FACULTY
OF MATHEMATICS
AND PHYSICS

Charles University

BACHELOR THESIS

Dan Raffl

Natural Language Generation system
writing football articles

Institute of Formal and Applied Linguistics

Supervisor of the bachelor thesis: RNDr. Jitfi Hana, Ph.D.
Study programme: Computer Science

Study branch: 101

Prague 2023

Firstly, I would like to thank my supervisor RNDr. Jifi Hana, Ph.D.for his
valuable advice as well as his support. Secondly, I am grateful to every teacher I
had the chance to meet at Faculty of Mathematics and Physics for their attitude
and inspirational work. Last but not least, I would like to thank my family for
supporting me throughout my studies.

Title: Natural Language Generation system writing football articles

Author: Dan Raffl

Institute: Institute of Formal and Applied Linguistics

Supervisor: RNDr. Jifi Hana, Ph.D., Institute of Formal and Applied Linguistics

Abstract: Journalism could become a tedious job as its main concern is to create
as many articles as possible, usually prioritising quantity over quality. Some arti-
cles are quite routine and they need to exist just because most of the population
prefers text over raw data. The idea is to ease this job and generate articles,
particularly about football in Czech language, automatically from non-linguistic
data.

This thesis is concerned with analysing implementation of such a linguistic soft-
ware and moreover offers a brief overview of a Natural Language Generation
(NLG) process. The major focus of this overview is on benefits and drawbacks of
different approaches to NLG as well as describing NLG tasks and its challenges
you need to overcome in order to produce a similar human language (not only
Czech) producing program.

Keywords: NLG Czech sport football

Contents

(Introductionl

il

Natural Language Generation|

(1.2 Usageof NLG|,

[2.2 Discourse planning|
[2.3 Sentence Aggregation|.
2.4 Lexicalization|o
[2.5 Referring expression generation|
[2.6 Linguistic realisation|
[2.6.1 Example: numeral constructions|.
[2.6.2 Languages differences|.
[2.6.3 Templates|o
[2.6.4 Other approaches|

B

NLG approaches|

[3.1.2 Global approach|
[3.1.3 Planning approach|

[3.2.1 Data-driven approach|.

Process of developing an NLG systeml|

[4.1 Requirements analysis],
[4.2 Corpora building|
4.3 Evaluationl.

[5

Implementation|

(b1 Initializationl.
[5.2 Requirements and initial goal|
.3 Imputdatal
[b.4 Approachl
[5.5 Match example]o
[H.6 Structure overviewl
[>.7 Modules implementation|00
[>.7.1 Auxiliary modules|.o
[b. 7.2 Data initializer] oo
[5.7.3 Document planner|
[>.7.4 Sentence planner|
[5.7.5 Linguistic realiser|
[5.7.6 Articles generator| L.

D.8 Output|.

(S BTN

0 -1 =

Ne}

11
13
13
13
14
15

16
16
16
17
17
18
18

21
21
22
24

Conclusion

(Bibliography|

[List of Figures|

[A_Attachments|

43

44

46

47

Introduction

Charles Babbage, the father of the computer, had the first impulse for the inven-
tion of a mechanically calculating system at college, when he was tired of mistakes
in a table of logarithms. He suggested constructing a machine powered by steam,
which could process a larger number of computations than humans while avoid-
ing making mistakes. The idea of using computers to our advantage is carried
even now in a highly-paced competitive technology-driven world. Journalism is a
field, where a linguistic software can be implemented in order to at least partially
substitute human labour.

This thesis describes various approaches to Natural Language Generation
(NLG), the process of automatic production of text, speech or other linguistic
types of output. It introduces typical architectures and data structures used and
discusses their strengths and weaknesses. We use concrete examples to illustrate
some common challenges encountered when building an NLG system.

Furthermore, one specific implementation of NLG is presented along with its
analysis. This analysis includes description of overall structure, specification of
how individual tasks are approached and finally a discussion of the solution. The
task fully specified in was to generate a brief article that summarises
what happened in a football match. To avoid ambiguity, throughout the article
the word “football” refers to a sport, which American English speakers call soccer.
This is a first neat example of detailed aspects you need to be aware of when
developing a NLG system, meaning of a word can change with different locations.
Therefore, it is very important to know the target audience of the generated text.

1. Natural Language (GGeneration

1.1 What is NLG?

The intuitive meaning of the Natural Language Generation (NLG) is rather ob-
vious, unlike the definitions that usually vary. We will now present definitions of
NLG by two different authors:

1. “Natural Language Generation (NLG) is the process by which thought is
rendered into language.”(McDonald, 2010))

2. “NLG is the subfield of artificial intelligence and computational linguistics
that is concerned with the construction of computer systems that can pro-
duce understandable texts in English or other human languages from some
underlying non-linguistic representation of information.”(Reiter and Dale,
1997)

The definition is much broader and less reliant on the specification of what
is output and especially input of such a task, which is here defined as “thought”.
The problem of identifying the input has been discussed even earlier in McDonald
(1993): the broadness of source was compared to a human conversation, namely
when the speaker starts deciding what to say. Then the input can be state of
mind, current situation, speaker’s intentions etc. These inputs are bordering on
the impossible to classify and represent in a computer. The output is defined
simply as language, without further specifying its representation.

On the other hand, the definition defines output as understandable text,
which implies the form of the result is written and additionally restricts the
input to be non-linguistic data. However, in the article authors also mention that
their survey is focused on written texts, but the principles could be also applied
to generating spoken language, which implies the definition could be extended.
Examples shown above, and especially the contrast of specifying what output or
input can or can not be, explain why it is extremely hard to define the term NLG.

Let us consider the problem of summarising a book into a brief description.
Given this problem and definitions above, we can see that it satisfies only the
first vague definition, since the input is purely linguistic. This kind of problem
is referred to as text-to-text generation. An example of such a generation is ex-
tracting summary from a dialogue of a customer and customer service department
described by |Liu et al.| (2019)) or pun generation (Ritchie, 2005).

Similarly, the initial problem can be transformed into video-to-text generation
by replacing a book with a movie. In this scenario the line blurs even more.
A movie has two layers: sound and the video itself. The video has implicitly
some semantic meaning and is surely non-linguistic. However, the sound usually
contains spoken language and therefore is linguistic. Take, for instance, a video
showing a person named Mark pointing at an apple with the sound being “This
is a pear.”. The sound itself implies there is a pear, but the message could be
summarised as “Mark is lying” or “Mark is not able to recognize a fruit”. Finding
a correct summarization would be impossible with one of the layers missing,
because they both affect the overall message, which makes deciding if video-to-
text could be classified as NLG difficult. This conflict can be found in other

problems that vary in their initial inputs such as generating diagnostic reports
from image (e.g. X-rays) by |Zeng et al. (2020)), which could be characterised as
image-to-text generation.

In this thesis, we focus on data-to-text generation. Methods and approaches
mentioned in this article may presumably be applied to any problem concerned
with computational linguistics if it is suitable without a need to strictly classify
the problem as NLG as defined by either of the authors above.

1.2 Usage of NLG

The aim of the NLG is to generate documents, articles, reports, messages, emails,
descriptions and other forms of texts in order to either reduce workload or to
offer a reader a user-friendly interpretation of various data in a given language.
Different authors describe NLG systems operating with different domains, input
data and overall aims of the language:

e summarising data and creating reports

— summarising statistics from a baseball match (Puduppully et al., 2022])

— summarising geo-referenced data such as map (Thomas and Sripada,,
2007)

— creating textual weather forecasts (Sripada et al., 2014)

— creating report of student’s academic performance (Araujo et al., 2010))
« creating poetry (e.g. in Finnish by [Hamaldinen et al. (2018))

» producing text to persuade reader something is good or bad (Carenini and
Moore, 2006)

The most common usage of NLG is to summarise less readable data to a more
convenient textual form regardless of the domain (sports, weather, geography,
etc.). Even though the output is the same, the reason to apply the NLG system
is different. Compare textual weather forecasts to reports of a student’s academic
performance. Weather reports are produced in order to enable the general public
to find out information about weather since their ability to interpret meteoro-
logical raw data is probably lacking. Same reason appears when summarising
baseball statistics and maps. On the other hand, there is no doubt that teach-
ers and professors can correctly interpret grades from student’s studies, but the
problem is to do so quickly as well as obtaining the data in a well-readable layout.
Generating textual summary automatically resolves both issues effectively at the
same time.

The summaries and reports do vary in one more important aspect: the amount
of the information and level of terminology. For instance, when creating a weather
report for everybody to read, some information such as the type of rain or the
concrete amount of precipitation (mm) will not be mentioned in the output text
and the information will be abbreviated to, for instance, a “heavy” rain since
this is the information the reader is interested in. Contrastingly, when creating
a medical report (e.g. from surgical procedure) the terms should be precise and
technical (possibly in Latin) and the amount of information left out is close to

minimum. To conclude, the target audience and their knowledge of the domain
will alter the produced text substantially.

The overall aims of the language diverge significantly. In poetry the rhymed
text filled with phrases calling forth emotions is used to achieve experience as
powerful and captivating as possible when reading it. In summaries the aim is to
convey the factual information to the reader in an easy and understandable way.
Notice that this should be a significant aspect of choosing an approach for the
problem. If the goal of the text is to inform, then text is highly recommended to
be as simple as possible. On the other hand, if the aim is to captivate, as it is in
newspaper articles, then creating simple dull sentences is not a suitable option.

This was the first glance into the aspects that are crucial when deciding how
to approach a language generating problem. These aspects are mentioned many
times across the text since the goal of this thesis is to present to the reader how
to approach the NLG and the correct understanding is one of the key parts to
develop a solid NLG system.

Is an NLG system good to use every time? Debate whether the software
is worth creating is indeed viable and maybe a little underestimated since the
articles usually do not analyse this feature elaborately. In the real world this
is a question of economic resources. Wages and time saved on the human work
that has been replaced with software must outweigh the cost of the creation and
maintenance of the software. Easy examples of evidently beneficial usage of the
NLG system is customer service emails generator. Even a simple inserting name
to the start of the email, then stating the product, order number and a little
survey of satisfaction with the product is quite a trivial email to generate, does
the job and saves tons of company time. Possible example of a non-optimal usage
is when text is not the most convenient form of data for the user to comprehend.
Charts, tables, schemata, maps or pictures could be considerably easier to transfer
the intentional message to the end user as these structures are usually attractive
and intuitive.ﬂ To give you an example, imagine coloured map of a city and
using a red line to highlight the path to the nearest tourist information centre
in comparison with text composed of verbal instructions where to go. Obviously,
unless the route is fairly trivial, a map is a better solution due to its simplicity
and visuality.

! Combination of visual representation of data and text could also be the best alternative in
a certain scenario.

2. NLG Tasks

Transforming non-linguistic data into grammatically correct sentences in a given
language seems like a rather complicated problem. Therefore it is convenient to
divide the initial problem into smaller tasks, which are easier to solve. This task
structure is described by Reiter and Dale| (1997) and it is widely used to cover
every challenge a fundamental NLG system should deal with:

o Content determination = deciding what information will be conveyed
e Discourse planning = determining the order of the information
» Sentence aggregation = grouping information into sentences

o Lexicalization = determining how to express the information in a given
language

o Referring expression generation = choosing words to express entities

o Linguistic realisation = transforming constituents in order to form a well-
built sentence in a given language.

