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ABSTRACT

Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal
hematopoietic disorders with a risk of transformation into acute myeloid leukemia
(AML). The International Prognostic Scoring Systems integrate clinical data and
cytogenetics to determine the risk of AML transformation for individual patients.

Precise risk assessment is crucial for treatment decision-making.

The aim of this thesis was to identify molecular markers for the early detection
of disease progression in MDS patients. Using cDNA microarrays and next-
generation sequencing, we targeted long noncoding RNAs (IncRNAs) and
recurrently mutated genes in bone marrow cells. In addition, we focused
on the identification of pathways related to the progression of MDS and

understanding how the identified biomarkers participate.

In the transcriptome study, we identify 4 candidate IncRNAs that may serve
as prognostic biomarkers of the adverse course of MDS: H19, WT'1-AS, TCL6, and
LEFI-AS. Using various statistical approaches, we determined the level of H/9
to be a strong independent prognostic marker. Furthermore, our data showed that
disruption of transcriptional coregulation of the imprinting locus H/9/IGF2 and
miR-675, which directly regulates H/9 and plays a role in tumorigenesis,

accompanies disease progression.

In the genomic study aimed at lower-risk MDS patients, we identified mutated
RUNXI, SETBPI1, STAG2, TP53, and U2AF1 genes to have a significant effect
on progression-free survival by univariate analysis. In multivariate analysis,
the mutated RUNXI gene was determined to be the strongest predictive marker
of rapid progression. We showed how the implementation of the RUNXT mutational
status into the Revised International Prognostic Scoring System may improve
patient stratification. We described an association of RUNX with the DNA damage
response (DDR) and cellular senescence and that its loss-of-function mutations lead
to escape from these cellular protection barriers and to progression.
The deregulation of DDR and cellular senescence in RUNXI-mutated patients was
verified at the functional level by the detection of YH2AX protein expression and

senescence-associated f-galactosidase activity.



In conclusion, we identified mutated and deregulated genes that can be used
as predictive markers of rapid progression in MDS. Our results may contribute
to the early detection of patients at risk of disease progression and the initiation
of appropriate treatment. Simultaneously, we described cellular processes in which

the biomarkers are involved and suggested their role in disease pathogenesis.

Keywords: myelodysplastic syndromes, pathogenesis, progression, IncRNA,

RUNXI



ABSTRAKT

Myelodysplasticky syndrom (MDS) je heterogenni skupina onemocnéni
charakterizovéana klonélni poruchou krvetvorby s rizikem transformace do akutni
myeloidni leukémie (AML). Na zdklad¢ vySetfeni krevniho obrazu, kostni dien¢
a cytogenetiky je podle mezindrodnich prognostickych skorovacich systému
urcovano riziko transformace do AML. Pfesné urceni rizika je klicové pro zvoleni

spravné 1éCby.

Cilem této prace byla identifikace molekularnich markerti pro v€asnou detekci
progrese onemocnéni. Pomoci cDNA C¢ipli a sekvenovani nové generace byly
analyzovany dlouhé nekdédujici RNA (IncRNA) a rekurentné mutované geny
v buiikach kostni diené. Zaroveil bylo naSim cilem popsani signalnich drah, které
se podili na progresi onemocnéni, a vysvétleni, jak dané biomarkery k progresi

prispivaji.

V transkriptomové studii jsme identifikovali 4 kandidatni IncRNA, které by mohly
slouzit jako prognostické biomarkery horSiho pribé¢hu MDS, a to H19, WTI-AS,
TCL6 a LEFI1-ASI. Na zéklad¢ nékolika statistickych piistupt jsme prokazali,
ze hladina transkriptu H79 mize slouzit jako velmi silny nezavisly prognosticky
marker. Navic nase data ukazala, Ze progrese je doprovazena poruchou transkripcni
regulace imprintovaného lokusu H19/IGF2 a miR-675, kterd piimo reguluje H19

a hraje vyznamnou roli v tumorigenezi.

V genomické studii zaméfené na pacienty snizSim rizikem jsme pomoci
univariantni analyzy identifikovali mutované geny RUNX1, SETBP1,STAG2, TP53
a U2A4F1 jako geny se signifikantnim vlivem na délku preZiti bez progrese.
V multivariantni analyze byl mutovany gen RUNXI urCen jako nejsilngjsi
prediktivni marker ¢asné progrese. Ukézali jsme, jak inkorporace muta¢niho statutu
genu RUNXI do Revidovaného mezinarodniho prognostické skorovaciho systému
muze zlepsit stratifikaci pacientli. Popsali jsme asociaci tohoto genu s drahou
odpovédi na DNA poskozeni (DDR) a bunécnou senescenci, a ze ztrata jeho funkce
zptisobend mutaci vede k pfekondni buiku chranici bariéry a k progresi
onemocnéni. Deregulace drahy DDR a bunééné senescence u pacientll s mutaci
v genu RUNXI byla pozorovana 1 na funk¢ni urovni sledovanim exprese proteinu

YH2AX a aktivity B-galaktosiddzy asociované se senescenci.



Identifikovali jsme geny, které, at’ mutované nebo s deregulovanou expresi, mohou
byt vyuzity jako prediktivni markery progrese MDS. Tyto poznatky mohou pfispét
k v€asné identifikaci pacientl v riziku progrese onemocnéni a vést k zahajeni
optimalni lécby. Zaroven jsme popsali bunécné procesy asociované s danymi

biomarkery a navrhli jejich mozné zapojeni v patogenezi onemocnéni.

Kli¢ova slova: myelodysplasticky syndrom, patogeneze, progrese, IncRNA,

RUNXI



LIST OF ABBREVIATIONS

AML acute myeloid leukemia

AML-MRC acute myeloid leukemia with myelodysplasia-related changes
ANC absolute neutrophil count

BM bone marrow

DDR DNA damage response

del(5q) deletion of the long arm of chromosome 5

FC fold change

FDR false discovery rate

GO Gene Ontology

GO BP Gene Ontology Biological Processes

GSEA Gene Set Enrichment Analysis

Hb hemoglobin

HR high + very-high risk patients

HR-MDS higher-risk myelodysplastic syndromes

HSCs hematopoietic stem cells

HSCT hematopoietic stem cell transplantation

IHBT Institute of Hematology and Blood Transfusion
INT-1 intermediate-1 (IPSS category)

INT-2 intermediate-2 (IPSS category)

IPSS International Prognostic Scoring System
IPSS-R Revised International Prognostic Scoring System
IPSS-M Molecular International Prognostic Scoring System
KEGG Kyoto Encyclopedia of Genes and Genomes
IncRNA long non-coding RNA

LR very low + low-risk MDS patients

LR-MDS lower-risk myelodysplastic syndromes

MDS myelodysplastic syndromes

MDS-EB MDS with excess blasts

MDS-MLD MDS with multilineage dysplasia

MDS-RS MDS with ring sideroblasts

MDS-SLD MDS with single lineage dysplasia

MDS-U MDS unclassifiable

miRNA microRNA
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1. INTRODUCTION

1.1.  Myelodysplastic syndromes

Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal disorders
of hematopoietic stem cells (HSCs) characterized by ineffective hematopoiesis,
cytopenias, and risk of transformation to acute myeloid leukemia (AML).
Typically, it is a disease of the elderly (with a median age of 71-74 years
at diagnosis) (Dinmohamed et al., 2014; Neukirchen et al., 2011). The incidence
was described to be 2-4 cases per 100,000 people (Dinmohamed et al., 2014; Zeidan
etal., 2017) and increases dramatically with age. In various studies, the incidence
was described to be 20-50 cases per 100,000 after 60 years of age (reviewed by
Malcovati et al., 2013). Risk factors for MDS are older age, male sex, smoking,
chronic exposure to cancer-causing chemicals, prior chemotherapy or radiation
therapy, family history of hematopoietic cancer, and inherited disorders such
as Schwachman-Diamond syndromes, Fanconi anemia, and familial platelet

disorder (Sekeres, 2010).

The management of MDS is most often intended to slow the disease, ease
symptoms, and prevent complications. There is no cure except for hematopoietic
stem cell transplantation (HSCT), but medications can help slow the progression

of the disease.

1.1.1. MDS classification

The World Health Organization (WHO) 2016 classification (Arber et al., 2016)
identifies several morphological subtypes of MDS according to the findings
in peripheral blood (PB) and bone marrow (BM): MDS with single lineage
dysplasia (MDS-SLD), MDS with multilineage dysplasia (MDS-MLD), MDS with
ring sideroblasts (MDS-RS, further divided into MDS-RS-SLD and MDS-RS-
MLD), MDS with isolated del(5q), MDS with excess blasts (MDS-EB-1 and MDS-
EB-2), and MDS unclassifiable (MDS-U), further divided into subtypes with 1%
peripheral blood blasts, with SLD and pancytopenia, or with defining cytogenetic
abnormality (Table 1a). Refractory cytopenia of childhood represents the childhood
MDS. At the time of writing this thesis, the 5th edition of the WHO Classification
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of Haematolymphoid Tumours has been published (Khoury et al.,, 2022).
Myelodysplastic syndromes have been replaced by the term myelodysplastic
neoplasms, and the classification has been changed by distinguishing MDS with
defining genetic abnormalities and morphologically defined MDS (Table 1b).
Childhood MDS has become an independent entity with its own classification.
Furthermore, MDS-U has been removed due to a new category named clonal

hematopoiesis.

For prognostic purposes, MDS patients are classified according to their risk
of transformation to AML using the International Prognostic Scoring System
(IPSS) (Greenberg et al., 1997) or the Revised International Prognostic Scoring
System (IPSS-R) (Greenberg et al., 2012). The IPSS stratifies MDS patients into
4 categories according to the percentage of BM blasts, number of cytopenias
and cytogenetic category: low, intermediate-1 (INT-1), intermediate-2 (INT-2), and
high risk (Figure 1). The IPSS-R defines 5 risk categories by the percentage of BM
blasts, depth of cytopenias, and revised cytogenetic prognostic subgroups: very low,
low, intermediate, high, and very high risk (Figure 1). The revised system should

predict clinical outcomes more precisely.

Patients with low and INT-1, very low, low and intermediate risk up to 3.5 points,
respectively, are considered to have lower-risk MDS (LR-MDS), while patients
with INT-2 and high or intermediate risk with more than 3.5 points, high, and very
high, respectively, are considered to have higher-risk MDS (HR-MDS) (Mutfti et
al., 2018; Pfeilstocker et al., 2016). Scoring systems are essential for treatment

decision-making.

Table 1: Criteria for MDS classification according to the WHO guidelines. A) WHO 2016
classification (Arber et al., 2016), B) WHO 2022 classification (Khoury et al., 2022).

15
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Type Subtype plastic
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MDS-
MLD
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MDS-RS-
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MDS with
isolated 1-3
del(5q)
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MDS-U
With 1%
1-3
PB blast
With SLD
and
1
pancyto-
penia
With
defining
cytoge-
netic
abnorma-
lity
RCC 1-3

WHO 2016
Ring
sideroblasts
Cytope-
in erythroid Blasts
nias'
elements
of BM
Lor2 RS<15% PB <1%BM <
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or AR
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WHO 2022
Type Subtype Blasts Cytogenetics Mutations
MDS with
defining genetic
abnormalities
Del(5q) alone, or with 1
MDS with low
BM < 5% and other abnormality other
blasts and isolated
PB <2% than monosomy 7 or 7q
del(5q) (MDS-5q) )
deletion
MDS with low
Absence of del(5q),
blasts and
monosomy 7, or complex = SF3BI
SF3B1 mutation® N
aryotype
(MDS-SF3BI)
Two or
MDS with
more 7P53 mutations,
biallelic 7P53 inac . )
BM and PB <20%  Usually complex or | mutation with
tivation (MDS- .
evidence of TP53 copy
biTP53)
number loss or cnLOH
MDS,
morphologically
defined
MDS with low BM < 5% and
blasts (MDS-LB) PB <2%
MDS,
hypoplastic”
(MDS-h)
MDS with
increased blasts
5-9% BM or 2—4%
MDS-IB1
PB
10-19% BM or 5—
MDS-IB2
19% PB or AR
MDS with fibrosis  5-19% BM; 2—
(MDS-f) 19% PB

ICytopenias MDS-defining: Hb < 100g/L, PLT < 100 x 10°L, ANC < 1.8 x 10%L; absolute
monocytes count < 1.0 x 10°/L; >with SF3B1 mutation; *1% PB blasts must be recorded on at least
two separate observations; ‘If with >15% ring sideroblasts and significant erythroid dysplasia, and
SLD are classified as MDS-RS-SLD; “Detection of >15% ring sideroblasts may substitute
for SF3B1 mutation. Acceptable related terminology: MDS with low blasts and ring sideroblasts;
®By definition, < 25% bone marrow cellularity, age adjusted. WHO: World Health Organization;
MDS: myelodysplastic syndromes/neoplasms; AR: Auer rods; BM: bone marrow; PB: peripheral
blood; RS: ring sideroblasts; cnLOH copy neutral loss of heterozygosity; MDS-SLD: MDS with
single lineage dysplasia; MDS-MLD: MDS with multilineage dysplasia; MDS-EB: MDS with
excess blasts; MDS-U: MSD, unclassifiable; RCC: refractory cytopenia of childhood; MDS-IB:
MDS with increased blasts.
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Because outcomes of the part of patients do not correspond to their risk estimation,
efforts have been made to develop more accurate predictors with a focus

on molecular data, such as mutations and gene expression. Several new predictors

have been proposed, but none have been implemented in clinical practice (Bejar et

al., 2012; Bersanelli et al., 2021; Jiang et al., 2020; Mills et al., 2009; Nazha et al.,
2021, 2016; Shiozawa et al., 2017).
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Overall survival

IPSS-R

Overall survival
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Figure 1. Comparison of overall survival and AML evolution/leukemia-free survival in IPSS, IPSS-
R, and IPSS-M. Figures adapted from Bernard et al., 2022; Greenberg et al., 1997 and 2012.

To address the impact of specific gene mutations on survival and disease

progression in MDS, the International Working Group for Prognosis
in Myelodysplastic Syndromes recently presented the IPSS-molecular (IPSS-M)
(Bernard et al., 2022) (Figure 1). It is an innovation of the IPSS-R that includes not
only hematological parameters and cytogenetics but also mutational data.
The system considers somatic mutations in 16 main genes. Moreover,
it distinguishes 7P53 single- and multihit mutations, mutations in SF3B/ with
del(5q) or its comutation with one of 6 certain genes. In addition, the other 15

residual genes were grouped and the number of mutated genes within this group

18



was incorporated into the risk score calculator. Patients are therefore classified into
6 risk categories. However, this system was published after the publications that
form the basis of this thesis, so the IPSS and the IPSS-R are used throughout
the thesis.

1.1.2. Genetic factors of the pathogenesis of MDS

The heterogeneity of MDS is well characterized at the morphological and molecular
levels. MDS are clonal diseases that affect HSCs. Genetic and nongenetic factors
are involved in the pathogenesis of MDS; however, the exact mechanism has not
yet been fully elucidated. Due to the topic of the thesis, only genetic factors will be

described below.

1.1.2.1. Cytogenetic aberrations

The first genetic insights into MDS classification and pathogenesis were obtained
by cytogenetics. Cytogenetic aberrations are present in half of MDS patients
(reviewed in Haase, 2008, and Zahid et al., 2017). Loss of genetic information
ismuch more common than gain. Deletion, monosomies, and unbalanced
translocations are common in MDS. The most frequent abnormalities are 5q-, 7-,
+8, 20g-, and Y-. In MDS samples, we can see isolated cytogenetic aberrations
as well as complex karyotypes (3 and more abnormalities). A complex karyotype
is a common feature of an unfavorable prognosis. On the other hand, the presence
of isolated 5q-, 20g- aberration or loss of Y chromosome is usually associated with
better prognosis. Nevertheless, patients with 5g- involved in complex karyotypes

have an extremely poor prognosis (Zemanova et al., 2014).

Currently, conventional karyotyping has begun to be combined with molecular
cytogenomic methods. Thus, it is possible to detect cryptic chromosomal changes.
In a study by Svobodova et al. (2020), 18% of 214 chromosomal aberrations were
cryptic abnormalities. Cryptic abnormalities significantly affect overall survival
(OS) (Starczynowski et al., 2008; Svobodova et al., 2020). The implementation
of molecular cytogenomic methods into the current cytogenetical procedure should
allow more accurate outcome prediction and disease classification (Stevens-Kroef

et al., 2017; Svobodova et al., 2020).
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The 5g- aberration is the most common cytogenetic abnormality in MDS patients
(Haase, 2008; Zahid et al., 2017). It is incorporated into the WHO 2016 and 2022
classifications and the prognostic systems. The deletions vary in length but always
include the 531 band. However, within this band, there are two different areas that
can be deleted (Ebert, 2011). The one with a more telomeric location is connected
with a better prognosis and is related to the 5q- syndrome. 5q- syndrome is more
common in women and is usually associated with refractory macrocytic anemia,
elevated platelets, and mild leukocytopenia. The clinical course is mild and has
a very low risk for leukemic transformation. The RPS/4 gene, encoding ribosomal
subunit protein, lies within this band and was identified as the causal gene for 5q-
syndrome (Boultwood et al., 2007; Ebert et al., 2008). Patients with 5g- have
a defect in ribosomal biogenesis and protein translation, and 5q- syndrome thus

represents a disorder of impaired ribosomal biogenesis (Pellagatti et al., 2008).

1.1.2.2. Somatic mutations

Somatic DNA mutations are present in 70-80% of MDS patients, and the most
frequently mutated genes encode spliceosomal factors, epigenetic regulators,
transcription factors, tumor suppressor 7P353, or parts of the signal transduction and
cohesin complex (Haferlach et al., 2014; Papaemmanuil et al., 2013; Platzbecker et
al., 2021) (Figure 2). The heterogeneity of the disease is also reflected
in the spectrum of mutations. More than 50 genes are recurrently mutated in MDS
(Haferlach et al., 2014; Papaemmanuil et al., 2013); however, no gene is mutated
in more than a third of MDS patients (Bersanelli et al., 2021; Papaemmanuil et al.,
2013). Early driver mutations (typically affecting genes for splicing and epigenetic
regulators) determine the future trajectory of disease evolution with distinct clinical
phenotypes (Bersanelli et al., 2021; X. Li et al., 2020; Papaemmanuil et al., 2013).
Mutations in transcription factors and signaling molecules usually occur later

as passenger mutations and are typically associated with a worse outcome.

The most common mutations occur in genes coding parts of a spliceosomal
complex (SF3B1, SRSF2, U2AF1, ZRSR?2) (Haferlach et al., 2014; Papaemmanuil
et al., 2013; Platzbecker et al., 2021). These mutations are considered to result
in gain-of-function or neomorphic phenotypes and are mutually exclusive (Dvinge
etal., 2016; Haferlach et al., 2014; Papaemmanuil et al., 2013; Walter et al., 2013).
SF3B1 is the most commonly mutated gene in MDS and is typically associated with
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the presence of ring sideroblasts in BM (Malcovati et al., 2015). Mutated SF3B1
has been included in the WHO 2016 classification as the first gene defining
a separate entity (Arber et al., 2016). SF3B1 mutations are also generally described
as a predictor of a favorable outcome. However, the position of mutations
is probably crucial (Kanagal-Shamanna et al., 2021). Mutations in SRSF2 and
U2AFI are, on the other hand, related to shorter survival with an increased risk of
progression (Thol et al., 2012; S. J. Wu et al., 2013). Interestingly, mutations
in spliceosomal genes, while mutually exclusive with one another, show a strong
tendency to co-occur with mutations of specific epigenetic modifiers in MDS,
suggesting that abnormalities of these processes may cooperate to give the MDS

phenotype (Pellagatti and Boultwood, 2015).

Mutations in genes for epigenetic regulators (regulators of DNA methylation and
histone function) usually cause a loss-of-function phenotype (Heuser et al., 2018).
Mutations in DNMT3A4 and TET?2 are often present at the onset of disease. TET2
seems to have no prognostic significance, while DNMT34 mutations correlate with
an adverse course of MDS (Z. Guo et al., 2017; Hou et al., 2018; Lin et al., 2018,
2017). ASXL1 mutations are associated with a worse prognosis (Bejar et al., 2011;
Chen et al., 2014; Gelsi-Boyer et al., 2012; Hou et al., 2018; Lin et al., 2016).
Mutated EZH?2 is associated with a worse outcome in LR-MDS patients (Bejar et
al., 2012; Jiang et al., 2020). Mutations in /DHI and IDH?2 genes are more common
in HR-MDS patients and affect DNA methylation and mitochondrial function (D1
Nardo et al., 2016; Patnaik et al., 2012).

Mutated genes encoding signal transduction molecules, transcription factors, and
cohesion complexes are usually associated with an adverse course of the disease
(Liu et al., 2021; Makishima et al., 2017; Pellagatti and Boultwood, 2015).
Recurrent mutations in the signal transduction pathway occur in the NRAS, JAK?2,
and FLT3 genes. Typical mutated genes for transcription factors are RUNXI and
ETV6, and the main representative of genes of the cohesion complex is STAG2

(Haferlach et al., 2014; Pellagatti and Boultwood, 2015).

The adverse effect of RUNXI mutations on the outcome of MDS patients has been
widely described (Bejar et al., 2012; Chen et al., 2007; He et al., 2020; Jiang et al.,

2020). RUNX1I encodes a transcription factor critical for embryonic hematopoiesis
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and the development of megakaryocytes and platelets in adult hematopoiesis
(Ichikawa et al., 2013) and is frequently mutated in hematologic malignancies
(Branford et al., 2018; Ichikawa et al., 2013; Sood et al., 2017). In AML and acute
lymphocytic leukemia, translocations including this gene are common. RUNXI
fusion oncoproteins and dysregulated expression of RUNX genes are linked
to premature senescence (Anderson et al., 2018). Additionally, RUNX genes
participate in the DNA damage response (DDR) (Ozaki et al., 2013; Tay et al.,
2018; D. Wu et al., 2013). In MDS, lower RUNXI1 activity predicts the risk
of AML transformation and chronic myelomonocytic leukemia (Tsai et al., 2015);
thus, the most pathogenic mutations are those that reduce RUNXI biological

activity.

The tumor suppressor TP53 is frequently mutated in MDS, and mutations in this
gene are often predictive of worse outcome. The adverse effect of these mutations
led to more detailed studies on the importance of variant allele frequency (VAF)
and allelic state (Belickova et al., 2016; Bernard et al., 2020; Sallman et al., 2015).
The prognosis of patients with monoallelic mutations as well as those with
mutations with low VAF did not differ from the prognosis of wild-type 7P53

patients.

Similar studies comparing VAF and OS or risk of transformation to AML were
performed on other genes, such as SF3B1 (Malcovati et al., 2011), RUNXI, SRSF?2,
and ZRSR?2 (Sallman et al., 2015). In general, a higher VAF leads to a more severe
phenotype.

1.1.2.3. Epigenetics

Epigenetics includes mechanisms that can affect gene expression without
the change in nucleotide sequence, such as DNA methylation and histone
modification. The effect can also be caused by mutations in genes encoding proteins
involved in these mechanisms. Moreover, noncoding RNAs (ncRNAs) play

an important role in epigenetics.
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Figure 2. Recurrently mutated genes in MDS. The figure depicts the functional groups of mutations

and their frequency in MDS patients. Figure adapted from Saygin and Godley, 2021.
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1.1.2.3.1. Aberrant methylation

Aberrant methylation of DNA, especially hypermethylation, is a common feature
of MDS cells (Jiang et al., 2009; Zhou et al., 2020). Hypermethylation of CpG
promotor islands of tumor-suppressor genes was described as one of the pathogenic
mechanisms (Aggerholm et al., 2006; Figueroa et al., 2009). The level of aberrant
methylation correlates with the stage of MDS (Jiang et al., 2009). In LR-MDS, 356
differentially methylated regions were described between patients with stable MDS
and those with progressive MDS (worsening of the disease within 18 months
of diagnosis) (Qin et al., 2019). Furthermore, the most frequently mutated genes
encode epigenetic regulators (DNMT3A4, TET2, ASXL1, EZH2, IDHI, and IDH?)
(Haferlach et al., 2014; Xu et al., 2017). The efficacy of hypomethylating agents
in MDS treatment also supports an important role of epigenetic modifications

in MDS pathogenesis.

1.1.2.3.2. Noncoding RNAs

Noncoding RNAs are a group of RNAs that are not translated into proteins.
The main classes contributing to MDS pathogenesis are microRNAs (miRNAs),
long noncoding RNAs (IncRNAs), and piwi-interacting RNAs (piRNAs).

1.1.2.3.2.1. miRNAs

miRNAs are the most characterized group of ncRNAs. They are 21-25 nucleotides
(nt) long single-stranded RNA molecules (Bartel, 2004). Based on the degree
of mIRNA-mRNA complementarity, miRNAs regulate gene expression through
cleavage or translational suppression of target messenger RNA (mRNA). They
affect many cellular pathways, such as signaling, proliferation, and apoptosis, and
their expression has been proven to be deregulated in various types of tumors (Peng

and Croce, 2016).

miRNAs are involved in the regulation of all stages of normal hematopoiesis, and
thus, their abnormal expression contributes to the development of hematologic
malignancies: the tumor suppressor potential of some miRNAs was proposed
in chronic lymphocytic leukemia (Calin et al., 2002; Cimmino et al., 2005), and
the expression levels of selected miRNAs correlated with cytogenetic aberration
and molecular alterations in AML (Cammarata et al., 2010; Garzon et al., 2008;

Jongen-Lavrencic et al., 2008; Li et al., 2008).
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In MDS, many deregulated miRNAs have been described (reviewed in Veryaskina
et al., 2021). They participate in MDS pathogenesis by regulating hematopoiesis,
leukocyte migration, and apoptotic processes (Votavova et al., 2011; Wan et al.,
2020). For example, the miR-145 gene is located in the common deletion region
of 5g- syndrome and affects megakaryocyte and erythroid differentiation through
repression of the expression of the protein-coding gene F/i-/ (Kumar et al., 2011).
Notably, miRNA signatures are able to distinguish MDS patients from controls and
stratify patients into risk categories (Y. Guo et al., 2017; Merkerova et al., 2011;
Pons et al., 2009). Additionally, miRNA profiles and levels of specific miRNAs
may be used as predictive markers of response to azacytidine therapy (Krejcik et

al., 2018).

Furthermore, miRNAs cooperate with the epigenetic machinery. miRNAs may be
silenced by aberrant epigenetic silencing; on the other hand, miRNAs can regulate
the expression of MDS-important epigenetic regulators and modifiers, such

as DNMT34 (Garzon et al., 2009).

1.1.2.3.2.2.  LncRNAs

LncRNAs are RNA molecules longer than 200 nt that do not encode proteins. They
are transcribed by RNA polymerase II or III and can be spliced and polyadenylated
at the 3’ end and capped at the 5’ end. LncRNAs operate at the transcriptional,
translational, and posttranslational levels. XIST is one of the most well-known
representatives of IncRNAs. It inactivates the X chromosome in female cells and
may also play a role in hematopoiesis (Savarese et al., 2006; Yildirim et al., 2013).
Generally, IncRNAs are involved in normal hematopoiesis. They regulate
the development of various hematologic cell types and are needed for their normal
function. Their dysregulated expression has been reported in various cancers (Chi
et al., 2019). Many aberrantly expressed IncRNAs have been recently described
in AML (Huang et al., 2019; Hughes et al., 2015; Ma et al., 2020; Wu et al., 2015;
Zhang et al., 2014); some IncRNAs have been shown to act as oncogenes, while
others act as tumor suppressors. They regulate the cell cycle, apoptosis,
proliferation, maturation and differentiation and the expression of transcription
factors, tumor suppressors, and oncogenes. The role of IncRNAs alone has been
described, as well as IncRNA profiles associated with AML subgroups, cytogenetic

aberrations, and mutations. The various mechanisms by which IncRNAs can
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regulate cell processes in AML are well reviewed in Ng et al. (2019).
In the cytoplasm, IncRNAs can compete with other RNAs, for example,
sequestering miRNAs away from their targets or binding to initiation factors
of translation and thus suppressing translation. In the nucleus, IncRNAs can recruit
transcription factors and epigenetic modifiers, act as scaffolds for the assembly
of transcription machinery, and assist in the formation of chromatin structures such

as enhancer-promoter loops.

Although many studies have focused on deregulated IncRNAs in AML, few have
investigated their effect in MDS. For example, MEG3 shows tumor-suppressor
activity (Benetatos et al., 2010), and its low expression is associated with a poor
prognosis in MDS. On the other hand, KI4A40125 is overexpressed in HR-MDS and
is an independent unfavorable prognostic factor for OS and leukemia-free survival
(Hung et al., 2021). In 176 MDS patients, high expression of 4 IncRNAs,
TC07000551.hg.1, TC08000489.hg.1, TC02004770.hg.1, and TC03000701.hg.1,
predicted poor OS (Yao et al., 2017).

Although an increasing number of IncRNAs are being described, they have not been
functionally characterized. Few studies have focused on the construction
of regulatory networks, including information on IncRNAs in MDS and their
targets, genes and miRNAs (Liu et al., 2017; Zhao et al., 2019). These studies
showed that aberrantly expressed IncRNAs in MDS are involved in cancer-
associated signaling pathways and cellular processes, such as cell proliferation, cell

migration, and immune response.

1.1.2.3.2.3.  piRNAs

piRNAs are small RNA molecules that are 24-31 nucleotides in length. They
evolved as aprotective tool to protect the genome against mobilization
of transposable elements. In cooperation with piwi proteins, they target actively
transcribed transposable elements (TEs), heterochromatinize the region, and
degrade TEs (reviewed in Dostalova Merkerova and Krejcik, 2022). Moreover,
piRNAs play a role in the viral defense pathway and the silencing of damaged DNA

fragments.

Abnormal piRNA expression has been analyzed in hematologic malignancies, such

as multiple myeloma, Hodgkin lymphoma, and AML (reviewed in Dostalova

26



Merkerova and Krejcik, 2022); however, piIRNA expression in MDS has been
described in only a limited number of studies. Although piRNA expression
increases in advanced stages of malignancies, it has been described conversely
in MDS: increased levels of piRNAs in early stages of MDS and their decrease
during progression (Beck et al., 2011).

Based on a review of previous studies, Dostalova Merkerova and Krejcik (2021)
suggested the possible protective mechanism of piRNA activation in MDS. In LR-
MDS, the transcription of TEs and the piRNA pathway is activated. This induces
the viral defense pathway, which may be responsible for the clearance of leukemic
blasts. However, after acquiring additional somatic mutations and developing HR-
MDS, TE and piRNA expression is suppressed, leukemic cells may escape immune

control and proliferate, and the disease may progress.

1.1.3. Mechanisms of the progression

The development and progression of MDS to AML is suggested to be
a consequence of the sequential acquisition of somatic mutations in HSCs (Nolte
and Hofmann, 2010). The progression from LR-MDS to HR-MDS and to AML
is a continuum. Multiple clones, including the founding clone and subclones
derived from the founding clone, are present in MDS BM. The acquisition
of favorable mutations and expansion of a subclone during progression
is a common phenomenon (Da Silva-Coelho et al., 2017; Kim et al., 2017; Liu et
al., 2021; Stosch et al., 2018; Walter et al., 2012). Usually, mutations in subclones
associated with progression may be detected months before progression is observed

clinically.

The effect of mutations on progression has been intensively studied, and trends
in early and later mutated genes have been described (X. Li et al., 2020;
Papaemmanuil et al., 2013). Early mutations were identified in genes coding
epigenetic regulators (DNMT3A4, TET2, and ASXLI) and usually emerge before
the clinical phenotypes of MDS. On the other hand, mutations in genes associated
with signal transduction and transcription factors occur later during disease and
progression, suggesting their involvement in disease evolution. These mutations

probably provide a significant proliferative advantage to the cell. In particular,
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mutations in the TP53, GATA2, KRAS, RUNXI1, STAG2, ASXL1, ZRSR2, and TET2
genes were described as more frequent in HR-MDS than in LR-MDS. Mutations
in FLT3, PTPNI1, WTI1, IDHI, NPM1, IDH2, and NRAS genes were associated
with a faster evolution of AML (Kim et al., 2017; X. Li et al., 2020; Makishima et
al., 2017; Menssen and Walter, 2020; Nolte and Hofmann, 2010; Shiozawa et al.,
2017).

The former model of linear clonal evolution (Walter et al., 2012) is being replaced
by a nonlinear model (Chen et al., 2019) (Figure 3). Linear clonal evolution has
been proposed onbulk BM sequencing and has described the evolution
of the premyelodysplastic stem cell (SC) into MDS SC, which further evolves into
leukemic SC. A recent study showed that in MDS as well as AML, SCs had
significantly higher subclonal diversity than blasts. This finding indicates that SCs
leading to the generation of MDS blasts may be different from those contributing

to the progression to AML.

As reviewed by Zhou et al. (2013), MDS is a disease of genomic instability.
Therefore, the origin of mutations that lead to progression may be caused by altered
DNA damage recognition and repair mechanisms. Furthermore, aberrant DNA
methylation accompanies disease progression (Jiang et al., 2009; Nolte and
Hofmann, 2010; Stosch et al., 2018; Zhou et al., 2020). Hypermethylation of tumor

suppressors may be one of the mechanisms of progression.

By measuring pro-apoptotic (Bax/Bad) and anti-apoptotic (Bcl-2/Bcl-X) Bcl-2-
related protein ratios, it was reported that MDS progression arises more likely
through inhibition of apoptosis rather than excessive cell growth (Parker et al.,
2000). Additionally, deregulation of the immune system may contribute to clonal

immune escape and drive progression (Montes et al., 2019).

Despite these discoveries and new technologies, the precise nature of disease

progression remains to be elucidated.
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Figure 3. Models of linear and nonlinear clonal evolution during MDS development and AML
progression. According to the linear model, HSCs acquire mutations, and the accumulation
of mutations subsequently leads to AML progression. On the other hand, the nonlinear model shows
HSCs accumulating a variety of mutations, giving rise to a diverse subclonal architecture and
generation of MDS blasts different from those contributing to the progression of AML. Mutations
that drive MDS blast formation and mutations that drive AML progression originate in parallel
in stem cell pool. Figure adapted from Chen et al., 2019.

