The presented thesis provides an experimental study of the K-shell double vacancy production in the electron capture decays of ⁵⁵Fe, ⁵⁴Mn, ⁶⁵Zn using a pair of Timepix3 detectors. Measured data are preprocessed and explored. The methodology for the calculation of the probability of K-shell double vacancy production in ⁵⁵Fe and ⁵⁴Mn is developed. Therefore, an extensive amount of signal and background processes were considered during the development of the methodology. The measurement setup is defined and optimized in the Allpix² framework for a simulation of detection efficiencies of particles participating in the signal and background processes. The probability of K-shell double vacancy creation in the electron capture decay of ⁵⁵Fe was measured to be $P_{\rm KK} =$ $(1.406 \pm 0.05) \times 10^{-4}$ with a systematic error of $\Delta_{\rm sys}(P_{\rm KK}) = ^{+0.030}_{-0.034} \times 10^{-4}$. The value of $P_{\rm KK}$ for the electron capture decay of ⁵⁴Mn found to be $P_{\rm KK} = (3.93 \pm 0.44) \times 10^{-4}$ with a systematic error of $\Delta_{\rm sys}(P_{\rm KK}) = ^{+0.25}_{-1.11} \times 10^{-4}$. Resulting probabilities for K-shell double vacancy production in ⁵⁵Fe and ⁵⁴Mn are in agreement with the latest results.