In this section we will discuss every task mentioned above. The reason we
describe every task individually is to highlight challenges that will arise along the
way of creating the NLG system. Understanding these tasks is a crucial aspect
to produce a well-built software regardless of the choice of the approach (closely
discussed in . To illustrate the problems we show numerous simple
examples that should ease the process of fully recognizing the extent of issues
related to each task.

2.1 Content determination

The goal of this task is to decide what information from input data should be
included in the text. Usually the range of the input data is significantly larger
than the amount of information we would actually transfer to the user. Naturally,
this task is heavily influenced by the specifications of the assignment, namely
domain, intention of the text and target audience.

The result of the content determination is usually outputted as a set of pre-
verbal messages, carrying semantic meaning of the statement. To carry all the
information an implementation that can describe abstract concepts such relations
between statements, entities or conditions is needed. This sub-task of creating
suitable representation is usually domain-dependent. Since the important seman-
tic information is mapped into some formal language, there is no need for (human)
language to be specified, and therefore this task is language-independent. Con-
crete examples of formal representation language used to store these semantic
attributes are for instance logical language, attribute-value matrices or graphs.

Example of the result of possible content determination is shown below in
figure[2.1], where we would like to choose the content to report one simple message:
a goal being scored in a football domain. We have two related (3) sets of attribute-
value pairs: (1) is about a player and (2) contains goal statistics. Obviously some

7

information in tables (1) and (2) are too specific (e.g. height of the player) for
the message to convey and therefore redundant. Bold attribute-value pairs are
highlighted as the ones to be present in the final text (ids are bold to stress their
importance, however, we do not output them), creating preverbal message (4)

in pseudocode. After performing the remaining NLG tasks possible result could
look like (5).

Player Goal
<id> 373 1 (3) <minute> 17
<first_name> Cristiano \» <player_id> 373
<last_name> Ronaldo <type> Penalty (2)

(1) <nickname> CR7 <assistance_id> None
<date_of_birth> 05/02/1985 <team> Manchester United
<country_of_birth> Portugal <team_type> Home
<city_of_birth> Funchal <current_score> 3:0
<height(m)> 1,87
7

k<number> J
\/

(4) Message(type=Goal, full_name="Cristiano Ronaldo", team="Manchester United", time=17)

\

(5) Cristiano Ronaldo scored for Manchester United in 17th minute.

Figure 2.1: Process of content determination

2.2 Discourse planning

Previous part determines what messages will be transmitted to the reader and
this part resolves the issue of the order in which the information is presented.
This process is also referred to as text or document structuring. Selecting the
right sequence of messages is crucial for text to accomplish its goal. Similarly we
structure academic texts to logically ordered paragraphs, which present the topic
in a way as understandable as possible for the reader to gain knowledge.

As in content determination, this task is highly domain-dependent as we have
to know how to order messages. For instance, a medical report (as an example
mentioned earlier) would likely display diagnoses and order decreasingly by how
dangerous and life threatening they are. On the other hand, a report from a
business meeting could start with a brief overview of achievements and goals and
then with issues that were discussed ordered chronologically to allow the reader
to follow the course of the meeting.

Human brain orders information to be conveyed in a speech intuitively, but
the process as an algorithm itself is not quite trivial. Most common method is
to create rules based on the specific domain since the suitable structure heavily
relies on the domain. Some researchers suggest using machine learning tech-
niques for creating a uniform algorithm independent of the domain as seen in
Dimitromanolaki and Androutsopoulos| (2003).

Form of the output of discourse planning can differ. One possible option as
described by |Reiter and Dale| (1997)) is a tree structure. Leaves of the trees are

messages and inner nodes describe specifics of their function in a sentence. This
may seem like an unnecessary complicated solution when clustering messages to
be said in one sentence can be just an array of messages. The benefit of the tree
structure is the amount of information we can store along the messages including
constraints under which the message can be said, relations between them and
their overall structure.

2.3 Sentence Aggregation

The cardinality of the relation message and sentence is rarely one-to-one. Usually
multiple messages are formed into one sentence. This process is called sentence
aggregation and it is fundamental for generating text that is readable and flows
well. To clarify we provide set of verbal messages:

1. Arsenal beat Chelsea.
2. Arsenal beat Leeds.
3. Arsenal lost to Everton.

This set of sentences is clearly non-optimal and can be aggregated in two steps
as follows{]

4. Arsenal beat Chelsea and Leeds. Arsenal lost to Everton.
5. Arsenal beat Chelsea and Leeds, but lost to Fverton.

We can notice two types of aggregation leading to optimal sentence from
sentences presented. Aggregation of:

« constituents — Constituents that have equal syntactic importance can be
aggregated using suitable coordinating conjunctions expressing their rela-
tion. Take example sentences and . Chelsea and Leeds are both teams
Arsenal beat so their semantic meaning is identical. Therefore they can be
aggregated via cumulative conjunction and creating a new noun phrase in
the result sentence Chelsea and Leeds. Another example of cumulative
conjunctions is both ... and or as well as.

« sentences — Sentences can be aggregated as well using coordinators as
seen in the result sentence, which was created by inserting an adversative
conjunction in between sentences in example to express opposition. This
contrast can be expressed by other words like but, yet, while, etc. More
relations can be expressed when aggregating sentences using other kinds
of coordinating conjunctions: alternative (or, either ...or, nor) to express
two or more alternatives and illative (for, so) to express interference or
consequence.

'Naturally, no such concept as “optimal” sentence exists. The optimum in this case is to
express the information in a sentence that would likely occur in a spoken human language and
also would appear fluid and natural.

Another type of aggregation can occur based on explicit hand-crafted domain-
based rules. Take these three preverbal messages from football domain reporting
a goal, which are similar to the one as used in figure [2.1}(4) (Manchester United
shortened to MU):

6. (type=Goal, full name="Cristiano Ronaldo", team="MU", time=4)
7. (type=Goal, full name="Cristiano Ronaldo", team="MU", time=8)
8. (type=Goal, full name="Cristiano Ronaldo", team="MU", time=14)

Surely realising messages @, and as three different sentences would
not create fluid and natural results as sentences would vary only in time of the
goal. Since three goals in football form a so called hat-trick we could aggregate
messages in one sentence:

9. Cristiano Ronaldo completes hat-trick for MU in under 15 minutes.

This aggregation realises the messages @, , beautifully as the result is well-
formed and natural. Notice that the aggregation happened also in expressing the
time of the goals: instead of mentioning three different timestamps the time is
summarised as under 15 minutes highlighting the fact that this rare figure was
achieved in a short amount of time. As described in the previous section, football
domain knowledge is necessary to decide what is “long”, “short” or “average”
(and therefore not worth mentioning) amount of time for an event to happen.

Note that these aggregations are simple for humans, but to perform them in
a NLG system we need some semantic knowledge and relations of the sentences
(or constituents). The easiest approach is to define domain-specific constraints
when to perform aggregation. Defining complex domain-independent rules and
universal representation of relations is rather a difficult task and nowadays often
solved using data-driven methods, which are described later in [chapter 3

Furthermore, the idea that the more aggregations we perform the better the
final text is wrong. Sometimes slowing down the flow of information by fracturing
the message into smaller individual sentences is useful in order to produce more
understandable text. Overloading sentences can often result in less fluency as the
more information is conveyed in one sentence the harder it is for a reader to follow.
Barzilay and Lapata| (2006) are perceiving this as a linear programming problem
where similarity is classified for each pair of database entries. Using this similarity,
transitivity and global constraints (e.g., maximum number of aggregation across
the document) they find an optimal solution.

2.4 Lexicalization

After performing discourse planning and sentence aggregation the preverbal mes-
sages are in a correct order and they contain suitably aggregated information.
Goal of this task is to create mapping from these messages to specific expressions
in a given human language. This task is the first that is language-dependent.
There are two main problems associated with lexicalization. Firstly, the amount
of combinations of how to narrate a message is enormous, only restricted to those

10

that fit into the given context. And secondly, transformation of concept into a
word (or more words) is very abstract and interferes with many layers of the lan-
guage (semantics, phonetics and pragmatics) and therefore choosing a suitable
expression is rather difficult. This transformation is not even easy for humans.
Imagine an essay contest in grammar school with a given topic of the essay. If the
transformation was easy and had only one solution, the contest would not exist
as essays would be identical. In fact, the perspective and overall understanding of
the topic, style of describing one’s point of view and finally even choosing words
to present the idea is partly what distinguishes us as people.

Another factor is the target audience and the overall goal of the language.
If the target audience is educated on the matter then using adequate technical
terminology is reasonable. Contrastingly, for low-skilled readers all terminology
must be explained in an easy way and the content of the text should be more
about overall ideas rather than about specific concepts.

Trivial approach to this task is to hand-craft pairings of a word or a whole
phrase and a concept in a message. This solution results in monotonic outputs
as the aspect of choice is missing. Slight improvement would be to add more
semantically similar options for each item. However, this can cause problems.
First of them is how to decide, which possibility is the best. Second is the possible
non-viable combinations of words together. One example, that may be not visible
on the first glance, is generation of adjectives interpreting numbers. For example,
take a player with height of 185 cm. If it was a man, the height is “average”,
while a woman could be described as “tall”. Therefore semantic background and
suitable comparison need to be taken into account. What is more, combinations
of chosen phrases may result in non-realisable or simply weird expressions.

Due to the vagueness and coherence of the process, NLG systems combine
lexicalization, REG and linguistic realisation under one operation called surface
realisation or tactical part of the process.

2.5 Referring expression generation

Referring expression generation (REG) is a process, when you choose words to
express domain entities or other constituents of the message. Naturally, utilising
one noun phrase for one specific entity, which is used more than once in a short
amount of text, results in less readable and fluid text. On the contrary, there
is a limit to how many such expressions we can generate since a reader needs
to identify the entity correctly. Ambiguity is a highly unwanted effect since
the information that needs to be conveyed may differ from its actual language
semantic meaning.

To fully understand the challenges and also possible solutions for REG here is
an example of sentence where we would like to lexicalize its subject represented
as an entity in pseudocode:

(entity=Player, name="Cristiano Ronaldo") scored a goal for Manchester.
This particular player can be lexically expressed in this sentence for example as:

1. Cristiano Ronaldo

2. Ronaldo

11

7.
8.

CR7

Player number 7

Portuguese star

Lately heavily criticised, yet still elite superstar forward
He

This player

Notice the linguistic techniques we used to express this subject:

o Entity name — Using the name of the entity is a trivial solution and works

fine as seen example ().

Synonyms — Using a synonym or a different name having the identical
semantic meaning for the entity as shown in example and .

Descriptive transcription — Using the knowledge about the entity (such
as physical appearance, characteristics, origin, current events, etc.) we can
describe the entity without any need of using its initial name as shown
in examples , and @ Although expression (4] identifies Ronaldo
unambiguously among Manchester United players, the description may be
too specific for a reader with less knowledge about football. Therefore
the target reader, his knowledge about a topic and also the purpose of
the text are important even in this task. This technique is also prone to
ambiguity as seen in example : reader should already know what player
is being described in the text to use this expression since more players can
be characterised as Portuguese star among Manchester players (e.g., Bruno
Fernandes) .