1.1.4. LR-MDS vs. HR-MDS

Stratification of MDS patients according to their risk of AML transformation
is crucial for treatment decision-making and patient management. The hardest goal
is to recognize LR-MDS patients who may have a higher likelihood of progression
and should be treated appropriately. Few studies have tried to identify features
of LR-MDS at risk of rapid progression. The poor prognostic features, including
somatic mutations and chromosomal abnormalities, clinical and laboratory
parameters, such as age, sex, degree of anemia, neutrophil and platelet counts,
transfusion requirement, certain immunophenotypes, and short telomers
or germline predispositions, are reviewed in DeZern and Dalton (2022) and

Mittelman et al. (2010).

Approximately two-thirds of MDS patients have LR-MDS. LR-MDS

are characterized by increased apoptosis, deregulated immunity, and ineffective
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myelopoiesis, whereas HR-MDS are characterized by increased cell survival and

proliferation (Parker et al., 2000, 1998; Pellagatti et al., 2010).

Lower- and higher-risk patients have distinct cytokine profiles (Kordasti et al.,
2009; Lopes et al., 2013). IL-17-producing CD4+ T cells (Th17) are increased
in LR-MDS, and the ratio of Th17:regulatory T cells is significantly higher in LR-
MDS than in HR-MDS and correlates with increased BM cell apoptosis (Kordasti
etal., 2009). In LR-MDS, the proinflammatory state prevails, whereas in HR-MDS,
immunosuppression and escape from immune surveillance are dominant (Kordasti
et al., 2009; Lopes et al., 2013). Immune deregulation is also connected with
apoptosis. Increased expression of cytokines, such as TNF-alpha, triggers apoptosis
of the cell through the Fas receptor and its ligand (Gersuk et al., 1998; Shetty et al.,
1996).

1.2. DDR and cellular senescence

DDR represents the cellular reaction to DNA damage. It is a cascade of DNA
damage sensors, mediators, transducers, and effectors resulting in a cellular
response (Figure 4). The response may be cell-cycle arrest, chromatin remodeling,
changes in transcription, repair or bypass of DNA damage, or apoptosis (reviewed

in Jackson and Bartek, 2009, and O’Connor, 2015).

DNA damage signaling in precancerous lesions may be the result of replication
stress, oxidative damage, or may be induced by oncogene or dysfunctional
telomeres (Bartkova et al., 2005; Gorgoulis et al., 2005) (Figure 5). DDR
in precancerous cells provides a barrier to uncontrolled cell growth. However, this
supports the selective pressure for DDR inactivation. Aberrations in the DDR
pathway, which are characterized by genomic instability, accompany tumor
development and progression (Bartkova et al., 2005; Gorgoulis et al., 2005)
(Figure 5).
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Figure 4. DNA damage response cascade. Lesions in DNA caused by DNA damage or stalled
replication forks lead to DDR activation. The DNA lesion is recognized by DNA damage sensors
and their presence recruits mediators that activate signal amplification. The DDR signaling pathway
affects a variety of cellular processes. Figure adapted from Jackson and Bartek, 2009.

Despite increasing DNA damage from MDS to AML, the DDR is reduced in AML
compared to MDS (Boehrer et al., 2009; Popp et al., 2017). Variants in DNA repair
genes were described to be associated with an increased risk of MDS (Belickova et
al., 2013), and polymorphisms in DNA repair genes contribute to genomic
instability in MDS (Ribeiro et al., 2016). The expression of DNA repair genes
is deregulated in CD34+ BM cells of MDS patients and presents a specific
expression pattern between LR-MDS and HR-MDS (Valka et al., 2017). The most
deregulated pathways are excision repair and homologous recombination.
The highest levels of RAD51 and XRCC?2 expression were observed in LR-MDS,
and the lowest levels were observed in HR-MDS. These genes belong
to the homologous recombination pathway. Poly(ADP-ribose) polymerase 1
inhibitors are designed as targeted therapy for DNA repair-defective tumors. It was
shown that they may have therapeutic potential in MDS patients (Faraoni et al.,

2019).
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Figure 5. Cancer development and progression according to the oncogene-induced DNA damage
model. Activation of oncogenes leads to aberrant proliferation and the emergence of DNA
replication stress and DNA damage. DDR and consequentially activated apoptosis and senescence
are cellular tumor barrier mechanisms. However, DNA replication stress as well as DNA damage
cause genomic instability, inducing additional DNA damage and subsequent cancer development.
Figure adapted from Halazonetis et al., 2008.

Long-lasting DDR signaling may result in cellular senescence (Coppé et al., 2008;
Feringa et al., 2018). Cellular senescence is a complex mechanism protecting the
organism against damage that accumulates in the cell during its life and is closely
related to aging (Baker et al., 2011; Hernandez-Segura et al., 2018; Schosserer et
al., 2017). It was shown to be upregulated in various preneoplastic lesions and
serves as a barrier in tumor development (Acosta et al., 2008; Braig et al., 2005;
Chen et al.,, 2005). Senescence can arise from various causes: shortening
of telomeres, DNA damage, mitochondrial dysfunction, activation of oncogenes,
chemotherapy, epigenetic stimuli, or oxidative stress. Senescent cells irreversibly
stop their cell cycle, although they undergo changes in metabolism, organization,
and structure and gain a new metabolic and secretory phenotype (SASP) (Coppé et
al., 2008). Senescence-associated interleukins also positively influence DDR
signaling through a feedback loop (Acosta et al., 2008). Although senescence has

been shown to protect the organism against the emergence of malignant clones,
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it can promote chronic inflammation and subsequently cancer or age-associated
diseases due to the secretory activity of senescent cells (Coppé et al., 2008;

Georgilis et al., 2018; Ortiz-Montero et al., 2017).

Senescence, as well as DDR signaling, has been described to increase
in mononuclear cells or CD34+ MDS cells compared to AML (Wang et al., 2009)
and decrease with a higher risk score according to the IPSS. In addition, senescence
increases in mesenchymal stem cells of patients with MDS (Fei et al., 2014; Ferrer
etal., 2013; Geyh et al., 2013) and influences the cell cycle activity of CD34+ HSCs
(Geyh et al., 2013).

Senolytics, a new emerging drug class, induce apoptosis of senescent cells or inhibit
SASP and could be used in age-associated diseases, chronic degenerative disorders,
neurodegenerative diseases, precancerous cells, and chemotherapy-induced
senescent cells (reviewed in Gasek et al., 2021; Robbins et al., 2021; Saleh and
Carpenter, 2021). Senolytics target senescent cell features, including unique surface
markers, specific signaling pathways, biochemical changes, and organelle
alterations typical for senescence. The problem is the heterogeneity of senescent

cells. However, some senolytics are already being tested in clinical trials.

1.3.  Treatment of MDS

The only potentially curative option for MDS patients is HSCT. However, this
involves many risks, and for now, only patients with poor prognostic features and
good fitness obtain the greatest benefit (De Witte et al., 2017; Jain and Elmariah,
2022). The risk of complications from HSCT over conservative treatment must

always be considered.

LR-MDS patients are characterized by single-lineage or multilineage dysplasia and
a low BM blast percentage. For patients without symptoms, treatment is not
necessary immediately. For symptomatic LR-MDS, treatment is limited
to supportive care, including transfusions, growth factors, and very few drugs:
lenalidomide, luspatercept, and hypomethylating agents (azacitidine or decitabine;
originally intended for HR-MDS, approved for LR-MDS only in the United States)
(Carraway and Saygin, 2020; Santini, 2022; Toprak, 2022). Patients with higher-
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risk features (poor genetic and cytogenetic characteristics, life-threatening
cytopenias, high transfusion burden, persistent blast increase, significant fibrosis,
or HMA failure) may be candidates for HSCT (De Witte et al., 2017; Jain and
Elmariah, 2022).

For fit HR-MDS patients, intensive chemotherapy followed by HSCT is the main
choice (Bewersdorf et al., 2020; Sekeres and Cutler, 2014). For elderly patients and
patients without a suitable donor, hypomethylating agents are the only choice,
although the treatment has limitations in response rates, and the response is usually
only temporary. However, clinical studies have shown new options, e.g., new
hypomethylating agents, combinations of hypomethylating agents with the BCL-2
inhibitor venetoclax or with immune checkpoint inhibitors (reviewed in
Bewersdorf, Carraway, and Prebet, 2020), or haploidentical lymphocyte infusion
together with decitabine-based chemotherapy (Ma et al., 2018).

Targeted therapies are emerging for small subsets of MDS patients with specific
somatic mutations (e.g., TP53, IDH1/2, FLT3, spliceosomal genes) and cytogenetic
aberrations (Carraway and Saygin, 2020; Pagliuca et al., 2021; Santini, 2022)
(Figure 6). However, there is currently only one approved: lenalidomide for patients
with del(5q). Other promising targeted therapies in clinical studies for LR-MDS

patients target the HIF pathway (roxadustat) and telomerase (imetelstat).

34



Macrophage

Ipilimumab

i Msmmt Pembrolizumab \
Magrolimab 1u

Nivolumab

o
: CDC25C

E3
biquitine,
ligase
..... p Endogenous pathway
——p Proteic stabilization

@ Agonist effect

] Antagonist effect

MDS myeloid blast

Figure 6. The main treatment targets in MDS. The figure shows ongoing targeted therapies as well
as new promising approaches. The mechanism of the effect is indicated by the arrow and connector
style. SIRPa: Signal regulatory protein alpha; ESA: Erythropoietin stimulating agent; TGFf:
Transforming growth factor beta; IDH: Isocitrate dehydrogenase; HDAC(i): Histone deacetylases
(inhibitor); Hh: Hedgehog polypeptides; PTCH: Protein patched homolog; SMO: Smoothened;
HMA: Hypomethylating agents; DNMT: DNA methyl transferase; NAE: Neural Precursor Cell
Expressed, Developmentally Down-Regulated 8 (NEDD8)-activating enzyme; GTP: guanosine
triphosphate; GDP: Guanosine 5'-diphosphate; FLT3: FMS-like tyrosine kinase 3; PD-1:
Programmed cell death 1; CTLA4: cytotoxic T-lymphocyte-associated protein 4; HIF: Hypoxia
inducible factor; TERT: Telomerase reverse transcriptase; and TERC: Telomerase RNA component.
Figure adapted from Pagliuca et al., 2021.
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2. AIMS OF THE THESIS

Due to the highly variable clinical course of MDS, it is crucial to determine reliable
markers of patient outcomes. Especially in low-risk categories, it is very important
to identify patients at risk of rapid progression and to choose the most appropriate
treatment. The identification of markers associated with rapid progression may
further provide deeper insights into the molecular nature of MDS progression and

may suggest novel candidates for targeted therapy.

Major aims:

e To identify novel potential biomarkers of adverse outcomes in MDS
patients at the DNA and RNA levels
o To identify deregulated IncRNAs predicting adverse outcomes
in MDS patients
o To identify somatic mutations acting as molecular markers of rapid
progression in LR-MDS patients
e To describe the role of these biomarkers in disease development and rapid
progression
e To identify the main biological pathways whose deregulation plays a role

in rapid progression
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3. MATERIAL AND METHODS

The description of material including the patients’ samples is detailed
in the published papers included in this thesis. Here, I present the list of methods
used in the published papers. A detailed description is provided in the Methods and
Supplementary Methods sections of the published papers.

DNA/RNA isolation — Publication I and II

Microarray profiling — Publication |

Reverse transcription quantitative PCR (RT-qPCR) — Publication I

Next-generation sequencing (NGS)
— Targeted gene sequencing — Publication I and II
— RNA sequencing — Publication 11

Sanger sequencing — Publication II

Flow cytometry — Publication II

Immunohistochemistry — Publication II

Bioinformatics — NGS data processing pipeline — Publication I and II

— LncRNA-PCG coexpression network analysis (network-based

IncRNA co-module function annotation method) — Publication I
— Machine learning — Publication II

Statistical analysis — Publication I and II
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4. RESULTS

4.1.  List of publications and author contribution

Publication I

Katarina Szikszai, Zdenek Krejcik, Jiri Klema, Nikoleta Loudova, Andrea
Hrustincova, Monika Belickova, Monika Hruba*, Jitka Vesela, Viktor
Stranecky, David Kundrat, Pavla Pecherkova, Jaroslav Cermak, Anna Jonasova,
Michaela Dostalova Merkerova. LncRNA Profiling Reveals That

the Deregulation of H19, WT1-AS, TCL6, and LEF1-AS1 Is Associated
with Higher-Risk Myelodysplastic Syndrome. Cancers (Basel).
2020;12(10):2726.

doi:10.3390/cancers12102726

1F2020 = 6.639

Monika Kaisrlikova (*Hruba is maiden name) performed and interpreted the NGS

experiments.

Publication 11

Monika Kaisrlikova, Jitka Vesela, David Kundrat, Hana Votavova, Michaela
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4.2.  Summary of results

The molecular pathogenesis of MDS is a very complex process, and whole genome
approaches have enabled us to obtain a comprehensive picture of the MDS genomic
landscape and to reveal cellular pathways involved in disease development,
progression, and relapse. In this thesis, we focused on two emerging directions,
the application of microarray and NGS technologies, for the identification
of potential biomarkers of adverse outcomes in MDS patients. We targeted both
protein-coding and noncoding regions of the MDS genome to detect pathogenic

variants in recurrently mutated genes and deregulated expression of IncRNAs.

The first study aimed to identify IncRNAs predictive of adverse outcomes
in a cohort of MDS patients, to characterize IncRNAs deregulated in MDS and
particular MDS subtypes and to determine their function in the pathogenesis
of the disease. The second study focused on LR-MDS patients as the group that
most benefits from an early identification of the risk of rapid progression.
The biomarkers of rapid progression were searched within the mutated genes.
Furthermore, both studies identified deregulated biological pathways associated
with adverse outcomes and suggested possible mechanisms of disease development

and progression.

In Publication I, we examined CD34+ BM cells of 54 MDS patients, 14 patients
with AML with myelodysplasia-related changes (AML-MRC), and 9 healthy
controls as a discovery cohort for microarray profiling and 79 MDS, 14 AML-
MRC, and 13 healthy controls as a testing cohort for RT-qPCR experiments.
Differentially expressed IncRNAs and protein-coding genes (PCGs) were analyzed
in relation to MDS, its subtypes and risk categories, and gene mutations. Functional
changes were assessed performing Gene Set Enrichment Analysis (GSEA).
LncRNA-PCG coexpression network analysis was performed, and the extracted
modules were functionally annotated to Gene Ontology (GO) terms. LncRNAs
whose expression correlated with the expression of the core PCGs were suggested
to be related to deregulated processes associated with these PCGs. Thus, we were
able to recognize the potential association of IncRNAs and several deregulated

pathways.
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In MDS patients compared to controls, 32 IncRNAs and 87 PCGs were significantly
deregulated (|logFC| > 1, FDR < 0.05). MDS samples showed enrichment in gene
sets of hemoglobin complex and oxygen transport, immune response, epigenetic
modifications, and regulation of gene expression. We recognized IncRNAs
potentially associated with pathways of oxygen transport machinery and other
IncRNAs potentially associated with metabolic cellular processes such

as transcription, translation, and protein catabolism.

The expression profiles of the IncRNAs were also compared between MDS
subtypes. Interestingly, the IncRNA profiles of MDS-SLD patients resembled those
of healthy controls more than those of patients with other MDS subtypes. MDS-
EB-1 clustered with early MDS subtypes, such as MDS-MLD, MDS-RS, and MDS
with del(5q). On the other hand, MDS-EB-2 clustered together with AML-MRC.
A gradual widening of the disparities was observed in the expression profiles

of healthy individuals to the advanced stages of MDS.

We aimed to find associations between IncRNA expression and somatic mutations.
Mutational screening was performed in 64 patients from the discovery cohort.
We analyzed differences by the presence of mutations in each of the 5 most
frequently mutated genes (SF3B1, TET2, TP53, DNMT3A4, and RUNXI) in our
cohort. The number of deregulated IncRNAs and PCGs (106 IncRNAs and 646
PCGs) was exceptionally higher in RUNXI-mutated samples than in patients with
the other abovementioned mutations. Therefore, we focused on RUNXI-mutated
patients (n = 9). We observed deregulation of signaling pathways, immune
response, and cell death pathways compared to MDS patients without RUNX/
mutations. Furthermore, genes in the coexpression network were enriched
in translational regulation, RNA splicing, cell cycle, DNA repair, and DNA
recombination. The deregulated PCGs LEFI and RAGI and the IncRNAs LEFI-
AS1 and TCL6 in RUNXI-mutated patients were related to DNA repair, DNA

recombination, and the p53 pathway.

The main goal of this work was to determine IncRNAs associated with worse
outcomes. First, we compared the transcriptomic data of 31 patients with short
survival (OS < 18 months) and 25 patients with long survival. Eight IncRNAs and
29 PCGs were significantly deregulated (JlogFC| > 1, FDR < 0.05) in patients with
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short survival. Two well-known tumorigenic IncRNAs, H/9 and WTI-AS, were
significantly upregulated in patients with short survival. Secondly, we compared
LR (very low, low) (n = 26) with HR (high, very high) (n = 19) patients;
16 IncRNAs and 82 PCGs with differential expression were detected in HR. Among
them, TCL6, a IncRNA with a known oncogenic association, and LEF[-AS, which
is associated with hematopoiesis, were downregulated. Between LR and HR
patients, gene silencing, immune response, cell differentiation and proliferation,
motility, and angiogenesis pathways showed differential expression. Three modules
were identified in the coexpression network. The IPSSR 1 module was associated
with cell differentiation, growth, adhesion, and migration. All genes within this
module were downregulated in HR, suggesting that the maintenance and
differentiation processes of HSCs are attenuated in HR. IPSSR-2 and 3 were related
mainly to epigenetic modification and chromatin structure and included LEFI,
LEF1-AS1, and TCL6. Genes from all modules were also involved in the immune

system.

For prognostic purposes, we chose 4 candidate IncRNAs, H19, WT1-AS, TCL6, and
LEF-AS1, as possible prognostic biomarkers and performed analysis in two
independent cohorts (discovery and testing cohorts). The expression of these four
IncRNAs gradually increased (H19, WTI-ASI) or decreased (LEFI1-AS, TCL6)
from healthy controls to HR-MDS patients. The expression levels of these IncRNAs
were significant for OS and PFS. In multivariate analysis, high blast count, high
level of H19, and the presence of somatic mutation in 7P53 were independent
prognostic variables for MDS outcome. Furthermore, age, platelet count, 7CL6 and
LEF1-AS1 levels added prognostic value to these main predictors. Focusing
on lower-intermediate patients (IPSS-R < 4.5), only the H/9 expression level was
highly significant for OS and PFS. Age, platelet count, LEF1-AS1, and TCL6 levels

were less significant.

Finally, we focused on the cis and trans regulatory activities of these four
prognosis-related IncRNAs. Cis regulatory activity affects the expression
of neighboring genes, and trans regulatory activity regulates distant genes.
We observed disrupted regulation of the expression of IGF2, a PCG located
in proximity to H19, and miR-675, which uses H/9 as a primary template, in HR-

MDS patients. Discordant expression was associated with a worse outcome.
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To address the trans regulatory mechanisms, we constructed coexpression
networks with these four IncRNAs as the central nodes. Only two modules were
generated: LEF1-AS1/TCL6 enriched in cell adhesion and differentiation processes
and H19/WTI1-AS1 associated with chromatin modification, cytokine response, cell
proliferation, and cell death. Our results suggested that these two pairs might

be functionally related.

In Publication II, we focused on LR-MDS patients who generally have a good
prognosis. This very group needs enhancing of the risk stratification and to identify
the patients at risk of rapid progression. We examined the mutational profile
of genes associated with hematologic malignancies in these patients at diagnosis
and tested their prognostic value. Furthermore, we analyzed the transcriptome
of MDS patients bearing somatic mutations associated with unfavorable prognosis

to define the molecular mechanisms that contribute to rapid progression.

We applied NGS targeted sequencing using the TruSight Myeloid Sequencing
Panel (Illumina), focusing on genes frequently mutated in hematological
malignancies. The cohort consisted of 214 LR-MDS patients according to the IPSS.

We sequenced DNA from bone marrow or peripheral blood diagnostic samples.

At least one mutation was detected in 64% of patients. The most commonly mutated
gene was SF3B1, although the most frequently mutated genes in terms of functional
categories were epigenetic regulators. The number of mutations per patient varied
from 0 to 9, and the number of mutations significantly affected OS and PFS.
In univariate analysis for OS and PFS, platelet count, male sex, age, and
the presence and total number of mutations were significant (p < 0.05). For OS,
mutations in DNMT3A4, RUNXI, SETBPI, STAG2, and TP53 were significant,
while for PFS, significantly mutated genes were RUNXI, SETBPI1, STAG2, TP53,
and U2AF1. The effect of mutational data on the prediction of survival was also
confirmed by machine learning using two independent methods: stepwise backward
feature selection and elastic network models. These methods identified genes
responsible for shorter OS and PFS. Both methods identified SETBP1, TP53, and
RUNXI as the genes most responsible for shorter PFS when mutated.
In the multivariate analysis for PFS, platelet count, age, and mutated RUNX1 were

the most significant independent prognostic factors. The effect of RUNXT mutations
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on shortened PFS indicated its potential significance as a marker of rapid

progression.

RUNXI was also the most commonly mutated gene in patients who progressed
within 5 years (n = 41) compared to those who did not progress and were followed
for at least 5 years (n = 53). Additionally, the mutational load in the range of all
analyzed genes was higher in the patients who progressed rapidly (median
3 mutations, range 0-8 versus median 0, range 0-5). Mutational burden also
increased during progression. We observed a higher VAF and number of mutations

when comparing paired samples of 36 patients who progressed within 5 years.

Furthermore, the implementation of the RUNXI mutational status significantly
improved the prognostic discrimination by IPSS-R. Patients with RUNXT mutations
had a significantly different percentage of BM blasts and platelet levels, as well
as a significantly different median number of mutations compared to the other

patients in our cohort.

Following these results, we further studied the impact of RUNXI mutations
on the regulation of cellular pathways. We aimed to understand the changes
at the molecular level underlying the progression in RUNXI-mutated patients.
We compared the transcriptomes of CD34+ cells from 8 RUNXI-mutated LR-MDS
patients (mutR-LR) and 29 LR-MDS patients without RUNX] mutations (WwtR-LR).
A total of 2235 genes were significantly (FDR <0.05) upregulated and 2094 were
significantly downregulated in mutR-LR according to the differential expression
analysis. According to the GO BP and KEGG databases, the pathways of chromatin
and gene silencing, nucleosome assembly, chromatin organization, regulation
of megakaryocyte differentiation, myeloid cell differentiation, and hemopoiesis,
telomere organization and capping, cellular metabolic processes, DDR, cellular
response to stress, cellular senescence, aging, chronic inflammation, and oxidative
stress were downregulated in mutR-LR. These pathways play a crucial role
in cellular tumor protection. Pathways upregulated in mutR-LR were related

to cancer and leukemia.

Next, we performed GSEA on our custom dataset consisting of 88 gene sets related
to DDR, DNA repair, cellular senescence, apoptosis, and hypoxia. Eighty-two gene
sets (93%) were significantly enriched in wtR-LR (FDR <0.1).
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When comparing the expression profiles of LR-MDS to HR-MDS (n = 20),
we observed a greater resemblance of mutR-LR with HR-MDS than with wtR-LR

at diagnosis.

Finally, we aimed to validate the suppression of DDR and cellular senescence at the
protein level by immunohistochemical staining of YH2AX protein on BM formalin-
fixed paraffin-embedded sections and fluorescence detection of senescence-
associated [-galactosidase (SA-B-gal) activity in BM sorted cells. YH2AX
is a marker of DNA damage and repair, whereas SA-B-gal activity is a marker
of senescent cells. We observed a higher level of YH2AX in wtR-LR (n = 4) than
in mutR-LR (n = 3). Moreover, we detected significantly higher SA-B-gal activity
in CD14+ monocytes of wtR-LR (n = 6) compared to those of HR-MDS (n = 6).
Although mutR-LR samples were not available for this assay, based on the highly
similar expression profiles of senescence-associated pathways in mutR-LR and

HR-MDS described above, we anticipated similar results in mutR-LR.
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Simple Summary: Although IncRNAs have been increasingly recognized as regulators of hematopoiesis,
only several studies addressed their role in myelodysplastic syndrome (MDS). By genome-wide profiling,
we identified IncRNAs deregulated in various groups of MDS patients. We computationally constructed
IncRNA-protein coding gene networks to associate deregulated IncRNAs with cellular processes involved
in MDS. We showed that expression of H19, WT1-AS, TCL6, and LEF1-AS1 IncRNAs associate with
higher-risk MDS and proposed processes related with these transcripts.

Abstract: Background: myelodysplastic syndrome (MDS) is a hematopoietic stem cell disorder with
an incompletely known pathogenesis. Long noncoding RNAs (IncRNAs) play multiple roles in
hematopoiesis and represent a new class of biomarkers and therapeutic targets, but information on
their roles in MDS is limited. Aims: here, we aimed to characterize IncRNAs deregulated in MDS
that may function in disease pathogenesis. In particular, we focused on the identification of IncRNAs
that could serve as novel potential biomarkers of adverse outcomes in MDS. Methods: we performed
microarray expression profiling of IncRNAs and protein-coding genes (PCGs) in the CD34+ bone
marrow cells of MDS patients. Expression profiles were analyzed in relation to different aspects of
the disease (ie., diagnosis, disease subtypes, cytogenetic and mutational aberrations, and risk of
progression). LncRNA-PCG networks were constructed to link deregulated IncRNAs with regulatory
mechanisms associated with MDS. Results: we found several IncRNAs strongly associated with
disease pathogenesis (e.g., H19, WT1-AS, TCL6, LEF1-AS]1, EPB41L4A-AS]1, PVT1, GASS5, and ZFAS1).
Of these, downregulation of LEF1-AS1 and TCL6 and upregulation of H19 and WT1-AS were
associated with adverse outcomes in MDS patients Multivariate analysis revealed that the predominant
variables predictive of survival are blast count, H19 level, and TP53 mutation. Coexpression network
data suggested that prognosis-related IncRNAs are predominantly related to cell adhesion and
differentiation processes (H19 and WT1-AS) and mechanisms such as chromatin modification,
cytokine response, and cell proliferation and death (LEF1-AS1 and TCL#). In addition, we observed
that transcriptional regulation in the H19/IGF2 region is disrupted in higher-risk MDS, and discordant
expression in this locus is associated with worse outcomes. Conclusions: we identified specific

Cancers 2020, 12, 2726; doi:10.3390/cancers12102726 www.mdpi.com/journal/cancers
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IncRNAs contributing to MDS pathogenesis and proposed cellular processes associated with these
transcripts. Of the IncRINAs associated with patient prognosis, the level of H19 transcript might serve
as a robust marker comparable to the clinical variables currently used for patient stratification.

Keywords: myelodysplastic syndrome; IncRNA; progression; outcome; pathogenesis; coexression network

1. Introduction

Myeledysplastic syndreme (MDS) is a heterogeneous group of clonal hematopoietic stem cell (HSC)
disorders characterized by bone marrow (BM) dysplasia with ineffective hematopoiesis, peripheral blood
cytopenia, and an increased tendency for transformation to acute myeloid leukemia (AML). Pathogenesis of
MDS is a multifactorial process in which cytogenetic aberrations, gene mutations, and epigenetic
changes are involved. Using the WHO classification criteria [2], MDS patients are classified into various
diagnostic subtypes based on the number of affected hematopoietic lineages, the percentage of BM
blasts, cytogenetics and the presence of ring sideroblasts. Patient prognosis is evaluated based on the
Revised International Prognostic Scoring System (IPSS-R) depending on similar clinicopathological
criteria [2]. For higher-risk MDS, treatment with the hypomethylating agent azacitidine (AZA) is currently
considered standard therapy, which prolongs patient survival, improves clinical outcomes and quality of
life, and delays the disease progression in a proportion of patients [3].

Long noncoding RNAs (IncRNAs) are a group of RNAs that are defined as non-protein-coding
transcripts longer than 200 nucleotides. The properties of IncRNAs, such as stability and tissue
specificity, make them highly promising diagnostic and prognostic markers as well as interesting
therapeutic targets. Although IncRNAs are increasingly recognized as regulators of normal and aberrant
hematopoiesis, only several studies have addressed their expression and function in relation to MDS.
For example, Liu et al. profiled IncRNA expression and identified several IncRNAs (linc-ARFIP1-4,
linc-TAAR9-1, lincC20rf85, linc-RNFT2-1 and linc-RPIA) deregulated in MDS with excess blasts TI
{MDS-EB2) [4]. Further, Yao et al. established a 4-IncRNA risk score significantly associated with
patient survival [5].

Although increasing numbers of deregulated IncRNAs are currently being described in MDS,
their functional characterization is still difficult. Transcriptomic data may be used to construct coexpression
networks of similarly regulated IncRNAs and protein-coding genes (PCGs), which enables the functional
analysis of IncRNAs with unknown functions [4]. This approach uses the “guilt-by-association” strategy
working with the principle that genes with related functions tend to have similar expression profiles.
Thus, the PCGs in a coexpression module are associated with signaling pathways and Gene Ontology
terms, attributing the same functions to the unknown IncRNAs in the network.

In this study, we used a microarray platform to profile IncRNA and PCG expression in parallel in
CD34+ BM cells of MDS patients with an emphasis on the identification of IncRNAs with altered levels
in various groups of MDS patients. In particular, we aimed to characterize the IncRNAs that could
serve as novel potential biomarkers of adverse outcomes in MDS. Moreover, a computational approach
for constructing IncRNA-PCG networks was applied to associate these IncRNAs with regulatory
mechanisms associated with MDS.

2. Patients and Methods

The study included CD34+ BM cells of 183 patient or control samples randomly divided into
adiscovery cohort (54 MDS patient samples, 14 AML with myelodysplasia-related changes (AML-MRC)
patient samples, and 9 healthy control samples) used for the microarray profiling and a testing cohort
(79 MDS patient samples, 14 AML-MRC patient samples, and 13 healthy control samples) used for
reverse transcription quantitative PCR (RT-qPCR). Informed consent was obtained from all individuals
and the study was approved by the Institutional Scientific Board and the THBT ethic committee on
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16/06/2016 (ethic code: EK3/AZV/06/2016) and performed in accordance with the ethical standards
of the Declaration of Helsinki. The detailed clinical and laboratory characteristics of both cohorts,
including the classification of MDS patients into subgroups, IPSS-R categories, bone marrow features
and blood counts, are summarized in Table S1.

Expression profiles were determined using Agilent Human GENCODE Custom IncRNA
Expression Microarray Design [6], consisting of probes for 22,001 IncRNA transcripts and 17,535 PCG
mRNAs. Bioinformatical analyses were performed with the Bioconductor project in the R statistical
environment using the limma package. The raw and normalized data have been deposited in the
National Center for Biotechnology Information (NCBI) Gene Expression Omnibus {(GEQ) database
under accession number GSE145733.

RT-qPCR was applied using the TagMan gene expression system (Thermo Fisher Scientific, Waltham,
MA, USA) to measure individual transcript levels (IncRNAs: CHRM3-AS2, EPB4114A-AS1, H19, LEF1-AS1,
PVT1, TCL6, and WT1-AS; PCGs: IGF2, LEF1, WT1, TCL1A, and TCL1B; miRNAs: miR-675 and RNU48
as a reference). For normalization of IncRNA data, several reference genes were tested using the RefFinder
tool [7] (Figure S1) and the data were finally normalized to the level of HPRTL.

The TruSight Myeloid Sequencing Panel Kit (Illumina, San Diego, CA, USA) containing
568 amplicons in 54 genes was used for mutational screening. Variants were detected by l.oFreq and
annotated using Variant Effect Predictor, and their clinical significance was verified in several genomic
databases (UCSC, COSMIC, ExAC, and PubMed). The arbitrary cut-off was set at 5% of the variant
allele frequency (VAF).

The functional changes related to deregulations in gene expression were assessed using gene set
enrichment analysis (GSEA) [8]. The IncRNA-PCG coexpression network analysis was carried out as
introduced in [4]. Briefly, we identified differentially expressed IncRNAs and PCGs (FDR < 0.05) and
constructed a correlation matrix for these transcripts. Then, non-negative matrix factorization (NMF)
was used to extract modules from the correlation matrix and each module was functionally annotated
by mapping of PCGs to GO terms. The representative cores of the individual modules were visually
plotted (for only 4 IncRNAs and 13 PCGs with the highest module membership).

All other statistical analyses were performed using GraphPad Prism 7 (GraphPad Software,
La Jolla, CA, USA) and SPSS software (IBM, Armonk, NY, USA).

The detailed version of the Methods is included in the manuscript as a supplementary file
(Supplementary Methods).

3. Results

3.1. MDS-Specific Transcriptome

The gene expression profiles of PCGs and IncRNAs were examined in the CD34+ BM cells of
MDS patients. The discovery cohort used for the microarray profiling included 54 patients with MDS,
14 patients with AML-MRC, and 9 healthy donors (Table S1). In summary, we detected a signal of
29,604 transcript probes (out of 61,538 probes spotted on the array). After merging sequence duplicates,
probes for 12,444 PCGs and 14,518 IncRNAs were detected. To compare the effect of PCGs and IncRNAs
on the disease, we analyzed the data for both categories of transcripts separately.

First, we evaluated gene expression changes between MDS patients and healthy individuals. In MDS,
we found 32 IncRNAs (28 upregulated/4 downregulated) and 87 PCGs (83 upregulated/4 downregulated}
significantly deregulated compared to those in controls (JlogFC| > 1, FDR < 0.05) (Table 52). Of the
functionally described IncRNAs, we detected the upregulation of H19, EMCN-IT1, WT1-AS, MEGS,
and PVT1 and the downregulation of ST6GAL2-IT1 and U3. Second, the expression of 11 IncRNAs
(all 11 downregulated, e.g., VPSID1-AS1, PVT1, and CXADRP3) and 161 PCGs (2 upregulated/159
downregulated) was significantly changed in AML-MRC compared to that in MDS (Table S3).

Gene set enrichment analysis (GSEA) identified 12 gene sets enriched (Figure 1A) in MDS CD34+
cells compared to healthy cells. Overall, the enriched processes were mainly related to four mechanisms:
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(i) hemoglobin complex and oxygen transport, (ii} immune response, (iii) epigenetic modifications,
and (iv} regulation of gene expression. To assess the functions of the deregulated IncRNAs, we built the
IncRNA-PCG coexpression network. Within this network, we defined individual modules (assigned as
MDS modules) and recognized those associated with the abovementioned processes enriched in MDS.
In the cores of these modules, we identified IncRNAs whose expression was substantially correlated
with the expression of core PCG nodes and might therefore be linked to deregulated processes. Table 1
summarizes enriched processes and core PCGs and IncRNAs within selected modules and Figure 1B
shows an illustrative module of the IncRNA-PCG coexpression network (i.e.,, MDS_1 module).

