not detected as such. In cases where the ball bounced, but
localization was wrong, both false positives and false negatives were incremented.

The results of this analysis is presented in table 5.5.

Dataset TP FP FN TN Accuracy Precision Recall F1
Forehand 51 4 9 1 0.80 0.93 0.85 0.89
Backhand 79 6 13 4 0.81 0.93 0.86 0.89

Table 5.5: Evaluation of the bounce detector on the forehand and backhand
datasets.

Processing the downscaled 480p forehand drives video on a 2,3 GHz Quad-
Core Intel Core i5 (8259U) took 53 seconds. The longer backhand drives 480p
video of three minutes and thirteen seconds took a total of 1 minute and 10
seconds. Enabling the visualization of the analysis took 8 minutes and 23 seconds
and 12 minutes and 3 seconds respectively.

The output views of the applications are presented in figure 5.2.

34

(a) Application output on the forehand dataset(b) Application output on the backhand dataset

Figure 5.2: Analysis results

Ultimately, the author evaluated that the application pipeline performs suf-
ficiently well in giving a general overview of the number of shots hit and the
accuracy of the striker in a reasonable analysis time.

35

Conclusion
In this thesis, we set out to create a computer application capable of ana-

lyzing amateur videos of a player performing straight drives and automatically
extracting and visualizing data of their performance. We began this work with
a brief introduction to squash, an explanation of the terminology involved, and
the justification for the importance of straight drives as a subject of analysis. We
then presented the existing solutions for squash analytics as well as related aca-
demic literature to understand the larger context in which this work is positioned.
When designing the application, with accessibility in mind, we provided a set of
restrictions on the input videos, such as positioning of the camera behind the
player, which users should adhere to for optimal performance. An existing theo-
retical approach to tracking a squash ball, developed for broadcast-grade quality
match videos, is implemented and modified at various steps. For the detection of
a squash ball, a simple solution for cases of poor image segmentation due to the
static nature of the data is proposed. On evaluation, the detector obtained a re-
call score of 74% on the development dataset and 63% on the testing dataset. For
tracking a squash ball, a trajectory-filling algorithm was devised that achieved a
high-recall and a precision of roughly 75%. For detecting and localizing bounces
of the ball, a perspective transform is used to map the ball position between the
view of the camera and the top-down projection of the court. The patterns of
the ball movement were then analyzed and exploited for detecting bounces. The
latter method achieved precision scores in excess of 90% and recall scores of 90%
and 85% on annotated data from the development and testing videos.

The result of this work is a unique cross-platform application in the field
of squash analysis, that within the constraints of camera placement, achieved
precision scores in excess of 90% and F1-scores of 89% on bounce detections on
both the video used in development, as well as for testing the application. Thus,
this application can be evaluated as reasonably effective in providing an objective
lens for evaluating straight drives accuracy automatically.

36

Bibliography
C. Brumann and M. Kukuk. Evolution Based Single Camera Resectioning Based

on Distance Maps of a Known Geometry for Squash Sports. IEEE Access, 10:
1–1, 01 2022. doi: 10.1109/ACCESS.2022.3178832.

M. Dale. Cross Court Analytics: Players, coaches and feder-
ations flock to learn the secrets of their winners and errors,
October 2022. URL https://squashmad.com/breaking-news/
cross-court-analytics-players-coaches-and-federations-flock-to-learn-the-secrets-of-their-winners-and-errors/.
(Accessed: 2022-11-30).

P. Dixon. Player Tracking in Squash with Computer Vision and Deep Learning,
June 2018. URL https://parkerdixon.github.io/Squash-Vision/. (Ac-
cessed: 2022-04-04).

C. C. Holt. Forecasting seasonals and trends by exponentially weighted moving
averages. International Journal of Forecasting, 20(1):5–10, 2004. ISSN 0169-
2070. doi: https://doi.org/10.1016/j.ijforecast.2003.09.015. URL https://
www.sciencedirect.com/science/article/pii/S0169207003001134.

