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Study programme: Biophysics and Chemical Physics

Study branch: FBCHPT

Prague 2023



I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In . . . . . . . . . . . . . date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Author’s signature

i
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Introduction
The theory of Open quantum systems studies how a set of molecules interacts
with its environment using quantum mechanics. We are interested in a better
description of molecular aggregates as they model the photosynthetic antennae
in plants and some types of bacteria. In our case, the relevant degrees of free-
dom are electronic excitations of photosynthetic antennae inside light-harvesting
complexes. The environment (also often referred to as bath) degrees of freedom
are not directly relevant to the problem we are interested in studying. Those in-
clude vibrational modes of photosynthetic antennae, but also vibrational modes
of protein embedding and even its conformational changes. In general, the in-
teraction between the system and the bath leads to the system losing its pure
quantum state [CCC+20] [Man20]. Quantum master equations (QME) [VAM13]
are a set of equations that describe the dynamics of open quantum systems. The
QME have been widely used to study the behaviour of open quantum systems,
including energy transfer in light-harvesting complexes. The strongest point of
the QME is the generality of this approach. An important tool is the density
matrix defined in 1927 by J. von Neumann [Neu27] and L. D. Landau [Lan65].
Its reduced form describes the evolution of an open quantum system.

Redfield equations are a particular type of QME. These equations were first in-
troduced by A.G. Redfield in 1957 [Red57] and have been widely used in the study
of open quantum systems, including in the context of light-harvesting complexes.
Those equations are second-order QME with an assumption of weak interaction
between the bath and the system. In the derivation of these equations, one has
to use Born approximation and Markov approximation. Over the years, various
modifications and extensions to the Redfield equations have been proposed, in-
cluding methods for incorporating non-Markovian effects [BPP02]. The Lindblad
equations are another set of equations that can describe the dynamics of open
quantum systems. These equations were first introduced by G. Lindblad in 1976
[Lin76]. The Lindblad equations have several key features that make them a
valuable tool for studying open quantum systems. For instance, the Lindblad
equations preserve the trace and positivity of the density matrix. Förster the-
ory explains the mechanisms of energy transfer between two or more molecules
[Fö48]. In Förster theory the energy is transferred through the oscillating elec-
tric dipoles of the molecules. This theory, as opposed to Redfield equations and
Lindblad equations, is valid when the interaction between the molecules is weak.
The situation studied in this work is of strongly coupled molecules in a molecular
aggregate, subject to weak interaction with the surrounding molecules forming a
thermodynamic bath of a certain temperature.

A different approach than QME is used in the Hierarchical Equations of Mo-
tion (HEOM) method [TK89]. HEOM work particularly well when the system
is strongly coupled with a bath, as it allows for incorporating non-Markovian
effects. Also, HEOM tries to cover the missing gap in theories between weakly
interacting molecules and strongly interacting molecules. It can reliably describe
Lorentzian line shape; however, this is also its limitation. The main disadvantage
of HEOM is its black-box character and the corresponding the level of insight into
the underlying physics. Here the development of master equations is justifiable
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as they are much simpler to understand.
Understanding the quantum effects in photosynthesis and hence a good de-

scription of energy transfer can help us to design better ways for solar energy har-
vesting, Mohseni et al. (2014) [MOEP14], and Scholes et al. (2011) [SFOCvG11].

The behaviour of the bath is generally unknown, and it appears that in order
to achieve a reasonable evolution of the system, we must also correct the evolution
of the bath in some way. In other words, the reduced density matrix acts on itself
through its coupling with the bath. Throughout this work, we are working within
the regime of weak coupling and are interested in the time perturbation approach
rather than perturbation in energy states. In an attempt to approximate the
evolution of the bath, we have introduced various approximations, which we refer
to as ansatzes for the bath. In this work, we aim to further rigorously formulate
those approximations in order to establish a solid foundation for the treatment
of the bath.

Our primary focus in this work is twofold. First, we want to consider finite
systems and determine whether we can identify any ansatzes or observations that
would help us justify the bath’s treatment for infinite systems. As we use linear
harmonic oscillators for modes of bath, every mode has an infinite number of
states. In the limit of low temperatures, we can take a fixed number of states for
every mode and work with purely finite systems. Second, we want to develop a
suitable correction for the bath in the case of infinite systems with a finite number
of modes. This is a special case of infinite systems. This correction should be an
improvement over the Redfield equations and their assumption of constant bath
in time (in the interaction picture), which considers an infinite number of modes.
Later in the work, we will introduce iterative treatments of the bath, the reduced
density matrix, and the memory kernel and propose Iterative Quantum Master
Equations. These equations can be rearranged so that the bath does not need
to be explicitly expressed. Hence, we would only work with the reduced density
matrix and reduced density matrices from previous iterations.

Later in the work, we confirm that the direct correction of bath evolution is not
possible without considering system evolution and its effect on the bath. Hence,
we were motivated to test an iterative approach, which will take sequentially into
account also the evolution of the system. The iterative approach of correcting
bath evolution with the previous history of bath evolution and the previous his-
tory of the system improves the Redfield equations for a regime of weak coupling.
However, after we expand the corrected form of the memory kernel in terms of
the correlation function of the first order, we see that this correction is not triv-
ial. It is concluded later that the correction and the rate of correction provided
by the iterative ansatzes are relatively small. However, the quality of numerical
results may be affected by the fact that we use finite systems. We also suggest
testing the corrected memory kernel with infinite systems, as there is a hope for
a better rate of convergence. This work was successful as we gained a better
understanding of how to correct bath evolution in quantum master equations.
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DDE delayed differential equation
DOF degrees of freedom
HOMO highest occupied molecular orbital
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LHO linear harmonic oscillator
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OQS open quantum systems
PES potential energy surface
QME quantum master equation
QME-RBP quantum master equation for relative bath part
QME-RDM quantum master equation for reduced density matrix
RBP relative bath part
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RK4 fourth-order Runge-Kutta method
Tsit5 Tsitouras 5/4 Runge-Kutta method
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1. Open Quantum Systems
Pigment-protein complexes, such as photosynthetic complexes in plants and algae,
can be modelled as open quantum systems (OQS). In this context, the system
degrees of freedom (DOF) refer to the electronic states of the pigment molecules
within the complex. In contrast, the bath DOF refers to the vibrational states
of the pigment molecules and the electronic, vibrational and rotational states of
the surrounding proteins and solvent molecules.

The interaction between the system and bath DOF plays a crucial role in the
function of photosynthetic complexes, as it allows for the transfer of energy from
the light-absorbing pigment molecules to the rest of the complex. This energy
transfer ultimately drives the chemical reactions that produce usable energy in
the form of ATP and NADPH.

1.1 Effective Hamiltonian
The effective Hamiltonian is an operator that acts on the system’s state and
determines how the system evolves. In the case of an OQS, the Hamiltonian
typically consists of a system part HS and a bath part HB, which describe the
dynamics of the system and the bath, respectively. We also have to consider
an interaction Hamiltonian HI that allows the system to interact with the bath
part. Now it is clear that the overall Hamiltonian consists only of those three
parts H = HS + HB + HI .

The effective Hamiltonian is a simplified version of the full Hamiltonian that
captures the essential features of the system-bath interaction. We move away
from the quantum chemistry point of view instead of taking the density matrix
of the whole system, where the density matrix depends on the space coordinates
of every atom. We assume discrete states of antennae and many assumptions for
the bath that allow us to reduce the overall Hamiltonian’s complexity drastically.

1.1.1 Two-level system with LHO bath
In this section, we will take a closer look at a two-level system with linear har-
monic oscillators (LHOs) on the ground and an excited state that models the
bath. Taking LHO as the model for a vibrational bath is an approximation to
a certain degree. However, the potential energy surface (PES) can be approxi-
mated as quadratic near equilibrium. The harmonic approximation is often used
in the study of molecular vibrations, which are the normal modes of motion of a
molecule. In general, the Hamiltonian looks like the following

Ĥ
mol = (εg + HB) |g⟩⟨g| + (εe + H ′

B) |e⟩⟨e| , (1.1)
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where H ′
B is not the same as HB. The difference in H ′

B is defined by the shifts
and frequencies in LHO potentials

Ĥ
mol = εg |g⟩⟨g| + εe |e⟩⟨e| +

∑︂
k

(︄
T̂ k + ℏωk

2 q̂2
k

)︄
|g⟩⟨g|

+
∑︂

k

(︄
T̂ k + ℏω′

k

2 (q̂k − dk)2
)︄

|g⟩⟨g| ,

(1.2)

where index k denotes different modes in bath and T̂ k is kinetic element. We
assume in this work that the vibrational frequencies are unchanged between the
ground and excited states, and the only difference is the displacement of the
PES. The PES of the bath is typically highly multidimensional, and it is not
linearly dependent on every coordinate. However, in such cases, a normal mode
analysis can be performed to obtain the normal coordinates and normal modes of
motion. In this work, we will focus on the effective Hamiltonian and assume that
a normal mode analysis can be carried out in all cases. Therefore, when we refer
to coordinates or modes, we will always be referring to the normal coordinates or
normal modes of the molecule or aggregate. We will show Ĥ

mol can be rearranged
in a such way that HB will be same for ground and excited state

Ĥ
mol = εg |g⟩⟨g| +

(︄
εe +

∑︂
k

ℏωk

2 d2
n

)︄
|e⟩⟨e| +

∑︂
k

(︄
Tk̂ + ℏωk

2 q̂2
k

)︄
−
∑︂

k

ℏωkdkq̂k |e⟩⟨e| .
(1.3)

The final form of system, bath and interaction Hamiltonians is shown below,
where λmol denotes the reorganisation energy for two the level system

Ĥ
mol
el = εg |g⟩⟨g| +

(︂
εe + λmol

)︂
|e⟩⟨e| , λmol =

∑︂
k

ℏωk

2 d2
n

Ĥ
mol
vib =

∑︂
k

ℏωk

2 (p̂2
k + q̂2

k)

Ĥ
mol
el-vib = −

∑︂
k

ℏωkdkq̂k |e⟩⟨e| .

(1.4)

The index k in Ĥ
mol
vib denotes different vibrational modes. In this case, we are

considering a single molecule, so we only need one index to distinguish between
the different vibrational modes. Later, we will also need to differentiate between
the modes bound to different molecules. In the Frenkel excited model, we only
consider the ground and excited electronic states for each molecule (e.g. HOMO
and LUMO), hence the notation ”mol”. The bath Hamiltonian can be expressed
using the elements of an orthonormal basis

Ĥ
mol
vib =

∑︂
k

ℏωk

2 (2ξk + 1)
⃓⃓⃓
ξk
⟩︂⟨︂

ξk
⃓⃓⃓
. (1.5)

1.1.2 Aggregate with LHO bath
In this section, we will construct an aggregate composed of many two-level sys-
tems and include electronic coupling between them in order to model the real
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scenario of electronic coupling between molecules. We will begin by defining
the basis using the Frenkel exciton model. In the whole system, there is one
global ground electronic state and exactly n locally excited electronic states for
n molecules. The electronic basis of the system can be expressed as follows

|g⟩ =
n∏︂

i=1
|gi⟩ ,

|ek⟩ = |e′
k⟩

n∏︂
l=1
l ̸=k

|gl⟩ .
(1.6)

where |e′
k⟩ is excited electron state for single molecule. Next, we will extend this

basis by adding the non-shifted LHO basis

|1⟩ = |g⟩ |ξ1
g⟩|ξ2

g⟩ . . . |ξn
g ⟩

|a⟩ = |ea⟩ |ξ1
g⟩|ξ2

g⟩ . . . |ξa
e ⟩ . . . |ξn

g ⟩
|ξa

s ⟩ =
∏︂
k

|ξak
s ⟩, s ∈ {g, e}

(1.7)

where ak denotes LHO state on a-th molecule and on k-th mode. In this section,
we won’t be going into details of shifted LHO states, which is explained in a
separate Section 1.2. It is not necessary to differentiate which modes are coupled
to which states at this point, but it can be useful in the case where we are working
with the shifted LHO basis and want to maintain consistency. The case for the
shifted LHO basis is similar

|1⟩ = |ξ1
g⟩|ξ2

g⟩ . . . |ξn
g ⟩

|a⟩ = |ξ1
g⟩|ξ2

g⟩ . . . |ξa
e ⟩ . . . |ξn

g ⟩
|ξa

g ⟩ =
∏︂
k

|ξak
g ⟩, |ξa

e ⟩ =
∏︂
k

|ξak
e ⟩,

(1.8)

except that the information about which molecule is excited is now encoded in
the vibrational basis. It is important to note that the state |a⟩ is a compact
notation for the actual values of the vibrational states

⃓⃓⃓
ξak

g

⟩︂
or
⃓⃓⃓
ξak

e

⟩︂
. More infor-

mation on the difference between the shifted vibrational basis, and the non-shifted
vibrational basis can be found in Section 1.2.

Once the basis is defined, we can proceed to the definition of our Hamiltonian.
We begin by taking the product of the two-level Hamiltonians defined in Eq. 1.4
and then add electronic coupling to the new system Hamiltonian

Ĥ
′
S = Ĥ

mol1 ⊗ Ĥ
mol2 ⊗ Ĥ

mol3 ⊗ . . . ⊗ Ĥ
moln

Ĥ
′′
S = ⟨g| Ĥ

′
S |g⟩ |g⟩⟨g| +

n∑︂
k=1

⟨ek| Ĥ
′
S |ek⟩ |ek⟩⟨ek|

ĤS = Ĥ
′′
S +

∑︂
ij

Jij |ei⟩⟨ej| =
∑︂

i

εi +
∑︂
ij

Jij |ei⟩⟨ej| .

(1.9)

In the second row, we took global ground state and single excited states out of
the new Hamiltonian, and we are working on the non-shifted LHO basis. We con-
struct the bath Hamiltonian by adding the bath Hamiltonians from each molecule

8



ĤB =
∑︂

a

Ĥ
mola
vib

=
∑︂
ak

ℏωak

2 (p̂2
ak + q̂2

ak)

=
∑︂
ak

∑︂
ξak

ℏωak

2 (2ξak + 1)
⃓⃓⃓
ξak
⟩︂⟨︂

ξak
⃓⃓⃓
,

(1.10)

where in the second row, the sum is over molecules a, modes k, and correspond-
ing LHO states µa,k. In the last row, we express the bath Hamiltonian in the
orthonormal LHO basis. The interaction Hamiltonian is also constructed by
adding together the interaction Hamiltonians from each molecule

ĤI = −
n∑︂

a=2
Hmola

el-vib |a⟩⟨a|

= −
∑︂
ak

ℏωakdakq̂ak |ea⟩⟨ea| .
(1.11)

It is important to note that every electronic state |ea⟩ has its own interaction
Hamiltonian from the a-th molecule. Contributions from different modes are
summed within this electronic state depending on the shift and frequency.

When working with the shifted LHO basis, the situation becomes more com-
plex. The bath Hamiltonian and system Hamiltonian remain unchanged, but the
interaction Hamiltonian undergoes a transformation. In the shifted LHO basis,
the elements in Eq. 1.11 will be zero. This is because the interaction Hamilto-
nian has been transformed from block diagonal matrices onto block off-diagonal
matrices in the electron basis. We will now focus on the system Hamiltonian

ĤS =
∑︂

i

εi +
∑︂
ij

Jij |ei⟩⟨ej| . (1.12)

It is important to understand that the electronic coupling Jij is always diagonal
in any basis because HS and HB have to be separable in H0. However, taking
Jij from the definition (1.12) and considering the non-shifted version of Hamilto-
nian for one molecule (1.4), the original form of Jij in shifted basis will also be
transformed onto off-diagonal elements in vibrational basis. These contributions,
which are due to the shift of modes, belong to the interaction Hamiltonian. Thus,
the general definition of the interaction Hamiltonian with any shift d is given by

Jab = ⟨a|g⟩ ⟨g|b⟩
=
∏︂
k

⟨︂
ξak

e

⃓⃓⃓
ξak

g

⟩︂∏︂
l

⟨︂
ξbl

g

⃓⃓⃓
ξbl

e

⟩︂
. (1.13)

Note that the actual states
⃓⃓⃓
ξa,k

e

⟩︂
or
⃓⃓⃓
ξb,k

e

⟩︂
are defined by the states |a⟩ or |b⟩.

In the case that we are working with a non-shifted LHO basis, we are ending
with block diagonal interaction Hamiltonian

ĤI =
∑︂

a

∆V̂ |a⟩⟨a| , (1.14)
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where the ∆V̂ operators contain coordinates of the corresponding modes as shown
in Eq. 1.11. In the bath interaction picture, we obtain

Ĥ
(B)
I =

∑︂
a

Û
†
B(t)∆V̂ aÛB(t) |a⟩⟨a|

=
∑︂

a

∆V̂ a(t) |a⟩⟨a| .
(1.15)

In the interaction picture in the system and bath in the local electron basis
and non-shifted vibrational basis, the evolution does not happen for populations
alone as we do not know the exact form of ÛS,ab(t) for a ̸= b, due to the electronic
couplings Jab in the system Hamiltonian

Ĥ
(I)
I,ab =

∑︂
c

Û
†
S,ac(t)∆V̂ c(t)ÛS,cb(t) |a⟩⟨b| . (1.16)

Finally, we consider the case where we work with the excitonic electron basis
and either the shifted or non-shifted vibrational basis. The electronic basis is
defined as basis in which the system Hamiltonian is diagonal

ĤS =
∑︂

α

εα |α⟩⟨α| . (1.17)

As a result of the transformation of operators during the diagonalisation of the
system Hamiltonian, the block diagonal form of the interaction Hamiltonian will
disappear, and we will be left with a general form in respect to system states

⟨α|
[︄∑︂

a

∆V̂ a |a⟩⟨a|
]︄

|β⟩ =
∑︂

a

∆V̂ a ⟨α|a⟩ ⟨b|β⟩

= ∆V̂ αβ.

(1.18)

In this case, the interaction picture can be simplified for the system part, but the
bath part remains for off-diagonal elements of the interaction Hamiltonian

Ĥ
(I)
I,αβ =

∑︂
γδ

Û
†
S,αγ(t)∆V̂ γδ(t)ÛS,δβ(t) |γ⟩⟨δ|

=
∑︂
γδ

e+iεαt ℏδαγ∆V̂ γδ(t)δδβe+iεαt ℏ |γ⟩⟨δ|

= e+iωαβt∆V̂ αβ(t) |α⟩⟨β| , ωαβ = 1
ℏ

(εα − εβ).

(1.19)

It should be clear from the alphabet used whether we are working in a local
electronic basis or an excitonic basis. Latin letters will correspond to local electron
states, Greek letters will correspond to excitonic states. Sometimes, Latin letters
may be used for excitonic states, but this will always be explicitly stated. We
also believe that it should be clear from the context of the equations.