A. GSEA: MDS patients vs. healthy donars

Gene sets. NES p
Enriched in MDS
HDAC targets silenced by methylation UP [Heller et al.) 187 <0.001
Heme metabolism [Hallmark) 185 <0.001
immune response (GO} 1.79 0.003
Immune system process (GO) 1.67 0.005
Transition metal ion binding (GO) 171 0.006
Defense response {GO) 1.71 0.007
Response to cytokine (GO) 163 0.016
Cellular response to arganic substance (GO) 1.54 0.025
E£ZH2 targets UP (Nuytten et al.) 152 0.032
Apoptosis by doxorubicin UP {Graessmann et al.} 1.52 0.034
Transporter activity (GO} 1.53 0.036
Enriched in controls
Regulation of pratein modification process (GO) -1.60 0.018
i HDAC targets silenced Regulation of protein
Heme - by methylation UP maodification process
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Figure 1. Pathway analysis of genes deregulated between MDS patients and healthy donors. (A) Gene
set enrichment analysis (GSEA) of differentially expressed PCGs and four enrichment plots for selected
enriched gene sets. NES - normalized enrichment score. References: Heller et al. [9], Nuytten et al. [10],
and Graesmann et al. [11]. (B) MDS_1 module from the IncRNA-PCG coexpression network. The Gene
Ontology (GO) terms significantly associated with these modules are listed in the corresponding table.
Square-PCG, circle-IncRNA, red-upregulated in MDS.
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Table 1. Characteristics of selected modules in IncRNA-PCG coexpression networks based on differentially expressed genes between (A) MDS patients and healthy
controls, (B) patients with isolated del(5q) and patients with normal karyotype, (C) RUNX1-mutated and RUNX1-wild type patients, and (D) MDS patients with
lower- and higher-risk IPSS-R. Enrichment analysis was done to associate module PCGs with GO terms (p < 0.01). The representative core PCGs and IncRNAs with the
highest module membership are listed.

Associated GO Terms

Core Nodes

Hemoglobin complex, oxygen transport, iron ion binding, solute sodium sympaorter activity

Hemaoglobin complex, oxygen transport, ganglioside biosynthetic process, sialylation

Golgi apparatus, protein polyubiquitination, proteasomal protein catabolic process

PCGs: A_33_P3261428, A_33_P3328284,
AC131097, ARG2, C2001f108, GABRP,
LOC100128348, MOSPD1, RUNDC3A,

SERPING1, SLC6AS, TRIM10
IncRNAs: AC131097,
PRKAR2A-AS], RP4-669T.17

PCGs: DIAPH]I, EPB42, GYPB, HBD, HBBP1,
OSBPZ, PQLCI1, SUB1, TGM2, USE1, WDFY2

IncRNAs: CTD-2319112, P11-640M9.1,
RP11-640M9.1, RP11-558A11

PCGs: AK8, Cllorf2, EBPL, FBXO6,
GABPB2, GLTSCR2, LGALSS, LOC644285,
MS4A6A, RAB20, RPL34,
THC2496362, TMEM104

IncRNAs: AC021188, ZFAS]

mRNA metabolic process, cytosolic ribosome, protein localization to endoplasmic reticulum,

uclear transcribed mRNA catabolic process nonsense mediated decay, SMAD protein signal transduction,

PCGs: A_24_P24724, ANKRD42, Cllorf2,
FIFAB, GEMINS, GLTSCR2, HARS, LARS,
RBM27, RP1.29, RPS14, SLC26A2

poly-A-RNA binding, cytoplasmic translation, aminoacid activation, rib rotein complex L

RNA binding, translational initiation, ribonucleoprotein complex, protein localization to endoplasmatic reticulum,
nuclear transcribed mRNA catabolic process nonsense mediated decay, protein targeting to membrane, ribosome,
large ribosomal subunit

IncRNAs: CSNK1ALP1, EPB41L4A-AS]

PCGs: A_24_P59217, A_33_DP3358856,
DNAJC18, HARS, HNRNFPAOQ, HSPA9,
IMPDH2, MRPL45, NOA1, RPL29P2, RP514,
TLR3, ZCCHC10

IncRNAs: EPB41L4A-AS1

Intracellular receptor signaling pathway, STAT cascade, positive regulation of immune system process,
regulation of VEGER signaling pathway, tyrosine phosphorylation of STAT protein, regulation of cell activation,
cytokine activity, |AK/STAT cascade involved in growth hormone signaling pathway

PCGs: A_24_P143653, BRDS, CSorf56,
FBXL17, FPGT, MYADM, RBM10, RNF139,
SLC23A1, SPTLCL, UQCRI10, YTHDC2

IncRNAs: NUTM2A-AS],
RP11-506M13.3, START)4-AS1

DEA Module
MDS_1
A
MDS vs. CTR MDs. 2
MDS_3
MDS 4
del(5q)_1
B.
Patients with isolated del(5q) vs.
patients with normal karyotype Del(5q) 2
del(5q)_3

Phosphatase inhibitor activity, platelet morphogencsis, platelet activation, hemostasis, activation of MAPK activity

PCGs: ANK1, Cl8orfl0, CTNNBL1,
DNAJC6, EFOR, KLF1, MINFP1, NMU,
PCYT1B, UROD, ZFPM1

IncRNAs: BOLA3-ASI,
FENST433198.2, MIR4435-2HG
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Two modules (MDS_1 and MDS_2) were assigned to hemoglobin and oxygen transport. Both of
them included mostly upregulated genes (Table 1), suggesting that the ineffective erythropoiesis found
in MDS can result in the increased transcription of multiple factors associated with oxygen transport.
Based on significant coexpression, the following IncRNAs were recognized as potentially associated
with alterations in oxygen transport machinery: e.g., PRKAR2A-AS], AC131097, and RP4-6691.17 in
MDS_1 module, and P11-640M9.1, RP11-640M9.1, CTD-2319112, and RP11-358A11 in MDS_2 module.

Further, we found that two other modules (MDS_3 and MDS_4) were enriched for genes involved
mainly in protein metabolism processes (Table 1). MDS_3 module was primarily associated with protein
catabolism and the ubiquitin-proteasome pathway and in the core of this module, we identified AC021188
and ZFAS1 IncRNAs. Two other IncRNAs (EPB41L4A-AS1 and CSNK1A1P1) were found in the core of the
MDS_4 module that was associated with transcriptional and translational processes. Interestingly, all the
genes that were included in the core of MDS_4 module were significantly downregulated, suggesting that
the mechanisms of protein expression can be globally suppressed in dysplastic cells.

3.2. LncRNA Expression in Relation to the Diagnostic Subtypes of MDS

Based on the WHO diagnostic criteria [1], eight groups of samples were defined (i.e., CTR, MDS-SLD,
MDS-MLD, MDS-RS, MDS with del(5q), MDS-EB1, MDS-EB2, and AML-MRC) and their expression profiles
were compared using one-way ANOVA (Figure 2). We identified three clusters of samples. First, MDS-SLD
samples had comparable expression profiles to those of healthy controls. Second, the other remaining early
disease subtypes (MDS-MLD, MDS-RS, and MDS with del(5q)) surprisingly clustered with samples from
the patients with MDS-EB1 disease (i.e., an advanced subtype of MDS). Third, patients with MDS-EB2
showed similar expression to those with AML-MRC. This distribution shows that there are no specific
expression profiles for particular disease subtypes but rather that there is a gradual shift in expression from
a healthy state to an advanced myelodysplasia. Interestingly, disease progression can be detected at the
molecular level at different point (i.e., between MDS-EB1 and MDS-EB2 subtypes) compared to the classical
progression scheme created on the basis of clinical variables (i.e., between MDS-EB2 and AML-MRC).

-3.0 30

d 3 \ L
|l I ’ I F d 2 i
14 4 ' VPSID1-AS1

ZNF252P-A51

RBPMS-ASL

) T T 7
cluster 1 cluster 2.

AMLMR
cluster 3

Figure 2. Heatmap of differentially expressed IncRNAs among MDS subtypes. Only the IncRNAs
identified as significantly deregulated (FDR < 0.05) in one-way ANOVA were plotted. Samples were
divided into eight groups (CTR, MDS-SLD, MDS-MLD, MDS-RS, MDS with del(5q), MDS-EB1, MDS-EB2,
AML-MRC), and the analysis defined three clusters of samples with comparable expression profiles.
The expression level is calculated as the binary logarithm of fold change (logFC) compared to the mean
expression of controls. The heatmap uses a color gradient intensity scale to visually express the logFC
values in a range of colors (blue-downregulation, red-upregulation, white-unchanged expression).
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3.3. LncRNAs in MDS with Isolated del(5g)

The interstitial deletion of the long arm of chromosome 5, del(5q), is the most common cytogenetic
aberration in myelodysplasia, and MDS with isolated del(5q) forms a distinct subtype of this disease [1].
In the discovery cohort, isolated del(5q) was found in 12 MDS/AML-MRC patients, and 20 patients had
anormal karyotype. The gene expression profiles of these two groups were compared, and deregulation
of 31 IncRNAs (16 upregulated/15 downregulated) and 160 PCGs (106 upregulated/54 downregulated)
were identified (JlogFC| > 1, FDR < 0.05). The list of deregulated genes is included in Table 54.

Significant deregulation of several hematopoiesis/oncology-related IncRNAs was detected
in patients with isolated del(5g), e.g., upregulation of EMCN-IT1, CHRM3-AS2, and PVT1 and
downregulation of ZFAS1, EPB41L4A-AS1, and GAS5. The expression levels of CHRM3-AS2, PVTI,
and EPB41L4A-AS1 were validated in the testing cohort using RT-qPCR (Figure S2), and the data
showed a high level of concordance, indicating the accuracy of the microarray results.

GSEA showed that del(5q) mainly affected genes involved in ribosome formation, translational
regulation, STATS5 signaling, and hematopoietic cell lineages including stem/progenitor cells, platelets,
and erythrocytes (Figure 53). Further, we constructed a IncRNA-PCG coexpression network, and among
the generated modules (assigned as del{5q) modules), we identified those associated with the
abovementioned pathways. Based on these modules, we proposed association of several IncRNAs
with ribosome formation and translational regulation (del(5q)_1 module, IncRNAs: EPB41L4A-AS1),
JAK/STAT cascade (del(5q)_2 module, IncRNAs: NUTM2A-AS1, STARD4-AS1, and RP11-506M13.3)
development of blood lineages such as platelet, erythrocyte and myeloid cells (del(5q)_3 module,
IncRNAs: BOLA3-AS1, MIR4435-2HG, and ENST433198.2; and del(5q)_4 module, IncRNAs: PVT1,
RP11-797H7.5, and RP11-558A11.3), and mitochondria-related processes (del(5q)_5 module, IncRNAs:
OIP5-AS1 and POFUT1-006). Table 1 summarizes enriched processes and core PCGs and IncRNAs
within these modules.

3.4. Association Between IncRNA Expression and Somatic Mutations

Somatic mutations in multiple genes have recently been associated with MDS [12], rapidly becoming
the most frequently discussed aberrations in MDS. Here, we investigated the relationship between the
presence of somatic mutations and the expression of IncRNAs. Mutational screening was performed in 64
out of 68 patients and in § out 0of 9 controls in the discovery cohort (due to DNA availability). The results
showed that 81% of patients bore at least one somatic mutation (VAF > 5%} with 1.9 mutational events
per patient on average (range 0-7). The five most frequently mutated genes included SF3B1 (14 patients,
22%), TET2 (10 patients, 16%), TP53 (10 patients, 16%), DNMT3A (9 patients, 14%), and RUNX1
(9 patients, 14%). In contrast, we found no mutations in healthy controls, excluding the presence of
clonal hematopoiesis of indeterminate potential (CHIP). The distribution of the detected mutations
within the cohort is shown in Figure 54.

The transcriptional effects of somatic mutations were analyzed in the five most frequently
mutated genes (SF3B1, TET2, TP53, DNMT3A, and RUNX1). Within differential expression analyses,
we searched for the transcripts with differential levels between patients with and without the given
mutation. However, the analysis identified only a few transcripts with standard settings (JlogFC| > 1,
FDR < 0.05). Therefore, we moderately refined the cut-off of fold change values and reanalyzed the data
(llogFC| > 0.3, FDR < 0.05). Interestingly, the numbers of differentially expressed genes substantially
varied among the mutations tested (SF3B1: 18 IncRNAs and 20 PCGs; TET2: 13 IncRNAs and 5 PCGs;
TP53: 8 IncRNAs and no PCGs; DNMT3A: 1 IncRNA and no PCGs; and RUNX1: 106 IncRNAs and
646 PCGs). At the level of individual transcripts related to hematopoiesis/oncology, we observed the
downregulation of the ABCB7 PCG in SF3B1-mutated patients, the downregulation of WT1-AS in
TET2-mutated patients, and the upregulation of GAS5 IncRNA, the downregulation of LEF1-AS and
TCL6 IncRNAs, and the downregulation of LEF1 and RAG1 PCGs in RUNX1-mutated patient. The full
lists of significantly deregulated genes in the patients with the five studied mutations are included in
Tables S5-59.
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Because RUNX1-mutated patients displayed the most distinct expression profile, we further
focused on this particular gene. A descriptive heatmap (Figure 3A) proved that patients with RUNX1
mutations had substantially different expression profiles. GSEA showed that RUNX1-mutated patients
had specifically affected MYC and MAPK signaling pathways, regulation of immune response and
cell death, etc. (Figure 55). The IncRNA-PCG coexpression network defined several key modules
(assigned as RUNX1 modules) of similarly regulated genes that were enriched in the processes of
translational regulation and RNA splicing. Based on these data, we associated Z83851.3, SNHG17,
and CTD-2540L5.5 IncRNAs with RNA processing (RUNX1_1 module) and GAS5 IncRNA with protein
translation (RUNX1_2 module). Interestingly, we identified an additional module (RUNX1_3 module)
whose core nodes included several important genes, namely, LEF1 and RAG1 PCGs and LEF1-AS1
and TCL6 IncRNAs (Figure 3B). Enrichment analysis suggested that these genes are related to DNA
repair, DNA recombination, and the p53 pathway. Table 1 summarizes enriched processes and core
PCGs and IncRNAs within these modules.

3.5. LncRNAs Related to MDS Prognosis

One of the major goals of this work was the identification of IncRNAs linked to MDS progression
potentially serving as prognostic markers of patient outcomes. By differential expression analyses,
we evaluated microarray expression profiles according to (i) the overall survival (OS) of patients and
(ii) their prognosis based on the IPSS5-R system.

To identify genes associated with OS, we established an arbitrary cut-off to 18 months and
categorized MDS/AML patients as those with short survival (deceased within 18 months, N = 31) or long
survival (surviving more than 18 months, N = 25). Only 8 IncRNAs (5 upregulated/3 downregulated)
and 29 PCGs (5 upregulated/24 downregulated) were significantly changed in the patients with short
survival (FDR < 0.05, |logFC]| > 1; Table 510). Importantly, two well-known tumorigenic IncRNAs,
H19 and WT1-AS, were significantly upregulated in patients with adverse outcomes.

Then, we analyzed differential expression in MDS patients stratified according to the IPSS-R
system. For the analysis, the patients were grouped into lower-risk (very low and low IPSS-R scores)
and a higher-risk (high and very high IPS5-R scores) categories, while MDS with intermediate risk and
AML-MRC patients were excluded from this analysis. We identified 16 IncRNAs (2 upregulated/14
downregulated) and 82 PCGs (15 upregulated/67 downregulated) with significantly changed expression
in the higher-risk patients ([logFC| > 1, FDR < 0.05; Table S11). Among the IncRNAs, TCL6 and
LEF1-AS were downregulated.

To explore the associations of genes related to disease progression with cellular processes,
we performed GSEA on the differentially expressed genes between the lower-risk and higher-risk
IPSS-R patient categories. The results showed that the most affected mechanisms include gene
expression silencing through chromatin modifications, immune response, cell differentiation and
proliferation, adhesion, motility, and angiogenesis (Figure 56).

The coexpression network based on these data identified modules (assigned as [PSS-R modules) that
contained similarly regulated IncRNAs and PCGs. Pathway analysis further showed that the majority
of these modules were related to processes involved in the immune system. However, more specific
enrichment was found for IPSSR_1 module, which was associated with GO terms related to cell
differentiation, growth, adhesion and migration, i.e., with the processes that may be linked with specific
features of HSCs present in the BM niche. The core IncRNAs found in this module were RP11-474N8.5,
RP11-879F14.2, and RP11-401P9.5. Interestingly, the expression of all the genes within the IPSSR_1
module was downregulated, suggesting that the processes of the maintenance and/or differentiation of
HSCs in the BM niche may be substantially impaired in higher-risk MDS patients.

Additional interesting network modules of the IPSS-R coexpression network were IPSSR_2 and
IPSSR_3 modules, both related mainly to the epigenetic modification (methylation and acetylation) and
chromatin structure of DNA. Remarkably, a pair of PCG-IncRNA counterparts, LEF1 and LEF1-AS1,
was found in the core of IPSSR_2 module, and TCL6 IncRINA was one of the core nodes in [PSSR_3
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module, suggesting their involvement in chromatin structure in MDS. Other IncRNAs found in
these modules were RP11-897M7.1 (IPSSR_2 module), ODC1-DT, LINC00963, and AC012181 (IPSSR_3

module). Table 1 summarizes enriched processes and core PCGs and IncRNAs within all these modules.

|
20 20

GASS
FPA41LaA-AST

e
LEFI-AS1

PCED1B-AST

E2F3.ML

GO term p value

Cell cycle 9.08x10*
Immunogicbulin complex 2.96x10+*
Antimicrobial humoral response 131x10%

3" 10 5' DNA helicase activity 1.45x10%
Beta-catenin-TCF complex formation 1.69x10* |
Double-strand break repair 204210 |
V(D)) recombination 4.24x10*%
pS3 binding 5.05x10°* |
Chromatin remodeling 6.99x10°% |
Recombinational repair 8.99x10* |
Somatic cell DNA recombination 9.57x10° ]

i
|
|

i

Negative regulation of signal rransduction by p53 class mediator ~ 9.57x10°?

Figure 3. Deregulation of gene expression between the RUNX1-mutated (RUNX1mut) vs. RUNX1-wild
type (RUNX1wt) patient samples. (A) Heatmap showing the difference in IncRNA expression in
MDS/AML-MRC patients stratified according to the presence/absence of the RUNX1 mutation.
Only the IncRNAs with significantly changed levels (FDR < 0.05) are plotted. The expression level is
calculated as the binary logarithm of fold change (logFC) compared to the mean expression of controls.
The heatmap uses a color gradient intensity scale to visually express the logFC values in a range of
colors (blue-downregulation, red-upregulation, white-unchanged expression). (B) RUNX1_3 module
from the IncRNA-PCG coexpression network constructed based on differentially expressed genes.
The results of pathway enrichment analysis for this module are included. Square-PCG, circle-IncRNA,
red-upregulated in RUNX1mut, blue-downregulated in RUNX1mut.
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3.6. Individual IncRNAs as Potential Prognostic Markers of MDS

Based on the microarray results, we chose four candidate IncRNAs applicable as prognostic
biomarkers and performed a series of subsequent analyses on two independent cohorts of patients
(i.e., discovery and testing cohorts; Figure 51). This set included H19, WT1-AS, TCL6, and LEF1-AS1.
Initially, we reanalyzed their expression by RT-qPCR in the testing cohort and proved that the levels
of all these transcripts gradually changed from healthy controls to higher-risk patients (Figure 4A),
showing a strong concordance with the microarray data.

A. Levels of IncRNA transcripts

H19
i - W T
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Figure 4. (A) Expression of H19, WT1-AS, TCL6, and LEF1-AS IncRNAs in CD34+ BM cells measured
by RT-qPCR. The data were logarithmically scaled. The MDS patients (testing cohort) were grouped
according to IPSS-R. (B) Kaplan-Meier curves for overall survival of MDS patients stratified based
on IncRNA levels. (C) Forest plots of univariate analysis performed for overall survival (OS) and
progression-free survival (PFS) by the log-rank test in both cohorts of MDS patients. Hazard ratios
including 95% confidence intervals are plotted and the significance of the results is included (* p < 0.05,
= p < 0.01, *** p < 0.001, *** p < 0.0001, n.s.—nonsignificant). The data from mutational screening were
available only for the discovery cohort.
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To address the question of whether the levels of these four IncRINAs are really associated with
patient survival, we performed numerous log-rank tests in both cohorts of patients. Kaplan-Meier
curves (Figure 4B) demonstrated a clear difference in survival between MDS patients with low vs.
high levels of these IncRNAs. Tn both cohorts, an adverse outcome was significantly associated with
high levels of H19 and WT1-AS and low levels of LEF1-AS and TCLé (Figure 4C). Further univariate
analyses examined the impact of other clinicopathological characteristics on patient survival and
revealed that OS and PFS were most significantly associated with blast count, number of platelets,
presence of TP53 mutation, and levels of the four IncRNAs (Figure 4C). Other variables, such as age,
hemoglobin level, neutrophil count, and karyotype, also showed significant results in at least one of
the tested cohorts.

To test the possible dependency between clinical factors and IncRNA alterations, we performed a
multitude of Spearman correlation tests between each pair of variables (IncRNAs: H19, WT1-AS, LEF1-AS1,
and TCL6; TP53 mutation; clinicopathological features: age, blast count, hemoglobin level, and numbers of
neutrophils and platelets) in both cohorts of samples (Table S12). Interestingly, the percentage of marrow
blasts significantly correlated with the levels of WT1-AS, TCL6, and LEF1-AS (p < 0.01) but was
independent of the level of H19. Further, we found a strong positive correlation between the levels of
LEF1-AS1 and TCL6 (p < 0.001), suggesting their coregulation. The presence of somatic mutations in
the TP53 gene was associated with hemoglobin level {r = —0.316, p < 0.05) and WT1-AS expression
(r = 0.445, p < 0.01). Interestingly, the only almost independent molecular variable was the level of the
H18 transeript (with one exception of a slight negative correlation with platelet count specifically in
the testing cohort; r = —0.254, p < 0.05).

To finally determine whether any of the selected IncRNAs might serve as prognostic markers
for MDS outcome, we performed Cox multivariate analysis and applied the backward variable
selection method to retain only the independent variables significantly contributing to the predictive
power of the resulting model. Although the results from both cohorts slightly varied, the analysis
revealed that predominant variables predictive of OS and PFS in MDS patients are high blast counts,
high levels of the H19 transcript, and presence of somatic mutations in the TP53 gene. To a lesser
extent, additional variables such as platelet count, age and TCL6 and LEF1-AS1 levels might add some
prognostic value to these three major predictors (Table 2).

To stratify MDS patients based on their prognosis, the IPSS-R system is used in routine clinical
practice. However, a proportion of patients scored as having lower to intermediate risk still suffer
from an early progression of the disease. Therefore, we tested whether some of the selected IncRNAs
can be predictive of adverse outcomes in these patients. In both cohorts, we specifically selected
the patients with [PSS-R < 4.5 (i.e., lower-intermediate risk MDS patients) and reanalyzed the data
using Cox multivariate regression. Neither blast count nor TP53 mutation remained informative for
these patients; the only highly significant variable associated with OS and PFS was H19 expression.
Additionally, some other variables such as age, platelet count, and LEF1-AS1 and TCL6 levels,
were found to be predictive of patient outcome, but with less significance (Table 2).

Table 2. Multivariate Cox-regression analysis of the overall survival and progression-free survival of
MDS patients. Only the variables that remained significant after backward variable selection are listed
and sorted according to their descending p-values.

Variable Discovery Cohort Testing Cohort
HR 95% CI r HR 95% CIL r

A. All MDS Patients
Qverall Survival

Blast count 19.70 3.83-101.26 <0.001 5.65 1.844-17.30 0.002

H19 level 16.92 1.73-165.12 0.015 54.35 13.10-225.62 <0.001
TP53 mutation 4.86 1.64-14.43 0.004 n.a.

Platelet count ns. 0.19 0.06-0.62 0.006
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Table 2. Cont.

Variable Discovery Cohort Testing Cohort
LEF1-ASI1 level ns. 0.01 0.01-0.09 0.006
TCL6 level ns. 104.56 1.30-8403.98 0.038
Age 27.80 1.52-507.17 0.025 ns.
Progression-free survival
Blast count 7.60 1.96-29.44 0.003 7.53 2.48-22.79 <0.001
TP53 mutation 6.99 2.75-17.75 <0.001 na.
H19 level n.s. 76.13 16.97-341.42 <0.001
LEF1-AS1 level ns. 0.01 0.01-0.01 0.001
Platelet count n.s. 0.13 0.03-0.50 0.003
TCL6 level ns. 2169.18  6.11-77.05 x 10% 0.010

B. Lower/intermediate-risk MDS patients (IPSS-R < 4.5)
Overall survival

H19 level ns. 14.20 3.19-64.65 0.001

TCL6 level n.s. 0.01 0.01-0.12 0.022

Platelet count ns. 0.19 0.04-1.01 0.030
Age 580.70  1.39-24.28 x 10* 0.039 ns.
TP53 mutation 16.13 0.10-260.52 0.050 na.

Progression-free survival

H19 level 17543 4.15-74.17 x 10% 0.007 16.37 3.79-70.67 <0.001
Age 10114.11  14.58-70.16 x 10° 0.006 n.s.

Platelet count ns. 0.10 0.02-0.62 0013

LEF1-AS1 level ns. 0.01 0.01-0.22 0.023

1R—hazard ratio, Cl—confidence interval, n.s.—nonsignificant, n.a.—not analyzed.

3.7. Cis and Trans Correlations of Prognosis-Related IncRNAs

Perturbations of antisense RNAs can regulate the expression of their sense gene counterparts
(i.e., PCGs) and vice versa via cis-acting regulatory elements. Therefore, we analyzed the expression of
the PCG/antisense RNA pairs WT1/WT1-AS and LEF1/LEF1-AS1 by RT-qPCR in the testing cohort of
samples. We found that the levels of both pairs of transcripts were highly correlated (WT1: r = 0.865,
p <0.0001; LEF1: r = 0.924, p < 0.0001) across all samples (both controls and MDS/AML-MRC patients},
suggesting that their direct interactions could be necessary for WT1 and LEF1 functions (Figure 57).

Although TCL6 and H19 IncRNA do not have direct PCG counterparts, they are located in close
proximity to some PCGs. TCL6 colocalizes with the TCL1A and TCL1B genes. We found only a very
low level of expression for both PCGs; however, if detectable, their expression correlated with the
expression of TCL6 (TCL1A: r = 0.645, p < 0.0001; TCL1B: r = 0.738, p < 0.0001; Figure S7).

H19 is located adjacent to IGF2. Moreover, H19 functions as a primary template for miR-675.
Therefore, we compared the expression levels of H19 to those of IGF2 and miR-675. Although we
detected an upregulation of H19 and downregulation of IGF2 and miR-675 in higher-risk MDS
compared to lower-risk disease (Figure 5A), the levels of H19 did not directly correlate with either
IGF2 or miR-675 when analyzed in the whole cohort. However, an analysis performed separately on
the samples from healthy controls and lower-risk IPSS-R patients identified a moderate correlation of
H19 expression with both IGF2 (r = 0.321, p = 0.034) and miR-675 (r = 0.342, p = 0.023), whereas this
concordance was disturbed in intermediate/higher-risk MDS (Figure 5B). Interestingly, the correlation
between IGF2 and miR-675 remained unchanged in all samples (r = 0.307, p = 0.006; Figure 5B).
Therefore, we compared the survival of patients with concordant regulation in the H19/IGF2 region
with those who did not present this concordance (discordant expression was defined as a > 10-fold
change in the ratio between the expression of the tested transcripts). The patients with discordant
levels of H19/IGF2 or H19/miR-675 had inferior OS and PFS compared to those with concordant levels
of these transcripts (univariate analyses: p < 0.05; Figure 5C).
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Figure 5. Expression of H19, IGF2, and miR-675. (A) Relative expression levels in MDS patients
(testing cohort) grouped according to [PSS-R. (B) Correlation of expression levels (Spearman test)
in different sample groups. (C) Kaplan-Meier curves for overall survival (OS) and progression-free
survival (PFS) in MDS patients with concordant vs. discordant expression of the H19/IGF2 and
H19/miR-675 pairs. * p < 0.05, ** p < 0.01, ** p <0.001.

To address the trans regulatory mechanisms of the four IncRNAs related to MDS prognosis
(H19, WT1-AS, LEF1-AS1, and TCL6), we constructed coexpression networks in which these IncRNAs
formed the central nodes. Interestingly, the network-computing strategy generated only two modules
for H19/WT1-AS and LEF1-AS1/TCL6 IncRNA pairs (assigned as the H19/WT1-AS_module and
LEF1-AS1/TCL6_module, respectively), suggesting that these two pairs of genes might be functionally
related. Enrichment analysis suggested that the H19/WT1-AS pair was predominantly associated
with cell adhesion and differentiation processes whereas the LEF1-AS1/TCL6 pair might function in
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diverse mechanisms, such as chromatin modification, cytokine response, or cell proliferation and death
(Figure 6).

g Pa 8
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Positive regulation of cell
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Protein-DNA complex 7.07x10*
Cell death 1.45x10*
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E Somatic cell DNA recombination 2.32x103
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ER-associated ubiquitin dependent
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Figure 6. Coexpression network formed around H19, WT1-AS, LEF1-AS1, and TCL6é IncRNAs.
The computational process generated two modules for the H19/WT1-AS and LEF1-AS1/TCL6
IncRNA pairs.

4. Discussion

MDS patients display heterogeneous clinicopathological features accompanied by distinct genetic
characteristics. Until recently, proteins acting through complex signaling pathways were considered
exclusive vehicles linking these genomic abnormalities to clinical phenotypes. However, aside from the
proteins, various classes of noncoding RN As have been shown to contribute to the variability of the
disease [4,5,13,14]. In this work, we screened the IncRNA background in MDS with relation to different
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characteristics of the disease (i.e., diagnosis, disease subtypes, cytogenetic/mutational aberrations,
and risk of progression). In addition to the description of IncRINA profiles specific for this disease,
we aimed to identify IncRNAs with potential prognostic capability.

Using a genome-wide approach, we showed that samples from patients with early MDS had
substantially different expression profiles than those with advanced disease. We detected the significant
induction of multiple genes in early MDS, whereas there was an apparent trend of reduced gene
expression along with disease progression. The major difference in the gene expression profile
was surprisingly found between the MDS-EB1 and MDS-EB2 subtypes, whereas the MDS-EB2 and
AML-MRC profiles were similar. Analogous observations have already been described at the miRNA
level [13]. These findings suggest that leukemic transformation could be predicted by monitoring
gene expression changes in the period preceding the blast count increase. This points to the issue of
the accuracy of blast count cut-offs used within the diagnostic criteria. Moreover, the morphological
examination of bone marrow is, to some extent, subjective and does not always reflect the true molecular
background of the disease. In this context, Padron et al. [15] found that a 7.5% bone marrow blast cut-off
point may discriminate the prognosis of patients with chronic myelomonocytic leukemia (CMML)
with a higher resolution than with the existing 10%. Thus, clinicopathological classification criteria
alone, without knowledge of molecular background, should be taken with some caution, mainly for
the purpose of assessing patient prognosis and choosing appropriate treatment strategies.

Expression profiling of IncRNAs together with PCGs is a feasible approach to compare the
levels of these two types of transcripts and to identify specific IncRNAs linked with pathways
deregulated in a disease. Based on the combination of IncRNA and PCG data, we computationally
constructed coexpression networks and identified a number of IncRNAs that might function in various
cellular processes altered in MDS. Although we studied IncRNA expression in MDS patients stratified
according to different aspects, we found some common features and several key IncRNAs that seem to
be crucial for disease pathogenesis. The processes associated with the deregulation of gene expression
primarily included immune regulation, development of blood cells, metabolism of heme, epigenetic
mechanisms, RNA processing and translation. All of them have repeatedly been associated with MDS;
here, we provide new data on the association of these processes with IncRNA molecules. The list
of MDS-relevant IncRNAs contains H19, WT1-AS, TCL6, LEF1-AS1, EPB41L4A-AS1, PVTI1, GAS5,
and ZFAS1.

Although some functions of these IncRNAs have already been described in different contexts,
their link to MDS pathogenesis has not yet been shown. For example, EPB41L4A-AS1 is an antisense
RNA to EPB41L4A (erythrocyte membrane protein band 4.1 like 4A). This erythrocyte membrane protein
is involved, via the beta-catenin pathway, in the determination of cell polarity or proliferation [16].
Here, we associated the downregulation of EPB41L4A-AS1 with ribosome formation and translational
regulation in MDS. This deregulation was specifically found in MDS patients with del(5q) and can be
attributed to the location of this gene in 5q22.1, near the common deleted region. Further, we detected
a significant increase in PVT1 IncRNA, particularly in MDS with del(5q). PVT1 usually confers
oncogenic properties on different types of cancer, including AML, and functions as a mediator of the
tumor-suppressive functions of p53 [17].

Currently, the molecular testing of somatic mutations is increasingly being applied in routine
practice in MDS diagnostics. The impact of somatic mutations on clinical variables and patient outcomes
naturally depends on their manifestation through gene expression. To provide an understanding of how
genomic variations interfere with the noncoding transcriptome, we combined data from the expression
profiling with information on the mutational status of MDS patients. However, we identified only
a few deregulated transcripts in the patients with vs. without particular mutations, and their numbers
substantially varied among the mutations tested. SF3B1 is an RNA splicing factor, TP53 functions
as a tumor suppressor inducing apoptosis, and TET2 and DNMT3A are involved in epigenetic
modifications of the genome [12]; therefore, it is surprising that we detected remarkably small numbers
of affected transcripts instead of a pervasive effect on the whole transcriptome. To define the reasons
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for this lack of expressional difference, we have to consider several aspects. A single nucleotide change
in one gene might not be sufficient to induce such strong expressional change, at least when compared
with the effects of del(5q) causing the haploinsufficiency of tens of genes. Moreover, diverse variants
found in one gene or the cooccurrence of several mutations or cytogenetic aberrations in one patient
can have variable effects on gene transcription. Therefore, larger cohorts of patients with isolated
mutations are necessary to better define the transcriptional effects of somatic mutations.