A. Hrabalik. Implementing and Applying Fast Moving Object Detection on Mo-
bile Devices. Master’s thesis, Czech Technical University in Prague, 2017. URL
http://hdl.handle.net/10467/69501.

Inside Squash. URL http://www.insidesquash.com/drill_images/123.gif.
(Accessed: 2010-09-20).

InteractiveSQUASH. How the System works: Hard- and Software, 2022. URL
https://interactivesquash.com/operator/. (Accessed: 2022-12-11).

T. W. Jones, B. K. Williams, C. Kilgallen, C. Horobeanu, B. C. Shillabeer,
A. Murray, and M. Cardinale. A review of the performance requirements
of squash. International Journal of Sports Science & Coaching, 13(6):1223–
1232, 2018. doi: 10.1177/1747954118792492. URL https://doi.org/10.
1177/1747954118792492.

D. Judd and R. Wu. Squash Sport Analytics & Image Processing.
2014. URL https://www.cis.upenn.edu/wp-content/uploads/2019/08/
HonorspaperforEAS499_Wu_Judd.pdf.

J. Kittler and J. Illingworth. On threshold selection using clustering criteria.
IEEE Transactions on Systems, Man, and Cybernetics, SMC-15(5):652–655,
1985. doi: 10.1109/TSMC.1985.6313443.

I. McKenzie. The Squash Workshop:. The Crowood Press, Ltd., 1993. ISBN
9781852237288.

E. Mencarini, A. Rapp, L. Tirabeni, and M. Zancanaro. Designing Wearable Sys-
tems for Sports: A Review of Trends and Opportunities in Human–Computer
Interaction. IEEE Transactions on Human-Machine Systems, 49(4):314–325,
2019. doi: 10.1109/THMS.2019.2919702.

37

https://squashmad.com/breaking-news/cross-court-analytics-players-coaches-and-federations-flock-to-learn-the-secrets-of-their-winners-and-errors/
https://squashmad.com/breaking-news/cross-court-analytics-players-coaches-and-federations-flock-to-learn-the-secrets-of-their-winners-and-errors/
https://parkerdixon.github.io/Squash-Vision/
https://www.sciencedirect.com/science/article/pii/S0169207003001134
https://www.sciencedirect.com/science/article/pii/S0169207003001134
http://hdl.handle.net/10467/69501
http://www.insidesquash.com/drill_images/123.gif
https://interactivesquash.com/operator/
https://doi.org/10.1177/1747954118792492
https://doi.org/10.1177/1747954118792492
https://www.cis.upenn.edu/wp-content/uploads/2019/08/HonorspaperforEAS499_Wu_Judd.pdf
https://www.cis.upenn.edu/wp-content/uploads/2019/08/HonorspaperforEAS499_Wu_Judd.pdf

T. Mullaney. SquashAI: Video Analytics for Squash, 2020. URL http://
tommymullaney.com/projects/squash-ai. (Accessed: 2022-11-30).

OpenCV Documentation. How OpenCV-Python bindings are generated?,
September 2022. URL https://docs.opencv.org/4.x/da/d49/tutorial_
py_bindings_basics.html. (Accessed: 2022-09-26).

F. Pretto. Squash Analytics: a Computer Vision and Deep
Learning approach, 2020. URL https://tealfeed.com/
squash-analytics-computer-vision-deep-learning-nthuv. (Accessed:
2022-04-04).

Professional Squash Association. PSA To Launch Real-Time
Statistics Tracking System With interactiveSQUASH, Jan-
uary 2018. URL https://www.psaworldtour.com/news/
psa-to-launch-real-time-statistics-tracking-system-with-interactivesquash.
(Accessed: 2022-11-30).

Professional Squash Association. Men’s world rankings, August 2022. URL
https://www.psaworldtour.com/rankings/. (Accessed: 2023-01-03).

Python Software Foundation. Graphical User Interfaces with Tk, September 2022.
URL https://docs.python.org/3/library/tk.html. (Accessed: 2022-09-
06).