Definite descriptions — The expression can be enriched by adding valid
adjectives, adverbs or other linguistic structures to further specify the object
as seen in example @ where adjectives criticised and elite add more infor-
mation about the player. Note that this principle is used even for the adjec-
tives: criticised — Lately heavily criticised, elite —still elite. Finally, adding
adversative conjunction yet creates enriched and complex noun phrase.

Pronouns — In a human language pronouns are used to represent entities
as seen in , . Using pronouns correctly can help to improve readability
of the text and also minimise the obvious flags of computer-generated text.
The main obstacle to overcome is when to use pronouns. Sometimes usage of
a pronoun can arise from context, sometimes if there is absolutely certainty
that everyone knows what the pronoun is referring to: those examples are
hard to deal with and usually handled explicitly. Usual approach is to
use pronoun if the entity was mentioned in a previous sentence under the
condition the entity was the only constituent the pronoun could refer to.

How to approach REG depends also on repetition of the entities in the text and
the final text variability. In a domain where identifying the entity unambiguously

12

is primary the usage of REG is even harmful. For instance, expressing city “New
York, USA” as “The city that never sleeps” in the air travel domain, where the
clear identification of city is a necessity. To the contrary, expressing an entity
identically multiple times in a short span of prosaic text eventuates in dull, plain
and stereotypical language.

2.6 Linguistic realisation

Realisation is responsible for the non-trivial task of expressing each lexical item in
the sentence in terms of its morphological, syntactic, and potentially also phono-
logical and phonetic properties. This process requires changing words to a valid
form, adding auxiliary words (prepositions, verbs, etc.), handling agreements, or-
dering, inserting punctuation and other similar transformations all in order to
present the language not only factually, but even grammatically correct. Imple-
mentation of a realisation system is strongly dependent on the target language
as shown below.

Firstly, we present an example to illustrate complexity of this task. Secondly,
we state a brief example that languages around the world can behave differently.
Then we describe a few approaches to the solution of realisation.

2.6.1 Example: numeral constructions
Consider the problem of building a noun phrase including a numeral:
1. (entity=Animal, name ="dog", count=1) — one dog
2. (entity=Animal, name="dog", count=23) — 23 dogs
3. (entity=Animal, name="mouse", count=2) — two mice
4. (entity=Animal, name="fish", count=1000) — thousand fish

Trivial and also naive solution for this simple noun phrase building can be to
append morpheme “s” to the name of the animal if the count is more than one.
As you can see in example and this solution can work only for animals
that have regular plurals. In addition, the count itself is recommended to be
expressed by a word and not by numeral if the number is either a small integer
(1-10) (examples [I} [B) or a well-known rounded number (hundred, thousand,
billion, etc.) shown in . On the other hand, example uses a number.
Therefore we need to implement a more complex system that resolves all of these
issues.

2.6.2 Languages differences

One, so far omitted, important aspect are the principles of morphology and syn-
tax of the language. Concept of appending morpheme to express plural might
not be so easily transferable into different languages. In Slavic languages mor-
phemes to express plural differ and also can be infixed, meaning they could be
inserted into the word stem instead of using a suffix. In Czech, a word for dog
is pes. Then realising their number would look like: 1 pes, 2 psi, 5 psu. Slavic

13

languages are synthetic, meaning a word usually consists of more morphemes
carrying multiple grammatical, syntactic or semantic meanings. Furthermore, an
agreement between the grammatical case and the noun is resolved as well with an
infix morpheme. Here are three examples in Czech using different grammatical
cases along with translation from English to further showcase complexity of the
task:

 (case: nominative) two dogs — dva psi
o (case: genitive) without two dogs — bez dvou psi

 (case: instrumental) with two dogs — s dvéma psy

Synthetic languages are just one specific type of languages based on the di-
vision according their morphological typology. Subtype of such languages are
polysynthetic languages (e.g., Inuit languages), where words are constructed by
combining a huge number of morphemes representing a complex expression, pos-
sibly a whole sentence. In central Nunavut Inuktitut Tusaatsiarunnanngittualuu-
junga means I cannot hear very well. Complete opposites are analytic languages
(e.g., Vietnamese), where morpheme-to-word ration is nearly one.

The extent of language influence is huge even in the semantic part as well.
To demonstrate, imagine generating a sentence, in which the action will happen
in the future. However, English, unlike Romance languages (French, Spanish,
Italian and more) does not have future grammatical tense and we have to use
other structures to express future (will, be going to, present continuous or simple
present). Some languages are even tenseless, e.g. Tokelauan spoken in American
Samoa (Polynesia).

Languages can be divided into groups based on numerous criteria. This section
only cherry-picked a few aspects we can observe and their listing is definitely not
exhaustive. Purpose was to give an idea about the diversity of languages around
the world. Also we illustrated the need for the analysis of language principles
during the linguistic realisation to be able to propose a fully-functioning solution.

2.6.3 Templates

First approach to the realisation problem is exploiting templates. Templates are
typically hand-crafted using fixed lexical items and attributes substituted in the
template. Preverbal message is assigned to a template @ and three variables
are then substituted with values creating the target sentence ([7).

5. preverbal message — Message(type=Goal, full_ name = ”Cristiano Ronaldo”,
team = "Manchester United”, time = 17)

6. template — $full_name scored for $team in $minuteth minute.

7. result — Cristiano Ronaldo scored for Manchester United in 17th
minute.

The advantage of this approach is simplicity and prevention of grammatical
errors considering that we have full control of what the fixed segments are and

14

any unwanted error is highly improbable. The disadvantages prevail. First of all,
applying templates could be only feasible in well-defined low-volume domains as
entities must have easy-to-text-interpretation. Another reason is that creating
templates is time-consuming. And most importantly, the variation of the output
is low as the immutable parts of the text generate very limited output. In ad-
dition, the template approach for more complicated languages tends to struggle,
because the constituents usually depend on each other (e.g. agreement, auxiliary
words, etc.) creating requirements, whose combinations are hard to fulfil.

However, templates are extremely practical when the target output is expected
to be simple and rarely changing. Great example is generating spoken announce-
ments in the transportation domain e.g., departures of flights on the airport,
where the template could look like: The departure of flight number $number from
$destination_from to $destination_to will be slightly delayed. — The depar-
ture of flight number FD-2018 from Rome to Paris will be slightly delayed.
Results are admittedly blunt in terms of language richness, but they are factually
correct, clear and easy to comprehend, which was the initial purpose.

2.6.4 Other approaches

Other approaches are more complicated in order to outperform templates in a
range of expressions. First of them is building a grammar for the natural lan-
guage. This approach relies on thorough knowledge and examination of the lan-
guage behaviour and principles offering domain-independent solutions that can
be applied to a different NLG system performing linguistic realisation. The ad-
vantage of this approach is definitely the domain independence of the realiser as
well as its variety in produced output. Disadvantage is that building such gram-
mar is labour-expensive and the disability to select the best possible result. All
generated sentences will be correct, but the choice, which one is the optimal one
is beyond grammar’s reach.

Secondly, data-driven (further described methods can be applied
in this task too. However their usage can vary greatly. Both approaches above
can be enhanced by these stochastic methods since we can reduce manual work-
load. Templates can be automatically extracted from training corpus (more about
corpora in [chapter 4). Similarly, hand-crafted grammars can be created automat-
ically from corpora. Also, linguistic approaches can be avoided by using these
methods. However, fusing traditional linguistic approaches and the power of
statistical approach can result in a well-performing system. For instance, us-
ing hand-crafted grammar in combination with stochastic methods to resolve the
optimal-among-the-correct-ones issue.

15

3. NLG approaches

We will divide approaches based on two aspects:
o Structure of solution
e Methods used in a solution

Note that we can fuse structure and methods arbitrarily in our desired solu-
tion.

3.1 Structure of solution

So far we have covered what individual tasks we need to cover in our solution
without suggesting a proper structure, which organises these tasks together and
creates a compact implementation. There are two main approaches:

e Modular architecture — This architecture uses a pipeline of modules.
Often this architecture follows the design suggested by Reiter and Dale
(1997), with each module corresponding to one or more tasks they suggest

(see [2)).

» Global approach — The tasks are fully deconstructed and the problem is
solved globally in order to get rid of the limitations associated with modular
architecture.

3.1.1 Modular architecture

This approach was described by Reiter and Dale (1997) and became almost a
standard for a long time. The idea is to construct a module for each NLG
task and link those modules via a one-way pipeline. Hence, output of content
determination is an input for discourse planning and so forth. But some of the
tasks are closely related and therefore it is efficient to assign those tasks to one
module. Accustomed layout by Reiter and Dale| (1997)) of modules is:

o Text (document) planner — content determination + discourse planning

= “what to say”

» Sentence planner — sentence aggregation + lexicalization + REG

= “how to say it”

o Linguistic realiser

= “saying it correctly”

Text planner determines the content of the text as well as the order, in which
we present the content to the reader. This part of the NLG process is also re-
ferred to as strategic generation. Sentence planner transforms messages from text
planner to a lexicalized expression. And finally linguistic realiser combines these
expressions with regard to syntactic and grammatical rules of given language.

16

Choices made during sentence planning and linguistic realisation are often to-
gether called, on the other hand, tactical. Clear distinction between tactical and
strategic will be more important later when discussing data-driven methods.

The main advantage of this 3-module is the structure itself, which is easy
to follow and understand. In addition, offering clear division of what is each
module’s obligations as well as what issues they do not resolve. Simplicity results
in accessible and well-structured code. Moreover, it is easier to change a minor
functionality of the program since classifying where to change the code is intuitive.
The same logic applies for methods used across the solution: one or more tasks
can be approached completely differently than the rest of the code using other
methods (e.g., statistical) while keeping the input and output formats of each
module.

However, the strict sequentiality of the architecture is also its main drawback.
Once we decide sentence order and content we have no chance of changing it later
and so the choices in the early stages may later result in an unsolvable issue.
Imagine generating a sentence with a limited maximum number of characters.
In a text planner we have chosen the content of the sentence, but even when
we do every possible combination of lexicalization of the sentence the number of
characters still exceeds the upper bound. So what now?! The solution would be
to retroactively change the content of the sentence and drop part of the initial
information, but this is not possible since the pipeline is one sided. Of course this
problem could be bypassed by making the pipeline go backwards, but this would
completely break the principle of modular approach. The clear line of division
among modules would disappear and modules’ functionality and objectives would
suddenly overlap.

3.1.2 Global approach

Assembling the structure of the text before knowing linguistic resources may
result in incorrect, ambiguous or bizarre expressions. Therefore global approach
is based on breaking the crisp division of the modular structure and alternating
between different NLG tasks depending on the state of the development and the
constraints that arise along the process while having full context available at all
times. This is the core idea of the approach, however, how to implement similarly
working solution differ hugely. One example of such implementation, that can be
formally described, is planning.

