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Abstract: Gravitational lensing serves as an invaluable tool for studying the distri-
bution of matter in the universe. This matter is predominantly dark and clumped
into centrally concentrated hierarchically structured halos of galaxies and galaxy
clusters. Early comparisons suggested discrepancies between the high population
of substructures predicted by cosmological simulations and the lack of corre-
sponding observational data. More recently, a major discrepancy in the opposite
sense was reported from analyses of lensing galaxy clusters: the lensing efficiency
of their substructures was found to be much higher than predictions based on
cosmological simulations. In this thesis, we examine gravitational lensing by sub-
structures embedded in dark-matter halos with Navarro—Frenk—White (NFW)
density profiles. We start by a detailed investigation of a simple model with a
single point mass perturbing the halo. Using analytical methods, we study its
critical curves, caustics and their transitions. Next, we explore the geometry of
lensed images and the weak-lensing characteristics of the same simple model, de-
veloping novel ways of their visualization. Finally, we construct a more realistic
lens model of a galaxy cluster consisting of an ellipsoidal cluster halo combined
with a population of truncated ellipsoidal galaxy halos. For both types of halos
we present analytical deflection-angle formulae. We choose parameters of the
galaxy cluster based on observations and cosmological simulations. We generate
source-plane and image-plane maps of the shear, phase and other lensing quan-
tities and discuss them, applying insights derived from our study of the simpler
model. The developed code can be used for advanced modeling and detailed
studies of cluster lensing, which may possibly indicate routes toward resolving
the substructure lensing-efficiency discrepancy.
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1. Introduction
In 1915 Albert Einstein published his general theory of relativity, which describes
spacetime as being curved by the presence of its matter content. Objects including
light then propagate along geodesics. These are curves that generalise the notion
of a straight line for the case of a curved space. In simple terms, massive objects
bend light rays. This phenomenon was first observed by Sir Arthur Eddington in
1919 (Dyson et al. 1920), who measured an apparent change in the positions of
stars close to the eclipsed sun. Since his experimental results were in agreement
with the quantitative prediction of general relativity, it is considered the first
major experimental success of Einstein’s great theory.

Later in the 1930s it was proposed (Einstein 1936, Zwicky 1937), that suf-
ficiently massive and compact astrophysical objects could be used to observe
more distant suitably positioned sources of light. Therefore, these massive ob-
jects would effectively act as gravitational lenses forming images of background
sources, affecting their position, shape, brightness and even breaking the wave-
front of the incoming radiation and thus creating multiple images of a single
source. The theory was later developed by Refsdal (1964) and since the first ob-
servation of a multiply imaged quasar (Walsh et al. 1979) gravitational lensing has
become an invaluable astronomical tool and, due to the progress in imaging tech-
nology, it is now extensively used to examine a broad spectrum of astrophysical
and cosmological phenomena.

Three distinct modes of gravitational lensing are studied. In strong lens-
ing, lenses are massive and concentrated enough to distort the images of distant
sources in a highly non-linear fashion, potentially forming multiple images, long
arcs or other spectacular shapes. In weak lensing, the projected mass density
and other related quantities of the lens have low values and linearised lens equa-
tions thus hold sufficiently well. Only mildly distorted and reoriented images of
background sources are then observed. When the shapes and orientations of a
substantial number of these images are measured and statistically processed, they
can be used to compute the projected matter distribution in the lens. The third
regime of gravitational lensing is called microlensing. In this case, no change in
the position or shape of the images can be discerned. However, its brightness
changes over time non-trivially, as the microlensing object passes between the
source and the observer.

All three modes of gravitational lensing (but mostly strong and weak) are
being used in the astrophysical context of galaxy clusters. Already by the end of
the 18th century, Charles Messier noticed that what he back then called “nebulae”
tend to cluster together (Messier 1781). Of course today we know that many of
his “nebulae” are actually distant galaxies. Important progress in the study of
galaxy clusters was made in 1950s when the extensive Abell catalogue with 1,682
clusters was composed (Abell 1958). A typical cluster consists of hundreds of
galaxies and its mass is circa 1015 solar masses (M⊙). However, a vast majority
of this mass is not contained in the individual galaxies. Roughly 85% of cluster
mass is in the form of a dark matter halo, around 10% amounts to hot intracluster
gas radiating in the X-ray spectrum and the individual galaxies make up only less
then 5%. Most of the matter in galaxy clusters thus cannot be directly observed.
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Figure 1.1: Galaxy cluster Abell S1063. Many thin arc-shaped tangentially ori-
ented images and several multiple images of background galaxies are visible.
Source: Hubble Frontier Field program.

This is where gravitational lensing comes into play as the light from the galaxies
that lie in the background gets deflected by the total mass distribution in the
cluster. This provides an excellent opportunity to survey the distribution and
properties of the dark matter.

In the rest of this chapter, we present brief overviews of fundamental concepts
of gravitational lensing theory, the phenomenology of dark matter halos and
gravitational lensing studies of dark matter halos.

1.1 Fundamentals of gravitational lensing
Gravitational lensing occurs when the light-emitting source and the massive lens-
ing object are aligned along the line of sight of the observer. A rigorous and
precise study of such a configuration would require to compute the propagation
of electromagnetic waves in the spacetime dynamically curved by its matter con-
tent. This is a daunting task. Thankfully, several reasonable assumptions and
approximations can be made to formulate an elegant theory of gravitational lens-
ing feasible for practical computations. Detailed overview of the theory and its
many applications was provided in several comprehensive books including, e.g.,
Schneider et al. (1992, 2006) or Congdon and Keeton (2018).

The assumptions and approximations are the following. Instead of propagat-
ing waves, light is described in the framework of geometric optics as rays and
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bundles of rays travelling from the source to the lens and from the lens to the
observer along straight lines if distances are sufficiently small, or along appro-
priate photon geodesics in cases where cosmology must be taken into account.
The so-called thin lens approximation is also employed and the lens L is mod-
eled as a two-dimensional density distribution limited to a single lens plane (also
called image plane) perpendicular to the line of sight of the observer O. It is
then only at the intersection with this plane that the light ray gets deflected.
The projected two-dimensional density distribution can be computed from the
three-dimensional density by integrating along the line of sight.

There are three important angles used to describe the typical lensing scenario,
which can be seen in Figure 1.2. The angle β denotes the angular position where
the source S is located from the lens, as it would be seen by the observer in
absence of light deflection. The angle θ denotes the position where the observer
sees an image I of the source. Finally, α denotes the angle by which the light ray
is deflected at the lens plane. These angles are assumed to by very small, so that
their trigonometric functions can be approximated by their linear expansions.

SOURCE PLANE

LENS PLANE

Figure 1.2: Layout of a typical lensing scenario. The observer O is observing the
source S that is located at the angular position β. However, as the incoming light
is deflected by the angle α due to the lens L, the observer actually sees image I
at the angular position θ. The source lies in the source plane and the thin lens
is located in the lens plane. These lie at distances Ds and Dl from the observer,
respectively. Dls denotes the distance between both planes. The figure is adapted
with permission from Heyrovský (2021).
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Finally, a quasi-static configuration is assumed with the relative velocities of
observer, lens and source being non-relativistic.

Using the approximations just mentioned, it can be shown that angles α, β
and θ are related by the lens equation

β = θ − Dls

Ds
α(θ) . (1.1)

Here Ds and Dls are the distances from the observer to the source plane and from
the lens plane to the source plane, respectively (see Figure 1.2). We also use Dl
to denote the distance from the observer to the lens plane. These are angular
diameter distances and in general they are not additive. Equation (1.1) is the
explicit expression of the angular position of the source in terms of the angular
position of its image. To get the position of the image from the position of the
source, one has to solve the equation for θ. In general, there may be multiple
solutions representing different observed images of a single source.

The well-known Schwarzschild solution to the Einstein equation can be used
to derive the deflection angle α of the simplest possible gravitational lens – the
point mass lens,

α(θ) = 4GM
c2 Dl

θ

θ2 , (1.2)

where G is the gravitational constant, c is the speed of light and M is the mass of
the point lens. To obtain the deflection angle of a spatially extended gravitational
lens, one has to integrate over the lens plane,

α(θ) = 1
π

Ds

Dls

∫︂
κ(θ′) θ − θ′

|θ − θ′|2
d2θ′ . (1.3)

The convergence κ is defined using the two-dimensional mass density Σ, which
can be obtained by the integration of three-dimensional density ρ of the lens along
the line of sight,

κ(θ) = Σ(θ)
Σcr

. (1.4)

The critical density Σcr is merely a constant factor given by the combination of
distances,

Σcr = c2

4πG
Ds

Dl Dls
. (1.5)

The form of Equation (1.3) is analogous to those of Newton’s law of gravitation
or Coulomb’s law of electrostatics. This analogy can be extended further and the
lensing potential ψ can be introduced. The deflection angle can then be expressed
as its gradient,

α(θ) = Ds

Dls
∇θ ψ(θ) , (1.6)

while the potential itself is the solution to the two-dimensional Poisson’s equation
with the convergence on the right hand side,

∆ψ(θ) = 2κ(θ) . (1.7)

One of the most important quantities in the study of gravitational lensing is
the Jacobian matrix the lens equation,

J(θ) = ∂ β

∂ θ
(1.8)
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and its determinant det J(θ). The inverse of the absolute value of this determi-
nant, |det J(θ)|−1, is the magnification or amplification of an infinitesimal source
observed at the image-plane position θ. To compute the total amplification of
such a source, one has to sum amplifications associated with each of its images
formed by the lens

A(β) =
∑︂
i

|det J(θi)|−1 . (1.9)

One of the ways to obtain the source-plane amplification map A(β), and the one
that we will be using in the following chapters, is inverse ray shooting (Kayser
et al. 1986). In this method, a high number of light-rays is randomly sampled in
the image plane and followed back to the source plane using the lens equation,
where they are binned and counted in a pixel grid.

Zero contours of the Jacobian determinant,

det J(θ) = 0, (1.10)

are called critical curves. These curves represent positions in the image plane,
where amplification diverges to infinity. Of course such a concept is not strictly
physical as it pertains only to amplification of an infinitesimal point source, while
real sources are spatially extended. Nevertheless, images that appear along crit-
ical curves are in general extremely amplified, magnified and deformed. The
critical curves are images of caustics. Caustics are curves in the source plane,
that can be obtained by projecting critical curves back to the source plane using
the lens equation. In addition to their relation to the amplification divergence
they also represent important boundaries in the source plane, at which the num-
ber of observed images changes by two, if the point source crosses them.1Caustics,
their topology and their metamorphoses are of particular interest in the context
of gravitational microlensing and the apparatus of catastrophe theory is usually
employed to study them.

It is often useful to decompose the Jacobian matrix of the lens equation as

J(θ) = ∂ β

∂ θ
=
(︄

1 − κ− γ cos 2φ −γ sin 2φ
−γ sin 2φ 1 − κ+ γ cos 2φ

)︄
, (1.11)

where the already mentioned convergence κ(θ) as well as shear γ(θ) and phase
φ(θ) can be expressed in terms of the second derivatives of the lens potential,

κ = ψ,11 +ψ,22

2 , (1.12)

γ (cos 2φ, sin 2φ) =
(︄
ψ,11 −ψ,22

2 , ψ,12

)︄
. (1.13)

Subsequently, the Jacobian determinant can then be expressed as

det J(θ) = [ 1 − κ(θ) − γ(θ) ] [ 1 − κ(θ) + γ(θ) ] . (1.14)

1However, in Appendix A.2 we describe and discuss a peculiar exception to this rule, that
we have encountered in our inquiry.
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The Jacobian matrix can also be used to formulate the linear approximation
of the lens equation. Assuming a small source centered at β0 with an image
centered at θ0 the lens equation can be expanded to the linear order as

β − β0 ≈ J(θ0)(θ − θ0) (1.15)

and conversely
θ − θ0 ≈ A(θ0)(β − β0) , (1.16)

where A(θ) is the inverse to the lens-equation Jacobian matrix

A(θ) = 1
(1 − κ)2 − γ2

(︄
1 − κ+ γ cos 2φ γ sin 2φ

γ sin 2φ 1 − κ− γ cos 2φ

)︄
. (1.17)

The Equations (1.15, 1.16) hold for sufficiently small deviations of β and θ.
In Section 3.2.3 we discuss in detail the eigendecomposition of matrix A(θ) and
how it relates to the geometry of images of small circular sources. In this linear
regime, the images of such sources are small ellipses. Their semi-axes are given
by the eigenvalues and the orientation of the ellipse by the eigenvectors of A(θ).
In weak lensing surveys, the lengths of semi-axes a, b of numerous background-
galaxy images are measured and used to estimate the shear,

1 − b/a = 1 − 1 − κ− γ

1 − κ+ γ
≃ 2 γ . (1.18)

A distribution of shear estimated in this way, which we call weak shear (see Sec-
tion 3.2.4), together with orientations of images can, after statistical processing
and adjustment for intrinsic shapes of source galaxies, be used to compute an
estimate of the convergence κ, which yields the projected matter distribution in
the lens. A direct approach for obtaining the convergence from the shear was
devised by Kaiser and Squires (1993). The Fourier transform of Equation (1.13)
is used to express the Fourier transform of Equation (1.12). The obtained Fourier
image of the convergence κ is then transformed back into real space.

1.2 Dark matter halos
At present time, the most widely accepted physical model of the universe and its
content is the ΛCDM model. Greek letter Λ denotes the cosmological constant of
Einstein’s equations representing the dark energy, which is thought to dominate
the current universe constituting roughly 68% of its content (Planck Collaboration
et al. 2016). The abbreviation CDM means cold dark matter. Although directly
unobservable, it makes up 26% of the universe’s content, while everyday baryonic
matter makes only 5%. The dark matter, or shortly DM, is being indirectly
observed already since 1920s (Kapteyn 1922, Zwicky 1933) – first in the form of
unexpected stellar and galactic motions – and today it constitutes an integral
part of our understanding of galaxies, structure formation, cosmic microwave
background anisotropies, Big Bang nucleosynthesis, etc. Gravitational lensing is
an invaluable tool for studying dark matter, as the light gets deflected by the total
mass irrespective of its nature, while most of this total mass can be attributed to
dark matter. The coldness of dark matter means that its hypothetical particles
move with non-relativistic velocities.
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In the ΛCDM model, the universe starts with a nearly uniform power spectrum
of density fluctuations. From them, structure grows in hierarchical order due
to gravitational instability, meaning that smaller structures form earlier, while
bigger structures form later and aggregate smaller ones. First, the primordial
density fluctuations collapse along one direction forming two-dimensional sheets
or, in other words, “Zel’dovich pancakes” (Zel’dovich 1970). These then collapse
further into a network of interconnected filaments separated by vast voids. This
macrostructure of the universe is usually called the “cosmic web”. Finally, dark
matter further accretes along filaments forming halos at their intersections –
roughly ellipsoidal structures of dark matter strongly concentrated towards their
centers. In general, the dark matter collapses first, forming potential wells into
which the baryonic matter is then attracted. An overview of structure formation
in the early universe can be found for example in Peter and Uzan (2009), Lyth
and Liddle (2009).

Over the past half-century, this growth of structure and the formation of dark-
matter halos have been studied extensively using N-body computer simulations,
in which the movement of dark-matter (macro)particles is traced from primor-
dial fluctuations to present times. Growth of computational power allowed for
a vast increase in the number of simulated particles, from 300 particles used by
Peebles (1970) to reproduce the profile of the Coma cluster, to the PKDGRAV3
simulation (Potter et al. 2017) with more than 1 trillion particles. Once the simu-
lation is complete, its resulting matter distribution can be used to find individual
dark-matter halos. Several methods with varying results have been proposed for
this, since the definition of a halo is necessarily somewhat arbitrary. Usually,
however, a center of the halo is placed at the local minimum of the gravitational
potential. The halo then consists of the dark matter within a sphere with radius
rvir determined according to the spherical collapse model with an average density
inside the sphere being equal to the virial overdensity ∆vir(z) times the critical
density at redshift z. The mass of such a halo is then denoted Mvir. Alternatively,
the virial overdensity can be fixed as ∆ = 200, for example. In that case, the
halo is then defined by a radius r200 and its mass M200. Once halos are found
in the simulation results, typically circa 80% of dark matter is present in the
form of halos and only 20% remains unclustered. The properties of the halos can
then be studied. A useful review of morphology of dark-matter halos formed in
simulations can be found in Zavala and Frenk (2019).

During their development, halos gradually acquire more mass by gravitation-
ally accreting surrounding smooth diffuse dark matter, by trapping and disrupt-
ing smaller halos and by merging with other halos. Those smaller halos enclosed
in bigger halos are called subhalos. Today, halos are mostly composed of dark
matter from disrupted subhalos and only roughly 15% of their mass was accreted
smoothly (e.g., Wang et al. 2011). Moreover, only 10% of halo mass is gravitation-
ally bound in its subhalos, while most of the original subhalo mass was stripped
from them by the process called tidal stripping and is now part of the greater
halo, in which they are embedded. The whole structure of halos, subhalos, sub-
halos of subhalos and so on is nearly self-similar. As per their masses, the count
n of halos with mass M follows the mass function, which behaves approximately
as (Frenk et al. 1988)

dn
dM ∼ M−1.9 . (1.19)
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The density profiles of halos in dark-matter-only simulations are significantly
centrally concentrated, forming a characteristic cusp. Asymptotically, the density
at the center of the halo depends on the radial distance as ρ(r → 0) ∼ r−1. The
physical origin of this cusp is not yet fully understood. However, it was suggested
(e.g., Angulo et al. 2017) that first, an even steeper ρ ∼ r−1.5 cusp forms and only
then it is flattened to ρ ∼ r−1. Remarkably, the density profile of dark-matter
halos appears to be universal over the vast range of halo masses (Ludlow et al.
2013).

The Navarro–Frenk–White (NFW) profile (Navarro et al. 1996, 1997) has been
used to fit the dark-matter distribution in simulated halos,

ρNFW(r) = ρs

r
rs

(︂
1 + r

rs

)︂2 . (1.20)

Here, ρs is a characteristic density of the halo and rs is its scale radius. The
concentration parameter c, which can then be (together with rs) used as a pa-
rameter to describe the halo profile, is usually defined as c200 = r200/rs or
cvir = rvir/rs. There is a correlation between the concentration parameter and
halo mass (Navarro et al. 1997), with lighter halos being more concentrated. In
the hierarchical structure formation paradigm, lower-mass halos collapsed earlier,
when the universe was less expanded and its density was higher. The density of
the inner regions of halos reflects the mean density of the universe at the time
of their collapse (Wang et al. 2011). This explains why smaller halos tend to be
more concentrated.

Other density profiles than NFW have been proposed to fit simulated halos
even more closely (e.g., Einasto 1965). However, the NFW profile continues to be
used as it still provides a good fit, especially close to the halo center. Moreover,
it was pointed out (Newman et al. 2013) that the NFW profile is even more
suitable to model the total mass distribution of galaxy clusters including the
mass of baryons. This is particularly convenient for the purposes of gravitational
lensing.

The three-dimensional shape of a dark-matter halo is roughly a triaxial el-
lipsoid. That is an ellipsoid with all three semi-axes having different lengths.
Nonetheless, the inner parts of halos tend to be more prolate, and the outskirts
tend to be more oblate (Vera-Ciro et al. 2011). A prolate ellipsoid has two semi-
axes distinctively shorter than the third one, while an oblate ellipsoid has two
semi-axes longer than the third one. Schneider (2006) uses the terms “cigars”
and “hamburgers” to illustrate the prolate and oblate shapes, respectively. The
inner parts of the halos were formed earlier by accretion along the filaments, thus
their prolate shape. On the other hand, the outer parts formed later in a more
isotropic manner. In general, more massive halos tend to be more aspherical as
they formed more recently and thus retain more influence from the merger events
(Despali et al. 2014).

For heavy halos of the galactic and galaxy-cluster scales, the astronomical
observations are in good agreement with cosmological simulations of structure
growth in terms of halo properties and abundancies. However, several discrepan-
cies between observations and simulations were pointed out for lower-mass halos
with M ≲ 1011M⊙. A review of the research on these small-scale challenges to the
ΛCDM paradigm was recently provided by Bullock and Boylan-Kolchin (2017).
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Four small-scale problems are usually mentioned.
First, there is the “missing satellites” problem. By this, it is meant that sim-

ulations predict several orders of magnitude more low-mass halos than what is
observed in the vicinity of the Milky Way galaxy. Naturally, it was proposed that
these low-mass halos in fact do exist, but cannot be easily observed, since they
aren’t heavy enough to form a sufficient stellar population. This takes us directly
to the second problem, which is called “too-big-to-fail”, because according to the
theoretical predictions, many of the these low-mass halos should still be too mas-
sive to fail to form a substantial population of stars. Third is the “core–cusp”
problem. As mentioned above, halos formed in dark-matter-only simulations have
the characteristic density cusp at the center. On the other hand, various obser-
vations show that at least some halos actually have a flattened central density
profile or, in other words, a “core”. The fourth and final problem that is usually
mentioned are “satellite planes”. It seems that low-mass satellite halos around
Milky Way are preferentially located in a thin plane, in which they orbit. This
was claimed to be incompatible with predictions.

These suggested problems of the ΛCDM cosmological model remain contro-
versial. Some recent reviews (Zavala and Frenk 2019) consider them more or
less “solved” within the ΛCDM paradigm once several important mechanisms of
baryonic feedback are included in the simulations and improved observations and
statistics are used. Others remain critical (Bullock and Boylan-Kolchin 2017)
and propose alternative cosmologies to obtain simulation results that would be
in better agreement with current observations.

In any case, gravitational lensing is an important tool for surveying the proper-
ties of dark-matter halos down to the scale of the controversial galactic satellites.
These properties are difficult to study in other ways due to the nature of dark
matter.

1.3 Gravitational lensing by dark matter halos
of galaxies and galaxy clusters

A couple of strong-lensing methods were devised in order to indirectly observe
and quantify low-mass halos that are predicted by simulations yet thought to be
missing in observations. The primary goal of these methods is thus to shed more
light on the “missing satellites” problem.

One of the methods is based on so called “flux-ratio anomalies”. Since the
magnification in multiply lensed images is determined by higher-order derivatives
of the lens potential, it is highly sensitive to its perturbations. The perturbations
may be caused for example by the presence of small-scale halo substructures.
For a smooth mass distribution of the lens and nearby images in the vicinity of
the caustic, ratios of fluxes were shown to follow an asymptotic relation, which
however does not hold if sufficient substructures are positioned along the line
of sight. Such anomalous flux-ratios were indeed observed (Metcalf and Madau
2001, Dalal and Kochanek 2002) and they hint at an abundance of subhalos that is
in agreement with CDM simulations. On the other hand, it was also claimed (Xu
et al. 2015) that the magnitudes of flux-anomalies cannot be wholly attributed
to the dark-matter substructures and other effects must be in play.
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Another method for detecting dark-matter substructures could use distortions
of strongly lensed images. When the background galaxy acting as a source is
sufficiently aligned with the dark-matter halo of a foreground lens galaxy, an
image in the form of a curved arc or even an “Einstein ring” is formed. If the
subhalo is located in a position that is projected onto the image, this image gets
distorted slightly. The influences from hundreds of subhalos accumulate in the
residual pattern of correlations in the lensed image. These correlations depend on
the properties of the subhalo population. It was estimated (Li et al. 2016) that
few hundred strong-lensing systems need to carefully analysed in this manner
in order to possibly conclude that results disagree with the ΛCDM structure-
formation predictions.

On the other end of the mass spectrum, there are galaxy-cluster halos. Galaxy
clusters are the largest gravitationally bound structures formed in the present uni-
verse and due to their mass, composition and density profiles they can serve as
very powerful gravitational lenses. They exhibit a wide range of lensing phenom-
ena, which in turn can be used to measure many astrophysical and cosmological
quantities (Kneib and Natarajan 2011). Lensing-based methods are widely used
to reconstruct the density distributions of clusters. The galaxy clusters also serve
as giant natural telescopes, allowing us to see very distant sources that would
otherwise be too dim and too small to be observed.

In the strong-lensing regime, galaxy clusters create multiple images and fre-
quently form thin arc-shaped images (Hennawi et al. 2008) of the background
galaxies. The morphology of the arcs hints towards a mostly smooth and some-
what asymmetric mass distribution in clusters. The mass distribution in the
central parts of the cluster is well determined by the positions and shapes of
the strongly-lensed images. This fact can be practically utilised to reconstruct
the density profile of the cluster. Such reconstruction is done by choosing an
initial model of the lens and varying its parameters to fit the observed images.
Parametric (e.g., Halkola et al. 2006) or non-parametric (e.g., Diego et al. 2005)
lens models can be used for the task. Parametric models consist of predefined
density profiles placed and centered at locations of peak luminosity with some
parameters fixed using scaling relations. Remaining parameters are estimated
during the fitting procedure. Non-parametric models involve a general density
distribution on a discrete plane grid. The fitting of the lens model can be done
iteratively. A simple initial model is fitted and used to predict the positions of
additional images. These can then be located and used to further constrain the
mass distribution. Repeating these steps leads to further refinement of the model.

Individual cluster members, i.e., galaxies and their associated subhalos, also
produce strong-lensing systems. The first observed lens, the “Twin Quasar”
(Walsh et al. 1979), itself is a galaxy–galaxy strong lens. By today, hundreds
of such systems have been discovered and in the near future this number is ex-
pected to increase substantially thanks to upcoming large-scale imaging surveys
(Metcalf et al. 2019). Surprisingly, a recent parametric strong-lensing study of 11
galaxy clusters (Meneghetti et al. 2020) indicated a stark discrepancy of the effi-
ciency of galaxy–galaxy strong lensing between real observed clusters and those
from cosmological simulations. It seems that the observed clusters posses an or-
der of magnitude more substructures than their simulated counterparts. This
discrepancy differs from the one mentioned in the previous section. While the
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“missing satellites” problem indicates a lack of observed halo substructures, these
new lensing results indicate the opposite. However, this remains a controversial
subject. Robertson (2021) and Bahé (2021) suggest that the problem may be
caused by the insufficient resolution of used simulations, while Granata et al.
(2022) argue against this idea.

Once the mass distribution in the strong lensing cluster or substructure is de-
termined, it can potentially be used to measure or constrain various cosmological
parameters. The time delay between multiple images of time-dependant phe-
nomena like supernovae or active galactic nuclei provides comparatively precise
measurement of the Hubble constant H0 (Suyu et al. 2017). Moreover, spec-
troscopical analysis of redshifts of many multiple images constrains the density
parameters Ωm and ΩΛ (Golse and Kneib 2002).

Weak lensing methods can also be used to reconstruct the mass distribution
in galaxy clusters. They require measuring the ellipticities and orientations of
a substantial amount of weakly lensed background galaxies. After statistical
processing and filtering out the influence of the intrinsic ellipticity of sources, these
measurements provide image-plane maps of shear and phase. Since the observed
weakly lensed images are often only a few pixels in size, special care must also be
taken to adjust for the point spread function of the imaging device. Estimated
maps of the weak-lensing quantities can then be used to directly compute the
convergence κ representing projected density in the cluster (Kaiser and Squires
1993, Kaiser et al. 1995). Apart from these direct methods, several inverse weak-
lensing methods were also devised to estimate the mass distribution in galaxy
clusters. In them, the potential is varied on a grid in order to minimise a penalty
function, which measures the agreement with observed image geometries. Inverse
methods based on maximum likelihood (e.g., Bartelmann et al. 1996) or maximum
entropy (e.g., Seitz et al. 1998) and also Bayesian and Markovian Monte Carlo
methods (e.g., Jullo et al. 2007) were all used for cluster-mass reconstruction.

Although to this day many clusters were studied using the weak-lensing meth-
ods, the Bullet Cluster (1E 0657-56) remains to be the most famous of them.
Clowe et al. (2004) used weak lensing to show that the Bullet Cluster is actually
composed of two large total-density peaks located at the highest accumulations
of cluster galaxies.. On the other hand, X-ray observations show that hot baryon
gas is concentrated mostly in between them, forming a distinct shock front. The
whole configuration is explained as a merger event of two sub-clusters. Their
dark-matter halos that make up most of the total mass passed through each other,
while their baryon-gas components collided and slowed down substantially. This
observation is commonly cited as a strong evidence for the collisionless nature of
dark matter.

The weak-lensing signals from multiple galaxy clusters or even individual
galaxies can be stacked and processed together to reveal the mean density profiles
(Okabe et al. 2013, Umetsu and Diemer 2017). The galaxy clusters that serve as
inputs for these analyses are often grouped based on their properties (redshift,
luminosity, etc.) to uncover relations between the shape of the density profile
and these properties.

Powerful state-of-the-art methods for cluster-density reconstruction combine
the advantages of both strong and weak gravitational lensing (Bradač et al. 2005,
Limousin et al. 2007, Finney et al. 2018, Jauzac et al. 2018). Strongly lensed
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images constrain the mass distribution near the cluster center, while weak lensing
helps to resolve the halo outskirts. The fitting of such a combined model is done
by minimising a penalty function, which is now a sum of a strong-lensing term,
a weak-lesning term and a regularisation term used to suppress the influence of
small-scale fluctuations.

Besides strong and weak lensing, microlensing is the third major mode of lens-
ing that is being studied. Although it is not the regime typically considered in the
context of galaxy clusters, some work on this subject has been done nonetheless.
For example Kelly et al. (2018) investigated microlensing of an individual star in
a background galaxy by the cluster caustic.

1.4 Structure of the thesis
We have seen that although gravitational lensing by dark-matter halos of galaxies
and galaxy clusters is now a mature field of study, several open questions still
remain that are related especially to halo substructures. In the context of galaxy
clusters, this was recently demonstrated by Meneghetti et al. (2020), who have
found a major discrepancy between the efficiency of the galaxy–galaxy strong
lensing observed within galaxy clusters and predictions based on cosmological
simulations. As already mentioned, these results remain controversial and ask for
further investigation.

In this thesis, we take a bottom-up and mostly analytical approach to study
dark-matter halos perturbed by substructures. We start with a lens that consists
of a single point mass embedded in a continuous Navarro–Frenk–White mass
distribution. Such a configuration can be used as a simplest model for an indi-
vidual galaxy or subhalo in the galaxy cluster or as a dwarf halo in a galactic
halo. Our analysis of this model also applies to gravitational lensing by a super-
massive black hole within the galaxy halo, as already acknowledged by Mahler
et al. (2022). The simplicity of the model allows for the use of analytic methods
and for systematic exploration of its parameter space. We find that in terms of
gravitational lensing, this seemingly simple model already exhibits unexpectedly
complex properties.

Detailed analysis of this NFW lens perturbed by a point mass is the subject of
the next two chapters. The content of these chapters corresponds to the content
of our two papers (Karamazov et al. 2021, Karamazov and Heyrovský 2022)
published in The Astrophysical Journal.

In Chapter 2, we continue the work that was initiated by Lukáš Timko in his
bachelor’s thesis (Timko 2017) and focus on the critical curves and caustics of the
system while varying the mass and the location of the point mass within the halo.
We locate boundaries in the parameter space at which caustic metamorphoses
appear. An unexpectedly high number of caustic transitions of different types
is present in the system. We demonstrate the existence of a critical mass of the
added object, at which the radial caustics of the cluster vanish in an unusual
non-local transition.

Then, in Chapter 3, our focus moves to the second derivatives of the lens
potential and to the geometry of images formed by this lens. We study the shear,
the phase and their weak-lensing estimates. We derive analytical expressions to
explain patterns that appear in obtained plots of lensing quantities. We reveal the
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relation between zero-shear points and umbilics of the caustic. We use eigenvalue-
decomposition of the inverse-Jacobian matrix to asses the geometry of images and
to introduce novel ways of visualisation.

In Chapter 4, we proceed to study the gravitational lensing by a more realistic
model of a galaxy cluster that consists of numerous ellipsoidal truncated NFW
subhalos within the main ellipsoidal NFW cluster halo. We choose the main-
halo parameters based on real galaxy clusters analysed in lensing surveys and we
generate parameters of the subhalos using probability distributions fitted from
N-body cosmological simulations. Then, we present formulae for deflection angles
of both truncated and untruncated ellipsoidal NFW halo lenses and use them to
generate image-plane and source-plane of lensing quantities, which we analyse.

This thesis is also supplemented by an Appendix chapter. It consists of sev-
eral sections that appeared as appendices to our original papers. In Appendix
A.1, we gather several analytic results and approximations for the model with a
point mass embedded in the NFW halo. In Appendix A.2 we discuss the peculiar
properties of the vanishing radial critical curves and caustics that we have discov-
ered in the same model. In Appendix A.3, we describe how the image geometry
is related to the convergence and shear and how these relations can be visualised
in a compact way.

15



16



2. Gravitational Lensing by a
Massive Object in a Dark Matter
Halo. I. Critical Curves and
Caustics1

Abstract
We study the gravitational lensing properties of a massive ob-
ject in a dark matter halo, concentrating on the critical curves
and caustics of the combined lens. We model the system in the
simplest approximation by a point mass embedded in a spher-
ical Navarro–Frenk–White density profile. The low number of
parameters of such a model permits a systematic exploration
of its parameter space. We present galleries of critical curves
and caustics for different masses and positions of the point
in the halo. We demonstrate the existence of a critical mass,
above which the gravitational influence of the centrally posi-
tioned point is strong enough to eliminate the radial critical
curve and caustic of the halo. In the point-mass parameter
space we identify the boundaries at which critical-curve tran-
sitions and corresponding caustic metamorphoses occur. The
number of transitions as a function of position of the point is
surprisingly high, ranging from three for higher masses to as
many as eight for lower masses. On the caustics we identify
the occurrence of six different types of caustic metamorphoses.
We illustrate the peculiar properties of the single radial critical
curve and caustic appearing in an additional unusual non-local
metamorphosis for a critical mass positioned at the halo cen-
ter. Although we constructed the model primarily to study the
lensing influence of individual galaxies in a galaxy cluster, it
can also be used to study the lensing by dwarf satellite galax-
ies in the halo of a host galaxy, as well as (super)massive black
holes at a general position in a galactic halo.

Keywords: gravitational lensing — galaxy clusters — dark matter halos — dwarf
galaxies — supermassive black holes

1Karamazov et al. (2021)

17



2.1 Introduction

Galaxy clusters provide a unique setting in which gravitational lensing plays an
important role, uncovering information about the background universe as well
as about the cluster itself (Kneib and Natarajan 2011). On the one hand, clus-
ters act as gravitational telescopes for studying the more distant populations of
high-redshift galaxies and protogalaxies. On the other hand, combined analyses
of weak and strong gravitational lensing can be used to map the total mass dis-
tribution in the cluster (e.g., Finney et al. 2018, Jauzac et al. 2018). A number of
different techniques have been developed for joining the statistical information on
weak image deformations in the outer parts of the cluster with the information
on specific multiply imaged systems in its inner parts (Meneghetti et al. 2017).

These techniques have advanced to a state in which properties of analyzed
clusters can be compared with properties of simulated clusters formed in cos-
mological structure-formation simulations. In a recent study, Meneghetti et al.
(2020) compared the lensing effects of substructure in a set of observed clusters
and in their simulated counterparts. They found a substantial discrepancy in
the population of small-scale gravitational lenses: their lensing efficiency in the
observed clusters was more than an order of magnitude higher than in the sim-
ulated clusters. Lacking an obvious single explanation for this surprising result,
Meneghetti et al. (2020) suggested its possible resolution might involve either
systematic issues with simulations, or incorrect assumptions about dark matter
properties.