1.2 Shifted and non-shifted LHO basis
In the previous section, we demonstrated how to derive the model Hamiltonian
for a single molecule. We selected the case where we express the LHO for the
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excited electronic state using the LHO vibrational states of the ground state.
This shifting transforms the elements of one basis into a new one, with the newly
shifted LHO basis remaining orthonormal⃓⃓⃓

ξak
g

⟩︂
=
⃓⃓⃓
ξak
⟩︂

⃓⃓⃓
ξak

e

⟩︂
= D̂(dak)

⃓⃓⃓
ξak
⟩︂

D̂(dak) = exp
[︄
−dak

∂

∂q̂

]︄
= exp

[︄
−dak√

2
(︂
âak − â†

ak

)︂]︄
,

(1.20)

where index a denotes a-th molecule in the aggregate, index k denotes k-th mode
on the molecule and

⃓⃓⃓
ξak
⟩︂

denotes specific LHO state. This shift operator is real.
Hence we have the following symmetry for given state

⃓⃓⃓
ξak
⟩︂

⟨︂
ξak

g

⃓⃓⃓
ξak

e

⟩︂
=
⟨︂
ξak

g

⃓⃓⃓
D̂(dak)

⃓⃓⃓
ξak

g

⟩︂
=
⟨︂
ξak

g

⃓⃓⃓
D̂

†(dak)
⃓⃓⃓
ξak

g

⟩︂
=
⟨︂
ξak

e

⃓⃓⃓
ξak

g

⟩︂
.

(1.21)

The full basis within the Frenkel exciton framework can be expressed using the
shifted LHO basis. To denote the excited vibrational basis for a molecule a, it is
necessary to consider shifts in all modes connected to the molecule. We will define
the shift operator for molecule a, D̂a, as the operator that shifts the LHO states
corresponding to the modes on molecule a. We can rewrite the transformation of
states in Eq. 1.20 using this new shift operator as follows⃓⃓⃓

ξak
e

⟩︂
= D̂a

⃓⃓⃓
ξak

g

⟩︂
⃓⃓⃓
ξak

g

⟩︂
= D̂b

⃓⃓⃓
ξak

g

⟩︂
, a ̸= b.

(1.22)

Next, we need to define how to transform the state of the whole molecule

|ξa
e ⟩ = D̂a

⃓⃓⃓
ξa

g

⟩︂
= D̂a

ma∏︂
k=1

⃓⃓⃓
ξak

g

⟩︂
|ξa

e ⟩ = D̂b

⃓⃓⃓
ξa

g

⟩︂
, a ̸= b,

(1.23)

where ma denotes the number of modes on a molecule a. The final step is to de-
termine the transformation of the aggregate state. Using the state transformation
in Eq. 1.23, we must add all states for the molecules that are not being shifted.
From now on, we will define a multi-index for all vibrational indices of LHOs
as a = (ξ11, . . . , ξ1m1 , . . . , ξa1, . . . , ξama , . . . , ξn1, . . . , ξnmn). The transformation of
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|a⟩ |b⟩

|g⟩

D̂bD̂−a

D̂aD̂−b

D̂a D̂b

Figure 1.1: Shift operator can be used to determine how to transform states from a
global ground state to state with excitation on a-th molecule in local basis, or how to
transform state with a-th molecule excited to state with b-th molecule excited.

the aggregate state can be written as follows

ca |a⟩ = D̂a |g⟩

= caD̂a

[︃ n∏︂
b=0
b ̸=a

mb∏︂
k=1

⃓⃓⃓
ξbk

g

⟩︂ ma∏︂
k=1

⃓⃓⃓
ξak

g

⟩︂ ]︃

= ca

n∏︂
b=0
b ̸=a

mb∏︂
k=1

⃓⃓⃓
ξbk

g

⟩︂
D̂a

ma∏︂
k=1

⃓⃓⃓
ξak

g

⟩︂

= ca

n∏︂
b=0
b ̸=a

mb∏︂
k=1

⃓⃓⃓
ξbk

g

⟩︂ ma∏︂
k=1

⃓⃓⃓
ξak

e

⟩︂
(1.24)

on the first line states |a⟩ and |g⟩ denotes aggregate states and not electonic
states. On the second line, the shift operator for the molecule acts only on
states corresponding to a-th molecule. On the next line, we can see the result
of the transformation with shift operator D̂a. The shift operator can be used to
determine the transformation of coefficients while switching from a non-shifted
basis to shifted basis.

ca |a⟩ =
∑︂

b

cb

n∏︂
b=0
c ̸=b

mc∏︂
k=1

⃓⃓⃓
ξck

g

⟩︂ mb∏︂
k=1

⃓⃓⃓
ξbk

g

⟩︂

=
∑︂

b

cbD̂aD̂−b |b⟩ ,

(1.25)

where under sum over b states, we understand all states of the whole system
that have excited molecule b. On the last line, we can see the same state with
transformed coefficients cb as a decomposition of one state |a⟩ into all states |b⟩
for excited molecule b. Alternatively, we can look at the shift operator as an
operator that transforms coefficients of the ground state into an excited state or,
said differently, excites a particular molecule within the ground state basis. Both
transformations Eq. 1.24 and Eq. 1.25 are visualised at the Fig. 1.1. How does
shift operator works on one LHO mode can be seen at Fig. 1.2.

The inverse of the molecular shift operator is defined as a shift operator, but
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with all coordinate displacements negative

|g⟩ = D̂−a |a⟩
= D̂−aD̂a |g⟩

D̂−aD̂a = 1

(1.26)

In order to examine the trace over bath DOF in both the non-shifted and
shifted vibrational bases, we must first consider the trace in the non-shifted LHO
basis. This is given by

trB{ρ̂} =
∑︂
ab

tr{ρ̂ab} |a⟩⟨b| , ρ̂ab = ⟨a| ρ̂ |b⟩ (1.27)

where the electronic states of the system are denoted by a and b. The trace over
bath DOFs is similar to a standard trace operation but preserves the DOFs of the
system. Next, we consider the shifted LHO basis, where the populations remain
unchanged, but the coherences are calculated using a non-orthonormal basis. In
general, we have⟨︂

ξak
e

⃓⃓⃓
ξak

g

⟩︂
̸= 1, dak > 0. (1.28)

It is impossible to evaluate the trace using the same bra and ket states in shifted
LHO basis. One solution to this problem is to transform all states in the coher-
ences into ground states of the aggregate and then evaluate the trace over the
bath DOFs as is done in the non-shifted vibrational basis. The procedure for this
operation is outlined as follows

trB{ρ} =
∑︂
ab

tr
{︃

D̂−aρ̂abD̂−b

}︃
|a⟩⟨b| . (1.29)

When using the shifted operator to transform from the non-shifted basis to
the shifted basis, we can visualise this process for a single mode as follows

D̂

Figure 1.2: The left side represents LHO states of one mode in a non-shifted basis.
The dashed LHO states represent the true position of LHO states which are expressed
by the non-shifted basis. On the right side, we have a representation of shifted excited
states. Transformation of coefficients from non-shifted basis to shifted basis is possible
with shift operator D̂ of depicted mode.

1.3 Correlation functions for LHO bath

1.3.1 Definition
The correlation function, as a property of a system, is a valuable and practical tool
for the development of the theory derived here. When the memory kernel contains

13



a trace over the bath DOFs and the bath is in equilibrium, we can consider the
correlation function in its normal form, using the interaction Hamiltonian from
Eq. 1.15

C(t) = trB

{︂
∆V̂ (t)∆V̂ ŵeq

}︂
(1.30)

In our work, we define the correlation function as a tensor Cabcd of two-time
variables

Cabcd(t1, t2) = trB

{︂
∆V̂ ab(t1)∆V̂ cd(t2)ŵeq

}︂
. (1.31)

In the local basis, however, it makes sense to write interaction Hamiltonian with
just one index ∆Vn ≡ ∆Vnn, and we will later also understand that correlation
function with two indexes is in a local basis and with four in excitonic basis

Cnm(t2, t1) = trB

{︂
∆V̂ n(t1)∆V̂ m(t2)ŵeq

}︂
. (1.32)

In the local basis we have clearly Cnm(t2, t1) = δnmCnn(t2, t1). We often see
definitions of correlation functions with single-time variable. Our definition (1.31)
is equivalent to definition (1.30), and a reader can find the discussion in Appendix
A.1.

We will also focus on second-order correlation functions. By examining equa-
tion (1.31), we can write down similar second-order correlation functions in the
exciton basis

Cabcdefgh(t1, t2, t3, t4) = trB

{︂
∆V̂ ab(t1)∆V̂ cd(t2)∆V̂ ef (t3)∆V̂ gh(t4)ŵeq

}︂
. (1.33)

In a similar fashion, as we defined in Eq. 1.32, we can define the correlation
function of the second order in the local basis

Cnmkl(t1, t2, t3, t4) = trB

{︂
∆V̂ n(t1)∆V̂ m(t2)∆V̂ k(t3)∆V̂ l(t4)ŵeq

}︂
. (1.34)

In this work, we only consider the LHO modes in the bath. Hence, we can
derive an exact form of the first and second-order correlation functions. For the
local basis, we will consider the interaction Hamiltonian for the n-th molecule in
the aggregate

∆V̂ n(t) = ℏ
∑︂

u

ωnudnuq̂nu(t)

= ℏ
∑︂

u

ωnudnu√
2

(â†
nu(t) + ânu(t)).

(1.35)

For the correlation function of the first order, we can arrive at the following
solution derived in Subsection 1.3.2

Cnm(t1, t2) = Cnm(t1 − t2)

= ℏ2δnm

∑︂
u

ω2
nud2

nu

2 (n(ωnu)eiωnu(t1−t2) + (n(ωnu) + 1)e−iωnu(t1−t2)),
(1.36)

where ωnu is the frequency of u-th LHO mode on n-th molecule and n(ω) is
Bose-Einstein distribution for a thermal equilibrium of LHO bath mode

n(ω) = 1
e

ℏω
kBT − 1

. (1.37)
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Usually, it is desirable to express our equations in terms of reorganisation energy
λnu and Huang-Rhys factor Snu

λnu = ℏωnu

2 d2
nu, Snu = λnu

ℏωnu

= 1
2d2

nu ≡ Sn. (1.38)

Alternatively, we can rewrite correlation function (1.36) into the following
Cnm(t1, t2) =

= ℏδnm

∑︂
u

ωnkλnu(n(ωnu)eiωnu(t1−t2) + (n(ωnu) + 1)e−iωnu(t1−t2))

= ℏ2δnm

∑︂
k

ω2
nuSnu(n(ωnu)eiωnu(t1−t2) + (n(ωnu) + 1)e−iωnu(t1−t2)

= ℏ2δnmSn

∑︂
k

ω2
nu(n(ωnu)eiωnu(t1−t2) + (n(ωnu) + 1)e−iωnu(t1−t2)),

(1.39)

where at the last line, we applied Snu = Sn because the shifts in modes within
the same molecule are the same. The decomposition of the second-order correla-
tion function into first-order correlation functions is simple and more on that in
Subsection 1.3.2

Cnmkl(t1, t2, t3, t4) = δnmδklCnm(t1, t2)Cmm(t3, t4)
+ δnkδmlCnn(t1, t3)Cmm(t2, t4)
+ δnlδmkCnn(t1, t4)Cmm(t2, t3)

(1.40)

It is easy to spot that the correlation function of the first order in exciton
basis is just a linear combination of correlation functions of first order expressed
in local basis

Cαβγδ(t1, t2) = trB

{︂
∆V̂ αβ(t1)∆V̂ γδ(t2)ŵeq

}︂
=
∑︂
nm

⟨α|n⟩ ⟨n|β⟩ ⟨γ|m⟩ ⟨m|δ⟩ trB

{︂
∆V̂ n(t1)∆V̂ m(t2)ŵeq

}︂
=
∑︂
nm

⟨α|n⟩ ⟨n|β⟩ ⟨γ|m⟩ ⟨m|δ⟩ Cnm(t1, t2).

(1.41)

Similarly, it holds for the correlation function of the second order
Cαβγδµνϵη(t1, t2, t3, t4)

= trB

{︂
∆V̂ αβ(t1)∆V̂ γδ(t2)∆V̂ µν(t3)∆V̂ ϵη(t4)ŵeq

}︂
=
∑︂

nmkl

⟨α|n⟩ ⟨n|β⟩ ⟨γ|m⟩ ⟨m|δ⟩ ⟨µ|k⟩ ⟨k|ν⟩ ⟨ϵ|l⟩ ⟨l|η⟩

× Cnmkl(t1, t2, t3, t4)

(1.42)

There is a crucial property of correlation functions in any basis, namely the
conjugate of the correlation function to the function in Eq. 1.31.

C∗
ab,cd(t1, t2) = trB

{︂(︂
∆V̂ ab(t1)V̂ cd(t2)ŵeq

)︂∗}︂
= trB

{︂
ŵ†

eqV̂
†
cd(t2)∆V̂

†
ab(t1)

}︂
= trB

{︂
V̂ cd(t2)∆V̂ ab(t1)ŵeq

}︂
= Ccd,ab(t2, t1).

(1.43)

Similarly, for the correlation function of the second order, we have similar property

C∗
ab,cd,ef,gh(t1, t2, t3, t4) = Cgh,ef,cd,ab(t4, t3, t2, t1). (1.44)
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1.3.2 Higher orders
In this subsection, we present a general diagrammatic representation of multi-
point correlation functions. This simplified notation may help the reader with a
derivation of higher orders of correlation functions in the future. We begin with
the simplest example possible, which is the first-order correlation function with
a single mode

C(t1, t2) = trB

{︂
∆V̂ (t1)V̂ (t2)ŵeq

}︂
= ℏ2ω2d2 trB

{︂
U †(t1)q̂U(t1)U †(t2)q̂U(t2)ŵeq

}︂
= ℏ2ω2d2 trB

{︂
U †(t1 − t2)q̂U †(t2 − t1)q̂ŵeq

}︂
= ℏ2

2 ω2d2∑︂
a

⟨a| U †(t1 − t2) |a⟩⟨a| (â† + â)U †(t2 − t1)(â† + â) |a⟩ weq,a.

(1.45)

In the next step, we must consider all the combinations of paths of creation and
annihilation operators that will result in the same state |a⟩. In this case, we only
work with a single mode, so the situation is relatively straightforward

⟨a| U †(t1 − t2) |a⟩⟨a| (â† + â)U †(t2 − t1)(â† + â) |a⟩ =
= eiω(a+1/2)(t1−t2)

(︂
a ⟨a − 1| U †(t2 − t1) |a − 1⟩

+ (a + 1) ⟨a + 1| U †(t2 − t1) |a + 1⟩
)︂
weq,a

= aeiω(a+1/2)(t1−t2)eiω(a−1+1/2)(t2−t1)weq,a

+ (a + 1)eiω(a+1/2)(t1−t2)eiω(a+1/2)(t2−t1)weq,a

= aweq,ae−iω(−t1+t2) + (a + 1)weq,ae−iω(+t1−t2)

(1.46)

With the knowledge of Bose-Einstein distribution, we can sum over all states a
of LHO mode

C(t1, t2) = ℏ2

2 ω2d2
(︂
n(ω)e−iω(−t1+t2) + (n(ω) + 1)e−iω(+t1−t2)

)︂
. (1.47)

The expansion (1.46) can be alternatively obtained by following two diagrams

a

a − 1

a + 1

aweq,ae−iω(−t1+t2) a

a − 1

a + 1

(a + 1)weq,ae−iω(+t1−t2)

Where on the diagram on the left, the LHO state a is annihilated and replaced
with state a−1 (reading from left to right). The first line goes from a higher state
to a lower one. Therefore, it will contribute with −t1. The following line tells us
that we replaced state a − 1 with a. The state was increased; therefore, it will
contribute with +t2 in the exponential. Every line contributes with factor

√
a;

hence overall factor is a. The factor is always taken from the higher state of the
line. Similarly, we can continue on the second diagram with only the difference
of signs in t1 and t2, and every line contributes with factor

√
a + 1 instead of

√
a.
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We will now proceed with the correlation function of the second order. As
explained in the previous section, we can use similar diagrams to simplify the
derivation of the final formula as in Eq. 1.47

a
a − 1
a − 2

a + 1
a + 2

and now we have six terms in total. In the same order as the diagrams are
shown from left to right, we will lay down all the elements of decomposition of
second-order correlations function

C(t1, t2, t3, t4) = ℏ4

4 ω4d4∑︂
a

[︂
+ a(a − 1)weq,ae−iω(−t1−t2+t3+t4) + a2weq,ae−iω(−t1+t2−t3+t4)

+ (a + 1)aweq,ae−iω(−t1+t2+t3−t4) + (a + 1)aweq,ae−iω(+t1−t2−t3+t4)

+ (a + 1)2weq,ae−iω(+t1−t2+t3−t4) + (a + 2)(a + 1)weq,ae−iω(+t1+t2−t3−t4)
]︂

(1.48)

With the knowledge of ⟨n2⟩ = 2⟨n⟩2 +⟨n⟩ we can rewrite Eq. 1.48 to the following

C(t1, t2, t3, t4) = ℏ4

4 ω4d4
[︂

+ 2n2(ω)e−iω(−t1−t2+t3+t4) + (2n2(ω) + n(ω))e−iω(−t1+t2−t3+t4)

+ (2n2(ω) + 2n(ω))e−iω(−t1+t2+t3−t4) + (2n2(ω) + 2n((ω))e−iω(+t1−t2−t3+t4)

+ (2n2(ω) + 3n(ω) + 1)e−iω(+t1−t2+t3−t4) + (2n2(ω) + 4n(ω) + 2)e−iω(+t1+t2−t3−t4)
]︂

+ C(t1, t2)C(t3, t4) + C(t1, t3)C(t2, t4) + C(t1, t4)C(t2, t3),
(1.49)

where we have to note that it is possible to rearrange all six terms in such a
way that we decompose the second-order correlation function into the first-order
correlation functions. This was also proven in a more abstract way in [Fox78].

In the second part of this subsection, we address the decomposition of higher
correlation functions when working with multiple modes. Instead of using indices
a for molecules and k for the specific mode on the molecule, we simplify this
notation to a single index n. As a result, the frequency of the node ωak becomes n,
and similarly for other quantities. This allows us to avoid the need to differentiate
between modes originating from the same molecule or not, and we only need to
consider whether the modes are the same or not.