Racketware. World’s only motion tracking sensor for squash, November 2022.
URL https://www.racketware.co.uk. (Accessed: 2022-09-19).

J. Redmon and A. Farhadi. YOLOv3: An Incremental Improvement, 2018. URL
https://arxiv.org/abs/1804.02767.

D. Rozumnyi, J. Kotera, F. Sroubek, L. Novotny, and J. Matas. The World
of Fast Moving Objects. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE, jul 2017. doi: 10.1109/cvpr.2017.514.
URL https://doi.org/10.1109%2Fcvpr.2017.514.

S. Sachdeva. Detection and Tracking of a Fast-Moving Object in Squash using
a Low-Cost Approach. Master’s thesis, Delft University of Technology, Delft,
NL, 2019.

N. Santelmann. Ten Healthiest Sports. Forbes, 2003. URL https://www.forbes.
com/2003/09/30/cx_ns_1001featslide.html. (Accessed: 2022-08-31).

SquashTrack. SquashTrack Makes Your Coaching Easier, 2018. URL https:
//www.squashtrack.com. (Accessed: 2022-12-01).

R. Szeliski. Computer Vision: Algorithms and Applications. Springer Interna-
tional Publishing, 2022. ISBN 9783030343712. doi: https://doi.org/10.1007/
978-3-030-34372-9.

US Squash. Squash Facts. URL https://web.archive.org/web/
20200823074254/https://www.ussquash.com/squash-facts/. (Accessed:
2022-11-30).

38

http://tommymullaney.com/projects/squash-ai
http://tommymullaney.com/projects/squash-ai
https://docs.opencv.org/4.x/da/d49/tutorial_py_bindings_basics.html
https://docs.opencv.org/4.x/da/d49/tutorial_py_bindings_basics.html
https://tealfeed.com/squash-analytics-computer-vision-deep-learning-nthuv
https://tealfeed.com/squash-analytics-computer-vision-deep-learning-nthuv
https://www.psaworldtour.com/news/psa-to-launch-real-time-statistics-tracking-system-with-interactivesquash
https://www.psaworldtour.com/news/psa-to-launch-real-time-statistics-tracking-system-with-interactivesquash
https://www.psaworldtour.com/rankings/
https://docs.python.org/3/library/tk.html
https://www.racketware.co.uk
https://arxiv.org/abs/1804.02767
https://doi.org/10.1109%2Fcvpr.2017.514
https://www.forbes.com/2003/09/30/cx_ns_1001featslide.html
https://www.forbes.com/2003/09/30/cx_ns_1001featslide.html
https://www.squashtrack.com
https://www.squashtrack.com
https://web.archive.org/web/20200823074254/https://www.ussquash.com/squash-facts/
https://web.archive.org/web/20200823074254/https://www.ussquash.com/squash-facts/

G. Vučković, N. James, M. Hughes, S. Murray, G. Sporǐs, and J. Perš. The effect
of court location and available time on the tactical shot selection of elite squash
players. Journal of Sports Science and Medicine, 12:69, March 2013.

B. K. Williams, P. C. Bourdon, P. Graham-Smith, and P. J. Sinclair. Validation
of the Hunt Squash Accuracy Test used to assess individual shot performance.
Movement & Sport Sciences - Science & Motricité, 100, 2017.

World Squash Federation. Specification for Squash Courts, January
2016. URL https://www.worldsquash.org/wp-content/uploads/2021/08/
171128_Court-Specifications.pdf. (Accessed: 2022-08-31).