3.1.3 Planning approach

In order to produce a text in a decent quality many decisions must be made
resulting in various alternatives. Similarly as described in |Fikes and Nilsson
(1971) where the idea is to find a universal robot solver for the world model
represented as first-order predicate formulas. The broadness and vagueness of the
process of starting with various preconditions and getting to the desired result
lead to planning.

Planning problem (as well as planning approach in general) is described by
Gatt and Krahmer| (2018)) as “the process of identifying a sequence of one or more
actions to satisfy a particular goal”. Actions are then described as preconditions

17

and their effect after applying them. In the terms of NLG, the goal is to convey
the message along with its aim (persuade, inform, captive, ...) to the target
person. The actions then have constraints under which they can be performed
and the effect is the change to the current context all leading to the desired goal
of the language. The main idea is to create formalism that does not rely on a
strict structure of the NLG system and available solutions to alternate between
different NLG tasks with the recognition of both current state and effects of the
chosen actions all in order to create the best possible language and broaden the
limits of pure modular approach.

3.2 Methods

After we specified how to compose a solution, we propose methods and approaches
to use in a chosen structure of the solution. In [2| we proposed methods mostly
using structures and formalisms (e.g., templates or grammars) that are based on
the linguistic knowledge of the language. However, even in [2l we mentioned data-
driven methods that can be incorporated to solve a particular NLG task. Data-
driven (or statistical, stochastic) methods are a widely discussed topic among the
NLG community as their popularity grows and their results are recently getting
better, often outperforming more traditional procedures. Therefore the whole
next subsection is dedicated to them.

3.2.1 Data-driven approach

As the name implies, data-driven methods crucially rely on data, which consist
of inputs and corresponding outputs. Using statistical or probabilistic principles
of comparing our current state of the NLG process to a similar state in the
data ensures making choices similar to those in the training dataset. In the
field of linguistics this data is referred to as corpus. Since these methods can be
applied on even smaller segments of the generation data can contain processed
input or output data in various internal representations, which appear during the
process and not just the initial and final stage. For example, when computing
sentence planner inputs of our testing data are preverbal messages and outputs
are lexicalized texts.

The very first obstacle that arises when performing these methods is the ac-
quisition of the input-output data, because the data must fulfil some requirement.
The amount of the dataset should be big enough to ensure the validity and overall
principal of the statistical and probabilistic approach. The dataset must not only
satisfy the requirement on the quantity, but certain variety must be ensured as
monotonic data tend to give one-sided and misleading results.

Acquiring data itself can be tricky. Easiest scenario when an already estab-
lished corpus for a specific domain (e.g., weather forecasting, hotel and restaurant
recommendation, sport reports and more) exists. These corpora are well-built,
but on the other hand useful only when working with the same domain. The rea-
son for that these corpora may be available is firstly because their usage is com-
mon and secondly for their input data simplicity. Working with a less-common
domain with larger range, types or complexity of data will result probably in the
absence of a viable corpus and therefore building the corpus is another problem

18

appended to the NLG process. To overcome this problem we can either build
a new corpus from scratch or exploit more stochastic methods that automati-
cally align input with outputs. Then again one disadvantage is that the data
are heavily domain-specific. The alignment of the input to the segments of out-
put is crucial for most of the methods except deep neural networks and other
machine-learning methods. These methods are recently becoming dominant in
certain subfields of NLG such as image-to-text generation.

After assuming we have acquired data for the full-ranged NLG process, we can
classify a stochastic approach based on the overall architecture. One group ap-
proaches the problem globally and completely decomposes the modular approach
in order to both avoid error propagation and allow the software to make decisions
freely across multiple tasks and different stages of generation. In opposition, the
second group upholds at least the division between tactical and strategic choices.

We state some examples to further illustrate usage of data-driven approach
with different specific methods and range of NLG process they cover:

1. stochastic process - Work of Ratnaparkhi| (2000) is a nice first example to
introduce data-driven methods, because he described three systems (NLG1-
3) along with their comparison. Systems are used for tactical generation
(semantic context is provided in a corpus given attribute-value pairs aligned
with textual outputs) in an air travel domain. First system (NLG1), for
given attributes, simply chooses a template with the highest number of
occurrences in the training data. Second system uses a maximum entropy
probabilistic model to predict the best proceeding word taking the already
generated and also the attributes yet to be generated into account. However,
the dependency of the words in language may not come from their order.
Therefore NLG3 predicts the best words based on their syntactic relations
represented by a tree. Along with the system’s description Ratnaparkhi
(2000) offers their results in terms of correctness. Both NLG2 and NLG3
heavily outperformed NLG1. Furthermore, NLG3 was performing slightly
more accurately than NLG2. Ratnaparkhi (2000) states that both NLG2
and NLG3 can be used in other domains as well, but the complexity of
the domain must be somewhat similar to the air travel (meaning quite
low). Implicitly domain annotated data must be provided to further exploit
NLG2/3 systems.

2. classification - |Duboue and McKeown| (2003)) used classification process
in their system for automatic content determination illustrated on biogra-
phy generation problem. System is provided with initial data and target
texts. Algorithm starts with clustering the semantic data (e.g., by age)
and matching segments of the output to the pieces of input. This forms a
solid base for the process of creating content selection rules using the binary
classifier for each attribute of input data whether the attribute should be
mentioned or not.

3. optimisation - The article of [Marciniak and Strube| (2005) researches the
optimisation process in Natural Language Processing (NLP) approached
as an integer linear programming problem. They use this approach even
in a field of NLG when generating textual route directions. The global

19

approach results in the elimination of error propagation and has better
overall results as a consequence according to Marciniak and Strube, (2005).
Summary of the specifics such as the metric that should be minimized during
linear programming is further described, for instance, in|Gatt and Krahmer
(2018))).

4. probabilistic context-free grammar (PCFG) and parsing - The idea
of mixing the NLG tasks together is further exploit by |Konstas and Lapata
(2013)) as they call the division of every single task separately “greedy”. The
need for domain-specific approach is here eliminated as this work is con-
cerned with concept-to-text generation. They use input to model a PCFG
and then use the stochastic methods to acquire the best word sentence satis-
fying the grammar. Such a process can be viewed as an opposite to semantic
parsing. This system was tested on three different domains: sportscasting,
weather forecasting and air travel query generation. Performance results
were described as same or even better to the methods known at the time.

Note that these four examples not only show various specific statistical methods,
but they illustrate other nuances as well. Take the range of the process they
cover for instance. Examples and cover end-to-end process, contrastingly
example covers only the tactical part and example only covers content
determination. Moreover and keep the strategic and tactical division
unlike and (3). Domains differ as well, especially in example (), in which
domain does not have to be specified.

These examples share two more similarities except the implicit statistical ap-
proach. Firstly, they rely heavily on the testing data and especially their align-
ment of input and output. Secondly, their results are somewhat superior to other
hand-engineered systems. Often hand-crafting a NLG system relies heavily on
the domain and lacks portability and certain variability of the output (respec-
tively achieving the variability by hand is the more tedious job the more variable
the output should be). NLG systems grounded on statistics are robust and a
task of data acquisition is added to the end-to-end solution. This is counterbal-
anced by good (or even better results as described, for instance, in |[Konstas and
Lapatal (2013) more portability as example is domain-independent. These
methods along with the solid linguistic foundation are nowadays dominant (Gatt
and Krahmer, |2018) since the robustness is not big enough to be uncomputable
with modern computers and the availability and amount of testing data is much
higher.

20

4. Process of developing an NLG
system

The process of developing a text-producing software is complex and requires
organised process in order to deliver a quality result. This thesis so far covered
separate segments of the NLG accompanied by numerous examples to illustrate
concrete problems. Now we suggest how to order key parts of the development:

1. Requirements analysis

2. Corpus building

3. Choosing suitable structure and approaches
4. Implementation of the NLG system

5. Evaluation

Steps (1), and (B]) are further discussed in separate sections below. Steps
(8) and were already described in detail in chapter 2| and [chapter 3| Both
steps and are skippable and not required, but their implementation can
further enrich the final solution.

4.1 Requirements analysis

First step of developing the NLG system is to carefully analyse fundamental
aspects that will establish the approach and overall functioning of the program.
We state six such aspects:

o Input data

o Expected output

o Target language

e Goal of the text

o Target audience

o Usage of already existing tools and resources

Examples in the article were created to demonstrate the various effects these
aspects could have. This section will briefly summarise nuances that can occur.

Input data can have different inner representations: table, database, graphs,
images, etc. Furthermore data can be in its initial state and probably will require
some preprocessing to, for instance, extract computable information or transform
data into better structured and more suitable other representation. Some repre-
sentations can result in creating non-trivial tools to extract needed information
for the generation, e.g., image requires image recognition software.

Expected output can be specified in corpus (described below). Knowledge
of desired output is key to analyse the full extent of other aspects.

21

Target language can as well influence the approach greatly, especially the
solution for the tactical part of the program. In the section about linguistic
realisation we have covered some differences between languages. Nat-
urally, deeper linguistic analysis is required to fully recognize the specifics of the
language and how to approach lexicalization, REG and realisation. If we want to
generate text in more than one language, then the architecture of the solution will
likely divide tactical and strategic choices, because we can generate one preverbal
message and then lexicalize it for different languages.

Goal of the text is very important as seen in examples throughout the
article. For instance, producing a routine text with formal requirements will be
approached differently than generating an eye-catching book teaser. Texts, which
core purpose is to inform, are in general easier to produce than texts that should
arouse some complex emotion (fear, amusement, excitement, ...)

Target audience: Various characteristics of the audience, such as age, lit-
eracy rate, level of education or knowledge of the domain and topic, should be
taken into consideration in order to deliver the message to the reader in the most
convenient and understandable way possible.

Lastly, a great number of already existing tools and resources, such as
realisers, morphological lexicons, and corpora, can be incorporated into newly
constructed solution. However, a slight drawback may be a labour-heavy trans-
formation to a specific input (or from output) format required by the tool or
resource.

4.2 Corpora building

As we mentioned above, requirement factors can greatly influence methods and
our overall approach to the problem. Communicating these specifics with a clinet
can be tricky when usually only the developer has an insight into computational
linguistics. The most suggested method is to create a corpus, which is a collection
of inputs and corresponding text outputs. This process ensures a clear definition
of expectations of what the output will look like and prevents misunderstanding.
This method is useful even when developing software independently without any
specific requirements. Corpus is then built to our own expectations creating a
solid base for the process of approach analysis and implementation of the NLG
system in general.

Additionally, corpus is necessary when applying statistical methods since they
rely completely on the content of the corpus and the correlation in-between.
Lastly, corpus does not have to be composed of end-to-end NLG pairs, but rather
contain inputs and corresponding outputs for a smaller part of the NLG (one or
more tasks) in order to create a foundation for stochastic methods to resolve the
problem. Inputs and outputs can then vary greatly in the inner representation as
for instance inputs for content determination and REG will surely differ. What is
more, since data structures alter even for the same NLG task solution the corpus
should be built (or transformed) so that the input and output fit the specific
solution’s representations.