We say that the correlation function is of the n-th order when it contains 2n
interaction Hamiltonians under the trace operator

C(t1, . . . , t2n) = trB

{︂
∆V̂ (t1) . . . ∆V̂ (t2n)ŵeq

}︂
. (1.50)

After clarifying the notation, we can try to decompose the correlation func-
tions of the first three orders. The correlation function of the first order is the
trivial case because obviously, for LHO bath, we have the following property

Cnm(t1, t2) = δnmCnn(t1, t2), (1.51)
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where the case of n ̸= m implies Cnm(t1, t2) = 0 as for any odd number of the
coordinate operator q̂n for the same mode n we won’t end up on the same state
we have started. We have to note that evolution operators UB(t) are diagonal in
our basis

⟨a| q̂n(t1) . . . q̂n(t2n−1) |a⟩ = 0. (1.52)

We propose the following notation for the decomposition of correlation functions.
We will represent the trace over bath DOF with an undirected cyclic graph where
every node represents one operator. The top node will represent the operator of
bath in equilibrium ŵeq. Then we lay down all the interaction Hamiltonians ∆V̂

in counter-clockwise order starting from ∆V̂ (t1). We will only note the nodes by
the index of the mode

ŵeq

∆V̂ n(t1) ∆V̂ m(t2) n m

and there is no point in assigning an index to ŵeq because it will be the same
in every correlation function. The decomposition in Eq. 1.51 can be noted with
those diagrams as follows

n m n n

and we must also consider δnm. It is important to note that we have not included
the deltas that ensure the correlation functions in separate cycles have different
indices or that multiple indices are enforced in the same correlation function. The
decomposition of the second-order correlation function can be written as follows

n

m k

l
=

n

n k

k
+

n

m n

m
+

n

m m

n
.

This decomposition can also be written by a standard notation as

Cnmkl(t1, t2, t3, t4) = δnmδklCnm(t1, t2)Cmm(t3, t4)
+ δnkδmlCnn(t1, t3)Cmm(t2, t4)
+ δnlδmkCnn(t1, t4)Cmm(t2, t3).

(1.53)

For the third-order correlation function, we have the following diagrammatic de-
composition
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n

m

k l

o

p

=

n

n

k l

o

p

+

n

m

n l

o

p

+

n

m

k n

o

p

+

n

m

k l

n

p

+

n

m

k l

o

n

.

Finally, in this case, we can see why a reader would consider the diagrammatic
method for higher-order of correlation functions

Cnmklop(t1, t2, t3, t4, t5, t4) =
+ δnmCnn(t1, t2)Cklop(t3, t4, t5, t6)
+ δnkCnn(t1, t3)Cmlop(t2, t4, t5, t6)
+ δnlCnn(t1, t4)Cmkop(t2, t3, t5, t6)
+ δnoCnn(t1, t5)Cmklp(t2, t3, t4, t6)
+ δnpCnn(t1, t6)Cmklo(t2, t3, t4, t5).

(1.54)

1.3.3 Limit of high temperatures
In general, we assume that correlation functions are complex functions of time.
In this subsection, we are interested in the limit of high temperatures where the
correlation functions become real. Looking at Eq. 1.36, we will get the limit of
high temperatures

Cnm(t1, t2) = ℏ2δnm

∑︂
u

ω2
nud2

nun(ωnu) cos(ωnu(t1 − t2)), (1.55)

and it is clear that we have the following property

Cn,m(t1, t2) = Ccd,ab(t2, t1). (1.56)

For the correlation function of the second order, we have a similar property. We
will discuss the diagonal part in the limit of high temperatures

Cnnnn(t1, t2, t3, t4) =

+ ℏ4∑︂
uv

ω2
nuω2

nvd2
nud2

nvn(ωnu)n(ωnu)
[︃

cos(ωnu(t1 − t2)) cos(ωnv(t3 − t4))

+ cos(ωnu(t1 − t3)) cos(ωnv(t2 − t4)) + cos(ωnu(t1 − t4)) cos(ωnv(t2 − t3))
]︃

(1.57)

With properties Eq. 1.56 and Eq. 1.57, we can see that any permutation π ∈
S4 of time variables and indices inside Eq. 1.40 will lead to the same correlation
function of the second order

Cn,m,k,l(t1, t2, t3, t4) = Cπ(n,m,k,l)(π(t1, t2, t3, t4))
Cab,cd,ef,gh(t1, t2, t3, t4) = Cπ(ab,cd,ef,gh)(π(t1, t2, t3, t4)).

(1.58)
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λ

Figure 1.3: On the left side, we depict a wavepacket in a ground state of the selected
mode. Upon laser excitation, this wavepacket becomes excited but maintains its shape.
In the shifted LHO basis, this excited wavepacket can be represented using shifted
LHO states and the inverse of the shift operator, D̂. On the right side we can see the
reorganisation energy λ.

1.4 Initial state
In this work, we assume that the initial condition models the scenario of ultra-fast
laser excitation. The initial condition for the system and bath are as follows

ρeq = e−HS/kBT

Tr e−HS/kBT
, weq = e−HB/kBT

Tr e−HB/kBT
, (1.59)

where kB is a Boltzmann constant, T is temperature, and the whole distribution is
called Boltzmann canonical thermal equilibrium. We propose the initial condition
for the whole system as

W (t = 0) = ρ0weq, (1.60)

where ρ0 is the initial reduced density matrix for the system. This is justifiable by
Condon principle that, in our case, implies that the wavepacket will not change
its shape because the excitation is ultra-fast. What is the structure of ρ0? We
make another simplification and we will consider only nonzero populations. We
assume that the whole population that was present in the global ground state
|g⟩⟨g| is distributed over populations of single excited states

ρ0 =
∑︂

n

wn |en⟩⟨en| ,
∑︂

n

wn = 1. (1.61)

in other words, this assumption prohibits the system from starting with non-
zero coherences. It would also be sufficient to use only the initial condition
ρ(t = 0)ab = 1 as any initial condition can be decomposed into multiple initial
conditions of ρ(t = 0)ab = 1.

To clarify the numerical part of simulations, we want to explain the bath basis
that was used. Depending on our basis, the initial state will look different. In
the shifted basis, we can see the situation at Fig. 1.3, where in order to calculate
the initial state, we have to use the shift operator D̂ (1.20). In the non-shifted
basis, the calculation of the initial state is without the shift operator, see Fig 1.4.
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Figure 1.4: On the left side, we depict a wavepacket in a ground state of the selected
mode. In the non-shifted LHO basis, the excitation of this wavepacket results only
in a transition to an excited state, while the coefficients for vibrational states remain
unchanged.

1.5 Reduced density matrix and relative bath
part

In this section, we investigate the separation of the density matrix into the so-
called relative bath part (RBP). The motivation behind obtaining a reduced
density matrix (RDM) from the W (t) is clear, as we need RDM to describe the
relevant DOF effectively. The RDM is obtained by taking the trace over bath
DOF and is given by

ρ̂(t) = trB{Ŵ (t)}. (1.62)

The structure of RDM in electronic basis is as follows

ρ̂(t) =
∑︂
nm

ρnm(t)|n⟩⟨m|, ρnm(t) = trB{⟨n|Ŵ (t)|m⟩}. (1.63)

We are also motivated to define a remainder of W (t) with respect to RDM. We
define a new operator using the RDM and we will call it the RBP with respect
to the RDM, or simply the RBP

ŵnm(t) = ⟨n|Ŵ (t)|m⟩
trB{⟨n|Ŵ (t)|m⟩}

, trB {ŵnm(t)} = 1, (1.64)

where states |n⟩ and |m⟩ denote electronic states, hence ⟨n|Ŵ (t)|m⟩ is an operator
and has the size of the whole system basis. Now, we can split the whole density
matrix W (t) into two parts without losing information about the system. The
trace of this operator doesn’t have to be equal to one, but the altered condition
with trace over bath DOF is fulfilled. Adding RDM and RBP looks like the
following

Ŵ (t) =
∑︂
nm

ρnm(t)ŵnm(t) |n⟩⟨m| (1.65)

Over the following pages we will use factorisation in electronic basis many times.
Hence, we are motivated to define formal oprator ⊕ that will simplify the notation

Ŵ (t) = ρ̂(t) ⊕ ŵ(t). (1.66)
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This operator should not be interchanged for tensor multiplication ⊗, because
that operator will give completely different result

ρ̂(t) ⊗ ŵ(t) =
∑︂

nmξν

ρnm(t)wξµ(t) |nξ⟩⟨mν| , (1.67)

where n, m are electronic states and ξ, µ are vibrational states. Another property
of the separation into RDM and RBP is that the evolution is applied to both parts
of the density matrix

Ŵ (t) = U(t)Ŵ (0)U †(t)
= U(t)(ρ̂(0) ⊕ ŵ(0))U †(t)
= ρ̂(t) ⊕ ŵ(t).

(1.68)

Later we will use this factorisation to separate QME into the RDM and the RBP
equations governing the evolution.
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2. Standard theories
In this chapter, we will briefly derive two important approaches for solving evo-
lution for OQS, QME in Section 2.1 and Redfield equations in Section 2.2. In
the last Section 2.3, we explain how we solve integrodifferential equations (IDE)
to desired numerical precision.

2.1 Quantum Master Equation
The starting point of this section is the division of the whole Hamiltonian in the
system part, bath part and the interaction part

Ĥ = ĤS + ĤB + ĤI = Ĥ0 + ĤI , (2.1)

where ĤS ∈ HS and ĤB ∈ HB. Starting with the Liouville-von Neumann equa-
tion (LvN)

∂

∂t
Ŵ (t) = − i

ℏ
[Ĥ, Ŵ (t)]

= − i

ℏ
[Ĥ0, Ŵ (t)] − i

ℏ
[ĤI , Ŵ (t)].

(2.2)

Next, we can move to the interaction picture with respect to Ĥ0

∂

∂t
Ŵ

(I)(t) = ∂

∂t
[U †

0(t)Ŵ (t)U0(t)]

= + i

ℏ
Ĥ0e

+ i
ℏ Ĥ0tŴ (t)U0(t) + U †

0(t)
[︃

∂

∂t
Ŵ (t)

]︃
U0(t)

+ U †
0(t)Ŵ (t)

(︃
− i

ℏ
Ĥ0

)︃
e− i

ℏ Ĥ0t

= i

ℏ
U †

0(t)[Ĥ0, Ŵ (t)]U0(t) + U †
0(t)

[︃
∂

∂t
Ŵ (t)

]︃
U0(t)

= − i

ℏ
[Ĥ(I)

I (t), Ŵ
(I)(t)],

(2.3)

where in the second line of this equation, we derived expressions for all three
operators. In the third line, we substitute the time derivative of the density
matrix with the LvN, as given in Eq. 2.2. Finally, on the last line, we eliminate
the commutators with the operator Ĥ0.

Deriving QME may be approached by directly integrating differential equation
2.3 twice. We want to show this simple approach as first

Ŵ
(I)(t) = Ŵ

(I)(t0) − i

ℏ

∫︂ t

t0
dτ [Ĥ(I)

I (τ), Ŵ
(I)(τ)]. (2.4)

and now we will substitute this result into the right side of Eq. 2.3 ending with
just integrated form of LvN, which is QME for system and bath

∂

∂t
Ŵ

(I)(t) = − i

ℏ
[Ĥ(I)

I (t), Ŵ
(I)(t0)]−

1
ℏ2

∫︂ t

t0
dτ [Ĥ(I)

I (t), [Ĥ(I)
I (τ), Ŵ

(I)(τ)]] (2.5)
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It can be shown that higher orders of the QME can be considered within the
vibrational basis of the LHO but do not contribute significantly to the expansion.

The second approach involves formally solving the LvN using the superopera-
tor technique. We define the superoperator as the commutator of the interaction
Hamiltonian in the interaction picture.

∂

∂t
Ŵ

(I)(t) = − i

ℏ
L(I)

I (t)Ŵ (I)(t), L(t)Ŵ (I)(t) = [Ĥ(I)
I (t), Ŵ

(I)(t)]. (2.6)

Such a form of LvN in superoperator notation is solved simply in Liouville space
as a simple exponential of time-dependent operator

Ŵ
(I)(t) = exp→

(︃
− i

ℏ

∫︂ t

t0
dL(I)

I (τ)
)︃

Ŵ
(I)(t0), (2.7)

where exp→ denotes time ordered exponential. We can rewrite Eq. 2.7 into
following form

Ŵ
(I)(t) = Ŵ

(I)(t0) − i

ℏ

∫︂ t

t0
dt1[Ĥ

(I)
I (t1), Ŵ

(I)(t1)]

− i

ℏ2

∫︂ t

t0
dt1

∫︂ t1

t0
dt2[Ĥ

(I)
I (t1), [Ĥ(I)

I (t2), Ŵ
(I)(t2)]]

+ . . .

(2.8)

Taking the first two elements of such an expansion and plugging into LvN (2.3)
will leave us with QME for system and bath as written in Eq. 2.5.

Applying trace over bath DOF to both sides of derived QME of system and
bath (2.5) will leave us with a recipe for QME for RDM, except the true QME
for the system would be closed in respect to RDM

∂

∂t
ρ̂(I)(t) = − i

ℏ
trB

{︃
[Ĥ(I)

I (t), Ŵ
(I)(t0)]

}︃
− 1

ℏ2

∫︂ t

t0
dτ trB

{︃
[Ĥ(I)

I (t), [Ĥ(I)
I (τ), Ŵ

(I)(τ)]]
}︃

,
(2.9)

where we usually set t0 to zero and we denote ρ̂(t) = trB

{︂
Ŵ (t)

}︂
. Also, it is

important to realise that this equation has to be solved together with bath DOF.

2.2 Redfield equations
At the beginning of this section, we make the assumption that the coupling
between the system and the bath is weak. In this case, it is natural to choose the
excitonic basis as the system basis, as this basis represents the stationary states
of the system

∂

∂t
ρ(t) = − i

ℏ
[HS, ρ(t)]

ραα(t) = ραα(0) = const.
ραβ(t) = ραβ(0)e−iωαβt.

(2.10)

It follows that when we introduce a weak interaction between the system and the
bath, we must correct the elements ραα(t) and ραβ(t), but only to a small extent
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(see Eq. 2.10). Thus, we conclude that the excitonic basis is the preferred basis
in the case of weak coupling to the bath. We adopt the initial condition

Ŵ (0) = ρ̂(0) ⊗ ŵeq (2.11)

and, therefore, can omit the first element in the QME for the RDM (QME-RDM),
as given in Eq. 3.14, by setting t0 = 0

trB

{︃
[Ĥ(I)

I (t), Ŵ
(I)(0)]

}︃
= 0. (2.12)

In this section, we consider the case of an infinite bath with an infinite number
of bath DOF. It is reasonable to assume that the bath remains constant in the
interaction picture, such that

∂

∂t
ρ̂(I)(t) = − 1

ℏ2

∫︂ t

t0
dτ trB

{︄
[Ĥ(I)

I (t), [Ĥ(I)
I (τ),

∑︂
cd

ρ̂
(I)
cd (τ)ŵ(I)

cd (τ) |c⟩⟨d|]]
}︄

≈= − 1
ℏ2

∫︂ t

t0
dτ trB

{︄
[Ĥ(I)

I (t), [Ĥ(I)
I (τ),

∑︂
cd

ρ̂
(I)
cd (τ)ŵeq |c⟩⟨d|]]

}︄ (2.13)

where the approximation for the evolution of the bath in the interaction picture
is

ŵ
(I)
cd (t) ≈ ŵeq, ŵ(I)(t) =

∑︂
cd

ŵeq |c⟩⟨d| = ŵ0. (2.14)

We proceed to expand the double commutator under the integral sign. By working
in the excitonic basis and using the first-order correlation function (see Eq. 1.31),
we find that it simplifies the final form of the equations if we switch from the
interaction picture to the interaction picture of the bath for the RDM. This
corresponds to working in the Schrodinger picture for the RDM

ρ̂(t) = US(t)ρ̂(t)(t)U †
S(t). (2.15)

The equation in Eq. 2.13 can be rewritten as

∂

∂t
ρ̂(I)(t) = − i

ℏ
[ĤS(t), ρ̂(t)]

− 1
ℏ2

∫︂ t

t0
dτUS(t) trB

{︃
[Ĥ(I)

I (t), [Ĥ(I)
I (t − τ)ρ̂(I)(t − τ) ⊕ ŵeq |c⟩⟨d|]]

}︃
U †

S(t).

(2.16)

In the equation above Eq. 2.16, we changed boundaries of the integral sign with
the substitution τ = t − τ ′, and then we changed τ ′ back to τ . We will use the
Markov approximation, which assumes the slow evolution of the system, as we
discussed at the beginning of this section.

ρ̂(I)(t − τ) ≈ ρ̂(I)(t). (2.17)

The new form of an approximated equation is
∂

∂t
ρ̂(I)(t) = − i

ℏ
[ĤS(t), ρ̂(t)]

− 1
ℏ2

∫︂ t

t0
dτUS(t) trB

{︃
[Ĥ(I)

I (t), [Ĥ(I)
I (t − τ)ρ̂(I)(t) ⊕ ŵeq |c⟩⟨d|]]

}︃
U †

S(t).
(2.18)
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Next, we are going to show how to simplify the first product generated by two
commutators

US(t) trB

{︃
Ĥ

(I)
I (t)Ĥ(I)

I (t − τ)ρ̂(I)(t) ⊕ ŵ0
}︃

U †
S(t) =

= US(t) trB

{︃
U †

S(t)U †
B(t)ĤIUB(t)US(t)×

× U †
S(t − τ)U †

B(t − τ)ĤIUB(t − τ)US(t − τ)

× U †
S(t)U †

B(t)ρ̂(t) ⊕ ŵ0UB(t)US(t)
}︃

U †
S(t)

= trB

{︂
ĤIU †

S(−τ)U †
B(−τ)ĤIUB(−τ)US(−τ)ρ̂(t) ⊕ ŵ0

}︂
= trB

{︃
ĤIĤ

(I)
I (−τ)ŵ0

}︃
ρ̂(t),

(2.19)

where in the first step of this derivation, we expanded the interaction picture
operators in terms of the evolution operators of the system and the bath. In the
second step, we cancelled the evolution operators of the system on either side of
the trace, which is possible because the trace over bath DOF only acts on the
Hilbert space of the bath. We also utilised the fact that the evolution of the bath
does not alter a thermalised bath, such that U †

B(t)ŵeqUB(t) = ŵeq. In the last
step, we made use of the fact that the trace over bath DOF does not act on the
RDM and can be taken outside of the trace. A similar argument can be made
for the remaining three products from the two commutators, and the final result
is given by

∂

∂t
ρ̂(I)(t) = − i

ℏ
[ĤS(t), ρ̂(t)]

− 1
ℏ2

∫︂ t

0
dτ
[︃

trB

{︃
ĤIĤ

(I)
I (−τ)ŵ0

}︃
ρ̂(t) − trB

{︃
Ĥ

(I)
I (−τ)ρ̂(t)ŵ0ĤI

}︃
− trB

{︃
Ĥ

(I)
I ρ̂(t)ŵ0ĤI(−τ)

}︃
+ ρ̂(t) trB

{︃
ŵ0ĤI(−τ)Ĥ(I)

I

}︃ ]︃
.