RUNX1 was the gene whose mutations had the strongest transcriptional impact in our dataset,
even comparable to the effects of del(5q). RUNX1 is a hematopoietic transcription factor whose somatic
mutations are considered one of the most prognostically unfavorable mutational events, even in
lower-risk MDS [18]. Given the adverse outcomes of RUNX1-mutated patients it is not surprising that
these patients had substantially distinct expression profiles. In the patients with RUNX1 mutations,
we identified the deregulation of RAG1 PCG, a core node in the DNA repair and recombination
module. RAG1 (recombination activating gene 1) is an RUNX1-associated recombinase involved in
antibody and T-cell receptor recombination [19]. Network modeling linked the RUNX1-RAG1 axis
with LEF1/LEF1-AS and TCLS, the same transcripts whose deregulations were significantly associated
with poor prognosis.

A vast body of literature exists on the deregulated expression of various PCGs and their potential
applicability as prognostic markers in MDS (e.g., [20-22]). For example, Pellagatti et al. identified
several PCGs (e.g., LEF1, CDH1, WT1, and MN1), the expression of which was significantly associated
with the survival of MDS patients [20]. Transcripts of PCGs, however, are not the final effectors in
the cells, unlike proteins and noncoding RNAs. Therefore, it can be assumed that IncRNA expression
should be a more reliable prognostic marker than the expression of PCGs. In our study, four important
IncRNAs (H19, WT1-AS, TCL6, and LEF1-AS1) were significantly associated with the outcome of MDS
patients. A series of statistical tests proved that monitoring IncRNA transcription may have a highly
significant potential for the prediction of outcomes in MDS patients, and the only other molecular
method able to compete with them is TP53 mutational screening.

Of the four abovementioned IncRNAs, H19 (H19 imprinted maternally expressed transcript)
was the most promising MDS marker in our dataset. Its increased level was associated with
the rapid progression of the disease and short patient survival. Further, we associated the
upregulation of H19 in higher-risk MDS with altered cell adhesion and differentiation processes in
CD34+ BM cells. It has already been shown that H19 overexpression promotes leukemogenesis
and predicts unfavorable prognosis in AML through its proliferative and antiapoptotic effects.
Moreover, H19 overexpression correlated with a lower complete remission rate of induction therapy in
AML [23]. Importantly, we showed that the level of H19 is independent of the majority of clinical and
molecular variables and that its increase has strong predictive value comparable to increased blast
count and the presence of TP53 mutation. Moreover, increased H19 level remained informative even
in lower/intermediate-risk patients unlike blast count and TP53 mutation.

Although the H19 gene does not have a direct protein-coding counterpart, it is located in close
proximity to the IGF2 gene in a region denoted as the H19/IGF2 locus. H19 and IGF2 are mutually
imprinted genes, sharing one imprinting control region. In most tissues, H19 is expressed from
the maternal allele, whereas IGF2 is expressed from the paternal allele [24]. H19 also functions as
a primary template for miR-675, which plays an important role in tumorigenesis and the development
of various cancers [25,26]. Our data suggest that the transcriptional coregulation of H19/IGF2/miR-675

seen in healthy donors and low-risk MDS becomes disrupted along with disease progression.

Moreover, the discordant expression of these genes is associated with worse outcomes in MDS
patients. Given to imprinting described in H19/IGF2 locus, we hypothesize that the disruption of
transcriptional coregulation of H19/IGF2/miR-675 may be linked to abnormal methylation in the
imprinting control region. However, this hypothesis has to be verified in an ongoing study.

Other IncRNAs whose transcription levels were strongly related to the outcomes of MDS patients
were TCL6, WT1-AS, and LEF1-AS1. TCL6 (T-cell leukemia/lymphoma 6) is a IncRNA whose specific
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expression was initially reported in T-cell leukemia with t (14; 14) (q11; q32.1) translocation [27].
Decreased TCL6 levels have been associated with poor prognosis in patients with clear cell renal cell
carcinoma [28]. WT1-AS and LEF1-AS] are antisense transcripts of two PCGs, WT1 (Wilms tumor 1)
and LEF1 (lymphoid enhancer binding factor 1), which belong among the strongest candidate genes
showing an association with the prognosis of MDS patients [20]. WT1 plays a role in cell differentiation
and apoptosis, and monitoring of the WT1 transcript is useful for estimating minimal residual disease
and predicting outcomes in AML and MDS [29-31]. On the other hand, the repression of LEF1 inhibits
proliferation, induces the apoptosis of CD34" progenitors, and plays a critical role in the defective
maturation program of myeloid progenitors [32]. Additionally, our data suggest a novel link of these
two IncRNAs to chromatin modification, cytokine response, or cell proliferation and death.

Furthermore, we found that WT1-AS and LEF1-AS1 were strongly transcriptionally coregulated
with their sense PCG counterparts. WT1-AS colocalizes with WI'1 RNA and forms RNA:RNA duplexes,
indicating a possible RNA stabilization role for WT1-AS transcripts [33]. Congrains-Castillo et al. [34]
demonstrated a correlation between LEF1 and LEF1-AS1 expression in BM cells from MDS/AML patients.
Upon overexpression of LEF1-AS], they observed an inhibition of cell proliferation. However, they did
not detect any alteration in LEF1 expression, suggesting that LEF1-AS1 affects cell proliferation in
a LEF1-independent manner [34].

Although significantly associated with patient prognosis, the transcription of TCL6, WT1-AS,
and LEF1-AS correlated with the percentage of marrow blasts. In this context, Nagasaki et al. previously
reported that elevated WT1 levels may be related to increased blast cell numbers and to the presence of
preleukemic MDS clones with poor prognostic chromosomal rearrangements [29]. Our correlation
analyses revealed additional associations among the WT1-AS, TCL6, and LEF1-AS levels and the
presence of TP53 mutations. These relations warrant that routine measurements of gene expression may
be potentially confused by various reliant factors or even be redundant, at least in specific subgroups
of patients (especially those with high blast counts, unfavorable cytogenetics or TP53 mutations).
Thus, measurements of WT1-AS, TCL6, and LEF1-AS levels seem to provide only limited information
to the current prognostic systems.

Besides description of new prognostic markers, another important aspect of this study is
identification of new options for targeted therapy of the disease. Some of the examined IncRNAs,
such as H19, WT1-AS, TCL6, and LEF1-AS, might serve as new druggable targets especially in
higher-risk MDS. However, careful examination of functional aspects of their deregulation is required
to bring necessary information for proper design of new efficient targeted therapies.

To conclude, our findings provide novel information on particular IncRNAs contributing to MDS
pathogenesis and propose cellular processes associated with these transcripts. Moreover, we found
that H19, WT1-AS, TCL6, and LEF1-AS1 IncRNAs are particularly associated with the outcome of
MDS patients. Based on a series of statistical tests, we demonstrated that the level of H19 transcript
might serve as a robust independent prognostic marker comparable to clinical variables currently used
for patient stratification. Based on our data, we encourage further, larger-scale studies that will suggest
a novel prognostic scoring system combining clinical variables with several genetic markers of diverse
characteristics, including somatic mutations and both PCG and IncRNA expression.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/10/2726/s1,
Supplementary methods, Figure S1: Stability of the selected reference genes potentially applicable for RT-qPCR
normalization, Figure 52: Expression levels of PVT1, CHRM3-AS2, and EPB41LA-AS1 IncRNAs in MDS/AML-MRC
patients according to their karyotype, Figure 53: Gene set enrichment analysis (GSEA) of differentially expressed
PCGs in MDS/AML-MRC patients with isolated del(5q) vs. those with a normal karyotype, Figure 54: Frequency
and distribution of somatic mutations in the discovery cohort, Figure S5: Gene set enrichment analysis (GSEA) of
differentially expressed PCGs in MDS/AML-MRC patients with RUNX1 mutation vs. those with RUNX1 wild type,
Figure 56: Gene set enrichment analysis (GSEA) of differentially expressed PCGs in MDS patients with higher- vs.
lower-risk IPSS-R, Figure S7: Correlations of the expression levels of WT1 to WT1-AS, LEF1 to LEF1-AS1, and TCL6
to TCL1A/TCLI1B, Table S1: Characteristics of the cohorts. The discovery cohort was examined by microarrays,
and the testing cohort was used for RT-qPCR measurements, Table 52: List of significantly deregulated transcripts
in MDS patients compared to healthy controls (llogFC| > 1, FDR < 0.05). Of the 83 upregulated PCGs, only the top
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30 transcripts are listed, Table S3: List of significantly deregulated transcripts in AML-MRC compared to MDS
patients ([logFC| > 1, FDR < 0.05). Of the 159 downregulated PCGs, only the top 30 transcripts are listed, Table S4:
List of significantly deregulated transcripts in MDS/AML-MRC patients with isolated del(5q) vs. those with
a normal karyotype (|logFC| > 1, FDR < 0.05). Of the 106 upregulated and 54 downregulated PCGs, only the top 30
transcripts are listed in each category, Table S5: List of significantly deregulated transcripts in MDS patients with
vs. without a SF3B1 mutation (|logFC| > 0.3, FDR < 0.05), Table Sé: List of significantly deregulated transcripts
in MDS patients with vs. without a TET2 mutation (|logFC| > 0.3, FDR < 0.05), Table S7: List of significantly
deregulated transcripts in MDS patients with vs. without a TP53 mutation (llogFC| > 0.3, FDR < 0.05), Table S8:
List of significantly deregulated transcripts in MDS patients with vs. without a DNMT3A mutation (JlogFC| > 0.3,
FDR < 0.05), Table S9: List of significantly deregulated transcripts in MDS patients with vs. without RUNX1
mutation (logFC| > 0.3, FDR < 0.05), Table 510: List of significantly deregulated transcripts in patients with long
vs. short survival ([logFC| > 1, FDR < 0.05), Table S11: List of significantly deregulated transcripts in MDS patients
with lower- vs. higher-risk IPSS-R ([logFC| > 1, FDR < 0.05), Table 512: Correlations of IncRNA expression with
clinical variables of MDS patients.
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RUNXT1 mutations contribute to the progression of MDS due to
disruption of antitumor cellular defense: a study on patients

with lower-risk MDS
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Patients with lower-risk myelodysplastic syndromes (LR-MDS) have a generally favorable prognosis; however, a small proportion of cases
progress rapidly. This study aimed to define molecular biomarkers predictive of LR-MDS progression and to uncover cellular pathways
contributing to malignant transformation. The mutational landscape was analyzed in 214 LR-MDS patients, and at least one mutation
was detected in 137 patients (64%). Mutated RUNX1 was identified as the main molecular predictor of rapid progression by statistics and
machine learning. To study the effect of mutated RUNX? on pathway regulation, the expression profiles of CD34 + cells from LR-MDS
patients with RUNXT mutations were compared to those from patients without RUNX7 mutations. The data suggest that RUNX1-
unmutated LR-MDS cells are protected by DNA damage response (DDR) mechanisms and cellular senescence as an antitumor cellular
barrier, while RUNX1 mutations may be one of the triggers of malignant transformation, Dysregulated DDR and cellular senescence were
also observed at the functional level by detecting yH2AX expression and B-galactosidase activity. Notably, the expression profiles of
RUNXI-mutated LR-MDS resembled those of higher-risk MDS at diagnosis. This study demonstrates that incorporating molecular data
improves LR-MDS risk stratification and that mutated RUNX1 is associated with a suppressed defense against LR-MDS progression.

Leukemia; https://doi.org/10.1038/541375-022-01584-3

INTRODUCTION
Myelodysplastic syndromes (MDS) are a heterogeneous group of
diseases with clonal hematopoiesis [1]. MDS patients are usually
stratified into four risk groups according to their risk of
transformation to acute myeloid leukemia (AML) by the Interna-
tional Prognostic Scoring System (IPSS) [2] or 5 risk groups by the
Revised International Prognostic Scoring System {IPSS-R) [3]. Low-
and intermediate-1 (INT-1) risk groups of IPSS and very low-risk,
low-risk, and part of the intermediate-risk groups of IPSS-R are
considered lower-risk MDS (LR-MDS) [4, 5]. Despite the more
favorable prognosis, some LR-MDS patients progress rapidly [6].
Early identification of LR-MDS patients at risk of rapid
progression is crucial for the initiation of effective treatment. In
this context, numerous studies have mapped the genomic
landscape in MDS patients to improve risk stratification and
prognasis estimation. There has been a long-lasting effort to
upgrade scoring systems by incorporating molecular features to
give rise to IPSS-molecular [7-14]. However, no unified results
have been generally accepted yet. The sole mutated gene
included in the MDS dlassification by the World Health Organiza-
tion is SF3B1, which is related to the percentage of ring
sideroblasts in erythroid elements of bene marrow (BM) [15].

RUNX1 is a frequently mutated gene in hematological
malignancies and is associated with an adverse course of disease.
This gene encodes a transcription factor that is critical for
embryonic hematopoiesis and the development of megakaryo-
cytes and platelets in adult hematopoiesis [16]. Mutations in this
gene are related to thrombocytopenia. Somatic mutations were
identified in MDS, AML, chronic myelomonocytic leukemia, acute
lymphaoblastic leukemia, and chronic myeloid leukemia [17, 18].

This study aimed to identify molecular markers at diagnosis that
indicate the risk of rapid disease progression in LR-MDS patients.
Transcriptome analysis was used to uncover signaling pathways
involved in malignant transformation. We identified mutated RUNXT
as the main molecular marker of rapid progression and described its
effect on the disruption of the antitumor cellular response,

MATERIALS AND METHODS

Patient cohort

The study cohort consisted of 214 patients with de novo LR-MDS according
to the IPSS. Forty-one patients (19%) progressed within 5 years.
Progression was defined according to the revised International Working
Group criteria [19]. All patients whose samples were used in this study
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provided signed informed consent forms. The study was approved by the
Institutional Scientific Board and the IHBT Ethics Committee (EK 4/AZV CR/
06/2017) and was performed in accordance with the ethical standards of
the Declaration of Helsinki. The median age of the cohort was 65 years
(range, 20.8-86.5 years). The median follow-up period was 33.4 months
(range, 0.2-183.0 months), and 133 (62%) patients were still alive. Twenty-
eight patients underwent hematopoietic stem cell transplantation (HSCT),
and for the purposes of this study, they were followed until the date of
HSCT. The patient characteristics are summarized in Sl 1.

Sequencing

Samples of BM or peripheral blood from diagnosis and, if available, from
progression (90% of patients who progressed) were processed. Specific
protocols for DNA and RNA isolation and detailed descriptions of targeted
gene sequencing, Sanger sequencing, and RNA sequencing are reported in
the Supplementary Methods.

Targeted gene sequencing. The sequencing library was prepared by the
TruSight Myeloid Sequencing Panel Kit (lllumina, San Diego, CA, USA),
which targets certain regions of 54 genes involved in hematological
malignancies. NextGene software (SoftGenetics, State College, PA, USA)
and an in-house pipeline were used for analysis of the output data.
Variants were selected for further analysis if they met the following criteria:
minimal coverage of 500x, Phred score greater than 35, and variant allele
frequency {VAF) of 20.05. Variants were analyzed using 1000 Genomes,
dbSNP, Varsome, ExAc, and other databases.

Sanger sequencing. Sanger sequencing was used to determine whether
the mutations in RUNXT present at both diagnosis and progression with a
VAF close to 0.5 were somatic or germline. We designed primer pairs for
the amplification of exons 5-7, where these mutations were found by next-
generation sequencing (NGS). Primer sequences are described in 5 2.

RNA sequencing. Seventy samples were sequenced (detailed in Sl 3). For
library preparation, the NEBNext Ultra Il Directional RNA Library Prep Kit for
llumina (New England Biolabs, Ipswich, MA, USA) was used. The processed
data were analyzed by DAVID 6.8 and String 11.0 online tools using
functional enrichment and analysis of protein-protein interaction net-
works. Furthermore, the data were analyzed using Gene Set Enrichment
Analysis (GSEA) in GSEA software 3.0.

Machine learning

Two different techniques for the feature selection method applicable to
Cox hazard models were used: stepwise backward feature selection and
elastic network. Two different datasets were used: datal—binary muta-
tional data and dataz—the number of distinct mutations per gene. The
details of the methods are given in the Supplementary Methods.

Immunohistochemistry

BM formalin-fixed paraffin-embedded (FFPE) sections (from four LR-MDS
patients without RUNXT mutation and three LR-MDS patients with RUNX1
mutation) were stained with rabbit anti-human yH2AX primary antibody
(phosphoSer139, polyclonal; Cell Signaling, Danvers, MA, USA) as described
in [20].

B-galactosidase detection

Six LR-MDS and six HR-MDS cryopreserved BM samples were thawed and
washed in PBS with anti-clumping agent according to the manufacturer's
instructions (Gibco, Waltham, MA, United States). The cells were washed
twice in autoMACS rinsing buffer (Miltenyi Biotec, Bergisch Gladbach,
Germany) and incubated for 1hour (37°C, 5% CO;) with the B-
galactosidase stain FITC (Senescence assay kit; Abcam, Cambridge, UK},
Then, the cells were washed in PBS and stained for 30 min in a cocktail of
antibodies specified in the Supplementary Methods. The cells were washed
and directly measured at Cytek Aurora (Cytek, Fremont, CA, USA). The data
were analyzed with the FlowJo software (BD, Franklin Lakes, NJ, USA).

Statistical analysis

MedCalc (MedCalc Software Ltd, Ostend, Belgium) was used to perform a
Kaplan-Meier survival analysis, Cox proportional hazard regression (for
univariate and multivariate analyses), the Mann-Whitney test, Fisher's
exact test, and the chi-squared test. Graphs were created in GraphPad

SPRINGER NATURE

Prism 7 (GraphPad Software, La Jolla, CA, USA). Statistical level of
significance was set at 0.05. Data were assumed to be non-normal (tested
by Shapiro-Wilk test).

RESULTS

Mutational landscape of LR-MDS patients and survival
analyses

We characterized the mutational landscape of 54 tested genes in
the LR-MDS patient cohort at diagnosis (Fig. 1A). At least one
pathogenic mutation was found in 137 patients (64%); in greater
detail, pathogenic mutations were found in 53% of low-risk
patients and 74% of INT-1. The number of mutations ranged from
0 to 9. The mutational complexity of co-occurrences is depicted in
a Circos plot (Sl 4A). The most common mutated gene was SF381,
which was identified in 21% of patients, followed by DNMT3A in
17% of patients. The mutaticnal profiles of the low-risk group and
INT-1 group are depicted in Fig. 1B. In terms of functional
categories, the most frequently mutated genes were epigenetic
regulators (42%) (Fig. 1C) classified according to Sperling, Gibson,
& Ebert [21].

Univariate analyses for overall survival (OS) and progression-free
survival (PFS) (time from diagnosis until progression or death)
were performed for BM blast count, cytopenias, IPSS and IPSS-R
score, male sex, age, and presence of a 5q deletion and mutated
genes (detected in more than five patients) (SI 5A). The significant
variables in both analyses (p < 0.05) were platelet count, male sex,
age, and the presence and total number of mutations. Signifi-
cantly mutated genes for OS were DNMT3A, RUNX1, SETBP1, STAG2,
and TP53, while mutated RUNX1, SETBP1, STAG2, TP53, and U2AF1
were significant for PFS. OS and PFS decreased as the number of
mutations increased {Fig. 1D). The presence of the deletion of 5q
was significant for PFS and, in contrast to other variables,
increased PFS. Neither PSS nor IPSS-R showed significant
differences between groups in our cohort (S 6). However, adding
information on the mutational status of genes that were
significant in the univariate analysis led to great diversification
of the OS and PFS curves among the groups (SI 7). Platelet count,
age, and mutated TP53 and DNMT3A were the most significant
variables for OS in multivariate analysis of all significant variables
from the univariate analysis (S| 5B). Considering a recent report on
the effect of allelic status of TP53 mutations on MDS prognosis
[22], out of 16 patients carrying TP53 mutations, 11 seemed to
carry a monoallelic mutation, However, we could consider the
allelic status only according to the number of identified mutations
and their VAF. The median VAF of TP53 mutations at diagnosis was
10% (range, 1-52%). Platelet count, age, and mutated RUNXT were
the most significant independent prognostic factors in the
multivariate analysis for PFS (Figs. 1E, Sl 5C). Thus, the effect of
RUNXT mutations on shortened PFS indicates its potential
significance as a marker of rapid progression. Detailed statistical
data are available in Supplement (Sl 5).

The mutational landscape is different between patients with
and without rapid progression

We compared the baseline characteristics of patients whe progressed
within 5 years (group A) to those without progression (or who
progressed later than 5 years) (group B). We censored the patients
who were not monitored for at least 5 years and patients who
underwent HSCT up to 5 years from diagnosis. Therefore, 41 patients
who progressed rapidly (group A) and 53 patients who did not
progress (group B) were compared. The median time to progression
in group A was 19.8 months.

Between these groups, significant differences were observed in
the median age (p = 0.0030), male sex (p=0.0197), and platelet
count (p=0.0003). The median OS was 33 months for group A
and 136 months for group B (p <0.0001) (Sl 8). More detailed
information on the patients is described in SI 9.
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Eighty-five percent of the patients in group A and 47% of the
patients in group B carried at least one mutation. The median
number of mutations in group A was 3 (range 0-8), while it was 0
(range 0-5) in group B. The landscape of mutated genes was very
different between the groups (Fig. 1F). The most commonly

Leukemia

mutated gene in group A was RUNXT (27%); in contrast, this gene
was not mutated in group B at all. The most commonly mutated
gene in group B was SF3B1 (25%), and this gene was mutated in
20% of patients in group A. Highly mutated genes in group A that
were wild-type in group B included ASXL1, STAG2, and U2AFI.
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Fig. 1 The landscape of mutated genes in the cohort of 214 LR-MDS patients. A Distribution, cooccurrence, and type of mutations in 137 of
214 LR-MDS patients. Each column represents an individual sample. The colored cells indicate a mutation in the gene described in the row on
the right. The color indicates the type of alteration. The percentage on the left indicates the representation of mutated genes in 137 patients
with mutations. The upper columns illustrate the number of mutations in the samples. The right stripes demonstrate the number of mutations
of the gene throughout our cohort. B The most frequently mutated genes grouped by low and intermediate-1 IPSS risk groups. The Y-axis
indicates the percent representation in the cohort. € Mutated genes grouped by functional categories. The most represented categories were
epigenetic regulators (blue) and splicing regulators (red). D Effect of the number of mutations on PFS, p <0.0001, with the median PFS in
parentheses, E Multivariate analysis of mutational and clinical variables that were significant in univariate analysis of PFS depicted in a forest
plot (hazard ratio, confidence intervals). Details are listed in 5! 5C. * indicates significant independent prognostic factors. F The mutational
landscape at the time of diagnosis in two groups of patients according to their progression within 5 years. Group A included patients who
progressed within 5 years, and group B included patients who did not progress and were followed for at least 5 years. G Results of both
machine learning methods (multivariate Cox regression with stepwise backward feature selection (SBFS) and elastic networks (EN)) applied to
OS and PFS in datasets 1 (datal: binary mutational data) and 2 (data2: the number of distinct mutations per gene} depicted in Venn diagrams.
The results of SBFS are depicted in blue circles, and the results of EN are depicted in orange circles. Common results are shown in overlaps.
H Kaplan-Meier survival curves of patients stratified by IPSS-R and mutational status of the RUNXT gene, p < 0.0001, with the median OS in

Baientheses, wt-RUNX1, patients without RUNXT mutations, mut-RUNX1, patients with RUNXT mutations.
<

The mutational burden is higher during progression

We compared the mutational landscapes of paired samples from 36
patients who progressed within 5 years (before vs. after progression).
We identified 24 new mutations in samples after progression. The
greatest increase in the total number of mutations (114%) was
observed in genes involved in signaling pathways (S| 10). Generally,
the VAF of mutations increased from diagnosis to progression with
few exceptions. Examples of VAF changes in paired samples are
shown in SI 11.

Machine learning applied to mutational data confirms the
significant effect of mutations on survival

According to the multivariate Cox regression with stepwise backward
feature selection (SBFS), the mutated gene responsible for the
shortest OS was STAG2 in dataset 1 (binary mutational data) and
RUNXI1 in dataset 2 (the number of distinct mutations per gene)
(SI 12A). For the shortest PFS, RUNXT was mutated in both datasets.

According to the cross-validation experiments for SBFS and elastic
network (EN) models (Supplementary Results), the optimal number of
genes responsible for a shorter OS and PFS was greater than 1. The
most significant genes are listed in Tables SI 128 and Sl 13B for the
individual datasets. Both methods identified mutated DNMT3A,
SETBP1, TP53, and STAG2 as significant for OS in dataset 1 and
mutated STAG2, SETBP1, TP53, and RUNXT as significant for dataset 2.
In both datasets, significant genes for shorter PFS identified by both
methods were SETBP1, TP53, and RUNXI. The complex results from
both methods are depicted in Figs. 1G and SI 14.

When the SBFS model was extended with comutational data
(SI 15A-B), the presence of mutated RUNX1 and EZH2 together had
the strongest impact on OS and PFS. In the EN approach, including
gene interactions in the model did not improve its quality.

Because the initial number of independent variables was too large
with respect to the number of events, the full models led to
overfitting. The regularized models with smaller feature sets out-
performed the full models. At the same time, they were significantly
better than random, which confirms our hypothesis that risk
stratification in MDS may be improved by including molecular data.
The predicted hazards for the individual subjects could be used to
assume their survival (described in the Supplementary Results).

RUNXT mut
MDsS

We identified 25 unique mutations in RUNX1 in 17 patients at
diagnosis and in 2 patients who developed RUNXT mutations during
progression (Sl 16). Eighteen of the identified RUNXT mutations (75%)
were located in the Runt homology domain (RUNT), which is
responsible for DNA binding and interaction with CBFp (S| 16). Overall,
most mutations remove residues that are important for RUNX1
activity, suggesting a loss of RUNX1 function in these mutants [23].
Some mutations are likely dominant-negative [18], and in some
mutants, the effect could not be predicted without functional assays

| status can imp risk stratification of LR-
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[24]. All RUNXT mutations were proven to be somatic (except for one
presented in a patient whose CD3 + cells were not available). Most
mutations were present at a lower VAF (<10%). ASXL1, EZH2, and
STAG2 were most frequently comutated with RUNXT (SI 4B).

RUNX! mutational status significantly affected the IPSS-R scores
(Fig. 1H). After adding information on RUNXT mutational status to the
IPSS-R scoring system, the survival curves divided patients into two
groups: i) patients with prolonged PFS from the three risk classes
without any RUNX1 mutation (Wt-RUNXT) and i) patients with
shortened PFS with RUNXT mutations (mut-RUNXT).

Comparing the clinical features between RUNXT-mutated patients
and others in our cohort revealed significant differences in the BM
blast and platelet counts and the median number of mutations (51 17).
The antitumor cellular resp is d I
mutated LR-MDS
Because mutated RUNX1 showed the greatest impact on rapid
progression, we aimed to analyze the mechanism by which mutations
in this gene contribute to rapid progression. We compared the
transcriptomes of CD34 + cells between 8 RUNX1-mutated lower-risk
patients (mutR-LR) and 29 lower-risk patients without RUNXT
mutations (wtR-LR) (SI 3).

Hierarchical clustering (Fig. 2A) and principal component analysis
(Fig. 2B) of RNA-seq data showed differences in the expression
profiles of mutR-LR from thase of wtR-LR. In the differential expression
analysis of mutR-LR versus wiR-LR, 2235 genes were significantly
(FDR <0.05) upregulated and 2094 were significantly downregulated
(Fig. 2C). Differentially expressed genes were enriched in 641 GO
biological processes. GO enrichment analysis (GOrilla) [25] reduced
this number to 103. The main pathways that had significant FDR
values were chromatin and gene silencing, nucleosome assembly,
chromatin organization, regulation of megakaryocyte differentiation
and myeloid cell differentiation and hemopoiesls, telomere organiza-
tion and capping, cellular metabolic processes, DNA damage
response (DDR) and DNA repair, and cellular response to stress, The
top 10 up- and down-regulated terms in GO biological processes are
visualized in the Supplementary Material (S| 18A, B).

In the KEGG database, 47 pathways were significantly enriched. The
top 10 upregulated KEGG pathways in mutR-LR were related to
cancer and leukemia (SI 18C). The top 10 downregulated KEGG
pathways were pathways of neurodegenerative diseases, inflamma-
tory response, and cell cycle (Fig. 2D). These pathways are tightly
connected to DDR and DNA repair, cellular senescence, aging, chronic
inflammation, oxidative stress, and apoptosis [26-30], which all play a
role in cellular tumor protection.

In our custom dataset consisting of 88 gene sets connected to
DDR, DNA repair, cellular senescence, apoptosis, and hypoxia, 82 gene
sets were significantly enriched in witR-LR (FDR<0.1). Enrichment
plots and the heatmap of the top 50 genes are depicted in Fig. 2E, F.

To better understand the differences between mutR-LR and wtR-
LR, we supplemented the cohort with 20 higher-risk patients (HR) and

d in RUNXT-
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13 healthy controls (median age 41 years) (Sl 3) and compared the
expression profiles of CD34 + cells. Interestingly, mutR-LR patients
clustered with HR patients (Fig. 3A, B). In dysregulated GSEA
pathways, mutR-LR CD34 + cells transcriptionally resembled HR cells,
indicating transcriptional similarity with HR patient cells already at
diagnosis (Fig. 3C-E).

Leukemia

Markers of senescence are dysregulated in RUNXT-mutated
LR-MDS and HR-MDS cells

To validate the suppression of DDR and senescence in cells of LR-MDS
patients with RUNXT mutations and HR-MDS patients compared to
that in cells of LR-MDS patients without RUNXT mutations, we
performed two types of analysis: i) immunchistochemical staining of
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Fig. 2 Transcriptome analysis of mutR-LR and wtR-LR RNA-seq data. A Hierarchical clustering and B PCA of RUNX1-mutated (mutR-LR) and
RUNX1-unmutated LR-MDS patients (wtR-LR), C Differentially expressed genes depicted in a volcane plot. The red points indicate significantly
dysregulated genes between CD34 + cells from lower-risk MDS patients with and without RUNX1 mutations. x-axis: logFC, logarithm of fold-
changes; y-axis: —log10 of FDR value; FDR - false discovery rate, red points: FDR < 0.05. D Top 10 downregulated KEGG pathways in mutR-LR
compared to wtR-LR by p value. x-axis: number of genes in the pathway; color depicts adjusted p value (the highest values are red). E Six of
82 significantly (FDR < 0.25) dysregulated pathways by GSEA in the custom dataset consisting of 88 gene sets linked to the DNA repair, DNA
damage response, cellular senescence, apoptosis, and hypoxia pathways. ES, enrichment score; NES, normalized enrichment score; p, p value;

FDR, false discovery rate. F Heatmap representing the expression profiles of the top 50 up- and down-regulated genes in the custom dataset,
mutR-LR highlighted in yellow, wtR-LR highlighted in gray. Gene expression levels are represented by colors; red represents upregulated

genes and blue represents downregulated genes. The intensity indicates the level of differential expression.
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Fig.3 Transcriptome analysis of LR- and HR-MDS patients. A Hierarchical clustering and B PCA of CD34 + cells of mutR-LR, wtR-LR, HR and
healthy controls (CTRL). Heatmaps displaying significantly dysregulated expression in selected genes of GSEA pathways: C Cellular senescence
(KEGG), D DNA damage, E SASP (Reactome), Red indicates upregulation, blue indicates downregulation of gene expression, and the color
intensity indicates the level of differential expression. The heatmaps including all genes of the pathways are shown in Si 20,

yH2AX on BM FFPE sections and ii) fluorescence detection of
senescence-associated B-galactosidase (SA-B-gal) activity in BM sorted
cells. We observed higher staining of yH2AX in RUNXT-unmutated
samples than in RUNXT-mutated samples, where the marker was very
low or undetectable (Fig. 4A, B, SI 19). Furthermore, significantly
higher SA-B-gal activity, indicating a higher percentage of senescent
cells, was observed in CD14 + monocytes of LR-MDS compared to
HR-MDS (Fig. 4C, D). The CD34 + cell results had to be omitted in
statistical analyses because of the low number of CD34 + cells in
samples, and mutR-LR samples were not available for this assay.
However, based on the expression profiles of senescence-associated

SPRINGER NATURE

pathways in mutR-LR and HR-MDS (Fig. 3C-E; SI 20), similar results for
SA-B-gal can be anticipated in mutR-LR. Generally, the detected
fluorescence levels among cell types were much more uniform in HR-
MDS samples than in LR-MDS (Fig. 4E). A gating strategy example is
depicted in SI 21.

DISCUSSION

This study aimed to describe the MDS mutational landscape using
NGS technology, which is unique for a cohort composed exclusively
of LR-MDS patients. To our knowledge, the only study exclusively
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Fig. 4 Detection of markers of cellular senescence. Immunohistochemical staining of yH2AX protein in BM FFPE sections of A wiR-LR
patients and B mutR-LR patients. Images of the two wtR-LR patients show highly positive zones of the sections that were not present in the
mutR-LR patients. C Representative example of the gating strategy of CD14 + cells and SA-B-gal expression. The numbers in the plot indicate
the percentage of gated cells. D Significant difference in activity (GMF) of SA-p-gal between LR- and HR-MDS CD14 +cells (median,
interquartile range), p = 0.026, calculated using two-sided Mann-Whitney test. E Geometric mean fluorescence (GMF) represents the level of
SA-B-gal activity for LR-MDS and HR-MDS patients in immune cell subsets from bone marrow (median, interquartile range).

targeting LR-MDS patients and aiming to enhance the prognostic
system with molecular data thus far was published in 2012 and
consisted of 288 LR-MDS patients [9]; however, few genes were
sequenced, and the prognosis was based only on OS, not PFS, In this
context, our study describes a novel, unique strategy for MDS
stratification based on molecular markers and machine leaming
methods.

In our cohort, at least one pathogenic mutation was detected in
64% of patients. One of the most frequently mutated genes was
SF381, which is in line with other studies [11, 12, 31]. This gene did not
have a significant effect on OS, as reported earlier; however, these
previous studies evaluated the effect in the entire spectrum of
patients with MDS from low- to high-risk. Because SF3B7 is
predominantly mutated in lower-risk patients, its effect on survival
may appear greater in the unstratified MDS cohort than in the lower-
risk cohort.