39

https://www.worldsquash.org/wp-content/uploads/2021/08/171128_Court-Specifications.pdf
https://www.worldsquash.org/wp-content/uploads/2021/08/171128_Court-Specifications.pdf

List of Figures

1.1 Illustration of World Squash Federation squash court specification
(World Squash Federation [2016]). 4

1.2 Illustration of the solo straight drives exercise (Inside Squash). . . 6

2.1 Illustration of the InteractiveSQUASH system (InteractiveSQUASH
[2022]). 8

3.1 Example frames from both datasets. 11

4.1 Illustration of the algorithmic pipeline of the application. 13
4.2 Illustration of the detection pipeline. 14
4.3 Regular frame (left), Otsu thresholded frame (middle), overriden

thresholding(right). 15
4.4 Normal frame (left) and extracted foreground from the background

with two ball candidates(right). 16
4.5 Snapshot of ball trajectory from the forehand dataset. 17
4.6 Illustration of steps employed in the tracker. 18
4.7 Rectangle-join illustration. 18
4.8 Rectangle area based filtering illustration. 19
4.9 Illustration of forehand dataset reference points for homography

mapping. 21
4.10 Example frames from both datasets. 26
4.11 Illustration of the full application pipeline. 27
4.12 Six calibration points on the right side of the court depicted in

green marking (World Squash Federation [2016]). 28
4.13 Normal view on the left and magnified view on the right. 28
4.14 Analysis results of the forehand dataset 29
4.15 Processing with view enabled on the forehand dataset. 29

5.1 Screen-capture of the trajectory annotation script. 31
5.2 Analysis results . 35

40

List of Tables

1.1 Definition of shot types (Williams et al. [2017]) 5

5.1 Evaluation of the detector on the forehand and backhand datasets. 31
5.2 Evaluation of the double-exponential estimator on the forehand

and backhand datasets. 33
5.3 Evaluation of the tracker on the forehand and backhand datasets. 33
5.4 Evaluation of the bounce detector on the forehand and backhand

datasets. 34
5.5 Evaluation of the bounce detector on the forehand and backhand

datasets. 34

41

List of Abbreviations
PSA Professional Squash Association

TP True positive

FP False positive

FN False negative

TN True negative

42

A. Attachments

A.1 Source code
The application source code. The source code is also available on the URL:

https://github.com/veedlaw/squash-drive-analyst.

A.2 Video data
Contains the videos described in the dataset chapter.

A.3 Annotation and evaluation source code
Contains annotation scripts (.py), annotation and simulation data (.csv) and

Jupyter notebooks (.ipynb) used for evaluation as mentioned in section 5.1.

A.4 User documentation
The software allows the user to load a previously captured video run the

analysis program on the video. Upon completion of the analysis, the user will
receive:

• A heat-map image of the ball bounce locations.

• Ball bounce location in percentages and absolute numbers with respect to
target boxes.

A.4.1 Pre-requisite
Download and install Python3

A.4.2 How to launch the application
1. Download this repository and navigate to it:

cd sq ua s h d r i v e an a l y s t

2. Create a virtual environment:
python3 −m venv venv
source venv/bin/ a c t i v a t e

3. Install the required packages:
pip3 i n s t a l l −r requ i rements . txt

4. Launch using:
python3 main . py

43

https://github.com/veedlaw/squash-drive-analyst
https://www.python.org/downloads/

A.4.3 Video selection
The program starts with a file selection screen which allows to navigate the

file system and select a video to run the program on.

Tip: A lower resolution video can be processed faster.

A.4.4 Setting up
The set-up screen features the following elements:

• A preview frame on the left to mark the service box and the lower boundary
of the court

• A zoomed-in view of the mouse cursor on the right

• An Undo button to undo last marker placement

• A checkbox that selects whether the video will be displayed during analysis
or not

• Two radio-buttons marking on which side of the court the service box lies

44

The set-up requires that first the four corners of the service box be marked
and then the two remaining points lying on the lower boundary of the court from
the view of the camera.

The application will try to infer on which side of the court the marked ser-
vice box lies on and automatically selects the corresponding radio-button. If the
inference is incorrect then it can be manually overridden by selecting the opposite
radio-button.
Tip: Uncheck the ”Show processing video” checkbox for the analysis to run much
faster.

Marking the service box
It is advisable to aim for the outer edges of the corners of the service box.