(2.20)

The equation form in Eq. 2.20 is still too general. We will assume the form of
interaction Hamiltonian as mentioned in [BPP02], and we are assuming a local
basis for the system Hamiltonian

ĤI =
∑︂

n

∆V̂ n |n⟩⟨n| =
∑︂

n

∆V̂ nK̂n (2.21)

where K̂n is a projector onto the state |n⟩⟨n|. We can now rewrite Eq. 2.20 with
K̂n

∂

∂t
ρ̂(I)(t) = − i

ℏ
[ĤS(t), ρ̂(t)] − 1

ℏ2

∫︂ t

0
dτ
∑︂
mm

[︃
+ trB

{︂
∆V̂ n∆V̂ m(−τ)ŵeq

}︂
K̂nK̂m(−τ)ρ(t)

− trB

{︂
∆V̂ n(−τ)ŵeq∆V̂ m

}︂
K̂n(−τ)ρ(t)K̂m

− trB

{︂
∆V̂ nŵeq∆V̂ m(−τ)

}︂
K̂nρ(t)K̂m(−τ)

+ trB

{︂
ŵeq∆V̂ n(−τ)∆V̂ m

}︂
K̂n(−τ)ρ(t)K̂m

]︃
.

(2.22)
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Next, we would like to express these elements in terms of correlation functions as
shown in Subsection 1.3.1

trB {∆Vm(−τ)∆Vnŵeq} = trB

{︂
UB(τ)∆V̂ mU †

B(τ)∆V̂ mŵeq

}︂
≡

= trB

{︂
UB(τ)∆V̂ nU †

B(τ)∆V̂ nŵeq

}︂
δnm

= trB

{︂
ŵeq∆V̂ nU †

B(τ)∆V̂ nUB(τ)
}︂

δmnm

=
(︂
trB

{︂
U †

B(τ)∆VnUB(τ)∆Vnŵeq

}︂)︂∗
δnm

= C∗
n(τ)δnm.

(2.23)

Finally, we can define the Λn(t) operator to formally get rid of the integral sign

Λn(t) =
∫︂ t

t0
dτCn(τ)US(τ)K̂nU †

S(τ)

⟨α| Λn(t) |β⟩ =
∫︂ t

t0
dτCn(τ)e−iωαβτ ⟨α| K̂n |β⟩

(2.24)

plugging it back to Eq. 2.22, we will get back the Redfield equations

∂

∂t
ρ(t) = − i

ℏ
[HS,ρ(t)] + 1

ℏ2

∑︂
n

[︃
Knρ(t)Λ†

n(t) + Λn(t)ρ(t)Kn

− KnΛn(t)ρ(t) − ρ(t)Λ†
n(t)Kn

]︃
.

(2.25)

We may express the local Redfield equations (2.25) in an excitonic basis

∂

∂t
ρ(t) = −iωαβ + 1

ℏ2

∑︂
n

∑︂
γδ

[︃
Kn

αγργδ(t)(Λn
δβ)†(t) + h.c.

− Kn
αγΛn

γδ(t)ρδβ(t) + h.c.
]︃
,

(2.26)

where Λn
αβ = ⟨α| Λn |β⟩ and Kn

αβ = ⟨α| K̂n |β⟩.
In the previous section, we introduced a new operator, the RBP. In this sec-

tion, we demonstrated that the Redfield equations are obtained under the as-
sumption of RBP as a bath in thermal equilibrium. The introduction of the RBP
allows us to set simply the bath at equilibrium, and this assumption will lead to
Redfield equations. By formally defining the RBP as a separate operator from
the RDM, it becomes clear that corrections to the RBP may be made to obtain
improved equations that surpass the Redfield equations.

2.3 Solving QME as delayed differential equa-
tion

Solving IDEs presents a significant numerical challenge. In previous work, we em-
ployed a fourth-order Runge-Kutta method to solve the QME (3.14) at equidis-
tant time points t = (0, t1, ..., tN), which required storing all operators in memory
for constant evaluation of the commutators under the integral sign. However,
this approach is prone to error, particularly at the initial stages of the QME, due
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to the high error of the integral on the right side at lower numbers of steps in
the interval [0, t]. While an adaptive step Runge-Kutta method could potentially
address the ”cold start” issue for IDEs, it introduces other technical difficulties.

An alternative approach to numerically solving IDEs is to rewrite them as de-
layed differential equations. Suppose we have a function F that can approximate
the integral on the right side using a sufficient number of past values of

∂

∂t
Ŵ

(I)(t) = − i

ℏ

[︃
Ĥ

(I)
I (t), Ŵ

(I)(0)
]︃

− 1
ℏ2 F

(︃
t; Ŵ

(I)(τ), 0 ≤ τ < τ
)︃

⃓⃓⃓⃓∫︂ t

0
dτ
[︃
Ĥ

(I)
I (t),

[︃
Ĥ

(I)
I (τ), Ŵ

(I)(τ)
]︃]︃

− F
(︃

t; Ŵ
(I)(τ), 0 ≤ τ < τ

)︃⃓⃓⃓⃓
≤ εint.

(2.27)

In our work, we approximate the integral using the QuadGK.jl Julia package.
Julia is a language designed for high performance and uses JIT compiler. Once
this challenging step is completed, we can solve the delayed differential equa-
tion (DDE) using a method such as Tsit5 and the integral with Gauss-Kronrod
quadrature (QuadGK.jl). For each step t of the Tsit5 method, we evaluate F

using previously evaluated Ŵ
(I)(τ) with 0 ≤ τ < τ . If some Ŵ

(I)(τ) has not
yet been evaluated, the DDE solver is called to evaluate these steps to the de-
sired precision. The Tsit5 method takes as input a desired precision εDDE, which
consists of both an absolute and a relative tolerance.

The same approach can be made for QME-RDM if we know the evolution of
RBP ŵ(I)(τ). Let us denote the constant element

∂

∂t
ρ̂(I)(t) = − i

ℏ
trB

{︃[︃
Ĥ

(I)
I (t), Ŵ

(I)(0)
]︃}︃

− 1
ℏ2 F

(︂
t; ρ̂(I)(τ), 0 ≤ τ < τ

)︂
⃓⃓⃓⃓
F
(︂
t; ρ̂(I)(τ), 0 ≤ τ < τ

)︂
−

−
∫︂ t

0
dτ trB

{︃[︃
Ĥ

(I)
I (t),

[︃
Ĥ

(I)
I (τ), ρ̂(I)(τ) ⊕ ŵ(I)(τ)

]︃ ]︃}︃
−
⃓⃓⃓⃓
≤ εint.

(2.28)

This thesis also includes the development of an open-source package called Open-
QuantumSystems.jl, written in the Julia language. For the calculations presented
in this work, version 0.2.0 of the package was used. Currently, this version of the
package only supports the analysis of finite systems and is available on GitHub
[Her22].
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3. Extension of standard master
equations
Our derived theory is divided into three parts. The first part will discuss the direct
correction of bath evolution in Section 3.3. Then we will discuss the numerical
results for finite systems in Section 3.4. The second part is about the derivation
of iterative treatment to RDM and bath evolution in Section 3.5. Then we will
discuss the numerical results for finite systems in Section 3.6. The third part will
go beyond finite systems, and we will derive corrected memory kernel or, in other
words, corrected Redfield equations in Section 3.7.

3.1 Notation
In general, the ansatz aims to find a suitable substitution for ŵ(I)(t) without
explicitly applying the evolution of the entire system to the RBP. Therefore,
we refer to any approximation of the exact solution as an ansatz and use it
to solve a modified QME. This section will introduce a notation that will be
used throughout the rest of the derivations. Since the QME is written in the
interaction picture, it is appropriate to use the interaction picture notation for
the RBP. While we often work exclusively in the interaction picture, we may also
include the interaction picture notation for clarity. The RBP is defined in the
basis of the entire system, and we can see the notation for different electron states

ŵ(I)(t) =
∑︂
ab

ŵ
(I)
ab (t) |a⟩⟨b| . (3.1)

Later, we will propose methods to obtain improved versions of the RBP. The
starting point for these improvements is the zeroth iteration of the RBP, denoted
by ŵ0 or by ŵ0,(I) in the interaction picture. Suppose we already have a method
f that can be used to obtain a corrected version of the RBP for a given time
domain t. This can also be referred to as the first iteration or correction of the
RBP. Subsequent improvements follow a similar pattern

ŵ0,(I)(t) f−→ ŵ1,(I)(t) f−→ ŵ2,(I)(t) f−→ . . . (3.2)

for every t in the specified and bounded time domain.

3.2 Testing numerical stability of QME solution
Solving QME numerically is no simple task because QME is formulated as an
integrodifferential equation. Since we are solving at the same time a delayed
differential equation and numerical integral on the right side of QME, we have to
have the quality of the solution under control. At each step, we can diagonalise
the defined Hamiltonian and use it for the exact evolution of RBP

ŵ
(I)
ab (t) = Û

†
0(t)Û(t)ŵ(0)Û †(t)Û0(t)

= Û
†
0(t)Û(t)ŵeqÛ

†(t)Û0(t),
(3.3)
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where by Û0 we understand the evolution operator for only H0 = HS + HB

Hamiltonian.

3.3 Direct correction of ansatz
In this section, we will propose several possible treatments for the bath without
solving QME for RDM first. We assume here that the evolution of RDM doesn’t
have to be taken into account while correcting RBP. This approach has limita-
tions, but the simulations’ conclusions will provide insight into the behaviour of
this type of open quantum system.

3.3.1 Constant ansatz
In the previous work [Her20], we proposed a constant ansatz that approximates
the evolution of the bath in the interaction picture as relatively slow compared to
the evolution of the RDM. This can be justified by the argument that the bath is
infinite and at equilibrium at the beginning of the simulation, and any effect of
the system on the bath will be negligible. In this work we will include this ansatz
for comparison in all results

ŵ
(I)
ab (t) = ŵeq (3.4)

for all a, b electronic states.

3.3.2 Linear ansatz
For short periods of time, it makes sense to use Taylor approximation of evolution
operators on both sides of RBP. We could also use Baker–Campbell–Hausdorff
formula in the general form

exp(X)Y exp(−X) = Y + adX Y + 1
2! ad2

X Y + 1
3! ad3

X Y + . . . , (3.5)

where adX Y
def= [X, Y ]. We can substitute X = − i

ℏĤt and Y = ŵeq and we will
obtain the following for the first three elements

ŵab(t) = exp
(︃

− i

ℏ
Ĥt
)︃

ŵ(0) exp
(︃

+ i

ℏ
Ĥt
)︃

= ŵ(0) + ad− i
ℏHt ŵ(0) + 1

2! ad2
− i

ℏHt ŵ(0) + . . .

= ŵ(0) − i

ℏ
[︂
Ĥ, ŵ(0)

]︂
t − 1

2ℏ
[︂
Ĥ,

[︂
Ĥ, ŵ(0)

]︂]︂
t2 + . . .

(3.6)

We could select as many elements as we want, but we could, for simplicity,
take just the first constant element and the first linear element. The linear ansatz
of the first kind is an approximation to the exact bath part in Schrödinger picture

ŵ(t) = ŵeq − i

ℏ
[︂
Ĥ, ŵeq

]︂
t

ŵ
(I)
ab (t) = ⟨a| Û

†
0(t)

[︃
ŵeq − i

ℏ
[︂
Ĥ, ŵeq

]︂
t
]︃

Û0(t) |b⟩ .
(3.7)
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We will use the abbreviation L1 ansatz for this type of correction of RBP in
equilibrium.

We will approximate the evolution operators on both sides of the RBP using a
higher number of corrections. We will achieve greater accuracy by using smaller
time intervals. This is motivated by the inherent limitations of finite, bounded
evolution operators of the form

Û(t) = lim
k−→∞

Ũk
(︃

t

k

)︃
, Ũ(t)Ô = Ô − i

ℏ
[︂
Ĥ, Ô

]︂
t. (3.8)

For a chosen value of n, we propose a new ansatz, referred to as the ”linear ansatz
of the second kind.” It is given by

ŵ(I)(t) = U †
0(t)Ũk

(︃
t

k

)︃
ŵ(0)

= U †
0(t)Ũk

(︃
t

k

)︃∑︂
ab

ŵeq |a⟩⟨b| .
(3.9)

This ansatz will be referred to as the L2 ansatz for the purpose of correcting the
RBP in equilibrium. For instance, the notation L2-100 implies that k = 100 in
Eq. 3.9.

3.3.3 Evolution of populations in relative bath part
An additional step to constant evolution in the RBP is to incorporate the partial
evolution of a population. By partial evolution, we mean the evolution of the
selected population state with a corresponding part of Hamiltonian. The ansatz
is defined as follows

ŵ(I)(t) = U †
0(t)

⎡⎢⎢⎣∑︂
a

Ûa(t)ŵeqÛ
†
a(t) |a⟩⟨a| +

∑︂
ab

a̸=b

ŵeq |a⟩⟨b|

⎤⎥⎥⎦ , (3.10)

where evolution operator for populations Ûa(t) is defined as

Ûa(t) ≡ Ûaa(t)

= exp
[︃
− i

ℏ
⟨a| Ĥ |a⟩ t

]︃
.

(3.11)

We will call this ansatz as U1 ansatz for this type of correction of RBP in equi-
librium.

3.3.4 Evolution of populations and coherences in relative
bath part

We want to try this rather naive approach of including the evolution of coherences
with off-diagonal elements of the whole Hamiltonian

ŵ(I)(t) = U †
0(t)

∑︂
ab

Ûab(t)ŵeqÛ
†
ab(t). (3.12)
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Here the partial evolution operators for RBP in equilibrium is defined as electron
parts of the whole Hamiltonian

Ûab(t) ≡ Ûab(t)

= exp
[︃
− i

ℏ
⟨a| Ĥ |b⟩ t

]︃
.

(3.13)

It is worth noting that the efficacy of such an approximation depends on the
choice of bath basis. This may initially appear counterintuitive, but the fact
that the vibrational basis can be either shifted or unshifted results in a distinct
realization of the interaction Hamiltonian, as discussed in Subsection 1.1.2. This
ansatz will be referred to as the U2 ansatz for the purpose of correcting the RBP
in equilibrium.

3.4 Simulations of various direct corrections
In this study, we focus on simulating systems with a finite basis and examine the
impact of corrections made to the constant ansatz on our results. We will explain
how to interpret the results of these simulations, which are expressed in the
interaction picture relative to H0 = HS +HB and the Schrödinger picture and can
be expressed in either the local or exciton basis. All calculations were performed
in a local basis, and the results presented in this section were calculated using the
non-shifted basis, as discussed in Section 1.2. The choice to utilise the non-shifted
basis for the majority of our results was primarily due to computational efficiency.
It was found that for the small size of the basis and the fact that the trace in the
non-shifted basis is more straightforward to evaluate than in the shifted basis,
numerical solutions of the QME through delayed differential equations could be
obtained more quickly. In this section, we set absolute and relative tolerance
to 10−4 when calculating integrals and evaluating delayed differential equations.
The abstol and reltol are parameters for the solvers that solve DDE and integral
on the right side of QME (3.14), see Section 2.3. We also want to note that since
the transition between the ground electronic state and the excited states is not
allowed with the Hamiltonian we have defined in Section 1.1, we don’t have to
inspect the evolution of the ground state.

In this work, we consider a two-molecule aggregate, with a single mode at
each molecule. Each LHO mode has three states. The initial state is prepared as
described in Section 1.4 with w1 = 0.7 and w2 = 0.3, and the bath is thermalised
at T = 10 K prior to laser excitation. The coupling between the molecules is set
to J = 50 cm−1. The frequencies of the modes are set to ω1 = ω2 = 200 cm−1,
and the energy gap of the molecules is set to ∆E = 200 cm−1, indicating that
the molecules are in coherence after excitation. The strength of the interaction
is set through the Huang-Rhys factors to S1 = S2 = 0.05. In the first graph
(3.1), we can observe that in the absence of interaction (S1 = S2 = 0), there
is no evolution in the interaction picture of the system. When the LHO modes
of the excited molecules are not shifted, the Hamiltonian can be decomposed
into the Hamiltonians of individual molecules. With non-zero shifts of the LHO
modes, we can see a complex evolution at first glance. It is also evident that
the exact evolution is periodic, as we are working with finite systems. The exact
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solution was obtained through the diagonalisation of the full Hamiltonian and
the determination of the evolution operators at any given time with float-point
precision. We also want to note that the choice of energy gap and frequencies
of modes is arbitrary and doesn’t matter much as we are working with finite
systems. Those parameters will only change the length of interesting dynamics.

On the graph, we can also see the dynamics using the constant ansatz, which
is an approximation to the exact dynamics used in previous work [Her20]. In
these graphs, we will always compare the approximate solution obtained using
various types of ansatzes to the exact solution obtained through Hamiltonian
diagonalisation. We may also compare the results to the Redfield equations for
finite systems, as discussed in Section 2.2, which serve as a test for QME solution.
Every QME with an ansatz is calculated as a delayed differential equation with a
numerically solved integral on the right side, as described in Section 2.3. Referring
back to Fig. 3.1, we can see that the constant ansatz begins to diverge from
the exact solution around t = 400 fs. Similarly, in Fig. 3.2, we can observe
the evolution in the interaction picture and in the local basis of the system for
coherence ρ

(I)
23 . In this case, the constant ansatz begins to differ from the exact

solution around the same time as for the populations.
In the Schrödinger picture, the evolution appears to be more complex. Exam-

ining Fig. 3.3, we see the evolution of the population in a local basis. Similarly,
Fig. 3.4 shows the evolution of the coherence in a local basis. It may seem to the
reader that the constant ansatz is a better approximation in the Schrödinger pic-
ture, but this is only because the Hamiltonian of the system includes an energy
gap and couplings that produce the most prominent frequency visible in both
graphs. In general, we are not interested in the dynamics produced by the sys-
tem but rather in the dynamics caused directly by the interaction with the bath.
Therefore, in this section, we only present graphs in the Schrödinger picture to
explain the dynamics.