Incorporation of the mutational status of genes affecting OS or PFS
into IPSS-R significantly improved risk stratification. In multivariate
analysis, age, platelet count, mutated TP53 and DNMT3A were
significant for OS, and age, platelets, and mutated RUNX! were
significant for PFS. We have previously reported platelet count as well
as mutated TP53 as one of the strongest independent prognostic
factors for OS5 in LR-MDS [32]. Unfavorable outcomes related to RUNXT
mutations were described in a 16-study meta-analysis of MDS
patients without risk stratification [33].

Machine leaming is an emerging approach for risk stratification in
various disorders, including MDS [13, 34, 35]. Nevertheless, to date, no
algorithm has been used globally to stratify patients or predict the
disease course. In our cohort, machine learning showed that mutated
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RUNX1, TP53, and SETBP1 are significant predictors of rapid
progression, with RUNXT being the main factor.

Due to the strong effect of mutated RUNXT on PFS, we further
aimed to investigate this gene and its role in progression, According
to the VAF of RUNXT mutations and other commutated genes in
RUNX1-mutated patients, we suppose that RUNXT mutations are not
founder mutations but rather subsequent events in clonal evolution
contributing to cell transformation. Similar conclusions were drawn by
earlier studies [12, 36].

To determine the dysregulated molecular pathways associated
with mutated RUNX1, we compared the expression profiles of CD34
t cells of LR-MDS patients with (mutR-LR) and without (wWitR-LR)
RUNXT mutations. Overall, data from differential expression analysis
and GSEA showed suppression of pathways associated with
antitumor cellular response—DDR, cellular senescence, chromatin
and gene silencing, apoptosis, cellular response to stress, telomere
maintenance, and hypoxia—in mutR-LR patients.

These data indicate the role of RUNXT as a tumor suppressor in
LR-MDS and suggest a functional impact of RUNXT mutations, direct
or indirect, in eliminating a biological anticancer barrier against
accelerated progressicn In LR-MDS patients. We found that wtR-LR
CD34 + cells activate the DDR and attain hallmarks of senescence,
resulting in delayed progression. Indeed, senescence has been
described as a part of the tumorigenesis barrier in premalignant
lesions [37-39]. With the assumption that DDR and senescence are
activated in the vicinity of senescent cells by senescence-associated
secretory phenotype (SASP) [40, 41], we measured SA-B-gal
expression in several BM sorted cell types and showed its
significantly higher level, particularly in CD14 + monocytes of wtR-
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LR-MDs. Our transcriptional comparison of SASP genes also suggests
that senescence-associated inflammatory cytokine secretion (as
described by Rodier et al. [42]) serves as a local microenvironmental
mediator of the LR-MDS cellular state, contributing to the barrier
against malignant progression and enforcing DDR activation, a
phenomenon we proposed to be a barrier counteracting the
progression of preleukemia to leukemia [43]. Our data also suggest
that while some wtR-LR BM progenitors activate the DDR (marked
by yH2AX), including increased DNA repair capacity consistent with
proliferation, some wtR-LR BM cells suffer more DNA damage and
undergo senescence. Thus, wtRUNXT is functionally intertwined with
DOR in LR-MDS in our cohort, and RUNXT mutations are associated
with elimination of the DDR-mediated senescence barrier and
accelerated disease progression.

Several studies have shown that wtRUNXT contributes to the
protection of cells against oncogenesis. It is necessary for the p53
response to DNA damage [44], and knockdown of this gene may
cause escape from senescence and enhance apoptosis suppression
[45). RUNX1 also interacts with a subunit of HIFT, HIF-1p, and inhibits
its transcriptional activity [46). Overexpression of HIF-1p may result in
tumor angiogenesis and tumor progression [47].

In our cohort, HIFT and hypoxia cellular response pathways were
significantly dysregulated in mutR-LR, which may impact the origin
of senescence [48]. HIFI and hypoxia are known to have an
antisenescent effect [48-50]; however, they can induce the
transcription of SASP genes and thus promote senescence in a
paracrine fashion [48). The dysregulation of HIF1 and hypoxia cellular
response pathways has been described in various types of tumers
47, 51, 52).

Our data also show that mutR-LR cell expression profiles are more
similar to those of HR-MDS cells than to those of wtR-LR cells at the
time of diagnosis. We previously demonstrated that CD34 + cells of
patients with early MDS show significant overexpression of genes
involved in the cell cycle, DDR and DNA repair compared to those
from advanced MDS patients [53]. Suppression of the DDR in AML
cells versus MDS cells [54] and downregulation of homologous
recombination gene expression in high-risk compared to low-risk
MDS patients [55] have been reported. Similarly, a decrease in the
expression of DNA damage checkpoints and dysregulation of the
cell cycle were described in advanced MDS [56].

To conclude, this study shows that MDS risk stratification may
be improved by including molecular data. Based on these data, we
can identify patients at risk of rapid progression and choose
proper follow-up and treatment strategies, LR-MDS patients with a
RUNXT mutation at diagnosis should be intensively monitored
despite the lower-risk group. Transcriptome data suggest that
RUNX1 mutations disrupt the fail-safe mechanism in hematopoie-
tic stem cells and contribute to rapid progression in LR-MDS.

DATA AVAILABILITY
Raw data were deposited in the National Center for Biotechnology Information (NCBI)
Sequence Read Archive (SRA) database (accession number PRINA797993).
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5.  DISCUSSION

MDS are a group of highly heterogeneous diseases, and the molecular mechanisms
underlying the disease pathogenesis are now in the center of interest. Using high-
throughput technologies such as microarray assays and next-generation sequencing,
we aimed to identify the molecular markers predictive of disease development
at the level of IncRNA expression and recurrently mutated genes and to interpret
their effect on disease biology through differential expression profiling. Throughout
these studies, we engaged emerging computational techniques to support the power
of our results, to prioritize candidate genes and to link specific IncRNAs to MDS-

specific pathways.

ncRNAs play various roles in hematologic malignancies (Bhat et al., 2020;
Ghafouri-Fard et al., 2020). They have regulatory functions in hematopoiesis,
immune response, and apoptosis. They have tumor-suppressor or oncogenic
potential, can serve as prognostic markers of disease evolution, and contribute
to disease variability. However, only a small portion of all ncRNAs that contribute
to hematologic malignancies have been discovered. Because deregulated
expression of miRNAs has been comprehensively described in MDS, we focused

on IncRNAs in this study.

To our knowledge, only a few studies have targeted BM IncRNAs in MDS. One
of them studied IncRNAs in MDS to connect them with the outcome (Yao et al.,
2017).This study showed that 4 IncRNAs together may have a prognostic effect,
but it did not link IncRNAs to their biological functions. Another study presented
the network-based IncRNA comodule function annotation method, which we also
used in this publication (Liu et al., 2017). They identified a number of differentially
expressed IncRNAs in MDS; however, they did not evaluate IncRNA expression
in relation to patient outcome, diseases subtypes, or genetic abnormalities.
Differentially expressed IncRNAs and PCGs between MDS patients and healthy

controls have also been analyzed in one recent study (Wen et al., 2020).

Herein, we identified 32 deregulated IncRNAs and 87 deregulated PCGs between
MDS patients and healthy controls. The main deregulated pathways were related

to the hemoglobin complex and oxygen transport, immune response, epigenetic
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modifications, and regulation of gene expression. Similarly, Pellagatti et al. (2010)
showed that immune-related pathways were the most deregulated in MDS
compared to healthy controls, and Wen et al. (2020) reported deregulation
in necroptosis, apoptosis, immunodeficiency, p53, and FoxO signaling pathways

in MDS.

Although many IncRNAs have been identified recently, their function has not been
clarified. That is why we constructed coexpression networks and connected
IncRNAs to MDS-associated cellular processes. For example, EPB41L4A4-AS1 has
been reported to function as a repressor of the Warburg effect in cancer cells and
a regulator of the cell cycle (Liao et al., 2019; Samdal et al., 2021). In our MDS
patients, we associated the downregulation of EPB41L4A-ASI with ribosome

formation and translational regulation.

We showed that IncRNA expression profiles differ between early and advanced
stages of MDS. The expression profiles gradually changed from a healthy state
to advanced myelodysplasia. Interestingly, MDS-EB1 clustered closer to early
stages than to MDS-EB2. This may be a surprising result because MDS with excess
blasts are usually related to poorer survival and a higher risk of AML transformation
(Hasserjian, 2018), but at the level of miRNAs, similar results were published
(Merkerova et al., 2011). In contrast, the IncRNA expression profile of MDS-EB2
imitated the AML-MRC profile, indicating that disease progression can be detected
at the molecular level between MDS-EB1 and MDS-EB2, which is different from
the classical scheme based on clinical variables (between MDS-EB2 and AML-
MRC).

Numerous somatic mutations are found in MDS patients, and they play an important
role in the pathogenesis of MDS. Therefore, we combined expression profiling data
with the information on the mutational status of the five most often mutated genes
in our cohort (SF3BI, TP53, TET2, DNMT3A4, and RUNXI). In samples with
mutated one from the first four genes, we found only a small number of affected
transcripts. One could expect a larger impact of mutations in genes encoding
spliceosomal factor, tumor suppressor, or epigenetic factor; genes with a wide range
of targets. However, it is possible that a single nucleotide change might not

be strong enough to induce a larger expression change. However, RUNXI mutations
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caused high transcriptional impact, similar to the effect of cytogenetic aberrations.
Mutations in RUNXI are related to worse outcomes in MDS (Chen et al., 2007; He
et al., 2020). We connected the deregulation of the hematopoiesis and oncology-
related RAGI, LEF1 PCGs and GASS5, LEF1-AS1, and TCL6 IncRNAs with RUNX1
mutations. RAGI is a RUNXI-associated recombinase involved in T-cell receptor
recombination (Cieslak et al., 2014). RUNXI upregulates the expression of RAGI,
and the RUNXI DNA-binding domain is involved in this regulation (Jakobczyk et
al., 2022). We found RAG1 to be a core node in the DNA repair and recombination
module of RUNXI-mutated deregulated genes and linked the RUNXI-RAG1 axis
with LEFI/LEF1-AS and TCL6, the same transcripts whose deregulation was

significantly associated with poor prognosis.

Several transcriptomic studies have identified genes whose expression can be used
to predict the outcome and sensitivity or resistance to treatment (Kim et al., 2020,
2021, Pellagatti et al., 2013, 2010; Prall et al., 2009; Shiozawa et al., 2017).
However, PCG transcripts are not the final effectors in cells, unlike proteins and
noncoding RNAs. Therefore, we assume that IncRNA expression should be a more

reliable prognostic marker than PCG expression.

Herein, we identified four IncRNAs, H19, WTI1-AS, TCL6, and LEF1-ASI, with
a significant effect on outcomes. One of these four IncRNAs, H/9, was the most
promising prognostic marker. We demonstrated that an increased level of H79 has
strong prognostic value comparable to an increased blast count and the presence
of TP53 mutation, and it remained informative also in LR-MDS when the other
variables did not. We associated the upregulation of H7/9 with rapid progression,
short OS, and altered cell adhesion and differentiation processes in CD34+ BM

cells.

The aberrant expression of H19 is associated with tumors; however, it has not yet
been described in MDS. According to a review from 2015, H79 is actively involved
in all stages of tumorigenesis and is expressed in almost every human cancer (Raveh
et al., 2015). It is involved in proliferation and differentiation. In a review from
2020, the expression of H19 was connected with inflammation and was recognized
as an age-related factor (B. Wang et al., 2020). H/9 seems to be a promising
therapeutic target in various cancers (Raveh et al., 2015; J. Wang et al., 2020).
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In AML, HI9 overexpression is linked to leukemogenesis and an unfavorable

prognosis through its proliferative and antiapoptotic effects (Zhang et al., 2018).

H19 is only expressed maternally. Its counterpart is /GF2, which is expressed only
from the paternal allele, and these two genes share one imprinting control region
(Thorvaldsen et al., 1998). H19 also functions as a primary template for miR-675,
which plays an important role in tumorigenesis and the development of various
cancers (He et al., 2015; Vennin et al., 2015). We identified transcriptional
coregulation of H/9/IGF2/miR-675 in healthy donors and LR-MDS, but disruption
of this axis in HR-MDS. Deregulated expression of the HI9/IGF2 locus
is presumably due to abnormal methylation of the locus that results in imprinting

disruption, as described in other cancers (Kanduri et al., 2002; Park et al., 2017)

Downregulation of 7CL6 has been associated with a poor prognosis in patients with
various cancers (Kulkarni etal., 2021; Luo et al., 2020; Yaqiong Zhang et al., 2020).
It has been reported that T7CL6 behaves as a tumor suppressor and, through
cooperation with miRNAs, regulates key signaling pathways in hepatocellular

carcinoma and renal cell carcinoma (Kulkarni et al., 2021; Luo et al., 2020).

WTI-AS and LEFI-ASI are antisense transcripts of two PCGs, WTI and LEFI,
which have an association with the prognosis of MDS patients (Pellagatti et al.,
2013). WTI-AS participates in the regulation of tumor cell proliferation, the cell
cycle and apoptosis and is also involved in tumor invasion and metastasis (Ye
Zhang et al., 2020). WT1 plays a role in cell differentiation and apoptosis, and W71
transcript monitoring is used to estimate minimal residual disease and predict
outcomes in AML and MDS (Galimberti et al., 2010; Inoue et al., 1994; Nagasaki
et al.,, 2017). LEFI-ASI probably has a tumor-suppressive function — inhibits
proliferation and activates other tumor suppressors; thus, its level is decreased
in myeloid malignancies (Congrains-Castillo et al., 2019). On the other hand,
LEF1-AS1 promotes the metastasis of prostate cancer by promoting proliferation,
migration, and invasion (W. Li et al., 2020). LEF'] participates in the proliferation
and apoptosis of CD34+ progenitors and hematopoiesis (Skokowa et al., 2006).
Its downregulation is related to a worse prognosis and progression of MDS

(Pellagatti et al., 2009). We found that LEF1-AS1 was transcriptionally coregulated

78



with LEFI; however, Congrains-Castillo et al. (2019) suggested that LEF1-AS1

affects cell proliferation in a LEFI-independent manner.

Finally, our data functionally linked WTI1-AS to HI19 and LEFI1-ASI to TCL6.
The WT1-AS/H19 pair was associated with cell adhesion and differentiation, while
the LEFI-ASI/TCL6 pair participated in chromatin modification, cytokine

response, and cell proliferation and death.

In the second study, our objective was to describe the mutational profile of LR-
MDS patients and to identify markers of rapid progression. It is necessary
to identify LR-MDS patients at a higher risk of rapid progression to ensure proper
treatment. Many studies have described mutational profiles of MDS; however, very
few have exclusively targeted LR-MDS patients. When analyzing this subgroup,
slight but important differences can be distinguished. The study of Bejar et al.
(2012) targeted LR-MDS patients to enhance the prognostic system with molecular
data. However, few genes were sequenced, and the prognosis was based only
on OS, not PFS. After publishing our manuscript, the IPSS-molecular was
established and mutated genes associated with worse outcome have been proposed
promising more accurate risk stratification (Bernard et al., 2022). However, in this
context, our study provides new insights into the molecular pathogenesis of MDS
in LR patients not only by molecular profiling supported by machine learning

but also by studying the molecular changes in patients at risk of rapid progression.

At least one pathogenic mutation was detected in 64% of LR-MDS patients. One
of the most frequently mutated genes was SF3BI, which corresponds to other
studies (Haferlach et al., 2014; Malcovati et al., 2011; Papaemmanuil et al., 2013).
However, this gene did not show a significant effect on OS, as previously reported.
We suggest that this is a result of the individual study of LR-MDS. Previous studies
have always evaluated the effect on the entire spectrum of MDS patients, and
SF3B1 is predominantly mutated in LR-MDS. Therefore, its effect on survival may
appear greater in the unstratified MDS cohort than in the LR-MDS cohort.

In univariate analyses, mutated DNMT3A4, RUNXI, SETBPI1, STAG2, and TP53
genes were significant for OS, and mutated RUNXI, SETBP1, STAG2, TP53, and

U2AF1 genes were significant for PFS. Additionally, a higher number of mutations
decreased OS and PFS.
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We supported our results by using a machine learning approach. It is an emerging
methodology, and several studies show its potential for risk stratification and
disease course prediction in various disorders, including MDS (Nagata et al., 2020;
Nazha et al., 2017; Radakovich et al., 2021). Despite this, no algorithm has been
included in MDS clinical practice. Herein, mutated RUNXI, TP53, and SETBPI
genes were significant predictors of rapid progression according to machine

learning. The mutated gene RUNXI was the strongest factor.

However, neither IPSS nor IPSS-R showed a distribution with significant
differences in our cohort, and incorporation of the mutational status of genes
affecting OS or PFS significantly improved risk stratification. Even incorporating

only RUNXI mutational status significantly improved patient stratification.

In multivariate analysis, age, platelet count, mutated 7P53 and DNMT3A4 were
significant for OS, and age, platelets, and mutated RUNX! were significant for PFS.
Platelet count and mutated 7P53 have been previously reported as one
of the strongest independent prognostic factors for OS in LR-MDS (Belickova et
al., 2016). RUNXI mutations related to unfavorable outcomes were described
in a 16-study meta-analysis of MDS patients without risk stratification (He et al.,
2020). According to the VAF of RUNXI mutations and other commutated genes
in RUNXI-mutated patients, we suppose that RUNXI/ mutations are not founder
mutations but rather subsequent events in clonal evolution contributing to cell
transformation. Previous studies have drawn similar conclusions (Harada and

Harada, 2015; Papaemmanuil et al., 2013).

All our analyses showed that RUNXI is the strongest independent molecular
prognostic factor for rapid progression. Therefore, we decided to analyze the impact
of RUNXI mutations on transcriptional regulation. As we showed in Publication I,
mutated RUNXI has a great impact on the transcriptome in the unstratified MDS
cohort. In the cohort of LR-MDS patients, we observed an even greater number

of deregulated genes.

In patients with rapid progression, we observed downregulation of pathways
of chromatin and gene silencing, regulation of megakaryocyte differentiation and
myeloid cell differentiation and hemopoiesis, telomere organization and capping,

cellular metabolic processes, the DDR, cellular response to stress, cellular
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senescence, apoptosis, aging, chronic inflammation, and hypoxia. On the other

hand, pathways of leukemia and cancer were upregulated.

All the downregulated pathways mentioned above play a role in cellular tumor
protection. These data suggest that wild-type RUNXI (WtRUNXI), a master
regulator of hematopoiesis, is a tumor suppressor in LR-MDS and plays a role
in eliminating a biological anticancer barrier against accelerated progression in LR-
MDS patients. According to the literature, wtRUNXI is necessary for the p53
response to DNA damage (D. Wu et al., 2013); its knockdown may cause escape
from senescence and enhance apoptosis suppression (Motoda et al., 2007). In AML,
the tumor-suppressor function of RUNXI has been indicated due to analysis
of homozygous mutations on RUNX! function (Silva et al.,, 2003). However,
the dual role of RUNXI in myeloid leukemogenesis has been suggested (Goyama
et al., 2013). It is possible that wtRUNX1 is necessary for maintaining the cancer
barrier, but the decreased level is needed for tumor growth. The oncogenic role
of RUNXI was also suggested in T-cell acute lymphoblastic leukemia (Choi et al.,
2017).

According to our data, wtR-LR CD34+ cells activate the DDR and attain hallmarks
of senescence. Senescence has been described to be part of the tumorigenesis barrier
in premalignant lesions (Bartkova et al., 2006, 2005; Campisi, 2001). One
of the features of senescent cells is a senescence-associated secretory phenotype
(SASP); senescent cells produce a variety of molecules that promote
the inflammatory microenvironment and induce senescence in the vicinity.
Transcriptional profiles of SASP genes showed a great increase in wtR-LR CD34+
cells. Thus, we detected senescence-associated [-galactosidase activity, one
of the commonly used markers of cellular senescence, in BM sorted cell types and
observed significantly higher senescence-associated [-galactosidase activity,

particularly in CD14+ monocytes of wtR-LR.

Cellular senescence is closely associated with DNA damage. Excessive permanent
DNA damage induces senescence in affected cells (Zglinicki et al., 2005), and
the DDR probably plays a role in SASP production (Rodier et al., 2009). Based
on our data, we hypothesize that while some wtR-LR BM progenitors activate

the DDR and increase the DNA repair capacity consistent with proliferation, some
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wtR-LR BM cells suffer more from DNA damage and undergo senescence. DDR
activation plays an essential role in cellular protection against the progression
of preleukemia to leukemia (Takacova et al., 2012). We used the protein expression
of one DDR marker, yYH2AX, to observe where the DDR is activated. We observed
higher staining of the marker in RUNX/-unmutated samples than in RUNXI-
mutated samples. This shows that RUNX1 is functionally linked to the DDR in LR-
MDS and its mutations are associated with elimination of the DDR-mediated

senescence barrier and accelerate disease progression.

We also observed deregulation of HIFI and hypoxia cellular response pathways
in mutR-LR. HIFI and hypoxia have been described to have an antisenescence
effect (Eren and Tabor, 2014; van Vliet et al., 2021; Welford and Giaccia, 2011);
however, they can promote the expression of SASP genes and thus induce
senescence by paracrine signaling (Welford and Giaccia, 2011). The deregulation
of HIF'I and the hypoxia cellular response pathway has been described in various
types of tumors (Poon et al., 2009; Schito and Semenza, 2016; Simon et al., 2010).
RUNXI1 inhibits the transcriptional activity of HIF1 and therefore protects against

tumor angiogenesis and tumor progression (Peng et al., 2008).

Surprisingly, when supplementing our cohort with HR-MDS cases and healthy
controls, we observed high transcriptional similarity of RUNXI-mutated LR-MDS
cells and HR-MDS cells already at diagnosis, suggesting a possible efficacy
of using a similar approach in clinical practice. The early and advanced stages
of MDS have been previously reported to be transcriptionally different; early MDS
show overexpression of genes involved in the cell cycle and DDR compared

to advanced MDS (Pellagatti et al., 2010; Valka et al., 2017; Vasikova et al., 2010).

In both studies, we demonstrated the enormous impact of RUNXI/ mutations
on MDS patient outcomes and the regulation of gene expression. We showed that
pathways of immune response, cell death, and signaling pathways, especially
the MAPK signaling pathway, translational regulation, RNA splicing, DNA repair,
and p53 pathway, are critical, and their deregulation in RUNX/-mutated samples
is associated with a higher risk of progression in LR-MDS as well as

in the unstratified MDS cohort. We thus deduce that RUNXI mutations disrupt
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the fail-safe mechanism in hematopoietic stem cells and contribute to rapid

progression.

Taken together, the results presented in these two publications may provide novel
potential therapeutic approaches based on four identified IncRNAs with the highest
impact on prognosis, H19, WT1-AS, TCL6, and LEFI-AS, RUNXI, and senescent
cells. Although cellular senescence protects cells from malignant transformation
and tumor progression, it can also promote cancer itself. The main process involved
in this process is the SASP, which induces an inflammatory environment, fertile
soil for malignant transformation and tumor progression. By using senolytics,
senescent cells can be eliminated. It may be useful in LR-MDS, where senescent
cells are present at a higher density, or in MDS patients who underwent senescence-
inducing treatment. This therapeutic approach could potentially reduce the risk
of disease progression. The first reports of the elimination of premalignant lesions
have been recently published (Kolodkin-Gal et al., 2022; Saleh and Carpenter,

2021). However, more studies are needed to support this hypothesis.

Based on our data, we indicate that LR-MDS patients with a RUNXI mutation
at diagnosis should be intensively monitored despite being in the lower-risk group.
Fortunately, the new IPSS-M includes information on RUNXI mutational status;
thus, RUNXI-mutated patients should be stratified into higher-risk categories than

in previous scoring systems.

To conclude, our findings provide novel information on particular IncRNAs and
mutated genes contributing to MDS progression and propose cellular pathways
involved in progression. It is worth emphasizing that the level of the /79 transcript
and mutated RUNXI gene may serve as robust independent prognostic markers
comparable to clinical variables currently used for prognostication in MDS.
Overall, we showed that molecular data could be used to identify patients at risk
of rapid progression, and these findings could help to choose proper follow-up and

treatment strategies.
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6. CONCLUSIONS AND EVALUATION
OF THE AIMS

This study identified IncRNAs and mutated genes associated with worse outcome
and rapid progression in MDS patients. This finding enlightened new functions
of these markers in MDS pathogenesis and progression. This knowledge may
contribute to the accurate prognosis necessary for treatment decision-making.
Additionally, the deepening of knowledge of MDS pathogenesis may point

to promising therapeutic targets.
The aims were met, and the results are as follows:

We found novel biomarkers of adverse outcomes in MDS. At RNA level,
we identified 4 IncRNAs, H19, WT1-AS, LEF1-AS1, and TCL6, associated with
worse outcome. In particular, the level of H79 was an independent prognostic factor
for shorter OS and PFS. At DNA level, we identified genes associated with rapid
progression in LR-MDS. Mutated RUNX1, SETBP1, STAG2, TP53, and U2AF1
were significant for PFS by univariate analysis, and SETBPI, TP53, and RUNX]I
were significant for PFS by machine learning. The strongest independent prognostic
factor was mutated RUNXI. We showed that molecular data improve the risk

stratification and identify patients at risk of rapid progression.

We linked deregulated IncRNAs to cellular pathways with a IncRNA-PCG
coexpression network and predicted their role in disease development. WT'1-AS and
H19 are associated with cell adhesion and differentiation processes, and LEF[-AS1
and TCL6 are related to chromatin modification, cytokine response, and cell
proliferation and death. Moreover, we reported disrupted transcriptional regulation
in the H19/IGF2 region in HR-MDS, suggesting the importance of this locus

for disease development.

At the transcriptome level, we showed that RUNXI has a tumor-suppressive
function in LR-MDS. In LR-MDS CD34+ cells, pathways of antitumor cellular
defense are upregulated. However, mutations in the RUNXI gene probably disrupt
this DDR-mediated senescence barrier and contribute to disease progression. LR-

MDS patients with RUNXT mutations are thus at risk of rapid progression. Notably,

84



the expression profiles of these patients were more similar to those of HR-MDS
than to those of other LR-MDS already at diagnosis. Based on our data, we suppose
that rapid progression may be associated with the loss of cellular tumor barrier

pathways in hematopoietic stem cells.

In both studies, we showed that pathways of immune response, cell death, signaling
pathways, especially MAPK signaling pathway, translational regulation, RNA
splicing, DNA repair, and p53 pathway are critical and their deregulation play a role
in rapid progression of MDS patients.
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7. ZAVER A ZHODNOCENI CiLU

wewvr

a Casnou progresi u MDS pacientl. Také jsme popsali nové funkce téchto markera
v patogenezi a progresi MDS. Tyto znalosti mohou pfispét jak k presnéjsimu urceni
prognozy, coz je nezbytné ke zvoleni spravné 1écby, tak i poukazat na potencidlni

terapeutické cile.

Cile byly splnény a vysledky jsou nasledujici:

[ 24

identifikovali 4 IncRNA, H19, WT1-AS, LEF1-AS1 a TCL6, asociované s hor$im
priabéhem. Zvlast hladina H19 se ukazala byt nezavislym prognostickym faktorem
pro kratsi celkové preziti 1 preziti do progrese. Na tirovni DNA jsme identifikovali
geny asociované s Casnou progresi u pacientll s niz§im rizikem transformace
do AML (LR-MDS). Mutované geny RUNXI, SETBPI1, STAG2, TP53 a U2AFI
vysly v univariantni analyze signifikantni pro pfeziti bez progrese. Geny SETBPI,
TP53, RUNXI vysly signifikantné 1 pomoci strojového u€eni. Nejsilngjsi nezavisly
prognosticky faktor byl mutovany gen RUNXI. Prokézali jsme, Ze molekularni data
mohou zlepsit stratifikaci podle rizika a identifikovat pacienty v riziku casné

progrese.

Nésledné jsme propojili deregulované IncRNA s bunéénymi drahami pomoci
metody koexpresnich siti a predikovali jsme jejich roli ve vyvoji onemocnéni. WT1-
AS a H19 byly asociované s buné¢nou adhezi a diferenciacnimi procesy, LEF1-AS1
a TCL6 s modifikaci chromatinu, cytokinovou odpovédi a buné¢nou proliferaci
ismrti. Navic jsme poukédzali na naruSenou transkripni regulaci v lokusu
HI19/IGF2 u MDS pacientil s vysSim rizikem transformace, coZ naznacuje, Ze tento

lokus hraje roli ve vyvoji onemocnéni.

Na urovni transkriptomu jsme ukézali, Ze gen RUNXI plni tumor-supresorovou
funkci u LR-MDS. V CD34+ buitkach LR-MDS jsou zvySené drahy bunécné
protinddorové ochrany a mutace v genu RUNXI pravdépodobné
tuto protinddorovou bariéru narusuji, a pfispivaji tak k progresi onemocnéni. LR-

MDS pacienti s mutaci v genu RUNXI jsou tedy v riziku Casné progrese. Expresni
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profily téchto pacientli jsou navic podobné spiSe tém s vysokym rizikem nez
ostatnim s niz§im rizikem. Na zéklad¢ naSich vysledku Ize predpokladat, ze ¢asna
progrese je asociovana se ztratou bunécné protindadorové  bariéry

v hematopoetickych kmenovych buiikach.

Vysledky obou publikaci ukazuji, ze dradhy imunitni odpovédi, bunééné smrti,
regulace translace, RNA sestiihu, DNA oprav, ale i draha p53 a signalni dréhy,
piredevsim MAPK signalni draha, jsou klicové a jejich deregulace hraje roli v ¢asné

progresi MDS pacientt.
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SUPPLEMENTARY METHODS
Patients

The study included 133 patients with various subtypes of MDS, 28 patients with AML-
MRC, and 22 healthy donors. The individuals were randomly divided into a discovery
cohort (54 MDS, 14 AML-MRC, and 9 healthy controls) and a testing cohort (79 MDS, 14
AML-MRC, and 13 healthy controls). The bone marrow (BM) samples were obtained from
the patients during routine clinical assessment at the Institute of Hematology and Blood
Transfusion and the First Department of Internal Medicine, General Faculty Hospital,
Prague. MDS patient age ranged from 31 to 82 years (average 63) and male/female
distribution was 70/63. Similarly, age of AML-MRC patients ranged from 29 to 82 years
(average 66) and male/female distribution was 19/9. The study included only the patients
with no known history of previous malignancy, chemotherapy or radiation therapy.
Moreover, none of the patients had received therapy for their disease or HSC
transplantation (HSCT) prior to BM collection. The patient’s diagnoses were assessed
based on the standard WHO 2016 classification criteria [1] and all the patients were
classified according to the IPSS-R categories [2] at the time of sample collection, except of
two patients with unavailable cytogenetics. Control groups contained hematological
healthy, age matched donors (age ranged from 28 to 70 years, average 56, and
male/female distribution was 14/8). Informed consent was obtained from all the patients
and the healthy donors for being included in the study. The study was approved by the
Institutional Scientific Board and the Local Ethics Committee in accordance with the
ethical standards of the Declaration of Helsinki and its later amendments. The detailed
clinical and laboratory characteristics of both cohorts, including classification of MDS
patients into subgroups, IPSS-R categories, BM features and blood counts, are

summarized in SI 1.

Cell separation and nucleic acid extraction

Mononuclear cells (MNCs) and granulocytes were purified from BM aspirates using Ficoll-
Histopaque (GE Healthcare, Munich, Germany) density centrifugation. CD34+ cells were
subsequently isolated from MNCs using magnetic cell separation according to the
manufacturer’s instructions (Miltenyi Biotec, Bergisch Gladbach, Germany). DNA was
isolated using MagCore Genomic DNA Whole Blood Kit. Total RNA was extracted by the

acid-guanidine-phenol-chloroform method and the samples were incubated with DNase |
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to prevent genomic DNA contamination. Quantity of DNA/RNA was quantified using
Invitrogen Qubit 3 Fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) and the
RNA integrity was assessed using the Agilent 4200 TapeStation (Agilent Technologies,
Santa Clara, CA, USA).

IncRNA microarrays and data analysis

Genome-wide IncRNA profiles were determined using Agilent Human GENCODE Custom
IncRNA Expression Microarray Design v15 developed by the Bioinformatics and Genomics
Group at the Centre for Genomic Regulation in Spain [3]. The array contains probes for
22,001 IncRNA transcripts and 17,535 PCG mRNAs. Agilent Low Input Quick Amp Labeling
Kit was used for sample preparation (RNA input was set up to 200 ng) according to the
manufacturer’s recommendation. The hybridized arrays were scanned using Agilent DNA
microarray scanner. Microarray probes were initially mapped to GRCh37/hgl9 genome
using NovoAlign program (Novocraft Technologies, Malaysia) and re-annotated according
to UCSC Genome Browser (http://genome.ucsc.edu). Raw data were extracted using the
Agilent Feature Extraction Software. Quality control, quantile normalization, and filtering
were performed with the Bioconductor project in the R statistical environment using
limma package. Differentially expressed IncRNAs and PCGs were identified using empirical
Bayesian method implemented in R limma package. Multiple testing correction was
performed to compute false discovery rate (FDR) using the Benjamini-Hochberg method.
To visualize the differential expression data, expression heatmaps were designed using
MeV v4.3.2 software [4] and the hierarchical clustering of the data was done using
average linkage and Pearson distance. The raw and normalized data have been deposited
in the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus
(GEO) database under accession number GSE145733.

RT-qPCR

Reverse transcription quantitative PCR (RT-qPCR) was applied to measure transcript levels
of individual genes (IncRNAs: CHRM3A82, EPB41L4A-AS1, H19, LEF1-AS1, PVT1, TCL6, and
WT1-AS; PCGs: IGF2, LEF1, WT1, TCL1A, and TCL1B; miRNAs: miR-675 and RNU48 as a
reference). SuperScript IV VILO Master Mix (Thermo Fisher Scientific, Waltham, MA, USA)
was used for cDNA synthesis and TagMan gene expression assays with TagMan universal
mastermix Il with UNG (Thermo Fisher Scientific) were applied for quantitative PCR using

StepOnePlus instrument (Thermo Fisher Scientific).