A visual overlay is automatically drawn that connects the clicked points. The
application can be seen to have correctly inferred that the service box lies on the
right side of the court by the active radio-button in the lower-right corner of the
application.

45

Marking the rear of the court
Next any two points must be clicked on that lie on the boundary of the playing

area and the floor. In the example image the points have been chosen as far apart
as possible for visualization purposes.

46

Once the points lower boundary has been clicked a pop-up window emerges.
In case the last click was not placed correctly it is possible to click ”Cancel”
followed by the ”Undo” button to readjust the selection. To proceed to the the
analysis click ”Ok”.

47

A.4.5 Processing view

If the ”Show processing video” option is selected then the video is shown in
parallel with generating the bounce-marks. A progress bar is shown in either case
to gauge the process of the analysis.

48

A.4.6 Output view

The output view displays the results of the analysis. On the left panel, a heat-
map-like image is show of the detected ball bounces, along with area markers.
On the right panel is shown the counts of bounces per area.

Below each of the panels is a button allowing for saving the data into a user-
selectable destination.

A.5 Developer Documentation
This annex describes each component of the squash drive analysis software

and its implementation in detail.

A.5.1 Used tools, libraries and environment
This application was developed using Python 3.10 and PyCharm 2022.1.3

Professional IDE.
There are few dependencies of the application and they are provided at the

root of the source code in the file requirements.txt for easy installation.
The dependencies are (excluding version numbers):

• OpenCV for optimized image processing algorithms

• Numpy for multi-dimensional array support

49

• MatPlotLib for data visualization during development

• Pillow for displaying images in the graphical user interface.
The project is structured in a file tree as follows:

squash-drive-analyst

main.py

pipeline.py

detector.py

double exponential estimator.py

tracker.py

bounce detector.py

stats.py

gui

analysis view.py

file selection.py

guistate.py

output view.py

panel view.py

set up view.py

utils

court.py

rect.py

utilities.py

video reader.py

requirements.txt

README.md

A.5.2 Ball detection component
In the file ”detector.py”, the ball detection step is implemented. The main

interaction with the Detector class is done by feeding it frames and receiving
images where the foreground has been extracted from the background.

50

You can interact with the class through the following three methods: initial-
ize with(frame), ready() and process(frame). The first two refer to the initial-
ization of the detector, as it requires three consecutive frames for the employed
frame-differencing method. It uses Python double-ended queue to store a fixed
number of images in memory that will be used for detection in the current time-
step.

The process(frame) method is implemented by chaining various OpenCV func-
tion calls. It takes as input a regular video frame and outputs a binary image,
with white areas representing the foreground and black regions the background.
By modifying this method, it is possible to change the implementation of the
detection and achieve different results.

A.5.3 Ball position estimation component
The functionality for estimating the position of the ball is implemented in the

file ”double exponential estimator.py”.
The DoubleExponentialEstimator class implements Holt’s double exponential

smoothing in two coordinates and is able to hypothesize the future positions of a
ball’s bounding rectangle based on past observations. Instead of implementing the
double exponential smoothing and applying it on each parameter, this abstraction
is useful, as this this enables to encapsulate ball position estimation into a clear
API with a single method call for obtaining a prediction.

The class has two main methods exposed for interaction: correct(position),
which updates the observation buffer, and predict(t), which calculates the pre-
dicted location of the ball contour at a future time t.

A.5.4 Ball tracking component
The ball tracking is implemented in the class Tracker, which is located in

the file ”tracker.py”. Besides the class constructor, which defines several im-
portant parameters, there is a single method for interacting with the class se-
lect most probable candidate(frame, prediction). This method is intended to
work with a binarized frame, such as one given by detector.process(frame), and
a predicted ball position to output the position of the ball contour in the frame.