Another way to compare the evolutions is in the exciton basis, which repre-
sents the dynamics in the states of the system. Therefore, any deviation from
stationary states indicates that the interaction between the system and bath is
responsible for this deviation. In Fig. 3.5, we can see the evolution of the pop-
ulation, and in Fig. 3.6, we can see the evolution of the coherence. In this
representation, it is clear that the constant ansatz fails to describe the popula-
tions’ dynamics accurately. Still, it captures the most important aspects of the
dynamics of the system’s coherence.

After providing a detailed description of how to interpret the results of the
simulations, we can now proceed to compare the results of direct corrections to the
constant ansatz. In Fig. 3.7 and Fig. 3.8, we compare the constant ansatz (3.4),
the L1 ansatz (3.7), the L2 ansatz (3.9), the U1 ansatz (3.10), and the U2 ansatz
(3.13). The L2 ansatz was evaluated with k = 10. It is clear that the L1, U1, and
U2 ansatzes perform worse than the constant ansatz and the Redfield equations.
In the case of the L2 ansatz, we see improved performance, but the solution
diverges and becomes unstable at the end of the simulation. The interaction
between bath and system was set with Huang-Rhys factor S1 = S2 = 0.1.

In the next numerical experiment, we demonstrate that the L2 ansatz can be
used to obtain a more accurate solution if corrected more times over the course of
the simulation. In Fig. 3.9 and Fig. 3.10, we see that with a higher value of k, the
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number of corrections to the RBP, the solution improves. This approach confirms
that the evolution of the bath or RBP holds the key to the correct evaluation of
the RDM. It is important to note that with a higher number of corrections, such
a solution of delayed differential equations becomes more computationally expen-
sive, with a complexity of O(k). This ansatz is only suitable for demonstrating
the evolution of the RBP and its importance in the overall dynamics, even in
weak interaction scenarios.

The next numerical experiment looks at U1 ansatz (3.10) and U2 ansatz (3.13).
Looking on Fig. 3.13 and on Fig. 3.14 there is very little difference in evolution
obtained with U1 and U2 ansatz. We can also notice that both ansatzes perform
badly as the evolution progresses without further degradation. With increasing
the strength of the interaction between bath and system with Huang-Rhys factor
S1 = S2 = 0.1 we can see that the solution doesn’t preserve the positivity of
RDM, Fig. 3.15 and on Fig. 3.16.
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Figure 3.1: Population of the first molecule in time with interaction picture and local
basis (top). The baseline is the evolution of the system with interaction (bottom).

Figure 3.2: Coherence between excitation on the first and second molecule in time
with interaction picture and local basis (top). The baseline is the evolution of the
system with interaction (bottom).
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Figure 3.3: Population of the first molecule in time with local basis (top). The
baseline is the evolution of the system without interaction (bottom).

Figure 3.4: Coherence between excitation on the first and second molecule in time
with local basis (top). The baseline is the evolution of the system without interaction
(bottom).
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Figure 3.5: Population in time with exciton basis (top). The baseline is the evolution
of the system with interaction (bottom).

Figure 3.6: Coherence in time with exciton basis (top). The baseline is the evolution
of the system without interaction (bottom).
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Figure 3.7: Population of the first molecule in time with interaction picture and local
basis (top). The baseline is the evolution of the system with interaction (bottom). We
see the comparison of the solutions obtained by Redfield, constant ansatz (3.4), L1
(3.7), L2 (3.9), U1 (3.10) and U2 ansatz (3.13).

Figure 3.8: Population in time with exciton basis (top). The baseline is the evolution
of the system with interaction (bottom). We see the comparison of the solutions ob-
tained by Redfield, constant ansatz (3.4), L1 (3.7), L2 (3.9), U1 (3.10) and U2 ansatz
(3.13).

38



Figure 3.9: Population of the first molecule in time with interaction picture and local
basis (top). The baseline is the evolution of the system with interaction (bottom). We
see the comparison of the solutions obtained by Redfield, constant ansatz (3.4) and L2
(3.9) ansatz calculated with 10, 100 and 1000 corrections of RBP. Both modes have
S1 = S2 = 0.05.

Figure 3.10: Population in time with exciton basis (top). The baseline is the evolu-
tion of the system with interaction (bottom). We see the comparison of the solutions
obtained by Redfield, constant ansatz (3.4) and L2 (3.9) ansatz calculated with 10, 100
and 1000 corrections of RBP. Both modes have S1 = S2 = 0.05.
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Figure 3.11: Population of the first molecule in time with interaction picture and local
basis (top). The baseline is the evolution of the system with interaction (bottom). We
see the comparison of the solutions obtained by Redfield, constant ansatz (3.4) and L2
(3.9) ansatz calculated with 10, 100 and 1000 corrections of RBP. Both modes have
S1 = S2 = 0.1.

Figure 3.12: Population in time with exciton basis (top). The baseline is the evolu-
tion of the system with interaction (bottom). We see the comparison of the solutions
obtained by Redfield, constant ansatz (3.4) and L2 (3.9) ansatz calculated with 10, 100
and 1000 corrections of RBP. Both modes have S1 = S2 = 0.1.
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Figure 3.13: Population of the first molecule in time with interaction picture and local
basis (top). The baseline is the evolution of the system with interaction (bottom). We
see the comparison of the solutions obtained by Redfield, constant ansatz (3.4), U1
(3.10) and U2 ansatz (3.13). Both modes have S1 = S2 = 0.05.

Figure 3.14: Population in time with exciton basis (top). The baseline is the evolu-
tion of the system with interaction (bottom). We see the comparison of the solutions
obtained by Redfield, constant ansatz (3.4), U1 (3.10) and U2 ansatz (3.13). Both
modes have S1 = S2 = 0.05.
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Figure 3.15: Population of the first molecule in time with interaction picture and local
basis (top). The baseline is the evolution of the system with interaction (bottom). We
see the comparison of the solutions obtained by Redfield, constant ansatz (3.4), U1
(3.10) and U2 ansatz (3.13). Both modes have S1 = S2 = 0.1.

Figure 3.16: Population in time with exciton basis (top). The baseline is the evolu-
tion of the system with interaction (bottom). We see the comparison of the solutions
obtained by Redfield, constant ansatz (3.4), U1 (3.10) and U2 ansatz (3.13). Both
modes have S1 = S2 = 0.1.
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3.5 Iterative treatment of the ansatz
We used the trace over bath DOF to define the complementary operator to RDM
and that is RBP defined in Section 1.5. By splitting the whole density operator
into two parts, we can also split the QME into the set of IDE. Instead of solving
the system of equations for the RDM and RBP, we will solve them sequentially.
The RBP can only be evaluated in the case of finite systems exactly.

3.5.1 Derivation of the general approach
The motivation for any derivation of ansatz is to find a closed form for QME with
respect to RDM. Even if we don’t lend immediately to such a closed form, it is
numerically solvable from our view of point because we are working purely with
finite systems. Perhaps we would write down the QME in the form of RDM and
RBP without any approximations taking place. Later we will try to remove the
RBP from the equations. The equations for RDM are

∂

∂t
ρ

(I)
ab (t) = − i

ℏ
trB

{︃[︃
Ĥ

(I)
I (t), Ŵ

(I)(0)
]︃

ab

}︃
− 1

ℏ2

∫︂ t

0
dτ trB

{︃[︃
Ĥ

(I)
I (t),

[︃
Ĥ

(I)
I (τ), ρ̂(I)(τ) ⊕ ŵ(I)(τ)

]︃]︃
ab

}︃
.

(3.14)

Obtaining equations for RBP is similar, taking the QME for the density matrix for
the whole system Ŵ (t). We will select a certain electron state and the following
part of density matrix Ŵ ab(t) for that, we will divide the right and the left side
of QME by corresponding RDM ρ̂(t)

∂

∂t
ρ

(I)
ab (t) = − i

ℏ
trB

{︃[︃
Ĥ

(I)
I (t), Ŵ

(I)(0)
]︃

ab

}︃
− 1

ℏ2

∫︂ t

0
dτ trB

{︃[︃
Ĥ

(I)
I (t),

[︃
Ĥ

(I)
I (τ), ρ̂(I)(τ) ⊕ ŵ(I)(τ)

]︃]︃
ab

}︃
.

(3.15)

∂

∂t
ŵ

(I)
ab (t) = − i

ℏρ
(I)
ab (t)

[︃
Ĥ

(I)
I (t), Ŵ

(I)(0)
]︃

ab

− 1
ℏ2ρ

(I)
ab (t)

∫︂ t

0
dτ
[︃
Ĥ

(I)
I (t),

[︃
Ĥ

(I)
I (τ), ρ̂(I)(τ) ⊕ ŵ(I)(τ)

]︃]︃
ab

.

(3.16)

The first element is a constant with respect to RBP and is not interesting, as it
turns out later. However, when laying down corrected forms of the bath it has to
be included. We will denote it with

Kw,ab(t) = 1
ρ

(I)
ab (t)

⟨a|
[︃
Ĥ

(I)
I (t), Ŵ

(I)(0)
]︃

|b⟩ . (3.17)

For the sake of symmetry, we will also denote by memory kernel double commu-
tator without a trace over bath DOF

Mw,abcd(t, τ)ρ(I)
cd (τ)ŵ(I)

cd (τ) = ⟨a|
[︃
Ĥ

(I)
I (t),

[︃
Ĥ

(I)
I (τ), ρ

(I)
cd (τ)ŵ(I)

cd (τ) |c⟩⟨d|
]︃]︃

|b⟩ .

(3.18)
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The new compact notation of QME for RBP is

∂

∂t
ŵ

(I)
ab (t) = − i

ℏ
Kw(t) − 1

ℏ2ρ
(I)
ab (t)

∑︂
cd

∫︂ t

0
dτMw,abcd(t, τ)ρ(I)

cd (τ)ŵ(I)
cd (τ)

= − i

ℏ
Kw(t) − 1

ℏ2

∑︂
cd

∫︂ t

0
dτMw,abcd(t, τ)ρ

(I)
cd (τ)

ρ
(I)
ab (t)

ŵ
(I)
cd (τ),

(3.19)

where in the second step, we moved ρ
(I)
ab (t) to the right side of the equation,

as the RDM operator can be propagated to the right side through the memory
kernel, which consists only of linear operations. We will now focus on the right-
hand side, where we can see the ratio of two elements of the RDM. This ratio
is not constant over the time length of the simulation, even if we assume that
the evolution of the RDM in the interaction picture is slow and use the Markov
approximation. The next step will involve solving the QME for the RBP, which
requires the integration of the above equation. For the sake of clarity, we will
rename the time variables τ to t2 and t to t1∫︂ t

0
dt1

[︄
∂

∂t1
ŵ

(I)
ab (t1)

]︄
= ŵ

(I)
ab (t) − ŵ

(I)
ab (0)

=
∫︂ t

0
dt1

[︃
− i

ℏ
Kw(t1) − 1

ℏ2

∑︂
cd

∫︂ t1

0
dt2Mw,abcd(t1, t2)

ρ
(I)
cd (t2)

ρ
(I)
ab (t1)

ŵ
(I)
cd (t2)

]︃
ŵ

(I)
ab (t) = ŵ

(I)
ab (0)

+
∫︂ t

0
dt1

[︃
− i

ℏ
Kw(t1) − 1

ℏ2

∑︂
cd

∫︂ t1

0
dt2Mw,abcd(t1, t2)

ρ
(I)
cd (t2)

ρ
(I)
ab (t1)

ŵ
(I)
cd (t2)

]︃
.

(3.20)

We are left with an exact form for solving the QME, separated into the RDM and
the RBP. From this point, the quality of the approximate equations will depend
on the assumptions we take into account.

The immediate observation from the previous equation is that we are now
working with an IDE similar to the QME for RDM (3.14). However, we want to
avoid solving the system of QME for RDM and QME for RBP simultaneously
and rather solve it in iterations for the ansatz itself. From now on, we will call the
QME for RDM as QME-RDM and the QME for RBP as QME-RBP. In QME-
RDM we assume that the equations are closed with respect to ρ̂(I)(t) with known
evolution for ŵ(I)(t). We can note such abstract steps as follows

ŵ(I)(t) QME-RDM−→ ρ̂(I)(t), ρ̂(I)(t) = QME-RDM(ŵ(I)(t)), (3.21)

where we left the dependency on time variable t to remind us that we are solving
IDE on the selected time interval for any t or as a set of points {ti}N

i=1.
A similar can be done for the RBP if we will solve the differential equation

(ref) with already known ρ̂(I)(t), but with unknown ŵ(I)(t). Notation is similar
as previously defined

ρ̂(I)(t) QME-RDM−→ ŵ(I)(t), ŵ(I)(t) = QME-RBP(ρ̂(I)(t)). (3.22)

It is possible to solve the QME with respect to ρ̂(I)(t) and ŵ(I)(t) at the same time,
without calculating these operators at any point during the simulation, using the
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evolution operators U(t). When comparing our results to the exact solution, we
can solve the system by diagonalising the Hamiltonian. We may be interested
in testing the numerical stability of the solution for the IDE. However, there is
no need to use the QME for obtaining ρ̂(I)(t) and ŵ(I)(t) apart from in finite
systems. In the case of infinite systems, it is not possible to solve the QME-RBP.
An interesting scenario is when we solve the RDM and the RBP one after the
other instead of solving them simultaneously. In order to solve the RDM and
the RBP, we must start with one of them and have a sufficiently good guess for
its evolution in order to converge to the exact solution. The obvious choice for
the RBP is the constant ansatz. A similar choice for the RDM may be made, as
no dynamics is present in the bath and the system is perfectly separable. The
iterative solution is shown here

ŵ0,(I)(t) QME-RDM−→ ρ̂1,(I)(t) QME-RBP−→ ŵ1,(I)(t) QME-RDM−→ ρ̂2,(I)(t) QME-RBP−→ . . . (3.23)

Convergence of such a series can’t be guaranteed, and also, we can’t guarantee
that we will end up with the solution obtained directly from QME in the basis
of the whole system, which is the exact solution.

Instead of QME-RBP, we can however select altered differential equations with
approximations that will allow us to construct similar sequences. In general, we
will have an altered version of QME-RBP as some function F that will describe
the process of obtaining ŵk+1,(I)(t) with using only ŵi,(I)(t) and ŵi,(I)(t), where
i < k starting again with the constant ansatz

ŵ0,(I)(t) QME-RDM−→ ρ̂1,(I)(t)
ρ̂1,(I)(t), ŵ0,(I)(t) F−→ ŵ1,(I)(t)

ŵ1,(I)(t) QME-RDM−→ ρ̂2,(I)(t)
...

(3.24)

The rest of this chapter will focus on deriving such function F .

3.5.2 Iterative Quantum Master Equations
In this section, we will show the equations derived from QME that are the foun-
dation stone for all the successive approximate treatments. We will write the
QME-RBP again as in Eq. 3.20

ŵ
(I)
ab (t) = ŵ

(I)
ab (0)

+
∫︂ t

0
dt1

[︃
− i
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0
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ρ
(I)
cd (t2)

ρ
(I)
ab (t1)

ŵ
(I)
cd (t2)

]︃
.

(3.25)

This differential equation for RBP is not closed in repect to RBP, because it uses
RDM. We are motivated to derive a form of differential equations where we are
not required to solve RDM and RBP at the same time. We have to start with
reasonably good initial conditions for both RBP and RDM. Now comes the key
step to derive our iterative approach. In Eq. 3.19 we will use the results of RBP
from the previous iteration on the right side to obtain the new results on the left
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side of the IDE. To get (k+1)-th corrected RBP with known k-th corrected RBP
we can write

ŵ
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ab (t) = ŵ

0,(I)
ab (0)

+
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0
dt1

[︃
− i
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ρ
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ŵ
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]︃
,

(3.26)

where the RBP, ŵk+1,(I)(t) is not know and is calculated with known ρk,(I)(t) and
ŵk,(I)(t). The intial condition stays the same after correction
ŵ

k+1,(I)
ab (0) = ŵ

0,(I)
ab (0). Also, we want to note that this is the natural selection for

an unknown function F in the previous section. The reduced dynamics should
use only the RBP from the previous iteration. The equations that describe the
evolution of the RDM are as follows
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When the result of such iterative treatment of RBP is the evolution of RDM, we
don’t have to assume elements Kw and Kab. This is proven later in Subsection
3.7.1. We managed to derive Iterative Quantum Master Equation (IQME) that
can be numerically solved only for a finite basis. In the case of infinite bath and,
therefore basis the RBP is impossible to represent on standard computers. For
convenience, we will use an abbreviation for this treatment as I ansatz. Also, for
the convenience of the reader, we will state the full form of those equations
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(3.28)

3.5.3 Iterative ansatz with Markov approximations
The motivation for this section comes from the observation that systems de-
scribing electron-phonon interactions that have infinite bath often exhibit slow
evolution in the interaction picture. It may seem flawed to use a such approxi-
mation in finite systems, but we want to test the quality of such approximation
in our scenario. We can test this property of slow evolution in the interaction
picture in our dynamics for finite systems.

In the first step, we will assume that the evolution of the bath is slow, and
therefore the evolution of the RDM in the interaction picture is slow. We will
assume that ρ(I)(t1) ≈ ρ(I)(t). This can be achieved by substituting t′

1 = t − t1
in the first integral and assuming that ρ(I)(t − t1) ≈ ρ(I)(t). After this step, we
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have to switch back to t1 from t′
1. The result is the IQME with the first Markov

approximation
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Ĥ

(I)
I (t1),

[︃
Ĥ

(I)
I (t2), ŵ
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We will call this ansatz as I.M1 ansatz for this type of correction of RBP in
equilibrium.

The second approximation that can be done after we obtained I.M1 is also
to assume that the evolution of the bath is slow and take it into account while
formulating the correction. Similarly as in deriving Eq. 3.29 we will use t′

2 =
t1 − t2 and assume that ŵk,(I)(t1 − t2) ≈ ŵk,(I)(t1). After this step, we have to
just substitute t2 back for t′

2 and we are left with ŵk,(I)(t2) ≈ ŵk,(I)(t1). This
approximation is only made in equations for RBP
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(3.30)

We will refer to this ansatz as the I.M2 ansatz for this type of correction of the
RBP in equilibrium. The I.M1 ansatz and the I.M2 ansatz are expected to give
the same results in the first iteration of the IQME. It is important to note that
in a finite basis, the RDM and RBP can be exactly calculated for any ti ∈ [0, t]
and used in the next iteration. However, for an infinite basis, this approach is
not possible and the RBP cannot be calculated explicitly.