For normalization of raw Cr data of IncRNAs and PCGs, we tested several known reference
genes (B2M, GAPDH, GUSB, HPRT1, TUBB, UBC, and YWHAZ). The stability of the genes
was compared using web-based tool RefFinder that integrates four major currently

available computational programs (geNorm, Normfinder, BestKeeper, and the

109



comparative delta-Ct method) [5]. Based on the results from this optimization procedure
(Sl 2), the RT-gPCR data were finally normalized to HPRT1 reference gene and further

processed by the 222" method [6].

Mutational screening and data analysis

TruSight Myeloid Sequencing Panel Kit (lllumina, San Diego, CA, USA) containing 568
amplicons in 54 genes associated with myeloid malignancies was used for mutational
screening of patients from the discovery cohort. The amplicon library was constructed
according to the manufacturer’'s recommendations. After library purification, and
subsequent normalization on beads, quantification was performed by Kapa Library
Quantification Kit lllumina Platforms (Kapa Biosystems, Wilmington, Massachusetts,
USA). The libraries were pooled and 2x150 bp paired-end sequenced with Rapid SBS Kit
V2 chemistry on a HiSeq 2500 instrument. FASTQ files were subjected to initial quality
control by FastQC. Adaptor trimming was done by Trimmomatic and low-quality
sequences were removed by llluminaclip. The remaining reads were aligned to the human
genome hgl9 using BWA-MEM. Variants were detected by LoFreq v2.1.3.1. and
annotated using Variant Effect Predictor (Ensembl). Clinical significance of each variant
was verified in several genomic databases (UCSC, COSMIC, ExAC, PubMed). The arbitrary
cut off was set at 5 % of variant allele frequency (VAF).

Statistical analysis

Statistical analyses were performed using GraphPad Prism 7 (GraphPad Software, La Jolla,
CA, USA) and SPSS software (IBM, Armonk, NY, USA). Nonparametric Mann-Whitney test
was used to compare transcript levels and clinical parameters between two groups of
samples. Spearman rank test was performed to assess the correlation of continuous
variables. The survival distributions for overall survival (OS) and progression-free survival
(PFS) were estimated using the Kaplan-Meier method, and the differences were
compared using the log-rank test. For determination of the optimum cut-off values of
transcript levels, we computed the p-values with the log-rank test on a dense net local
computation and defined the cut-off points using Gaussian mixture models where the
obtained p-values were divided into two components. For multivariate analysis, we
estimated a Cox proportional hazards regression model with Min-Max method for
normalizing of the data. The backward likelihood method was applied for reduction of

variables. The differences were considered statistically significant if p < 0.05.

Pathway analysis

Changes in gene expression were related to functional changes using gene set enrichment
analysis (GSEA) [7]. As a reference, c2 (c2.all.v7.0.symbols.gmt [Curated]), c5
(c5.all.v7.0.symbols.gmt [Gene Ontology, GO]), and hallmark (h.all.v7.0.symbols.gmt
[Hallmarks]) gene sets from the Molecular Signatures Database were utilized. The number
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of permutations was set up at 1,000. The enrichment results with p < 0.05 were
considered statistically significant.

LncRNA-PCG coexpression networks

The network analysis directly stems from the network-based IncRNA module function
annotation method introduced in [8]. Firstly, we identified differentially expressed
IncRNAs and PCGs (FDR<0.05) and constructed a correlation matrix for these transcripts.
The correlation was calculated for all the IncRNA-PCG pairs and the absolute value of
Pearson correlation coefficient represented each pair. Second, a non-negative matrix
factorization (NMF) was used to extract modules from the correlation matrix. In
particular, the standard factorization based on the Kullback-Leibler divergence was
employed [9]. The factorization was run multiple times for different numbers of modules
and with different random seeds for computation of initial values for the factor matrices
to avoid improper local minima of the objective function. The Frobenius norm of the
factorization residual matrix served as the factorization objective function. Then, each
module was functionally annotated. All the PCGs were mapped to the corresponding
GO terms and the terms with at least two corresponding PCGs were kept. GO enrichment
analysis served to annotate individual modules and Fisher exact test was used to calculate
the score for the individual terms. Eventually, the representative cores of the individual
modules were plotted. In each plot, 4 IncRNAs and 13 PCGs with the highest module
membership visually represent the module. Edges connect those nodes whose absolute
correlation exceeds the median module correlation (weak) and its third quartile (strong).
The network analysis was carried out in the R statistical environment with the packages

limma, NMF, GSEABase and iGraph.
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SUPPLEMENTARY FIGURES AND TABLES

Sl 1. Characteristics of the cohorts. Discovery cohort was examined by microarrays and

testing cohort was used for RT-qPCR measurements.

Variable Discovery cohort Testing cohort
Number of samples 77 (9/54/14) 106 (13/79/14)
(healthy controls/MDS/AML-MRC)
Healthy controls 9 13
Gender (male/female) 6/3 8/5
Age; mean (range) 61 (45-72) 52 (28-70)
MDS 54 79
Diagnosis
(SLD/MLD/RS-SLD/RS-MLD/5qg-/EB1/EB2) 5/13/4/3/7/10/12 8/12/8/8/12/10/21
Gender (male/female) 29/25 41/38
Age; mean (range) 65 (31-82) 62 (29-88)
IPSS-R category 7/19/9/10/9/0 12/25/21/11/8/2
(very low/low/intermediate/high/very high/n.a.)
IPSS-R karyotype
(very good/good/intermediate/poor/very 2/36/6/2/8/0 0/65/4/1/7/2
poor/n.a.)
Cytogenetic features

normal karyotype 16 38

isolated del(5q) 12 10

isolated del(20q) 4 4

isolated +8 2 4

complex 8 7

other 13 14

n.a. 0 2
Somatic mutations

no. of patients with detected mutations (%) | 39 (76 %) n.a.

no. of mutations/patient:

0/1/2/3/4/5/6/7/na 12/17/7/3/8/3/0/1/3

Marrow blasts [%]: mean (range) 5.6 (0.0-19.0) 6.1(0.2-19.4)
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Hemoglobin (g/L): mean (range)

99 (68-159)

98 (67- 139)

Neutrophils (x10°/L): mean (range)

2.3(0.1-11.4)

2.4 (0.1-8.0)

Platelets (x10°/L): mean (range)

184 (26-597)

205 (19-766)

Follow-up, number of patients 53 79

mean follow-up [months] (range) 26 (1-115) 34 (1-118)
i. HSCT (censored), number of patients 2 13

mean time to HSCT [months] (range) 16 (5-27) 18 (1-59)
ii. progression, number of patients 33 50

mean time to progression [months] (range) | 23 (1-55) 25 (1-90)
iii deceased, number of patients 28 48

mean time to death [months] (range) 21 (1-78) 30 (1-96)
iv. alive (censored), number of patients 23 18

mean follow-up time [months] (range) 34 (1-115) 60 (1-118)
AML-MRC 14 14
Gender (male/female) 12/2 7/7
Age; mean (range) 69 (58-77) 63(29-82)
Cytogenetic features

normal karyotype 4 6

isolated del(5q) 1 0

isolated +8 3 1

complex 3 3

other 3 5
Somatic mutations

no. of patients with detected mutations (%) | 11 (85 %) n.a.

no. of mutations/patient: 0/1/2/3/4/na 2/4/4/1/2/1

Marrow blasts [%]: mean (range)

26.5(20.0-33.0)

35.0(20.0-77.0)

Hemoglobin (g/L): mean (range) 97 (78-114) 97 (70-132)
Neutrophils (x10%/L): mean (range) 1.7 (0.06-11.8) 2.1(0.1-15.7)
Platelets (x10°/L): mean (range) 93 (13-578) 59 (5-196)

n.a. - not analyzed
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SI 2. Stability of selected reference genes potentially applicable for RT-qPCR
normalization. The tested genes (B2M, GAPDH, GUSB, HPRT1, TUBB, UBC, and YWHAZ)
were ranked using web-based tool RefFinder that integrates four major currently
available computational programs (geNorm, Normfinder, BestKeeper, and the
comparative delta-Ct method). Based on the rankings from each program, RefFinder
assigns an appropriate weight to an individual gene and calculates the geometric mean of

their weights for the overall final ranking [5].

Comprehensive gene stability

7
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HFRT1 TWHAZ TUBE GAFPDH GUsSB
<== Most stable genes Least stable genes ==
Ranking Order

Method 1 2 3 4 5 6
Delta CT HPRT1 YWHAZ TUBB B2M uscC GAPDH
BestKeeper usC B2M GAPDH TUBB YWHAZ HPRT1
Normfinder HPRT1 YWHAZ TUEB B2M UBC GAPDH
Genorm HPRT1 | YWHAZ B2M GAPDH UBC TUBB
Recommended
ranking HPRT1 YWHAZ B2M UBC TuBe GAPDH
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SI 3. List of significantly deregulated transcripts in MDS patients compared to healthy
controls (|logFC| > 1, FDR < 0.05). Of the 83 upregulated PCGs, only the top 30 transcripts
are listed. logFC — binary logarithm of fold change, FDR - false discovery rate.

No. Transcript Chromosome logFC FDR
IncRNAs increased in MDS

1 PRKAR2A-AS1 chr3 3.78 2.68E-03
2 RP11-408E5.5 chr13 3.22 3.29E-04
3 H19 chril 3.18 2.08E-03
4 RP5-867C24.4 chrl7 2.75 2.75E-02
5 EMCN-IT1 chra 2.58 1.41E-05
6 RP11-558A11.3 chrl6 2.30 5.01E-06
7 LINC00570 chr2 2.16 1.41E-02
8 WT1-AS chril 2.13 4.51E-02
9 RP11-677118.3 chrll 1.94 3.57E-04
10 RP11-567J20.3 chr8 1.82 3.08E-02
11 RP11-753D20.1 chrl4 1.77 1.15E-02
12 LINC00640 chrld 1.66 4.90E-02
13 FAM225A chr9 1.61 1.51E-02
14 AC131097.3 chr2 1.51 1.90E-02
15 RP4-669L17.2 chrl 1.48 2.59E-03
16 MEG8 chri4 1.36 1.70E-02
17 AL132709.8 chrld 1.28 3.26E-02
18 CTD-2373N4.5 chr8 1.23 1.33E-02
19 RP11-792D21.2 chrd 1.22 3.29E-04
20 RP5-1029F21.4 chrl7 1.19 3.55E-02
21 AC017076.5 chr2 1.12 3.25E-02
22 PVT1 chr8 1.12 3.67E-02
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23 CTD-2319112.2 chrl7 1.11 5.66E-04
24 RP11-27712.4 chrl 1.09 4.39E-02
25 AL132709.5 chrl4 1.08 2.15E-02
26 AC020571.3 chr2 1.08 2.95E-02
27 RP1-249H1.4 chré 1.08 2.12€-02
28 LINCO0484 chr9 1.04 1.58E-02
IncRNAs reduced in MDS

1 U3 chrl8 -1.40 4.96E-04
2 AC079779.4 chr2 -1.18 2.55E-02
3 ST6GAL2-IT1 chr2 -1.03 3.98E-02
4 RP11-13K12.1 chrl7 -1.01 4.12E-02
PCGs increased in MDS

1 HBG1 chrll 5.45 1.45E-05
2 HBBP1 chrll 4.00 4.70E-05
3 GYPB chra 3.93 4.70E-05
4 PGF chrl4 3.41 2.08E-05
5 IF127 chrl4 3.36 1.44E-03
6 OAS1 chrl2 3.15 2.24E-02
7 NCAM1 chrll 3.15 9.79E-03
8 SH2D1A chrx 2.98 8.45E-03
9 GYPB chra 2.93 2.95E-07
10 HBA2 chrl6 291 2.83E-02
11 TMCC2 chrl 2.80 1.79€-03
12 TRIM10 chré 2.78 1.51E-04
13 SPAG6 chrl0 2.73 2.90E-02
14 ALDH1A3 chr15 2.64 2.24E-02
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15 EPB42 chrl5 2.53 4.30E-02
16 SRMS chr20 2.43 1.33E-02
17 C200rf108 chr20 2.39 1.25E-03
18 SLC6A9 chrl 2.39 4.75E-03
19 BAI1 chr8 2.36 1.77E-04
20 PABPCAL chrd 2.32 1.53E-02
21 LOC285758 chré 2.28 4.70E-05
22 FHDC1 chra 2.28 2.17E-02
23 ARG2 chrld 2.24 1.45E-02
24 SLC6A8 chrl6 2.08 2.51E-02
25 0SBP2 chr22 1.89 1.89E-03
26 RFPL4A chrl9 1.88 2.32E-02
27 ABCC13 chr21 1.80 2.32E-02
28 IL2RA chr10 1.80 2.70E-03
29 ENST00000515150 chra 1.78 4.67E-04
30 LOC284561 chrl 1.78 3.17E-02
PCGs reduced in MDS

1 ECEL1P2 chr2 -1.81 1.26E-03
2 A_33_P3258324 chr19 -1.34 4.58E-02
3 AVP chr20 -1.21 1.17E-02
4 HLF chrl7 -1.08 1.29E-03
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Sl 4. List of significantly deregulated transcripts in AML-MRC compared to MDS patients
([logFC| > 1, FDR < 0.05). Of the 159 downregulated PCGs, only the top 30 transcripts are
listed. logFC — binary logarithm of fold change, FDR - false discovery rate, ns — none
significant transcript.

No. Transcript Chromosome logFC FDR

IncRNAs increased in AML-MRC

ns ns ns ns ns

IncRNAs reduced in AML-MRC

1 AC004510.3 chr19 -3.28 1.65E-05
2 RP11-489D6.2 chrl5 -2.45 4.60E-03
3 VPSOD1-AS1 chrl6 -2.15 8.63E-04
4 RP11-96B2.1 chr8 -2.01 8.63E-04
5 RP11-327122.8 chr9 -1.98 3.80E-02
6 PVT1 chr8 -1.86 1.78E-02
7 RP11-48020.4 chrl -1.52 2.74E-02
8 RP11-315A17.1 chrd -1.39 1.22E-02
9 CTD-2319112.2 chrl7 -1.34 1.22E-02
10 CXADRP3 chrl8 -1.25 7.21E-05
11 C1QTNF9B-AS1 chrl3 -1.07 2.36E-02

PCGs increased in AML-MRC

1 LATS2 chrl3 1.07 1.57E-02

2 GUCY1A3 chr4 1.04 3.41E-02

PCGs rduced in AML-MRC

1 DEFA3 chr8 -3.72 1.34E-02
2 PRG3 chrll -3.64 7.85E-03
3 C21lorf67 chr21 -3.44 3.15E-02
4 RBP7 chrl -3.19 1.12E-03

118



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

IGHV1-18

IGKV4-1

IGLV3-10

SLC10A4

STAB2

ST6GALNAC1

DUSP26

APOC1

NMU

SELENBP1

EPB42

IGHV1-2

CLEC4G

SEC14L4

C100rf116

EPX

SPAG6

GYPB

ANK1

COL6AS

CypiB1l

GTSF1

AKR1C1

SNX22

KLF1

CHI3L1

chrl4

chr2

chr22

chr4

chrl2

chrl?7

chr8

chrl9

chr4

chrl

chrl5

chr14

chrl9

chr22

chrl0

chrl7

chrl0

chr4

chr8

chr3

chr2

chrl2

chr10

chrl5

chrl9

chrl

-3.15

-3.15

-3.06

-2.87

-2.85

-2.83

-2.72

-2.67

-2.62

-2.62

-2.55

-2.53

-2.51

-2.50

-2.49

-2.47

-2.45

-2.42

-2.40

-2.38

-2.37

-2.37

-2.37

-2.37

-2.35

-2.33

1.88E-02

3.90E-02

3.58E-02

1.66E-03

7.07E-03

1.92E-03

3.49E-02

1.00E-02

1.57E-02

2.49E-02

5.00E-02

2.75E-02

9.99E-04

7.85E-03

6.34E-03

1.28E-02

3.87E-02

2.75E-02

1.34E-02

7.07E-03

1.57E-02

2.96E-02

8.07E-03

5.26E-04

7.28E-03

3.55E-02
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SI 5. Higher resolution image of Figure 1C. Selected modules of the coexpression network
designed based on differentially expressed genes between MDS patients and healthy
controls. Gene ontology (GO) terms significantly (p < 0.01) associated with these modules
are listed in the corresponding tables. Square — PCG, circle — IncRNA, red — upregulation
in MDS, blue — downregulation in MDS.

Hemoglobin-related modules ng_l

RP1 11 .E

GO term p value

Hemoglobin complex 1.78E-06

Oxygen transport 2.84E-06

Ganglioside biosynthetic 8.29E-06

process

Sialylation 1.81E-05 CTD—.lZ

frs ek

o SN wosvobuez

GO term p value

Hemoglobin complex 3.62E-04
Oxygen transport 4.82E-04
Iron ion binding 6.81E-03
Solute sodium symporter activity 7.52E-03
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Protein metabolism-related modules

GO term

Golgi apparatus
Protein
polyubiquitination
Proteasomal protein
catabolic process

P value
4.,00E-03

4.87E-03

5.28E-03

IF4)

@

EPB-ASl.Z

A2
EPBA51.1

Te

GEMINS

PL2}

.\@u

GO term

Translational initiation

mRNA metabolic process
Cytosolic ribosome

Protein localization to endoplasmic
reticulum

Nuclear transcribed mRNA
catabolic process nonsense
mediated decay

SMAD protein signal transduction
Poly-A-RNA binding

Cytoplasmic translation
Amino-acid activation
Ribonucleoprotein complex
biogenesis

EBPL

P value

9.54E-04
1.30E-03
4.75E-03

5.13E-03

5.13E-03

5.24E-03
5.28E-03
5.70E-03
6.67E-03

6.80E-03
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Sl 6. List of significantly deregulated transcripts in MDS/AML-MRC patients with isolated
del(5q) vs. those with normal karyotype (|logFC| > 1, FDR < 0.05). Of the 106 increased
and 54 reduced PCGs, only the top 30 transcripts are listed in each category. logFC — binary
logarithm of fold change, FDR - false discovery rate.

No. Transcript Chromosome logFC FDR
IncRNAs increased in the patients with isolated del(5q)

1 EMCN-IT1 chrd 3.01 4.60E-03
2 RP11-56F10.3 chr9 2.27 3.11E-03
3 AC026806.2 chr19 2.26 2.91E-02
4 RP11-185E8.1 chr3 2.07 3.58E-02
5 RP11-264B17.5 chrlé 2.06 3.23E-02
6 CTB-114C7.3 chr5 1.93 1.49€-02
7 CHRM3-AS2 chrl 1.88 6.58E-04
8 MAST4-IT1 chr5 1.78 2.66E-02
9 RP4-773A18.4 chrl 1.70 2.49E-02
10 RP3-510D11.2 chrl 1.59 1.94E-02
11 RP11-496N12.6 chrl 1.56 3.16E-02
12 RP11-797H7.5 chr7 1.38 4.88E-02
13 RP11-83N9.5 chr9 131 6.56E-03
14 PVT1 chr8 1.22 3.52E-02
15 CCDC26 chr8 1.10 4.31E-02
16 LINC00534 chr8 1.04 3.80E-02
IncRNAs reduced in the patients with isolated del(5q)

1 TTN-AS1 chr2 -3.11 5.06E-03
2 RP11-17112.4 chr2 -1.42 9.60E-03
3 RP11-861E21.1 chrl8 -1.30 3.47E-02
4 RP11-434C1.1 chr12 -1.22 3.78E-02
5 ZFAS1 chr20 -1.18 9.61E-03
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6 STARD4-AS1 chr5 -1.15 2.81E-02
7 RP1-69M21.2 chrl -1.14 5.06E-03
8 EPB41L4A-AS1 chr5 -1.10 8.31E-06
9 CTC-345K18.2 chr5 -1.09 6.58E-04
10 AC116366.5 chr5 -1.05 9.61E-03
11 GAS5 chrl -1.04 3.10E-02
12 CTC-304117.3 chrl7 -1.03 2.71E-02
13 PCBP1-AS1 chr2 -1.02 3.16E-02
14 RP11-493K19.3 chr3 -1.02 4.02E-02
15 RP11-169D4.2 chrll -1.02 2.85E-02
PCGs increased in the patients with isolated del(5q)

1 HBBP1 chrll 5.07 1.59E-02
2 CNN1 chr19 3.09 1.81E-02
3 SLC35D3 chré 2.95 1.67E-02
4 SPOCD1 chrl 2.79 1.27E-02
5 TMEM158 chr3 2.79 2.49E-02
6 ENST00000515150 chrd 2.70 3.57E-03
7 LAT chrl6 2.57 1.05E-02
8 PLIN2 chr9 2.48 5.53E-03
9 CLEC1B chrl2 2.40 4.16E-02
10 CD40LG chrX 2.39 3.40E-03
11 SPAG6 chrl0 2.39 1.78E-02
12 GNAZ chr22 2.37 1.24E-02
13 THBS1 chr15 2.36 4.41E-02
14 ST6GALNAC1 chrl7 2.26 2.22E-03
15 LGALS12 chrll 2.25 3.81E-03
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16 LY6G6F chré 2.23 2.41E-02
17 CTTN chrll 2.22 2.91E-02
18 LRRC32 chrll 2.22 4.15E-02
19 NRGN chrll 2.14 4.72E-02
20 TUBAL3 chrl0 2.13 6.38E-03
21 VSTM1 chrl9 2.11 3.57E-03
22 CATSPER1 chrll 2.09 4.71E-02
23 DENND2C chrl 2.08 3.42E-02
24 COL6AS chr3 2.04 1.12E-02
25 TMEM40 chr3 2.00 3.68E-02
26 ACE2 chrX 2.00 2.91E-02
27 SLC2A14 chrl2 1.99 1.15E-02
28 TUBA4A chr2 1.95 2.83E-02
29 RAB6B chr3 191 4.22E-03
30 PPAPDC1A chrl0 1.89 1.20€E-02
PCGs reduced in the patients with isolated del(5q)

1 ANK3 chr10 -2.78 3.69E-02
2 APBB2 chra -2.16 3.83E-02
3 THC2753069 chrl7 -2.08 4.54E-02
4 EGR1 chr5 -1.90 5.16E-03
5 USP9Y chrY -1.85 4.89E-02
6 ENST00000507296 chr8 -1.79 2.29E-02
7 NCRNAO00185 chrY -1.72 2.56E-02
8 ELFN1 chr7 -1.71 4.46E-02
9 ETV7 chré -1.68 1.33E-02
10 C170rf51 chrl7 -1.62 3.92E-02
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11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

PLEKHG5

SLC23A1

C5o0rf56

EN2

AK125205

MZB1

GIMAP2

IL15

A_33_P3261024

C100rf10

IL28A

Clorf54

CD74

GLTSCR2

ANXA6

KLHL3

LOC100240735

TLR3

GLI4

DNHD1

chrl

chr5

chr5

chr7

chr2

chr5

chr7

chrd

chré

chrl0

chrl9

chrl

chr5

chrl9

chr5

chr5

chrl2

chr4

chr8

chrll

-1.61

-1.42

-1.41

-1.41

-1.39

-1.37

-1.34

-1.30

-1.29

-1.29

-1.29

-1.28

-1.28

-1.24

-1.22

-1.22

-1.22

-1.19

-1.17

-1.17

2.40E-02

4.16E-02

1.51E-03

4.12E-02

2.91E-02

4.60E-02

1.42E-03

2.24E-02

2.94E-02

3.75E-02

5.31E-03

3.93E-02

1.41E-04

5.04E-03

1.56E-03

1.57E-02

4.85E-02

8.71E-03

3.32E-02

3.14E-02
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SI 7. Expression levels of PVT1, CHRM3-AS2, and EPB41LA-AS1 IncRNAs in MDS/AML-MRC

patients with relation to their karyotype. Relative expression was assessed by RT-qPCR.

CTR - healthy controls, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns — non-significant.
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SI 8. Gene set enrichment analysis (GSEA) of differentially expressed PCGs in MDS/AML-
MRC patients with isolated del(5q) vs. those with normal karyotype. Four selected
enrichment plots are shown. Gene sets with FDR < 0.25 were considered as significantly
enriched and only the top eight upregulated gene sets are listed. NES -normalized
enrichment score, FDR - false discovery rate. References: Wienerga et al. [10], Jaatinen et
al. [11], Ross et al. [12], Eppert et al. [13], Graham et al. [14], Lim et al. [15], and
Massarweh et al. [16].

GSEA: del(5q) patients vs. normal karyotype patients

Gene sets NES P FDR
Upregulated in dei(5q) patients (the top 8 gene sets)
STATS targets DN (Wierenga) 2.79 0.000 0.000
Hematopoietic stem cell DN (Jaatinen) 271 0.000 0.000
AML of FAB M7 type (Ross) 2.59 0.000 0.000
Progenitor (Eppert) 2.54 0.000 0.001
Platelet activation, signaling, and aggregation (Reactome) 2.52 0.000 0.000
CML quiescent vs. normal quiescent UP (Graham) 246  0.000 0.001
Mammary stem cell UP {Lim) 2.43 0.000 0.001
Heme metabolism (Hallmark) 2.42 0.000 0.001
Downregulated in del(5g) patients
3’-UTR mediated translational regulation (Reactome) -2.15  0.003 0.047
Translation (Reactome) -2.03 0.008 0.109
Translational initiation (GO) -1.99 0.003 0.115
Ribosomal subunit (GO) -1.95 0.003 0.122
Tamoxifen resistance DN (Massarweh) -1.87 0.000 0.200
Nuclear transcribed mRNA catabolic process nonsense mediated 183 0011 0229
decay (GO)
Hematopoietic stem cell UP (Jaatinen) -1.82  0.011 0.214
Ribosome (GO) -1.80 0.015 0.214
Enrichment plot: WIERENGA_STATSA_TARGETS_DN Enrichment plot:
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Sl 9. Selected modules of the coexpression network designed based on differentially
expressed genes between MDS/AML-MRC patients with isolated del(5q) and those with
normal karyotype. Gene ontology (GO) terms significantly (p < 0.01) associated with these
modules are listed in the corresponding tables. Square — PCG, circle — IncRNA, red —

upregulation in del(5q) patients, blue — downregulation in del(5q) patients.

=

Ribosome & translation-related module

GO term P value

RNA binding 1.23E-07
Translational initiation 1.49E-07
Ribonucleoprotein complex 2.32E-07

Protein localization to endoplasmatic reticulum  1.09E-06
Nuclear transcribed mRNA catabolic process

nonsense mediated decay 9.25E-06
Protein targeting to membrane 1.31E-05
Ribosome 4.51E-05
Large ribosomal subunit 5.47E-05
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JAK/STAT-related module

Del(5q)_MODULE_2

GO term P value

Intracellular receptor signaling pathway 2.44E-04
STAT cascade 2.50E-04
Positive regulation of immune system process 1.08E-03
Regulation of VEGFR signaling pathway 3.77E-03
Tyrosine phosphorylation of STAT protein 4.48E-03
Regulation of cell activation 7.98E-03
Cytokine activity 8.12E-03

JAK/STAT cascade involved in growth hormone signaling pathway 9.14E-03
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Blood cell-related modules

98.2

Del(5q)_MODULE_3

GO term P value

Phosphatase inhibitor activity 1.74E-06
Platelet morphogenesis 3.26E-06
Platelet activation 3.32E-05
Hemostasis 2.50E-04
Activation of MAPK activity 3.40E-04

Del(5¢)_MODULE_4

GO term P value

Erythrocyte homeostasis 4.22E-04
Homeostasis of number of cells  4.79E-04
Myeloid cell differentiation 9.27E-04
Myeloid cell homeostasis 1.12E-03
Platelet morphogenesis 1.49E-03
Platelet activation 2.21E-03
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Mitochondrion-related module

Del(5q)_MODULE_5

GO term P value
Oxidative phosphorylation 3.50E-05
Cellular respiration 2.75E-04
Mitochondrial envelope 3.45E-04
Organelle inner membrane 3.88E-04
Mitochondrion 8.99E-04
Mitochondrial electron transport

ubiguinol to cytochrome c 1.26E-03
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S110. Characterization of somatic mutations in the discovery cohort.

RS- n.a.
u
- SLD n.a.
- EB2 n.a.
EB2 TET2 4:106180852_T/TG 16 Y1294* NA
RUNX1 21:36259156_A/G 21 p.L112P COSM3737026
BCOR X:39932628_G/GT 34 Y657* NA
SRSF2 17:74732962_C/G 39 p.R94P NA
STAG2 X:123215311_C/T 38 p.R953* COSM1114446
NOTCH1 9:139391061_G/A 52 p.P2377L COSM4745912
RAD21 8:117868527_A/C 9 p.M272R NA
- RS TET2 4:106157698_T/C 50 p.Y867H COSM327337
- EB2 SF3B1 2:198267361 9 p.K666E NA
- SLD wt
MLD RUNX1 21:36252880_A/G 49 p.L161P COSM444417
SRSF2 17:74732959_G/A 50 p.P95L COSM146288
IKZF1 7:50468176_T/A 16 p.F471l NA
SETBP1 18:42531907_G/A 50 p.D86SN COSM1318400
AML- wt
. MRC
- SLD wt
EB1 RUNX1 21:36259172_G/A 33 p.R107C COSM24736
ASXL1 20:31022366_T/TA 38 p.K618fs*1 COSM96394
IKZF1 7:50450292_A/G 22 p.N1595 NA
ETV6 12:12037413_G/C 40 p.L348F NA
PTPN11 12:112926887_G/A 6 p.G503R NA
EB1 SF3B1 2:198266834_T/C 39 p.K700E COSM84677
TET2 4:106197269_C/T 46 p.H1868Y COSM166837
cux1 7:101813749_G/T 49 p.E260D NA
MLD IKZF1 7:50467903_A/T 5 p.K380* COSM5487650
. U2AF1 21:44524456 43 p.S34F NA
- DNMT3A 2:25462085_C/T 10 €.2323-1G>A NA
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PT15
PT16

PT17
PT18
PT19
PT20

PT21

PT22

PT23

PT24

PT25

PT26

PT27

PT28

PT29

PT30

AML-
MRC

MLD
EB2

EB1
5g-
MLD
EB2

AML-
MRC
SLD
EB1
EB2
EB2

MLD

RS

EB1

EB1

AML-
MRC

BCOR
IDH2
PHF6
wt
CUX1
ZRSR2

TP53
wt
wt

TET2

RUNX1
ASXL1
EZH2
PHF6
SF3B1

IDH2
wt

TP53

TP53

RUNX1
EZH2
IKZF1

CEBPA

SF3B1
TET2
TP53

BCORL1
CDKN2A
TET2
NOTCH1

CUX1

ZRSR2
JAK2

KDM6A

X:39921510_G/C
15:90631838_C/T
X:133559286_C/T

7:101921292_A/C
X:15841230_C/CAGCCGG

17:7578235_T/G

4:106180823_CCTT/C
21:36164716_C/CG
20:31024704_G/A
7:148523591_G/A
X:133527949_C/T
2:198266834_T/C
15:90631913_A/C

17:7578416_C/A
17:7577548_C/T
21:36164892_G/GT
7:148516697_G/C
7:50450292_A/G
19:33792731_G/GGCGGGT

2:198267371
4:106197269
17:7577120_C/A
X:129159288_C/T
9:21994269_C/T
4:106158343_G/T
9:139391061_G/A
7:101848393_G/T
X:15840905_A/G
9:5073770_G/T
X:44966740_C/CG

10
24

38
48

86

45
45
50
49
45
12
55

61
10
26
93
25
39

40
34

15
46
9%
54
14
95
19
43

p.51437*
p.R172K
p.R342*

p.K546Q
p.R448_RA449i
nsSR
p.Y205S

p.F1285del

$388fs*212
p.G1397S
p.R288*
p.R129*
p.K700E
p.V147G

p.V172F
p.G245S
p.T328fs*272
p.Y330*
p-N159S
p.P196_P197in
sHP
p.H662Q
p.H1868Y
p.R273L
p.R1338*
p.R21K
p.E1082*
p.P2377L
c.3107-1G>T
p-H330R
p.V617F
p.R1322*

NA
COSM33733
COSM144563

NA
COSM5762985

COSM215719

COSM2270963
NA
COSM133033
COSM1000721
COSM4606367
COSM84677
NA

COSM3378354
COSM121035
NA
NA
NA
COSM4170207

NA

NA
COSM10779

NA

NA

NA

COSM4745912

NA

NA
COSM12600

NA
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PT31 AML- BCORL1
MRC
PT32 5g- DNMT3A
EZH2
PT33 MLD DNMT3A
PT34 EB1 TP53
PT35 RS SF3B1
DNMT3A
PT36 5g- wt
PT37 EB2 RUNX1
PT38 EB1 TP53
ASXL1
STAG2
NOTCH1
U2AF1
GATA1l
PT39 SLD JAK2
PT40 MLD SF3B1
PT41 EB2 TP53
DNMT3A
U2AF1
CSF3R
PT42  AML- DNMT3A
MRC
PT43 5¢- DNMT3A
PT44 MLD ASXL1
SRSF2
STAG2
IDH2
PT45 5¢- TET2
DNMT3A
ASXL1
BCOR
PT46 RS SF3B1
TET2

X:129173198_A/G

2:25457243
7:148523591
2:25523096_T/G
17:7578271
2:198267491_C/A
2:25464481

21:36171751_G/A
17:7577099_C/A
20:31022397_A/G
X:123182927_C/T
9:139391061_G/A
21:44514777_T/G
X:48649530_G/A
9:5073770_G/T
2:198266834_T/C
17:7577099_C/A
2:25523040
21:44514777_T/G
1:36932356
2:25457242_C/T

2:25468122_C/G
20:31022877_G/GAATGTGAGT
CTGGCACCACTT
17:74732935_CGGCGGCTGTGG
TGTGAGTCCGGGG/C
X:123159689_G/A
15:90631934_C/T
4:106157703_T/G
2:25457252_T/C
20:31022413_A/G
X:39933593_A/AG
2:198267491_C/A
4:106162585_A/G

61

40
37
50
31
45
49

20
26

58
45
11

20
44

13

13

24
29

39

78
42
49
46
18
39
45
47

p.Y1520C

p.R882C
p.R288*

p.E30A
p.H193L
p.E622D
p.Q678*

p.Q272*
p.R280I
p.-R628G
p.R298C
p.P2377L
p.Q157P
p.G5D
p.V617F
p.K700E
p.R280I
p-G49R
p.Q157P
p.C732Y
p.R882H

p.K518N
p.5795*

p.P95_R102de
I
c.45-1G>A
p.R140Q
p.F868L
p.N879D
H633R
p.S336fs*45
p.E622D
R1167G

NA

NA

NA
COSM307361

NA
COSM110693

NA

NA
COSM11287
NA
COSM5565467
COSM4745912
COSM1318797
NA
COSM12600
COSM84677
COSM11287
NA
COSM1318797
NA
COSM52944

NA
NA

COSM146289

NA
COSM41590
COsmM87107

COSM1583135
NA
COSM4385748
COSM110693
NA

134



PT47
PT48

PT49

PT50

PT51

PT52

PT53
PT54

PT55

PT56

PT57

PT58

PT59

PT60
PT61

PT62

PT63

PT64

EB1
AML-
MRC
MLD

5g-

EB2

AML-
MRC
EB2
AML-
MRC
MLD

AML-
MRC

EB2

AML-
MRC
RS-SLD
MLD
EB1

AML-
MRC
MLD

TP53
ASXL1
SF3B1

JAK2

wt
wt
SF3B1
MLL
TP53

ABL1
CBL
NRAS
PHF6
CBL
SF3B1
RUNX1
BCOR
SF3B1
RUNX1
EZH2
STAG2

wt

wt
SF3B1
MLL

TET2

BCOR

SRSF2
SETBP1
RUNX1

17:7578268_A/C
20:31022413_A/G
2:198266711_T/C

9:5073770_G/T

2:198266611_C/T
11:118353156_G/GA
17:7579458_GT/G

9:133738340_A/G
11:119148936_G/A
1:115258747_C/T
X:133511650_G/A
11:119149251_G/A
2:198266834_T/C
21:36164838_C/CG
X:39932027_C/A
2:198267705_C/T
21:36206722_G/A
7:148514414_C/T
X:123179121_CAT/C

2:198267371
11:118307399_CCGGCTGTGGC
GGCCGCGGCGGCGGCGGCGGG
AAGCAGCGGGGCTGGGGTTCCA
GGGGGAG/C
4:106196821_A/AG
X:39916501_A/G
17:74732959_G/A
18:42531907_G/A
21:36231782_C/T

54
18

41

21
39
11

13
32
40
55
50
22
13
14

41
12

6
10
28
30
45

p.L194R
p.H633R
p.K741E
p.V617F

p.G742D
p.V1347fs*24
p.P77fs*46

p.K266R
p.E386K
p.G12D
p.M1I
p.R420Q
p.K700E
p.R346fs*137
p.E858*
p.E592K
p.Q264*
p.W437*
p.1191*

p.H662Q
p.V60_A79del

p.K1720fs*9
p.L1501P
p.P95R
p.D868N
p.R201Q

COSM117647
NA
COSM5419581
COSM12600

COSM145923
NA

NA
NA
COSM564

NA
COSM34077
COSMm84677
COSM36063

NA

COSM132936

NA

NA

NA

NA
NA

NA
NA
COSM146288
COSM1318400
COSM24805
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PT65
PT66
PT67

PT68

AML-
MRC

RS
5g-
MLD

AML-
MRC

ASXL1

EZH2
RAD21
SF3B1

TP53
SF3B1

TET2

DNMT3A

JAK2

n.a.