Hand-building a corpus from scratch should be supervised and consulted with
a domain expert (e.g., for creating medical reports the doctor should participate
in creating example texts) in order to achieve the best result possible. For corre-

22

sponding input an example output should be written by a domain expert. The
result of this process is called an initial corpus. The developer should now make a
revision of the initial corpus to guarantee that the NLG system can deliver the ex-
pected text, because not every input and corresponding output must necessarily
be feasible. Firstly, the output text can be improved (e.g. when acquiring texts
from existing one). Secondly, the information that is contained in the sentence
may not be present or computable from the given input datall] This is a critical
part of the development as there is no way to resolve this problem every time and
it is highly application-dependent. Common solutions are to extend the input
data or remove unavailable information from the text and create a new version
avoiding the information. Similarly, a compromise of finding hand-formed rules
when to convey the information may be the solution. After all the necessary
changes to the initial corpus were made, the corpus is now composed strictly of
well-built and agreed upon example texts, where every information needed to its
generation is contained in a data directly or it can be computed from given data.
This finalised corpus is called target text corpus.

What should a good corpus look like? Corpus should be comprehensive and
offer a wide range of pairs input-output. Edge cases, exceptions or less unusual
texts should be incorporated in the corpus as well as average text to produce.
Naturally, the number of normal texts to produce should be significantly higher
than the number of rare examples to indicate the correct ratio. Corpus should be
exhaustive in terms of expectations: once the corpus is finished, adding function-
ality explicitly is very complicated and is likely to change the overall structure,
depending on its complexity.

Described process of hand-building corpus is highly labour-expensive and
therefore usually domain-dependent systems for automatic acquisition of the data
are developed lately further exploiting the strengths of statistical methods in com-
bination with the amount of accessible data. Some NLG problems can find better
results when extracting output texts from already existing “approved” texts. For
example, when generating a short weather forecast it would be ineffective to create
newly-written texts. Much better approach would be to extract forecasts from the
most popular weather websites and take those as expected outputs. Benefits of
this approach are reduced time spent acquiring example outputs and also ensured
quality of the text since using popular websites. Some downsides could arise when
applying this approach: acquiring this data can contradict with copyright law and
range of the input data can differ resulting in unavailable knowledge. Also the
output text of our new implemented NLG system will produce similar texts as
those popular websites and therefore there is no reason why our forecast should
become more read and popular than the already existing ones. This approach
is suitable when the domain content will probably be very similar, reducing the
amount of knowledge that may be unavailable. On top of that, the number of
available output texts must be high to make use of the stochastic approach. Such
domains are weather forecasts, sport reports or the (air) travel domain and more.

To summarise, building a corpus is not obligatory, but highly recommended

!The information can also be somehow contained in the initial data, but building tools for
its extraction would be insanely time consuming or the time complexity of the extraction would
be high and therefore not possible: this is up to the developer to analyse and determine data
transformations within his reach.

23

practice to ease the process of developing the NLG system, especially finding
requirements. Precise target corpus primarily precedes the problem that the
quality of the developed system is insufficient as the cliet knows exactly what
the output will look like and match his expectations perfectly. When applying
statistical methods, a well-defined and comprehensive corpus becomes a necessity
since the stochastic approach relies crucially on the power of data. Lastly, the
corpus is a fine tool even for the developer himself: analysis of each record of the
corpus results in an outline of the challenges to overcome and gives a basic idea
how the particular NLG problem should be approached.

4.3 Evaluation

After NLG yields the textual result an intuitive action would be to rate it and then
reflect the approach and implementation based on the rating. From a practical
point of view this step can be processed by a user or client who expects a certain
quality and decides whether the quality is matched or not. From an academic
point of view, this task is about deciding how to measure what is the “optimal”
output as described in footnote [1] in 2 Computer science problems usually con-
tain a metric, which easily decides what solution is better. For instance, graph
problems usually have an optimal solution to the problem and algorithms are
compared based on time complexity of finding this optimal solutionE] However,
in linguistics the comparison metric is not obvious, but rather complicated.

This can be demonstrated on a school-leaving essay. Deciding about the
grade will likely be uniform since the base is some general criteria that have to be
matched. However, how to decide what work was the best to award the writer?
Surely, we can restrict ourselves to only the theses that were graded with the
best possible grade, but how to choose among them? It is easy for a human to
decide if the result is “good”; or “bad” . “Bad” results can be spotted easily,
when they are grammatically incorrect, factually wrong or their communicative
goal was not achieved. However, there are usually no explicit criteria on how
to compare two “good” results. The comparison is then usually done based on
a subjective feeling. This process is even harder for computers and therefore a
human element is often required to rate the results.

It seems that the measure metrics differ very much from what to measure
to how to to measure it. Readability, fluency, and correctness can be viable at-
tributes rating the linguistic appearance of the text. What information is present
in the text, how it is presented to the reader, whether the information is relevant
and if the communicative goal was achieved are attributes to grade content of
the text and the overall vibe. Grading these attributes can be then approached
alternatively as well: by grading on discrete or continuous scale, ordering texts
or simply picking the best text in a given aspect. The metric should be designed
to reflect important aspects for the given texts.

The uncertainty of this step is predictable as the importance and consequences
of small nuances in the texts are interpreted subjectively. |Gatt and Krahmer
(2018)) recommend aiming for diversity in the approach to yield a wide range of

2Exceptions are probabilistic and approximation algorithms that find acceptable (compared
to the optimum) solution in a faster time.

24

results and then decide the best final approach based on not only the results, but
on the correlation between them as well.

25

5. Implementation

The aim of the thesis was not only to get the basic understanding of an NLG
process, but also to try to create the implementation in a programming language
that is widely used around the world: Python. The goal was to create an end-
to-end NLG system, that takes non-processed raw data about a football match
as an input and creates an article in Czech language that summarises the course
of the match. In this chapter we will take a closer look at the overall functioning
of the football articles generating NLG system.

5.1 Initialization

The whole project is published in a GitHub repository (see https://github.
com/Mokeas/BcThesis/)). Guide on how to run the program and the description
of content of the repository is a part of README. Note that the structure of the
repository follow the structure described in the attachments .

5.2 Requirements and initial goal

As mentioned in the introduction of this section, the expected output was simply
a readable Czech text summary while attempting to produce sentences that are
not completely identical, resulting in a less-monotonic text. The expected output
was defined somewhat vague and quality-wise uncertain, but we were hoping to
achieve a simple readable text with the purpose of describing what happened
in a match. To interpret the text only a general basic football terminology is
required (substitution, penalty, red/yellow card, etc.) However, the text quality,
especially in the variability of expressions, used structures and overall richness, is
realistically insufficient to truly satisfy the ambitions of an (newspaper) article.

Since NLG is a complex process we used one already existing tool for linguistic
realisation - Genja API by Geneea. Without this system the output language
would not be grammatically correct and therefore not satisfying the readability
requirement. As discussed in this task has no easy way of implementing man-
ually, especially not for a Czech language that belongs to the more complicated
natural languages (for reasons that are described in as well). Genja API
usage skips this task focusing on the rest of the NLG tasks.

In we proposed an outline to a requirements analysis. This chapter
tries to follow this structure discussing and describing the specifics of each seg-
ment. Unluckily, in order to present the closely-connected requirements and their
consequences in a organised way, we may modify the structure slightly.

5.3 Input data

The dataset was provided by the company Livesport s.r.o. (see https://www.
livesport.cz/)), which we would like to thank. Therefore the entire dataset
can not be shared. However, one example match is attached to illustrate pro-
gram functioning. Initial dataset is composed of every match of one Czech First

26

https://github.com/Mokeas/BcThesis/
https://github.com/Mokeas/BcThesis/
https://www.livesport.cz/
https://www.livesport.cz/

League season. Every match is represented as a JSON file storing both general in-
formation about the match (teams, venue, attendance, line-ups, etc.) and course
of key events of the matches (goals, substitutions, cards, etc.).

General information about the match consists of two participating teams,
starting time of the match, tournament information (here Czech First League,
season 2018/2019), information about venue, score, winner, stage of the game
(e.g., finished /delayed) and line-up. Line-up consists of every player of the team
divided into groups according to their status (e.g., injured, benched, initial line-
up, etc.) along with other information like home country, number and more.

Course of events is represented as a list of incidents. Incidents have attributes
like id, time, participant, type and so on. Also, incidents have attribute parentld,
which further specifies the incident. For instance incident type Penalty Kick
has empty parentld, however, in the list of incidents there is an incident with
the type of Penalty Scored or Penalty Missed that has parentld identical to the
corresponding Penalty Kick incident Id. Assists to a goal are handled likewise.

Detailed examples of the representation of the input data are shown later in

figure [5.3] and figure [5.4]

5.4 Approach

For this particular NLG problem we have chosen modular architecture as de-
scribed in the most traditional, even though now a little outdated, ap-
proach proposed by Reiter and Dale] (1997) consisting of grouping similar NLG
tasks into modules that are then connected via one-way-pipeline.

In the first place, we would like to highlight the core reasons that led to a
chosen approach:

o Personal lack of experience in NLG as this was my first ever NLG system
that I have created.

o The full extent of an NLG problem: from non-processed data to a well-built
text.

o The lack of easily accessible high amount of data.

For me, personally, this field of computational linguistics is new and therefore
the aim was not only to build a NLG system, but to gain knowledge including
different approaches in this specific subfield of NLP. Also it was easy for me to
get lost in the high amount of issues to resolve (each of the NLG tasks) before
giving it a properly organised structure. The lack of experience also resulted in
the error propagation that has risen repeatedly during the development. Staying
faithful to the division of modules is the most intuitive and also feasible solution,
therefore the modular approach.

In addition, the lack of data almost forbids the data-driven approach. Natu-
rally, the data do exist, but their acquisition would require either a high amount
of time-consuming labour of creating the data by hand or acquiring football arti-
cles automatically and then aligning them with given input data, which still can
end up insufficient as for the acquired text more data could have been known.
Such a corpus building could be a project on its own.

27

5.5 Match example

A match example is provided and the summary can be seen in figure [5.1].

Football match between Jablonec and Bohemians 1905, which resulted in a
3 to 1 victory for the home team Jablonec. First half can be summarised into
words to further describe the figure as follows: First goal was a penalty scored
by Trdvnik in 10th minute and then second incident was a goal by Bohemians’
player Hasek that tied the game in 44th minute after a pass from Vanicek. Events
that happened in the second half are hopefully easy to interpret as well. Numbers
next to an incident group them by their type- (1) penalty goal, (2) goal with an
assist, (3) substitution and (4) yellow card.

28

Jablonec E)-B8 Bohemians 1905\

é 1st half h
A\ y,
© 10 - GOAL - PENALTY
M. Travnik
® 44 > GOAL
M. HaSek (A. Vanicek)
é 2nd half h
N Yy,
© 55 — SUBSTITUTION
(out) A. Vanicek « (in) J. Necas
M 62 - GOAL

D. Martin (M. Travnik)

© 69 — SUBSTITUTION
(out) M. Svec « (in) F. Hasek

© 74 — SUBSTITUTION
(out) J. Zaviska « (in) J. Vodhanél

© 75 — SUBSTITUTION
(out) E. Sobol « (in) M. Kratochvil

® 79 — GOAL
D. Martin (M. Travnik)

© 87 — SUBSTITUTION
(out) V. Jovovic < (in) V. Kubista

O 90 — YELLOW CARD
V. Kubista

© 90 + 1 - SUBSTITUTION
(out) D. Martin < (in) C. Jan

® 90 + 1 — YELLOW CARD
P. Jakub

® 90 + 3 — YELLOW CARD

\ M. Kratochvil J

Figure 5.1: Table summary of the example match.