Instead of simulating lensing by an advanced realistic model of a galaxy cluster
with all its different components, in this work we take a first step in a bottom-up
approach. We study the lensing effect of a single massive object in the dark matter
halo of a galaxy cluster. Using a simple model with few parameters allows us to
systematically explore the lensing behavior of the system and its parameter-space
variations. Results of such a study can be used as a stepping stone to exploring
the properties of more advanced models. At the same time, they may aid the
interpretation of the local lensing behavior in the vicinity of individual galaxies
in a cluster.

We model the mass distribution of the cluster by a spherical Navarro–Frenk–
White (hereafter NFW) density profile (Navarro et al. 1996), which has been
shown to describe adequately the combined dark matter and baryonic gas dis-
tribution in galaxy clusters (Newman et al. 2013). For our purposes, the NFW
profile has the additional advantage of yielding a simple analytic expression for
the gravitational deflection angle. This in turn permits an analytic derivation
of the Jacobian and other lensing quantities, as well as more efficient inverse-
ray-shooting computations. We model the massive object using the simplest
approximation, i.e., that of a point mass. While this is a rather poor model for
describing a galaxy, at a sufficient distance the gravitational field of any massive
object can be described by its monopole. At the scale of the galaxy cluster it is
not unreasonable as a first approximation.

The results of structure-formation simulations indicate that the NFW profile
is suitable not just for galaxy-cluster halos, but more generally for dark matter
halos down to the scale of individual galaxies (Ludlow et al. 2013). In view
of this finding, our lens model can be used just as well for studying two other
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astrophysical scenarios. First, it can describe the lensing effect of a substructure
or a dwarf satellite galaxy in the dark matter halo of a host galaxy (e.g., Hezaveh
et al. 2016). Second, it can describe the lensing by a (super)massive black hole in
a galaxy (e.g., Mao et al. 2001, Bowman et al. 2004). We note that observational
data on galactic dark-matter distributions indicate a preference for profiles with
a central core rather than a cusp (Salucci 2019). Nevertheless, the NFW profile
can be used as a reasonable approximation for the halos of elliptical (e.g., Shajib
et al. 2021) or even massive spiral galaxies (e.g., Rodrigues et al. 2017).

In this article we describe the basic lensing properties of the model, focusing
on the structure of its critical curves and caustics. In a companion article we
explore the effect of the point mass on the shear and on the images formed by
the lens. The content presented here is organized as follows. In Section 2.2 we
give a brief overview of lensing by a NFW halo, illustrating the dependence of
critical-curve and caustic radii on the halo convergence parameter. We select a
fiducial value of the parameter and use it for computing most of the subsequently
presented results. In Section 2.3 we explore the properties of the combined NFW
halo + point-mass lens model. For a centrally positioned point mass we study the
different lensing regimes as a function of its mass in Section 2.3.3. For a general
position of the point mass we explore the critical-curve transitions and caustic
metamorphoses and map the corresponding boundaries in the parameter space of
the point mass in Section 2.3.4. In Section 2.4 we comment on the effect of vary-
ing the halo convergence parameter, and discuss the relevance of the results in
different astrophysical scenarios. We summarize our main findings in Section 2.5.
In Appendix A.1 we present useful analytic results and approximations. In Ap-
pendix A.2 we describe the unusual lensing properties for a critical-mass point
positioned at the halo center.

2.2 Lensing by an NFW halo

2.2.1 Density profile and convergence
The three-dimensional density profile of a spherical dark-matter halo can be de-
scribed by the Navarro–Frenk–White profile (Navarro et al. 1996),

ρ(r) = ρs

(︃
r

rs

)︃−1 (︃
1 + r

rs

)︃−2
, (2.1)

where r is the three-dimensional radial distance from the center, rs is the scale
radius and ρs is a characteristic density such that ρ(rs) = ρs/4. At small radii
r ≪ rs the density diverges as ρ ∼ r−1, at large radii r ≫ rs the density drops as
ρ ∼ r−3, and at the scale radius d ln ρ /d ln r |r=rs = −2. The halo mass enclosed
in a sphere of radius r is

M(r) = 4π
∫︂ r

0
r′ 2ρ(r′) dr′ = 4πr3

sρs

[︃
ln
(︃

1 + r

rs

)︃
− r

r + rs

]︃
. (2.2)

Due to the logarithmic divergence of the NFW halo mass for r ≫ rs , the profile
is extended only to a certain distance such as r200, at which the mean density
within the enclosed sphere is 200 times the critical density at the redshift of the
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halo, ρcrit(z). The ratio of the two characteristic radii defines the concentration
parameter of the halo, cs = r200/rs.

Despite its density divergence at the center and its mass divergence at large
radii, for a broad range of intermediate radii the NFW profile presents a good
fit to cold dark matter halo profiles. For galaxy cluster halos this agreement has
been demonstrated by cluster lensing analyses (Okabe et al. 2013, Umetsu and
Diemer 2017) or by X-ray emission analyses (Ettori et al. 2013).

In order to compute light deflection by the NFW halo we first integrate Equa-
tion (2.1) along the line of sight to obtain the NFW surface density. We express
r = rs

√
x2 + l2 in terms of the distances x projected in the plane of the sky and

l along the line of sight, both in units of the scale radius rs. The convergence

κ(x) = rs

Σcr

∫︂ ∞

−∞
ρ(rs

√
x2 + l2) d l (2.3)

is defined as the surface density expressed in units of the critical surface density

Σcr = c2

4πG
Ds

Dl Dls
, (2.4)

where c is the speed of light, G the gravitational constant, and Dl, Ds, and Dls
are the angular diameter distances from the observer to the lens (i.e., the halo in
our case), from the observer to the source of light (e.g., a background galaxy or
quasar), and from the lens to the source, respectively.

For the NFW density from Equation (2.1) the integral in Equation (2.3) can be
performed analytically (e.g., Bartelmann 1996, Wright and Brainerd 2000, Keeton
2001, Golse and Kneib 2002), yielding the NFW convergence as a function of the
plane-of-the-sky radial position x,

κ(x) = 2 κs
1 − F(x)
x2 − 1 , (2.5)

where the dimensionless halo convergence parameter κs = ρs rs/Σcr and the func-
tion

F(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

arctanh
√

1 − x2√
1 − x2 for x < 1 ,

1 for x = 1 ,
arctan

√
x2 − 1√

x2 − 1
for x > 1 .

(2.6)

The NFW convergence decreases monotonically and smoothly with radial posi-
tion x throughout its range. As shown in Equation (A.3), it has a logarithmic
divergence for x → 0, where κ(x) ≈ −2κs ln x. It drops to κ(1) = 2 κs/3 at
the scale radius, as shown in Equation (A.9), and decreases further to zero as
κ(x) ≈ 2κs x

−2 for x ≫ 1. The unit-convergence radius x0 has a special signifi-
cance from the perspective of lensing. It can be determined for a given value of
κs by setting κ(x0) = 1 in Equation (2.5),

1 − x2
0

F(x0) − 1 = 2κs , (2.7)

which can be solved numerically. The solutions are illustrated and discussed
further in Section 2.2.3.
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2.2.2 Lens equation
The gravitational field of the halo deflects a light ray passing at point x in the
plane of the sky by the deflection angle

α(x) = 4GMcyl(x rs)
c2 rs

x

x2 , (2.8)

where Mcyl(x rs) is the mass within a radius x rs along the line of sight through
the halo center,

Mcyl(x rs) = 2 π r2
s Σcr

∫︂ x

0
κ(x′) x′ dx′ = 4 π r3

s ρs

[︃
ln x2 + F(x)

]︃
, (2.9)

where we used the NFW convergence from Equation (2.5). The deflection angle
for the NFW halo thus is

α(x) = 16 π G r2
s ρs

c2

[︃
ln x2 + F(x)

]︃
x

x2 = 4κs rs Ds

Dl Dls

[︃
ln x2 + F(x)

]︃
x

x2 , (2.10)

where we used Equation (2.4) and the definition of κs under Equation (2.5) to
get the second expression. The deflection angle can be used in the general lens
equation,

β = θ − Dls

Ds
α , (2.11)

connecting the angular position β of a background source with the angular po-
sition θ of its image formed by the lens. In gravitational lensing the angles are
often expressed in units of the Einstein radius2 of the lens,

θE =
√︄

4GMNFW

c2
Dls

Dl Ds
, (2.12)

where we set MNFW = M(cs rs) as the total mass within radius r200 using Equa-
tion (2.2),

MNFW = 4 π r3
s ρs [ ln (1 + cs) − cs/(1 + cs) ] . (2.13)

If we introduce the angular scale radius in units of the Einstein radius θ∗
s =

rs/(Dl θE), we may write the lens equation for the NFW profile as

β∗ = θ∗ − [ ln (1 + cs) − cs/(1 + cs) ]−1
[︄
ln θ∗

2 θ∗
s

+ F
(︄
θ∗

θ∗
s

)︄]︄
θ∗

(θ∗)2 , (2.14)

where β∗ = β/θE = and θ∗ = θ/θE. Alternatively, we may express the angles
in units of the angular scale length of the halo, rs/Dl. In these units the source
position y = βDl/rs and the image position x = θDl/rs, so that the lens
equation has the form

y = x − 4κs

[︃
ln x2 + F(x)

]︃
x

x2 . (2.15)

2Here given as the radius of the tangential critical curve of the mass MNFW as a point lens.
For a lens with a NFW density profile the radius of the tangential critical curve has to be
computed numerically from Equation (2.18).
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Equation (2.14), which is expressed in familiar lensing units, explicitly involves
two parameters, cs and θ∗

s . In the rest of this work we use the more compact
Equation (2.15), which involves a single parameter κs that is related to the two
parameters by

κs = (2 θ∗
s )−2 [ ln (1 + cs) − cs/(1 + cs) ]−1 . (2.16)

This expression can be derived using Equations (2.4), (2.12), and (2.13) in the
definition of κs above Equation (2.6).

We illustrate the conversion in Figure 2.1 by the dotted κs = const. contours
in a θ∗

s vs. cs plot including sample observational data. The plot range is set to in-
clude the parameter combinations of 19 observed galaxy clusters from the CLASH
survey (Merten et al. 2015), marked here by the crosses. We use the Merten et
al. cluster scale radii rs, masses M200c for MNFW, concentrations c200c for cs, and
cluster redshifts z to compute the angular diameter distance dA(z) = Dl in a
FLRW universe with PLANCK 2015 cosmological parameters (Planck Collabo-
ration et al. 2016). To obtain θ∗

s we compute the angular Einstein radius θE for
asymptotically distant sources, replacing Dls/Ds → 1. This replacement does
not hold exactly for angular diameter distances, for which the asymptotic ratio is
lens-redshift dependent. However, the approximation overestimates the Einstein
radii of the clusters in the sample merely by 3–11 %.
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Figure 2.1: Contours of Navarro–Frenk–White halo convergence parameter κs
as a function of concentration parameter cs and scale radius in units of Einstein
radius θ∗

s , expressed by Equation (2.16). Crosses indicate galaxy cluster data from
the Merten et al. (2015) sample. The diamond marks the parameter combination
{cs, θ

∗
s } = {3.5, 1.2}; the bold dashed contour passing through it corresponds to

the value κs ≈ 0.239035 used for a fiducial NFW halo in this work.
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2.2.3 Jacobian, critical curve, caustic
Many important lensing quantities are obtained by computing the Jacobian of
the lens equation: the inverse of its absolute value yields the magnification of a
point-source image at x, its sign indicates the image parity, and its zero contour
defines the critical curve, which in turn yields the caustic when mapped back to
the source-plane positions y.

For the NFW profile, the Jacobian of Equation (2.15) is

det J(x) =
⃓⃓⃓⃓
⃓∂ y

∂ x

⃓⃓⃓⃓
⃓ =

{︃
1 − 4κs

x2

[︃
ln x2 + F(x)

]︃}︃

×
{︄

1 + 4κs

x2

[︃
ln x2 + F(x)

]︃
− 4κs

F(x) − 1
1 − x2

}︄
, (2.17)

which, due to symmetry, is a purely radial function of image position x. For
x → 0 at the halo center det J(x) ≈ 4κ2

s ln2 x → ∞, as shown in Equation (A.4).
For x → ∞ the Jacobian asymptotically reaches unity, det J(x) → 1.

The factorized form of the Jacobian indicates that the critical curve det J(x) =
0 consists of solutions of two simpler equations. The factor in the first braces
yields the tangential critical curve, which is a circle |x| = xT with radius obtained
by numerically solving

1 − 4κs

x2
T

[︃
ln xT

2 + F(xT)
]︃

= 0 , (2.18)

an equation with a single solution for any value of κs. If we introduce the mean
convergence within a circle of radius x,

κ̄(x) = 1
π x2

∫︂ x

0
2π x′κ(x′) dx′ = 4κs

x2

[︃
ln x2 + F(x)

]︃
, (2.19)

where we took into account Equation (2.9), we see that Equation (2.18) implies
κ̄(xT) = 1. The tangential critical curve thus encloses a circle with unit mean
convergence. Recalling that the NFW convergence is a monotonically decreasing
function, this means that κ(xT) < κ̄(xT) = 1 and, thus, xT > x0, where the
radius of unit convergence x0 is given by Equation (2.7). Substituting the crit-
ical curve x = xT (cosφ, sinφ) with φ ∈ [ 0, 2π ] in Equation (2.15) and using
Equation (2.18), we obtain the corresponding part of the caustic:

y = x

{︄
1 − 4κs

x2
T

[︃
ln xT

2 + F(xT)
]︃}︄

= ( 0, 0 ) . (2.20)

The tangential part of the caustic consists of a single point at the origin.
Setting the second braces in Equation (2.17) equal to zero yields the radial

critical curve. This is another circle with radius xR obtained by numerically
solving

1 + 4κs

x2
R

[︃
ln xR

2 + F(xR)
]︃

− 4κs
F(xR) − 1

1 − x2
R

= 0 , (2.21)

which also has a single solution for any κs. The l.h.s. can be written as a simple
combination of Equation (2.19) and Equation (2.5), yielding

1 + κ̄(xR) − 2κ(xR) = 0 . (2.22)
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Therefore, the convergence at the radius of the radial critical curve

κ(xR) = 1
2 [ 1 + κ̄(xR) ] (2.23)

is the average of the mean convergence at the radius and 1. For the monoton-
ically decreasing NFW convergence κ̄(xR) > κ(xR) > 1 and, thus, xR < x0.
Substituting the radial critical curve x = xR (cosφ, sinφ) with φ ∈ [ 0, 2π ] in
Equation (2.15) and using Equation (2.21), we obtain the corresponding part of
the caustic,

y = x

{︄
1 − 4κs

x2
R

[︃
ln xR

2 + F(xR)
]︃ }︄

= −2
[︄

2κs
F(xR) − 1

1 − x2
R

− 1
]︄
xR (cosφ, sinφ) , (2.24)

where the expression in the square brackets is equal to κ(xR)−1, which is positive.
The radial part of the caustic is thus a circle with radius

yR = 2 xR [ κ(xR) − 1 ] . (2.25)

Figure 2.2 shows the critical curve in the image plane (black, left panel) and
caustic in the source plane (red, right panel) for a NFW density profile with
κs ≈ 0.239035. This value was obtained from Equation (2.16) for the combination

{cs, θ
∗
s } = {3.5, 1.2} (2.26)

chosen to represent the Merten et al. (2015) cluster data and marked by the di-
amond in Figure 2.1. The outer tangential and inner radial critical curves are
plotted over a color map of the Jacobian det J(x), marked red where positive
and blue where negative. Lighter areas indicate regions with higher image mag-
nification (brighter images), darker areas regions with lower image magnification
(dimmer images). Inside the radial critical curve the Jacobian is positive, in-
creasing divergently toward the origin. Any images appearing close to the origin
are thus strongly demagnified. In the annulus between the radial and tangential
critical curves the Jacobian is negative, thus any images appearing here have
negative parity. Outside the tangential critical curve the Jacobian is positive,
increasing monotonically outward, and approaching 1 asymptotically.

The caustic is plotted over a grayscale magnification map, showing the total
point-source magnification

A(y) =
∑︂
i

|det J(xi)|−1 (2.27)

of all images xi formed by the lens for a point source at y. The magnification
map is computed by inverse ray shooting (e.g., Kayser et al. 1986), with the color
ranging from black for lowest magnification A = 1 to white for highest magnifica-
tion A ≥ 1000. The magnification diverges at the caustic, here more prominently
at the central point (tangential caustic). At the circular radial caustic the magni-
fication remains finite from the outer side but diverges from the inner side in an
extremely narrow high-magnification region (see also Martel and Shapiro 2003).
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Figure 2.2: Critical curve (left panel, black) and caustic (right panel, red) of a
NFW halo with κs ≈ 0.239035. The larger tangential critical curve corresponds
to the central point-like caustic; the smaller radial critical curve corresponds to
the circular caustic. The image-plane color map in the left panel shows the lens-
equation Jacobian det J(x), with colors saturating at |det J | = 1 (the Jacobian is
divergent at the origin). The source-plane grayscale map in the right panel shows
the total point-source magnification A(y), with white saturating at A = 1000
(the magnification is divergent at the caustic).

Clearly, sources positioned outside the radial caustic are magnified substantially
less than those positioned inside.

Although Figure 2.2 is plotted for a single value of the NFW convergence
parameter κs, the general character of the critical curve, caustic, Jacobian and
magnification maps does not change for other values. What changes are the
radii of the tangential and radial critical curves, xT and xR, respectively, and the
radial caustic radius yR (Bartelmann 1996, Martel and Shapiro 2003). Figure 2.3
shows the dependence of these radii and the unit convergence radius x0 on κs.
All the plotted radii are simple monotonically increasing functions of κs. The
vertical dot-dashed line indicates the value κs ≈ 0.239035 chosen for illustration
in Figure 2.2 as well as in the rest of this work.

While the values of the radii for general κs plotted in Figure 2.3 have to
be computed numerically, for κ ≲ 0.2 they may be approximated by analytic
expressions using Equation (A.1) and Equation (A.2) from Appendix A.1.1 in
Equation (2.18), Equation (2.7), Equation (2.21), and Equation (2.24). For the
critical-curve radii (Dúmet-Montoya et al. 2013) and the unit-convergence radius
we find

{xT, x0, xR} ≈ 2 e−(1+3κs)/(2κs)
{︂
e,

√
e, 1

}︂
(2.28)

and for the (radial) caustic radius we find

yR ≈ 4κs e−(1+3κs)/(2κs) . (2.29)
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These approximations are marked by dotted curves in Figure 2.3. All four radii
shrink exponentially fast for low values of κs. Nevertheless, the ratios between
the radii xT, x0, xR are constant in this regime, given by the factors in the braces
on the r.h.s. of Equation (2.28).
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Figure 2.3: Radii of critical curves (solid black: tangential xT, radial xR), caustics
(solid red: tangential yT = 0, radial yR), and the unit-convergence circle x0
(dashed black) of NFW halos as a function of the convergence parameter κs.
The dotted curves show the low-convergence analytic approximations given by
Equation (2.28) and Equation (2.29). The dot-dashed vertical line indicates the
fiducial value κs ≈ 0.239035 used in Figure 2.2 and the rest of this work.

2.3 Lensing by an NFW halo + point mass

2.3.1 Lens equation
The lensing effect of an additional compact object with mass distributed in a
region much smaller than the halo scale radius rs can be modelled by adding a
point-mass deflection term

αP(θ) = 4GMP

c2 Dl

θ − θP

|θ − θP|2
(2.30)

to the deflection angle in Equation (2.11). Here MP is the mass of the object and
θP its angular position from the halo center. If the object acted as an isolated
lens, its region of influence could be measured by its angular Einstein radius

θEP =
√︄

4GMP

c2
Dls

Dl Ds
. (2.31)
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In our case, with the object embedded in the NFW halo, we will use θEP for
comparison and illustration purposes.

Adding the point-mass term in units of the NFW-halo Einstein radius to
Equation (2.14), we obtain the full lens equation

β∗ = θ∗ − [ ln (1 + cs) − cs/(1 + cs) ]−1

×
[︄
ln θ∗

2 θ∗
s

+ F
(︄
θ∗

θ∗
s

)︄]︄
θ∗

(θ∗)2 − MP

MNFW

θ∗ − θ∗
P

|θ∗ − θ∗
P|2

, (2.32)

where θ∗
P = θP/θE. The influence of the added object is proportional to its

relative mass and drops inversely proportionally to the angular separation from
its position. Similarly, we may add the term in units of the angular scale length
of the halo to Equation (2.15) and obtain the lens equation in the form

y = x − 4κs

[︃
ln x2 + F(x)

]︃
x

x2 − κP
x − xP

|x − xP|2
, (2.33)

where the point-mass position xP = θP Dl/rs. The newly introduced dimension-
less mass parameter κP can be expressed in several equivalent ways,

κP = MP

MNFW
(θ∗

s )−2 = θ2
EP D

2
l

r2
s

= MP

π r2
s Σcr

, (2.34)

where we used the definition of θ∗
s above Equation (2.14), Equation (2.31), and

Equation (2.4). The first expression defines the transformation from the param-
eters appearing in Equation (2.32). The second expression identifies κP as the
ratio of the areas (or solid angles) of the point-mass Einstein circle and the halo
scale-radius circle. The third expression shows that we may interpret κP as the
convergence corresponding to the surface density of the mass MP spread out over
the area of the halo scale-radius circle.

In the rest of this work we will use the lens equation in the more compact
form provided by Equation (2.33). The equation involves four parameters: the
convergences κs and κP, and the two components of the point-mass position
xP. For exploring the lens properties of the model we may always rotate our
coordinate axes to position the point mass along the positive horizontal axis, so
that xP = (xP, 0) with xP ≥ 0. With this choice of orientation only three free
parameters remain: one describing the NFW halo (κs) and two describing the
point mass (κP and xP).

2.3.2 Jacobian
Computing the determinant of the Jacobi matrix consisting of the partial deriva-
tives ∂yi/∂xj of Equation (2.33) gives us the Jacobian

det J(x) =
{︄

1 − 4κs

x2

[︃
ln x2 + F(x)

]︃
− κP

|x − xP|2

}︄

×
{︄

1 + 4κs

x2

[︃
ln x2 + F(x)

]︃
+ κP

|x − xP|2
− 4κs

F(x) − 1
1 − x2

}︄

+ 16κs κP
| x × xP |2

x4|x − xP|4

{︄
ln x2 + F(x) − x2

2
F(x) − 1

1 − x2

}︄
, (2.35)
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written here in a form independent of coordinate-frame orientation. In the orien-
tation with the point mass on the positive horizontal axis, the norm of the cross
product | x × xP | = xP |x2|.

Far from the center of the halo (x = 0) and far from the point mass (x = xP)
the Jacobian det J → 1. In the general case, with xP ̸= 0, the Jacobian diverges
at two distinct locations. As shown in Section 2.2.3, at the center of the halo
det J(x) ≈ 4κ2

s ln2 x → ∞, while at the position of the perturbing point mass
det J(x) ≈ −κ2

P/|x − xP|4 → −∞.

2.3.3 Point mass at the halo center
In the special case when the point mass is positioned at the center of the halo
(xP = 0) the Jacobian loses the entire final term in Equation (2.35), leaving the
factorized part

det J(x) =
{︃

1 − 4κs

x2

[︃
ln x2 + F(x)

]︃
− κP

x2

}︃
×
{︄

1 + 4κs

x2

[︃
ln x2 + F(x)

]︃
+ κP

x2 − 4κs
F(x) − 1

1 − x2

}︄
. (2.36)

Here the situation is peculiar, since the two opposite divergences coincide at the
origin. The stronger one due to the point mass prevails, so that det J(x) → −∞
as x → 0.

The factor in the first braces in Equation (2.36) yields the tangential critical
curve, which is a circle |x| = xPT with radius obtained by numerically solving

1 − 4κs

x2
PT

[︃
ln xPT

2 + F(xPT)
]︃

− κP

x2
PT

= 0 . (2.37)

The equation has a single solution for any combination of κs and κP. Substituting
the critical curve x = xPT (cosφ, sinφ) with φ ∈ [ 0, 2π ] in Equation (2.33) and
using Equation (2.37), we obtain the corresponding part of the caustic:

y = x

{︄
1 − 4κs

x2
PT

[︃
ln xPT

2 + F(xPT)
]︃

− κP

x2
PT

}︄
= ( 0, 0 ) . (2.38)

The tangential part of the caustic remains unchanged, consisting of the single
point at the origin.

Setting the second braces in Equation (2.36) equal to zero yields the radial
critical-curve equation. The solutions are circles with radius xPR obtained by
numerically solving

1 + 4κs

x2
PR

[︃
ln xPR

2 + F(xPR)
]︃

+ κP

x2
PR

− 4κs
F(xPR) − 1

1 − x2
PR

= 0 . (2.39)

However, here the number of solutions for a given value of κs depends on the value
of κP. Substituting the radial critical curve x = xPR (cosφ, sinφ) with φ ∈ [ 0, 2π ]
in Equation (2.33) and using Equation (2.39), we obtain the corresponding part
of the caustic:

y = x

{︄
1−4κs

x2
PR

[︃
ln xPR

2 + F(xPR)
]︃

− κP

x2
PR

}︄

= −2
[︄

2κs
F(xPR) − 1

1 − x2
PR

− 1
]︄
xPR (cosφ, sinφ) , (2.40)
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where the expression in the square brackets is equal to κ(xPR) − 1, which is
positive. For each radial critical curve, the corresponding part of the caustic is
thus a circle with radius

yPR = 2 xPR [ κ(xPR) − 1 ] . (2.41)

We present the structure of the critical curves and caustics in Figure 2.4 as a
function of κP for the cluster with κs ≈ 0.239035 chosen for illustration in Fig-
ure 2.2. The radius of the tangential critical curve xPT is a simple monotonically
increasing function of κP, which starts on the vertical axis at xT, the radius of
the NFW tangential critical curve. This growth is just a simple consequence of
the increasing mass at the origin.

More interesting are the radial critical curves. For low values of κP Equa-
tion (2.39) has two solutions. The larger one (xPR1) starts at xR, the radius of
the NFW radial critical curve, and decreases with κP. The smaller one (xPR2)
starts at 0 and increases with κP. As κP grows, the two curves approach each
other until they merge at a critical value κP = κPC ≈ 2.714 · 10−4 (for our choice
of κs). For super-critical κP > κPC Equation (2.39) has no solution, i.e., there are
no radial critical curves.

The two corresponding radial components of the caustic reflect the behavior
of the critical curves, with yPR1 starting at yR, the radius of the NFW radial
caustic, and yPR2 starting at 0. Even though the larger radial caustic grows with
κP, the two caustic circles approach each other faster than the corresponding
critical-curve circles and vanish beyond κPC.

The critical curves and caustics in the two regimes are illustrated by the panels
in the bottom row of Figure 2.5.A. The two left columns show the Jacobian plot
with critical curves and the total magnification map with caustics in the sub-
critical case (for κP = 10−4), the two right columns show the corresponding
plots in the super-critical case (for κP = 10−3). The notation is the same as in
Figure 2.2, with the additional cyan circle indicating the position and Einstein
ring of the point mass in units of the angular scale radius, θEP Dl/rs .
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Figure 2.4: Radii of critical curves (black: tangential xPT, radial xPR1 and xPR2)
and caustics (red: tangential yPT = 0, radial yPR1 and yPR2) of a κs ≈ 0.239035
NFW halo density profile with a centrally positioned point mass, plotted as a
function of its mass parameter κP. The corresponding radii xT, xR, yR of an
unperturbed NFW halo (intersections with the dot-dashed line in Figure 2.3) are
marked along the vertical axis. Note the vanishing of the radial critical curves
and caustics at κP = κPC ≈ 2.714 · 10−4 (marked by the dot-dashed line).
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For the lower-mass case with κP = 10−4, the Jacobian plot resembles the
plot from Figure 2.2, except the region near the origin. In this example the
additional radial critical curve is marginally larger than the point-mass Einstein
radius. Within it the point mass dominates and det J < 0. Between the two
radial critical curves det J > 0, between the outer radial and tangential critical
curves det J < 0, followed by det J > 0 outside the tangential critical curve.
Instead of the single radial caustic of the NFW halo seen in Figure 2.2, there
are two circular radial caustics, with the outer and inner one corresponding to
the outer and inner radial critical curve, respectively. The total magnification
diverges at both caustics from the side of the annular region between them.

As κP increases, so does the negative-Jacobian region around the origin dom-
inated by the point mass, while the outer radial critical curve and the enclosed
positive-Jacobian annulus shrink. The outer radial caustic grows, but the inner
one grows faster. At κP = κPC the two radial critical curves (as well as the two
radial caustics) merge, causing the positive-Jacobian annulus to vanish. This
situation is illustrated in the bottom panels of the two central columns of Fig-
ure 2.5.B. The peculiar properties of the single merged radial critical curve and
caustic are described in Appendix A.2. For larger κP the radial critical curves
and caustics disappear.

For the higher-mass case with κP = 10−3, only the tangential critical curve
remains and the negative-Jacobian region around the origin extends all the way
to it, as shown in Figure 2.5.A. The caustic is reduced to the single point at the
origin, while the magnification shows a brighter central region roughly the size of
the vanished radial caustic.

Comparison with Figure 2.2 illustrates how dramatically a single added object
may change the lensing properties of the NFW halo. The critical value κPC ≈
2.714 ·10−4 for our halo parameter choice given by Equation (2.26) can be used in
Equation (2.34) to compute the corresponding critical mass ratio MP/MNFW ≈
3.91 · 10−4. Even though such a relative mass may seem low, its gravitational
field is strong enough to destroy the radial critical curve and caustic of the NFW
halo in which it is embedded.

Similar behavior has been found previously for a central point mass embedded
in different axially symmetric mass distributions, such as in a cored isothermal
sphere (Mao et al. 2001) or in a Plummer model (Werner and Evans 2006). In
either of these models there is a critical mass of the central point, above which the
lens has no radial critical curves. Nevertheless, this behaviour is not ubiquitous: a
central point mass embedded in a singular isothermal sphere has no radial critical
curves, irrespective of its mass (Mao and Witt 2012).

2.3.4 Point mass at a general position
When positioning the point mass at increasing distances xP from the halo center,
the critical curve undergoes a sequence of transitions in which its loops connect,
disconnect, appear, or vanish. These transitions are accompanied by underly-
ing metamorphoses of the caustic (Schneider et al. 1992). The curves start from
the central configurations described in Section 2.3.3 and end with separate crit-
ical curves and caustics of a NFW halo and a distant point-mass lens. In Sec-
tion 2.3.4.1 we describe the overall changes of the critical curves and caustics.
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In Section 2.3.4.2 we explore the parameter space of the point mass and identify
boundaries at which the critical-curve transitions occur. We illustrate the details
of several transitions and transition sequences in Section 2.3.4.3.

2.3.4.1 Critical-curve and caustic galleries

In Figure 2.5.A we present a sample critical-curve and caustic gallery for a sub-
critical (κP = 10−4, left columns) and a super-critical (κP = 10−3, right columns)
point mass. Its positions are marked in the critical-curve plots by the cyan
Einstein-radius circles on the horizontal axis. The radial distances from the origin
are indicated along the left side of the figure, increasing from xP = 0 in the bottom
row to xP = 0.3 in the top row, in regular steps of 0.05.

Going up from xP = 0 to xP = 0.05 in the sub-critical case, the small critical-
curve loop around the point mass connects and merges with the perturbed radial
critical curve of the NFW halo. The inner circular caustic connects and merges at
its left side with the perturbed radial NFW caustic in a beak-to-beak metamor-
phosis, while its right side progresses across the origin to the left. The four-cusped
perturbed tangential NFW caustic is too tiny to be distinguished from a point at
the origin.

By xP = 0.1 two small critical-curve loops have detached from the perturbed
radial NFW critical curve. On the caustic, two small three-cusped loops have
detached in simultaneous beak-to-beak metamorphoses from the perturbed radial
NFW caustic. Details of this transition are described in Section 2.3.4.3 further
below. Between xP = 0.1 and xP = 0.15, the two small critical-curve loops
connect and merge with the perturbed tangential NFW critical curve. The two
small three-cusped caustic loops connect and merge with the perturbed tangential
NFW caustic in simultaneous beak-to-beak metamorphoses, forming a central
six-cusped caustic loop.

For a more distant position of the point mass, a small critical-curve loop de-
taches from the perturbed tangential NFW critical curve, as seen for xP = 0.25.
The small loop eventually converges to the point-mass Einstein ring. The hori-
zontally stretched six-cusped caustic loop seen at xP = 0.2 disconnects in a beak-
to-beak metamorphosis, forming two four-cusped loops. The smaller central one
eventually shrinks to the point-like tangential NFW caustic. With increasing xP,
the larger one comes to resemble the four-cusped Chang–Refsdal caustic of a point
mass with a constant low external shear (Chang and Refsdal 1984). Eventually,
it shrinks to the point-like caustic of an isolated point-mass lens.

The influence of the point mass on the critical curve and caustic in the super-
critical case is more pronounced and better visible than in the sub-critical case.
Nevertheless, for both mass parameters we see that the critical curve is affected
in a region reaching multiple Einstein radii from the point mass.

The initial transitions are markedly different in the super-critical case. As
described in Section 2.3.3, the critical curve for xP = 0 consists only of the
perturbed tangential NFW critical curve. Nevertheless, a perturbed radial NFW
critical curve appears already by xP = 0.05. The perturbed tangential NFW
caustic evolves from a single point at the origin for xP = 0 to a tiny four-cusped
loop for xP = 0.05. In addition, another caustic loop with two cusps has appeared
by xP = 0.05 in a lips metamorphosis, forming a crescent-shaped rather strongly
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Figure 2.5.A: Critical curves and caustics of a NFW halo + point-mass lens. The
left pair of columns corresponds to a sub-critical mass parameter κP = 10−4 and
the right pair to a super-critical κP = 10−3, as marked at the top. The rows
correspond to positions of the point mass ranging from xP = 0 to xP = 0.3, as
marked along the left side. The point-mass parameter-combination grid is marked
by red crosses in Figure 2.6. The cyan circles indicate the point-mass position
and its Einstein ring. Here det J → −∞ at the position of the point mass, and
det J → ∞ at the origin (except when the point mass lies there). Remaining
notation and color bars same as in Figure 2.2.
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Figure 2.5.B: Critical curves and caustics of a NFW halo + point-mass lens. The
left pair of columns corresponds to a sub-critical mass parameter κP = 10−4, the
central pair to critical κP = κPC ≈ 2.714 · 10−4, and the right pair to super-
critical κP = 10−3, as marked at the top. The rows correspond to positions of the
point mass ranging from xP = 0 to xP = 0.3, as marked along the left side. The
point-mass parameter-combination grid is marked by red and black crosses in
Figure 2.6. Notation same as in Figure 2.5.A. High-resolution plots are available
as online figure set associated with Paper I, in arXiv paper or in digital version
of this thesis.
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perturbed radial NFW caustic. A detailed description of the super- and sub-
critical transition sequences for point-mass positions close to the halo center is
presented below in Section 2.3.4.3.