3.6 Simulations of iterative treatments
In this section, we present numerical results for finite systems using the itera-
tive ansatzes I ansatz (3.28), I.M1 ansatz (3.29), and I.M2 ansatz (3.30). For
guidance on interpreting the following sequence of graphs, refer to Section 3.4.
The primary focus of this section is to demonstrate that the iterative approach
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is superior to the constant ansatz (3.3) in certain regards and also to show that
the iterative ansatz can be used to improve the evolution of the RDM sequen-
tially. We begin by calculating the RDM evolution using the constant ansatz
(3.4) under the assumption of a bath in equilibrium. It should be noted that
this approximation is only valid for weak interactions between the bath and the
system, given the size of the system we are considering. However, this serves as
a starting point for sequential improvement. Unless otherwise stated, the results
for RDM evolution from the constant ansatz will be evaluated over 500 steps on
the entire interval. We utilise interpolation to apply the I ansatz (3.28) to the
obtained results, where the initial RDM ρ̂0,(I)(t) must be specified. For practical
purposes, we interpolate the RDM at a fixed set of points rather than solving de-
lay differential equations with arbitrary precision and ti, as such equations would
be computationally infeasible to solve in a reasonable timeframe. We employ the
Interpolations.jl package and the Interpolations.BSpline(Interpolations.Linear())
engine for this purpose. Following the application of the I ansatz, the I.M1 ansatz
and the I.M2 ansatz are also applied using the results from the constant ansatz,
resulting in ρ̂1,(I)(ti) and ŵ1,(I)(ti) at 500 points, which are then interpolated in the
same manner. This process is repeated until the desired iteration is reached. It is
worth noting that the interpolation of results from the previous iteration leads to
approximately equal computation times for each subsequent correction. In this
section, we set the absolute tolerance (abstol) and relative tolerance (reltol) for
integral calculation and delay differential equation evaluation to 10−4.

As in Section 3.4, this section considers a two-molecule aggregate with a single
mode at each molecule. Each LHO mode has three states. The initial state,
W (t = 0) is prepared as described in Section 1.4 with w1=0.7 and w2=0.3, and
the bath is thermalised at 10 K prior to laser excitation. The coupling between
the molecules is set to J=50 cm−1. The frequencies of the modes are set to
ω1=ω2=200 cm−1, and the energy gap of the molecules is set to ∆E=200 cm−1,
indicating coherence between the molecules after excitation. The strength of
the interaction is controlled via Huang-Rhys factors, with values of S1=S2=0.05.
Unless otherwise stated, the system configuration will remain as described above.

We are thrilled to investigate the performance of our ansatzes. Examining Fig.
3.17 and Fig. 3.18, we can immediately observe that the iterative approach begins
to diverge around t=300 fs, which is a more favourable outcome compared to the
direct approach (Section 3.4), where the first deviation from the exact solution
occurred between 100 fs - 200 fs. A second notable observation is that the results
from the I.M1 ansatz and the I.M2 ansatz are identical. This simply confirms
the behaviour of Eq. 3.29 and Eq. 3.30, where, due to the fact that ŵ0,(I)(t) is
constant in time, the second approximation does not make a difference in the first
iteration. Therefore, from now on, we will not present results from the I.M1 and
I.M2 ansatzes concurrently. We can also clearly see that the I ansatz performs
similarly to the constant ansatz, though it is less stable over time. In contrast,
the I.M1 and I.M2 ansatzes are closer to the exact solution. The populations for
the second molecule have the same qualitative properties for every ansatz, with
the exception of the initial population being ρ̂

k,(I)
33 (0) = 0.3 due to the values of

w1=0.7 and w2=0.3 in the initial state (Section 1.4). Examining Fig. 3.19 and
Fig. 3.20 where the interaction is set to S1 = S2 = 0.1, we can see that I.M1
ansatz and I.M2 ansatz are still able to provide a better solution than Redfield
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equations.
In the next numerical experiment, we utilise the same set of parameters, but

we also apply an additional iteration of the I ansatz. Examining Fig. 3.21 and
Fig. 3.22, we can deduce that the second iteration exhibits divergence. When
an iterative method exhibits divergence, it suggests that the current iteration
no longer provides a useful approximation to the desired solution. With higher
interaction that has Huang-Rhys factor S1 = S2 = 0.1 the quality of all ansatzes
degrades as seen in Fig. 3.23 and Fig. 3.24. This is in fact, suggests that
iteration of RDM and RBP in Eq. 3.22 when not calculated at the same time,
but sequentially does not converge when the interaction is strong. That being
said, it is worth noting that the iterative ansatz used in this experiment has
demonstrated promising results in the first iteration. As seen in Fig. 3.17 and
Fig. 3.18, the first iteration of the I ansatz performed comparably to the constant
ansatz, albeit with slightly lower stability over time. Additionally, the I.M1 and
I.M2 ansatzes showed even closer agreement with the exact solution. These results
suggest that the iterative ansatz has the potential to significantly improve upon
the constant ansatz, at least for certain parameter regimes.

It may occur to the reader that the selection of iterative ansatzes is only
effective for the first iteration in general. However, we are now moving on to
another numerical experiment. Examining Fig. 3.25 and Fig. 3.26, we can
see that both the I.M1 and I.M2 ansatzes continue to improve the evolution of
the RDM in the second iteration. One fascinating observation is the relatively
small difference between the RBP in the I.M1-2 and I.M2-2 iterations. This
suggests that the influence of the bath (RBP) on the correction of the bath itself
(RBP) is relatively minor and that the contribution from the system (RDM) is
more significant, at least in the t2 variable in 3.28. We also inspected scenario
with stronger interaction, where Huang-Rhys factors were set to S1 = S2 = 0.1.
Looking at Fig. 3.27 and Fig. 3.28, we can see that I.M1 ansatz and I.M2 ansatz
provide better solution than Redfield equations, but I.M2 ansatz is less stable over
time. The correction obtained with I.M1 is most prominent in excitonic basis.
This finding may have significant implications for understanding the bath’s role in
the overall system dynamics. The continued improvement of the RDM evolution
in the second iteration of the I.M1 and I.M2 ansatzes is also worth noting. This
demonstrates the potential for iterative ansatzes to provide increasingly accurate
approximations to the exact solution as the number of iterations increases. While
the current experiment only considers up to the second iteration, it is possible
that further iterations may yield even better results. In conclusion, the present
numerical experiment has shown that the iterative ansatzes continue to improve
the RDM evolution in the second iteration, with the I.M1 and I.M2 ansatzes
showing particularly promising results. The relatively small difference between
the RBP in the I.M1-2 and I.M2-2 iterations suggests that the contribution from
the system is more important in the correction of the bath. Further research
may reveal the full potential of iterative ansatzes for improving the accuracy of
approximations to the exact solution in a wide range of systems and parameter
regimes.

To demonstrate that the improvement of the iterative ansatzes does not
plateau at the first correction, we present another numerical experiment as de-
picted in Fig. 3.29 and Fig. 3.30. Here we can see that the correction of the I.M1-
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3 iteration is smaller than that of the I.M1-2 iteration, which in turn is smaller
than the correction of the I.M1-1 iteration. While it is not yet clear whether
convergence to the exact solution is guaranteed, these results suggest that the
iterative ansatzes may continue to improve the accuracy of the approximation as
the number of iterations increases. Further investigation with a larger computa-
tional power and a wider range of parameters would be necessary to confirm this
possibility. However, it is also worth considering the potential limitations of the
current formulation of the iterative ansatz as presented in Eq. 3.29. It is possible
that a different approach to the splitting of the QME into IQME (as shown in
Eq. 3.28) may yield better results. For example, a non-symmetrical splitting
may be more effective at capturing the dynamics of the system. While further
exploration of alternative formulations of the iterative ansatz is beyond the scope
of this work, which aims to provide motivation for improvements in the treat-
ment of infinite systems, it is an interesting direction for future research. Further
investigation into the potential benefits and limitations of different approaches
to the iterative ansatz may lead to significant advances in our understanding of
complex quantum systems and the development of more accurate and efficient
numerical methods for their simulation.

We want to show further that this approach might be the right step towards
correcting Redfield equations. We were curious about how the iterative ansatz
performs on different strengths of interactions. The strength of the interaction is
determined by the value of Huang-Rhys factors on the first mode S1 and the
second mode S2. Conveniently we have only two modes and therefore, it is
possible to do a so-called scan of various S1 and S2 with all different parameters
kept constant. For simplicity, we are keeping the other parameters as stated at
the beginning of this section, and we are only changing S1 and S2. We propose
a function that can score how well the ansatz is performing with respect to ρref ,
which in our case, is always the evolution of RDM from the exact solution. We
want to note again that the exact solution is obtained by diagonalisation of the
Hamiltonian. In this work, we will use the following scoring function

score(ρnm) = log10

(︃ 1
N

N∑︂
i

||ρnm(ti)| − |ρref,nm(ti)||
|ρref,nm(ti)| + csmooth

)︃
, (3.31)

where csmooth is a smoothing constant for the cases where the reference RDM may
be zero and it is set to csmooth=10−9. Note that the more negative the score is,
the better the alignment with the exact solution. Please also note that the score
around value zero is considered insufficient because that would translate into, on
average 10% error from the exact solution.

We can now proceed to analyse the scan results for S1 and S2, as depicted in
Fig. 3.31. Each square in the heatmap corresponds to a simulation in which the
ansatz’s evolution of the RDM is compared to the exact solution using the scoring
function (3.31). The QME test solution, whose purpose is to verify the adequacy
of the integration tolerances (reltol and abstol) as described in Section 3.2, consis-
tently yields scores below a minimum threshold of minus four. We observe that
Redfield equations and the constant ansatz (3.4) provide similar performance,
while the U1 ansatz (3.10) and U2 ansatz (3.13) generally perform worse than
Redfield equations, particularly for stronger interactions. As previously noted in
Section 3.4, the U1 ansatz and U2 ansatz yield identical results in all cases. The
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I ansatz (3.28) exhibits a number of missing values, which occur when the nu-
merical solution rapidly diverges and a longer simulation time would be required
to obtain a result. Therefore, we decided not to compute all combinations of S1
and S2 in these cases. Finally, the I.M1 ansatz (3.29) and I.M2 ansatz (3.30)
give consistent results, as expected. It is noteworthy that the assumption of a
slow evolution of the RDM is only valid when the shifts of the two modes are
comparable, which is not the case for the I ansatz. The assumption of a slow
RDM is further discussed in Subsection 3.5.3.

The logical next step is to compare those scores between different ansatzes,
which is exactly what we did in Fig. 3.32. The first heatmap compares the
performance of constant ansatz to Redfield equations. When the difference is
negative, then the Redfield equations give more precise results, and when the
difference in score is positive then the constant ansatz performs better. To explain
the scale, we have to look back at Eq. 3.31. Plus, one point difference means that
we improved the average percentage error in comparison to the exact solution by
order of ten. Overall, the constant ansatz, U1 ansatz, and U2 ansatz tend to
perform worse than the Redfield equations, even for weak interactions. However,
the I ansatz and I.M1 ansatz consistently show improvement over the Redfield
equations and constant ansatz for weak interactions. It is worth noting that the
I.M1 ansatz performs worse than the I ansatz for certain values of S1 > S2, which
may be due to the relatively short simulation time of t = 531 fs. It is possible
that this artefact would disappear in longer simulations. It should be noted that
the simulations for this particular scan required approximately 300 CPU days,
and the numerical solution of QME scales with O(t2), where t is the maximum
time in the simulation.

In our examination of the weak interaction limit, the iterative ansatz has
shown promising results. We, therefore, conducted a further scan of the combi-
nations of S1 and S2 with a maximum value of Si = 0.1. The differences in scores
for the interaction picture in the local basis for populations are depicted in Fig.
3.33. For very weak interactions, the score becomes noisy due to a degradation
in the numerical stability of the QME solution, and higher values of the relative
tolerance (reltol) and absolute tolerance (abstol) would be desirable. However, in
order to maintain consistency throughout the scan, we decided not to change the
tolerance values, which could potentially affect the score itself. We can conclude
that for similar weak interactions in both modes, the I ansatz performs better
than both the constant ansatz and the Redfield equations. On the other hand,
when the interactions are not roughly equal in both modes, the I.M1 ansatz pro-
vides a superior solution compared to the constant ansatz and Redfield equations
for weak interactions. A similar conclusion can be drawn for coherences in the
interaction picture (Fig. 3.34), where the I ansatz performs better with different
values of S1 and S2, but worse when the shifts are similar. Additionally, the I
ansatz performs slightly better than the I.M1 ansatz with respect to the exact
solutions, but the I.M1 ansatz consistently outperforms the Redfield equations.
Examining coherences in the interaction picture and local basis (Fig. 3.34) and
populations in the excitonic basis (Fig. 3.35), we can again observe that the
I ansatz generally performs better in weak interactions compared to the I.M1
ansatz in relation to the exact solution. Still, the I.M1 ansatz provides a better
correction compared to the Redfield equation. In the case of infinite systems, the
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I.M1 ansatz is the preferred choice for further treatment, as it does not require
intermediate calculations for the RBP. However, for infinite systems, it is not
clear which iterative correction would be the best candidate. Taking into account
the convergence discussed earlier in this section, the I.M1 ansatz would be the
best choice for aggregates with two modes. This will be further discussed later
in the discussion.

To further illustrate the comparison of ansatzes in the previously mentioned
scan, we present an example simulation for S1 = 0.075 and S2 = 0.02 in Fig.
3.36 and Fig. 3.37. It appears that the I ansatz performs slightly better in terms
of time. However, this observation is debatable as the rating does not consider
oscillations in time, in which case the I.M1 ansatz performs better.
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Figure 3.17: Population of the first molecule in time with interaction picture and local
basis (top). The baseline is the evolution of the system with interaction (bottom). We
see the comparison of the solutions obtained by Redfield, constant ansatz (3.4), I (3.28),
I.M1 (3.29) and I.M2 ansatz (3.30). Both I.M1 and I.M2 ansatz give the same results.
Both modes have S1 = S2 = 0.05.

Figure 3.18: Population of the first molecule in exciton basis (top). The baseline is
the evolution of the system with interaction (bottom). We see the comparison of the
solutions obtained by Redfield, constant ansatz (3.4), I (3.28), I.M1 (3.29) and I.M2
ansatz (3.30). Both modes have S1 = S2 = 0.05.
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Figure 3.19: Population of the first molecule in time with interaction picture and local
basis (top). The baseline is the evolution of the system with interaction (bottom). We
see the comparison of the solutions obtained by Redfield, constant ansatz (3.4), I (3.28),
I.M1 (3.29) and I.M2 ansatz (3.30). Both I.M1 and I.M2 ansatz give the same results.
Both modes have S1 = S2 = 0.1.

Figure 3.20: Population of the first molecule in exciton basis (top). The baseline is
the evolution of the system with interaction (bottom). We see the comparison of the
solutions obtained by Redfield, constant ansatz (3.4), I (3.28), I.M1 (3.29) and I.M2
ansatz (3.30). Both modes have S1 = S2 = 0.1.
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Figure 3.21: Population of the first molecule in time with interaction picture and local
basis (top). The baseline is the evolution of the system with interaction (bottom). We
see the comparison of the solutions obtained by Redfield, constant ansatz (3.4) and I
ansatz (3.28). Note that I-1 and I-2 mean that iterative ansatz was applied one time
to the solution from constant ansatz (I-1) and a second time from the solution of I-1
(I-2). Both modes have S1 = S2 = 0.05.

Figure 3.22: Population of the first molecule in exciton basis (top). The baseline is
the evolution of the system with interaction (bottom). We see the comparison of the
solutions obtained by Redfield, constant ansatz (3.4) and I ansatz (3.28). Both modes
have S1 = S2 = 0.05.
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Figure 3.23: Population of the first molecule in time with interaction picture and local
basis (top). The baseline is the evolution of the system with interaction (bottom). We
see the comparison of the solutions obtained by Redfield, constant ansatz (3.4) and I
ansatz (3.28). Note that I-1 and I-2 mean that iterative ansatz was applied one time
to the solution from constant ansatz (I-1) and a second time from the solution of I-1
(I-2). Both modes have S1 = S2 = 0.1.

Figure 3.24: Population of the first molecule in exciton basis (top). The baseline is
the evolution of the system with interaction (bottom). We see the comparison of the
solutions obtained by Redfield, constant ansatz (3.4) and I ansatz (3.28). Both modes
have S1 = S2 = 0.1.
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Figure 3.25: Population of the first molecule in time with interaction picture and
local basis (top). The baseline is the evolution of the system with interaction (bottom).
We see the comparison of the solutions obtained by Redfield, constant ansatz (3.4), I
ansatz (3.28), I.M1 ansatz (3.29) and I.M2 ansatz (3.30). Note that I.M1-2 is the second
iteration of I.M1-1 and similarly for I.M2-2. Both modes have S1 = S2 = 0.05.

Figure 3.26: Population of the first molecule in exciton basis (top). The baseline
is the evolution of the system with interaction (bottom). We see the comparison of
the solutions obtained by Redfield, constant ansatz (3.4), I ansatz (3.28), I.M1 ansatz
(3.29) and I.M2 ansatz (3.30). Both modes have S1 = S2 = 0.05.
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Figure 3.27: Population of the first molecule in time with interaction picture and
local basis (top). The baseline is the evolution of the system with interaction (bottom).
We see the comparison of the solutions obtained by Redfield, constant ansatz (3.4), I
ansatz (3.28), I.M1 ansatz (3.29) and I.M2 ansatz (3.30). Note that I.M1-2 is the second
iteration of I.M1-1 and similarly for I.M2-2. Both modes have S1 = S2 = 0.1.

Figure 3.28: Population of the first molecule in exciton basis (top). The baseline
is the evolution of the system with interaction (bottom). We see the comparison of
the solutions obtained by Redfield, constant ansatz (3.4), I ansatz (3.28), I.M1 ansatz
(3.29) and I.M2 ansatz (3.30). Both modes have S1 = S2 = 0.1.
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Figure 3.29: Population of the first molecule in time with interaction picture and local
basis (top). The baseline is the evolution of the system with interaction (bottom). We
see the comparison of the solutions obtained by Redfield, constant ansatz (3.4) and
I.M1 ansatz (3.29). Note that I.M1-2 is the second iteration of I.M1-1 and similarly for
I.M1-2 and I.M1-3.