5.6 Structure overview

The overview of the structure of the solution is shown in figure [5.2}

29

Input data with arguments to modify slight functioning (as a way of output is
presented, number of texts to generate, input data or key for Genja) are passed
to run.py (figure — 1) (.py will be left out as it is implicit for every module),
which is the executable starting point of the program. Parsed arguments are
an input for articles_generator, which handles the communication between each
module, essentially creating the one-way-pipeline for modules (figure -2, 3,
4, 5) and managing passing correct arguments to functions. Output of this core
handler is tuple of strings: title and body of the article.

The data_initializer (figure — 2) module is not present in the original
modular architecture by Reiter and Dale| (1997) (described in [3.1.1). However,
since the data are in a raw form, the step of data processing needed to be added
to store the data internally in a more convenient way to further operate with the
information given effectively.

Modules (figure — 3, 4, 5) correspond to the modular architecture perfectly.
Document_planner (figure — 3) takes data about a match in a convenient
inner representation as an input and creates a DocumentPlan, which contains
ordered preverbal messages to be said in an article. Then these messages are
lexicalized in sentence_planner (figure —4) and finally linguistically realised
by linguistic_realiser (figure 5.2/ - 5).

Moreover, there are three auxiliary modules (described in detail in [5.7.1)) to
keep the structure of the modular approach implementation as clean as possible:

e Data.py

» Types.py

o printer.py

30

6]

articles_
generator

—

(©

<

PR

data_initializer

OUTPUT
TEXT

5.7 Modules implementation

Arguments:
- JSON match file
- number of texts
- other details

Parsed arguments

@dataclass(frozen=True)
class Match:
team_home: Team
team_away: Team
score: Score
venue: Venue
incidents: List[Incident]

@dataclass(frozen=True)
class DocumentPlan:
title: Message
body: List[Message]

| (str, List[str])

(str, str)

Figure 5.2: Overview of solution structure.

In this section the implementation of each module is described in detail creating
a compact solution in Python. For even closer inspection, feel free to look into
the code.

5.7.1 Auxiliary modules

Data.py groups data classes that store information contained in a JSON file.
Namely these entities are Score, Venue, Country, Player, Team, Time, Incident
(+IncidentParent) and finally the most crucial Match that encapsulates each

31

of the classes mentioned. Note that these classes are made immutable using
@dataclass(frozen="True) from package dataclasses and then implementing static
create method. Immutability ensures the data remain intact after manipulating
with them frequently in multiple functions across modules.

Module printer.py manages printing different components in a readable way.
Since there is a lot of data, even during the development it was more convenient
to pretty-print separate results of modules instead of inspecting more nested and
complicated states during debugging. Due to numerous alignments and length of
string appending, a separate module was created to not overload other segments
of the code.

Lastly, Types.py stores enumerate types for different entities. For instance,
in the document_planner module there is a class Message to store attributes of a
preverbal message. One of the attributes is the type of the message defined as
Types.Message. This class is implemented in Types.py (along with other types,
which have arisen so often that a separate module was created) as Python’s enu-
merate(). Options are GOAL, PENALTY_KICK_MISSED, CARD, SUBSTITU-
TION, RESULT. To give one more example, message that reports a card incident
has attribute storing the type of card in Types.Card - YELLOW, RED_AUTO,
RED_INSTANT (distinguishing the difference between two yellow cards and in-
stant red card - to highlight the severeness of the foul). Similarly, other types of
different-level entities are stored.

5.7.2 Data initializer

Goal of the Data_initializer is to transform data from the initial JSON file
to a more convenient inner representation implemented as a system of classes
to uphold the principles of object-oriented programming resulting in a crisp and
well-divided structure.

The implementation is straightforward - we use the built-in package json to
ease the manipulation with a JSON file while initializing classes from the Data
module.

Two examples of specific records contained in the JSON file and their Python
representation are shown in figure and figure [5.4]

{
"participant": {
"fullName": "Tomas Holes",
"id": 135224,

" - @dataclass(frozen=True)
countries": [

C class Player:

1) Jla™: 62, 'Crech Republic’ | ——— Ifiillrr]mtame: str 2)
name:. "Lzech Republic country: Country

¥ lineup_position_id: int

number: int

]
by
"lineupPositionId": 1,
"number": 26

b

Figure 5.3: Transformation of entity Player from JSON to a Python class.

32

Entity Player is transformed from its initial JSON representation (figure

— 1) to a easy-to-work-with Python’s immutable class Player with corresponding
attributes. Note that a country has also a proper class Data.Country.

"addedTime": null,

"id": 300823612,

"parentId": null,

"stageld": 12,

"time": 44,

"timeSec": null,

"value": "1:1",

"participant": {
"fullName": "Hasek Martin",
"id": 222801

@dataclass(frozen=True)

class IncidentParent:
type: Types.Incident
participant: Player
team: Team

time: Time
)| > L (4)
t.anaem:ef. "Goal" class Incident:

3 ' @dataclass(frozen=True)

e " class Goal(IncidentParent):
sortKey": 3,

" : current_score: Score
eventParticipant": { .)
"participant": [assistance: Player

goal_type: Types.Goal
"id": 804,
"name": "Bohemians 1905"
b
1
ks

Figure 5.4: Transformation of entity Incident from JSON to a Python class.

Entity Incident is transformed from JSON (figure |5.3[— 3) to a representation
as an immutable Python’s class (figure[5.3)— 4). The class is called Goal and it is a
subclass of Incident. This particular class structure ensures that different types of
incidents (goal/card/substitution/penalty kick) can be addressed as one variable
type and therefore enabling the Data.Match class to have attribute incidents
storing incidents as List/Incident]. Furthermore, every Incident subclass also
inherits from IncidentParent class since these are common attributes for every
match incident and it would be inefficient to repeat those attributes multiple
times.

Note that this module resolves part of content determination since the number
of attributes from the initial JSON file are not transformed into Python class. For
instance, starting time of the match was not saved since we mark this information
as redundant for an article generating. Similarly, more attributes were omitted to
avoid useless information. On the other hand, couple attributes end up redundant
(e.g. Country of Player), but these attributes are kept to ensure integrity of the
solution and enable an easier further future development.

5.7.3 Document planner

The aim of this module is to plan the content of the separate messages and their
order. Document planner is resolved trivially: each incident is transformed to a
separate preverbal message along with fundamental data.

33

Implementation is shown in figure and is similar to Incident structure.
Each preverbal message has different arguments and therefore its own class. To
access messages classes as one variable type there is a system of inheritance, where
every message class inherits from MessageParent so that they can be distinguished
by their according type Types.Message. Note that these classes are made again
immutable to ensure data stability.

Unlike message class Substitution, which is self-explanatory, classes Result and
MissedPenalty need clarification.

Result message defines the title of the article. The core purpose of the title
is to summarise a match in one sentence and hence to report the result/score of
the match.

Content of the MissedPenalty is rather obvious, but the reasoning behind
the existence of this separate class may not be visible at first glance and relies
heavily on domain knowledge. Penalty is a crucial, rare and thrilling event during
a football match.[] Consequently, every penalty is worth mentioning regardless of
the outcome. However, if the penalty is successful, the outcome is a goal and we
would like to treat the message the same way as any other goal. I believe every
goal in a football match should be reported since scoring in football is rarer than
in other sports in general (compared e.g., to basketball where reporting every
basket would be too specific and unnecessary). Contrastingly, the message that
reports a missed penalty is not strictly required to be present in the article as
this event did not affect the result directly. On the other hand, such a message
creates rather a shocking element of the article as players are expected to score
from this position. This paragraph further illustrates the hand-crafted principles
based on the domain knowledge that are incorporated in the solution.

class MessageParent

e type: Types.Message

+

class Message

class Goal(MessageParent)

class Card(MessageParent)

other classes

e participant: Data.Player

e assistance: Data.Player

e current_score: Data.Score
e team: Data.Team

e time: Data.Time

e goal_type: Types.Goal

¢ participant: Data.Player
e team: Data.Team

e time: Data.Time

e card_type: Types.Card

e Substitution
e Result
e Missed Penalty

Figure 5.5: Implementation of preverbal messages.

'Remember the famous penalty by Antonin Panenka in European Championship finals in
1976 that led to the triumph of Czechoslovakia. The kick was groundbreaking and nowadays
the term 'Panenka’ refers to a style of kick, where you only chip the ball in the middle of the
net.

34

5.7.4 Sentence planner

Last but not least is a sentence planner module, that combines sentence aggrega-
tion, lexicalization and REG. Due to a possible low number of messages to convey,
the result depends heavily on the course of the game and we do not want to leave
out any of the incidents that occurred during the match. So to further simplify
the process, one incident corresponds to one sentence and the sentence aggrega-
tion is not performed. Sentence aggregation as described in [2.3] is grammatically
a non-trivial operation and we leave this part as a room for improvement.

The core idea is to exploit templates, which means inserting words to express
a constituent (e.g., entities to be expressed from non-verbal message) verbally
in the reserved empty spot in the sentence. However, to ensure some kind of
variability of the expressions as well as easy cooperating with Genja API the
templates are resolved in a bit more complex way. Naming classes and variables
throughout sentence planner was difficult due to the similarities of the segments
that needed to be named, therefore I first present crucial classes and reveal their
overall integration later.

Firstly, the template, by its very nature, is represented as a class called Sen-
tence. Sentence controls the structure of the sentence (ordering and selection of
constituents) and allows other components of the implementation to insert vari-
ous lexical items. Sentence contains string id to simplify the number of types and
subtypes in this section. Boolean simple says whether the expression is simple,
clear, syntactically easy or the opposite: colourful, longer and more complex.
Then there is a list of constituents, which is either a hand-inserted string or Con-
stituent, that requires further development and will be picked later. Note that
Sentence contains an attribute msg, but the attribute is not assigned immediately.

class Sentence:
id: str
simple: bool
constituents: List[Union[str, Constituent]]
msg: dp.Message

35

Here is an example of one Sentence initialization, which defines the easiest
possibility of how to express a message that a goal was scored. Furthermore, the
following table shows possible lexicalization of these constituents in English(EN)
and Czech(CZ) to illustrate the principle of such a structuref

Sentence.create(type_, subtype, True, [

Constituent(id_=’e-time’, morph_params=’’,
explicit_data=Types.ExplicitEntityData.TIME),

Constituent(id_=’v-goal’, morph_params=’.-0-.-.-.7,
explicit_data=None),

Constituent(id_=’e-player’, morph_params=’1-.-0-.-.’,
explicit_data=Types.ExplicitEntityData.PARTICIPANT),

Constituent(id_=’w-goal’, morph_params=’4-.-.-.-.7,
explicit_data=None)]))

Time Verb for goal | Player entity | Word for goal
e-time v-goal e-player w-goal
EN | In 7th minute scored Ronaldo goal.
CZ | V 7. minuté dal Ronaldo gol.