The subsequent transitions are similar to the sub-critical case, though some
of them are not seen in Figure 2.5.A. This is the case for the two small loops
detaching from the perturbed radial NFW critical curve & caustic and connect-
ing to the perturbed tangential NFW critical curve & caustic, which occur here
between the xP = 0.1 and xP = 0.15 rows. These can be seen in Figure 2.5.B,
which shows a more detailed gallery of critical curves and caustics. In addition to
the positions and masses from Figure 2.5.A it includes positions from xP = 0 to
xP = 0.15 in a finer step of 0.01, as well as panels for the critical mass parameter
κPC ≈ 2.714 · 10−4 in the central two columns. For this intermediate mass, note
in the xP = 0.01 panels the additional tiny critical-curve loop close to the origin
and the corresponding two-cusped caustic loop inside the larger caustic crescent.

More generally, all individual transitions occur at different radial positions
for the different mass parameters. For example, the detachment of the two small
critical-curve loops from the perturbed radial NFW critical curve occurs between
xP = 0.08 and xP = 0.09 for κP = 10−4, between xP = 0.09 and xP = 0.1 for
κP = κPC, and between xP = 0.11 and xP = 0.12 for κP = 10−3. We illustrate
this in detail in the following Section 2.3.4.2, where we map the occurrence of all
critical-curve transitions in the parameter space of the point mass.

2.3.4.2 Boundaries in point-mass parameter space

We track the changing structure of critical curves and caustics in the point-mass
parameter-space region defined by the intervals κP ∈ [0, 0.0035] and xP ∈ [0, 0.4].
Within this space we identify boundaries at which the overall topology of the criti-
cal curve changes in transitions such as those seen in Section 2.3.4.1. These involve
situations in which critical-curve loops connect/disconnect, or appear/vanish. In
addition, we also identify situations in which loops shrink to a point, or touch
without connecting. We chose the upper limits on the parameter intervals em-
pirically: the xP limit lies above the final transition in the studied κP interval;
for values above the κP limit there are no further changes to the structure of the
boundaries.

We note that straightforward use of the first expression for F(x) from Equa-
tion (2.6) leads to numerical instabilities for x ≪ 1, close to the origin of the
image plane. For tracking the changing structure of critical curves in this region
it was necessary to use the exact and stable expressions given by Equation (A.5)
and Equation (A.6), as shown in Appendix A.1.1.

Finding the boundaries involved several steps. We started by computing the
critical curves and caustics on a rough parameter grid, inspecting the results to
identify pairs of neighboring grid points with different topologies of the criti-
cal curve and different caustic structures. For each such pair we proceeded by
interval-halving to pinpoint the intersection of the boundary between the points
with the respective grid-line. Where necessary, we added more points in between
these grid-line intersections to obtain smoother boundaries. In the emerging
boundary plot we checked all mass-parameter intervals with different vertical se-
quences of boundaries to make sure the changes across the boundaries agreed
with the characteristics of the corresponding metamorphoses (such as character-
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istic changes in numbers of loops, or changes in numbers of cusps on caustic
loops). Finally, we checked the continuity of the critical curves and caustics
close to the axes, which correspond to analytically studied axisymmetric lenses:
in the zero-mass limit close to the vertical axis (comparison with Section 2.2.3
and Figure 2.2), and in the zero-displacement limit close to the horizonal axis
(comparison with Section 2.3.3 and Figure 2.5.B).

The mapped boundaries are presented in a xP vs. κP plot in Figure 2.6. The
left panel shows the full explored parameter space; the right panels show two
expanded regions in more detail: bottom right for low masses close to the origin;
top right for intermediate positions. For better interpretation of the results, the
red crosses indicate the parameter combinations for which critical curves and
caustics are shown in Figure 2.5.A; the critical curves and caustics for the full
set of red and black crosses are shown in Figure 2.5.B. For additional orientation,
we mark the NFW halo radial and tangential critical-curve radii (xR and xT,
respectively) on the vertical axis, and the critical mass parameter κPC on the
horizontal axis.

The colors of the boundaries indicate the type and multiplicity of the associ-
ated caustic metamorphosis. Single metamorphoses occur in the source plane at
a point on the symmetry axis passing through the point mass and the halo cen-
ter, while two same simultaneous metamorphoses occur at points symmetrically
offset from the axis. Cyan color indicates a single beak-to-beak metamorphosis,
occurring here at two boundaries: from xR on the vertical axis downward to κPC
on the horizontal axis; from xT on the vertical axis upward. Blue indicates two
simultaneous beak-to-beak metamorphoses, occurring here at three boundaries:
from the origin up to the boundary spike just under κP = 0.001 (plotted by a
dashed line to reveal the closely adjacent orange lips boundary); from xR on the
vertical axis upward to the point marked by the circle; from xT on the vertical
axis first downward, then rising to the boundary spike just under κP = 0.003.

Orange indicates a single lips metamorphosis, occurring here at three bound-
aries: from the origin along the entire horizontal axis (corresponding to xP = 0);
from the origin upward to the boundary spike just under κP = 0.001 (just above
the closely adjacent dashed blue boundary); from κPC on the horizontal axis up-
ward to the same boundary spike. Dark orange indicates two simultaneous lips
metamorphoses, occurring here at one boundary: from the point marked by the
circle upward to the boundary spike just under κP = 0.003. Green indicates
two simultaneous elliptic umbilic metamorphoses, occurring here at one bound-
ary: from the unit-convergence radius x0 ≈ 0.0936 on the vertical axis upward
to the point marked by the circle. Violet indicates two simultaneous hyperbolic
umbilic metamorphoses, occurring here at one boundary: from the point marked
by the circle upward. Finally, the point marked by the black circle indicates
two simultaneous parabolic umbilics. Four boundaries meet at this point, all
of them corresponding to two simultaneous metamorphoses. In clockwise order
from lower left these are beak-to-beak, elliptic umbilic, hyperbolic umbilic, and
lips boundaries.

In addition to the metamorphoses for which we plotted the parameter-space
boundaries in Figure 2.6, the caustic undergoes also the swallow-tail metamor-
phosis. In it the caustic develops a local “twist” with a self-crossing point and
two additional cusps. However, unlike the plotted metamorphoses, the swallow
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Figure 2.6: Critical-curve transitions in the position xP vs. mass parameter
κP parameter space of a point mass in a NFW halo. The transitions occur at
boundaries colored according to the corresponding caustic metamorphoses: single
beak-to-beak (cyan), two beak-to-beaks (blue), single lips (orange, including the
horizontal axis), two lips (dark orange), two elliptic umbilics (green), two hyper-
bolic umbilics (violet), two parabolic umbilics (point marked by black circle). The
blue/orange dashed line at bottom left indicates two closely adjacent transitions:
the orange lips occur at larger xP than the dashed blue beak-to-beaks. Crosses
indicate the parameter combinations of the examples illustrated in Figure 2.5.B;
red crosses mark the examples illustrated in Figure 2.5.A. Top right panel: detail
of the intermediate-position transitions near the umbilics; bottom right panel:
detail of the transitions close to the origin. Additional ticks on the axes mark the
critical mass parameter κPC ≈ 2.714 · 10−4, the NFW halo tangential (xT) and
radial (xR) critical-curve radii, and the unit-convergence radius x0.
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tail has no effect on the critical-curve topology. It occurs here always simultane-
ously in twos, always closely adjacent to simultaneous beak-to-beak boundaries.
One such simultaneous swallow-tail pair occurs between the beak-to-beak and
lips boundaries extending in Figure 2.6 from the origin upward to the boundary
spike just under κP = 0.001; two such simultaneous pairs occur in close succession
just beneath the beak-to-beak boundary extending from xR on the vertical axis
upward to the point marked by the circle.

Before exploring individual transition sequences, metamorphoses, and bound-
aries in more detail in Section 2.3.4.3, it is worth pointing out the astounding
richness of structure, transitions, and lensing regimes between them, which was
quite unexpected for us in such a simple lens model.

2.3.4.3 Details of specific transitions and transition sequences

The first interesting transition occurs along the horizontal axis of the parameter-
space plot in Figure 2.6, i.e., for an arbitrarily small displacement of the point
mass from the halo center. In such a situation the two opposite Jacobian di-
vergences described in Section 2.3.2 no longer coincide, and the Jacobian must
cross zero at some point between them. This results in a small new critical-curve
loop encircling the weaker det J(x) → ∞ divergence at the origin of the image
plane. The caustic undergoes a lips metamorphosis, in which a new two-cusped
loop forms beyond the point-mass position. This particular lips metamorphosis
is unusual in its appearance at infinity rather than at a finite distance from the
origin of the source plane. A further increase in the point-mass displacement
brings the new caustic loop rapidly toward the origin.

Inspecting the changes along the left column of crosses in Figure 2.6 corre-
sponding to the sub-critical κP = 10−4 example, we see that the critical curve
undergoes a total of eight transitions as we vary the point-mass position from the
halo center to an asymptotic distance. Only a few of these can be identified in
the galleries in Figure 2.5.A and Figure 2.5.B, as described in Section 2.3.4.1. In
order to provide a more comprehensive overview we present the details of three
transition sequences below.

After displacing the point mass away from the halo center, the first encoun-
tered boundaries are the adjacent dashed blue and orange lines corresponding
to the beak-to-beak and lips metamorphoses, respectively. These are illustrated
by the critical-curve and caustic details in Figure 2.7, with the entire sequence
occurring between xP = 0 and xP = 0.01 in Figure 2.5.B. The additional third
column shows the caustic detail from the second column with the horizontal scale
expanded 10× to reveal the caustic structure.

The critical-curve details from bottom to top reveal small positive-Jacobian
loop around the origin expanding and approaching the perturbed inner radial
NFW critical curve, connecting with it symmetrically at two points in the third
row for xP ≈ 0.00617325, leaving a small negative-Jacobian loop, which shrinks
and vanishes between the top two rows. The caustic plot in the bottom row shows
the small two-cusped loop approaching the perturbed inner radial NFW caustic
from outside. The two caustic loops overlap in the second row. In the third row
two simultaneous beak-to-beak metamorphoses occur, in which the outer part
of the two-cusped loop touches the perturbed inner radial NFW caustic at two
points lying symmetrically above and below the horizontal axis. This pair-wise

38



Figure 2.7: Critical-curve and caustic details for a sub-critical κP = 10−4 point
mass near the halo center. Shown for six radial positions xP marked along the
left side, corresponding to transition across the adjacent dashed blue and orange
boundaries along the left set of crosses in Figure 2.6. The critical-curve panels
are fully inside the Einstein ring of the point mass. The caustic details shown in
the central column are expanded in the right column 10× horizontally to reveal
the caustic structure. Notation and color bars as in Figure 2.5.A.
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Figure 2.8: Critical curves and caustic details for a κP = 10−4 point mass at two
simultaneous beak-to-beak metamorphoses (third row from bottom). Shown for
four radial positions xP marked along the left side, corresponding to transition
across the lower solid blue boundary along the left set of crosses in Figure 2.6.
Notation and color bars as in Figure 2.5.A.
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Figure 2.9: Critical curves and caustic details for a κP = 10−4 point mass at two
simultaneous elliptic umbilics (second row from bottom). Shown for three radial
positions xP marked along the left side, corresponding to transition across the
green boundary along the left set of crosses in Figure 2.6. Notation and color
bars as in Figure 2.5.A.

41



metamorphosis leads to a thin two-cusped crescent detaching from the caustic on
the outer side. The small self-crossing features on the larger caustic in the fourth
row vanish by the fifth row in two simultaneous swallow-tail metamorphoses. By
the sixth row, the two-cusped crescent vanishes in a lips metamorphosis, leaving
a barely noticeable higher-magnification trace in the magnification map.

The detachment of the two small critical-curve loops from the perturbed ra-
dial NFW critical curve that occurs between the second and the third row of
Figure 2.5.A corresponds to a more complicated sequence of metamorphoses on
the caustic, as shown in Figure 2.8. The caustic detail presented in the right
panels corresponds to the critical-curve detail below the point mass in the left
panels. In the bottom row the caustic detail has a single cusp. By the second
row it underwent a swallow-tail metamorphosis, which added a self-intersection
and two cusps. A similar swallow-tail metamorphosis occurs on the caustic above
the original cusp before the third row, adding a similar smaller feature. In the
third row at xP ≈ 0.08075 two simultaneous beak-to-beak metamorphoses occur,
in which the facing cusps of the two swallow-tail features touch and reconnect.
In the fourth row the caustic detail consists of a smooth fold and a detached
three-cusped loop.

The transition following the detachment of the two loops also occurs between
the second and the third row of Figure 2.5.A. The sequence shown in Figure 2.9
corresponds to the green elliptic umbilic boundary in Figure 2.6. The two small
critical-curve loops shrink to two points at xP ≈ 0.095844 in the second row,
before expanding again to two loops. A similar effect can be seen in the caustic
plots. The two small three-cusped loops shrink to two points at the elliptic umbilic
metamorphosis in the second row, before expanding again to three-cusped loops.

Along the right column of crosses in Figure 2.6, which corresponds to the
super-critical κP = 10−3 example, the sequence is simpler, with the critical curve
undergoing only five transitions as the point-mass position varies from the halo
center to an asymptotic distance. All the transitions occurring from the second
row to the top of Figure 2.5.A are the same as for the sub-critical example. The
development from the first to the second row is much simpler than in the sub-
critical case, with the small positive-Jacobian critical-curve loop around the origin
directly expanding to form the perturbed NFW radial critical curve. The two-
cusped caustic loop approaches the origin from the right, forming the crescent-like
caustic seen in the first row, and extending further to form the perturbed NFW
radial caustic.

However, for super-critical mass parameters κP ≲ 9.86 · 10−4 the sequence of
transitions close to the halo center differs markedly from either of the previous
examples. For illustration, we demonstrate in Figure 2.10 the transition across
the orange, dashed blue, and orange boundaries along the κP = 8 · 10−4 grid line
in the bottom right panel of Figure 2.6. These correspond to a sequence of lips,
two simultaneous beak-to-beak, and lips metamorphoses. The additional third
column in Figure 2.10 shows the caustic detail from the second column with the
horizontal scale expanded 6× to reveal the caustic structure.

Between the first and the second row, a second small positive-Jacobian critical-
curve loop appears to the left of the first one. The two loops expand and connect
together symmetrically at two points in the fourth row for xP ≈ 0.0213954.
The detached inner small negative-Jacobian loop shrinks and vanishes between
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Figure 2.10: Critical-curve and caustic details for a super-critical κP = 8 · 10−4

point mass near the halo center. Shown for six radial positions xP marked along
the left side, corresponding to transition across the orange, dashed blue, and
orange boundaries along the κP = 8 · 10−4 vertical line in the bottom right panel
of Figure 2.6. The caustic details shown in the central column are expanded in
the right column 6× horizontally to reveal the caustic structure. Compare with
the corresponding sub-critical sequence in Figure 2.7. Notation and color bars as
in Figure 2.5.A.
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the top two rows. At larger xP the remaining positive-Jacobian loop forms the
perturbed radial NFW critical curve. In the bottom row the caustic detail shows
the small two-cusped loop that arrived from the right to the brighter ring in
the magnification map. In the second row the caustic has a second thin two-
cusped loop inside the first loop that appeared along the bright ring in a lips
metamorphosis. The two caustic loops overlap on the third row. In the fourth
row two beak-to-beak metamorphoses occur, in which the outer part of the first
loop reconnects symmetrically at two points with the inner part of the second
loop. In the fifth row the caustic displays a disconnected thin inner two-cusped
loop and small self-crossing features on the outer caustic loop. The features
vanish in simultaneous swallow-tail metamorphoses, followed by the vanishing of
the small two-cusped loop in a lips metamorphosis. At larger xP, the two-cusped
caustic loop seen in the top row forms the perturbed radial NFW caustic.

For mass parameters κP ≳ 1.323 ·10−3, higher than in the presented examples,
the green boundary in Figure 2.6 corresponding to the elliptic umbilic continues as
the violet hyperbolic-umbilic boundary. We illustrate in Figure 2.11 the transition
across this boundary along the κP = 2·10−3 grid line in Figure 2.6. The two small
critical-curve loops touch the perturbed NFW radial critical curve at xP ≈ 0.1317
in the second row, before detaching again, as seen on the third row. In the bottom
row the caustic detail shows a single cusp on the larger caustic loop and a closely
adjacent small two-cusped loop. At the hyperbolic-umbilic metamorphosis in the
second row, both parts of the caustic touch at a blunt angular point. In this
metamorphosis a cusp gets transferred from one part of the caustic to another.
This can be seen in the third row, where the detached smaller loop has three
cusps while there is no cusp on the larger perturbed NFW radial caustic.

For completeness, we mention the parabolic umbilic, which occurs for κP ≈
1.323 · 10−3 at xP ≈ 0.1202. At this point, which is marked by the black circle in
Figure 2.6, boundaries corresponding to four different pair-wise metamorphoses
meet, namely: elliptic umbilic, hyperbolic umbilic, lips, and beak-to-beak. When
passing through this point in the parameter plot in the sense of increasing xP, two
small loops detach from cusp-like points on the perturbed radial NFW critical
curve, starting as points and expanding like in the elliptic umbilic. During the
underlying caustic metamorphosis the two cusps on the perturbed radial NFW
caustic disappear as two small three-cusped caustic loops detach from them.
These caustic loops also start as points and increase in size. Varying the point-
mass parameters in the vicinity of the parabolic umbilic point leads to a variety of
different changes to the local structure of the caustic (e.g., Godwin 1971, Poston
and Stewart 1978).

In Section 2.3.3 we studied the structure of critical curves and caustics for
centrally positioned point masses, and demonstrated the distinction between the
sub- and super-critical cases. If we look at the transition sequences for different
values of κP in Figure 2.6, we see that the boundary intersections and limiting
points form a finer subdivision into κP intervals, each with a specific transition
sequence. The approximate values separating these intervals are

κP ∈
{︂
0, 1.62 · 10−4, 2.71 · 10−4, 9.86 · 10−4,

1.32 · 10−3, 2.26 · 10−3, 2.97 · 10−3
}︂
. (2.42)

To be precise, the first non-zero value actually should be replaced by two very
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Figure 2.11: Critical curves and caustic details for a κP = 2 · 10−3 point mass
at two simultaneous hyperbolic umbilics (second row from bottom). Shown for
three radial positions xP marked along the left side, corresponding to transition
across the violet boundary along the vertical κP = 2 · 10−3 line in Figure 2.6.
Notation and color bars as in Figure 2.5.A.
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close κP values, because the cyan boundary in the bottom right panel of Fig-
ure 2.6 intersects the orange before the adjacent dashed blue boundary. The
eight different sequences of critical-curve transitions can be read off Figure 2.6,
aided by the galleries in Figure 2.5.A and Figure 2.5.B, as well as the transition
sequences described in this Section.

Note that the κP = 10−4 sub-critical sequence with all the described transi-
tions lies in the first interval defined by the values in Equation (2.42). Hence,
any lower-mass point will have the same sequence of critical-curve transitions.
Similarly, all point masses with κP ≳ 2.97 · 10−3 share the same simple sequence,
in which the only transition between the appearance of the small critical-curve
loop around the origin and the final detachment of the point-mass loop from the
perturbed tangential NFW critical curve is the hyperbolic umbilic. In this umbilic
transition the perturbed radial and tangential NFW critical curves merely touch
at two points. In the underlying caustic metamorphosis, the central four-cusped
loop (similar to the caustic in the third row of Figure 2.5.A) extends and touches
the two cusps of the crescent-like loop, resulting in a six-cusped central caustic
and a smooth perturbed radial NFW caustic.

We point out that the interpretation of the parameter-space structure in Fig-
ure 2.6 presented above focused on vertical transitions across the boundaries,
which corresponds to placing a fixed-mass point at different positions in the halo.
One may interpet the figure just as well by following transitions in the horizontal
sense, corresponding to placing points of different masses at a fixed position in
the halo. Such explorations reveal that the structure of the critical curve is more
sensitive to the mass of the point when it is placed in certain regions of the halo,
e.g., close to its center or in a part of the annular region between the radial and
tangential NFW critical curves.

2.4 Discussion
Most of the presented results were computed for a single fiducial value of the
halo convergence parameter κs ≈ 0.239035, based on the Merten et al. (2015)
galaxy cluster data as shown in Figure 2.1. For these clusters, κs varies from 0.15
to 0.84. Data from other cluster surveys such as OmegaWINGS (Biviano et al.
2017) indicate values as low as κs ≈ 0.01. In addition, since κs is normalized
by the critical surface density defined by Equation (2.4), it also depends on the
source redshift due to the direct proportionality κs ∝ Dls/Ds. Plots of this
angular diameter distance ratio as a function of source redshift can be found in
Asada (1997) or Umetsu (2020).

The main question is what effect will changing κs have on the parameter-space
boundaries in Figure 2.6. While a systematic study is in progress, we mention here
a few general properties. The overall pattern of the boundaries shrinks toward the
origin of the parameter-space plot as κs decreases, and expands from the origin
as κs increases. In the vertical direction this can be inferred from the scaling
of the NFW critical-curve radii shown in Figure 2.3, due to the importance of
these radii on the vertical axis of Figure 2.6. In the horizontal direction this can
be inferred from the importance of the relative “mass ratio” κP/κs rather than
the absolute value of κP. Nevertheless, while the change of the overall scale in
the parameter-space plot is most prominent, the shapes of the boundaries change
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too, even though more weakly.
Regarding the source redshift, in addition to κs it affects also the point-mass

parameter κP. The critical surface density in the denominator of the last expres-
sion in Equation (2.34) reveals that κP ∝ Dls/Ds, the same proportionality seen
in κs. Indeed, it is the ratio κP/κs = MP/(π r3

s ρs) that is independent of the
source, and is given purely by the properties of the lens. The third parameter of
the studied lens system, xP, does not depend on the source either.

It is worth pointing out the similarity of the structure of the perturbed tan-
gential NFW critical curves and caustics (see Figure 2.5.A) to the critical curves
and caustics of the two-point-mass lens (e.g., Erdl and Schneider 1993, Dominik
1999, Pejcha and Heyrovský 2009). For example, with increasing distance xP
the caustic changes from a central four-cusped loop with two three-cusped loops,
all of which merge to form a single six-cusped loop, which then splits into two
four-cusped loops. The same sequence can be seen in the close, intermediate,
and wide regimes of the two-point-mass lens. Even the two topmost beak-to-
beak boundaries seen in Figure 2.6 for κP ≲ 0.002 resemble the two-point-mass
parameter-space boundaries (Erdl and Schneider 1993, top left panel in their
Figure 6). In this mass range the lens systems differ in the “fate” of the three-
cusped loops which recede from the central four-cusped loop as xP decreases. In
the NFW + point-mass lens they get only as far as the perturbed radial NFW
caustic and merge with it, while in the two-point-mass lens they escape to infinity
as the separation of the points decreases to zero. Overall, the only caustic loop
that escapes to infinity from both components of the NFW + point-mass lens is
the small two-cusped loop receding as the point mass approaches the halo center,
xP → 0.

The lens model explored in this work is relevant for several astrophysical sce-
narios. The primary motivation was to study the influence of a single galaxy
on the overall lensing by a galaxy cluster. For this purpose, replacing the mass
distribution within the galaxy by a point mass is the crudest possible approxima-
tion. Nevertheless, we may expect the structure of the critical curves to be similar
except in the vicinity of the galaxy in the image plane. Clearly, the results in
Figure 2.6 will be more relevant for galaxies in a cluster that have lower relative
masses and lower scale or cutoff radii of their mass distributions. In addition,
we may expect different behavior for galaxies positioned close to the cluster cen-
ter. Since the Jacobian of galactic mass distributions typically does not have a
negative divergence, its combination with the positive Jacobian divergence of the
cluster halo will yield different critical-curve structures than those demonstrated
above for a point mass. A more complete understanding would be obtained by a
comparison study using an extended mass distribution model for the galaxy.

The next astrophysical scenario for which our model is relevant is a (dwarf)
satellite galaxy in the dark matter halo of a larger host galaxy. The comments
made above for a galaxy within a cluster hold here too. For example, combining
the host-galaxy halo with an extended-mass distribution for the satellite could
lead to interesting comparisons with binary-galaxy lens models (e.g., Shin and
Evans 2008). Our obtained results are more relevant for low-relative-mass com-
pact satellite galaxies. In this scenario, another step toward a more realistic
model would be to alter the spherical NFW model for the mass distribution of
the host galaxy, e.g., by including ellipticity, adding a core radius, or altering the
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central density divergence (Evans and Wilkinson 1998).
Interestingly, our results are most relevant for the third scenario, a massive

or super-massive black hole in the dark matter halo of its host galaxy. In such
a setting the black hole is perfectly modeled by a simple point-mass lens, since
the fraction of the lensed flux in relativistic higher-order images is negligible. In
this scenario, the details close to the origin of the halo can be expected to change
in mass-distribution models that eliminate the central divergence of the NFW
density profile. Regarding the position of the black hole, in most cases it may
be expected to lie at the center of the galactic halo. However, in dwarf galaxies
massive black holes have been recently found even at their outskirts (Reines et al.
2020). Similar wandering massive black holes are expected to inhabit the outer
parts of regular galaxies as well (Guo et al. 2020). Such cases give observational
significance to the xP > 0 results. For the more typical central position, the main
result is the difference between the lensing effects of sub- and super-critical-mass
black holes.

2.5 Summary
We explored gravitational lensing by a massive object in a dark matter halo,
using the simple model of a point mass in a halo with a NFW density profile.
In this work we concentrated on the critical curves and caustics of the lens, in
particular on their changes as a function of mass and position of the object. For
computing the light deflection angle close to the NFW halo center we derived the
numerically stable exact expression given by Equation (A.6).

For a point mass positioned at the center of the halo we demonstrated the
existence of a critical mass parameter κPC, above which the gravitational influence
of the object is strong enough to eliminate the radial critical curve and caustic of
the NFW halo, as shown in Figure 2.4. This result is similar to the behavior of
a point mass embedded in a cored isothermal sphere (Mao et al. 2001) and in a
Plummer model (Werner and Evans 2006), but not in a singular isothermal sphere
(Mao and Witt 2012). In Appendix A.2, we demonstrated the peculiar nature of
the single radial critical curve and caustic in the critical-mass case, as well as the
non-local metamorphosis of their vanishing. Crossing this caustic in the source
plane does not change the number of images, and the magnification diverges on
both sides of the caustic at a rate typical for a cusp approached perpendicularly,
rather than for a fold caustic approached from its inner side.

For a general position of the point mass we found a surprising richness of
critical-curve regimes in the point-mass parameter space. Transitions between
the regimes occur along boundaries mapped in detail in Figure 2.6, which corre-
spond to underlying caustic metamorphoses. The variety of local metamorphoses
occurring in the low-mass regime of this simple lens model is unusually high.
In fact, all caustic metamorphoses with three control parameters (beak-to-beak,
swallow tail, lips, elliptic umbilic, and hyperbolic umbilic) plus the four-parameter
parabolic umbilic occur here (Schneider et al. 1992).

In Section 2.4 we discussed the effect of changing the halo convergence pa-
rameter κs on the presented results, and pointed out the similarities between the
perturbed tangential NFW caustics for low masses and the caustic regimes of
the two-point-mass lens. We commented on the relevance of the results for three
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different astrophysical scenarios: a galaxy in a galaxy cluster, a dwarf galaxy
in the halo of a host galaxy, and a (super)massive black hole in a galaxy halo.
Particularly in the first two cases, similar studies of lens models with an extended
mass distribution for the smaller object can be performed for comparison with
the presented results of the simplest model.
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3. Gravitational Lensing by a
Massive Object in a Dark Matter
Halo. II. Shear, Phase, and
Image Geometry1

Abstract
We study the gravitational lensing influence of a massive object
in a dark matter halo, using a simple model of a point mass
embedded in a spherical Navarro–Frenk–White halo. Building
on the analysis of critical curves and caustics presented in the
first part of this work, we proceed to explore the geometry of
images formed by the lens. First, we analyze several lensing
quantities including shear, phase, and their weak-lensing ap-
proximations, illustrating the results with image-plane maps.
We derive formulae and present a geometric interpretation for
the shear and phase of a combination of two axially symmetric
mass distributions. In the case of our lens model, we describe
the occurrence of zero-shear points and specify the conditions
under which they become umbilic points. Second, we use the
eigenvalue decomposition of the inverse of the lens-equation Ja-
cobian matrix to compute the magnification and flattening of
lensed images. Based on this, we introduce the convergence–
shear diagram, a novel and compact way of visualizing the
properties of images formed by a particular gravitational lens.
We inspect relative deviations of the analyzed lensing quanti-
ties in order to evaluate the perturbing effect of the point mass
and the applicability of the weak-lensing approximation. We
explore the dependence of the results on the point-mass pa-
rameters by studying grids of plots for different combinations
of its position and mass. We provide analytical explanations
for important patterns arising in these plots and discuss the im-
plications for the lensing influence of isolated compact bodies
in dark matter halos.

Keywords: gravitational lensing — galaxy clusters — dark matter halos — dwarf
galaxies — supermassive black holes

1Karamazov and Heyrovský (2022)
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3.1 Introduction

Dark matter halos form the basic building blocks in the bottom-up structure
formation of ΛCDM cosmology. They constitute the dominant matter compo-
nent of the astrophysical objects they are associated with: the largest halos with
galaxy clusters; smaller halos with individual galaxies and dwarf galaxies. Their
properties can be studied by “observations” in the virtual universes arising from
large-scale-structure formation simulations (e.g., Zandanel et al. 2018). In our
universe, main observational constraints on galaxy-cluster dark matter halos come
from the study of the kinematics of cluster galaxies (starting from Zwicky 1933),
from measurements of X-ray emission from intracluster baryonic gas (e.g., Ettori
et al. 2013), and from analyses of weak and strong gravitational lensing of back-
ground galaxies (e.g., Limousin et al. 2007, Okabe et al. 2013). Gravitational
lensing analyses are particularly useful as tools for studying the finer-scale sub-
structure of cluster halos, such as subhalos of individual cluster galaxies, local
clumps or other inhomogeneities. A detailed analysis of 11 galaxy clusters by
Meneghetti et al. (2020) revealed a surprisingly high efficiency of substructure
lensing, more than an order of magnitude higher than expected from CDM sim-
ulations. This result indicates the need for a better understanding of the lensing
effects of individual bodies within the cluster.

The goal of our work is to study the gravitational lensing influence of a com-
pact massive body in a dark matter halo. For this purpose, we use a simple
model consisting of a point mass embedded in a spherical Navarro–Frenk–White
(NFW) density profile (Navarro et al. 1996). In the first part of this work (Kara-
mazov et al. 2021, hereafter Paper I), we studied the critical curves and caustics
of the lens model as a function of the mass and position of the point mass.
We discovered that the model exhibited a rich diversity of critical-curve topolo-
gies and caustic geometries. We mapped the boundaries separating the corre-
sponding lensing regimes in the point-mass parameter space and identified the
accompanying caustic metamorphoses. Among other findings, we demonstrated
the existence of a critical value of the mass parameter. For centrally positioned
lighter (sub-critical) point masses, the lens has two radial critical curves. Heavier
(super-critical) point masses are strong enough to fully eliminate the radial criti-
cal curves. For critical point masses the lens has a single radial critical curve with
peculiar properties, which are described in Appendix B of Paper I. We discussed
the relevance of the model to the lensing by galaxies in galaxy-cluster halos as
well as other astrophysical scenarios, such as the lensing influence of a satellite
galaxy or a (super-)massive black hole in a galactic dark matter halo.

In this sequel to Paper I, we explore other lensing properties of the model.
Here we concentrate on the shear and phase and their relation to the geometric
distortions of images formed by the lens. In the weak-lensing regime the relation
is tight, with the shear specifying the semi-axis ratio and the phase specifying the
orientation of the major axis of the image. However, this will not be the case in the
regions with high convergence (near the halo center) or high shear (near the point
mass and near the halo center). In Section 3.2 we describe the shear, phase, and
image geometry for a NFW-halo-only lens. We study the images in Section 3.2.3,
starting from the eigenvalue decomposition of the inverse of the Jacobian matrix
and utilizing the convergence–shear diagram, a new tool described in detail in
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Appendix A.3. In Section 3.2.4 we introduce the weak shear and weak phase and
compare these weak-lensing estimates with the shear and phase.

In Section 3.3 we proceed with the analysis of the NFW halo + point-mass
lens in a similar manner. More specifically, in Section 3.3.1 we derive formulae
for the shear and phase of the combined mass distribution. We describe the
emergence and occurrence of points with zero shear, which may constitute umbilic
points under conditions discussed in Section 3.3.2. In Section 3.3.3 we study the
properties of images using the convergence–shear diagram. We present the main
results in Section 3.3.5 in the form of grids of image-plane maps of different lens
characteristics and convergence–shear diagrams, utilizing the same point-mass
parameter grid as in Paper I. We discuss the results and their broader relevance
in Section 3.4 and summarize our findings in Section 3.5.

3.2 Lensing by an NFW halo

3.2.1 Convergence, shear, and phase
The surface density of a halo with a spherical NFW profile expressed in units
of the critical surface density Σcr yields the dimensionless convergence profile
(Bartelmann 1996; Paper I),

κNFW(x) = 2κs
1 − F(x)
x2 − 1 , (3.1)

where x is the plane-of-the-sky distance from the halo center expressed in units of
the halo scale radius rs, and κs is the halo convergence parameter. The function

F(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

arctanh
√

1 − x2√
1 − x2 for x < 1 ,

1 for x = 1 ,
arctan

√
x2 − 1√

x2 − 1
for x > 1 ,

(3.2)

has a similar radial behavior to the convergence κNFW(x): both decrease mono-
tonically from ∞ at the halo center to 0 for x ≫ 1 (see Paper I for details). The
radius x0 at which the convergence is equal to 1 can be computed numerically
from

1 − x2
0

F(x0) − 1 = 2κs . (3.3)

This unit-convergence radius and the circle that it defines play a key role when
studying the geometry of images formed by a lens. For the NFW halo x0 increases
monotonically with the convergence parameter κs, as illustrated in Paper I. We
note here that for κs = 3/2 the unit-convergence radius is equal to the scale
radius, x0 = 1. For lower values of κs the unit-convergence circle lies inside the
scale-radius circle; for higher values outside.

A light ray passing through the halo at a position x in the plane of the sky is
deflected by an angle

α(x) = 4κs rs Ds

Dl Dls

[︃
ln x2 + F(x)

]︃
x

x2 , (3.4)
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where Dl, Ds, and Dls are the angular-diameter distances from the observer to the
lens, from the observer to the source, and from the lens to the source, respectively.
Expressed in units of the angular scale radius, the position of a source y and the
position of its image x formed by the gravitational field of the NFW halo are
connected by the lens equation

y = x − 4κs

[︃
ln x2 + F(x)

]︃
x

x2 . (3.5)

For illustration, in the top row of Figure 3.1 we show the lensing of a circular
source by a NFW halo with convergence parameter κs ≈ 0.239035, the fiducial
value used in Paper I. As seen in the top left panel, in this example the black
circular source centered at yc = (0.015, −0.005) with radius yr = 0.005 lies inside
the radial caustic without overlapping the central point-like tangential caustic.
Solving the lens Equation (3.5) numerically for a point y on the circumference
of the source yields three points x on the boundaries of the three black images
shown in the top right panel. One image lies outside the tangential critical curve,
a second image lies between the tangential and radial critical curves, and the
smallest third image lies inside the radial critical curve. The dashed circle with

Figure 3.1: Gravitational lensing of a circular source. Top row: lensing by a
NFW halo with convergence parameter κs ≈ 0.239035. Bottom row: lensing
by the same halo with an additional point mass with mass parameter κP ≈
2.714·10−4 positioned at xP = (0.2, 0). Left column: source-plane plots indicating
the position of the source (black circle) with respect to the lens caustic (red
lines). Right column: image-plane plots indicating the positions of images (black
patches) with respect to the critical curve (solid black lines). The cyan circle in
the bottom right panel marks the Einstein circle of the point mass; the dashed
black lines in the right panels mark the unit-convergence circle.