Figure 3.30: Population of the first molecule in exciton basis (top). The baseline is
the evolution of the system with interaction (bottom). We see the comparison of the
solutions obtained by Redfield, constant ansatz (3.4) and I.M1 ansatz (3.29). Note that
I.M1-2 is the second iteration of I.M1-1 and similarly for I.M1-2 and I.M1-3.
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Figure 3.31: On every heatmap we can see the performance of the stated numerical
solution in comparison to the exact solution scored with Eq. 3.31. We can compare
the fitness of QME test as explained in Section 3.2, Redfield, constant ansatz (3.4), U1
ansatz (3.10), U2 ansatz (3.13), I ansatz (3.28), I.M1 ansatz (3.29) and I.M2 ansatz
(3.30). The colour bar scale is set to [-4, 1]. Every rectangle represents one simulation,
where the rectangle is not filled the numerical solution diverged.
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Figure 3.32: On every heatmap we can see the comparison of the performance for
different approaches in comparison to the exact solution scored with Eq. 3.31 for a
population in interaction picture in local basis. We see comparison of Redfield, constant
ansatz (3.4), U1 ansatz (3.10), U2 ansatz (3.13), I ansatz (3.28), I.M1 ansatz (3.29)
and I.M2 ansatz (3.30). The colour is set to be symmetrical around zero but can have
different maxima in every case. Every rectangle represents one simulation, where the
rectangle is not filled the numerical solution diverged or there is no difference.
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Figure 3.33: On every heatmap we can see the comparison of the performance for
different approaches in comparison to the exact solution scored with Eq. 3.31 for the
population in the interaction picture in local basis. We see comparison of Redfield,
constant ansatz (3.4), U1 ansatz (3.10), U2 ansatz (3.13), I ansatz (3.28) and I.M1
ansatz (3.29). The colour is set to be symmetrical around zero but can have different
maxima in every case. Every rectangle represents one simulation, where the rectangle
is not filled the numerical solution diverged or there is no difference.
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Figure 3.34: On every heatmap we can see the comparison of the performance for
different approaches in comparison to the exact solution scored with Eq. 3.31 for the
coherence in interaction picture in local basis. We see comparison of Redfield, constant
ansatz (3.4), U1 ansatz (3.10), U2 ansatz (3.13), I ansatz (3.28) and I.M1 ansatz (3.29).
The colour is set to be symmetrical around zero but can have different maxima in every
case. Every rectangle represents one simulation, where the rectangle is not filled the
numerical solution diverged or there is no difference.
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Figure 3.35: On every heatmap we can see the comparison of the performance for
different approaches in comparison to the exact solution scored with Eq. 3.31 for the
population exciton basis. We see comparison of Redfield, constant ansatz (3.4), U1
ansatz (3.10), U2 ansatz (3.13), I ansatz (3.28) and I.M1 ansatz (3.29). The colour is
set to be symmetrical around zero but can have different maxima in every case. Every
rectangle represents one simulation, where the rectangle is not filled the numerical
solution diverged or there is no difference.
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Figure 3.36: Population of the first molecule in time with interaction picture and local
basis (top). The baseline is the evolution of the system with interaction (bottom). We
see the comparison of the solutions obtained by Redfield, constant ansatz (3.4), I (3.28)
and I.M1 (3.29).

Figure 3.37: Population of the first molecule in excitonic basis (top). The baseline is
the evolution of the system with interaction (bottom). We see the comparison of the
solutions obtained by Redfield, constant ansatz (3.4), I (3.28) and I.M1 (3.29).
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3.7 Correction of memory kernel
As previously discussed in Subsection 3.5.3, we have presented several approaches
for solving the RBP iteratively within finite systems, where all operators can be
evaluated. However, in the case of an infinite bath, the RBP becomes a purely
theoretical construct, and it is not feasible to calculate it exactly with current
computational capabilities. Therefore, it is of great importance to consider the
next step in any future work, which is to derive the form of the memory kernel
without explicitly writing the RBP in that form. This endeavour will allow us to
achieve the exact result corresponding to higher-order correlation functions, which
can be numerically challenging to work with. However, through the examination
of the LHO bath, we will discover that higher-order correlation functions can be
decomposed and can be reduced to lower-order correlation functions, resulting in
a clearer understanding of the problem at hand.

3.7.1 Perturbation of relative bath part in memory kernel
At this point, we stand in a vast desert. The horizon is distant, and it is unclear
which way to step forward. We will show the path by which the end result
was obtained so that the motivation behind each step is clear. We also want
the notation to be clear and sufficiently readable so that we will often use the
Liouville superoperator defined as

L(t) ≡ L(I)
I (t), L(I)

I (t)Ô = [Ĥ(I)
I (t), Ô]. (3.32)

For clarity, we will rewrite all pieces needed for this subsection, the QME-RDM
(3.14) becomes

∂

∂t
ρ̂(I)(t) = − i

ℏ
trB

{︃
L(t)Ŵ (I)(0)

}︃
− 1

ℏ2

∫︂ t

0
dτ trB

{︂
L(t)L(τ)ρ̂(I)(τ) ⊕ ŵ(I)(τ)

}︂
,

(3.33)

where we placed t0 = 0, and we know the evolution of RBP. At this moment, we
select the initial RBP as constant

ŵ0,(I)(t) =
∑︂
ab

ŵeq |a⟩⟨b| (3.34)

and we would like to know the exact formula of k-th correction of RBP. Tak-
ing the iterative general ansatz for RBP (3.26) we can rewrite it with Liouville
superoperator as

ŵ
1,(I)
ab (t) = ŵeq − i

ℏ

∫︂ t

0
dt1

1
ρ

1,(I)
ab (t1)

[︃
L(t1)ρ̂(0) ⊕ ŵ0,(I)(0)

]︃
ab

− 1
ℏ2

∫︂ t

0
dt1

∫︂ t1

0
dt2

1
ρ

1,(I)
ab (t1)

[︃
L(t1)L(t2)ρ̂1,(I)(t2) ⊕ ŵ0,(I)(t2)

]︃
ab

,
(3.35)

where in fact ρ̂1,(I)(t)⊕ ŵ0,(I)(t) = ρ̂1,(I)(t)⊗ ŵeq. Using the iterative ansatz again
(3.26) and substituting Eq. 3.35 for ŵ0,(I)(t) in the second integral we will get
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the second corrected RBP

ŵ2,(I)(t) = ŵ0,(I)(t) − i

ℏ

∫︂ t

0
dt1

1
ρ̂2,(I)(t1)

⊕ L(t1)ρ̂(0) ⊕ ŵ0,(I)(0)

− 1
ℏ2

∫︂ t

0
dt1

∫︂ t1

0
dt2

1
ρ̂2,(I)(t1)

⊕ L(t1)L(t2)ρ̂2,(I)(t2) ⊕ ŵ0,(I)(t2)

+
(︃

− i

ℏ

)︃3 ∫︂ t

0
dt1

∫︂ t1

0
dt2

∫︂ t2

0
dt3

1
ρ̂2,(I)(t1)

⊕ L(t1)L(t2)×

× ρ̂2,(I)(t2)
ρ̂1,(I)(t3)

⊕ L(t3)ρ̂0,(I)(0) ⊕ ŵ0,(I)(0)

+
(︃

− i

ℏ

)︃4 ∫︂ t

0
dt1

∫︂ t1

0
dt2

∫︂ t2

0
dt3

∫︂ t3

0
dt4

1
ρ̂2,(I)(t1)

⊕ L(t1)L(t2)×

× ρ̂2,(I)(t2)
ρ̂1,(I)(t3)

⊕ L(t3)L(t4)ρ̂1,(I)(t4) ⊕ ŵ0,(I)(t2),

(3.36)

where we used the following property of operator ad
1

ρ̂k,(I)(t)
⊕ Ô =

∑︂
ab

1
ρ

k,(I)
ab (t)

Ôab |a⟩⟨b| , (3.37)

where |a⟩ and |b⟩ are again electron states. We are also working with all electronic
states a, b. The second order of perturbed RBP (3.36) is difficult to read. We
will use the following substitutions for superoperators to make it clear

∆k(t1)Ô = 1
ρ̂k,(I)(t1)

⊕ L(t1)ρ̂(0) ⊕ Ô, (3.38)

∆∆k(t1, t2)Ô = 1
ρ̂k,(I)(t1)

⊕ L(t1)L(t2)ρ̂k,(I)(t2) ⊕ Ô. (3.39)

The first correction of RBP (3.35) will become

ŵ1,(I)(t) = ŵ0,(I)(t) − i

ℏ

∫︂ t

0
dt1∆1(t1)ŵ0,(I)(0)

− 1
ℏ2

∫︂ t

0
dt1

∫︂ t1

0
dt2∆∆1(t1, t2)ŵ0,(I)(t2).

(3.40)

The second correction can be rewritten as

ŵ2,(I)(t) = ŵ0,(I)(t) − i

ℏ

∫︂ t

0
dt1∆2(t1)ŵ0,(I)(0)

+
(︃

− i

ℏ

)︃2 ∫︂ t

0
dt1

∫︂ t1

0
dt2∆∆2(t1, t2)ŵ0,(I)(t2)

+
(︃

− i

ℏ

)︃3 ∫︂ t

0
dt1

∫︂ t1

0
dt2

∫︂ t2

0
dt3∆∆2(t1, t2)∆1(t3)ŵ0,(I)(0)

+
(︃

− i

ℏ

)︃4 ∫︂ t

0
dt1

∫︂ t1

0
dt2

∫︂ t2

0
dt3

∫︂ t3

0
dt4∆∆2(t1, t2)∆∆1(t3, t4)ŵ0,(I)(t4).

(3.41)

Similarly, we could write the third correction for RBP, but we are interested only
in the first correction. In every (k+1)-th correction of RBP, we need to calculate
the corrected RDM with the previous k-th correction of RBP (3.27).
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Higher-order convolutions are notoriously difficult to compute for general sys-
tems. Is there a way to simplify such corrections? We can attempt to write them
down and see if any simplifications arise. The next step will involve considering
the following approximation

∆k(t1)Ô ≈ ∆(t1)Ô = L(t1)Ô, (3.42)

∆∆k(t1, t2)Ô ≈ ∆∆(t1, t2)Ô = L(t1)L(t2)Ô. (3.43)

Rewriting Eq. 3.41 with such approximation gives us simply

ŵ2,(I)(t) = ŵ0,(I)(t) − i

ℏ

∫︂ t

0
dt1∆(t1)ŵ0,(I)(0)

+
(︃

− i

ℏ

)︃2 ∫︂ t

0
dt1

∫︂ t1

0
dt2∆∆(t1, t2)ŵ0,(I)(t2)

+
(︃

− i

ℏ

)︃3 ∫︂ t

0
dt1

∫︂ t1

0
dt2

∫︂ t2

0
dt3∆∆(t1, t2)∆(t3)ŵ0,(I)(0)

+
(︃

− i

ℏ

)︃4 ∫︂ t

0
dt1

∫︂ t1

0
dt2

∫︂ t2

0
dt3

∫︂ t3

0
dt4∆∆(t1, t2)∆∆(t3, t4)ŵ0,(I)(t4)

(3.44)

and now it is obvious that we can write down the initial guess for RBP more
wisely, saving us almost half of the terms. Without further ado, we will lay down
the initial guess for RBP again

ŵ0,(I)(t) =
∑︂
ab

ŵeq |a⟩⟨b| − i

ℏ

∫︂ t

0
dτL(τ)

∑︂
ab

ŵeq |a⟩⟨b| . (3.45)

Now, the first and the second correction of RBP becomes

ŵ1,(I)(t) = ŵ0,(I)(t) − 1
ℏ2

∫︂ t

0
dt1

∫︂ t1

0
dt2∆∆(t1, t2)ŵ0,(I)(t2),

ŵ2,(I)(t) = ŵ0,(I)(t) − 1
ℏ2

∫︂ t

0
dt1

∫︂ t1

0
dt2∆∆(t1, t2)ŵ0,(I)(t2)

+ 1
ℏ4

∫︂ t

0
dt1

∫︂ t1

0
dt2

∫︂ t2

0
dt3

∫︂ t3

0
dt4∆∆(t1, t2)∆∆(t3, t4)ŵ0,(I)(t4).

(3.46)

Such corrections of (k+1)-th order can be expressed as

ŵk+1,(I)(t) = ŵk,(I)(t) − 1
ℏ2

∫︂ t

0
dt1

∫︂ t1

0
dt2∆∆(t1, t2)ŵk,(I)(t2), (3.47)

This intermediate result can be solved with time-ordered exponential to express
the infinite amount of corrections to RBP

˜︁ŵ(I)(t) = exp→

[︃
− 1

ℏ2

∫︂ t

0
dt1

∫︂ t1

0
dt2∆∆(t1, t2)

]︃
ŵ0,(I)(t)

= exp→

[︃
− 1

ℏ2

∫︂ t

0
dt1

∫︂ t1

0
dt2∆∆(t1, t2)

]︃∑︂
ab

ŵeq |a⟩⟨b|

− i

ℏ
exp→

[︃
− 1

ℏ2

∫︂ t

0
dt1

∫︂ t1

0
dt2∆∆(t1, t2)

]︃ ∫︂ t

0
dτL(τ)

∑︂
ab

ŵeq |a⟩⟨b| ,

(3.48)
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whereby ˜︁ŵ we denote an infinite number of corrections to RBP, that can differ
from ŵ. Such formulation, however, doesn’t solve our problem, and it gives
us only insight into the consecutive corrections when approximations Eq. 3.42
and Eq. 3.43 are considered. When plugging time-ordered exponential into the
memory kernel we will get following

M(t1, t2, ˜︁ŵ(t)) =

= trB

{︃
L(t1)L(t2) exp→

[︃
− 1

ℏ2

∫︂ t2

0
dt3

∫︂ t3

0
dt4∆∆(t3, t4)

]︃∑︂
ab

ŵeq |a⟩⟨b|
}︃

− i

ℏ
trB

{︃
L(t1)L(t2) exp→

[︃
− 1

ℏ2

∫︂ t2

0
dt3

∫︂ t3

0
dt4∆∆(t3, t4)

]︃
×

×
∫︂ t

0
dτL(τ)

∑︂
ab

ŵeq |a⟩⟨b|
}︃

,

(3.49)

It has been shown that the first term of the expansion always contains an even
number of Liouville superoperators L(t). Conversely, the second term consistently
comprises an odd number of L(t). However, it is known that using an odd number
of interaction Hamiltonians with a bath in equilibrium results in a trace of the
bath DOF equal to zero [Muk95]. This implies that the second term is necessarily
zero. As a result, all corresponding terms in the expansion, regardless of order,
will also be zero when plugged back into the memory kernel. Consequently, it is
safe to disregard the linear term in the initial guess of RBP (3.45), as it can be
confidently assumed that

ŵ0,(I)(t) =
∑︂
ab

ŵeq |a⟩⟨b| . (3.50)

Discussion about an odd number of interaction Hamiltonians also holds for su-
peroperators ∆k(t1) and ∆∆k(t1, t2) as the corrected RDM alters only the values
of electronic parts, but doesn’t change the fact that every delta contributes with
a new order of bath coordinates. Therefore we can again write the (k+1)-th
correction as

ŵk+1,(I)(t) = ŵk,(I)(t) − 1
ℏ2

∫︂ t

0
dt1

∫︂ t1

0
dt2∆∆k+1(t1, t2)ŵk,(I)(t2), (3.51)

keeping in mind that this correction has to be used in the memory kernel in the
end. The closed form could also be written down, but that will not be used in
this work. Rather than writing higher orders of bath corrections, we will stick for
now to the first correction. Finally, writing it down as

ŵ1,(I)(t) =

=
∑︂
ab

ŵeq |a⟩⟨b| − 1
ℏ2

∫︂ t

0
dt1

∫︂ t1

0
dt2∆∆k+1(t, t1, t2)

∑︂
ab

ŵeq |a⟩⟨b|

=
∑︂
ab

ŵeq |a⟩⟨b| − 1
ℏ2

∫︂ t

0
dt1

∫︂ t1

0
dt2

1
ρ̂1,(I)(t1)

⊕ L(t1)L(t2)
∑︂
ab

ρ
1,(I)
ab (t2)ŵeq |a⟩⟨b| ,

= ŵ0,(I)(t)−

− 1
ℏ2

∫︂ t

0
dt1

∫︂ t1

0
dt2

1
ρ̂1,(I)(t1)

⊕
[︃
Ĥ

(I)
I (t1),

[︃
Ĥ

(I)
I (t2), ρ̂

1,(I)
ab (t2) ⊕ ŵ0,(I)(t2)

]︃]︃
,

.
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(3.52)

After such a long proof of why we can omit the second element from the first
correction of RBP we can evaluate the memory kernel with the first and zeroth
corrections. We will start with the zeroth order in the memory kernel

M(t1, t2; ŵ0,(I)) = trB

{︃[︃
Ĥ

(I)
I (t1),

[︃
Ĥ

(I)
I (t2), ŵ0,(I)(t2)

]︃]︃}︃
= trB

{︃
Ĥ

(I)
I (t1)Ĥ

(I)
I (t2)ŵ0,(I)(t2)

}︃
− trB

{︃
Ĥ

(I)
I (t1)ŵ0,(I)(t2)Ĥ

(I)
I (t2)

}︃
− trB

{︃
Ĥ

(I)
I (t2)ŵ0,(I)(t2)Ĥ

(I)
I (t1)

}︃
+ trB

{︃
ŵ0,(I)(t2)Ĥ

(I)
I (t2)Ĥ

(I)
I (t1)

}︃
.

(3.53)

We shall consider using an excitonic basis for electronic DOF and shifted or non-
shifted vibrational basis for reasons detailed in Section 1.3

Mabcd(t1, t2; ŵ0,(I)) =
∑︂

e

eiωaet1+iωect2 trB

{︃
∆V̂ ae(t1)∆V̂ ec(t2)ŵeq

}︃
δdb

− eiωact1+iωdbt2 trB

{︃
∆V̂ ac(t1)ŵeq∆V̂ db(t2)

}︃
− eiωact2+iωdbt1 trB

{︃
∆V̂ ac(t2)ŵeq∆V̂ db(t1)

}︃
+
∑︂

e

eiωdet1+iωebt2 trB

{︃
ŵeq∆V̂ de(t1)∆V̂ eb(t2)

}︃
δac.

(3.54)

The next step will be in expressing these traces over bath DOF into correlation
functions with definitions in Eq. 1.31 and Eq. 1.32

Mabcd(t1, t2; ŵ0,(I)) =

=
∑︂

e

[︃
eiωaet1+iωect2Caeec(t1, t2)δdb + eiωdet1+iωebt2Cdeeb(t1, t2)δac

]︃
− eiωact1+iωdbt2Cdbac(t2, t1) − eiωact2+iωdbt1Cdbac(t1, t2).