Another class is Constituent containing again id to mark its type or subtype.
In Czech multiple agreements as well as grammatical cases need to be resolved
and therefore we have to store such information when creating sentence layout re-
gardless of the lexical expression that will be inserted. All morphology attributes
are stored in morph_params as containing case, tense, gender and ref/agr all to
be then handed over to Genja API for linguistic realisation. Again, as seen in the
Sentence initialization, morph_params are initialized shortly using string id.

class Constituent:
id: str
morph_params: MorphParams
explicit_data: Types.ExplicitEntityData
string: str

Lastly, class Template handles the lexicalization of every constituent.

class Template:
id: str
string: str

Templates can be strings, or a part of entity information can be inserted into
a lexical item. Template’s string can be defined by hand, or by function or
by creating a template (by combining string and variables’ string values to be
inserted), which expresses the constituent. Here are examples for templates that
express player entity and a word for assistance.

2Note that the word order is not correct in the English sentence, but correct in the Czech
one. My translation will mainly illustrate the process for English readers, which can lead to
grammatically incorrect sentences or expressions.

36

Entity player (e-player)
String template EN CZ
player.full name Cristiano Ronaldo | Cristiano Ronaldo
player.get_last_name() Ronaldo Ronaldo
f”hrac ¢islo {player.number}” | player number 7 hra¢ cislo 7
Word assistance (w-assistance)
EN CZ
assistance asistence
pass prihravka

To recapitulate, class Sentence creates templates for sentence combining and
ordering numerous constituents, which are either hand-written string or repre-
sented as an internal Constituent class. For every Constituent an instance of the
class Template is created to then present options for expressing Constituent in
numerous ways. Note that to store a string, data to insert need to be assigned
when initializing Template (unlike Sentence, where Message can be added later).

To manage these objects and enable their cooperation, two handlers are cre-
ated: SentenceHandler and TemplateHandler. Sentences are first initialized all,
then randomly shuffled and lastly grouped by their id and always using a simple
sentence first. Then for each message in the article a Sentence is picked in the or-
der they were grouped and message is assigned to the Sentence as attribute msg.
Once every Sentence for a given message type is used, we pick randomly from
used. This process ensures structural variability as we use the same Sentence
twice only in case that we used all of the Sentences for a given message.

To further increase variability of the created sentences a similar process is
repeated for Templates. Templates are randomly picked from non-used options.
Once every template is present in the output, we pick random from every template
ensuring we do not use the same template twice in a row. Another difference is
that Templates are first initialized all with empty values (where string is expected
to be inserted) and then Template Handler frequencies are updated to set up the
initial state of Templates.

5.7.5 Linguistic realiser

Czech language is quite complex in terms of grammatical difficulty and therefore
resolving the problem of realising chosen lexical items correctly by-hand without
a proper tool performing complex morphology transformations is not efficient.
This is the last step of the entire NLG process, however, without the realisation
module the outputted text will not be readable. Consequently, other software
was incorporated into our solution in order to perform linguistic realisation.
The system is called Genja and was provided by Geneea(see https://geneea.
com/). The Genja system, which was based on Jinja, manages working with
smart templates. In order to exploit templates efficiently, Genja offers tools
for managing morphology and knowledge base. Note that authorization key is
required in order to perform linguistic realisation. In the solution’s default, the
is key stored as a system environment variable to not be visible in a public
GitHub repository. Without the key, the program will still run, but the linguistic

37

https://geneea.com/
https://geneea.com/

realisation will not be performed and therefore the outputted text will be the
intended input for Genja.

Due to the strict syntax that needs to be inputted in a Genja API request, a
number of transformations need to be done. Firstly, combining plain strings in
a template with morphological parameters creates a well-built input for Genja.
Secondly, a json file for Genja must be created and lastly the output must be
transformed from json back to string. After that the auxiliary file is deleted.

5.7.6 Articles generator

To finalise, articles generator connects modules together creating a notional one-
way pipeline.

5.8 Output

Since the lexical items and sentences’ word orders are picked randomly, the output
can contain a combination of expressions that are suboptimal and hard-to-read.
For example when describing substitution message, realisation of two player en-
tities can result in unappealing text, where it is not clearly visible who is the
first and second player (player Vodhdnél was subbed for player Kratochvil, whose
name was lexicalized as last name and first name):

V' 74. minuté stridal Vodhdnél Kratochvila Milose.(CZ)
In 74th minute subbed Vodhdnél Kratochvil Milos.(EN)

Moreover, due to the international nature of the football domain, often finding
grammatically correct forms of foreign names is not easy and Genja can not
resolve this issue.

To compensate for these minor problems we output multiple texts instead of
just one. As said, randomness can highly affect the overall impression from the
text. When generating multiple texts the probability that one output will feel
better than others is then increased. The idea of generating more than one text
and then picking the best result of all generated can be useful, when the quality
of the outputted text can not be ensured. However, the process of selecting
“the best” result can be again approached differently. The easiest solution is, for
instance, using a human evaluation. Another option is to exploit the data-driven
methods and pick the version that is statistically the most similar to the texts
in the acquired set of data e.g., football articles from websites. The problem of
selecting “the best” option is not solved in this project.

Here are multiple examples of lexicalization and realisation of one preverbal
message containing information about player being penalized:

o Message: (Type: CARD, time: 90 + 1, participant: Povazanec Jakub,
team: Jablonec, card_type: YELLOW)

o (EN) In the first minute of the overtime Jakub Povazanec got a yellow card.

o (CZ) V pruni minuté nastaveni druhého poloc¢asu obdrZel hrac¢ s cislem 7
Zlutou.

38

o (CZ) Jakub Povazanec vyfasoval jednu minutu po zacdtku nastaveného c¢asu
druhého polocasu Zlutou.

o (CZ) Povazanec dostal jednu minutu po zacdtku nastaveného c¢asu druhého
polocasu Zlutou kartu.

Note that both word order and lexical expressions for the constituents differ:
player (Jakub Povazanec/Povazanec/hrac s ¢islem 7), yellow card (zlutou/zlutou
kartu) or the verb for ”"got”(obdrzel/vyfasoval/dostal). As you can see the tem-
plate system used created a variety of well-built sentences.

Now we show two examples of generated articles for the example_match. Mes-
sages to generate are visible from figure 5.1} but we will state couple of first along
with the title message:

Messages:

1. Type: RESULT, team_home: Jablonec, team_away: —Team— Id: 804,Name:
Bohemians 1905, type: AWAY, score: 3:1

2. Type: GOAL, time: 10, participant: Travnik Michal, team: Jablonec,
score: 0-0, goal_type: Goal. PENALTY

3. Type: GOAL, time: 44, participant: Hasek Martin, team: Bohemians 1905,
score: 1-1, goal_type: Goal. ASSISTANCE

4. Type: SUBSTITUTION, time: 55, participant_out: Vanicek Antonin, par-
ticipant_in: Necas Jakub, team: Bohemians 1905

Article examle No. 1/2:
Jablonec deklasoval Bohemians 1905 3:1.

V desaté minuté promenil Travnik pokutovy kop. Hrac s cislem 21 wvstrelil po
nahrdvce Vanicka Antonina 44 minut po zacdtku gol. 'V 55. minuté Jakub Necas
stridal za hrdce s cislem 22. 62 Minut po zacdatku dal po nddherné kombinaci
Dolezal po pase Travnik Michal branku. V 69. minutée vystridal Hasek za Michala
Sevce. Hrdc s cislem 17 stiidal za Jana Zdvisku 74 minut po zacdtku. V 75.
minuté Kratochvil Milos vystridal hrace s cislem 21. DoleZal Martin wvsitil po
asistenci Travnik gol 79 minut po zacatku druhého polocasu. 87 Minut po zacdtku
stridal Vojtéch Kubista hrdce s cislem 25. Kubista dostal v 90. minuté Zlutou
kartu. Jednu minutu po zacdtku nastaveného casu druhého polocasu vystridal hrdc
s cislem 19 DolezZala Martina. 'V pruni minuté nastaveni druhého polocasu obdrzZel
Povazanec Zlutou. Kratochvil Milos vyfasoval tri minuty po zacatku nastaveného
casu druhého polocasu Zlutou kartu.

Article example No. 2/2:

Jablonec porazil Bohemians 1905 3:1.

39

V' desdté minuté promenil Michal Travnik penaltu. Hasek dal po prihrdvce
Vanicka Antonina 44 minut po zacatku branku. 55 Minut po zacdtku druhého
polocasu vystridal hrac s cislem 10 Vanicka. Po nddherné souhre v 62. minute
vstrelil Martin DoleZal po asistenci Travnik Michal gol. 69 Minut po zacdtku
druhého polocasu Hasek stridal za hrace s c¢islem 2. 'V 74. minute vystridal Jan
Vodhanel za hrace s ¢islem 8. Milos Kratochvil stridal za Sobola Eduarda 75 minut
po zacatku. 79 Minut po zacatku druhého polocasu vsitil Martin DoleZal po pase
Travnik branku. 87 Minut po zacdtku Kubista Vojtéch vystridal Viadimir Jovovic.
Devadesdt minut po zacdatku druhého polocasu obdrzel Kubista Vojtéch Zlutou. V
proni minuté nastaveni druhého polocasu stridal Chramosta za Martina DoleZala.
Povazanec dostal jednu minutu po zacatku nastaveného casu druhého polocasu
Zlutou kartu. 'V treti minuté nastaveni druhého polocasu vyfasoval Kratochuvil
Milos Zlutou.

Football articles generated by the software are readable, fluid and somewhat
variable. Outputted texts are with only a handful of mistakes (grammatical, not
factual). In the 4th sentence of the first article, Trdvnik Michal has an incorrect
form and Genja did not manage to process this: the correct form for the 2th case
is Trdvnika Michala. Same problem occurred in the second article for the name
Viadimir Jovowvic.

5.9 Discussion

In this section we discuss numerous perspectives and aspects of the solution.

Several papers on the topic of football were published. First example islet The-
une, (1997) where a system of templates is incorporated in order to generate a
football report. Syntactic trees are used to implement templates. Another differ-
ence is the ordering of the messages. While our implementation orders messages
chronologically, this paper does the following: first we choose the topic we have
not spoken about yet e.g, goals scored during the match, then we convey every
message from this topic. However, the ordering of topics can change. Conse-
quently, we need a tool that controls the state of the generation so that we know
what was or was not already mentioned (e.g., number of spectators will be men-
tioned in a game summary only if it was not mentioned in another topic). Context
supervision is present throughout the entire generation.

Second example of the implemented NLG system about football is much newer
Chen and Mooney| (2008). This system generates commentaries to events on
the pitch in the simulated football match. Their approach is completely non-
linguistic and relies on machine learning methods. Training data consists of pairs
of textual human commentary and state of the game. These two examples show
two completely different approaches.

Next to discuss is the choice of the approach used in this implementation.
The architecture strictly follows the division described in a modular approach ex-
ploiting the power of splitting the extremely complex NLG problem into smaller
easier-to-manage segments. As discussed earlier, the raw power of data can con-
tribute to the quality of the result and therefore the first improvement of the
project would be to change the approach completely assuming you acquire the
corpus data. However, a stochastic approach relies on a big amount of quality

40

data, which are not available for me or rather their requirement would be insanely
time-consuming. Moreover, this was my first NLG project. Due to my personal
inexperience and lack of a large number of easily accessible data the modular
approach was chosen.