The class constructor defines multiple variables that can drastically affect the
performance of the detector:

• candidate history defines the length of the observation history, which is
searched for a ball trajectory

• dist cutoff defines a pixel threshold for maximum jump in observation
distance to be disqualified as a ball contour

• avg area defines the approximate area in square pixels of the ball’s bounding
rectangle

By calling select most probable candidate(frame, prediction), a lot of work
is done internally by methods hidden from the API. First, bounding rectan-
gles of contours are extracted and contours that are close to each other are
joined with join contours(frame). Then, the contours are filtered based on

51

their relation to avg area. If no contours remain after filtering, the prediction
is used as the only observation. Finally, the candidate history is searched
across layers for a path that scores the lowest according to the metrics defined in

find shortest path candidate(prediction).
Changes to any step of the detector can lead to significantly different results.

A.5.5 Ball bounce detection component
The BounceDetector class is defined in the file ”bounce detector.py”. Since

BounceDetector uses homography for its detections, it requires both source and
target coordinates during creation to compute a homography matrix. For ease
of use, the source and destination coordinates do not need to be specified in any
particular order, as they are sorted to correspondence before the homography
matrix is calculated.

The class provides three methods, all of which should be used together when
interacting with the bounce detector: update contour data(position), bounced(),
and get last bounce location().

The update contour data(position) method manages the data added to the
position buffer of the BounceDetector. Internally, only coordinates projected
with the homography matrix are used.

The bounced() method is used to check the contents of the ball position buffer
for a bounce pattern and the get last bounce location() method is used to retrieve
the corresponding position of the ball from the buffer.

A.5.6 Statistics tracking component
The file ”stats.py” contains the class AccuracyStatistics that manages the

storage and representation of the ball bounces. It handles the division of of shots
into target areas and calculating the statistics.

A.5.7 Utilities
The directory squash-drive-analyst/utils contains various python files contain-

ing utilities used in the application.

• The file ”rect.py” contains a Python data class for representing a bounding
box of a rectangle.

• The file ”court.py” aggregates functionality for drawing a squash court and
for drawing on it.

• The file ”video reader.py” contains functionality for reading frames from a
video file.

• The file ”utilities.py” contains various other utility functions.

52

A.5.8 Application pipeline
The complete analysis pipeline from the aforementioned building blocks is

combined in the source file ”pipeline.py”. Aside from the object constructor, it
provides a generator method process next() that yields frames to be shown during
the analysis, and a method get progress() that returns a value in the range [0,
1] of completion of the analysis. The rationale for using a generator to access
the analysis pipeline is rooted in the convenience, when the pipeline is run in a
separate thread when combined with Tkinter.

A.5.9 Graphical user interface
The file ”main.py” is the entry-point of the application. The file contains a

single class MainApplication that handles the interface state transitions and the
logic-flow alongside it. The transitions in the application always follow the same
ordering:

1. Begin in file selection view.

2. Upon file selection: transition to setup view.

3. Upon setup completion: transition to analysis view.

4. Upon analysis completion: transition to the output view.

All code related to the application window and user interface is located in the
directory squash-drive-analyst/gui.

53

	Introduction
	Introduction of squash
	Relevance of straight drives

	Related work
	State of sport analytics in squash
	Court augmentation
	Wearables
	Human analysis

	Related research
	Community projects

	Dataset
	Implementation
	Constraints on input video
	Building blocks of the application pipeline
	Pre-processing and detection
	Ball position estimation
	Ball contour tracking
	Ball bounce detection

	Implementation of the Application
	Platform and Programming Languages
	Setup and calibration
	Detection
	Ball position estimation
	Ball tracking
	Ball bounce detection
	Application outputs

	Evaluation
	Obtaining Ground Truth Data
	Detector
	Estimator
	Tracker
	Bounce Detection
	Application Performance

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	Attachments
	Source code
	Video data
	Annotation and evaluation source code
	User documentation
	Pre-requisite
	How to launch the application
	Video selection
	Setting up
	Processing view
	Output view

	Developer Documentation
	Used tools, libraries and environment
	Ball detection component
	Ball position estimation component
	Ball tracking component
	Ball bounce detection component
	Statistics tracking component
	Utilities
	Application pipeline
	Graphical user interface