20:31022402_TCACCACTGCCAT
AGAGAGGCGGC/T
7:148506443_C/T
8:117866482_A/C
2:198267483_C/A
17:7577566_T/C
2:198266834_T/C
4:106164793_T/G
2:25458593_C/T
9:5073770_G/T

22

63
28
10
50
10

p.E635fs*15

p.R690H
c.1161+2T>G

p.R625L
p.N239D
p.K700E
p.C1221G
p-W860*
p.V617F

COSM51200

COSM52980
NA
COSM110695
COSM10777
COSM84677
NA
COSM4169946
COSM12600

Pt ID — patient identification number, dg — diagnosis, VAF % - percentage of variant allele

frequency, AA change — amino acid change, n.a. - not analyzed, wt - wild type
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SI11. Frequency and distribution of somatic mutations in the discovery cohort.

Diagnosis
IPSS-R VAF>5%
Karyotype
SF3B1 I Diagnosis
TET2 MDS5-SLD
P53 | MDS MLD
onval Il I MDS-RS
RUNX1 5g-
AsXL1 | | ] MDS EB-1
BCOR | MDS EB-2
EZH2? | i AML-MRC
SRSF2 i
STAG2 [ IPSS-R
1KZF1| | very low
1axz| | low
IDHZ intermediate
PHF6 gl high
NOTCH1 | | | | very high
cuxa| | | n.a.
U2AF1 I |
ZRSR2 | i
BCORL1 Karyotype
RAD21 | normal
Bl I_ isolated del({Sq)
meL complex
SETBP1 other
CEBPA
ETVE *RNA splicing
KDMG6A *Epigenetic modification
CDKN2A | | *Transcription
CSF3IR *Signal transduction
NRAS *Cohesion
PTPN11 *Tumor supressors
ABL1 "Oncogenes
GATA1 |
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SI12. List of significantly deregulated transcripts in MDS patients with vs. without a SF3B1
mutation (|logFC| > 0.3, FDR < 0.05). logFC — binary logarithm of fold change, FDR - false
discovery rate.

No. Transcript Chromosome logFC FDR

IncRNAs increased in the patients with mutated SF3B1

1 RP11-380024.1 chr3 0.64 3.12E-02
2 AL592435.1 chrl 0.62 2.13E-02
3 MIR1302-11 chrl9 0.56 1.61E-02
4 LINCO0959 chr10 0.56 1.61E-02
5 AC093415.2 chr3 0.49 2.70E-03
6 LINCO0705 chr10 0.45 4.43E-02
7 RP11-692D12.1 chrd 0.44 4.43E-02
8 RP11-809N15.2 chré 0.42 1.61E-02
9 RP11-211C9.1 chr8 0.35 1.61E-02
10 RP11-446J8.1 chrd 0.35 1.60E-02
11 USP3-AS1 chrl5 0.34 1.09E-02
12 AC005786.7 chr19 0.31 4.97E-02

IncRNAs reduced in the patients with mutated SF3B1

1 RP11-710F7.3 chrd -0.66 4.71E-02
2 PCBP1-AS1 chr2 -0.60 4.90E-02
3 RP11-872J21.3 chri4 -0.58 1.97E-02
4 RP11-348M17.2 chr5 -0.36 4.97E-02
5 AL163953.3 chri4 -0.34 3.12E-02
6 LINCO0877 chr3 -0.34 4.71E-02

PCGs increased in the patients with mutated SF3B1

1 AB209400 chr20 2.68 1.66E-03
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2 TCAM1P chrl7 1.86 4.49E-02
3 ZNF541 chrl9 134 5.60E-03
4 CLIC2 chrX 0.79 1.95E-02
5 KLF11 chr2 0.54 2.53E-02
6 C150rf40 chri5s 0.39 2.39E-02
PCGs reduced in the patients with mutated SF3B1

1 ZNF883 chr9 -1.49 1.97E-02
2 LMO1 chrll -1.49 1.04E-02
3 GIPC2 chrl -1.32 6.35E-03
4 ARHGAP10 chra -0.96 4.86E-02
5 RTF1 chr15 -0.93 1.82E-03
6 ABCB7 chrX -0.88 7.08E-03
7 RECQL chri2 -0.81 7.83E-03
8 ACD chrie -0.81 3.03E-04
9 GAGE1 chrX -0.57 6.35E-03
10 EAPP chrl4 -0.48 3.96E-02
11 NNT chr5 -0.46 2.39E-02
12 ATP11C chrx -0.44 6.35E-03
13 LOC100129518 chré -0.39 2.67E-02
14 POLG chr15 -0.32 4.86E-02
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SI 13. List of significantly deregulated transcripts in MDS patients with vs. without a TET2
mutation (|logFC| > 0.3, FDR < 0.05). logFC — binary logarithm of fold change, FDR - false

discovery rate.

No. Transcript Chromosome logFC FDR
IncRNAs increased in the patients with mutated TET2

1 CTD-2231H16.1 chr5 0.56 4.29E-02
2 VIPR1-AS1 chr3 0.53 2.78E-02
3 LINC00518 chré 0.46 2.78E-02
4 LINCO1193 chrl5 0.44 4.20E-02
5 RP5-1109J22.2 chrl 0.40 1.92E-02
6 RP11-325N19.3 chrl5 0.39 8.53E-03
7 TBX5-AS1 chri2 0.38 1.92E-02
8 RP11-104J23.2 chrl?7 0.30 3.45E-02
IncRNAs reduced in the patients with mutated TET2

1 WT1-AS chril -2.70 1.92E-02
2 EMCN-IT1 chrd -2.11 1.93E-02
3 RP11-185E8.1 chr3 -1.56 3.64E-02
4 RP4-773A18.4 chrl -0.80 4.29E-02
5 AC004947.2 chr7 -0.54 1.93E-02
PCGs increased in the patients with mutated TET2

1 MAP2K3 chrl?7 0.49 4.20E-02
2 RGS8 chrl 0.43 4.20E-02
3 BPIFA3 chr20 0.36 2.66E-02
IncRNAs reduced in the patients with mutated TET2

1 PLAC1 chrx -1.86 2.66E-02
2 FAMS83E chr19 -0.53 4.20E-02
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SI 14. List of significantly deregulated transcripts in MDS patients with vs. without a TP53
mutation (|logFC| > 0.3, FDR < 0.05). logFC — binary logarithm of fold change, FDR - false
discovery rate, ns — none significant transcript.

No. Transcript Chromosome logFC FDR

IncRNAs increased in the patients with mutated TP53

ns ns ns ns ns

IncRNAs reduced in the patients with mutated TP53

1 STARD4-AS1 chr5 -1.11  3.83E-02
2 RP5-1050D4.5 chrl7 -0.89  2.03E-02
3 RP11-5316.3 chrl8 -0.87 2.03E-02
4 RP11-347119.8 chrl2 -0.81 3.72E-02
5 RP11-325L7.2 chr5 -0.67 4.47E-02
6 RP11-57H14.2 chrl0 -0.63  3.88E-02
7 RP11-351M16.3 chrl0 -0.60 2.03E-02
8 RP11-169E6.1 chrlé -0.40 4.11E-02

PCGs increased in the patients with mutated TP53

ns ns ns ns ns

PCGs reduced in the patients with mutated TP53

ns ns ns ns ns
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Sl 15. List of significantly deregulated transcripts in MDS patients with vs. without a
DNMT3A mutation (|logFC| > 0.3, FDR < 0.05). logFC — binary logarithm of fold change,

FDR - false discovery rate, ns — none significant transcript.

No. Transcript Chromosome logFC FDR
IncRNAs increased in the patients with mutated DNMT3A

1 RP11-68L1.1 chr3 0.31 4.06E-03
IncRNAs reduced in the patients with mutated DNMT3A

ns ns ns ns ns
PCGs increased in the patients with mutated DNMT3A

ns ns ns ns ns
PCGs reduced in the patients with mutated DNMT3A

ns ns ns ns ns
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Sl 16. List of significantly deregulated transcripts in MDS patients with vs. without a
RUNX1 mutation (|logFC| > 0.3, FDR < 0.05). Of the 67 increased and 39 reduced IncRNAs,
and the 206 increased and 440 reduced PCGs, only the top 30 transcripts in each category
are listed. logFC — binary logarithm of fold change, FDR - false discovery rate.

No. Transcript Chromosome logFC FDR
IncRNAs increased in the patients with mutated RUNX1

1 AC068057.2 chr2 2.65 8.76E-03
2 C9orf106 chr9 2.00 2.08E-02
3 RP11-66B24.1 chrl5 1.62 4.11E-03
4 LINC01071 chrl3 1.50 3.96E-03
5 FAM225B chr9 1.36 3.07E-02
6 AJ271736.10 chrX 1.22 3.38E-03
7 WASIR2 chrl6 1.13 2.22E-03
8 RBPMS-AS1 chr8 1.08 4.49E-02
9 RP11-433M22.1 chrl7 1.06 2.96E-02
10 RP11-490M8.1 chr2 1.01 1.62E-02
11 HCG9 chré 1.00 1.89E-02
12 RP11-750H9.5 chrll 0.92 4.95E-05
13 RP11-374M1.4 chr9 0.88 3.78E-02
14 RP11-834C11.3 chrl2 0.88 3.63E-02
15 RP11-783L4.1 chrld 0.87 2.48E-02
16 LINC01257 chri2 0.81 3.28E-02
17 RP11-626G11.3 chrlé 0.85 4.11E-03
18 RP11-52714.5 chrl7 0.83 5.14E-03
19 RP1-309F20.3 chr20 0.81 3.59E-02
20 RP11-65J3.15 chr9 0.81 4.22E-02
21 PAN3-AS1 chrl3 0.81 4.27E-02
22 RP5-1024C24.1 chril 0.81 1.49E-02
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23 PRKAG2-AS1 chr7 0.81 6.36E-03
24 RP11-650P15.1 chrl8 0.81 3.90E-02
25 RP1-122P22.2 chr20 0.81 4.27E-02
26 HCP5 chré 0.78 2.77E-02
27 LA16c-321D4.2 chrl6 0.75 4.42E-02
28 FAM95B1 chr9 0.75 2.48E-02
29 GAS5 chrl 0.73 3.64E-03
30 LINC00954 chr2 0.70 1.90E-02
IncRNAs reduced in the patients with mutated RUNX1

1 AL928768.3 chrl4 -5.94 4.49E-02
2 LINC01013 chré -4.20 1.13E-03
3 TCL6 chrl4 -4.11 4.11E-03
4 RP11-542K23.7 chr9 -4.02 4.11E-03
5 LEF1-AS1 chra -2.85 3.39E-03
6 RP11-222A5.1 chrl -2.12 1.84E-02
7 RP11-161M6.2 chrl6 -2.09 2.37E-02
8 RP11-161M6.2 chrlé -2.09 4.19E-02
9 RP11-175K6.1 chr5 -1.94 1.20€E-02
10 RP11-558A11.3 chrl6 -1.86 3.60E-02
11 RP11-56F10.3 chr9 -1.78 1.13E-03
12 LINC01218 chra -1.54 4.84E-02
13 PCED1B-AS1 chr12 -1.37 4.49E-02
14 RP11-78B10.2 chrl -1.25 4.11E-03
15 RP11-39409.1 chr9 -1.25 4.87E-02
16 RP11-435B5.4 chrl -1.20 4.10E-02
17 RP11-38408.1 chr2 -0.90 2.46E-02
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18 AC005307.1 chr19 -0.89 4.68E-02
19 GS1-42113.2 chrX -0.83 2.66E-02
20 LINC00226 chri4 -0.82 3.10E-02
21 RP11-83N9.5 chr9 -0.81 2.14E-02
22 RP11-417)8.3 chrl -0.72 4.05E-02
23 RP11-664D1.1 chrl2 -0.70 4.15E-02
24 RP11-584P21.2 chra -0.69 4.99E-02
25 AC019221.4 chr2 -0.69 4.05E-02
26 AC007381.3 chr2 -0.63 2.60E-02
27 CTC-444N24.13 chr19 -0.60 2.91E-02
28 RP11-527H14.4 chrl8 -0.59 1.89E-02
29 CTD-2384A14.1 chrl4 -0.52 4.25E-02
30 RP11-619L12.3 chr5 -0.47 3.10E-02
PCGs increased in the patients with mutated RUNX1

1 SCARA3 chr8 2.44 4.41E-02
2 BAI1 chr8 1.87 4.64E-02
3 ANKRD65 chrl 1.85 4.97E-02
4 HTRA3 chra 1.77 2.19€-02
5 PRDM16 chrl 1.56 1.07€E-02
6 MAMDC2 chr9 1.53 3.49E-02
7 KBTBD12 chr3 1.37 2.77E-02
8 GIMAP2 chr7 1.22 2.77E-02
9 CPNE7 chrl6 1.20 2.49E-02
10 LRP6 chri12 1.17 3.39E-05
11 GPR162 chri2 1.17 4.97E-02
12 LOC100134167 chr9 1.17 1.26E-02
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13 AK130024 chrl7 1.15 4.44E-06
14 LINC00256B chr9 1.10 4.56E-02
15 CCDC149 chra 1.10 2.05E-02
16 PRKCA chrl7 1.09 8.18E-03
17 LRRD1 chr7 1.08 4.18E-02
18 LOC100288911 chr2 1.06 7.15E-03
19 ANPEP chr15 1.05 4.57E-02
20 HLA-DQB1 chré 1.05 3.69E-02
21 UBA7 chr3 1.04 2.79E-02
22 HLA-DOA chré 1.04 8.18E-03
23 ISG20 chrl5 1.04 1.36E-02
24 GNPDA1 chr5 1.03 2.31E-02
25 HSBP1L1 chrl8 0.99 4.12E-04
26 GALNT14 chr2 0.98 1.88E-02
27 KCNE3 chrll 0.97 4.54E-03
28 BTG2 chrl 0.95 1.69E-02
29 FBXO15 chrl8 0.93 4.16E-02
30 Clorf151-NBL1 chrl 0.93 7.97E-03
PCGs reduced in the patients with mutated RUNX1

1 POU4F1 chrl3 -5.83 2.27E-02
2 LEF1 chra -5.03 2.75E-06
3 NPY chr7 -4.73 4.44E-06
4 IGKV116 chr2 -4.69 2.77€-02
5 IGKV1D-43 chr2 -4.39 1.67E-02
6 IGLV1-47 chr22 -4.05 2.19€-02
7 IGKV1D-8 chr2 -3.98 2.23E-02
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10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

RAG1

AB363267

IGLV1-44

IGHV1-18

NP113779

LOC100653210

AF194718

IGLV3-10

IRX1

DUSP26

IGLV3-9

COL6AS

IGLV3-25

IGKV1D-16

IGHV1-2

IGKV1D-27

IGKV1D-8

MECOM

TGM2

SH2D48B

IFI27

ECEL1P2

NPTX2

chril

chr2

chr22

chri4

chr2

chr2

chr22

chr22

chr5

chr8

chr22

chr3

chr22

chr2

chri4

chr22

chr2

chr3

chr20

chr10

chr14

chr2

chr7

-3.96

-3.91

-3.87

-3.78

-3.68

-3.42

-3.41

-3.38

-3.28

-3.25

-3.19

-3.18

-3.17

-3.17

-3.03

-2.98

-2.88

-2.79

-2.79

-2.78

-2.77

-2.75

-2.74

1.02E-04

2.55E-03

3.42E-02

2.75E-06

2.97E-02

7.87E-03

2.04E-02

1.18E-02

2.96E-02

1.55E-02

2.42E-02

9.11E-08

1.75E-02

6.81E-03

8.80E-06

1.36E-02

5.22E-03

2.90E-02

4.03E-02

1.76E-02

4.51E-02

7.51E-04

1.71E-02
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Sl 17. Gene set enrichment analysis (GSEA) of differentially expressed PCGs in MDS/AML-
MRC patients with a RUNX1 mutation vs. those with the RUNX1 wildtype. Four selected
enrichment plots are shown. Gene sets with FDR < 0.25 were considered as significantly
enriched and only the top eight upregulated gene sets are listed. NES -normalized
enrichment score, FDR - false discovery rate. References: Wang et al. [17], Haddad et al.
[18], Yoshimura et al. [19], Martens et al. [20], and Heller et al. [21].

GSEA: MDS patients with vs. without RUNX1 mutation

Gene sets NES p FDR

Upregulated in RUNX1-mutated MDS
Golgi apparatus part (GO) 2.23 0.000 0.050
Vesicle membrane (GO) 1.77 0.009 0.224
Response to GSK3 inhibitor SB216763 UP (Wang) 1.71 0.025 0.199
MYC targets V1 (Hallmark) 1.63 0.019 0.244
Protein phosphorylation (GO) 1.54 0.039 0.301
MRNA metaholic process (GO) 1.48 0.044 0.357

Downregulated in RUNX1-mutated MDS
B lymphocyte progenitor (Haddad) -1.91 0.001 0.127
MAPKS targets UP (Yoshimura) -1.80 0.001 0.272
Tretinoin response UP (Martens) -1.79 0.001 0.179
Immune response (GO) -1.68 0.005 0.479
Sequence specific DNA binding (GO) -1.62 0.012 0.592
Immune system development (GO) -1.62 0.018 0.555
HDAC targets silenced by methylation UP (Heller) -1.58 0.030 0.609
Positive regulation of cell death (GO) -1.57 0.023 0.612

Enrichment plot: GO_MRNA_METABOLIC_PROCESS Enrichment plot:
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Sl 18. Selected modules of the coexpression network designed based on differentially

expressed genes between the RUNX1-mutated (mut) and RUNX1-wild type (wt) patients.

Gene ontology (GO) terms significantly (p < 0.01) associated with these modules are listed

in the corresponding tables. Square — PCG, circle —

mut, blue — downregulation in RUNX1-mut.
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Cell cycle
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Sl 19. List of significantly deregulated transcripts in long vs. short surviving patients
([logFC| > 1, FDR < 0.05). The cut-off for patient stratification was 18 months from the
time of sample collection. logFC — binary logarithm of fold change, FDR - false discovery
rate.

No. Transcript Chromosome logFC FDR

IncRNAs increased in short survivals

1 H19 chrll 3.13 1.10E-02
2 WT1-AS chril 1.21 1.03E-02
3 AC093818.1 chr2 1.20 1.25E-02
4 ITGA6-AS1 chr2 1.06 3.12E-02
5 LBX2-AS1 chr2 1.02 3.12E-02

IncRNAs reduced in short survivals

1 RP11-121P10.1 chré -2.48 3.12E-02
2 LINCO1122 chr2 -1.48 1.25E-02
3 RP11-120K24.3 chri3 -1.35 2.66E-02

PCGs increased in short survivals

1 PDE3B chril 1.61 2.96E-03
2 GPR124 chr8 1.56 4.41E-02
3 HIC1 chrl7 1.45 2.84E-03
4 CD97 chr19 1.05 2.84E-03
5 FLI90757 chrl7 1.01 4.86E-02

PCGs reduced in short survivals

1 ECEL1P2 chr2 -2.45 3.88E-04
2 TCEAL2 chrx -2.27 3.87E-04
3 ST6GAL2 chr2 -1.90 1.15E-02
4 SLC1A6 chr19 -1.86 3.95E-03
5 PDZK1IP1 chrl -1.70 5.69E-03
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10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

SH3GL3

TM7SF4

HLF

CDH7

CLCN4

NFIB

CXorf57

STAC

C3orfl4

TMSB15A

PRKG2

AVP

THC2656240

JAM2

MCF2L-AS1

PCDH9

RP11-551L14.1

C70rf58

VWCE

chrl5

chr8

chrl?7

chrl8

chrX

chr9

chrX

chr3

chr3

chrX

chr4

chr20

chrX

chr21

chrl3

chr13

chrl2

chr7

chrll

-1.69

-1.66

-1.64

-1.58

-1.57

-1.52

-1.45

-1.44

-1.43

-1.39

-1.37

-1.34

-1.34

-1.32

-1.30

-1.21

-1.12

-1.02

-1.00

2.81E-02

4.41E-02

8.92E-03

5.56E-03

4.41E-02

6.39E-03

8.24E-03

5.69E-03

8.24E-03

1.33E-02

2.18E-02

4.41E-02

1.13E-03

5.69E-03

8.24E-03

4.86E-02

2.11E-02

3.12E-02

4.86E-02

Sl 20. List of significantly deregulated transcripts in MDS patients with lower- vs. higher-
risk IPSS-R (|logFC| > 1, FDR < 0.05). Of the 67 significantly reduced PCGs, only the top 30
transcripts are listed. logFC — binary logarithm of fold change, FDR - false discovery rate.

No. Transcript Chromosome logFC FDR
IncRNAs — increased in higher-risk MDS

1 RP11-897M7.1 chr12 1.27 4.31E-02
2 LINC00539 chr13 1.02 4.03E-02

IncRNAs - reduced in higher-risk MDS
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1 TCL6 chrl4 -4.48 4.73E-02
2 LINC01013 chré -4.33 2.46E-02
3 LEF1-AS1 chra -1.96 4.29E-02
4 CTC-436K13.2 chr5 -1.95 4.83E-02
5 RP11-474N8.5 chri2 -1.88 4.29E-02
6 AC096579.7 chr2 -1.84 2.46E-02
7 RP11-879F14.2 chrl8 -1.55 4.73E-02
8 RP11-6918.3 chré -1.35 4.04E-02
9 LINC01037 chrl -1.34 4.91E-02
10 RP11-401P9.5 chrl6 -1.26 4.73E-02
11 AC147651.3 chr7 -1.20 4.73E-02
12 RP11-71G12.1 chrl -1.08 1.47E-02
13 RP3-523C21.2 chré -1.05 4.73E-02
14 CTA-250D10.23 chr22 -1.02 4.29E-02
PCGs - increased in higher-risk MDS

1 BAI1 chr8 2.56 7.51E-03
2 ARC chr8 2.55 1.32E-02
3 PTH2R chr2 1.83 2.17E-02
4 MAMDC2 chr9 1.77 4.23E-02
5 LOXL4 chrl0 1.67 4.40E-02
6 NPM2 chr8 1.36 1.58E-02
7 A_33_P3387493 chrX 1.30 4.41E-02
8 A_24_P247454 chr2 1.29 3.60E-02
9 KRT18 chra 1.23 2.77E-02
10 A_24_P230057 chrX 1.22 2.30E-02
11 A_24_P401601 chr19 1.20 9.47E-03
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12 KRT18P55 chrl7 1.17 2.29E-02
13 A_24_P358131 chr2 1.15 4.34E-03
14 A_33_P3240295 chr2 1.06 8.75E-03
15 FLI90757 chrl7 1.02 1.17E-02
PCGs - reduced in higher-risk MDS

1 RAG1 chrll -3.91 1.49E-02
2 NPY chr7 -3.71 1.34E-02
3 DUSP26 chr8 -3.39 1.20€E-02
4 IGHV1-18 chrl4 -3.25 2.77E-02
5 IGHV1-2 chrl4 -3.01 3.86E-02
6 STAB2 chr12 -2.88 2.31E-02
7 CDh24 chry -2.79 2.18E-02
8 LEF1 chrd -2.73 7.96E-03
9 SPANXB2 chrX -2.59 2.42E-02
10 AKAP12 chré -2.50 1.34E-02
11 CHST15 chrl0 -2.46 8.75E-03
12 RBP7 chrl -2.42 2.62E-02
13 SLAMF7 chrl -2.40 2.36E-02
14 MME chr3 -2.37 4.44E-02
15 LOC283454 chrl2 -2.35 2.95E-02
16 TFF3 chr21 -2.20 2.30E-02
17 CTTN chrll -2.19 3.97E-03
18 1GJ chrd -2.15 2.30E-02
19 BTNL9 chrs -2.12 1.41E-02
20 NR2F2 chr15 -2.10 4.87E-02
21 THC2750292 chré -2.06 2.25E-02
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22

23

24

25

26

27

28

29

30

CLEC4G

NGFR

SLC35D3

CTGF

NUAK1

PDE5SA

IL28RA

CLCN4

CLDN5

chr19

chrl?7

chré

chré

chrl2

chr4

chrl

chrX

chr22

-2.05

-1.95

-1.87

-1.86

-1.86

-1.86

-1.76

-1.73

-1.73

4.41E-02

7.51E-03

2.30E-02

1.17E-02

2.77E-02

8.75E-03

4.42E-03

2.12E-02

2.77E-02

155



Sl 21. Gene set enrichment analysis (GSEA) of differentially expressed PCGs in MDS
patients with higher- vs. lower-risk IPSS-R. Four selected enrichment plots are shown.
Gene sets with p < 0.05 were considered as significantly enriched (the top 10
downregulated gene sets are shown out of the list of the 117 significant sets). NES -
normalized enrichment score, FDR — false discovery rate. References: Wang et al. [17],
Mikkelsen et al. [22], Meissner et al. [23], Diaz et al. [24], Haddad et al. [18], Piccaluga et
al. [25], Jaatinen et al. [11], and Kumar et al. [26].

GSEA: lower- vs. higher-risk MDS

Gene sets NES p FDR

Upregulated in lower-risk MDS

Response to GSK3 inhibitor SB216763 UP (Wang) 171 0.019 0.889
MEF HCP with H3K27ME3 (Mikkelsen) 1.67 0.020 0.553
NPC HCP with H3 unmethylated (Meissner) 151 0.030 0.994
Chronic myelogenous leukemia UP (Diaz) 139 0.045 0.667

Downregulated in higher-risk MDS (the top 10 gene sets)

B-lymphocyte progenitor (Haddad) -2.21  0.000 0.000
Angioimmunoblastic lymphoma UP (Piccaluga) -2.04  0.000 0.008
Hematopoietic stem cell DOWN (Jaatinen) -1.95 0.000 0.022
Blood vessel morphogenesis (GO) -1.86  0.000 0.085
Positive regulation of cell differentiation {(GO) -1.84 0.000 0.073
Targets of MLL/AF9 fusion (Kumar) -1.84 0.001 0.065
Locomotion (GO) -1.83 0.001 0.066
Regulation of response to external stimulus (GO) -1.81  0.000 0.076
Immune response (GO) -1.80 0.000 0.077
Perulation of cell adhesion (GO) -1.76  0.001 0.083

Enrichment plot: Enrichment plot:
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Sl 22. Selected modules of the coexpression network designed based on differentially
expressed genes between MDS patients with lower- and higher-risk IPSS-R. Gene ontology
(GO) terms significantly (p < 0.01) associated with these modules are listed in the
corresponding tables. Square — PCG, circle — IncRNA, red — upregulation in higher-risk

samples, blue — downregulation in higher-risk samples.

Cell differentiation, adhesion, and RP19_5
migration-related module

RP1114.2

, : @ GO Term P value
Ifuardi ] Locomotion 5.88E-05
RP1 @ 8.5 @ Regulation of cell adhesion 6.49E-05
'@ Blood vessel morphogenesis 1.72E-04
Regulation of cell proliferation 2.49E-04
c; Regulation of cell growth 2.93E-04
Positive regulation of cell differentiation 3.99E-04
Golgi cisterna 4.12E-04
Circulatory system development 1.59E-03
Regulation of immune system process 1.59E-03
Angiogenesis 2.41E-03
Substrate-dependent cell migration 4.01E-03
Resonse to growth factor 4.44E-03
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Epigenetics-related modules

RUNX1_MODULE _2

GO term P value
Chromatin organization 1.07E-03
Immune response 1.77E-03
Chromatin silencing 2.77E-03
Negatlv'e regu.latlon -of gene 4.51E-03
expression epigenetic

Regulation of cell adhesion  7.97E-03
Histone H4 acythylation 9.36E-03

RUNX1_MODULE _3

GO term

P value

Chromatin organization

6.63E-04

Histone H3K4
trimethylation
Chromatin silencing

7.70E-04
1.07E-03

Negative regulation of
gene expression epigenetic

1.76E-03

Immune system process

3.85E-03

Leukocyte homeostasis

6.16E-03
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Sl 23. Correlations of IncRNA expressions with clinical variables of MDS patients.

Spearman correlation coefficients (r) are shown for each pair of variables. (D) discovery

cohort, (T) testing cohort. Significant correlations are marked (*p < 0.05, **p <0.01, ***p

<0.001).
Correlation H19 level WT1-AS LEF1-AS1 TCL6 level TP53
coefficient (r) level level mutation
Age (D)-0.142 | (D)-0.118 (D) -0.134 (D) 0.060 (D) 0.094
(T)0.073 | (T)0.022 (T) -0.288* (T) 0.1415 (T) n.a.
Marrow blast count (D) 0.149 (D) 0.269* (D) -0.383** | (D)-0.214 (D) 0.238
(T)0.118 | (T) 0.284** | (T)-0.297** | (T)-0.249** | (T) n.a.
Hemoglobin level (D) 0.201 (D) 0.006 (D) 0.105 (D)0.130 (D) -0.316*
(T)-0.174 | (T)-0.016 (T) 0.149 (T) -0.006 (T) n.a.
Neutrophil count (D)-0.022 | (D)-0.176 (D) -0.087 (D) -0.084 (D) -0.234
(T) -0.023 (T) -0.309** | (T) 0.188 (T) -0.098 (T) n.a.
Platelet count (D)-0.163 | (D)-0.180 (D) 0.123 (D) 0.081 (D) -0.214
(T)-0.254* | (T)-0.191 (T)0.176 (T) -0.209 (T) n.a.
H19 level - (D) 0.141 (D) -0.102 (D) -0.054 (D) -0.028
(T) 0.187 (T) -0.045 (T)-0.112 (T) n.a.
WT1-AS level - - (D) -0.034 (D) -0.058 (D) 0.445**
(T)-0.322** | (T)-0.078 (T) n.a.
LEF1-AS1 level - - - (D) 0.851*** | (D) -0.130
(T) 0.580*** | (T) n.a.
TCL6 level - - - - (D) -0.127
(T) n.a.

n.a.- not assessed
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Sl 24. Correlation of expression levels of WT1 to WT1-AS, LEF1 to LEF1-AS1, and TCL6 to

TCL1A/TCL1B.
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1. SUPPLEMENTARY METHODS
DNA and RNA Isolation

For the preparation of the DNA library, DNA from bone marrow (BM) or, if BM
was not available, peripheral blood (PB) was isolated using MagCore according to
the manufacturers” recommendations (RBC Bioscience, New Taipei City, Taiwan).
DNA concentration was measured by Qubit 3.0 fluorometer (Life Technologies,
Carlsbad, CA, USA) and quality was checked using Nanodrop (Thermo Fisher
Scientific, Waltham, MA, USA).

For the preparation of the RNA library, BM CD34+ cells were isolated by magnetic
separation on an autoMACS Separator (Miltenyi Biotec, Bergisch Gladbach,
Germany). Then, RNA was isolated by acid guanidinium thiocyanate-phenol-
chloroform extraction. RNA concentration was measured with a Qubit 3.0
fluorometer (Life Technologies) and RNA quality was checked on an Agilent 2100
bioanalyzer (Agilent Technologies, Palo Alto, CA, USA). Only high-quality RNA
with an RNA integrity number (RIN) of at least 7.5 was used.