Naturally, the quality of football articles created by sport journalists can
hardly be matched with the quality of outputs from the FootballArticlesGenerator
software. The aim of the outputs were to be readable and form a proper Czech
sentence filled with information about a football match, which was achieved.
What is more, an increased variability was achieved to make text more fluid.

The complexity of the implementation was hard to deal with and not seeing
the error propagation consequences the attempts of creating a fully functioning
system often failed. Retrospectively, the incorporated system of “two-layered”
templates (implemented as Sentence and Template, which both fit to the tem-
plate idea) is not-optimal. As seen in initializing Templates for Time. Firstly, the
templates are picked randomly without context, meaning we can use expressions
like "Two minutes after that” and so on. Secondly, to express time more variably
we would like to use another template layer connected to a set of morphological
parameters to be passed to Genja, but that is not possible. The best improve-
ment for this project would be to re-implement sentence planner and using tree
structure of templates to enable having template in a template.

Such a tree structure would then require some non-trivial design and imple-
mentation to deliver the expected result. Sentences represented as trees where
nodes are either strings or templates should be pre-created to ensure variability
between the sentences used throughout the text. Then the sentence aggregation
can be performed once the content of the sentences is known. Lastly, lexicaliz-
ing each template in the sentence tree by various expressions. The core problem
when designing this system is interconnection between the tasks, that requires a
decent amount of flexibility of the tree structure in terms of implementation. For
instance, sentence aggregation can merge two of the trees together.

Consequence of the well-implemented tree structure would be a better quality
article. Due to the kept approach of using templates, the level of the result would
not still be near to texts produced by humans. Templates offer only a number of
varieties in comparison to a complex human language. Naturally, the higher the
number of templates the more variable the text will be, initially approaching the
human-like level.

In addition, the database used for this project does not contain enough in-
formation to create a somewhat complex article. Primary insufficiency is in the
lack of details of incidents contained in the data. Expressing a goal is usually
accompanied by a slight description of how the goal was scored: cross from the
left side and top corner header, chaos in front of the net resulted in a rebound
and a goal, beautiful solo play, 30 metre absolute screamer, etc. Similarly, the
minor incidents like corners, shots, fouls, offsides are not present and could help
when conveying more detailed text describing the true course of the game and not
only major incidents. Lastly, there are no statistics and knowledge base present.
When lexicalizing Cristiano Ronaldo we have only options to use number or name,
while journalist would use more complicated expressions like “deadly portuguese
striker”, “famous CR7”, "the most productive player of the Premier League or
“the newest member of Manchester United squad”. History of the player, current

41

leaderboards and statistics of the season, all time best leaderboards, nicknames
for entities and more are the information lacking to truly have potential to create
human-like articles that would be both thrilling and informative. Not to mention
incidents, which are not based on statistics, but rather on the actions that hap-
pened on the pitch. For instance, controversial calls, conflicts between players,
vibes on the stadium, how well the team actually plays are all aspects that are
very hard to store, classify and express, but are arguably the most interesting for
a football fan besides the result of the match itself. This paragraph further proves
the strength of the data-driven approach that can overcome the difficulties of lack
of data by simply imitating the already existing text. For example, if a corpus
contains the nickname “Blues” for “FC Chelsea” numerous times, it becomes a
viable lexical expression for the FC Chelsea entity.

Even though the generated texts are well-built and correct, their usage after-
wards is questionable. The popularity of sports articles lie in the tabloid style
nature of the text. If they are interested in just a simple overview of the match,
they use non-textual representation like figure which is provided online (e.g.,
Livesport). Moreover, the input for the program is very specific and requires an
authorization key for Genja.

Personally, I am really happy with the result. The NLG system created oper-
ates end-to-end and transforms raw data into a well-built text, which is non-trivial
and variable to some extent. However, the core consequence I am glad for is the
amount of knowledge I have gained in the field of NLG.

42

Conclusion

The aim of this thesis was to implement an NLG system that generates foot-
ball articles from non-linguistic data. Along with the implementation, a brief
NLG overview was required in order to have baseline knowledge for creating the
intended software. We described the process of developing an NLG system end-
to-end with tasks that are needed to take into consideration in order to create a
fully functioning solution. We have covered the basics of NLG such as different
approaches and their core benefits and drawbacks. Moreover, we have illustrated
numerous problems that can arise during the development and that are required
to be dealt with beforehand.

In the second section we present an implementation of such a text-generating
system that uses slightly outdated (for reasons stated throughout the thesis mul-
tiple times), but, on the other hand, accessible methods. The implementation
is described in detail. Choices made across the solution are usually explained as
well. To inspect the implementation even more, please look into the code itself.

As stated in the end of the previous section, this work may not have that many
implications. Although software can be used to present the course of the match
in a textual and less-schematic representation, the quality of the outputted text
is not on the newspaper level (which was not expected). Another problem with
incorporating this project into other systems is the specificity of the input and the
usage of linguistic realiser Genja, which is not available to the public. However,
pieces in between said segments can be used. What is more, this paper can be
utilised by other computer scientists, who lack complex insight into the field of
computational linguistics and would like to study the subfield of NLG, since the
overview of NLG is written from the perspective of a beginner. Furthermore,
the text is filled with easy-to-follow examples and possible obstacles during the
development to further illustrate knowledge carried across the paper.

I hope that somebody will use this text as a learning material when exploring
the field of NLG and will find the information useful. I truly recommend this
text for someone, who is preparing himself to develop his first NLG system.

43

Bibliography

Roberto PA Araujo, Rafael L De Oliveira, Eder M De Novais, Thiago D Tadeu,
Daniel Bastos Pereira, and Ivandré Paraboni. Sinotas: the evaluation of a

nlg application. In Proceedings of the Seventh International Conference on
Language Resources and Evaluation (LREC’10), 2010.

Regina Barzilay and Mirella Lapata. Aggregation via set partitioning for natural
language generation. In Proceedings of the main conference on Human Lan-
guage Technology Conference of the North American Chapter of the Association
of Computational Linguistics, pages 359-366. Citeseer, 2006.

Giuseppe Carenini and Johanna D Moore. Generating and evaluating evaluative
arguments. Artificial Intelligence, 170(11):925-952, 2006.

David L Chen and Raymond J Mooney. Learning to sportscast: a test of grounded
language acquisition. In Proceedings of the 25th international conference on
Machine learning, pages 128—-135, 2008.

Aggeliki Dimitromanolaki and Ton Androutsopoulos. Learning to order facts for
discourse planning in natural language generation. arXiv preprint cs/0306062,
2003.

Pablo A Duboue and Kathleen McKeown. Statistical acquisition of content se-
lection rules for natural language generation. 2003.

Mari et Theune. Generation of soccer reports: some results. 1997.

Richard E Fikes and Nils J Nilsson. Strips: A new approach to the application
of theorem proving to problem solving. Artificial intelligence, 2(3-4):189-208,
1971.

Albert Gatt and Emiel Krahmer. Survey of the state of the art in natural lan-
guage generation: Core tasks, applications and evaluation. Journal of Artificial
Intelligence Research, 61:65-170, 2018.

Mika Hémalédinen et al. Harnessing nlg to create finnish poetry automatically. In
Proceedings of the ninth international conference on computational creativity.
Association for Computational Creativity (ACC), 2018.

Ioannis Konstas and Mirella Lapata. A global model for concept-to-text genera-
tion. Journal of Artificial Intelligence Research, 48:305-346, 2013.

Chunyi Liu, Peng Wang, Jiang Xu, Zang Li, and Jieping Ye. Automatic dialogue
summary generation for customer service. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery € Data Mining,
pages 1957-1965, 2019.

Tomasz Marciniak and Michael Strube. Beyond the pipeline: Discrete optimiza-
tion in nlp. In Proceedings of the Ninth Conference on Computational Natural
Language Learning (CoNLL-2005), pages 136-143, 2005.

44

David D McDonald. Issues in the choice of a source for natural language gener-
ation. Computational Linguistics, 19(1):191-197, 1993.

David D McDonald. Natural language generation. Handbook of Natural Language
Processing, 2:121-144, 2010.

Ratish Puduppully, Yao Fu, and Mirella Lapata. Data-to-text generation with
variational sequential planning. arXiv preprint arXiv:2202.13756, 2022.

Adwait Ratnaparkhi. Trainable methods for surface natural language generation.
arXiv preprint cs/0006028, 2000.

Ehud Reiter and Robert Dale. Building applied natural language generation
systems. Natural Language Engineering, 3(1):57-87, 1997.

Graeme Ritchie. Computational mechanisms for pun generation. In Proceedings
of the Tenth European Workshop on Natural Language Generation (ENLG-05),
2005.

Somayajulu Sripada, Neil Burnett, Ross Turner, John Mastin, and Dave Evans.
A case study: Nlg meeting weather industry demand for quality and quantity
of textual weather forecasts. In Proceedings of the 8th International Natural
Language Generation Conference (INLG), pages 1-5, 2014.

Kavita Thomas and Gowri Somayajulu Sripada. Atlas. txt: Linking geo-
referenced data to text for nlg. 2007.

Xianhua Zeng, Li Wen, Yang Xu, and Conghui Ji. Generating diagnostic report
for medical image by high-middle-level visual information incorporation on
double deep learning models. Computer Methods and Programs in Biomedicine,
197:105700, 2020.

45

List of Figures

[>.3 Transformation of entity Player from JSON to a Python class.| . .
[>.4 Transformation of entity Incident from JSON to a Python class.| .
[5.5 Implementation of preverbal messages.|

46

29
31
32
33

A. Attachments

This attachment describes structure of the .zip archive, which this thesis is part of.

root
— BcText - text of the thesis with abstract (CZ/EN)

abstract_cz.pdf
abstract_en.pdf
thesis.pdf

— FootballArticlesGenerator - Python project

— articles_generator.py
— Data.py

— data_initializer.py

— document_planner.py
— linguistic_realiser.py

— printer.py

— run.py

— sentence_planner.py

+— setup.py

— Types.py

— MatchData - directory to store input matches data

L example_match.json

+— README.md - general information about thesis and guide to startup

47

	Introduction
	Natural Language Generation
	What is NLG?
	Usage of NLG

	NLG Tasks
	Content determination
	Discourse planning
	Sentence Aggregation
	Lexicalization
	Referring expression generation
	Linguistic realisation
	Example: numeral constructions
	Languages differences
	Templates
	Other approaches

	NLG approaches
	Structure of solution
	Modular architecture
	Global approach
	Planning approach

	Methods
	Data-driven approach

	Process of developing an NLG system
	Requirements analysis
	Corpora building
	Evaluation

	Implementation
	Initialization
	Requirements and initial goal
	Input data
	Approach
	Match example
	Structure overview
	Modules implementation
	Auxiliary modules
	Data initializer
	Document planner
	Sentence planner
	Linguistic realiser
	Articles generator

	Output
	Discussion

	Conclusion
	Bibliography
	List of Figures
	Attachments