54



radius x0 ≈ 0.0936 is the unit-convergence circle of this halo. In this case, the
first two images are elongated in the tangential (azimuthal) direction, while the
third image is elongated in the radial direction.

For a source lying inside the radial caustic and overlapping the central tangen-
tial caustic, the first two images would merge along the tangential critical curve,
forming an Einstein ring. For a smaller source positioned close to the inner side
of the radial caustic, the second image would lie inside the unit-convergence circle
and be elongated in the radial direction. For a source positioned on the radial
caustic, the second and third images would merge at the radial critical curve. For
a source lying outside the radial caustic, these two images would vanish, leaving
only the first image.

The deformations and orientations of the images are best studied by comput-
ing the lens shear and its phase, quantities that may be introduced by means of
the lens potential. The deflection angle can be written in terms of the gradient
of the lens potential ψ(x), which in this case is circularly symmetric,

α(x) = Ds

Dls
∇θ ψ(x) = Ds Dl

Dls rs

x

x

dψ
dx , (3.6)

where we converted the angular position in radians θ to the angular position in
scale-radius units, x = θDl/rs. By substituting for the deflection angle from
Equation (3.4) we can express the lens-potential derivative

dψNFW

dx = 4κs r
2
s

D2
l

1
x

[︃
ln x2 + F(x)

]︃
. (3.7)

Integration yields the following expressions for the NFW halo lens potential
(Meneghetti et al. 2003, Golse and Kneib 2002):

ψNFW(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2κs r2

s
D2

l

[︂
ln x ln x

4 − (arctanh
√

1 − x2 )2
]︂

0
2κs r2

s
D2

l

[︂
ln x ln x

4 + (arctan
√
x2 − 1 )2

]︂
,

(3.8)

where the expression in the first row holds for x < 1, in the second row for x = 1,
and in the third row for x > 1. For x ≪ 1, the potential close to the halo center

ψNFW(x) = − 2κs r
2
s

D2
l

(︄
ln2 2 + x2

2 ln x2

)︄
+ O(x4 ln x) , (3.9)

starting from a finite negative value and increasing monotonically outward, cross-
ing zero at the scale radius. Note that the expressions for the potential in
Meneghetti et al. (2003) and Golse and Kneib (2002) are higher by the constant
−ψNFW(0) and thus they start at zero.

For a circularly symmetric lens potential the lens shear γ can be computed as

γ = D2
l

2 r2
s

⃓⃓⃓⃓
⃓d2ψ

dx2 − 1
x

dψ
dx

⃓⃓⃓⃓
⃓ . (3.10)

For the NFW profile the second derivative of the lens potential,

d2ψNFW

dx2 = 4κs r
2
s

D2
l

[︄
1

x2 − 1 + 2x2 − 1
x2(1 − x2) F(x) − 1

x2 ln x2

]︄
, (3.11)
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can be used together with the first derivative from Equation (3.7) in Equa-
tion (3.10) to yield the shear of the NFW halo,

γNFW(x) = 2κs

[︄
2
x2 ln x2 + 1

1 − x2 + 2 − 3x2

x2(1 − x2) F(x)
]︄
, (3.12)

as shown by Wright and Brainerd (2000). In order to understand its behavior
close to the origin, we expand Equation (3.12) for x ≪ 1 and obtain

γNFW(x) = κs

[︃
1 + 3

2 x
2 ln x2 + 13

8 x2
]︃

+ O(x4 ln x) . (3.13)

By setting x = 0 we see that the NFW shear at the center is equal to the
convergence parameter of the halo, γNFW(0) = κs. From this value the shear
decreases outward monotonically. An expansion close to the scale radius shows
that for x → 1

γNFW(x) = 2 κs

[︃ 5
3 − 2 ln 2 − 4

(︃11
15 − ln 2

)︃
(x− 1)

]︃
+ O((x− 1)2) , (3.14)

which yields γNFW(1) ≈ 0.561κs. The NFW shear decreases for x ≫ 1 to zero,

γNFW(x) = 2κs

[︃ 2
x2 ln x2 − x−2 + 3π

2 x−3 − 4 x−4
]︃

+ O(x−5) . (3.15)

The first panel in Figure 3.2 shows a contour plot of the shear γNFW(x) in the
central part of a NFW halo. Going outward from the center, the dotted contours
correspond to 95%, 90%, and 85% of the central shear γNFW(0) = κs. Clearly,
the shear changes very slowly on this scale, as indicated also by the practically
homogeneous color, with the color bar set for comparison with further figures.
The solid black circles mark the radial (smaller) and tangential (larger) critical
curve for the fiducial halo convergence parameter κs ≈ 0.239035.

The NFW shear can be written in terms of its two components, defined as

(γNFW1, γNFW2) = γNFW (cos 2φNFW, sin 2φNFW) , (3.16)

where the trigonometric functions of the phase φNFW can be computed for a point
x = (x1, x2) = x(cosϕ, sinϕ) in the image plane as

(cos 2φNFW, sin 2φNFW) = x−2(x2
2 − x2

1,−2x1x2) = −(cos 2ϕ, sin 2ϕ) . (3.17)

The negative sign in front of the last parentheses indicates that the phase φNFW =
ϕ + π/2 + kπ, i.e., its orientation is always perpendicular to the position vector
of the point. Note that this also means that the phase and the shear components
are undefined at x = 0, since the phase depends on the direction of approach to
the center.

3.2.2 Jacobian
The Jacobian matrix of a general lens equation expressed in terms of the conver-
gence κ(x), shear γ(x), and phase φ(x) has the form (e.g., Schneider et al. 1992)

J(x) = ∂ y

∂ x
=
(︄

1 − κ− γ cos 2φ −γ sin 2φ
−γ sin 2φ 1 − κ+ γ cos 2φ

)︄
. (3.18)
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Figure 3.2: Image-plane color maps of lensing characteristics of the NFW halo
from the top row of Figure 3.1. For orientation, solid black circles mark the
critical curves in all panels. First panel: shear γNFW(x) with dotted con-
tours from inside to outside marking 95%, 90%, and 85% of the central shear
γNFW(0) = κs ≈ 0.239035. Second panel: weak shear γw,NFW(x) computed from
image flattening, using the same color bar as in the first panel. Third panel: rel-
ative weak-shear deviation from the shear, γw,NFW(x)/γNFW(x) − 1. Fourth panel:
weak phase φw,NFW(x) defined by image orientation, with orange corresponding to
images oriented counterclockwise, and blue to images oriented clockwise from the
horizontal. Dot-dashed lines mark the unit-convergence circle, and locations of
horizontal (white background) and vertical images (high-saturation blue/orange
boundary).

Its determinant, the Jacobian, can be computed from the convergence and the
shear:

det J(x) = [ 1 − κ(x) − γ(x) ] [ 1 − κ(x) + γ(x) ] . (3.19)

The critical curves, explored in detail in Paper I, can be obtained by setting
det J(x) = 0. We note here merely that for an axially symmetric lens such as the
studied NFW halo, the first term in Equation (3.19) yields the tangential critical
curve and the second term yields the radial critical curve. Hence, the shear is
related to the convergence by γ(xT) = 1 − κ(xT) at the tangential critical curve,
and by γ(xR) = κ(xR) − 1 at the radial critical curve, with the two critical curves
separated by the unit-convergence circle.

3.2.3 Geometry of images
To study the geometry of the images, we invert the Jacobian matrix to obtain
the mapping from the source plane to the image plane. We can write the inverse
matrix in terms of its two eigenvalues,

λ∥(x) = (1 − κ− γ)−1, λ⊥(x) = (1 − κ+ γ)−1 , (3.20)

as

A(x) = λ∥

(︄
cos2 φ cosφ sinφ

cosφ sinφ sin2 φ

)︄
+λ⊥

(︄
sin2 φ − cosφ sinφ

− cosφ sinφ cos2 φ

)︄
, (3.21)
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Figure 3.3: Geometry of an image of a small circular source. Left panel: source
with radius yr; the black and white points lie in the directions of the eigenvectors
of the inverse Jacobian matrix A parallel and perpendicular to the phase φ. Right
panels: elliptical image for (κ, γ) = (0.08, 0.16) and the three other combinations
producing an ellipse of the same shape and size, as marked at the bottom left
of each panel. The sizes of the semi-axes are marked in red; the positions of
the images of the two points marked on the circumference are determined by the
signs of the eigenvalues marked at the bottom right of each panel.

where κ, γ, and φ are functions of the image-plane position x. The matrix accom-
panying λ∥ is a projection matrix onto the eigenvector (cosφ, sinφ); the matrix
accompanying λ⊥ is a projection matrix onto the eigenvector (− sinφ, cosφ).
Equation (3.21) shows that an image at position x is scaled by a factor λ∥ in the
direction parallel to the phase φ, and by a factor λ⊥ in the direction perpendicular
to the phase, φ+ π/2.

A small circular source with radius yr centered at yc is thus portrayed by the
lens as a set of n small elliptical images with semiaxes yr/|1 − κ(x[i]

c ) − γ(x[i]
c )|

and yr/|1 −κ(x[i]
c ) + γ(x[i]

c )|. Their positions x[i]
c (yc), i = 1 . . . n, can be found by

solving the lens equation, i.e., Equation (3.5) for the NFW halo. We illustrate
the geometry of one such image in the second panel of Figure 3.3 for convergence
κ(x[i]

c ) = κ = 0.08 and shear γ(x[i]
c ) = γ = 0.16. In the three right panels we

include all other (κ, γ) combinations that lead to the same combination of semi-
axes |λ∥| yr and |λ⊥| yr, i.e., they generate an elliptical image of the same shape
and size. The images differ in their orientation and parity. For the combinations
in the two right panels with κ > 1 the major axis is oriented perpendicular to
the phase φ rather than parallel to it. The images in the third and fourth panels
have negative parity, as indicated by the positions of the images of the black and
white points on the circumference of the source. The signs of the eigenvalues
are marked in each panel, with negative values indicating mirroring along the
corresponding eigenvector.

For a general source, the distortion of its image can be quantified by the
dimensionless flattening,

f(κ, γ) = 1 − min
(︄⃓⃓⃓⃓
⃓1 − κ− γ

1 − κ+ γ

⃓⃓⃓⃓
⃓ ,
⃓⃓⃓⃓
⃓1 − κ+ γ

1 − κ− γ

⃓⃓⃓⃓
⃓
)︄
, (3.22)

defined here using the ratio of the smaller to larger eigenvalues, with their defi-
nitions taken from Equation (3.20). For an elliptical image of a circular source,
f is equal to its ellipticity. For the sample images in Figure 3.3, f ≈ 0.30. While
the absolute value of the ratio of the eigenvalues determines the distortion of
the image, their product determines its magnification and parity. Hence, it is
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sufficient to know the convergence κ and shear γ at the position of an image of a
small source in order to fully determine its distortion, magnification, parity, and
orientation with respect to the phase.

For a given gravitational lens, this information can be condensed into the
convergence–shear (hereafter CS) diagram, introduced in Appendix A.3. The
geometry of images formed by a NFW halo lens as a function of their radial
position x can be easily identified from its CS diagram, shown in Figure 3.4
for the fiducial convergence parameter κs ≈ 0.239035. The green curve con-
necting the (κNFW(x), γNFW(x)) points is obtained by using the NFW halo con-
vergence from Equation (3.1) and the NFW halo shear from Equation (3.12).
The center of the halo corresponds to position (κ, γ) = (∞, κs) in the diagram,
while for x → ∞ the green curve reaches the origin, (κ, γ) → (0, 0). The
tick marks along the curve correspond to radii (from the right side of the plot)
x ∈ {0.002, 0.003, . . . , 0.01, 0.02, . . . , 0.1, 0.2, . . . , 1, 2}.

In order to interpret the image geometries in a NFW halo from Figure 3.4,
we follow the green curve, starting from the origin for very distant images and
progressing toward the halo center. We first recall the discussion following Equa-
tion (3.17), which implies that for the NFW profile the direction of the phase
corresponds in polar coordinates to the tangential, and the direction perpendic-
ular to the phase to the radial direction, respectively. Initially, the image has

Figure 3.4: CS diagram illustrating the geometry of images formed by the NFW
halo from the top row of Figure 3.1 with κs ≈ 0.239035. The green line marks all
(κNFW(x), γNFW(x)) combinations of the lens, with radial positions x marked by
tick marks, starting from x = 0.002 near the right edge and ending with x = 2
close to the origin of the diagram. The orange dots mark the (κ, γ) combinations
at the positions of the three images in the top right panel of Figure 3.1. For more
details on the diagram and its interpretation see Figure A.2.
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positive parity with magnification increasing from 1 and the flattening increasing
from 0. The image is expanded tangentially (|λ∥| > 1) but contracted radially
(|λ⊥| < 1), as indicated by the position above the dashed line.

Between x = 2 and x = 1 the green line crosses the diagonal and the image be-
comes expanded also radially (|λ⊥| > 1). For lower x, the green curve approaches
the solid black tangential-critical-curve line, along which the magnification and
|λ∥| become infinite, the flattening increases to 1, and |λ⊥| remains finite. After
crossing the tangential critical curve at x = xT ≈ 0.155, the image parity changes
to negative (due to the sign of λ∥ changing to negative) and the magnification
and flattening decrease. The maximum distortion stays oriented tangentially un-
til reaching the unit-convergence circle, x = x0 ≈ 0.0936, corresponding to the
vertical solid black line at κ = 1. To the right of this line the maximum dis-
tortion is oriented radially. At the unit-convergence radius the negative-parity
image is close to its lowest magnification (though it stays higher than 16 in this
case, as indicated by the hyperbolic contours), and with zero flattening its shape
is undistorted.

Proceeding further toward the halo center, the magnification and flattening
increase again, with the radial expansion |λ⊥| growing rapidly while the tangen-
tial expansion |λ∥| decreases. At the solid black radial-critical-curve line, which
corresponds to x = xR ≈ 0.056, the magnification and |λ⊥| become infinite, the
flattening increases to 1, and |λ∥| remains finite. For lower radii, image parity
changes back to positive (due to the sign of λ⊥ changing to negative), and the
magnification and flattening decrease. The expansion in both perpendicular di-
rections decreases, until the intersection with the dashed black line at x ≈ 0.019.
Images lying closer to the halo center are tangentially contracted rather than
expanded (|λ∥| < 1). After crossing the solid black unit-magnification hyperbola
at x ≈ 0.0105, all images are demagnified. The last important intersection occurs
at x ≈ 0.0068; images to the right of the last dashed black line are contracted
even radially (|λ⊥| < 1), and their magnification and flattening decrease to 0 at
the halo center.

The three orange points marked along the green curve in Figure 3.4 correspond
to the radial positions of the centers of the three images in the top right panel
of Figure 3.1. The first point at x ≈ 0.188 corresponds to the image outside
the tangential critical curve at the right side of the panel. The second point
at x ≈ 0.115 corresponds to the image between the tangential critical curve
and the unit-convergence circle at the left side of the panel. The third point at
x ≈ 0.014 corresponds to the smallest image inside the radial critical curve. The
magnification, parity, flattening, orientation, and the two scaling factors of the
corresponding images can be determined from the positions of these points in
the diagram in Figure 3.4. Note that the values obtained from the diagram are
technically valid at the positions of the source-center images and thus correspond
to the local “point-source” values. Taking into account the radial extent of each
image, their position (and the relevant range of their properties) should be marked
by line segments along the green line in Figure 3.4 rather than by points.
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3.2.4 Weak shear and phase
Weak-lensing cluster-mass reconstructions are based on statistical analyses of
the images of background galaxies (Kaiser and Squires 1993). The convergence
map is computed from maps of the shear components. These are constructed
from the shear and the phase, which are in turn determined from the shapes and
orientations of the images. In the weak-lensing limit, the geometry of the elliptical
image of a small circular source corresponds to the second panel of Figure 3.3. Its
axis ratio yields the shear and the orientation angle of its major axis is equal to the
phase. The semi-minor to semi-major axis ratio b/a is obtained by expanding the
ratio λ⊥/λ∥ of the eigenvalues from Equation (3.20) to first order in κ and γ. The
ellipticity, which is equal to the flattening of the image defined in Equation (3.22),
reduces in this limit to

f = 1 − b/a ≃ 2 γ , (3.23)

i.e., double the value of the local shear. For illustration, for the image in the
second panel of Figure 3.3 Equation (3.23) yields an approximate flattening
2 γ = 0.32, which is an 8% overestimate of the actual value f ≈ 0.30 from
Equation (3.22).

Based on the weak-lensing regime, we introduce the weak shear and weak
phase, which are computed from the images using the weak-lensing relations
from the previous paragraph. We define the weak shear as

γw(x) = 1
2 f (κ(x), γ(x)) , (3.24)

where the flattening f is computed from Equation (3.22) using lens-specific con-
vergence and shear functions. Note that γw by its definition attains only values
from the interval [0, 0.5]. In the weak-lensing regime γw ≈ γ, but as γ and κ
increase, the weak shear computed from the image flattening deviates from the
shear.

For the NFW halo we compute the weak shear γw,NFW(x) from Equation (3.24)
using its convergence from Equation (3.1) and shear from Equation (3.12). The
second panel in Figure 3.2 shows a plot of γw,NFW(x) in the central part of a NFW
halo, using the same color scale as for the shear in the first panel of the figure.
Due to its relation to the flattening in Equation (3.24), the plot can be interpreted
following the f values along the green curve in the diagram in Figure 3.4. At the
halo center the flattening and thus also the weak shear are equal to zero. Going
outward from the center, the weak shear increases to its maximum value of 0.5
at the radial critical curve, marked by the inner black circle. From there it drops
to 0 at the unit-convergence radius and increases back to 0.5 at the tangential
critical curve, marked by the outer black circle. Beyond the tangential critical
curve the weak shear drops asymptotically to 0. Comparison with the left panel
shows the substantial difference between the shears in the central region of the
NFW halo, in terms of amplitude as well as radial pattern. Here the variations
in image distortion are primarily driven by the convergence rather than by the
shear.

In the third panel of Figure 3.2 we illustrate the difference between the first
two panels by plotting the relative deviation of the weak shear from the shear,
γw,NFW/γNFW − 1. The blue regions in which the weak shear underestimates
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the shear are limited to the vicinity of the origin and the vicinity of the unit-
convergence circle. In both cases the weak shear drops to zero and the relative
deviation thus reaches −1, its minimum possible value. Everywhere else the weak
shear overestimates the shear, with the positive deviation peaking at the critical
curves and dropping to 0 asymptotically. Note that the maxima at the critical
curves may be negative for NFW halos with a sufficiently high convergence pa-
rameter κs, for which γNFW(xR) or even γNFW(xT) exceeds the weak-shear value at
critical curves (i.e., 0.5).

In addition to the weak shear, we define the image-based weak phase φw as
the angle between the major axis of the image of a small circular source and the
horizontal (x1) axis of the image plane. Taking into account Figure 3.3 and the
discussion preceding Equation (3.22), in the case of the NFW halo it is related
to the phase φNFW as follows:

φw,NFW(x) =

⎧⎨⎩ φNFW(x) for κNFW(x) < 1 ,
φNFW(x) + π/2 for κNFW(x) > 1 . (3.25)

We use values from the interval [−π/2, π/2] for both φNFW and φw,NFW.
The fourth panel of Figure 3.2 shows a color map of the weak phase φw,NFW

of the NFW halo. The white regions with φw,NFW = 0 correspond to horizontally
elongated images, in the orange regions with φw,NFW > 0 the images are oriented
counterclockwise and in the blue regions with φw,NFW < 0 the images are oriented
clockwise from the horizontal. The bright orange/blue boundaries correspond to
images elongated exactly vertically, with |φw,NFW| = π/2. The weak phase flips
by π/2 along the unit-convergence circle, separating the inner radially oriented
from the outer tangentially oriented images. The weak phase is undefined along
this circle as well as at the origin, which corresponds to zero flattening. The dot-
dashed lines added for orientation mark the positions of all images with exactly
horizontal, exactly vertical, or undefined orientation.

Since the weak phase differs from the phase only by the π/2 flip inside the
unit-convergence circle, a similar color map of the phase φNFW(x) would differ
merely by having inverted color and saturation inside the circle. In other words,
the color and saturation outside the circle in the fourth panel of Figure 3.2 would
be radially extended to the halo center. Hence, the first and third quadrants
would be entirely blue and the second and fourth quadrants would be entirely
orange.

The plots of the different quantities in Figure 3.2 are presented as reference
plots to aid the interpretation of the results for the NFW halo + point-mass lens
model presented in Section 3.3.5.
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3.3 Lensing by an NFW halo + point mass

3.3.1 Convergence, shear, and phase
Adding a compact massive object modeled by a point mass positioned at xP
changes the convergence to

κ(x) = 2κs
1 − F(x)
x2 − 1 + π κP δ(x − xP) , (3.26)

where the mass parameter κP corresponds to the ratio of the solid angles sub-
tended by the point-mass Einstein circle and by the halo scale-radius circle (for
more details, see Paper I). Hence, √

κP is the point-mass Einstein radius in units
of the halo scale radius. The convergence in Equation (3.26) is identical to the
NFW halo convergence from Equation (3.1), except exactly at the position of the
added point mass. The lens equation can be written as

y = x − 4κs

[︃
ln x2 + F(x)

]︃
x

x2 − κP
x − xP

|x − xP|2
, (3.27)

in the form used in Paper I.
For illustration, in the bottom row of Figure 3.1 we show the lensing of the

same circular source as in the top row, by the same NFW halo with an additional
point mass with mass parameter κP ≈ 2.714 · 10−4 positioned at xP = (0.2, 0).
This parameter combination is selected from the parameter-space grid used in
Paper I. The position of the point mass is indicated by its Einstein circle (cyan)
in the bottom right panel. As seen in the bottom left panel, the black circular
source lies inside the weakly perturbed radial caustic, with its upper part lying
also inside the strongly perturbed tangential caustic. For a source not lying on
the caustic, lens Equation (3.27) yields 2, 4, or 6 images. For a source lying on the
caustic, several images appear combined into a lower number of macro-images. In
the example shown in the bottom right panel there are five macro-images. Four
of them are images of the full source; the fifth macro-image to the top left of
the point mass consists of two additional images of the upper part of the source
joined along the critical curve. Comparing the images with those in the top right
panel, we see that the left and central images are affected only weakly by the
point mass. The right image is affected more strongly, plus there are two new
images closer to the point mass. For these images in particular, their distortion
cannot be simply classified as tangential or radial.

In order to compute the shear we start from the lens potential, which has an
additional term due to the point mass,

ψ(x) = ψNFW(x) + r2
s
D2

l
κP ln |x − xP| , (3.28)

where ψNFW(x) is given by Equation (3.8).
The point-mass shear has the simple form

γP(x) = κP

|x − xP|2
, (3.29)

divergent at the point-mass position and dropping rapidly outward. Since the
NFW halo shear peaks at its central value κs, the added point mass will dominate
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Figure 3.5: Viewing angle ω(x) of the line segment from the halo center to
the point mass, appearing in Equation (3.31) for computing the shear γ(x) of
the combined lens. Points on the horizontal axis mark the halo center and the
point-mass position xP; the dot at the vertex of the angle marks the position
x. Contours of constant ω are symmetric pairs of circular arcs connecting the
centers of the two lens components, with the dashed line marking the arc passing
through position x. The values of ω range from π along the line segment to 0
along the rest of the horizontal axis.

the lens shear in its vicinity, wherever it may be positioned. The shear can be
generally computed from the second derivatives of the lens potential, namely

γ = D2
l
r2

s

√︄
1
4 (ψ,11 −ψ,22 )2 + (ψ,12 )2 , (3.30)

where the commas denote partial derivatives with respect to image-plane coor-
dinates (x1, x2). For our combined lens we compute the derivatives of the lens
potential from Equation (3.28) and get

γ(x) =
√︂

[γNFW(x) − γP(x)]2 + 4 γNFW(x) γP(x) cos2 ω(x) , (3.31)

where γNFW(x) and γP(x) are given by Equation (3.12) and Equation (3.29),
respectively, and

cosω(x) = x · (x − xP)
x |x − xP|

(3.32)

is the dot product of the unit vectors pointing to x from the halo center and
from the point-mass position. In terms of image-plane geometry, ω is the viewing
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angle from point x of the line segment connecting the halo center and the point-
mass position. As shown in Figure 3.5, curves of constant ω are circular arcs
connecting symmetrically the halo center and the point-mass position. Note that
ω is also equal to the angle between the tangent to the arc at either of its end
points and the outward horizontal direction, as follows from the tangent–chord
theorem (alternate segment theorem).

Along the line segment connecting the center and the point mass the viewing
angle reaches its maximum, ω = π, while along the rest of the horizontal axis
it reaches its minimum, ω = 0. In both cases, cos2 ω = 1 and the total shear
from Equation (3.31) is γ(x) = γNFW(x) + γP(x). In this case both shears act
in the same orientation, so that their combination is maximal. Along the circle
bisected by the line segment, we find ω = π/2 according to Thales’s theorem and
the total shear is γ(x) = |γNFW(x) − γP(x)|. In this case the two shears act in
perpendicular directions, so that their combination is minimal. For the pair of
small arcs in Figure 3.5 with ω = 3π/4 and for the pair of large arcs with ω = π/4
we get cos2 ω = 1/2 and the total shear is γ(x) =

√︂
γ2

NFW(x) + γ2
P(x).

As discussed in Section 3.2.1, for the NFW halo the central shear is defined,
γNFW(0) = κs, while the phase and shear components are undefined. The same
holds for the central properties of the point-mass lens. However, for the combined
lens even the shear at the halo center is undefined. For x → 0 Equation (3.31)
yields

γ(x) →
√︃[︂
κs − κP x

−2
P

]︂2
+ 4κsκP x

−2
P cos2 ω , (3.33)

a value that depends on the direction of approach to the center, due to the
directional dependence of ω. As seen from Figure 3.5 and as explained in the
discussion above, approaching the center along the horizontal axis leads to the
highest value (the sum of the two shears) while an approach along the vertical
axis leads to the lowest value (the absolute value of the difference of the two
shears). The situation at the position of the point mass is similar, though here
the angular differences are suppressed by the divergence of γP.

The range of values of the shear occurring in the studied central region of the
image plane is larger than for the halo or the point mass separately. Its upper
limit is ∞, due to the divergence of γP at the point-mass position xP. Its lower
limit may reach 0. As seen from the form of Equation (3.31), this may occur
only along the ω = π/2 circle at points where γNFW(x) = γP(x). Following the
circle from the halo center to the point mass, γNFW decreases while γP increases.
Zero-shear points thus exist only if γNFW is equal to or larger than γP at the halo
center. Hence, for xP <

√︂
κP/κs there are no zero-shear points. In this range,

for point masses closest to the halo center, the minimum shear γ = κP x
−2
P − κs

occurs at the halo center when approached along the vertical axis.
Zero-shear points exist for all larger point-mass distances from the halo center.

For xP =
√︂
κP/κs there is one zero-shear point located directly at the halo center.

For any xP >
√︂
κP/κs there are two zero-shear points lying symmetrically above

and below the horizontal axis on the ω = π/2 circle. With increasing distance of
the point mass from the halo center the zero-shear points shift along the circle
toward the position of the point mass, so that for larger distances they lie nearly
vertically above and below the point mass. Their separation from the point mass,
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which is approximately
√︂
κP/γNFW(xP) in this regime, increases with distance as

the halo shear decreases.
Image-plane maps of the shear γ(x) for different masses and positions of the

point mass are presented and discussed in Section 3.3.5.1.
The shear components are defined by

(γ1, γ2) = γ (cos 2φ, sin 2φ) , (3.34)

where the trigonometric functions of the phase φ can be computed for a point
x = (x1, x2) in the image plane as

cos 2φ = 1
γ(x)

[︄
x2

2 − x2
1

x2 γNFW(x) + (x2 − xP2)2 − (x1 − xP1)2

|x − xP|2
γP(x)

]︄

(3.35)

sin 2φ = −2
γ(x)

[︄
x1x2

x2 γNFW(x) + (x1 − xP1)(x2 − xP2)
|x − xP|2

γP(x)
]︄
,

where the shears γ(x), γNFW(x), and γP(x) are given by Equations (3.31),
(3.12), and (3.29), respectively. Note that in this case the phase and the shear
components are undefined at the halo center and at the point-mass position, since
the phase as well as the shear γ(x) depend on the direction of approach to these
points.

We would like to point out that Equation (3.31) is a special case of the more
general formula

γ =
√︂

(γA − γB)2 + 4 γAγB cos2 (φA − φB) (3.36)

for the shear of a combination of two mass distributions with shears γA, γB and
phases φA, φB. For two circularly symmetric mass distributions with the same
sign of the expression ψ′′ − x−1ψ′ that appears in Equation (3.10), the absolute
value of the phase difference in Equation (3.36) is equal to the viewing angle ω.

The expression ψ′′−x−1ψ′ is globally negative for a range of mass distributions,
such as for the NFW profile, for a point mass, for a singular or a non-singular
(cored) isothermal sphere. For a combination of two such distributions, the for-
mula for the shear in Equation (3.31), the following discussion, and the formulae
for the phase in Equation (3.35) are valid. For example, the case of two point
masses was studied by Schneider and Weiss (1986), and the case of two isothermal
spheres was studied by Shin and Evans (2008).

3.3.2 Jacobian and umbilic points
The Jacobian of the lens equation can be computed from Equation (3.19) using
the convergence from Equation (3.26) and the shear from Equation (3.31). Its
explicit form is presented in Paper I, together with a detailed analysis of the
critical curves which are obtained by setting the Jacobian equal to zero. The
parts of the critical curve lying outside the unit-convergence circle (x > x0)
satisfy the equation

γ(x) = 1 − κ(x) , (3.37)
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which yields the tangential critical curve in absence of the point mass. The parts
lying inside the unit-convergence circle (x < x0) satisfy the equation

γ(x) = κ(x) − 1 , (3.38)

which yields the radial critical curve in absence of the point mass.
Equation (3.19) also indicates that for the Jacobian to be equal to zero at

a point lying directly on the unit-convergence circle, the shear must be zero at
such a point. From the properties of zero-shear points discussed in Section 3.3.1
it follows that such critical-curve points must lie at the intersections of the unit-
convergence circle and the ω = π/2 circle extending from the halo center to the
point-mass position.

For xP < x0 these circles have no intersection and, thus, there are no critical-
curve points along the unit-convergence circle. For xP = x0 these circles have an
intersection exactly at the position of the point mass. However, at this point the
shear is not zero, so that even in this case there is no critical-curve point along
the unit-convergence circle. For any xP > x0 these circles have two intersections.
In this case the requirement of zero shear leads to the condition

xP = x0

√︄
1 + κP /

[︃
4κs

(︃
1 + ln x0

2

)︃
+ 2 − 3x2

0

]︃
. (3.39)

We conclude that for any value of the mass parameter κP Equation (3.39) yields
a single corresponding distance of the point mass from the halo center, for which
the critical curve has points lying on the unit-convergence circle.

If we place the point mass along the horizontal axis in the image plane at
xP = (xP, 0), the positions of these critical-curve points are

x =
⎛⎝x0

xP
,±

⌜⃓⃓⎷1 − x2
0
x2

P

⎞⎠ x0 , (3.40)

with the value of xP given by Equation (3.39). These points with κ = 1 and
γ = 0 have special significance. As discussed in Appendix A.3, such critical-
curve points correspond to umbilics. Equation (3.39) thus presents a condition
for the existence of umbilics in the studied lens system. In the (κP, xP) parameter-
space plots in Figure 6 of Paper I, Equation (3.39) describes the green and violet
umbilic boundary, starting at xP = x0 at the κP = 0 vertical axis and increasing
monotonically for higher κP. In the image plane, the umbilic points lie along the
unit-convergence circle. For κP ≪ 1 they are located close to the horizontal axis
in the direction of the point mass. Their displacement from the axis increases
with increasing κP.

3.3.3 Geometry of images
The geometry of the images can be studied using the eigenvalue decomposition of
the inverse of the Jacobian matrix given by Equation (3.21) and the convergence–
shear (CS) diagram introduced in Appendix A.3. For a point mass placed at the
center of the halo, the convergence and shear are purely radial functions. Hence,
the range of their possible combinations is limited to the (κ(x), γ(x)) curve in the
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CS diagram. In this case the analysis of possible image geometries can directly
follow the example presented in Section 3.2.3 for images formed by the NFW
halo.

Even when the point mass is positioned away from the halo center, the con-
vergence given by Equation (3.26) preserves its circular symmetry (with the ex-
ception of the single point at the position of the point mass). This means that
any convergence value κ can be one-to-one translated to the corresponding radial
distance from the halo center x. However, the shear given by Equation (3.31)
loses circular symmetry. In the CS diagram this results in the range of possible
(κ(x), γ(x)) combinations covering a two-dimensional region. In terms of im-
age distortions and orientations, the lack of symmetry means that instead of the
terms “tangential” and “radial” we revert to the more general “in the direction
of the phase” and “perpendicular to the phase”, respectively.

For illustration, in Figure 3.6 we present the CS diagram for a NFW halo

Figure 3.6: CS diagram illustrating the geometry of images formed by the NFW
halo with a κP ≈ 2.714 · 10−4 point mass at xP = 0.2, from the bottom row of
Figure 3.1. The purple-shaded area marks the range of (κ(x), γ(x)) combinations
of the lens; the green line marks the (κNFW(x), γNFW(x)) combinations of the halo-
only lens from Figure 3.4. The green tick marks and labels indicate the radial
distance x along vertical lines in this diagram. The top purple line marks the
maximum shear along a circle with radius x centered on the halo, which always
occurs in the direction of the point mass. The bottom purple line marks the
minimum shear along the circle; for larger radii x (to the left of the purple tick
mark) this occurs in the direction opposite the point mass; for smaller radii x (to
the right of the purple tick mark) this occurs at two symmetric off-axis points
along the circle. The orange dots mark the (κ, γ) combinations at the positions
of the four full images in the bottom right panel of Figure 3.1.
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with a κP ≈ 2.714 · 10−4 point mass located at xP = 0.2. The purple-shaded
region bounded by the bold purple lines shows the range of (κ, γ) combinations
occurring in the image plane. Added for orientation is the green curve from
Figure 3.4 showing the (κ, γ) combinations of the NFW halo without the point
mass. As in Figure 3.4, the tick marks along the curve mark radial distances from
the halo center. At any value of x along this axis, the vertical extent between
the bold purple lines indicates the range of shear values γ(x) occurring along the
circle |x| = x. The maximum shear always occurs in the direction of the point
mass, i.e., for x = (x, 0). At large distances x, the minimum shear occurs in the
direction opposite to the point mass, i.e., for x = (−x, 0). At lower distances, to
the right of the purple vertical tick mark (in the case of Figure 3.6 near x = 0.4),
minimum shear occurs at two points offset symmetrically from the axis connecting
the halo center and the point mass. Close to the halo center, at the right edge
of the diagram, minimum shear occurs at points offset nearly perpendicularly
from the halo center, i.e., for x ≈ (0,± x). Equation (3.33) shows that at the
center of the halo the maximum shear is κs + κP x

−2
P and the minimum shear is

|κs − κP x
−2
P |.