Targeted gene sequencing

50 ng of DNA were used to prepare the indexed library according to the
manufacturer’s protocol (TruSight Myeloid Sequencing Panel Kit, Illumina, San
Diego, CA, USA). Quantification of the prepared library was done with the KAPA
Library Quantification Kit for Illumina sequencing platforms (KAPA Biosystems,
Wilmington, MA, USA) also according to the manufacturer’s protocol. Sequencing
was performed on the MiSeq or NextSeq (Illumina). Analysis was performed with
NextGene software (SoftGenetics, State College, PA, USA) and in-house pipeline
(described separately in the following paragraph). In paired samples, variants with
VAF up to 0.01 were detected if the variant was present in VAF more than 0.05 in
one of the paired samples. SIFT and Polyphen were used for the prediction of
variant effects. Visualization of NGS results was done with R 4.0.2 software

(circlize 0.4.13, ComplexHeatmap 2.8.0).
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In-house pipeline for analyzing NGS data from TruSight Myeloid

Sequencing Panel:

The quality of raw data obtained from high-throughput sequencing was checked by
FastQC version 0.11.8. Reads were then trimmed and filtered using Trimmomatic
software version 0.39 and resulting files were quality checked by FastQC again.
Cleaned up data from DNA sequencing were then mapped to GRCh19 version of
human genome using BWA aligner version 0.7.17. The mapped data was further
indexed and sorted using the Samtools suite of tools version 1.10 and the
percentage of mapped reads was assessed. Samples with a percentage of mapped
reads exceeding 95 % were processed using variant calling software Freebayes
version 1.3.1. To discover additional insertions and deletions that span across long
sections of the genome, Pindel software version 0.2.5b9 was used. The discovered
variants in the form of VCF files were then filtered and annotated using the online
interface of Ensembl Variant Effect Predictor (VEP). The annotated variants were

formatted in the R software version 4.0.2 and then exported to TSV format.
Sanger sequencing

DNA from CD3+ cells was used in PCR reaction with Q5 Hot Start High-Fidelity
DNA Polymerase (New England Biolabs, Ipswich, MA, USA) and the PCR
reaction was run according to the manufacturer’s protocol. The sequences of the
primers are in Table SI 1. 10 pl of the PCR product was run on the 1% TAE gel at
80 V to control the PCR reaction. The PCR product was then cleaned with ExaSap-
IT PCR Product Cleanup Reagent (Thermo Fisher Scientific) according to the
manufacturer’s protocol. The next step was to prepare the sequencing PCR reaction
with the BigDye Terminator v3.1 Cycle Sequencing Kit (Thermo Fisher Scientific)
using 0.5 pl of the PCR product. The PCR products were then cleaned with the
DyeEx 2.0 Spin Kit (QIAGEN, Venlo, The Netherlands) according to the
manufacturer’s protocol. Finally, the sample was analyzed on the ABI 3500
(Thermo Fisher Scientific) and the sequences were visualized on Sequencing

Analysis Software 5.4 (Thermo Fisher Scientific).
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RNA sequencing

100 ng of total RNA from CD34+ cells of 8 LR-MDS patients with RUNX]
mutation, 29 LR-MDS without RUNX/ mutation, 20 HR-MDS and 13 healthy
controls (SI 3) was ribodepleted with the RiboCop rRNA Depletion Kit (Lexogen,
Wien, Austria). Sequencing was performed on HiSeq 2500 or NovaSeq (Illumina).
Raw reads in the form of FASTQ files were trimmed and filtered using
Trimmomatic 0.39 and their quality was assessed using FastQC 0.11.8.
The quantification of gene expression was performed by StringTie2 software 1.3.6.
The filtered reads were mapped to human genome GRCh38.p13 using STAR
2.7.2b. The quantification of gene expression was performed by StringTie2
software 1.3.6. For analysis and visualization of expression data, several packages
in R software 4.0.2 (e.g. edgeR 3.30.3, pheatmap 1.0.12, ggplot 3.3.2, pcaMethods
1.84.0, ComplexHeatmap 2.8.0) and GraphPad Prism 7 software (GraphPad
Software, La Jolla, CA, USA) were used. Databases such as Gene Ontology, KEGG
Pathways, Reactome Pathways, and ConsensusPathDB were used for functional

enrichment analysis.
Machine Learning

Genes with negligible mutation occurrence (mutated in fewer than 6 subjects) were
grouped into one category (REST). The variables were therefore: ASXLI, CUXI,
DNMT3A, EZH2, JAK2, PHF6, RUNX1, SETBPI1, SF3B1, SRSF2, STAG2, TET2,
TP53, U2AF1, ZRSR2, REST. In multivariate Cox regression with stepwise
backward feature selection, the Aikake information criterion was used by default
(rms R library, fastbw function). It is a heuristic criterion, and its application led to
very small models of only one gene. Then, after the cross-validated experiment,
the model was adjusted for the optimal number of features according to the D value
and the general recommendations for the number of events per variable (EPV) in
survival regression models (Peduzzi et al., 1995). In our data, we had 214 subjects,
81 death events; then the EPV should be around 10, which means we should have
not worked with more than 8 features. Lasso regression (elastic networks) that
worked with L1 norm and minimized the number of features was used. The optimal
parameterization/number of features was set in cross-validation again, the model

quality was measured with the Harrell’s C-index (the concordance index, its value
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is between 0 and 1). We got two recommendations, lambda.min (optimum) and

lambda.1se (a regularized model near optimum result).
p-galactosidase detection

Cocktail of antibodies: CD3 — Spark Blue 550 (Biolegend, San Diego, CA, USA),
CD14 — Alexa Fluor 594 (Biolegend), CD16 — BV650 (Biolegend), CD19 —BV570
(Biolegend), CD34 — eFluor 450 (eBioscience, San Diego, CA, USA), CD45 —
Alexa Fluor 647 (Biolegend), CD56 — APC fire 750 (Biolegend), LIVE/DEAD
fixable blue dead cell stain kit (Invitrogen, Carlsbad, CA, USA).

2. SUPPLEMENTARY RESULTS

Machine Learning — Cross-Validation

In the cross-validation experiments of SBFS, the maximum D-value was
approximately 0.17 for datal and 0.18 for data2 in OS, respectively. The maximum
D-value for both PFS datasets was approximately 0.25. In Table SI 11B, the most
significant genes are listed in the number that should be ideal for individual datasets
according to the cross-validated value of the D measure. Extending the model with
comutational data, the maximal D value increased in OS but decreased in PFS (SI

14C).

In cross-validating EN, the highest C-index was around 0.6 in all analyses (SI 12A)
and the number of optimal features is specified within the table of results (SI 12B).

Comutational data did not improve the C-index.
Machine Learning — Individual hazard ratio model

We used our data to create a hazard ratio model to count the hazard ratio for

individual patients.
The predictions corresponded to logarithmic relative hazards:

Tog(hi(t)/hie(£))= log(ho(t)PIX!K* B2kt ..+ Boxok)/ [0 (g (£)BIXIH B2k Bpxok ) (¢
k- X 1K) T P2aX 2k- X 210)F... + Bp(X pk- X pk’), Where xi denoted the i covariate
(mutations in our case), Pi the i coefficient (the effect size of the given covariate)
and the individual k’ represented the baseline (average) individual. Counting

the hazard ratios between individuals, ho(t) became unimportant since it remained
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the same for all the individuals. Therefore, we were able to count the relative hazard

ratio for individual patients from individual analysis.

3. SUPPLEMENTARY FIGURES AND TABLES

PATIENT CHARACTERISTICS AT THE TIME OF
DIAGNOSIS, all patients

Number of patients 214
Age median (years) (range) 65 (20.8-86.5)
Sex
Male 107 (50.0%)
Female 107 (50.0%)
Laboratory data Median (range)
BM blasts (%) 2 (0-9.8)
Haemoglobin (g/dL) 10 (5.1-14.9)
ANC (10°/L) 2(0.1-9.2)
Platelets (10°%/L) 195 (1.0-1115.0)
Cytogenetics (IPSS)
Good 188 (87.9%)
Intermediate 22 (10.3%)
Poor 4 (1.9%)
IPSS
Low 102 (47.7%)
Intermediate | 112 (52.3%)
Intermediate Il 0
High 0
IPSS -R
Very low 45 (21.0%)
Low 119 (55.6%)
Intermediate 46 (21.5%)
High 4 (1.9%)
Very high 0
WHO classification (2016)
MDS-MLD 113 (52,8%)
MDS-SLD 20 (9,3%)
MDS-del(5q) 37 (17,3%)
MDS-RS 22 (10,3%)
MDS-EB-1 18 (8,4%)
MDS-EB-2 3(1,4%)
MDS-U 1(0,5%)

SI 1: Patient characteristics at the time of diagnosis. BM, bone marrow; ANC, absolute neutrophil

count.
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Primers for exons 5-7 Sequence 5’-3’ Ta
RUNX1_5F TCCCTGATGTCTGCATTTGTCC
RUNX1_5R AGACAGACCGAGTTTCTAGGG 00
RUNX1_6F AGCAAAGCCAAAATTCCGGG

RUNX1_6R GGTCCCTGAGTATACCAGCCT o7
RUNX1_7F AGCGAGTCTATGTTGGGGTG

RUNX1_7R AAGGGGAAACCCCAGTTGGT 08

SI 2. Primers for PCR and sequencing variants in exons 5-7 of the RUNXI gene. Ta, annealing

temperature; F, forward primer; R, reverse primer.
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VAF (%)
of
Diagnosis Cyto- RUNX1
Sample (WHO) genetics Mutations (VAF %) in total BM DNA mutations
(IPSS) in cDNA
from
CD34+
RUNX1-LR-MDS
V108 MDS-EB-1 good RUNX1 (35 and 3 and 4), SF3B1 (36), TET2 (9), IKZF1 (10) 61; 12; 4
V1834 | MDS-EB-1 good RUNX1 (35), SF3B1(37), EZH2 (7) 46
V1824 | MDS-EB-2 good RUNX1 (11), SF3B1 (42), ASXL1 (25), ZRSR2 (25), STAG2 (35) 31
V1708 | MDS-EB-2 good RUNX1 (44), SRSF2 (40), STAG2 (89), ASXL1 (43) 42
V221 MDS-EB-1 good RUNX1 (10), SETBP1 (4), STAG2 (12) 23
V2387 | MDS-EB-1 good RUNX1 (14 and 12), ASXL1 (30), STAG2 (14) 17; 19
V1090 | MDS-EB-1 good RUNX1 (41 and 2), ASXL1 (21), GNAS (50), PHF6 (43), EZH2 (39 and 40) 15; 43
V1422 | MDS-MLD good RUNX1 (49), SRSF2 (51), SETBP1 (48) 53
LR-MDS
V148 MDS-MLD good U2AF1 (43), TET2 (3)
V1664 | MDS-MLD Int DNMT3A (11 and 12)
V2089 | MDS-SLD good U2AF1 (40)
V2133 | MDS-MLD good none
V67 MDS-RS good SF3B1 (46), DNMT3A (46)
V1742 | MDS-RS good SF3B1(48), DNMT3A (50), TET2 (42 and 37), CUX1 (5)
V2092 | MDS-RS good SF3B1(29), TET2 (21)
V2110 | MDS-MLD good none
V2322 | MDS-MLD good none
V2248 | MDS-MLD good none
V2284 | MDS-MLD good U2AF1 (14)
V2311 | MDS-MLD good TP53 (34)
V1699 | MDS-RS good SF3B1(40), TET2 (34)
V1860 | MDS-RS good none
V2241 | MDS-SLD good none
V888 MDS-RS good SF3B1 (28 and 4)
V125 MDS-SLD good SF3B1(27)
V220 MDS-MLD int SF3B1(43)
V2286 | MDS-MLD good SF3B1(38)
V480 MDS-del(5q) | good DNMTS3A (24)
V883 MDS-RS good SF3B1(42), TET2 (19)
V1528 | MDS-del(5q) | good none
V1591 | MDS-MLD good SF3B1(10)
V1957 | MDS-EB-1 good ASXL1 (29); PHF6 (82)
V2147 | MDS-MLD good TET2 (30 and 40)
V630 MDS-MLD good none
V1921 | MDS-SLD good none
V2224 | MDS-SLD good none
V2179 | MDS-SLD good TET2 (32)
HR-MDS
V1592 | MDS-EB-2 int TET2 (45), RUNX1 (45), ASXL1 (50), EZH2 (49), PHF6 (45)
V1279 | MDS-EB-2 good TET2 (19 and 22), EZH2 (6), ZRSR2 (68)
V716 MDS-EB-2 poor SF3B1(18)
V1874 | AML-MRC N/A none
V777 AML-MRC good none
V637 MDS-EB-2 int none
V1441 | MDS-EB-2 good RUNX1 (30), TET2 (6), BCOR (28)
V1554 | AML -MRC good IDH2 (5), IKZF1 (22), STAG2 (6)




V712 MDS-EB-2 good SRSF2 (32), ASXL1 (26), RUNX1 (30), BCOR (6), STAG2 (6 and 45)
V456 MDS-EB-2 good none

V1321 | MDS-EB-1 good SF3B1(9)

V1456 | MDS-MLD int SF3B1(39), TET2 (46), CUX1 (49)

V1884 | MDS-EB-2 N/A TP53 (36 and 40)

V1297 | MDS-EB-2 poor TP53 (10)

V1394 | MDS-EB-2 N/A NRAS (46), ETV6 (49), ASXL1 (38), STAG2 (90), PHF6 (96), GATAZ2 (43)
V1788 | MDS-EB-2 poor TP53 (59), SF3B1 (40)

V839 MDS-EB-2 Int DNMT3A (44), RUNX1 (26)

V406 MDS-EB-2 int SF3B1(27)

V655 MDS-EB-2 poor TP53 (69)

V1857 | MDS-EB-2 good DNMT3A (41)

SI 3. The list of patients in the expression study with their cytogenetic and mutation profiles.

Thirteen healthy controls are not included. VAF, variant allele frequency; BM, bone marrow; R-LR,

RUNXI-mutated LR-MDS patients; wtR-LR — LR-MDS without RUNXI mutations; HR, higher-

risk MDS patients; int, intermediate; N/A, not available.
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SI 4. Circos plots illustrating pairwise co-occurrences of selected genetic alterations. A) Circos plot
of all pairwise co-occurrences identified in the Czech cohort of 214 LR-MDS patients. B) Circos
plot of the co-occurrence of molecular aberrations with the mutated RUNX! gene. The length
of the arch depicts the number of mutations of the first gene comutated with other mutations.

The width of the ribbon corresponds to the frequency of co-occurence with the second gene.
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Univariate analysis p value
Variable oS PFS
ASXL1 ns ns
Cux ns ns
DNMT3A 0.0286 ns
EZH?2 ns ns
JAK2 ns ns
PHF6 ns ns
RUNX1 0.0005 <0.0001
SETBP1 0.0201 0.0225
SF3B1 ns ns
SRSF2 ns ns
STAG2 0.0004 0.0019
TET2 ns ns
TP53 0.0154 0.0487
U2AF1 ns 0.0426
ZRSR2 ns ns
Male sex 0.0003 <0.0001
Presence of at least 1 mutation 0.0071 0.0016
IPSS ns ns
IPSS-R ns ns
BM blasts ns ns
Platelet counts 0.0015 0.0004
Haemoglobin ns ns
ANC ns ns
Total number of mutations 0.0001 <0.0001
5g- ns 0.0348
Age <0.0001 <0.0001
B
Variable - 0S p value p value HR 95% Cl of HR
univariate || multivariate
Male sex 0.0003 0.3125 1.0832 | 0.9276 to 1.2648
Age <0.0001 <0.0001 1.0605 | 1.0344 to 1.0872
Presence of at | 5474 03926 | 0.7405 | 0.3719to 1.4745
least 1 mutation
Total number 0.0001 0.0039 | 0.9971 | 0.9951 to 0.9991
of mutations
Platelet counts 0.0015 0.4022 1.2776 | 0.7202 to 2.2662
TP53 0.0154 0.0405 2.0931 | 1.0326 to 4.2424
STAG2 0.0004 0.6950 1.1980 | 0.4855 to 2.9564
SETBP1 0.0201 0.0649 2.8633 | 0.9371 to 8.7490
RUNX1 0.0005 0.2680 1.6272 | 0.6876 to 3.8509
DNMT3A 0.0286 0.0492 1.8803 | 1.0022 to 3.5280
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Variable - PFs | Pvalue p value HR 95% Cl of HR
univariate || multivariate

Male sex <0.0001 0.1164 1.5805 | 0.8926 to 2.7989
Age <0.0001 0.0002 1.0404 | 1.0187 to 1.0626
Presence of at 0.0016 0.9679 | 0.9877 | 0.5419 to 1.8002
least 1 mutation
Total number

. <0.0001 0.3303 1.0724 | 0.9316 to 1.2343
of mutations
Platelet counts 0.0004 0.0091 0.9977 | 0.9959 to 0.9994
5g- 0.0348 0.8576 0.9470 | 0.5224 to 1.7167
U2AF1 0.0426 0.7427 1.1430 | 0.5146 to 2.5384
TP53 0.0487 0.0849 1.9462 | 0.9124 to 4.1516
STAG2 0.0019 0.8639 0.9200 | 0.3544 to 2.3877
SETBP1 0.0225 0.3584 1.5904 | 0.5908 to 4.2812
RUNX1 <0.0001 0.0272 2.4782 | 1.1077 to 5.5443

SI 5. Univariate and multivariate analyses. A) The tested variables and p values for OS and PFS

in univariate analysis. Only genes mutated in more than 5 patients were tested. All significant

variables of the univariate analysis (p < 0.05) were analysed in the multivariate analysis: B) OS,

C) PFS. The significant variables in the multivariate analysis (p < 0.05) are highlighted. ns, not

significant; BM, bone marrow; ANC, absolute neutrophil count; HR, hazard ratio; CI, confidence

intervals of the hazard ratios.
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SI 6. Overall survival (OS) of patients according to their IPSS (A) and IPSS-R (B) scores. Neither

was significant. Median OS in parentheses.
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SI 7. Integration of the mutational status of significant genes in univariate analysis into the IPSS-R
system. A) The graph shows overall survival curves of patients with or without at least one mutated
gene of DNMT3A4, RUNXI, SETBPI, STAG2, and TP53 (DRSST), p < 0.0001. B) Implementation
of the mutational status of RUNXI, SETBPI1, STAG2, TP53, and U2AFI (RSSTU), p <0.0001.
Patients with RSSTU mutations are those with mutations in at least one of these genes. Intermediate,

int; without, w/o. Median OS/PFS is in parentheses.
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SI 8. OS curves for group A (progressed within 5 years) and group B (did not progress within
5 years), p <0.0001, median OS in parentheses.
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PATIENT CHARACTERISTICS AT THE TIME OF DIAGNOSIS

(who progressed within 5 years or were followed at least 5 years)

Number of patients

Age median* (years) (range)

Male

Female

Laboratory data

BM blasts (%)

Hemoglobin (g/dL)

ANC (10°/L)

Platelets* (10%L)

Good
Intermediate

Poor

Low
Intermediate |
Intermediate Il

High

Very low
Low
Intermediate
High
Very high

MDS-MLD
MDS-SLD
MDS-del(5q)
MDS-RS
MDS-EB-1
MDS-EB-2
MDS-U

Group A
41

68 (28.2-86.5)

Sex*

23 (56.1%)
18 (43.9%)

4 (0.4-8.6)

10 (7.5-14.6)

2(0.1-7.5)

150 (15-406)
Cytogenetics (IPSS)

37 (90.2%)
4(9.8%)
0

IPSS
15 (36.6%)
26 (63.4%)
0
0
IPSS-R
4 (9.8%)
26 (63.4%)
10 (24.4%)
1(2.4%)
0

WHO classification (2016)

21 (51,2%)
2 (4,9%)
10 (24.4%)
2 (4,9%)
6 (14.6%)
0
0

Group B
53

58 (20.8-84.4)

16 (30.2%)
37 (69.8%)

Median (range)

2(0-7.6)

10 (6.1-13.6)

2(0.4-6.9)

284 (25-1115)

48 (90.6%)
5 (9.4%)
0

26 (49.1%)
27 (50.9%)
0
0

13 (24.5%)
27 (51.0%)
13 (24.5%)
0
0

19 (35.9%)
3 (5.7%)
20 (37.7%)
7 (13.2%)
4 (7.5%)
0
0

P value
0.003
0.0197

ns
ns
ns

0.0003

ns

ns

ns

ns

ns
ns

ns

ns
ns
ns
ns

ns

SI 9: Patient characteristics at the time of diagnosis for two groups of patients. Group A — patients

who progressed within 5 years, group B — patients who did not progress within 5 years, but were

followed at least 5 years. * indicates values significantly different between groups A and B; ns, not

significant; BM, bone marrow; ANC, absolute neutrophil count.
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SI 10: Change in the number of mutations by functional categories in paired samples from the time

of diagnosis and progression. The blue columns represent the total number of mutations
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SI 11: Progression-related changes in VAF of individual samples. Examples of 5 patients sequenced

at the time of diagnosis (blue) and in progression (orange). In general, there was an increase in VAF
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from diagnosis to progression, but not exclusively. Very often, a novel

in progression. VAF — variant allele frequency (%).

A
Coef S.E. Wald Z Pr(>|Z]|)
OS_datat:
STAG2 1.356 0.4172 3.25 0.001156
0OS_data2:
RUNX1 0.9267 0.2518 3.679 0.0002338
PFS_datat:
RUNX1 1.4463 0.3301 4.38 <0.0001
PFS_data2:
RUNX1 1.0109 0.2153 4.70 <0.0001
B
Coef S.E. Wald Z Pr(>|Z|)
OS_data1:

ASXL1 0.5253 0.4823 1.09 0.2761
EZH2 -0.8193 0.7089 -1.16 0.2478
TET2 0.4467 0.3035 1.47 0.1412
PHF6 1.0501 0.5309 1.98 0.0479

DNMT3A 0.5144 0.2793 1.84 0.0655
SETBP1 1.6311 0.5795 2.81 0.0049
TP53 0.7984 0.3387 2.36 0.0184
STAG2 0.9723 0.4770 2.04 0.0415

OS_data2:

DNMT3A 0.3508 0.2178 1.61 0.1073

STAG2 0.6609 0.3664 1.80 0.0713

SETBP1 0.9309 0.4075 2.28 0.0223
TP53 0.3935 0.1802 2.18 0.0290
RUNX1 0.7447 0.2700 2.76 0.0058
PFS_data1
SETBP1 0.5529 0.4885 1.13 0.2578
TP53 0.5459 0.3296 1.66 0.0977
REST 0.8023 0.2610 3.07 0.0021
RUNX1 1.2577 0.3458 3.64 0.0003
PFS_data2
SETBP1 0.6228 0.3835 1.62 0.1043
TP53 0.4227 0.1783 2.37 0.0177
REST 0.4304 0.1948 2.21 0.0271
RUNX1 0.9529 0.2198 4.33 <0.0001

mutation was found

SI 12. The results of the stepwise backward feature selection for both datasets of OS and PFS.

A) Genes responsible for the shortest OS. B) Optimal number of features responsible for shorter OS

and PFS according to cross-validated D-value. Datal, dataset 1, binary mutational data; data2,

dataset 2, the number of distinct mutations per gene; coef, coefficient; S.E., standard error; Wald z;

Wald test z value; Pr(>|Z|), p value.
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OS data1 (6 genes with lambda.min, 5 genes with lambda.1se), C-index 0.60:

DNMT3A 0.1546945 0.06630357
RUNX1 0.4350070 0.36033025
SETBP1 0.1535746 .

STAG2 0.4307018 0.31244418
TP53 0.2333416 0.13650722
REST 0.1072556 0.01689362
OS data2 (4 genes with lambda.min, 3 genes with lambda.1se), C-index 0.61:
RUNX1 0.4317455 0.31356625
SETBP1 0.2150566 .

STAG2 0.2770572 0.08685572
TP53 0.2113882 0.11858889

PFS_data1 (9 genes with

lambda.min, 2 genes with lambda.1se), C-index 0.6:

DNMT3A 0.1523

PHF6 0.0054 .
RUNX1 1.0552 0.6183
SETBP1 0.3186

STAG2 0.1374

TET2 0.0498

TP53 0.3448

U2AF1 0.1662 .
REST 0.5519 0.2047

PFS data2 (7 genes with

lambda.min, 3 genes with lambda.1se), C-index 0.59:

PHF6 0.0506 .
RUNX1 0.7080 0.5405
SETBP1 0.2790

STAG2 0.1228 .

TP53 0.2429 0.0619
U2AF1 0.0968 .
REST 0.2152 0.0670

SI 13. OS and PFS analysis by elastic network approach. A) Cross-validating plots indicating

the number of features with the highest C-index for both datasets of OS and PFS. B) Results

indicating the most significant genes responsible for shorter OS and PFS. Datal, dataset 1, binary

mutational data; data2, dataset 2, the number of distinct mutations per gene; lambda.min,
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the minimum mean cross-validated error; lambda.lse, the value when the cross-validated error

is within one standard error of the minimum, that gives the most regularized model.

A 0s B PFS

SBFS_data2 EN_data1 SBFS_data2 EN_data1

EN_data2 SBFS_data1 EN_data2

SBFS_data1 ‘

SI 14: Venn diagrams depicting the results of different machine learning methods. Multivariate Cox
regression with stepwise backward feature selection and elastic network methods were used on two
datasets for A) OS as well as B) PFS. SBFS, multivariate Cox regression with stepwise backward
feature selection; EN, elastic networks; datal, dataset 1, binary mutational data; data2, dataset 2,

the number of distinct mutations per gene.
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Interaction Freq Fisher exact test p-value
DNMT3A-SF3B1 12 4.415016e-02
SF3B1-TET2 12 1.981671e-02
ASXL1-RUNX1 8 3.054957e-05
ASXL1-STAG2 8 §.356220e-07
RUNX1-STAG2 7 3.355163e-06
ASXL1-EZH2 5 5.515366e-04
TET2-ZRSR2 5 5.218261e-03
EZHZ2-RUNX1 4 2.735664e-03
SRSF2-TET2 4 9.402812e-02
B
Coef S.E. Wald z Pr{=|Z])
0OS datal
ASXL1 0.7190 0.5148 1.40 0.1625
EZH2 -1.9953 1.1960 -1.67 0.0953
ZRSR2 -1.2313 0.8451 -1.46 0.1451
SRSF2 -0.0308 0.7844 -0.04 0.9687
TET2 0.4733 0.3218 1.47 0.1413
DNMT3A 0.5335 0.2852 1.87 0.0614
SETBP1 1.8196 0.8119 2.24 0.0250
TP53 0.7193 0.2488 2.06 0.0392
RUNX1 0.0983 0.5046 0.19 0.8456
STAG2 0.9471 0.5325 178 0.0753
SRSF2*TET2 1.7668 1.4002 1.26 0.2070
EZHZ"RUNX1 3.0166 1.5151 1.99 0.0465
PFES datat
ASXL1 0.7760 0.5915 1.21 0.1896
RUNX1 1.3547 0.5172 2.62 0.0088
TP53 0.4570 0.3584 1.28 0.2022
EZH2 -0.3875 0.9551 -0.41 0.6850
SETBP1 0.8947 0.6326 141 0.1573
U2AF1 0.8584 0.4356 1.97 0.0487
DNMT3A 0.5790 0.2715 2.13 0.0330
TET?2 0.1363 0.3145 0.43 0.6646
ZRSR2 -1.0543 1.0765 -0.98 0.3274
STAG2 1.4398 0.6655 2.16 0.0305
ASXLT*RUNX1 -1.4470 1.0875 -1.33 0.1833
ASXL1"EZH2 -1.2378 2145 -1.02 0.3081
RUNXT1TEZH2 2.6793 .2394 2.16 0.0306
TET2*ZRSR2 2.3201 2924 1.80 0.0726
RUNX1*STAG2 -1.3304 1.0084 -1.32 0.1870
C
05: PFS:

Siolour
= data

Dioey

= datal with ind

features features

SI 15. Effect of interaction between comutated genes on survival. A) Significant (p<0.05)
interactions between comutated genes for dataset 1 according to their effect on survival. Interactions
with the REST category were omitted, as well as interactions with frequency less than 4. Freq,
frequency of interactions in the cohort. B) Multivariate Cox regression with stepwise backward
feature selection (SBFS) model counting with the effect of single mutations and comutations.

C) Cross-validation plots of the D value depicting the difference between the SBFS model with and
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without interactions for OS and PFS. Datal, dataset 1, binary mutational data; coef, coefficient; S.E.,

standard error; Wald z; Wald test z value; Pr(>|Z|), p value.

S172L1sX41
p.Ala115_Pheli6del p.RrigaL P

p-L112PfsX11 plgia1p p.L161P, p.R201X
p.LoBSfsX24 P.R201G p.R205SfsX4
p.R204Q
p.D93V 0208R1SX3 p.H255PfsX6
i S
p.AGORfsX78 s P-Q264X

/ 380

1 85 206 318 398 480

¢.508+2T>C ©.805+2T>A
¢.502_508+1dup8

SI 16. Schematic illustration of the RUNXI gene and the mutations identified in the cohort of 214
Czech LR-MDS patients. Most mutations lied in the Runt homology domain (RUNT); no mutation
was located in two others domains - the transcriptional activation domain (TAD) and the Runx1
inhibition domain (RUNXI). The illustration was created using DOG 2.0 (Yao and Xue, 2009).
The mutations are distinguished by colors: red — missense, blue — frameshift and stop gain, green —

in-frame deletion, teal — splice region.
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PATIENT CHARACTERISTICS AT THE TIME OF DIAGNOSIS

RUNX1 RUNX1
p value
mutated wildtype
Number of
17 197 -
patients
Age median
66 (28-78) 64 (21-87) ns
(years) (range)
Sex
Male 10 (58.8%) 97 (49.2%)
ns
Female 7 (41.2%) 100 (50.8%)
Laboratory data Median (range)
BM blasts* (%) 5.0 (0.8-9.8) 1.8 (0.0-8.8) <0,001
Hemoglobin
9.5 (7.8-12.8) 9.8 (5.1-14.9) ns
(g/dL)
ANC (10°%L) 1.6 (0.6-7.5) 1.8 (0.1-9.2) ns
Platelets* (10°/L) 103 (15-313) 202.5 (1-1115) 0.010

Cytogenetics (IPSS)

Good 16 (94.1%) 172 (87.3%)
Intermediate 1(5.9%) 21 (10.7%) ns
Poor 0 4 (2.0%)
IPSS*
Low 3(17.6%) 99 (50.3%) 0.011
Intermediate | 14 (82.4%) 98 (49.7%)
Intermediate I 0 0 -
High 0 0 -
IPSS-R*
Very low 1(5.9%) 44 (22.3%)
Low 6 (35.3%) 113 (57.4%)
Intermediate 9 (52.9%) 37 (18.8%) 0.004
High 1(5.9%) 3 (1.5%)
Very high 0 0 -
WHO classification (2016)
MDS-MLD 5(29.4%) 108 (54.8%)
MDS-SLD 0 20 (10.2%)
MDS-del(5q) 2 (11.8%) 35 (17.8%)
MDS-RS 1(5.9%) 21 (10.7%) <0,001
MDS-EB-1 7 (41.2%) 11 (5.6%)
MDS-EB-2 2 (11.8%) 1(0.5%)
MDS-U 0 1(0.5%)
Mutation data
No. of mutations 4 (2-7) 1(0-9) <0,001

SI 17. Baseline characteristics of lower-risk MDS patients with and without RUNXI mutations.

BM, bone marrow; ANC, absolute neutrophil count; ns, not significant; * indicates significantly

different values between groups.
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Top 10 upregulated terms in GOTERM_BP_ALL

pvalue adjusted by BH method

regulation of transcription, DNA-templated GO:0006355
regulation of RNA biesynthetic process G0O:2001141

regulation of nucleic acid-templated transcription GO:1903508

transcription, DNA-templated G0:0006351 -log10(p.adjust)
g regulation of RNA metabolic process GO:0051252 1
2 1.0
8 nucleic acid-templated transcription GO:0097659 0.9
0.8

RNA biosynthetic process G0:0032774
intracellular signal transduction GO:0035556

regulation of cellular macromolecule biosynthetic process G0:2000112

regulation of cellular biosynthetic process G0:0031326

)
=)
S

200
Gene count

o
=3
=)
I
1]
=3

Top 10 downregulated terms in GOTERM_BP_ALL

p.value adjusted by BH method

mitotic cell cycle process G0:1903047
mitotic cell cycle GO:0000278

chromosome organization GO:0051276

.
.
I
——— Jog 10ty
g cell cycle GO:0007049 _ :ﬁ
8 cell cycle process GO:0022402 _ :ﬁ
cellular component organization or biogenesis GO:0071840 _ i:
DNA conformation change G0:0071103 -
cellular component organization GO:0016043 _
cell cycle phase transition GO:0044770 -
1] 250 500 750
Gene count
C
Top 10 upregulated terms in KEGG_PATHWAY
pualue adjusted by BH method
TNF signaling pathway hsa04668 _
ErbB signaling pathway hsa04012 _
Chagas disease (American trypanosomiasis) hsa05142 _
c RIG-I-like receptor signaling pathway hsa04622 _ -log10(p.adjust)
§ Phosphatidylinositol signaling system hsa04070 _ 1.75
é FoxO signaling pathway hsa04068 _ :ZZ
Choline metabolism in cancer hsa05231 _ 1.00
Insulin resistance hsa04931 _
GnRH signaling pathway hsa04912 _
Pathways in cancer hsa05200 _

=3
=3

20
Gene count

w
S
s
=

SI 18. Top 10 up- and downregulated terms in GO biological processes (A-B) and top 10 upregulated

KEGG pathways (C) for mutR-LR compared to wtR-LR by p value. Colors indicate the level

of significance.
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% of positive cells 4 wiR-LR | 3 mutR-LR
Minimum 0 0
25% Percentile 0.25 0
Median 6.5 0
75% Percentile 12.75 2
Maximum 13 2
Mean 6.5 0.6667
Std. Deviation 6.952 1.155
Std. Error of Mean 3.476 0.6667
Lower 95% CI of mean -4.563 -2.202
Upper 95% CI of mean 17.56 3.535

SI 19: Quantification of the percentage of cells expressing YH2AX in 4 wtR-LR and 3 mutR-LR

patients. The YH2AX staining was evaluated in three to five fields of view of individual samples

representing different zones of stained sections.
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SI 20: Dysregulated expression profiles in selected GSEA pathways. Heatmaps show the expression
profiles between CD34+ cells from healthy controls (CTRL), wtR-LR, mutR-LR and HR patients
in A) Cellular senescence (KEGG), B) SASP (Reactome), C) DNA damage. The red color indicates
upregulation, blue color downregulation of gene expression, and the color intensity indicates

the level of differential expression.
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SI 21. Representative example of a gating strategy. The numbers

the percentage of gated cells.
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