In the example shown in Figure 3.6, the shear range at large radii does not
visibly deviate from the green NFW halo shear. At radii lower than the purple
tick mark near x = 0.4, the maximum shear starts to deviate substantially from
the green curve. The minimum shear starts to deviate visibly between x = 0.3 and
x = 0.2. Along the circle with the radius of the point-mass distance, x = xP = 0.2,
the maximum shear diverges at the position of the point mass. At a slightly
lower radius, the minimum shear reaches 0 at the positions of the off-axis zero-
shear points. For lower radii, the shear interval shrinks back toward the NFW
shear at the green curve. However, instead of reaching the central NFW shear
γNFW(0) = κs ≈ 0.2390, the limiting shear at x = 0 varies within the interval
[0.2322, 0.2458], as discussed in the previous paragraph.

The four orange points marked in the purple region in Figure 3.6 correspond
to the positions of the four images of the source center in the bottom right panel
of Figure 3.1. Note that the fifth macro-image lying on the critical curve in
Figure 3.1 does not include an image of the source center. The point appearing
at (κ, γ) ≈ (0.637, 1.255) corresponds to the image just to the right of the point
mass in Figure 3.1. The three remaining points in Figure 3.6 correspond to
perturbed versions of the three images appearing in the absence of the point
mass in the top right panel of Figure 3.1. The point at (κ, γ) ≈ (0.694, 0.194)
corresponds to the lower right image outside the critical curve in the bottom right
panel of Figure 3.1. The point at (κ, γ) ≈ (0.897, 0.233) corresponds to the image
just outside the unit-convergence circle at the left side of the panel in Figure 3.1.
The fourth point at (κ, γ) ≈ (1.962, 0.244) corresponds to the small image close
to the halo center in Figure 3.1.

The properties of the images can be determined from the positions of the
points in the diagram; the changes in the properties of the latter three due to
the presence of the point mass can be studied by comparing the diagrams in
Figures 3.6 and 3.4. Note that, in this case, taking into account the full extent
of each image would require marking them in the CS diagram by exact patches
covering the corresponding range of (κ, γ) combinations instead of by the points
used in Figure 3.6. This would permit including even partial images that do
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not contain an image of the source center, such as the fifth macro-image in the
bottom right panel of Figure 3.1.

CS diagrams for different masses and positions of the point mass are presented
and discussed in Section 3.3.5.3.

3.3.4 Weak shear and phase
Following the example in Section 3.2.4, we use the geometry of image distor-
tions to introduce the weak-lensing shear and phase estimates for the NFW halo
+ point-mass lens. We compute the weak shear γw from Equation (3.24), sub-
stituting the convergence from Equation (3.26) for κ(x), and the shear from
Equation (3.31) for γ(x).

The angle between the major axis of the image of a small circular source and
the x1 axis of the image plane is equal to the phase outside the unit-convergence
circle; it is perpendicular to the phase inside the unit-convergence circle. Hence,
the weak phase φw is related to the phase φ as follows:

φw(x) =

⎧⎨⎩ φ(x) for κ(x) < 1 ,
φ(x) + π/2 for κ(x) > 1 , (3.41)

where φ(x) is given by Equation (3.35) and κ(x) by Equation (3.26). We use
values from the interval [−π/2, π/2] for both φ and φw.

Image-plane maps of the weak shear γw(x) and weak phase φw(x) for dif-
ferent masses and positions of the point mass are presented and discussed in
Section 3.3.5.4 and Section 3.3.5.7, respectively.

3.3.5 Lens Characteristics as a Function of Point-mass
Parameters

In Sections 3.3.1–3.3.4 we defined the lensing quantities of interest and described
their general properties. In this section we present plots illustrating these lens
characteristics for different point masses embedded in a NFW halo with a fiducial
convergence parameter κs ≈ 0.239035. With the exception of Figure 3.9.A and
Figure 3.9.B, all of the plots are presented as color maps in the image plane.
For better orientation in these maps, we plot the critical curves (solid black) and
mark the point-mass position by its Einstein ring (cyan).

In each of the following figures, the three columns of the plot grid correspond
to the same three values of the mass parameter κP of the point mass used in
Paper I. These differ in the number of radial critical curves they generate for
xP = 0: sub-critical κP = 10−4 with two radial critical curves; critical κP =
κPC ≈ 2.714 · 10−4 with one radial critical curve; super-critical κP = 10−3 with
no radial critical curve.

For each of the characteristics discussed in Sections 3.3.5.1–3.3.5.8 we present
two plot grids. The rows in the first grid correspond to seven values of the point-
mass position xP increasing in steps of 0.05 from 0 to 0.3. These parameter
combinations correspond to the critical-curve and caustic gallery in Figure 5 of
Paper I; they are marked by red crosses in the parameter-space plot in Figure 6
of Paper I. The rows in the second grid correspond to nineteen values of xP
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Symbol Description; First appearance

γ Shear (combined model or general); Equation (3.18)
γNFW Shear of NFW-halo lens; Equation (3.12)
γP Shear of a point-mass lens; Equation (3.29)
γw Weak shear (combined model or general); Equation (3.24)
γw,NFW Weak shear of NFW-halo lens; Section 3.2.4
δφw Weak-phase deviation due to the point mass; Section 3.3.5.8
κ Convergence (combined model or general); Equation (3.18)
κNFW Convergence of NFW-halo lens; Equation (3.1)
κP, κPC Mass parameter of a point mass and its critical value;

Equation (3.26)
κs NFW halo convergence parameter; Equation (3.1)
φ Phase (combined model or general); Equation (3.18)
φNFW Phase of NFW-halo lens; Equation (3.16)
φw Weak phase (combined model or general); Equation (3.41)
φw,NFW Weak phase of NFW-halo lens; Equation (3.25)
ψ Lens potential (combined model or general); Equation (3.6)
ψNFW Lens potential of NFW-halo lens; Equation (3.8)
ω Viewing angle of the line segment connecting the halo center

and the point-mass position; Equation (3.32)

Table 3.1: List of symbols.

increasing in steps of 0.01 from 0 to 0.15, then in steps of 0.05 to 0.3 in the
top row. These parameter combinations are marked by red and black crosses in
Figure 6 of Paper I.

For better orientation in the notation of the different shears, convergences,
phases, and other lensing quantities, we list selected symbols together with their
first appearance in the text in Table 3.1.

3.3.5.1 Shear

Image-plane maps of the shear γ(x) are presented in Figure 3.7.A. The shear
color scale is the same as in the first two panels of Figure 3.2, ranging from white
for γ = 0 to magenta for all positions with γ ≥ 1.5. In the absence of the point
mass the shear varies very slowly in this region, as indicated by the featureless
plot in the first panel of Figure 3.2.

In the bottom row (xP = 0) of Figure 3.7.A the point mass is located at the
center of the halo and the whole system thus exhibits axial symmetry. From
Equations (3.31) and (3.32) it follows that in this case the total shear at any
position is a simple sum of the NFW and point-mass shears. Near the halo center
the NFW shear γNFW(x), shown in the first panel of Figure 3.2, is surpassed by
the point-mass shear γP(x) which diverges at the origin. A comparison of the
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bottom row in the three columns shows that the magenta high-shear region with
the strongest point-mass influence naturally increases with its mass parameter
κP.

Next, we focus on the left column illustrating the sub-critical case with κP =
10−4. Already in the second plot from the bottom (xP = 0.05), many phenomena
described in detail in Section 3.3.1 can be clearly seen. A pale circle corresponding
to viewing angle ω = π/2 connects the point mass and the halo center, marking
a region with decreased shear. The shear drops to zero at two points of this
circle located above and below the horizontal axis of symmetry. These zero-shear
points lie inside the perturbed NFW radial critical curve close to the point mass.
Their presence restricts the bright red high-shear region around the point-mass
divergence to a smaller extent than in the xP = 0 case. The value of the shear in
the vicinity of the halo center depends on the direction of approach. Maximum
shear can be seen in the horizontal and minimum shear can be seen in the vertical
direction, tangent to the ω = π/2 circle.

Going further to xP = 0.1, we see that the paler lower-shear circle and the
directional dependence near the origin become less pronounced, and the zero-
shear points move even closer to the point mass, lying almost vertically above
and below it. They are positioned inside the pair of tiny critical curves seen in
the white low-shear areas. This hints at the fact that umbilics can only occur at
zero-shear points that lie at the intersection of the ω = π/2 circle and the κ = 1
circle, as explained in Section 3.3.2.

For even higher values of xP in the sub-critical case, the directional dependence
at the halo center becomes indiscernible and the pattern close to the point mass
becomes more regular. The region of high shear around the point mass has a
horizontally elongated oval shape and the zero-shear points lie above and below
it in the white spots outside the critical curve. With increasing xP, this shear
pattern around the point mass resembles the total shear of the Chang–Refsdal
model, which consists of a point mass and a constant external shear (Chang and
Refsdal 1984).

The preceding discussion made for the sub-critical case holds also for the
critical case (κP = κPC ≈ 2.714 · 10−4) in the central column. In terms of shear,
the corresponding plots portray qualitatively the same sequence of situations
as in the left column; the difference is merely quantitative. More specifically,
the pattern around the point mass is considerably larger and the directional
dependence around the halo center is more pronounced, observable even for higher
values of xP.

These patterns are even larger and more distinct in the right column illustrat-
ing the super-critical case with κP = 10−3. However, there are some important
differences. In the second plot from the bottom, xP = 0.05 does not exceed the
threshold value of

√︂
κP/κs ≈ 0.0647. Hence, there are no zero-shear points. Mini-

mum shear, which is now non-zero in the central region, can be found at the halo
center when approached vertically. For point-mass positions xP ≳ 0.0647 this
minimum shear drops to zero and its position detaches from the origin, moving
along the ω = π/2 circle. In addition, the third plot from the bottom now depicts
the situation before the detachment of the two small critical curves and, thus, the
zero-shear points still lie inside the perturbed NFW radial critical curve. Note
that in this case the directional dependence of the shear at the halo center can
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Figure 3.7.A: Image-plane maps of the shear γ(x) of a NFW halo + point-mass
lens, described in Section 3.3.5.1. Columns correspond to sub-critical, critical,
and super-critical mass parameters κP marked at the top; rows correspond to
point-mass positions xP marked along the left side. Critical curves are plotted in
black, and the point-mass location is marked by its Einstein ring (cyan). Magenta
marks all positions with γ ≥ 1.5.
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Figure 3.7.B: Image-plane maps of the shear γ(x) of a NFW halo + point-mass
lens, for a finer grid of point-mass positions than in Figure 3.7.A. Notation same
as in Figure 3.7.A.
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be seen up to the top row.
The dependence of the shear γ(x) on the point-mass position xP can be ex-

amined in more detail in Figure 3.7.B, which includes plots for a finer grid in
terms of xP. Zero-shear points appear at the halo center at point-mass posi-
tions {0.0205, 0.0337, 0.0647} in the sub-critical, critical, and super-critical cases.
Other key values of xP correspond to changes in the critical-curve topology, as
indicated by the color boundaries in Figure 6 of Paper I.

Notice that the zero-shear points always occur in a positive-Jacobian region,
as indicated by Equation (3.19): inside the perturbed NFW radial critical curve,
inside the symmetric pair of small critical-curve loops, or outside all critical-curve
loops. Apart from this, there is hardly any correlation between the shear pattern
and the critical-curve geometry.

3.3.5.2 Shear deviation due to the point mass

In Figure 3.8.A, we present image-plane maps of the shear deviation γ/γNFW − 1
caused by the presence of the point mass. As indicated by the formula, this
quantity represents the relative difference between the shear γ(x) of the NFW
halo + point-mass lens (shown in Figure 3.7.A) and the shear γNFW(x) of the
NFW halo alone (shown in the first panel of Figure 3.2). As the deviation falls
rather quickly with increasing distance from the point mass, we introduce a semi-
logarithmic color scale to visualize even minor changes in the deviation. In the
positive yellow- and orange-hued regions the shear is increased, while in the neg-
ative blue regions it is decreased by the point mass. Darkest blue is used for −1,
the lowest possible deviation. From −1 to −10−3, blue saturation decreases loga-
rithmically, and then to 0 linearly, where it reaches white. From 0 to 10−3, yellow
saturation increases linearly, and then to 10−1 logarithmically. The logarithmic
scale then continues to color red at deviation 10, beyond which the color is kept
constant even though the shear deviation can reach arbitrarily large values near
the point mass.

For better orientation, we also include contours for a few specific values of
the shear deviation. The dot-dashed lines represent the zero-deviation contour,
along which the shears are equal. Paler and darker shades of orange are used for
positive-deviation contours with values 10−2 and 10−1, respectively. Similarly,
paler and darker shades of blue indicate negative deviations −10−2 and −10−1,
respectively.

We first inspect the deviation map for a centrally positioned sub-critical point
mass (bottom left plot). In this case the deviation is equal to γP/γNFW, which
is positive in the entire image plane, i.e., the shear is globally increased by the
point mass. The deviation diverges at the halo center, since the point-mass shear
increases to ∞ while the halo shear tends to the constant κs. Further from
the halo center the deviation approaches zero, as the point-mass shear given by
Equation (3.29) falls quickly with distance. Contours representing deviations
10−1 and 10−2 are slightly larger than the outer radial and tangential critical
curves, respectively.

In the second row (xP = 0.05) the point mass is displaced from the center and
a pair of blue regions with negative deviation appears. These regions reach the
halo center from the vertical direction, while the deviation is positive along the full
horizontal axis, as indicated by the orange and yellow color and by the dot-dashed
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zero contour pinched at the halo center. In fact, the deviation along the horizontal
axis is always positive for any xP and κP, since here γ/γNFW − 1 = γP/γNFW

according to the discussion in the paragraphs following Equation (3.31). The
pattern near the halo center arises from the directional dependence of the shear
shown in Equation (3.33). Places with the darkest blue color lie above and below
the point mass, with the lowest shear deviation −1 occurring at the zero-shear
points. The region with a deviation larger than 10% in absolute value is now
roughly centered on the point mass, while the region with a deviation lower than
1% in absolute value lies outside the near-circular pale orange contour and in
narrow bands along the dot-dashed zero-deviation contour.

At xP = 0.1 on the third row we see that the affected area becomes more
asymmetric, with the pale orange contour with 10−2 deviation now broken into
two lobes extending to the left of the center and to the right of the point mass.
In this case there is a single region with deviation lower than 1% in absolute
value, reaching inside the critical curves, including the zero-deviation contour,
and reaching the halo center along it.

For higher values of xP, the blue regions of negative deviation expand as the
point mass shifts to the right. Their borders indicated by the zero-deviation
contour become more and more circular except for the vicinity of the point mass,
where they enclose the zero-shear points but avoid the vicinity of the point mass.
These dot-dashed contours intersect at the halo center at a right angle and the
deviation remains positive in the spindle-shaped region along the horizontal axis
from the halo center to the point mass. The orange and blue contours gradually
detach from the halo center and for xP ≥ 0.25 they form a four-lobed structure
around the point mass, with positive lobes extending horizontally from the point
mass and negative lobes separated vertically from the point mass. The single
region with deviation lower than 1% in absolute value includes the halo center
as well as a progressively larger area around it, including the entire image plane
except the four lobes around the point mass.

In the critical and super-critical cases in the two right columns, the plots
look similar to those in the sub-critical case, with the colors getting progressively
more saturated indicating higher shears γP from heavier point masses. Naturally,
the orange and blue contours also expand with increasing mass. On the other
hand, the blue regions of negative deviation inside the dot-dashed contours do
not expand with increasing κP. On the contrary, they shrink as they recede from
a heavier point mass. Away from the point mass, the dot-dashed zero contours
are almost circular. They intersect at the halo center at a right angle and reach
nearly to the point mass before avoiding it.

Comparing the columns in the different rows, we see that the geometry of the
zero-deviation contour is generic, with increasing κP affecting only the vicinity
of the point mass, and increasing xP only enlarging the scale. The pattern arises
naturally from Equation (3.31) in the regime γP ≪ γNFW valid anywhere except
in the immediate vicinity of the point mass. In this case we expand the shear
and get the simple result γ/γNFW − 1 ≃ (γP/γNFW) cos 2ω. The ratio in the
parentheses is always positive, hence, the zero-deviation contour is purely given
by the condition on the viewing angle requiring cos 2ω = 0. Figure 3.5 shows
that the corresponding ω = π/4 and ω = 3π/4 circles describe the dot-dashed
contours seen in Figure 3.8.A practically exactly, except in the point-mass vicinity
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Figure 3.8.A: Image-plane maps of the relative shear deviation, γ/γNFW−1, caused
by the presence of the point mass, described in Section 3.3.5.2. The color scale
changes from logarithmic to linear in the interval [−10−3, 10−3]. All positions
with deviation greater than 10 are marked in red. Contours are plotted for five
deviation values indicated in the color bar. Remaining notation as in Figure 3.7.A.
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Figure 3.8.B: Image-plane maps of the relative shear deviation, γ/γNFW−1, caused
by the presence of the point mass, for a finer grid of point-mass positions than
in Figure 3.8.A. Notation same as in Figure 3.8.A.
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where γP ≳ γNFW.
In the bottom row of the critical and super-critical columns we see the same

pattern of globally positive shear deviation as in the sub-critical column. What
differs is the larger extent of the orange contours. In fact, in the super-critical
case the entire paler-orange contour of deviation 10−2 lies outside the plotted
area. Within the plotted area in all other panels in the right column, the regions
with a deviation lower than 1% in absolute value are limited to a band along
the zero-deviation contour. This band expands as xP increases, and eventually
connects with the outer low-deviation region. For xP = 0.05 in the super-critical
case we can see very small blue regions of negative deviation without zero-shear
points inside, as these appear at a higher separation, for xP ≥ 0.0645. Moreover,
here the angle of intersection of the dot-dashed contours is very different from a
right angle. In this case the influence of the point mass at the halo center is too
strong (γP/γNFW ≈ 1.7), so that the expansion illustrating the generic shape of
the zero-deviation contour is not valid here.

A more detailed view of the changing deviation patterns with point-mass po-
sition can be seen in Figure 3.8.B. Its closer inspection reveals that the deviation
is globally positive not only for centrally-positioned point masses, but also for
plots up to xP = 0.01 in the sub-critical case, up to 0.02 in the critical case,
and up to 0.04 in the super-critical case. Imposing the condition γ ≤ γNFW on
Equation (3.31) reveals that negative deviation first appears at the halo cen-
ter in the ω = π/2 vertical direction once the point-mass shear at the center
decreases to γP = 2 γNFW. Using Equation (3.13) and Equation (3.29) with
x = (0, 0) then yields the condition for the existence of negative-deviation re-
gions: xP ≥

√︂
κP/(2κs). In the sub-critical case we find xP ≥ 0.0145, in the

critical xP ≥ 0.0238, and in the super-critical xP ≥ 0.0457, in agreement with the
deviation maps.

The sizes of the contours can be used to estimate the areas with a strong effect
on the shear due to the presence of the point mass. As an example, for the three
different masses we find that at the moment of separation of the critical curve
surrounding the point mass from the perturbed NFW tangential critical curve,
the darker contours of deviation ± 10−1 extend roughly seven Einstein radii from
the point mass.

3.3.5.3 Convergence–Shear diagrams

In Figure 3.9.A we present a grid of CS diagrams, which provide a description
complementary to the image-plane plots of the shear, its deviation due to the
point mass, and the quantities discussed in the following sections. For a general
understanding of CS diagrams see Appendix A.3 with Figure A.2, Section 3.2.3
with Figure 3.4, and, in particular, Section 3.3.3 with Figure 3.6.

The purple-shaded area marks the full range of (κ, γ) combinations of the
NFW halo + point-mass lens. Its intersection with the green curve corresponds
to the dot-dashed zero-deviation curve in Figure 3.8.A. The part of the area
above the green curve then corresponds to the yellow- and orange-hued positive-
deviation regions, and the part below the green curve corresponds to the blue
negative-deviation regions in Figure 3.8.A.

We start by describing the sub-critical case shown in the left column. For
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xP = 0 the point mass lies at the center of the halo and the system therefore
has axial symmetry. In addition, the radial dependence of the convergence is
monotonic. This implies that only one value of the shear γ(x) can occur for
any value of the convergence κ(x). These combinations (κ(x), γ(x)) are plotted
here as the bold purple curve. For positions far from the halo center (at the
left side of the plot), this curve closely follows the unperturbed-halo green curve,
which starts at the origin of the plot. Proceeding to the right (closer to the halo
center), the purple curve reaches the bold black line with slope −1 representing
the tangential critical curve. Here the magnification is infinite and the flattening
reaches 1.

Further to the right, the curve enters an area of negative parity, where the
magnification decreases and the flattening drops to 0 at the bold vertical κ = 1
line corresponding to the unit-convergence radius x0 ≈ 0.0936. To the right of this
line, images are elongated perpendicularly to the phase. Roughly here, the purple
curve of (κ(x), γ(x)) combinations starts to deviate significantly from the green
curve. It rises rapidly and eventually leaves the plot, as the shear diverges at the
location of the point mass. Close to the point mass the parity is always negative
and both magnification and flattening approach zero. Before this happens, the
purple curve intersects the bold black line with slope 1 twice. The first intersection
represents the outer radial critical curve and the second intersection represents
the inner radial critical curve. Between them, images have positive parity.

Increasing the point-mass position from xP = 0 to xP = 0.05 brings about
several important changes. As the system loses its axial symmetry, for each
value of convergence κ(x) there is a continuous interval of shear values γ(x) in
the image plane and the set of convergence–shear combinations is represented
by a two-dimensional region. At the left side of the plot, far from the halo
center, these combinations remain limited to the close vicinity of the green curve
of the unperturbed halo. At the right side, close to the halo center, the set of
combinations forms a horizontal band, with shear values γ ∈ [γNFW−γP, γNFW+γP]
corresponding to its directional dependence at the halo center, demonstrated by
Equations (3.31) and (3.33). In the vicinity of x = xP we see the broadest range
of shear values. On the one hand, the shear diverges at the position of the point
mass while on the other hand, the shear drops to 0 at the zero-shear points
occurring here at a radius slightly lower than xP. Overall, the set of (κ(x), γ(x))
combinations looks similar to the case illustrated in Figure 3.6 and described in
detail in Section 3.3.3, with one important difference. The shear divergence and
the zero-shear points both lie in the area of κ > 1, meaning that nearby images
would now be elongated perpendicularly to the phase.

As xP increases in the following rows, both the shear divergence and the zero-
shear point shift to the left, indicating that the point mass moves to locations
with progressively lower halo convergence. By the third row from the bottom
(xP = 0.1), the purple region touches the horizontal axis to the left of the vertical
κ = 1 line, indicating that the lens underwent an umbilic transition at a slightly
lower xP value. The surroundings of the shear divergence and the zero-shear point
now lie in the region κ < 1, where images are elongated parallel to the phase.
The purple regions in the diagram also become narrower with increasing xP. In
the case of the divergence this is due to the changing scale of CS diagrams in
terms of image-plane positions, as indicated by the green ticks. In the case of the
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Figure 3.9.A: Convergence–shear (CS) diagrams of a NFW halo + point-mass
lens, described in Section 3.3.5.3. Combinations (κ(x), γ(x)) occurring in each
of the lens configurations are marked by the purple regions or curves. The green
curve corresponds to the NFW-halo lens from Figure 3.4. For further details on
the notation see Figure 3.6; for the interpretation of CS diagrams see Figure A.2.
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Figure 3.9.B: Convergence–shear (CS) diagrams of a NFW halo + point-mass
lens, for a finer grid of point-mass positions than in Figure 3.9.A. Notation same
as in Figure 3.9.A.
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horizontal band this is due to the decreasing value of γP(0), i.e., the shear due to
the point mass at the halo center.

There are a few differences to notice in the critical case, which is shown in the
central column of Figure 3.9.A. For a centrally positioned point mass (xP = 0),
the purple curve of the (κ(x), γ(x)) combinations deviates from the green curve of
halo combinations similarly as it does in the sub-critical case. However, instead of
intersecting the bold black line with slope 1, the curve merely touches it at a single
point. This indicates the disappearance of the inner positive-parity region and the
presence of a degenerate radial critical curve, described in detail in Appendix B
of Paper I. The plot in the third row from the bottom (xP = 0.1) depicts a
configuration extremely close to the elliptic umbilic, as the zero-shear points
now occur almost precisely at (κ, γ) = (1, 0). Generally speaking, the purple
regions of convergence–shear combinations are broader than in the sub-critical
case, meaning that at a given distance from the halo center a greater range of
shear values occurs.

For the super-critical mass in the right column, in the axially symmetric xP =
0 case the purple curve of the (κ(x), γ(x)) combinations does not touch the black
line with slope 1 at all. This means that there are no radial critical curves. The
second plot from the bottom (xP = 0.05) is now profoundly different than in
previous cases. Here, the purple area does not touch the horizontal axis of the
plot. As discussed in Section 3.3.5.1, in this case there are no zero-shear points
and minimum shear can be found at the halo center when approached vertically.
Moreover, unlike in the lower-mass cases, at the halo center the horizontal band
does not spread symmetrically around the green line. In this case, at the center
the shear due to the point mass is higher than the shear due to the halo, so that
γ ∈ [γP − γNFW, γP + γNFW] as shown by Equation (3.33) and discussed in the
following paragraphs and in Section 3.3.3.

The variation of the CS diagrams with point-mass position can be inspected
in more detail in Figure 3.9.B. Note that the shear interval at the halo center is
centered on γP rather than on γNFW in all cases with xP <

√︂
κP/κs, namely: from

xP = 0 to xP = 0.02 in the sub-critical case; to xP = 0.03 in the critical case; to
xP = 0.06 in the super-critical case. The xP = 0.01 diagrams illustrate the nature
of the transition from the axially symmetric lens configurations at xP = 0, best
seen in the right panel. The bold purple curve from xP = 0 gradually expands
to a broader band at lower radii for xP = 0.01. The remaining structure of the
purple region lies outside the plotted area in the right panel, but it has a similar
nature to the plot in the left panel (also similar to the right panels for higher xP
values): shear divergence at the lens position (xP = 0.01), and the shear interval
shrinking to a horizontal band centered on γP.

Another feature to notice for the lower xP values is that the entire purple
region lies above the green curve, which means that for such configurations the
shear is higher than in the absence of the point mass everywhere in the image
plane. As shown in Section 3.3.5.2, this is the case for xP <

√︂
κP/(2κs), namely:

plots up to xP = 0.01 in the sub-critical case; up to xP = 0.02 in the critical
case; up to xP = 0.04 in the super-critical case. For higher values of xP the
shear may be lower than in the absence of the point mass, but only in limited
parts of the image plane. For example, along the horizontal axis of the lens the
shear always stays higher than in the absence of the point mass, as shown in
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Section 3.3.5.2. For lower masses at higher separations xP, the generic geometry
of the zero-deviation contour discussed in Section 3.3.5.2 shows that the regions
of lower shear are limited to radial distances x < xP

√
2.

3.3.5.4 Weak shear

The plots in Figure 3.10.A show image-plane color maps of the weak shear γw(x),
which we defined in Section 3.2.4 as the shear that would be measured from
image deformations using weak-lensing analysis. At the same time, these maps
illustrate image flattening, since f(x) = 2 γw(x), as shown in Equation (3.24).
This equality also implies that weak shear values range from 0 (corresponding
to white color in the maps) to 0.5 (bright red color), with the maximum value
occurring exclusively along the full length of the critical curve. In spite of this
limited range, for purposes of comparison we retain the same color scale as in the
first two panels of Figure 3.2 and in Figure 3.7.A.

We begin our description in the left column of Figure 3.10.A with a sub-critical
point mass, starting from the bottom row corresponding to its central position in
the NFW halo. Directly at the center the weak shear is equal to zero, since the
image cannot be flattened in any direction due to the axial symmetry of the lens
configuration. Going further from the halo center, the weak shear reaches 0.5 at
the small inner radial critical curve, then it decreases slightly before returning to
0.5 at the outer radial critical curve. The weak shear then drops to zero at the
unit-convergence circle, along which images are undistorted, increasing again to
0.5 at the tangential critical curve, beyond which it drops asymptotically to zero.

In the second row (xP = 0.05), the outer red ring of high weak shear along
the perturbed NFW tangential critical curve is preserved. The same holds for the
white γw = 0 ring along the unit-convergence circle, which is in fact preserved
exactly in all the configurations for all point masses. However, several changes
can be seen closer to the halo center, where there are now four points with
zero weak shear. These points coincide with the halo center, the point-mass
position, and the pair of zero-shear points. This can be understood by inspecting
Equation (3.22) and taking its limit at these points. At the halo center, the
difference of signs before γ is suppressed by diverging κ, which also suppresses
the directional dependence of the shear close to the center. Both fractions in
Equation (3.22) tend to 1, which results in zero flattening. At the position of the
point mass, both numerators and denominators are dominated by the diverging
shear and the fractions thus again approach unity. At the zero-shear points, the
fractions for γ = 0 are directly equal to 1. It is worth noting here that zero shear
γ implies zero weak shear γw, but not vice versa. All four points are connected
by a paler low-weak-shear region corresponding to the ω = π/2 circle, which is
interrupted between the zero-shear points and the point-mass position by the
perturbed NFW radial critical curve, along which the weak shear reaches 0.5.

At xP = 0.1 the region of low weak shear surrounding the point mass is
superimposed over the white ring of the unit-convergence circle, while the pair
of γw = 0 zero-shear points is now trapped inside tiny critical curves, here very
close to the elliptic umbilic transition. For higher values of xP, a lobe forms on
the perturbed NFW tangential critical curve with the point mass inside and the
zero-shear points outside. By xP = 0.25 the curve splits and the point mass is
surrounded by a small oval critical-curve loop elongated toward the halo center.
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Figure 3.10.A: Image-plane maps of the weak shear γw(x) of a NFW halo +
point-mass lens, described in Section 3.3.5.4. These maps also illustrate image
flattening with values f(x) = 2 γw(x). Maximum weak shear γw = 0.5 occurs
exclusively along the critical curves. Remaining notation as in Figure 3.7.A.
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Figure 3.10.B: Image-plane maps of the weak shear γw(x) of a NFW halo +
point-mass lens, for a finer grid of point-mass positions than in Figure 3.10.A.
Notation same as in Figure 3.10.A.
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Three points with zero weak shear remain associated with this loop: the point-
mass position inside, and the two zero-shear points directly above and below the
loop. Similar but larger weak-shear patterns near the tangential-critical-curve
lobes and the detached ovals can be seen in the two right columns showing the
critical and super-critical cases, in the rows with xP ≥ 0.15.

In the critical case with a centrally located point mass (bottom plot in central
column), there is only one γw = 0.5 circle along the single radial critical curve
between the white center and the white κ = 1 circle. The third row (xP =
0.1) illustrates the peculiar situation in the presence of elliptic umbilic points
(technically, these occur at xP ≈ 0.0996, but the plot is visually identical). These
are zero-shear points lying directly on the unit-convergence circle. At these points
the weak shear (and flattening) is undefined, as can be seen by substituting
γ = 0 and κ = 1 in Equation (3.22). In the plot we can see them as point-like
interruptions of the white unit-convergence circle.

In the super-critical case with xP = 0 (bottom right plot) there is no radial
critical curve. Hence, the weak shear increases only slightly between the center
and the κ = 1 circle without reaching 0.5. In the xP = 0.05 plot the pair
of vertically offset zero-weak-shear points is missing, since the condition xP >√︂
κP/κs for the existence of zero-shear points is not fulfilled here. Note in the

same plot that the weak-shear pattern near the halo center resembles the central
directionally dependent shear pattern. However, while the shear is undefined at
the center, the weak shear reaches 0 from any direction, with only the rate of
convergence depending on the direction. The rate is slowest in the horizontal
direction with γw ∼ (γP +γNFW)/(κ−1), and fastest in the vertical direction with
γw ∼ |γP −γNFW|/(κ−1) to first order in 1/(κ−1). Clearly, the directionality will
be most pronounced when γP = γNFW at the halo center, i.e., at the appearance
of the zero-shear points. The directionality will be least pronounced when either
of the component shears γNFW, γP dominates over the other at the halo center.

The emergence and evolution of the features and structures discussed above
can be studied in more detail in Figure 3.10.B. For example, the formation of the
tiny critical-curve loops around the zero-(weak)-shear points is well visible in the
sub-critical case at xP = 0.08 or in the critical case at xP = 0.09. The location of
the white zero-(weak)-shear points inside these loops is best visible for xP = 0.12
for all three masses, as well as for xP = 0.13 in the sub-critical case.

3.3.5.5 Weak-shear deviation due to the point mass

The plots in Figure 3.11.A depict the weak-shear deviation caused by the pres-
ence of the point mass, given by γw/γw,NFW − 1. As indicated by the formula,
it is defined as the relative difference between the weak shear γw(x) of a NFW
halo with a point mass (see Figure 3.10.A) and the weak shear γw,NFW(x) of a
NFW halo alone (see the second panel of Figure 3.2). This means that the plots
are the weak-shear equivalents of the plots from Figure 3.8.A described in Sec-
tion 3.3.5.2. Therefore, we use the same color scale and the same set of contours
as in Figure 3.8.A. Note that due to Equation (3.24), the plots in Figure 3.11.A
also exactly portray the relative image-flattening deviation, including the color
bar and the values of the contours. The yellow- and orange-hued regions thus
correspond to higher flattening and weak shear, while the blue regions correspond
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to lower flattening and weak shear than in the absence of the point mass.
The striking patterns of the colored areas in Figure 3.11.A look remarkably

complex at first. However, especially in the top rows, away from the halo center
and from the vicinity of the point mass, the plots are very similar to those in
Figure 3.8.A. This should be expected, since in these regions with low values of γ
and κ the weak shear is a good approximation of the shear. Closest to the point
mass, the plots differ from those in Figure 3.8.A fundamentally. In Figure 3.8.A,
the relative shear deviation diverges to ∞ at the position of the point mass. In
Figure 3.11.A, even inside the positive weak-shear deviation contours in the top
rows, there is a blue negative area in which the deviation falls to the minimum
possible value of −1 at the point-mass position. This is a consequence of the
weak shear γw converging to 0, while the shear γ diverges there. Interestingly,
this result holds even for xP = 0 at the halo center, where even γw,NFW converges
to 0. Nevertheless, in the immediate vicinity of the center the weak-shear ratio
γw/γw,NFW ≃ 4 (x ln x)2 κs/κP → 0, so that even in this case the weak-shear
deviation at the point-mass position is −1.

In order to decipher the alternating positive and negative regions in Fig-
ure 3.11.A, we concentrate on their boundaries which are indicated by the dot-
dashed zero-weak-shear-deviation contour. Especially in the top rows, for higher
xP, we can see that parts of the contours look identical to the zero-shear-deviation
contours from Figure 3.8.A. However, here there is an additional strong effect
closely associated with the critical curve, unlike in the case of the shear-deviation
patterns which show very little influence of the critical curve. More specifically,
this additional effect reflects the relative deformations of the critical curve caused
by the point mass.

The zero-weak-shear-deviation contour can be defined using the flattening
from Equation (3.22) by setting f(κ, γ) = f(κ, γNFW). Since the convergence is
the same with or without the point mass (except at the point-mass position), we
immediately see that the zero-shear-deviation contour

γ(x) = γNFW(x) (3.42)

automatically also forms a component of the zero-weak-shear-deviation contour.
All dot-dashed contours from Figure 3.8.A thus appear also in Figure 3.11.A. The
remaining components can be obtained by solving the flattening equality, which
yields the additional non-trivial solution

γ(x) γNFW(x) = [ 1 − κ(x) ]2 . (3.43)

This equation describes all components of the zero-weak-shear-deviation contour
that do not appear in Figure 3.8.A.

In particular, these include components closely associated with the critical
curves, which is best illustrated when the NFW critical curves are only weakly
perturbed by the point mass. Along the NFW tangential critical curve we recall
that γNFW(x) = 1 − κ(x), as discussed in Section 3.2.2. Similarly, along the per-
turbed NFW tangential critical curve which lies outside the unit-convergence cir-
cle, the shear satisfies γ(x) = 1−κ(x), as discussed in Section 3.3.2. It is straight-
forward to show that the product of the two shears is lower than [ 1 − κ(x) ]2 along
a section of one of these critical curves and at the same time it is higher than
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Figure 3.11.A: Image-plane maps of the relative weak-shear deviation,
γw/γw,NFW − 1, caused by the presence of the point mass, described in Sec-
tion 3.3.5.5. The maps also exactly portray the relative deviation in image flat-
tening due to the point mass. Color scale, contours, and remaining notation as
in Figure 3.8.A.
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Figure 3.11.B: Image-plane maps of the relative weak-shear deviation,
γw/γw,NFW − 1, caused by the presence of the point mass, for a finer grid of
point-mass positions than in Figure 3.11.A. Notation same as in Figure 3.11.A.
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[ 1 − κ(x) ]2 along the corresponding section of the other critical curve. Due to
continuity, there is a contour between the critical curves of the two models along
which Equation (3.43) is satisfied. When the point-mass perturbation is weak,
such as in the top left plot in Figure 3.11.A, the corresponding component of the
zero-weak-shear-deviation contour is indistinguishable from the perturbed NFW
tangential critical curve. The contour can be distinguished for example in the
top right plot near the horizontal axis in the direction of the point mass.

A similar argument can be made for the NFW radial critical curve, along
which γNFW(x) = κ(x) − 1, as discussed in Section 3.2.2, and for the perturbed
NFW radial critical curve inside the unit-convergence circle with γ(x) = κ(x)−1,
as discussed in Section 3.3.2. Even in this case there is a contour between the
two critical curves along which Equation (3.43) is satisfied. The contour can
be distinguished from the perturbed NFW radial critical curve in Figure 3.11.A
for example in the super-critical xP = 0.15 plot near the horizontal axis in the
direction of the point mass. Note that Equation (3.43) also accounts for other
components of the zero-weak-shear-deviation contour, such as the loop around
the point mass in the top row of Figure 3.11.A.

At the mutual intersections of the components of zero-weak-shear-deviation
contour, Equation (3.42) and Equation (3.43) have to be satisfied simultaneously.
This implies that these points also represent the intersections of the critical curves
of the NFW halo with and without the point mass. The combined geometry of
the components with their mutual intersections explains the partitioning of the
image plane into the color patterns seen in Figure 3.11.A.

Starting with a centrally positioned sub-critical point mass (bottom left plot),
the deviation shows a very small negative region around the point mass inside the
inner radial critical curve, followed by a positive annulus reaching just beyond
the outer radial critical curve, a negative annulus almost to the tangential critical
curve, and a positive outer region. All three boundaries separating these regions
are described by Equation (3.43). At xP = 0.05, the negative region around
the point mass is connected with the larger negative annulus. In addition, the
zero-shear-deviation boundary given by Equation (3.42) can be seen, introducing
negative areas above and below the halo center, with positive crescents where it
reaches beyond the zero-weak-shear-deviation contour associated with the per-
turbed NFW radial critical curve. At xP = 0.1, strong positive deviation can
be seen close to the two tiny critical-curve loops, along which γw = 0.5 while
γw,NFW ≈ 0. However, note that at the zero-shear points inside the loops the
weak-shear deviation equals −1, with the indiscernible negative regions around
them bordered by contour loops obeying Equation (3.43). At xP = 0.15, the
region inside the zero-shear-deviation contour flips color again as it crosses the
zero-weak-shear-deviation contour associated with the perturbed NFW tangen-
tial critical curve. At xP = 0.25, the point-mass critical-curve loop is detached
from the NFW-halo critical curve, showing the characteristic four-lobed contour
pattern seen in Figure 3.8.A, here with the central negative region described
above.

A similar sequence can be seen in the two right columns, in which the struc-
tures are larger and the deviations more prominent. In particular, the zero-weak-
shear-deviation contours near the critical curves are better visible in some of the
plots here. Note also the change with increasing mass for a central position of
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the point mass in the bottom row. In the critical case there is only a single de-
generate radial critical curve, with the accompanying zero-weak-shear-deviation
contour well separated from it. The positive-deviation annulus is narrower as
the central negative region is larger, and for a higher mass it disappears entirely.
This can be seen in the super-critical case, where there is only a single large
negative-deviation region reaching almost to the tangential critical curve.

The transitions of the patterns with increasing point-mass position xP can
be studied in more detail in Figure 3.11.B. For example, note the appearance
of a positive-deviation region in the super-critical case at xP = 0.01, as soon
as the point mass is displaced from the halo center. For larger separations the
boundary of this region forms the zero-weak-shear-deviation contour associated
with the perturbed NFW radial critical curve. The small negative regions inside
the tiny critical-curve loops can be seen here at xP = 0.13 in the sub-critical case,
or at xP = 0.12 in all cases. In the critical and super-critical cases at xP = 0.13,
we see that these regions persist even after the loops merge with the outer critical
curve.

Studying the colored contours, we see that the regions with the strongest neg-
ative weak-shear deviation occur close to the point mass and near the zero-shear
points (except when they lie between the perturbed NFW radial and tangen-
tial critical curves). The strongest positive deviation occurs close to the point
mass along the horizontal axis outside its Einstein radius, and just outside the
tiny critical-curve loops enclosing the zero-shear points. A closer inspection of
the contours reveals that some of them display sharp bends at specific positions.
These may appear at three types of locations. First, at the unit-convergence
circle, as can be seen for example in the critical case at xP = 0.15 on the pale
blue, pale orange, and dark orange contours. These kinks are caused by the
switching of the minimum fractions in Equation (3.22) at κ = 1, which causes a
discontinuity in the derivatives.

Second, at the critical curves, as can be seen for example in the super-critical
case at xP = 0.25 on the pale orange and pale blue contours at the left side of
the plot, or in the sub-critical case at xP = 0.15 on the pale orange and pale blue
contours above and below the halo center. These kinks are caused by crossing
the zero points of the absolute values in Equation (3.22), which also causes a
discontinuity in the derivatives. Third, at the NFW-halo critical curves, as can
be seen for example in the super-critical case at xP = 0.15 on the dark blue
contours around the zero-shear points above and below the point mass, or in the
critical case at xP = 0.20 on the dark blue contour extending from the point
mass toward the halo center. These kinks are similar to the previous ones, being
caused by crossing the zero points of the absolute values in Equation (3.22) when
evaluating the NFW halo weak shear.

Regarding the extent of the contours, they are generally slightly smaller than
those in Figure 3.8.A, indicating that the weak-shear deviation falls more quickly
with the distance from the point mass than the shear deviation. As a rough
estimate, at the moment of separation of the critical curve surrounding the point
mass from the perturbed NFW tangential critical curve, the γw/γw,NFW − 1 =
± 10−1 contours extend roughly six Einstein radii from the point mass.
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Figure 3.12.A: Image-plane maps of the relative weak-shear deviation from the
shear, γw/γ − 1, of a NFW halo + point-mass lens, described in Section 3.3.5.6.
The maps illustrate the relative error of the weak-lensing shear estimate. All
positions with deviation greater than 1.5 are marked in red. Remaining notation
as in Figure 3.7.A.
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Figure 3.12.B: Image-plane maps of the relative weak-shear deviation from the
shear, γw/γ − 1, of a NFW halo + point-mass lens, for a finer grid of point-mass
positions than in Figure 3.12.A. Notation same as in Figure 3.12.A.
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3.3.5.6 Weak-shear deviation from the shear

The relative deviation γw/γ − 1 of the weak shear (shown in Figure 3.10.A) from
the shear (shown in Figure 3.7.A) is plotted in the image-plane color maps in
Figure 3.12.A. We use the same color scale as in the third panel of Figure 3.2,
which shows the same quantity plotted for the NFW halo alone. By its definition,
this deviation shows the relative error of shear estimation using the weak-lensing
approximation.

In the case of the sub-critical mass (left column), the plots are very similar
to the plot in the third panel of Figure 3.2, with the point mass affecting only
its nearby surroundings. Note that the weak shear is always zero at the position
of the point mass, so that the deviation reaches its minimum value of −1 there,
leading to a dark blue spot similar to the one associated with the point mass
in Figure 3.11.A. In the bottom row, the central negative spot is thus more
prominent than in the absence of the point mass and it includes even the inner
radial critical curve. At xP = 0.05, there is a pair of red spots with a strong
positive deviation close to the zero-shear points above and below the point mass.
At these points, both γw and γ drop to 0, but their ratio γw/γ converges to
1/|κ − 1|. The deviation is thus positive as long as κ < 2, corresponding to
zero-shear points located more than circa 0.011 from the center of our fiducial
halo.

As the point mass crosses the unit-convergence circle near xP = 0.1, the
red spots shrink but their peak deviation increases. When the zero-shear points
approach the perturbed NFW tangential critical curve at xP = 0.15, the spots
expand to their largest as they merge with the positive-deviation band along
the critical curve. When the point-mass critical-curve loop is detached from
the perturbed tangential critical curve of the NFW halo as seen in the two top
rows, the positive-deviation spots remain associated with the zero-shear points
above and below the point mass, even though their peak deviation declines with
increasing point-mass position xP. The pattern around the halo center at xP =
0.3 is virtually identical to the unperturbed-halo pattern in the third panel of
Figure 3.2.

The plots for a critical mass in the central column follow a similar sequence,
with larger affected regions around the point mass. When it is positioned at
the halo center (bottom row), we see that the single radial critical curve shows
practically zero deviation, and between it and the blue unit-convergence circle
the positive deviation reaches lower values. At xP = 0.1, the red areas of high
deviation extend from the perturbed NFW radial critical curve past the zero-
shear points and beyond the unit-convergence circle. The pinched pattern at its
intersection with the circle is indicative of the elliptic umbilic at which the weak
shear is undefined, as discussed in Section 3.3.5.4.

The regions strongly influenced by the super-critical mass in the right column
are much larger, with nearly half of the pattern around the NFW halo critical
curve affected for xP = 0.1, 0.15, and 0.2. For xP = 0 there is no region of
positive deviation between the halo center and the unit-convergence circle. For
xP = 0.05 a positive region is present but there are no red spots, as there are
no zero-shear points at this configuration. At xP = 0.1 the red spots are very
large and prominent. At xP = 0.15, in addition to the zero-shear-point red spots
there are two adjacent smaller red spots along the perturbed NFW radial critical
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curve.
The changing patterns can be studied with a finer step in point-mass positions

in Figure 3.12.B. For example, the pattern around the tiny critical-curve loops
can be seen at xP = 0.12 and in a few neighboring panels. We also point out
the xP = 0.03 panel in the sub-critical case and the xP = 0.04 panel in the
critical case. In these panels there are no red spots close to the zero-shear points,
which lie still too close to the halo center. However, in the super-critical case at
xP = 0.06 we see red (or rather orange) spots at the tips of the perturbed NFW
radial critical curve even though the zero-shear points are not present yet. One
panel higher, at xP = 0.07, these red spots are more prominent while the zero-
shear points are located near their edge closer to the halo center. Clearly, the red
spots develop at the perturbed NFW radial critical curve even for lower point-
mass positions at which there are no zero-shear points. With a slight increase in
xP, the points reach the red spots, which then remain associated with them at
more distant point-mass positions.

Overall, the pattern of the blue areas shows that the weak shear underes-
timates the shear near the halo center, along the unit-convergence circle, and
roughly within an Einstein radius of the point mass (extending further when it
overlaps with the unit-convergence circle). Practically everywhere else the weak
shear overestimates the shear, most prominently in the red and orange areas: close
to the zero-shear points, along the perturbed NFW tangential critical curve, and
along the perturbed NFW radial critical curve (except when a super-critical mass
is positioned close to the halo center). Further from the halo center, e.g., close
to the right edge of the plots in Figure 3.12.A for our fiducial halo, the positive
deviation is very low, so that the weak shear may serve as a good approximation
of the shear. However, the agreement fails in the vicinity of the point mass. This
occurs primarily inside its Einstein radius, but also further to the tangentially off-
set zero-shear points. Note that for κNFW(xP) ≪ 1 the deviation at the zero-shear
points reaches a value γw/γ − 1 ≈ κNFW(xP), so that their influence decreases as
the halo convergence declines for higher xP.

3.3.5.7 Weak phase

In Figure 3.13.A we present image-plane plots of the weak phase φw of the NFW
halo + point-mass lens, given by Equation (3.41). We defined the weak phase
in Section 3.2.4 as the phase that would be measured from the orientation of
image deformations using weak-lensing analysis. For an elliptical image of a
small circular source the weak phase is simply the angle between its major axis
and the horizontal axis in the plots. Thus, φw = 0 corresponds to horizontally and
|φw| = π/2 to vertically elongated images. The weak phase of the NFW-halo lens
is described in Section 3.2.4 and shown in the fourth panel of Figure 3.2. Without
the point mass, outside the unit-convergence circle the weak phase is equal to the
phase and images are oriented tangentially. Inside the unit-convergence circle the
weak phase is perpendicular to the phase and images are oriented radially.

In Figure 3.13.A we use the same weak-shear color scale as in the fourth
panel of Figure 3.2, with white corresponding to horizontal images, orange to
images oriented counterclockwise from the horizontal, and blue to images oriented
clockwise from the horizontal. The saturation of both colors increases with the
angle from the horizontal, from zero saturation for angle 0 to maximum saturation
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Figure 3.13.A: Image-plane maps of the weak phase φw(x) of a NFW halo + point-
mass lens, described in Section 3.3.5.7. Orange and blue correspond to images
oriented counterclockwise and clockwise, respectively, from the horizontal. Dot-
dashed curves indicate exactly horizontal, exactly vertical, or undefined image
orientation. Remaining notation as in Figure 3.7.A.
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Figure 3.13.B: Image-plane maps of the weak phase φw(x) of a NFW halo +
point-mass lens, for a finer grid of point-mass positions than in Figure 3.13.A.
Notation same as in Figure 3.13.A.
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for angle π/2. The dot-dashed contour marks several special orientations: φw = 0,
|φw| = π/2, and undefined φw. The weak phase is undefined at all points with
zero weak shear, as described in Section 3.3.5.4. These include the halo center,
the point-mass position, the zero-shear points, and the unit-convergence circle.
All of these points thus play an important role in the patterns seen in the color
maps in Figure 3.13.A.

Thanks to the axial symmetry of the lens configurations with xP = 0 in
the bottom row of Figure 3.13.A, the color maps are identical to that of the
unperturbed halo, as seen in the fourth panel of Figure 3.2. This means that
outside the κ = 1 circle images are oriented tangentially, while inside the circle
the weak phase is flipped by π/2 and images are oriented radially. Exactly at
the halo center the weak phase is undefined. Note the colors alternating around
the center with orange in the first quadrant and the saturation varying from
zero along the horizontal to maximum along the vertical axis. Such a pattern
corresponds to radial orientation of images around the center.

The variation of the weak-phase maps with point-mass position xP is best
seen in the super-critical case (right column). In the top row with xP = 0.3 the
point mass is well separated from the halo center. The left part of the plot closer
to the halo center is similar to the unperturbed pattern seen also in the bottom
row. Note here the slight shift toward the point mass of the dot-dashed contour
extending vertically outward from the unit-convergence circle, which corresponds
to horizontal images. The main new feature is the oval region with inverted colors
bordered by a loop of the dot-dashed contour, which passes through the position
of the point mass at its right side and extends in the direction of the halo center
on its left side. The pattern seen around the point mass also has colors alternating
around the center, however, here with blue in the first quadrant. In addition, the
saturation varies from zero along the vertical to maximum along the horizontal
axis. This pattern corresponds to tangential orientation of images around the
point mass.

The left part of the dot-dashed border of the oval separates high-saturation
regions and, thus, corresponds to vertically oriented images. The right part of the
border lies in the white band separating low-saturation regions and, thus, cor-
responds to horizontally oriented images. The two parts of the boundary meet
at the zero-shear points that lie above and below the point mass. In this panel,
horizontal images occur along the horizontal axis inside the unit-convergence cir-
cle, along the vertical dot-dashed contour outside the unit-convergence circle, and
along the right boundary of the oval region connecting the zero-shear points verti-
cally through the point-mass position. Vertical images occur along the horizontal
axis outside the unit-convergence circle, along the vertical dot-dashed contour
inside the unit-convergence circle, and along the left boundary of the oval region
connecting the zero-shear points and passing vertically through a point between
the halo center and the point mass.

Going down in the right column, the inverted-color oval shrinks slightly as it
moves with the point mass closer to the halo center. At xP = 0.15, the oval partly
overlaps the unit-convergence circle. The very pale color in the region of their
overlap indicates near-horizontal orientation of images there. At the boundary of
the oval in this plot, images are oriented horizontally along its left part inside the
unit-convergence circle and along its right part from the zero-shear points to the
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point-mass position. Along the segments extending from the zero-shear points
to the left till the unit-convergence circle, images are oriented vertically. Image
orientations along the other parts of the dot-dashed contour remain unchanged.

At xP = 0.1, the zero-shear points now lie inside the unit-convergence circle,
so that horizontally oriented images now occur along the left boundary of the
oval up to the zero-shear points and along the part of the right boundary outside
the unit-convergence circle passing through the point-mass position. Vertically
oriented images occur along the segments extending from the zero-shear points to
the right till the unit-convergence circle. The pattern inside the overlap of the oval
and the unit-convergence circle reflects two general properties of its boundaries.
Crossing the boundary of the oval inverts only the color at φw = 0 or |φw| = π/2,
which corresponds to a continuous change in orientation. Crossing the unit-
convergence circle inverts the color as well as the saturation, which corresponds
to a π/2 flip in orientation. Note here also the more prominent bulging of the
vertical dot-dashed contour passing through the halo center as the point mass
lies closer.

Between xP = 0.1 and xP = 0.05, the boundary of the inverted-color oval
undergoes reconnection with the bulging vertical dot-dashed contour. At xP =
0.05 this contour passes through the point-mass position, while a small inverted-
color oval lies to the left of it, with its left boundary passing through the halo
center. Note that at xP = 0.05 there are no zero-shear points, so that here the
entire boundary of the small oval corresponds to horizontal images. What is more
striking in this plot is the pattern around the point mass, which now lies inside
the unit-convergence circle. Orange in the first quadrant and zero saturation
along the horizontal axis indicate that images are now oriented radially around
the point mass. As the point mass moves closer to the halo center, at a certain
value 0 ≤ xP < 0.05 the small oval disappears and the dot-dashed vertical curve
passes through the origin for xP = 0.

In the critical and sub-critical cases (the central and left columns, respectively)
the same sequence of changes occurs as in the super-critical case, although for
slightly different values of xP. Note that the inverted-color oval increases in size
with increasing mass parameter κP. In the top rows, the point at which the left
side of its boundary crosses the horizontal axis marks a boundary of influence of
the halo and the point mass (at least as far as image orientation is concerned).
Both boundaries passing through this point correspond to vertically oriented
images. However, images located off the horizontal axis to the left of this point
are tilted tangentially to the halo, while those to the right of this point are tilted
tangentially to the point mass.

Details of the changing patterns and contours can be studied in more detail
in Figure 3.13.B. For example, it can be seen that the reconnection of the vertical
and oval dot-dashed contours occurs at the zero-shear points. At higher values
of xP the points lie on the larger oval passing through the point-mass position,
while at lower values they lie on the smaller oval passing through the halo center.
For progressively lower point-mass distances, the zero-shear points move along
the smaller oval to the center, where they disappear at xP =

√︂
κP/κs.

The plot for the critical case at xP = 0.1 illustrates the situation at the elliptic
umbilics, which occur for a slightly lower point-mass distance. In this case, the full
length of the oval contour corresponds to horizontal image orientations (except

100



the point-mass position and the zero-shear points with undefined orientation).
Similarly, the xP = 0.09 plots for the critical and super-critical cases indicate
the interesting pattern near the point mass when it lies on the unit-convergence
circle (in both cases for a slightly higher point-mass distance). To the right of the
point mass images are oriented vertically (tangentially), to the left horizontally
(radially), and above and below the orientation is undefined (i.e., the images are
circular).

The weak-phase plots presented in Figure 3.13.A can also be used to visualize
the phase, which we do not present in a separate plot. The reason is indicated by
Equation (3.41), which shows that outside the unit-convergence circle the phase
is equal to the weak phase, while inside it differs by π/2. The phase plots would
thus differ from the weak-phase plots in Figure 3.13.A by having the colors and
saturations flipped inside the unit-convergence circle around the halo center. The
circle would disappear in such plots, and the color and saturation outside would
extend continuously inside all the way to the halo center. The dot-dashed contour
would then consist only of the horizontal axis, the perturbed vertical line through
the halo center, and the large oval associated with the point mass reconnecting
to the small oval associated with the halo center.

Overall, note that unlike the weak shear in Figure 3.10.A, the weak phase in
Figure 3.13.A shows very little correlation with the geometry of the critical curve.
Finally, we point out that placing the point mass off the horizontal axis would
not lead to a simple rotation of the patterns as in the other presented plot grids.
Instead, the overall halo pattern and the pattern close to the point mass would
remain unchanged. A point mass in a blue region of the halo would thus locally
generate a pair of orange lobes, while in an orange region it would generate a pair
of blue lobes.

3.3.5.8 Weak-phase deviation due to the point mass

The image-plane color maps presented in Figure 3.14.A depict the weak-phase
deviation due to the point mass, defined as the difference between the weak shear
of the NFW halo + point-mass lens (shown in Figure 3.13.A) and the weak shear
of the NFW halo alone (shown in the fourth panel of Figure 3.2), δφw(x) =
φw −φw,NFW. We correct the difference if necessary by adding or subtracting π to
keep δφw in the interval [−π/2, π/2]. The deviation is also equal to the angle by
which the orientation of an image changes due to the presence of the point mass.
Red positive values of δφw correspond to a counterclockwise change, blue negative
values to a clockwise change in orientation. The color saturation is scaled linearly
for |δφw| ≤ π/2000 and logarithmically for |δφw| ≥ π/2000. Contours are plotted
for |δφw| = π/20 = 9◦ (dark red and blue), and for |δφw| = π/200 = 0.9◦ (light
red and blue).

When the point mass is located exactly at the center of the halo (bottom row
of Figure 3.14.A), the lens has axial symmetry and the weak-phase deviation is
zero everywhere, which explains the completely white plots. Note that this result
also reflects the fact that images are oriented radially around a point mass lying
inside the unit-convergence circle, as shown in Section 3.3.5.7.

All the other plots with an off-center point mass share the same characteristic
color pattern; they differ only in its scale and in color saturation. The blue and
red regions are separated by the dot-dashed contour, which marks all positions
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with zero deviation δφw = 0 or maximum deviation |δφw| = π/2. The geometry
of the contour is simple and independent of the mass parameter κP: it includes
the horizontal axis and the ω = π/2 circle reaching from the halo center to the
position of the point mass (see Figure 3.5). Along the horizontal axis, images
are always horizontal inside and vertical outside the unit-convergence circle, un-
affected by the presence of a point mass, as shown in Section 3.3.5.7. Hence, this
part of the dot-dashed contour corresponds to δφw = 0.

Along the ω = π/2 circle, there is a right angle between the direction to the
halo center and the direction to the point mass. The shear from the halo and the
shear from the point mass thus act in perpendicular directions. Going from the
halo center along the ω = π/2 circle, the halo shear decreases and the point-mass
shear increases, as described in Section 3.3.1. Hence, from the halo center to the
zero-shear points the halo shear dominates and the image orientation remains
unchanged, so that δφw = 0 along this part of the circle. From the zero-shear
points to the point mass, the point-mass shear dominates and the images are
oriented perpendicular to the orientation they would have in absence of the point
mass, so that |δφw| = π/2 along the remaining part of the circle. For point-mass
positions xP <

√︂
κP/κs, there are no zero-shear points and the entire ω = π/2

circle corresponds to |δφw| = π/2.
Above the horizontal axis and outside the ω = π/2 circle, the weak-shear

deviation is positive meaning that in this region the image orientation changes
counterclockwise. Conversely, under the axis and outside the circle, the deviation
is negative and the image orientation changes clockwise. Inside the ω = π/2 circle,
the sign of the deviation in either half-plane is switched and image orientations
change in the opposite sense. At the center of the halo and at the location of the
point mass, four regions of alternating positive and negative deviation meet.

Deviations |δφw| peak close to the point mass (particularly along the ω = π/2
circle), and fall rapidly with increasing distance from it. The color pattern near
the point mass indicates that images are oriented tangentially around it (when
it lies outside the unit-convergence circle) or radially around it (when it lies
inside the unit-convergence circle). The color pattern around the halo center
indicates that the point mass orients the images more horizontally there. When
zero-shear points are present, zero deviations occur in the horizontal and vertical
directions from the center and strongest deviations occur along the diagonals. In
the absence of zero-shear points, for xP <

√︂
κP/κs, zero deviations occur in the

horizontal directions and strongest |δφw| = π/2 deviations occur in the vertical
directions.

The areas with high deviation |δφw| extend further from the point mass for
greater values of κP, as seen in the central and right columns of Figure 3.14.A.
For point masses far from the halo center (in the top rows), all contours form
four-lobed butterfly-like shapes. For point masses closer to the halo center, the
left lobes of the contours become pointy (e.g., xP = 0.2 in the central column) and
eventually they extend to the halo center (e.g., xP = 0.15 in the central column).
To illustrate the area affected by the point mass, we estimate the extent of the
contours at the moment of separation of the critical curve surrounding the point
mass from the perturbed NFW tangential critical curve, i.e., between xP = 0.20
and xP = 0.25 for the sub-critical and critical cases, and between xP = 0.25 and
xP = 0.30 in the super-critical case. In all three cases, the inner |δφw| = π/20
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contours extend about four Einstein radii, while the outer |δφw| = π/200 contours
extend as far as twelve Einstein radii from the point mass.

The changes in the contours for different point-mass positions can be studied
in more detail in Figure 3.14.B. The abrupt change from zero deviation to |δφw| =
π/2 along the ω = π/2 circle at the zero-shear points can be best seen in the
presence of the small critical-curve loops surrounding them, e.g., for xP = 0.12.
Note also the very small extent of the colored regions for the lowest separations
xP.

Similarly to Figure 3.13.A, the weak-phase deviation in Figure 3.14.A shows
very little correlation with the geometry of the critical curve. However, unlike
Figure 3.13.A, it also shows no influence of the unit-convergence circle.

3.4 Discussion
The examples of images formed by the NFW halo + point-mass lens in the bot-
tom right panel of Figure 3.1 can be compared with the results presented in
Section 3.3.5, specifically with the corresponding xP = 0.2, κP ≈ 2.714 ·10−4 pan-
els of the plot grids. In particular, the weak-shear map in Figure 3.10.A shows the
image flattening, the weak-phase map in Figure 3.13.A shows the image orien-
tation, and the weak-shear-deviation-from-shear map in Figure 3.12.A shows the
relative shear error that would be incurred by assuming the weak-lensing relation
between image distortion and shear.

A few points should be noted regarding the interpretation of such comparisons.
First, Figures 3.7.A–3.14.A present maps of their respective quantities for point-
like sources. For images of extended sources such as those shown in Figure 3.1,
one has to consider the full variation of the quantities within the area of the image.
For example, an image lying on the unit-convergence circle will have its inner part
extended radially and its outer part tangentially, as seen from Figure 3.13.A.

Second, when studying the changes in image shape and orientation due to
the point mass using Figure 3.1 with Figure 3.11.A or Figure 3.14.A, a direct
comparison can be made when there is at least a partial overlap of the images
formed by halos with and without the point mass. In the bottom right panel of
Figure 3.1, the left and central images have a large overlap with the images in the
top right panel, the lower right image has a smaller overlap, and the two images
close to the point mass have no overlap. For these two images, Figure 3.11.A
and Figure 3.14.A show the deviations from images formed at the same positions
by the halo-only lens, but for different source positions. In this particular case,
the sources would lie above the horizontal axis at different radial distances in
the top left panel of Figure 3.1. In fact, even in the case of overlapping images,
the overlapping parts may be images of different parts of the source. Thus,
Figure 3.11.A and Figure 3.14.A compare the properties of images formed by the
two lens models at a same position in the image plane of sources at different
positions in the source plane. They do not compare the properties of images of a
fixed source formed by a halo with and without a point mass.

Third, in this work we do not explore the changes in image positions due to
the point mass. This would be difficult to present in general, if only due to the
change in the number of images. However, it could be done in a perturbative
regime, by studying the displacement and distortion of particular images of a
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Figure 3.14.A: Image-plane maps of the weak-phase deviation δφw(x) caused by
the presence of the point mass, described in Section 3.3.5.8. The maps also
exactly portray the change in image orientation due to the point mass. Red and
blue indicate counterclockwise and clockwise deviation, respectively. The color
scale changes from logarithmic to linear in the interval [−π/2000, π/2000]. Four
colored contours correspond to δφw values indicated in the color bar; the dot-
dashed contour corresponds to δφw = 0 and δφw = ±π/2. Remaining notation
as in Figure 3.7.A.
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Figure 3.14.B: Image-plane maps of the weak-phase deviation δφw(x) caused by
the presence of the point mass, for a finer grid of point-mass positions than in
Figure 3.14.A. Notation same as in Figure 3.14.A.
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fixed source due to the presence of a point mass. This approach was taken by
Wagner (2018), who studied general perturbations of large arc-like images along
the tangential critical curve of axisymmetric lenses. One provided example shows
the influence of a point-mass perturber on the radii and lengths of arcs formed
by a singular isothermal sphere lens. Even though NFW halos have different
lensing properties, the generic pattern of angular distortions seen for example in
the xP = 0.25, κP = 10−4 panel of Figure 3.14.A indicates that an arc-like image
between the tangential critical curve and the point mass inside the ω = π/2 circle
would be straightened by its influence. Hence, its radius of curvature would be
increased, in agreement with the example in Wagner (2018). Overall, image-plane
maps such as those in Figures 3.11.A and 3.14.A are suitable for assessing the
influence of compact masses in observed lensing clusters or galaxies where the
image positions are fixed.

The results presented in this work correspond to one fiducial value of the
halo convergence parameter κs. The variation of the critical curves and the unit-
convergence circle with κs, as well as the variation of κs and κP with source
redshift are discussed in Paper I. The plots presented above in Sections 3.3.5.1–
3.3.5.8 can be expected to follow the combined geometry of the critical curve, the
unit-convergence circle, and the ω = π/2 circle. Note that the last mentioned
circle is given purely by the value of xP, which is independent of the source
redshift and the halo convergence parameter.

Some of the obtained results have more general relevance than just for a point
mass embedded in a spherically symmetric NFW halo. These include some of
the analytic results, such as the shear of a combination of two mass distributions
described in Section 3.3.1. Among the numerical results shown in Figures 3.7.A–
3.14.A, the patterns seen around the point mass at sufficient separation from
the halo critical curves will be very similar for other halo mass distributions
with low spatial variation on the scale of the point-mass Einstein radius (e.g.,
Chang and Refsdal 1984), as discussed further below. Best seen in the top left
plots for xP = 0.30, κP = 10−4, the patterns are relevant not only for point
masses separated from other mass concentrations, but also for extended bodies
with compact mass distributions that do not extend significantly beyond their
Einstein radius.

The applicability of the studied lens model to the astrophysical scenarios of
a galaxy within a galaxy cluster, of a satellite galaxy within a galactic halo, and
of a massive black hole in a galactic halo is discussed in Paper I. In addition,
possible extensions toward more advanced models are pointed out there, such as
replacing the point mass by an extended mass distribution. For distributions that
do not extend significantly beyond their total-mass Einstein radius, the lensing
quantities in the surroundings will not differ significantly from the patterns seen
in Figures 3.7.A–3.14.A. However, for more extended distributions the patterns
will be affected more substantially. Nevertheless, at large separations the lensing
impact of any compact object may be approximated by that of a point mass.

The explored model can be extended also by altering the properties of the
NFW halo. On the one hand, one may change its central properties by adding a
core radius, or by changing its density divergence (Evans and Wilkinson 1998).
Such changes would alter the radii of the halo critical curves and caustics, the
reference plots in Figure 3.2, and the critical value κPC of the mass parameter of
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the point mass. This would impact the presented results primarily for point-mass
positions close to the halo center. Regardless of the nature of the alterations, for
sufficiently large distances the point-mass critical-curve loop disconnects from the
halo critical curves. In this distant regime the patterns in the vicinity of the point
mass will have the same character as seen in the figures.

On the other hand, one may abandon spherical symmetry and study the effect
of a massive object embedded in a more realistic elliptical NFW halo. The lensing
properties of an NFW halo with an elliptically symmetric mass distribution are
poorly studied due to the lack of simple analytic expressions to describe them
(Oguri 2021). Nevertheless, for low values of the halo ellipticity the properties can
be approximated by those of the pseudo-elliptical model, which has an elliptically
symmetric lens potential (Golse and Kneib 2002, Meneghetti et al. 2003, Dúmet-
Montoya et al. 2012). In this model the critical curve typically consists of two
nested oval loops instead of the two circles of the spherical model. The point-like
tangential caustic of the spherical model is replaced by a four-cusped loop; the
circular radial caustic by an oval loop. In this model one may expect an even
more complex dependence of the critical curves and caustics of the combined lens
on the mass and two-dimensional position of the point mass than in the spherical
case described in Paper I.

In the elliptical model, the unit-convergence circle which plays a key role
in the spherical model when studying the geometry of images is replaced by a
unit-convergence ellipse. The grids of the plots corresponding to those in Fig-
ures 3.7.A–3.14.A would be complicated by an additional parameter, the angular
position of the point mass with respect to the axes of the elliptical halo. Never-
theless, the main factors driving the patterns described in the text, such as the
existence and location of zero-shear points or the geometry of the perturbations of
the critical curve, would remain the same. The asymptotic patterns would have
the same nature as seen in the spherical model, as mentioned above. However,
they would be less symmetric and the extent of the contours would additionally
depend on the angular position within the halo.

The presented single-point-mass results will be useful for interpreting the
properties of cluster lens models with multiple (point) masses embedded in an
NFW halo. Masses that are sufficiently separated from the perturbed NFW halo
critical curves as well as from other masses should display similar patterns in
their vicinity, as discussed above. Each of these masses will also produce de-
viation patterns near the halo center similar to those seen in the top left plots
in Figures 3.8.A, 3.11.A, or 3.14.A. Due to the directional dependence of these
patterns, their superposition for a sufficient number of isotropically distributed
masses would drive the amplitude of the central deviations to zero. Strong dif-
ferences can be expected when one or more of the masses are positioned close to
the halo center, or when two or more neighboring masses are mutually separated
by less than a few Einstein radii. These situations cannot be simply extrapolated
from the results presented in this work and their study requires direct simulations.

3.5 Summary
In this paper we proceeded in our study of gravitational lensing by a compact
massive object in a dark matter halo. In Paper I we analyzed the critical curves
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and caustics of a lens consisting of a point mass embedded in a spherical NFW
halo. Here we concentrated on the shear and phase of the same lens model,
focusing on their relation to the geometry of images formed by the lens.

In Section 3.2.1, we described the properties of the shear and phase of a
lens consisting only of a NFW halo. In order to study the images, we used the
eigenvalue decomposition of the inverse matrix of a general lens-equation Jacobian
matrix presented in Equation (3.21). Based on it, we introduced the convergence–
shear diagram (CS diagram) in Appendix A.3, which illustrates concisely the
connection between arbitrary convergence and shear values and the geometry
of an image corresponding to them. Specific lens models occupy characteristic
regions in the diagram, which then define the properties of all images that could
be formed by the lens. We described the properties of images formed by the NFW
halo by reading them off the CS diagram in Section 3.2.3. In Section 3.2.4 we
defined the weak shear and weak phase as the shear and phase values obtained
by assuming weak-lensing relations involving the semiaxes of images and their
orientation.

We followed the same outline for the NFW halo + point-mass lens in Sec-
tion 3.3. In particular, we derived the formula for the shear in Equation (3.31)
which provides a geometric interpretation in terms of the halo and point-mass
shears and the viewing angle ω of the line segment separating them. The formula
which is valid for combinations of other axisymmetric lenses is a special case of
the more general formula in Equation (3.36) for the shear of a combination of two
arbitrary lenses. For the NFW halo + point-mass lens, we discuss the appear-
ance and location of zero-shear points in Section 3.3.1 and describe the conditions
under which they form umbilic points in Section 3.3.2.

Figures 3.7.A–3.14.A illustrate the main results in terms of image-plane maps
of different lens characteristics and CS diagrams, all presented for the same
grid of point-mass parameter combinations as the grid used in Paper I. Impor-
tant features and trends seen in the figures are described in the corresponding
Sections 3.3.5.1–3.3.5.8. As discussed in Section 3.4, the obtained results have
broader implications beyond the specific properties of the studied lens model.

We thank the anonymous referee for comments and suggestions that helped
improve the manuscript. Work on this project was supported by Charles Univer-
sity Grant Agency project GA UK 1000218.
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4. Gravitational Lensing by a
Galaxy Cluster
So far we have studied gravitational lensing by substructures in dark-matter halos
in the simplest possible model consisting of a single point mass embedded in an
NFW halo. In this chapter, we make a major step forward towards a realistic
model of a galaxy cluster. We compose the model by combining an ellipsoidal
NFW mass distribution as a main cluster halo with multiple truncated ellipsoidal
NFW distributions as individual subhalos.

We choose parameters of the main halo to reflect real observed lensing clusters,
while for the subhalos, where necessary observations are not available, we use
probability distributions of their parameters fitted from cosmological simulations.
Our goal is to simulate a galaxy cluster similar to clusters analysed in astronomical
lensing surveys (e.g., Merten et al. 2015). We use formulae for deflection angles
of both truncated and non-truncated ellipsoidal NFW halo lenses and sum them
into a deflection angle of the complete cluster lens.

Once the lens model is complete, we use it to generate image-plane and source-
plane maps of several lensing quantities analogous to the maps presented in Chap-
ter 2 and Chapter 3. We discuss the current results for the cluster lens with a
help of former results obtained from the simpler model.

4.1 Cluster construction
In this section, we construct a model of a galaxy cluster in two steps. First,
we introduce a main dark-matter halo as a triaxial ellipsoidal mass distribution
with NFW profile (Section 4.1.1). In order to mimic the real physical galaxy
clusters, we base our choice of the halo parameters on the analyses of observed
lensing clusters (Merten et al. 2015). Next, we generate properties and positions
of cluster subhalos by sampling them from probability distributions. Generally,
such probability distributions of real physical subhalos are not available. Instead,
we will use distributions fitted from N-body cosmological simulations. In doing
so, we will loosely follow the choices made by Giocoli et al. (2012). Subsequently,
we model each subhalo as a truncated triaxial ellipsoidal mass distribution with
NFW profile (Section 4.1.2).

When needed, we use cosmological parameters from Planck Collaboration
et al. (2016) to compute the required quantities.

4.1.1 Cluster halo
Merten et al. (2015) analysed 19 lensing clusters from the Cluster Lensing and
Supernova Survey with Hubble (CLASH). We choose parameters of the main NFW
halo to be fairly average with respect to their dataset. Therefore, we choose virial
concentration parameter cvir = 4.5 and scale parameter rs = 0.580 Mpc. Apart
from yielding a typical lensing halo, this choice has another convenient property.
The scale radius is equal to the Einstein radius (rs = rE).
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We also choose the redshift at which our cluster is positioned, zl = 0.4, based
on the dataset of Merten et al. (2015). This value of reshift corresponds to the
angular diameter distance of the lens Dl = 1142 Mpc. For the source plane,
we choose the redshift zs = 7, which in turn corresponds to the distance Ds =
1102 Mpc. To study gravitational lensing, we also need to compute the distance
between the lens and the source, Dls. This can be done using the formula

Dls = Ds − 1 + zl

1 + zs
Dl , (4.1)

which yields Dls = 902 Mpc.
Now, we can calculate the virial mass of the main halo, which we will need

for the subsequent generation of the subhalo masses. The virial mass is defined
as a mass of the sphere with radius rvir = rs cvir and a mean density equal to the
critical density ρcrit multiplied by the virial overdensity ∆vir,

Mvir = 4
3 π r

3
vir ∆vir(zl)ρcrit(zl) . (4.2)

In the ΛCDM cosmology using the parameters from PLANCK survey (Planck Col-
laboration et al. 2016), we get critical density ρcrit(0.4) = 1.3276 × 10−26 kg m−3

and the virial overdensity can be approximated (Stoehr 1999) as

∆vir(z) = 9 π2
[︃
1 + Ωm(z)˜︁β − ˜︁α (︂1 − Ωm(z)

)︂]︃
, (4.3)

where ˜︁α = 0.7076 and ˜︁β = 0.4403. We obtain the cosmological matter-density
parameter at the redshift of the lens, Ωm(z), from the approximation formula
(Longair 2008)

Ωm(z) = Ωm

/︄[︄(︄
Ωm z + 1

1 + z

)︄
− ΩΛ

(︄
1

1 + z
− 1

(1 + z)3

)︄]︄
, (4.4)

where Ωm and ΩΛ are density parameters at z = 0. Using this approach we obtain
the virial mass of our fiduacial halo Mvir = 1.88 × 1015 M⊙.

Next, we choose the shape of the triaxial halo, i.e., the ratios of its semiaxes.
For this, we use the results of Jing and Suto (2002), who determined probability
distributions of semiaxis ratios of simulated halos. They introduce the quantity

r̃13 =
(︃
a1

a3

)︃(︃
Mvir

M⋆

)︃0.07 [Ωm(z)]0.7

(4.5)

and they determine that it follows the normal probability distribution r̃13 ∼
N (µ = 0.54, σ = 0.113), where µ is the mean of the distribution and σ is its
standard deviation. (Symbols a1, a2 and a3 are used to denote semiaxes of the
ellipsoid.) For ΛCDM cosmology and redshifts z = 0, 0.5, 1.0 they provide
values of mass parameter M⋆ equal to 9.4 × 1012 h−1M⊙, 2.0 × 1012 h−1M⊙ and
3.8×1011 h−1M⊙, respectively, which we use to interpolate for our chosen value of
zl. When quantity r̃13 is known, Equation (4.5) can be used to obtain the ratio of
the ellipsoid semiaxes a1/a3 =

√︂
1 − e2

2. The second axis ratio, a1/a2 =
√︂

1 − e2
1,
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can then be obtained from the conditional probability distribution (Jing and Suto
2002)

p(a1/a2 | a1/a3) = 3
2(1 − rmin)

⎡⎣1 −
(︄

2 a1/a2 − 1 − rmin

1 − rmin

)︄2
⎤⎦ , (4.6)

for a1/a2 ≥ rmin and p(a1/a2 | a1/a3) = 0 for a1/a2 ≤ rmin while rmin = a1/a3 for
a1/a3 ≥ 0.5 and rmin = 0.5 for a1/a3 < 0.5. In the next subsection, we use these
formulae to generate the axis ratios of the subhalos. Here, we use them merely
to choose typical axis ratios of the main halo a1/a3 = 0.4 a a1/a2 = 0.8.

The orientation of the halo can be chosen arbitrarily. However, it may be
noted that studied lensing clusters tend to be oriented along the line of sight of
the observer. This way, the projected density is more concentrated and the strong-
lensing phenomena are thus more likely. For simplicity, we choose the values of
Euler angles defining the cluster orientation with respect to the direction to the
observer and coordinate axes in the plane of the sky ˆ︁ϑ = ˆ︁ψ = ˆ︁ϕ = π/6.

Finally, it is necessary to express the scale semiaxis as0 of the ellipsoidal halo
in terms of the scale radius rs. We require for the mass of an elliptically flattened
halo,

Mvir,ell = 4
3 π a

3
s0 c

3
vir

√︂
1 − e2

1

√︂
1 − e2

2 ∆vir(zl)ρcrit(zl) , (4.7)

to be equal to the mass of the spherical halo from Equation (4.2). Conveniently,
this is simply achieved by choosing the scale semiaxis as0 so that rs is the geometric
mean of all three semiaxes of the scale ellipsoid,

as0 = rs
[︂
(1 − e2

1)(1 − e2
2)
]︂− 1

6 . (4.8)

4.1.2 Subhalos
To generate the subhalo masses msub, we use the halo-mass function devised by
Giocoli et al. (2010, 2012)1,

dN(Mvir, cvir, z)
dmsub

= ˆ︁AMvir
√

1 + z
c̄

cvir
m−1.9

sub exp
[︄
− ˆ︁β (︃msub

Mvir

)︃3
]︄
, (4.9)

where ˆ︁A = 9.33×10−4 and ˆ︁β = 12.2715. The parameter c̄ is the mean concentra-
tion of a halo with mass Mvir at redshift z. Since we wish to model a typical halo,
we set c̄/cvir = 1. Based on the halo masses analysed by Giocoli et al. (2010), we
choose the minimum subhalo mass mmin = 10−4.2Mvir. The total number of the
subhalos is then computed by integrating the Equation (4.9) from mmin to Mvir,
which yields N = 249 subhalos. Using this value to normalize Equation (4.9),
we obtain a cumulative distribution function (CDF), which we use in turn to
generate subhalo masses of N subhalos.

We sample the concentration parameters of the subhalos cvir,sub, from a log-
normal probability distribution,

log10 cvir,sub ∼ N (µ = ā log10 msub + b̄, σ = 0.12) , (4.10)
1There seems to be a typo in Giocoli et al. (2012). The derivative in their Equation (7) was

probably supposed to be taken with respect to ln m.
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where the mass-dependence, including parameters ā = −0.114 and b̄ = 2.49, is
again adapted from Giocoli et al. (2010). Various values of the deviation σ can
be found in the literature. We base our choice on works of, e.g., Neto et al. (2007)
and Duffy et al. (2008).

We generate the axis ratios of the ellipsoidal subhalos according to Equa-
tions (4.5, 4.6), which we introduced in the previous subsection, and we compute
the respective eccentricities e1,sub and e2,sub. We sample the Euler angles orienting
the subhalo ˆ︁ϑsub, ˆ︁ψsub and ˆ︁ϕsub from an uniform probability distribution on the
interval [0, 2π].

Next, we can compute the scale semiaxis of the subhalo as0,sub. Again, we
require for the elliptically flattened subhalo to have the same mass as its spherical
version, i.e., msub. We express the LHS using Equation (4.2) and the RHS using
Equation (4.7). Then we can express the scale semiaxis

as0,sub = 3

√︄
msub

Mvir

cvir

cvir,sub
rs
[︂
(1 − e2

1,sub)(1 − e2
2,sub)

]︂− 1
6 . (4.11)

To conclude the generation of subhalos, we have to sample their positions
within the galaxy cluster. For the spherical distribution of subhalos, Gao et al.
(2004) provide the following formula for the fraction of subhalos in a sphere with
radius r,

n(< x)
N

= (1 + 0.244 c200) x2.75

1 + 0.244 c200 x2 , (4.12)

where x = r/r200, while r200 is the radius of a sphere around the halo, in which
the mean density is 200 ρcrit(zl), and c200 = r200/rs. The formula is in fact a CDF
for the random variable x. To translate between rvir a r200, we use the formula
(Giocoli et al. 2010)

r200

rvir
= 0.746

[︄
∆vir(z)
∆vir(0)

]︄0.395

. (4.13)

To generate a projected position of a subhalo, we thus first sample a random
point on a 3D unit sphere, keep two of its cartesian coordinates and scale them
by multiplying by r = x r200 generated using the Equation (4.12). Finally, we
deform and rotate this 2D subhalo position in order to align it with the main
cluster halo. Therefore, we multiply one of the coordinates and divide the other
by the square root of the axes ratio of the projected main halo, 4

√
1 − e2, to

conserve the size of an elliptical area where the subhalos reside. We rotate the
position by the angle ˆ︁ϕ.

4.2 Deflection angles of ellipsoidal NFW lenses
In this section, we provide formulae for deflection angles of triaxially ellipsoidal
NFW lenses. First, for an untruncated NFW mass distribution (Heyrovský and
Karamazov 2022a) and then for an ellipsoidally truncated mass distribution (Hey-
rovský and Karamazov 2022b), for which we also provide approximate asymptotic
formula, that hold at a sufficient distance from the halo center.
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4.2.1 Ellipsoidal NFW lens
We start with a density profile of a general triaxially ellipsoidal NFW halo,

ρ(a0) = ρs

a0 (1 + a0)2 , (4.14)

expressed as a function of the dimensionless semi-major axis of the ellipsoidal
surface passing through point (x′, y′, z′),

a0 = 1
as0

√︄
x′2 + y′2

1 − e2
1

+ z′2

1 − e2
2
. (4.15)

The parameter as0 is the three-dimensional scale semi-major axis of the NFW
profile, x′, y′, z′ are Cartesian coordinates aligned with the orientation of major,
median and minor symmetry axes of the halo, respectively, and e1 ≤ e2 are
corresponding eccentricities.

Integrating the density profile along the line of sight yields a two-dimensional
elliptically symmetric convergence profile. We can express its scale semi-major
axis as and eccentricity e in terms of the the three-dimensional parameters of the
halo and the Euler angles ˆ︁ϑ, ˆ︁ψ describing the orientation as

as = as0

⌜⃓⃓⃓
⎷2 − e2

2 sin2 ˆ︁ϑ− (1 − cos2 ˆ︁ψ sin2 ˆ︁ϑ)e2
1 +

√︃[︂
e2

2 sin2 ˆ︁ϑ+ (1 − cos2 ˆ︁ψ sin2 ˆ︁ϑ)e2
1

]︂2
− 4 e2

1 e
2
2 sin2 ˆ︁ψ sin2 ˆ︁ϑ

2 ,

(4.16)

e =
⌜⃓⃓⃓
⎷⃓

2

1 + 2−e2
2 sin2ˆ︁ϑ−(1−cos2ˆ︁ψ sin2ˆ︁ϑ)e2

1√︂
[e2

2 sin2ˆ︁ϑ+(1−cos2ˆ︁ψ sin2ˆ︁ϑ)e2
1]

2
−4 e2

1e
2
2 sin2ˆ︁ψ sin2ˆ︁ϑ

. (4.17)

We express the angular position in the lens plane in units of the angular scale
semi-major axis,

x = θDL

as
, (4.18)

and align its component x1 with the projected major axis. The dimensionless
semi-major axis of an ellipse passing through point (x1, x2) is then

a =
√︄
x2

1 + x2
2

1 − e2 . (4.19)

The convergence profile of the triaxial NFW halo can then be expressed as

κ(a) = 2 κs
F(a) − 1

1 − a2 , (4.20)

where

F(a) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

arctanh
√

1 − a2√
1 − a2 for a < 1 ,

1 for a = 1 ,
arctan

√
a2 − 1√

a2 − 1
for a > 1 ,

(4.21)
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and

κs =

⌜⃓⃓⎷ (1 − e2
1)(1 − e2

2)
(1 − e2

1) cos2 ˆ︁ϑ+ (1 − e2
2)(1 − e2

1 sin2 ˆ︁ψ) sin2 ˆ︁ϑ ρs as0

Σcr
. (4.22)

The convergence parameter κs can be understood as

κs = 3
4
ρs

Σcr

V (as0)
S(as0)

, (4.23)

where V (as0) is a volume of the ellipsoid with semi-major axis as0 and Sproj(as0)
is its sky-projected area.

Finally, we can obtain the deflection angle of the (untruncated) ellipsoidal
NFW halo using image-plane integration as shown in Equation (1.3),

α1(x) = DS as

DLDLS

4 κs x1
√

1 − e2

[(x1 − e)2 + x2
2] [(x1 + e)2 + x2

2]

{︄[︁
(x2

1 − e2)(1 − e2) + x2
2(1 + e2)

]︁ F(a)√
1 − e2

+ (x2
1 + x2

2 − e2) ln
√︁

x2
1 + x2

2

1 +
√

1 − e2
− x2

x1
(x2

1 + x2
2 + e2) arctan x1x2(1 −

√
1 − e2)

x2
1
√

1 − e2 + x2
2

}︄
,

α2(x) = DS as

DLDLS

4 κs x2
√

1 − e2

[(x1 − e)2 + x2
2] [(x1 + e)2 + x2

2]

{︄[︁
x2

1(1 − 2 e2) + x2
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1 − e2
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1 + x2
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x2
1 + x2
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1 +
√
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x2
(x2
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2 − e2) arctan x1x2(1 −

√
1 − e2)

x2
1
√

1 − e2 + x2
2

}︄
.

(4.24)

These expressions are exact and stable for arbitrary value of projected eccentricity
e ∈ [0, 1). As explained above, the coordinate axes x1, x2 are aligned with the
semiaxes of the projected ellipse. To get the deflection angle of an arbitrarily
oriented halo, one simply needs to rotate the deflection angle vector α(x) from
Equation (4.24) by the Euler angle ˆ︁φ. For details see Heyrovský and Karamazov
(2022a).

4.2.2 Truncated ellipsoidal NFW lens
To derive the deflection-angle formulae for an ellipsoidal NFW lens with mass dis-
tribution truncated at a certain ellipsoidal surface, we use the complex formalism
presented by Bourassa and Kantowski (1975) (and corrected by Bray 1984). In
this formalism, components of the deflection angle of an axes-aligned ellipsoidal
lens are obtained as real and imaginary components of a complex conjugate of
integral I:

α1 + iα2 = 4G
c2 I∗ .

The integral itself is given by the expression

I = 2 π as
√

1 − e2

x1 + i x2

∫︂ a(x1,x2)

0

σ(a′) a′ da′√︂
1 − e2

(x1+ix2)2 a′2
.

Here the position in the image plane (x1, x2) is given in units of the scale semi-
major axis as and, again,

a(x1, x2) =
√︂
x2

1 + x2
2/(1 − e2)

114



is the semimajor axis of the ellipse with eccentricity e centered on the origin
passing through this point. For a triaxial ellipsoid, this eccentricity can expressed
by Equation (4.17). The σ(a) = Σcr κ(a) is a 2D projected mass density. Using
the convergence of an untruncated NFW lens (Equation 4.20) we can obtain the
integral

I = 4 πΣcr κs as
√

1 − e2

(x1 + i x2)2 − e2

⎡⎣
⌜⃓⃓⎷(x1 + i x2)2 − e2

(︄
x2

1 + x2
2

1 − e2

)︄

× F

⎛⎝√︄x2
1 + x2

2
1 − e2

⎞⎠+ (x1 + i x2) ln

√︃
x2

1 + x2
2

1−e2

1 +
√︃

1 − e2

(x1+ix2)2

(︂
x2

1 + x2
2

1−e2

)︂
⎤⎥⎥⎦ ,

which yields the deflection angle equivalent to Equation (4.24).
Next, for a density profile truncated at a = cT, the integral I becomes

I = 2 π as
√

1 − e2

x1 + i x2

∫︂ min(cT , a(x1,x2))

0

σ(a′) a′ da′√︂
1 − e2

(x1+ix2)2 a′2
.

We truncate the subhalos at their virial distances and therefore use cT = cvir.
Using the truncated NFW surface density σ(a) = Σcr κT(a), where

κT (a) = 2κs
1

1 − a2

⎡⎣
√︂
c2

T − a2

cT + 1 − FT(a)
⎤⎦ (4.25)

and

FT(a) =
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we get for a < cT

I = 4 πΣcr κs as
√
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(4.26)
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and for a ≥ cT

I = 4 πΣcr κs as
√

1 − e2

(x1 + i x2)2 − e2

×

⎡⎢⎣x1 + i x2

2 ln (1 + cT)2

1 − e2c2
T

(x1+ix2)2

− (x1 + i x2)2 + e2cT

e(1 + cT) arctanh e cT

x1 + i x2

⎤⎥⎦ . (4.27)

Special care must be taken when numerically evaluating these formulae with
respect to multiple branches of present complex functions. For details of the
derivation see Heyrovský and Karamazov (2022b). For now, we do not rule
out the possibility of decomposing the formulae into pairs of purely real ones.
However, in this thesis we proceed with their complex forms and, in order to use
them in parallel GPU computations, we precompute a multidimensional table of
integrals I and interpolate between its values.

4.2.3 Truncated ellipsoidal NFW lens – asymptotics
Far from the center (|x| ≫ 1), the deflection angle of the truncated ellipsoidal
NFW halo can be expanded and approximated as

α1(x) ≃ 4GMvir,ell

c2 as

⎛⎝ x1

x2
1 + x2

2

+ e2 (cT + 1) ln(cT + 1) − cT(1 + cT
2 − c2

T
6 )

(cT + 1) ln(cT + 1) − cT

x1(x2
1 − 3 x2

2)
(x2

1 + x2
2)

3

⎞⎠ ,

α2(x) ≃ 4GMvir,ell

c2 as

⎛⎝ x2

x2
1 + x2

2

+ e2 (cT + 1) ln(cT + 1) − cT(1 + cT
2 − c2

T
6 )

(cT + 1) ln(cT + 1) − cT

x2(3 x2
1 − x2

2)
(x2

1 + x2
2)

3

⎞⎠ . (4.28)

4.3 Computation of lensing quantities
So far, we have described three individual lens models to be used for halo and
subhalos and chose parameters of our fiducial galaxy cluster. Now, we put ev-
erything together and generate several image-plane and source-plane maps of the
lensing quantities of the cluster lens, similar to those shown in previous chapters
for the simpler lens model with a single point-like perturbation.

4.3.1 Deflection angle of the cluster lens
To plot and study both image-plane and source-plane quantities, we need to com-
pute the deflection angle α(θ) of the cluster lens. It can be easily done by simply
adding deflection angles of individual cluster constituents, i.e., its main halo and
subhalos. This is true, because the deflection angle is proportional to the gradi-
ent of the lens potential ψ, which is the solution to the Poisson’s equation (1.7).
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The additivity of the deflection angles then results from the linearity of Poisson’s
equation. To get the deflection angle α(θ) of the combined cluster lens, we thus
add the deflection angles of the halo and subhalos, while accounting for positions
of the subhalos by shifting the image-plane-position parameter θ and for the ori-
entation of halo and subhalos by first rotating the shifted image-plane-position
by a negative value of the Euler angle ˆ︁ϕ orienting the halo (or ˆ︁ϕsub in case of
subhalo) and then rotating the resulting deflection angle back by ˆ︁ϕ.

We model the main cluster halo using the ellipsoidal NFW model. In Sec-
tion 4.2.1 we have presented formulas for the deflection angle of this model, which
we may use directly. On the other hand, the situation with subhalos is more
complicated. We wish to model the them as truncated ellipsoidal NFW mass
distributions, for which we have presented the deflection-angle formulas in Sec-
tion 4.2.2. The deflection angle for this truncated mass distribution was derived
in the complex formalism of Bourassa and Kantowski (1975) and is represented
by complicated formulas composed of numerous instances of inverse hyperbolic
functions of complex variables. Since we wish to generate the amplification map
using the inverse-ray-shooting method, which is highly computationally expen-
sive, we implement our lensing simulation in CUDA so that it runs parallelly on
the computer graphics card (GPU). Due to the poor support of complex-number
computations in CUDA, we instead precompute a table of values of function I
(Equations 4.26, 4.27) for a four-dimensional grid of image-plane positions and
subhalo parameters and, when needed, we compute the deflection angle of a sub-
halo by interpolating between the grid values.

Two dimensions of the table of precomputed values of the function I represent
different two-dimensional positions in the image plane, i.e., different values of the
vector argument θ of the deflection angle α(θ) of the truncated ellipsoidal NFW
lens. It suffices to consider only positive values of components of θ since, due
to the symmetry, the deflection angle for negative or mixed components can be
obtained simply by inverting signs. To balance the discretization error of the
grid and GPU-memory consumption, we precompute the function for 1001 values
in each component of θ ranging from 0 to 40 in units of the projected scale
semiaxis as. The other two dimensions of the table represent values of subhalo
virial concentration parameter cvir and subhalo projected axes ratio

√
1 − e2.

We precompute the integrals for 51 values of concentration parameter ranging
from 0 to 50 and for 6 values of projected axes ratio ranging from 0 to 1. For
the bicubic interpolation between the table values we also need first and mixed
second derivatives of these values. We compute them using a second-order central
finite difference method.2

Using the described method we can get the deflection angle of the subhalo
within the square area defined by the table grid. To obtain the deflection angle for
image-plane positions lying outside the grid we resort to using the approximate
asymptotic formulas presented in Section 4.2.3. We smooth the transition by
gradually mixing the bicubic interpolation and the asymptotics inside an annulus
between the radius 32, measured in projected ellipse axes ratio, and the border

2It is convenient to precompute function I without the multiplicative prefactors and multiply
by them only after the interpolation. However, it is necessary to include 1/[log (1 + cT) −
cT/(1 + cT)], which appears in κs, in the precomputed I. Otherwise, the interpolation would
be imprecise due to significant variation of precomputed values.
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of the grid. To ensure the smoothness of the transition, within the annulus we
mix the interpolated and asymptotic values there. We multiply the interpolated
values by the factor 1 − (2 r3

mix + 3 r2
mix), where rmix is the relative radial distance

within the annulus, such that rmix = 0 at the inner boundary of the annulus and
rmix = 1 at the outer boundary of the annulus, and we multiply the asymptotic
values by −2 r3

mix + 3 r2
mix. The mixing factor was chosen so that its derivatives

vanish at the annulus boundaries.

4.3.2 Generating the image-plane and source-plane maps
To plot the maps of the image-plane lensing quantities we start with computing
maps of components of the deflection angle α(θ) of the cluster lens. Next, we
multiply these maps by the ratio of angular diameter distances Dls/Ds to obtain
the first derivatives of the lens potential ψ,1 and ψ,2 (see Equation 1.6). We dif-
ferentiate these first derivatives numerically to get the second derivatives ψ,11,
ψ,12 and ψ,22, which we in turn use to compute the convergence κ (see Equa-
tion 1.12), shear γ and phase φ (see Equation 1.13). From these, we compute
the Jacobian J and find the critical curves as its zero-contours. As in Chapter 3,
we also compute the weak shear and weak phase (image orientation), the relative
difference between the shear and weak shear, and also the differences in shear and
image orientation due to the presence of subhalos. For these two differences we
need to compute the deflection-angle maps of the main halo alone. In addition
to these quantities, which we already studied in Chapters 2 and 3 for the simple
pertubed halo model, we also introduce a map of inverse Jacobian |det J(θ)|−1

as an image-plane complement to the source-plane amplification map.
We compute the source-plane amplification map by the inverse-ray-shooting

method (Kayser et al. 1986), i.e., we randomly sample one billion positions from
the square area of the image plane and project them back to the source plane using
the lens equation (1.1), into which we have inserted the cluster-lens deflection
angle computed as described in the previous subsection. Subsequently, we count
the number of light rays that fell into each pixel of a defined source-plane grid.
The amplification A(β) is then computed as a ratio of the light rays that fell
into each source-plane pixel in presence of the lens to the number of light rays
that would fall there in absence of the lens, which is simply given by the areas of
considered regions, number of rays and resolution of the pixel grid. The number
of light rays necessary to obtain a smooth amplification map without excessive
noise together with the complexity of the deflection-angle formulas makes the
whole process very computationally intensive, which is the reason why we run it
in parallel on GPU using the code written in CUDA.

4.4 Results
In the following subsections, we present and describe our results in the form
of image-plane and source-plane maps of the lensing quantities produced as de-
scribed in Section 4.3 for a single fiducial cluster constructed according to the
procedure from Section 4.1.

Most of the lensing quantities that we plot here are the same as those that
we studied in Chapters 2 and 3 for the simple model of an NFW halo perturbed
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by a single point mass. Moreover, we use the same color scales as before. This
allows us to use the knowledge acquired by studying the simple model to better
understand the lensing by a more realistic model of the galaxy cluster.

Primarily, we focus on the inner parts of the fiducial cluster, since the most
of interesting lensing phenomena occur there. However, when beneficent, we also
present zoomed-out versions of the maps to get a view of the whole cluster and
to reveal the asymptotic behavior of the plotted quantities. Furthermore, we find
the critical curves and include them in those maps, where it makes sense. The
resolution of all the maps presented in the figures is 1024×1024 pixels and the an-
gular positions indicated by the ticks on frames of the plots are measured in units
of the projected scale semiaxis of the main ellipsoidal halo as. In other words,
values on axes of the plots represent components x1 and x2 of the dimensionless
position vector x = θDL/as in the case of image-plane maps and components
y1 and y2 of the dimensionless position vector y = βDL/as in the case of the
source-plane amplification map.

4.4.1 Convergence
Figure 3.1 is an image-plane map of the convergence κ(θ) (Equation 1.12). In
other words, it represents the projected two-dimensional density of the mass in
the galaxy cluster. The same color scale is used for the convergence as is used for
the shear, since both quantities are closely related (they are both non-negative
quantities composed of second derivatives of the lens potential).

We see that the convergence computed from the combined deflection angles
of the cluster constituents is in agreement with our construction of the galaxy
cluster in Section 4.1. As expected, the plotted distribution is composed of a
central elliptical, tilted and highly concentrated convergence peak corresponding
to the main halo and smaller elliptical peaks corresponding to the subhalos. The
convergence diverges at the cluster center and falls to zero at an infinite distance.

The numerous subhalos are obviously elliptical, randomly rotated and their
sizes vary greatly with larger subhalos being comparatively rarer. The subhalos
are located in an elliptical area, which is aligned with the main halo. A projected
number density of subhalos rises towards the cluster center. However, it rises only
slightly and much less than the mass density of the main halo. This is a result of
the subhalo radial distribution (Equation 4.12) combined with a projection along
the line of sight.

The top left panel of Figure 3.2 shows a detail of the convergence map focused
on the center of the cluster. The critical curves are now included in the plot.
For our fiducial lens configuration, the main tangential critical curve appears at
positions with values of convergence ranging roughly between κ = 0.5 and κ = 1.

4.4.2 Jacobian and critical curves
The top right panel of Figure 3.2 is a map of the Jacobian of the lens equation
J(θ) (Equation 1.14) of the galaxy-cluster lens. Similarities with the Jacobian
map of the unperturbed NFW lens (Figure 2.2) are clearly visible. At the cen-
ter of the main halo, the Jacobian approaches positive infinity indicating infinite
demagnification. The small central area of positive Jacobian (red) is then sur-
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Figure 3.1: A map of the convergence showing the projected mass density of the
fiducial cluster. The image-plane position is measured in the units of projected
scale semiaxis of the main ellipsoidal halo as.

rounded by a larger area of negative Jacobian (blue), where the parity of images
would be negative. Outside the blue area, the Jacobian is again positive (color
red) and asymptotically approaches unity, meaning that images sufficiently re-
moved from the halo center would be virtually unaffected by the lens. Unlike in
the spherical case in Chapter 2, the blue area of the negative Jacobian is now
elongated and aligned with the orientation of the halo.

A similar structure of central positive divergence surrounded by an area of
negative Jacobian is generally present also for individual subhalos with structures
being more pronounced for larger subhalos and those closer to the cluster center.
Interestingly, the subhalos lying inside the large blue area of negative parity are
accompanied by a local anisotropy in the Jacobian. In their vicinity, the Jacobian
is more negative in the radial direction with respect to the cluster center while
being closer to zero in the perpendicular (tangential) direction.

Critical curves at which the amplification is infinite are found as zero contours
of the Jacobian. Thus, they appear in the white areas of the Jacobian map
and form natural boundaries between areas of positive (red) and negative (blue)
parity. We use black color to plot them. The largest critical curve is the tangential
critical curve of the main halo, which forms the outer boundary of the large blue
area. It is slightly dumbbell-shaped and aligned with the projected ellipse of the
main halo. Inside it, at the very center of the Jacobian map, lies a somewhat
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Figure 3.2: Lensing quantities in the central region of the galaxy cluster. Top
left: image-plane map of the convergence. Top right: image-plane map of the
Jacobian of the lens equation. Bottom right: image plane of the inverse of the
absolute value of the Jacobian, i.e., the amplification observed at a given image-
plane position. Bottom left: source-plane amplification map, i.e., amplification of
a point source at given source-plane position. Both image-plane and source-plane
positions are measured in the units of the projected scale semiaxis of the main
ellipsoidal halo as.
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spindle-shaped radial critical curve oriented perpendicularly to the halo. These
two critical curves are almost touching indicating that the lens is close to the
umbilic transition.

Similar structures and shapes of the critical curves are also present for the
subhalos. However, they are mostly oriented radially, pointing towards the cluster
center. Some critical curves (especially the inner radial ones) of the subhalos are
too small to be visible as zero-contours of the Jacobian in our map. Fixing this
would require a substantial increase in the resolution of the map. In general, larger
subhalo critical curves appear close to the tangential main-halo critical curve and
if they are too close, they merge with it forming protruding lobes. Subhalos lying
directly inside the main tangential critical curve merely form additional small
radial critical curves inside it.

4.4.3 Inverse Jacobian
The bottom right panel of Figure 3.2 is a map of the inverse absolute value of
the lens-equation Jacobian, i.e., |det J |−1. It is closely related to the Jacobian
map plotted in the panel above and it represents the amplification that would
be observed at the given image-plane position x. Therefore, this image plane-
map is complementary to the standard source-plane amplification map, which we
present in the bottom left panel. We also introduce a black-and-white logarithmic
color scale similar to that, which we use for the source-plane amplification maps.
The inverse Jacobian diverges (white color) at positions, where we have located
the critical curves and plotted them in other image-plane maps. In fact, this is
the definition of critical curves. At large distance from the cluster center, the
amplification falls to 1 (black color), which corresponds to unamplified images.
Close to the centers of the halo and the subhalos, areas with |det J |−1 < 1 occur,
indicating possibility of demagnified images. Overall, the structures visible in this
map are close analogues of those in the Jacobian map including, e.g., the visible
anisotropies surrounding the subhalos lying inside the main tangential critical
curve.

4.4.4 Amplification
The last (bottom left) panel of Figure 3.2 is a standard source-plane amplifica-
tion map generated using the inverse-ray-shooting method as described in Sec-
tion 4.3.2. This amplification map shows the amplification A(β) of a point source
located at a given source-plane position y. Although a substantial amount of light
rays (one billion) was used to generate the map, when zoomed in sufficiently, some
noise is still visible. We use the same black-and-white color scale as in Chapter 2
with color black indicating an amplification equal to one, which occurs at an
asymptotic distance from the cluster center. On the other hand, the white color
indicates A(β) > 1000. Ultimately, the amplification diverges at caustics, which
appear as very sharp brightness transitions in the amplification map. In general,
the amplification is high inside the caustics.

The largest caustic corresponds to the tangential critical curve of the main
halo. This caustic is somewhat diamond-shaped with sides bending slightly in-
wards. The orientation of this caustic is aligned with the orientation of the halo.
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There are two areas of high amplification extending far beyond the two cusps of
the caustic. At some places, the main caustic is visibly deformed by the presence
of smaller subhalo caustics and the right cusp of the main caustic is actually
merged with one of them. Inside the largest diamond-shaped caustic there is a
smaller spindle-shaped caustic oriented perpendicularly to the orientation of the
cluster. This caustic corresponds to the radial critical curve of the main halo.
The side angles of the “diamond” and cusps of the “spindle” are almost touching,
since the lens is close to the umbilic transition.

In general, caustics associated with subhalos have the same “diamond and
spindle” structure as caustics of the main halo. However, they are predominantly
oriented so that they point towards the cluster center with their long cusps. Some
subhalo caustics are too small to be discernible. Nevertheless, there always is a
visible elongated area of high ampification, usually oriented towards the cluster
center, associated with every subhalo.

4.4.5 Shear
In the top left panel of Figure 3.3, we present an image-plane map of the shear
γ(θ) using the same color scale as we did in Chapter 3 and as we subsequently
used for the convergence.

At the center of the cluster, the value of shear diverges to infinity (color
magenta). Moving from the center, the shear decreases with a rate that is strongly
dependent on the direction. In the direction of the major axis of the main cluster
halo, the rate of the decrease is the lowest and two red lobes of high shear are
formed inside the main critical curve. On the other hand, in the perpendicular
direction, that is towards the pair of areas where the tangential and radial critical
curves almost touch, the shear falls rapidly, eventually reaching points of zero
shear (white) lying just beyond the tangential critical curve. Unlike in the case of
a spherical halo with a point perturbation discussed in Section 3.3.5.1, the central
pattern and the pair of zero shear points is now caused by the ellipticity of the
halo.

Further from the center, apart from being perturbed by smaller subhalo pat-
terns, the shear slowly decreases asymptotically towards zero. Shear patterns
around subhalos mimic the large pattern of the main halo (directional depen-
dence around the center and pair of zero shear points). At the same time the
present subhalo shear pattern is related to the pattern described in Section 3.3.5.1,
i.e., roughly speaking, there is an elongated area of higher shear with two zero-
shear points above and below. However, areas of low shear around the zero-shear
points are now more elongated tangentially with respect to the main halo. The
elongation and curvature of these low-shear areas are reminiscent of the low-shear
circle spanned between the halo center and the point perturbation identified in
Section 3.3.5.1.

As before, the zero-shear points are closely related to umbilics. As already
noted, the zero-shear points appear near the place where tangential and radial
critical curves almost touch. Should they reach the umbilic (for a different con-
figuration of the cluster) the zero-shear points would coincide with the points
of umbilics, i.e., they would lie at the intersections of the critical curve and the
curve of κ = 1.
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Figure 3.3: Shear and related image-plane quantities near the center of the galaxy
cluster. Top left: shear. Top right: weak shear, i.e., half the flattening of a small
circular image at given position. Bottom left: shear deviation due to the subhalos.
Bottom right: weak-shear deviation from the shear.
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4.4.6 Weak shear
The top right panel of Figure 3.3 is an image-plane map of the weak shear γw(θ),
defined in Section 3.2.4. It represents the shear that would be measured from
image deformations in the weak-lensing analysis. The same map also serves as a
map of the flattening, since f(x) = 2 γw(x).

At first glance, the map of weak shear looks quite similar to the map of
shear. Beyond the central region, the weak shear is slowly decreasing while being
perturbed by local tangentially oriented patterns of the subhalos. However, the
weak shear differs from the shear greatly close to the critical curves. Along all of
the critical curves, the weak shear reaches its maximum possible value γw = 1/2
(color red), indicating maximal flattening. On the other hand, the weak shear falls
to 0 at κ = 1, which occurs along the white perturbed ellipse lying between the
radial and tangential critical curves. Along this bright curve, minimally deformed
images would occur. Unlike in the case of the point perturbation in Chapter 3, the
shape of the unit-convergence curve is now affected by the presence of adjacent
subhalos. This discussion of the critical curves and the unit-convergence curve
holds for the main halo as well as for the subhalos.

At the main-halo center inside the radial critical curve, a directional depen-
dence of the weak shear is visible. Once again, the values are highest along the
direction of the semi-major axis of the main halo and lowest in the perpendicular
direction. Directly at the center, the weak shear converges to a value between 0
and 1/2 depending on the eccentricity of the main halo.

The weak shear also drops to zero at zero-shear points. However, the bright
areas of low weak shear surrounding the zero-shear points are somewhat smaller
than the analogous areas of low shear. This is due to the significant influence of
convergence on image shapes in this region.

4.4.7 Shear deviation due to the subhalos
The relative difference in shear incurred by the presence of subhalos is plotted
in the bottom left panel of the Figure 3.3. As in Section 3.3.5.2, we define it as
γ/γNFW−1, where γ is the total shear of the combined cluster model plotted in the
panel above, while γNFW is the shear of only the main NFW halo, which, however,
is now elliptically deformed. In the current image-plane map, we use the same
semi-logarithmic color scale and the same set of contours as in Figure 3.8.A.

The plotted deviation is predominantly positive (colors yellow and orange)
in most of the image-plane map. Far from the halo center, the shear deviation
does not reach zero asymptotically. Instead, it converges to a positive value of
approximately 5% in the presented simulation. The specific value depends on the
total mass of all subhalos.

The predominantly positive deviation is perturbed by pairs of blue lobes of
negative deviation oriented tangentially with respect to the main halo. These
lobes are associated with areas of low shear close to the subhalos. They surround
the zero-shear points, where the deviation falls to the minimum possible value
−1 (saturated blue). The shape of the lobes is influenced by the proximity of
other (sub)halos and two lobes associated with subhalos lying close to each other
can even merge. One of the blue areas of low deviation extends to the center of
the cluster. This resembles the configuration described in Section 3.3.5.2, where
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two blue lobes above and below the point perturbation extend towards the halo
center and touch there.

There are also darker orange areas of more positive deviation, i.e., increased
shear, lying in front of and behind the subhalo radially with respect to the main
halo. This effect arises from the combination of shears due to the main halo
and the subhalos. It is in agreement with similar results seen in the point-mass-
perturbation case in Section 3.3.5.2.

4.4.8 Weak-shear deviation from the shear
The bottom right panel of Figure 3.3 is an image-plane map of the weak-shear
deviation from the shear, γw/γ−1, i.e., the relative error of shear estimation using
the weak-lensing approximation. The color scale is the same as in Section 3.3.5.6.
Unlike in the previous panel, the current color scale is linear, which is more
suitable to reveal the strong effects occurring in the cluster center.

We see that the weak shear strongly overestimates (color red) the shear in
the vicinity of the zero-shear points as already mentioned in Section 4.4.6. The
red areas of high deviation are pinched, where the unit-convergence curve passes
between the critical curves, and they partially reach inside the radial critical
curve. The deviation then falls to the minimum possible value −1 (color blue)
at the cluster center and at the unit-convergence curve, since at these image-
plane positions the weak shear is negligible compared to the shear or it drops to
zero. Along the tangential critical curve, the deviation is positive everywhere.
This description of the deviation pattern holds both for the main halo and the
subhalos.

Further from the main critical curve, the deviation drops to zero (color white)
and continues falling towards slightly negative values (light blue). In the corners
of the plot, the deviation is still approximately −0.016. However, asymptotically,
the deviation decreases to zero. Overall, the deviation is low everywhere except
for the vicinity of the critical curves. Except in the vicinity of the (sub)halo
centers the weak-lensing approximation is thus applicable.

4.4.9 Weak phase
The left panel of Figure 3.4 is an image-plane map of the weak phase φw (see
Section 3.3.4). It represents the value of phase that would be determined in
the weak lensing analysis. For a small circular source, the weak phase is the
angle between the semi-major axis of its elliptical image and the horizontal axis
of the plot. For κ < 1, the weak phase is equal to the phase, while for κ >
1 the weak phase is perpendicular to the phase. The color scale is the same
as in Section 3.3.5.7 and the dot-dashed contours once again denote positions,
where the orientation of images is exactly horizontal (color white), exactly vertical
(orange-blue transition) or undefined.

The basic pattern of changing colors and saturations (i.e., the division into
four quadrants) at a sufficient distance from the cluster center resembles the
similar pattern in the simpler lens discussed in Section 3.3.5.7. This pattern
simply means that images lying at sufficient distance from the center are oriented
tangentially around the main halo. However, in the present model, the pattern
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Figure 3.4: Left: weak phase, i.e., image orientation at given position. Right:
weak-phase deviation due to the subhalos.

is perturbed close to the subhalos, where the influence of these subhalos prevails
over the influence of the main halo and images are oriented tangentially around
them. Pairs of lobes of inverted colors thus appear adjacent to the subhalos. The
orientation depends on the position of the subhalo with respect to the main halo.
Some lobes merged with the main horizontal or vertical contour or with lobes
associated with other subhalos.

The weak phase is undefined at positions with zero weak shear, where small
images would remain undeformed. These are zero-shear points and the unit-
convergence curve. At these points, the orientation changes along the dot-dashed
contours abruptly between parallel and perpendicular to the phase.

Unlike in the case of the spherical halo discussed in Section 3.3.5.7, the weak
phase is now positive (color orange) everywhere inside the the unit-convergence
curve around the cluster center. Minor exceptions to this are associated with
subhalos lying inside the unit-convergence curve. This means that close to the
center of a sufficiently elliptical halo, the images would be oriented more or less in
the direction of the halo’s projected semi-major axis. Nevertheless, the orientation
of images close to the center still varies with their positions, since the color orange
is darker along the vertical and brighter along the horizontal direction.

Interesting asymptotic behavior of the weak phase is revealed in the zoomed-
out version of the plot in the left panel of Figure 3.5. Both horizontal and vertical
contours are tilted slightly towards the orientation of the projected semi-major
axis of the main halo, meaning that the orientation of the images follows the
elliptical shape of the halo.

127



Figure 3.5: Zoomed out version of Figure 3.4 revealing the asymptotic behavior
of angular lensing quantities.

4.4.10 Weak-phase deviation due to the subhalos

Finally, the right panel of Figure 3.4 is an image-plane map of the weak-phase
deviation due to the subhalos, δφw(x), which we defined in Section 3.3.5.8. It
can be understood as a change in the orientation of an image at a given position
incurred by the presence of subhalos. We use the same semi-logarithmic color
scale and set of contours as before. Overall, the deviation is relatively low; its
absolute value rarely exceeds 9◦ (dark contours).

The plotted deviation pattern around the cluster center is obviously very
disorganised. It seems that above the center the deviation is predominantly
positive (color red) and the orientation of images is changed counterclockwise
there. On the other hand, below the cluster center, negative deviation (color
blue) dominates and the images are reoriented in a clockwise direction.

Since the subhalos in regions with subcritical convergence orient nearby images
tangentially around themselves, there are two areas of positive deviation (red) and
two areas of negative deviation (blue) around each subhalo. Because of this, pairs
of lobes of inverted color appear in larger areas of positive or negative deviation.
The orientation of the lobes depends on the position around the center. In general,
in top left and bottom right quadrants of the plot, areas of positive deviation lie
roughly on the left and right from the subhalos and areas of negative deviation
lie above and below. In top right and bottom left quadrants the situation is
inverted. The size of the lobes strongly depends on the subhalo mass and nearby
lobes merge forming complicated patterns.

Since the orientation of the images changes by π/2 inside the unit-convergence
curve and since the unit-convergence curve is affected by the presence of the
subhalos, there is an area of strong deviation encircling the center of cluster. The
inner border of this area is the unit-convergence curve of the main halo alone and
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it is shaped as a perfect ellipse. The outer border is the unit-convergence curve
of the complete model. This kind of pattern was not present in Section 3.3.5.8,
since the point-mass perturbation does not affect the convergence anywhere else
than at the position of the point mass itself.

Some of the contours appear to be slightly broken at certain points, typically
in low-deviation areas. This is a minor artefact caused by an imperfect transition
between the interpolated and asymptotic regimes used to compute the deflection
angles of the subhalos.

A zoomed-out version of the deviation map is plotted in the right panel of
Figure 3.5. We see that at a sufficient distance from the halo center four quad-
rants of alternating positive and negative deviation form. Interestingly, these
quadrants are aligned with the orientation of the main halo and do not depend
on the particular distribution of the subhalos. This is explained by the fact
that the elliptical main halo extends to infinity orienting the images tangentially
along the ellipse, while the subhalos are truncated and at a sufficient distance,
their monopole contribution prevails orienting images roughly along the circle.
At intermediate distances between the complex subhalo-dominated pattern in
the center and the simple asymptotic pattern of the four quadrants, there is
an intermediary regime with zero-deviation contours substantially changing their
orientation. Other shapes are possible in this intermediate region for different
distributions of the subhalos.
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5. Conclusion
Throughout the whole thesis, we explored the role played by small-scale substruc-
tures in the gravitational lensing by dark-matter halos. Relevance of the topic
follows from the fact that according to the widely accepted ΛCDM paradigm,
hierarchically structured concentrated dark-matter halos make up most of the
matter content of our universe. At the same time, multiple discrepancies were
described between the astronomical observations and cosmological N-body simu-
lations related to the halo substructures. More recently, Meneghetti et al. (2020)
discovered a substantial difference in lensing efficiency of galaxy cluster substruc-
tures between observed and simulated clusters.

We decided to embrace a bottom-up approach and started our investigation
of the topic with the simplest possible relevant lens model, which consists of a
single point mass added into an NFW halo. It can be understood, for example,
as a very crude model of an individual galaxy in a galaxy-cluster halo or as a
reasonable model of a supermassive black hole in a galaxy halo (Mahler et al.
2022). The advantage of this simple model with only few parameters is that it
can be studied in detail using analytical methods.

In Chapter 2, we focused on critical curves and caustics of the simple model.
We explored its parameter space and discovered an unexpected richness of caustic
transitions. For a centrally positioned perturbation, we found a critical mass, at
which a pair of radial caustics merge into one with peculiar properties. For an
even heavier central point mass, even this peculiar caustic disappears and only
the point-like tangential caustic remains.

In Chapter 3, we continued our investigation of the same model concentrat-
ing on weak-lensing quantities and the geometry of images. We plotted sets of
image-plane maps of lensing quantities and used analytical methods to explain
the observed patterns. We discussed the applicability of the weak-lensing approx-
imation and also introduced Convergence–Shear diagrams, a novel and compact
way of visualising geometric properties of lensed images. Our analyses of the
point-mass-perturbed NFW halo were published in The Astrophysical Journal
(Karamazov et al. 2021, Karamazov and Heyrovský 2022).

In Chapter 4, our interest moved towards the lensing by a much more realistic
model of a galaxy cluster. We have built the model from a large untruncated
ellipsoidal NFW halo and multiple truncated ellipsoidal NFW subhalos. We chose
the parameters of the model with the intent to simulate a typical lensing cluster.
Our choice of the main-halo parameters was based on real galaxy clusters analysed
in lensing surveys. While generating the parameters of the subhalos, we had to
resort to probability distributions fitted from N-body cosmological simulations.
In doing so, we loosely followed the approach taken by Giocoli et al. (2012). We
presented formulae for deflection angles for these two lens models and combined
them to obtain a deflection angle of the whole cluster lens. We developed a new
parallel GPU code for generating both source-plane and image-plane maps of the
lensing quantities. We presented these maps in the same form that we used for
maps generated from the simple model in the preceding chapters. This allowed
us to use our analytical understanding of the simple point-perturbed model to
discuss and explain the morphology of patterns in the cluster-lens maps.
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Overall, the results generated from our analytically composed model of a
sample galaxy cluster indicate agreement with Meneghetti et al. (2020), who
simulated lensing by clusters taken straight from cosmological structure-formation
simulations and found that the lensing influence of small-scale substructures was
substantially lower than in observed clusters. Since our parallel lensing code can
be easily modified, in subsequent research it will be possible to closely investigate
differences between various models of cluster subhalo populations and hopefully
shed more light on the problem of discrepant lensing efficiencies of galaxy cluster
substructures.
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2. M. Karamazov and D. Heyrovský. Gravitational Lensing by a Massive
Object in a Dark Matter Halo. II. Shear, Phase, and Image Geometry. The
Astrophysical Journal, 927:101, 2022

141



142



A. Appendices

A.1 Analytic results and approximations1

Studies of gravitational lensing by NFW halos face analytic and numerical chal-
lenges due to the properties of the function F(x), defined here by Equation (2.6).
The main difficulties occur close to the origin, for x ≪ 1, where F(x) → ∞ but
the combination ln(x/2)+F(x), appearing in Equation (2.15) and elsewhere, con-
verges to zero. This problem becomes even more pronounced for lower values of
the halo convergence parameter κs, when all the critical curves and caustics shrink
exponentially fast to the origin, as shown in Equation (2.28), Equation (2.29),
and Figure 2.3. Even in double-precision arithmetic the expression from the first
line of Equation (2.6) would fail to reproduce the results and transitions close to
the origin presented in this work.

In the following Appendix A.1.1 we present expansions of different lensing
quantities close to the origin to illustrate their local behavior. In addition, we
present exact analytic expressions that do not suffer from the described cancella-
tion problem. In Appendix A.1.2 we illustrate the continuous and smooth nature
of F(x) and the convergence κ(x) across the scale radius, at x = 1.

A.1.1 Lensing near the origin
For x ≪ 1 the four leading orders of the expansion of F(x) can be written as

F(x) = − ln x2 − x2

2 ln x2 − x2

4 + O(x4 ln x) , (A.1)

which yields the two leading orders of the expression

ln x2 + F(x) = −x2

2 ln x2 − x2

4 + O(x4 ln x) , (A.2)

in which the logarithmic divergence of F(x) is cancelled and the combination
shrinks to zero as x2 ln x. By substituting Equation (A.1) in Equation (2.5) we
get four leading orders of the NFW convergence expansion

κ(x) = −2κs ( ln x2 + 1 + 3
2 x

2 ln x+ 5
4 x

2 ) + O(x4 ln x) , (A.3)

showing its logarithmic divergence. The Jacobian behavior close to the origin
can be obtained by substituting Equation (A.1) in Equation (2.17), yielding three
leading orders of its expansion

det J(x) = 4 κ2
s ln2 x

2 + 4κs (1 + 2 κs) ln x2 + 1 + 4κs + 3κ2
s + O(x2 ln x) . (A.4)

Getting higher-order terms would require a higher-order expansion in Equa-
tion (A.1). This result reveals the ln2 x divergence of the NFW Jacobian at
the origin.

1Appendix A of Karamazov et al. (2021)
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For computing the critical curves and caustics we need exact analytic expres-
sions rather than series expansions. We first express the top row of Equation (2.6)
in an equivalent form,

F(x) = 1√
1 − x2

ln 1 +
√

1 − x2

x
, (A.5)

which can then be combined with ln (x/2) to cancel the divergence at the origin,

ln x2 + F(x) = −x2

1 − x2 +
√

1 − x2
ln x2 + 1√

1 − x2
ln 1 +

√
1 − x2

2 . (A.6)

The first term reveals the leading order of the expansion at the origin as seen in
Equation (A.2), while the second term contributes to higher orders starting from
O(x2). Both Equation (A.5) and Equation (A.6) are valid for any x < 1. These
numerically stable expressions can be used in Equation (2.35) to compute the
Jacobian and the critical curve, and in Equation (2.33) to compute the caustic.

A.1.2 Lensing near the scale radius
At the halo scale radius the x < 1 expression in Equation (2.6) transitions
smoothly to the x > 1 expression. For illustration, we provide the three leading
terms of the expansion valid on both sides of x = 1,

F(x) = 1 − 2
3 (x− 1) + 7

15 (x− 1)2 + O((x− 1)3) . (A.7)

Using this result, we may expand the lens-equation combination

ln x2 + F(x) = 1 − ln 2 + x− 1
3 − (x− 1)2

30 + O((x− 1)3) . (A.8)

Substituting Equation (A.7) in Equation (2.5) yields two leading orders of the
NFW convergence expansion

κ(x) = κs

[︃ 2
3 − 4

5 (x− 1)
]︃

+ O((x− 1)2) . (A.9)

Getting higher-order terms would require a higher-order expansion in Equa-
tion (A.7).

A.2 Vanishing radial critical curves and caustics2

For a point mass with the critical value of the mass parameter κP = κPC posi-
tioned centrally in a NFW halo, the single radial critical curve and single radial
caustic have very unusual properties, as mentioned in Section 2.3.3. We illustrate
the situation in Figure A.1, showing from top row to bottom the critical curve
plotted over a color map of the Jacobian, the radial profile of the Jacobian, the
caustic plotted over the total magnification map, and the radial profile of the
total magnification in the vicinity of the (vanishing) radial caustics. The central

2Appendix B of Karamazov et al. (2021)
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Figure A.1: Vanishing radial critical curves and caustics for a centrally positioned
point mass. Rows from top: Jacobian maps with critical curves; radial profiles of
Jacobian from halo center; total magnification maps with caustics; radial profiles
of total magnification in vicinity of radial caustic position. Columns from left for
increasing mass parameter: sub-critical κP = 2 · 10−4 (two radial critical curves
and caustics); critical κP = κPC ≈ 2.714 · 10−4 (single radial critical curve and
caustic); super-critical κP = 3 · 10−4 (no radial critical curve and caustic). Note
that the single radial caustic in the central column is not a fold caustic (see
Appendix A.2). Notation and color bars as in Figure 2.5.A.
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column corresponds to the critical value κP = κPC ≈ 2.714 · 10−4, which is brack-
eted in the left column by sub-critical κP = 2 · 10−4 and in the right column by
super-critical κP = 3 · 10−4.

Along the critical curve the Jacobian is zero by definition, but for κP = κPC it
is negative on both sides of the radial critical curve, as seen in the top two panels
of the central column. Thus, images on both sides have the same (negative) parity.
The caustic, which is shown in the third panel of the central column, is even more
peculiar. Along the caustic the magnification is infinite by definition. However,
the number of images of a point source does not change when crossing this radial
caustic. What’s more, the magnification is divergent from both sides of the
radial caustic, as seen in the bottom panel of the central column. This is unlike
the usual fold caustic, across which the magnification changes discontinuously,
diverging when approached from the inner side but reaching a finite value when
approached from the outer side.

We are not aware of any previous example in the gravitational lensing litera-
ture of a smooth caustic curve that is not a fold caustic. The same type of caustic
clearly should appear even for a critical value of the central mass embedded in
a cored isothermal (Mao et al. 2001) or a Plummer (Werner and Evans 2006)
density profile. In addition, a similar effect occurs in certain non-gravitational
plasma lens models (Er and Rogers 2018). However, to our knowledge the peculiar
nature of such a caustic has not been described yet.

The vanishing of the radial critical curves and caustics presents a unique type
of caustic metamorphosis. The usual metamorphoses, such as those discussed in
Section 2.3.4.3, occur at a single point. Their properties are studied by Taylor-
expanding the lens potential and lens equation in the vicinity of the point. This
metamorphosis is not point-like; it occurs along the full length of the caustic
simultaneously, as a consequence of the axial symmetry of the lens configura-
tion. Nevertheless, it is related to the common beak-to-beak metamorphosis, in
which two facing fold caustics approach each other, touch, and reconnect, form-
ing two facing cusps that recede from the metamorphosis point. Here the two
facing radial caustics are perfectly parallel, hence they come into contact and the
metamorphosis occurs simultaneously along their full length. Instead of forming
receding cusps, which do not arise here due to the symmetry, the caustics sim-
ply vanish, leaving a ring-like maximum in the magnification map as well as a
ring-like maximum in the negative-Jacobian surroundings in the image plane.

This interpretation is supported by the character of the total-magnification
divergence at the caustic. For the critical value of κP we find A(y) ∼ | y−yPR |−2/3

on both sides of the caustic radius yPR, as shown in the bottom panel of the central
column. This is the generic magnification decline perpendicular to the axis of a
cusp, as seen for example by setting y∥ = 0 in equation (A6) of Pejcha and
Heyrovský (2009). For κP = 2 · 10−4 the divergence at the outer radial caustic
follows A(y) ∼ (yPR1 − y)−1/2 for y < yPR1, and the divergence at the inner radial
caustic follows A(y) ∼ (y− yPR2)−1/2 for y > yPR2, as shown in the bottom panel
of the left column. Both are generic fold caustics oriented inside the annulus
enclosed by them. Note that the inner radial caustic is weaker than the outer
one, as indicated by the more narrow divergence.

The critical value of the mass parameter κPC ≈ 2.714 · 10−4 corresponds
to the fiducial NFW halo convergence parameter κs ≈ 0.239035 used in this
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work. However, the occurrence of such a critical mass and the accompanying
metamorphosis is generic, with the critical value depending on the halo in which
the mass is embedded: κPC = κPC(κs).

A.3 Image geometry as a function of conver-
gence and shear3

The mapping from a source to its image is described locally by the inverse of
the lens-equation Jacobian matrix. The eigenvalue decomposition of this inverse
matrix A presented in Equation (3.21) shows that the full geometry of an image
of a small source, including its shape, size, and orientation with respect to the
phase, is given by the lens convergence and shear at the position of the image.
We demonstrate here the connection between the geometry of an image and its
position in a general convergence–shear diagram.

The properties of an image appearing at position x in the image plane can
be determined from the convergence–shear diagram (CS diagram) in Figure A.2
using the combination of the local convergence κ(x) and shear γ(x), and the
eigenvalues introduced in Equation (3.20) computed from them. The eigenvalue
λ∥, which defines the scaling factor in the direction of the phase, is constant in
the diagram along straight lines with slope −1. It starts at 1 at the origin of
the plot, and increases to ∞ at the solid red line, which corresponds to critical
curves (tangential in the case of axially symmetric lenses). Above it λ∥ changes
discontinuously to −∞, with the negative sign indicating that the image is flipped
in the direction of the phase. The value of λ∥ increases to −1 along the dashed
red line, above which the flipped image is contracted rather than expanded in
the direction of the phase. Further beyond the top right corner of the diagram,
λ∥ increases asymptotically to 0. Overall, below the dashed red line the image is
expanded in the direction of the phase, while above it the image is contracted in
the direction of the phase.

The scaling factor in the direction perpendicular to the phase is defined by
the eigenvalue λ⊥, which is constant in the diagram along straight lines with
slope 1. Along the dashed blue line passing through the origin we find λ⊥ = 1.
Above it the image is contracted in the direction perpendicular to the phase, and
λ⊥ decreases asymptotically to 0 above the top left of the diagram. Below the
dashed blue line passing through the origin λ⊥ increases to ∞ at the solid blue
line, which corresponds to critical curves (radial in the case of axially symmetric
lenses). Below it λ⊥ changes discontinuously to −∞, with the negative sign
indicating that the image is flipped in the direction perpendicular to the phase.
The value of λ⊥ increases to −1 along the right dashed blue line, below which the
flipped image is contracted in the direction perpendicular to the phase. Further
beyond the bottom right corner of the diagram, λ⊥ increases asymptotically to
0. Overall, in the band between the dashed blue lines the image is expanded in
the direction perpendicular to the phase, while outside it the image is contracted
in the direction perpendicular to the phase.

The described scalings in the two perpendicular directions can be combined to
yield information about the orientation, shape, and size of the image. Comparing

3Appendix A of Karamazov and Heyrovský (2022)
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Figure A.2: Convergence–shear diagram (CS diagram) illustrating the geometry
of lensed images as determined by the (κ, γ) combination at their position. The
color map and the purple-labeled hyperbolic contours show the values of detA;
its absolute value yields the magnification and its sign yields the parity of the
image (positive in green, negative in pink areas). Unit magnification occurs at
the origin of the diagram and along the bold black hyperbolae; outside the region
delimited by them images are demagnified. The black-labeled straight-line con-
tours correspond to constant flattening of the image, given by Equation (3.22).
Undistorted images occur along the γ = 0 axis and the bold black κ = 1 line.
The solid red and solid blue lines correspond to critical-curve points; the combi-
nation (κ, γ) = (1, 0) specifically to umbilic points. Unit absolute values of the
eigenvalues of A occur along the dashed diagonals: λ∥ = −1 (red); λ⊥ = 1 (blue
from origin); λ⊥ = −1 (blue from κ = 2). For κ < 1 images are elongated in the
direction of the phase; for κ > 1 perpendicular to the phase. For more details,
see Appendix A.3.

their absolute values for a non-zero shear, |λ∥| is larger for κ < 1 and |λ⊥| is larger
for κ > 1. Hence, the vertical solid black line at κ = 1 divides images by the
orientation of their distortion, i.e., the orientation of the major axis of an elliptical
image of a small circular source. To the left of the line, images are oriented in
the direction φ (parallel to the phase), while to the right of the line, images are
oriented in the direction φ+ π/2 (perpendicular to the phase).

The distortion of the shape can be quantified by the flattening, computed
from Equation (3.22). In the diagram in Figure A.2, the flattening f is constant
along the straight lines radiating from the point (κ, γ) = (1, 0), labeled by their f
value at the outer edge of the plot. The horizontal axis corresponds to f = 0, i.e.,
there is no distortion for zero shear. Clockwise from the direction to the origin
of the plot, f values along the lines increase in steps of 0.25 to 1 at the solid red
line, corresponding to maximum flattening in the direction of the phase at the
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tangential critical curve. For the following lines, f decreases in steps of 0.25 to 0
at the vertical κ = 1 line, along which there is no distortion either. Continuing
clockwise, f increases to 1 at the solid blue line, corresponding to maximum
flattening in the direction perpendicular to the phase at the radial critical curve.
The flattening along the following lines decreases back to 0 along the horizontal
axis.

The change in size of the image is given by the absolute value of the product
of the two scale factors. Since they are eigenvalues of A, their product is equal
to its determinant,

detA(x) = λ∥(x)λ⊥(x) =
{︂

[1 − κ(x)]2 − γ2(x)
}︂−1

, (A.10)

which is the inverse of the Jacobian det J(x) from Equation (3.19). For an image
at x, the sign of detA(x) yields the parity and its absolute value |detA(x)|
yields the (point-source) magnification, the ratio of solid angles subtended by the
image and by the source. The values of detA are indicated by the purple-labeled
hyperbolic contours and the color map in Figure A.2. Shades of pink above the
critical-curve lines indicate negative detA, i.e., all images here are mirror images
with negative parity. Positive-parity images lie in the green regions below the
critical-curve lines.

The origin of the diagram with zero convergence and shear has unit magni-
fication and positive parity, detA = 1. Proceeding from the origin, contours
are plotted for magnifications increasing in powers of two, corresponding to
detA ∈ {2, 4, 8, 16}. Along the solid red and solid blue lines the magnification is
infinite; above them the sign of detA flips to negative. Going upward from the
critical-curve lines, the magnifications along the plotted hyperbolas decrease in
powers of two, corresponding to detA ∈ {−16,−8,−4,−2,−1,−0.5}. The bold
black hyperbola passing through the point (κ, γ) = (1, 1) thus corresponds to
unit magnification. All images above it are demagnified. Below the solid blue
radial-critical-curve line the sign of detA flips back to positive. Proceeding from
it to the right, contours are plotted for detA ∈ {16, 8, 4, 2, 1, 0.5}. The bold black
hyperbola passing through the point (κ, γ) = (2, 0) thus also corresponds to unit
magnification. All images to its right are demagnified.

Note that the values of λ∥ along diagonal lines with slope −1 are equal to the
value of detA at their intersection with the dashed blue line starting from the
origin. The values of λ⊥ along diagonal lines with slope 1 are equal to −detA at
their intersection with the dashed red line.

The two perpendicular lines in the diagram corresponding to undistorted im-
ages differ by the sign of detA. Images along the horizontal axis (with γ = 0)
have positive parity; they are magnified for κ < 2 and demagnified for κ > 2.
Images along the vertical bold line (with κ = 1) are mirror images with nega-
tive parity; they are magnified for γ < 1 and demagnified for γ > 1. Clearly,
the point (κ, γ) = (1, 0) lying at the intersection of these lines has special sig-
nificance. At this point, the entire Jacobian matrix given by Equation (3.18) is
equal to zero, and its inverse A is thus undefined. If such points exist in the im-
age plane of a gravitational lens, they define the position of critical-curve umbilic
points (Schneider et al. 1992; Paper I). The properties of images in their vicinity
depend on higher-order derivatives of the lens equation.
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The structure of the CS diagram shows that in the general non-critical case
there are four different (κ, γ) combinations that lead to the same combination of
(f, |detA|), i.e., an image of the same shape and size. Two of these have positive
and two have negative parity, as illustrated in Figure 3.3. In the case of zero
flattening, there are three different (κ, γ) combinations with only one negative-
parity image.

For any specific gravitational lens, the range of (κ(x), γ(x)) combinations
occurring in its image plane defines a region in the diagram which demonstrates
the properties of all possible images formed by the lens. For a lens with an axially
symmetric mass distribution the region is one-dimensional, described by the curve
(κ(x), γ(x)) with the radial position x varying from 0 to ∞. For a spherical NFW
halo this case is described in Section 3.2.3 and illustrated in Figure 3.4; for a NFW
halo with a centrally positioned point mass see the bottom row of Figure 3.9.A.
For more asymmetric lenses with a (non-constant) continuous mass distribution,
the region in the diagram is two-dimensional, as shown for the spherical NFW
halo with an off-center point mass in Figure 3.6 and 3.9.A (except the bottom
row).

For lenses consisting of point masses without continuous matter (e.g., stars
and stellar systems in Galactic microlensing), the corresponding one-dimensional
region is the κ = 0 vertical axis, with γ → ∞ at the positions of the masses
and γ → 0 far from them. For quasar microlensing, in which point masses are
combined with a constant background convergence κ0 and shear γ0, the one-
dimensional region lies along the κ = κ0 vertical line. Finally, the regime of weak
lensing with κ ≪ 1 and γ ≪ 1 is confined to the vicinity of the origin of the
diagram in Figure A.2.
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