(3.55)

Following equation is considered as the biggest achievement of this section. Indeed
we can move to the memory kernel with the first correction for RBP

Mabcd(t1, t2; ŵ1,(I)) = Mabcd(t1, t2; ŵ0,(I))−

− 1
ℏ2

∫︂ t2

0
dt3

∫︂ t3

0
dt4 trB

[︃
Ĥ

(I)
I (t1),

[︃
Ĥ

(I)
I (t2),

1
ρ̂

1,(I)
cd (t3)

[︃
Ĥ

(I)
I (t3),

[︃
Ĥ

(I)
I (t4), ρ̂1,(I)(t4) ⊕ ŵ0,(I)(t4)

]︃]︃
cd

|c⟩⟨d|
]︃]︃

ab
.

(3.56)

Evaluating all sixteen elements presents a challenging task, but we are well-
equipped to tackle this problem. Additionally, it is desirable to provide a cor-
rected version of the memory kernel free of major approximations. To facilitate
this calculation, it may be advisable to divide the process into two parts, with
the first part focusing on the outer two commutators

1) +Ĥ
(I)
I (t1)Ĥ

(I)
I (t2)Ô

2) −Ĥ
(I)
I (t1)ÔĤ

(I)
I (t2)

3) −Ĥ
(I)
I (t2)ÔĤ

(I)
I (t1)

4) +ÔĤ
(I)
I (t2)Ĥ

(I)
I (t1).

(3.57)
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The second part will make clear what are the elements from the inner two com-
mutators

a) + 1
ρ1,(I)(t3) ⊕ Ĥ

(I)
I (t3)Ĥ

(I)
I (t4)ρ1,(I)(t4) ⊕ ŵ0,(I)(t4)

b) − 1
ρ1,(I)(t3) ⊕ Ĥ

(I)
I (t3)ρ1,(I)(t4) ⊕ ŵ0,(I)(t4)Ĥ

(I)
I (t4)

c) − 1
ρ1,(I)(t3) ⊕ Ĥ

(I)
I (t4)ρ1,(I)(t4) ⊕ ŵ0,(I)(t4)Ĥ

(I)
I (t3)

d) + 1
ρ1,(I)(t3) ⊕ ρ1,(I)(t4) ⊕ ŵ0,(I)(t4)Ĥ

(I)
I (t4)Ĥ

(I)
I (t3).

(3.58)

We have to do the following, take elements from Eq. 3.58 and substitute it into
Eq. 3.57 for operator Ô, this way we will produce sixteen elements 1a), 1b), ...
4d). After previous steps we are ready to jump into the exact formula for the
first correction of memory kernel, we won’t be writing down Mabcd(t1, t2; ŵ0,(I))
as it is already expressed in Eq. 3.54 or Eq. 3.55

Mabcd(t1, t2; ŵ1,(I)) = Mabcd(t1, t2; ŵ0,(I))−

− 1
ℏ2

∫︂ t2

0
dt3

∫︂ t3

0
dt4

[︃
M1a − M1b − M1c + M1d − M2a + M2b + M2c − M2d

− M3a + M3b + M3c − M3d + M4a − M4b − M4c + M4d

]︃
.

(3.59)

In this section, we demonstrate how to express the first element in an exciton
electronic basis. The remaining elements will be presented in their final form
without derivation. To enhance readability, we will utilise Latin letters rather
than Greek letters, even when working in an exciton basis. We begin by examining
the element involving the trace over the bath DOF, as denoted by 1a)
[︂
M1a

]︂
abcd

(t1, t2, t3, t4) = ⟨a| trB

{︃
Ĥ

(I)
I (t1)Ĥ

(I)
I (t2)

1
ρ̂1,(I)(t3)

⊕ Ĥ
(I)
I (t3)×

× Ĥ
(I)
I (t4)ρ1,(I)

cd (t4)ŵeq |c⟩⟨d|
}︃

|b⟩

=
∑︂
efg

eiωaet1eiωef t2eiωfgt3eiωgct4×

× trB

{︃
∆V̂ ae(t1)∆V̂ ef (t2)

1
ρ

1,(I)
fd (t3)

∆V̂ fg(t3)∆V̂ gc(t4)ρ1,(I)
cd (t4)ŵeq

}︃
δdb

=
∑︂
efg

Ωae,ef,fg,gc(t1, t2, t3, t4)
ρ

1,(I)
cd (t4)

ρ
1,(I)
fd (t3)

×

× trB

{︃
∆V̂ ae(t1)∆V̂ ef (t2)∆V̂ fg(t3)∆V̂ gc(t4)ŵeq

}︃
δdb

=
∑︂
efg

Ωae,ef,fg,gc(t1, t2, t3, t4)
ρ

1,(I)
cd (t4)

ρ
1,(I)
fd (t3)

Cae,ef,fg,gc(t1, t2, t3, t4)δdb,

(3.60)

where in the second row, we utilised the diagonal nature of the evolution operator
in an excitonic basis. The third row employed the ability to extract the RDM
from the trace over bath DOF. Finally, the last line utilised the definition of the
second-order correlation function and the multi-frequency as defined in Subsection
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1.3.2

Ωab,cd,ef,fh(t1, t2, t3, t4) = eiωabt1eiωcdt2eiωef t3eiωght4

≡ Ωab,cd,ef,fh

(3.61)

where the last notation Ωab,cd,ef,fh is just shortened version in case we will have
the time variables in the mentioned order. For the transition from an exciton
basis back to a local basis, we will use the following constant

Knm
ab,cd = ⟨a|n⟩ ⟨n|b⟩ ⟨c|m⟩ ⟨m|d⟩

Knmkl
ab,cd,ef,gh = ⟨a|n⟩ ⟨n|b⟩ ⟨c|m⟩ ⟨m|d⟩ ⟨e|k⟩ ⟨k|f⟩ ⟨g|l⟩ ⟨l|h⟩ .

(3.62)

Finally, we can take M1a rewritten in Eq. 3.63 and using the property of corre-
lation function of second order for LHO bath Eq. 1.40 we can freely express M1a

in terms of the correlation function of the first order and the diagonal part
[︂
M1a

]︂
abcd

(t1, t2, t3, t4) =

=
∑︂
egh

Ωae,ef,fg,gc(t1, t2, t3, t4)
ρ

1,(I)
cd (t4)

ρ
1,(I)
fd (t3)

∑︂
nmkl

Knmkl
ae,ef,fg,gcCnmkl(t1, t2, t3, t4)δdb

=
∑︂
egh

Ωae,ef,fg,gc(t1, t2, t3, t4)
ρ

1,(I)
cd (t4)

ρ
1,(I)
fd (t3)

×
∑︂
nm

(︂
Knnmm

ae,ef,fg,gcCnn(t1, t2)Cmm(t3, t4)

+ Knmnm
ae,ef,fg,gcCnn(t1, t3)Cmm(t2, t4) + Knmmn

ae,ef,fg,gcCnn(t1, t4)Cmm(t2, t3)
)︂
δdb

(3.63)

Using this decomposition into correlation functions of the first order, we can
rewrite the whole corrected memory kernel 3.59 into the following long-expression
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Mabcd(t1, t2; ŵ1,(I)) =

+
∑︂
en

[︂
eiωaet1+iωect2Knn

ae,ecCnn(t1, t2)δdb + eiωdet1+iωebt2Knn
de,ebCnn(t1, t2)δac

]︂
−
∑︂
en

[︂
eiωact1+iωdbt2Knn

db,acCnn(t2, t1) + eiωact2+iωdbt1Knn
db,acCnn(t1, t2)

]︂
− 1

ℏ2

∫︂ t2

0
dt3

∫︂ t3

0
dt4
[︂

+
∑︂
efg

Ωae,ef,fg,gc
ρ

1,(I)
cd (t4)

ρ
1,(I)
fd (t3)

∑︂
nm

(︁
Knnmm

ae,ef,fg,gcCnn(t1, t2)Cmm(t3, t4)

+ Knmnm
ae,ef,fg,gcCnn(t1, t3)Cmm(t2, t4) + Knmmn

ae,ef,fg,gcCnn(t1, t4)Cmm(t2, t3)
)︁
δdb

+
∑︂
efg

(︂
− Ωdb,ae,ef,fc

ρ
1,(I)
cd (t4)

ρ
1,(I)
fb (t3)

∑︂
nm

(︁
Knnmm

db,ae,ef,fcCnn(t4, t1)Cmm(t2, t3)

+ Knmnm
db,ae,ef,fcCnn(t4, t2)Cmm(t1, t3) + Knmmn

db,ae,ef,fcCnn(t4, t3)Cmm(t1, t2)
)︁

− Ωdb,ae,ef,fc
ρ

1,(I)
cd (t4)

ρ
1,(I)
fb (t3)

∑︂
nm

(︁
Knnmm

db,ae,ef,fcCnn(t3, t1)Cmm(t2, t4)

+ Knmnm
db,ae,ef,fcCnn(t3, t2)Cmm(t1, t4) + Knmmn

db,ae,ef,fcCnn(t3, t4)Cmm(t1, t2)
)︁

+ Ωdf,fb,ae,ec
ρ

1,(I)
cd (t4)

ρ
1,(I)
cb (t3)

∑︂
nm

(︁
Knnmm

df,fb,ae,ecCnn(t4, t3)Cmm(t1, t2)

+ Knmnm
df,fb,ae,ecCnn(t4, t1)Cmm(t3, t2) + Knmmn

df,fb,ae,ecCnn(t4, t2)Cmm(t3, t1)
)︁

− Ωdb,ae,ef,fc
ρ

1,(I)
cd (t4)

ρ
1,(I)
ed (t3)

∑︂
nm

(︁
Knnmm

db,ae,ef,fcCnn(t2, t1)Cmm(t3, t4)

+ Knmnm
db,ae,ef,fcCnn(t2, t3)Cmm(t1, t4) + Knmmn

db,ae,ef,fcCnn(t2, t4)Cmm(t1, t3)
)︁

+ Ωdf,fb,ae,ec
ρ

1,(I)
cd (t4)

ρ
1,(I)
ef (t3)

∑︂
nm

(︁
Knnmm

df,fb,ae,ecCnn(t4, t2)Cmm(t1, t3)

+ Knmnm
df,fb,ae,ecCnn(t4, t1)Cmm(t2, t3) + Knmmn

df,fb,ae,ecCnn(t4, t3)Cmm(t2, t1)
)︁

+ Ωdf,fb,ae,ec
ρ

1,(I)
cd (t4)

ρ
1,(I)
ef (t3)

∑︂
nm

(︁
Knnmm

df,fb,ae,ecCnn(t3, t2)Cmm(t1, t4)

+ Knmnm
df,fb,ae,ecCnn(t3, t1)Cmm(t2, t4) + Knmmn

df,fb,ae,ecCnn(t3, t4)Cmm(t2, t1)
)︁

− Ωde,ef,fb,ac
ρ

1,(I)
cd (t4)

ρ
1,(I)
cf (t3)

∑︂
nm

(︁
Knnmm

de,ef,fb,acCnn(t4, t3)Cmm(t2, t1)

+ Knmnm
de,ef,fb,acCnn(t4, t2)Cmm(t3, t1) + Knmmn

de,ef,fb,acCnn(t4, t1)Cmm(t3, t2)
)︁

− Ωdb,ae,ef,fc
ρ

1,(I)
cd (t4)

ρ
1,(I)
ed (t3)

∑︂
nm

(︁
Knnmm

db,ae,ef,fcCnn(t1, t2)Cmm(t3, t4)

+ Knmnm
db,ae,ef,fcCnn(t1, t3)Cmm(t2, t4) + Knmmn

db,ae,ef,fcCnn(t1, t4)Cmm(t2, t3)
)︁
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+ Ωdf,fb,ae,ec
ρ

1,(I)
cd (t4)

ρ
1,(I)
ef (t3)

∑︂
nm

(︁
Knnmm

df,fb,ae,ecCnn(t4, t1)Cmm(t2, t3)

+ Knmnm
df,fb,ae,ecCnn(t4, t2)Cmm(t1, t3) + Knmmn

df,fb,ae,ecCnn(t4, t3)Cmm(t1, t2)
)︁

+ Ωdf,fb,ae,ec
ρ

1,(I)
cd (t4)

ρ
1,(I)
ef (t3)

∑︂
nm

(︁
Knnmm

df,fb,ae,ecCnn(t3, t1)Cmm(t2, t4)

+ Knmnm
df,fb,ae,ecCnn(t3, t2)Cmm(t1, t4) + Knmmn

df,fb,ae,ecCnn(t3, t4)Cmm(t1, t2)
)︁

− Ωde,ef,fb,ac
ρ

1,(I)
cd (t4)

ρ
1,(I)
cf (t3)

∑︂
nm

(︁
Knnmm

de,ef,fb,acCnn(t4, t3)Cmm(t1, t2)

+ Knmnm
de,ef,fb,acCnn(t4, t1)Cmm(t3, t2) + Knmmn

de,ef,fb,acCnn(t4, t2)Cmm(t3, t1)
)︁

+ Ωdf,fb,ae,ec
ρ

1,(I)
cd (t4)

ρ
1,(I)
ad (t3)

∑︂
nm

(︁
Knnmm

df,fb,ae,ecCnn(t2, t1)Cmm(t3, t4)

+ Knmnm
df,fb,ae,ecCnn(t2, t3)Cmm(t1, t4) + Knmmn

df,fb,ae,ecCnn(t2, t4)Cmm(t1, t3)
)︁

− Ωde,ef,fb,ac
ρ

1,(I)
cd (t4)

ρ
1,(I)
ae (t3)

∑︂
nm

(︁
Knnmm

de,ef,fb,acCnn(t4, t2)Cmm(t1, t3)

+ Knmnm
de,ef,fb,acCnn(t4, t1)Cmm(t2, t3) + Knmmn

de,ef,fb,acCnn(t4, t3)Cmm(t2, t1)
)︁

− Ωde,ef,fb,ac
ρ

1,(I)
cd (t4)

ρ
1,(I)
ae (t3)

∑︂
nm

(︁
Knnmm

de,ef,fb,acCnn(t3, t2)Cmm(t1, t4)

+ Knmnm
de,ef,fb,acCnn(t3, t1)Cmm(t2, t4) + Knmmn

de,ef,fb,acCnn(t3, t4)Cmm(t2, t1)
)︁)︂

+
∑︂
efg

Ωde,ef,fg,gb
ρ

1,(I)
cd (t4)

ρ
1,(I)
cf (t3)

∑︂
nm

(︁
Knnmm

de,ef,fg,gbCnn(t4, t3)Cmm(t2, t1)

+ Knmnm
de,ef,fg,gbCnn(t4, t2)Cmm(t3, t1) + Knmmn

de,ef,fg,gbCnn(t4, t1)Cmm(t3, t2)
)︁
δac

]︂
.

(3.64)

We have successfully derived the exact memory kernel for the first correction
of the RBP, utilising only first-order correlation functions. It is worth consider-
ing whether it is possible to express the memory kernel Mabcd(t1, t2; ŵ1,(I)) using
correlation functions other than those of the LHO bath. For example, in the case
of overdamped harmonic oscillators, it would be necessary to determine whether
the decomposition of the second-order correlation function (1.40) holds for more
general correlation functions.

It is important to note that, by substituting the expression for ŵ1,(I) into the
memory kernel Mabcd(t1, t2; ŵ1,(I)), we have effectively removed the dependency
on the RBP and are left with the expression Mabcd(t1, t2; ρ̂1,(I)). With this re-
vised form of the memory kernel, we can bypass the calculation of the RBP in
Eq. 3.23. We can then repeat the steps for higher-order corrections to obtain
Mabcd(t1, t2; ρ̂2,(I)) and calculate the next perturbed density matrix ρ̂3,(I)

ŵ0,(I)(t) QME-RDM−→ ρ̂1,(I)(t) QME-RDM−→ ρ̂2,(I)(t) QME-RDM−→ ρ̂3,(I)(t) QME-RDM−→ . . . (3.65)

where in QME-RDM, we utilise the memory kernel without explicitly writing the
RBP, but rather using the density matrix from previous iterations. While it is
technically possible to express higher orders of corrections in the same fashion, the
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meaning of such a memory kernel in those equations would be difficult to compre-
hend and infeasible to use in IDEs from the numerical point of view. Therefore,
we propose the following approximation. Instead of using the fully substituted
memory kernel for higher corrections of the density matrix (e.g. ρ̂3,(I)), we will
only use the first correction of the memory kernel with the substituted density
matrix from the last correction. For example, for the correction of ρ̂k−1,(I), we
would use the first correction of the memory kernel Mabcd(t1, t2; ρ̂k,(I)). All sub-
sequent steps will involve appropriate approximations within Mabcd(t1, t2; ρ̂k,(I)).
This approximation assumes that the higher order of corrections doesn’t con-
tribute anything new to the corrected memory kernel.

It may occur to the reader that the derived expression for Mabcd(t1, t2; ŵ1,(I))
could be integrated over t3 and t4 with the knowledge of the explicit form of the
correlation function Eq. 1.36. However, this is not possible as we are working with
IQME, and the RDM part ρ

1,(I)
cd (t4) appears in every term of the corrected memory

kernel. A patient reader who has already visited Subsection 3.5.3 may correctly
infer that we may assume that the evolution of the RDM in the interaction picture
and in the exciton basis is slow, such that for short times of the simulation, we
can approximate ρ

1,(I)
cd (t4) ≈ ρ

1,(I)
cd (t2). This allows us to integrate parts of the

corrected memory kernel Mabcd(t1, t2; ŵ1,(I)) over t3 and t4. In fact, we will still end
up with the same time complexity for numerical calculations as for the Redfield
equations. Such integration would generate equations spanning several pages and
not provide any new physical insights. We leave this task to the reader. However,
in order to explicitly integrate memory kernel, approximations to RDM have to
be done, which will lead to less precise answers on the final corrected RDM
in time. It could be possible also decompose RDM in time into an orthonormal
function of time, and using Fourier transform, we could decompose RDM into such
orthonormal functions and integrate them in the memory kernel as explained in
this section. In this work, we wanted to avoid any decomposition into orthonormal
functions because we wanted to stay exact in terms of numerical calculations.

It is possible to take the corrected memory kernel Mabcd(t1, t2; ŵ1,(I)) and con-
sider only populations in exciton basis. That will cancel out two terms and make
the whole expression a little bit more readable
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Maabb(t1, t2; ŵ1,(I)) =
∑︂

e

[︂
eiωaet1+iωebt2Caeeb(t1, t2)δba + eiωbet1+iωeat2Cbeea(t1, t2)δab

]︂
− eiωabt1+iωbat2Cbaab(t2, t1) − eiωabt2+iωbat1Cbaab(t1, t2)

− 1
ℏ2

∫︂ t2

0
dt3

∫︂ t3

0
dt4

[︂∑︂
ef

Ωae,eb,bf,fb
ρ

1,(I)
bb (t4)

ρ
1,(I)
bb (t3)

Cae,eb,bf,fb(t1, t2, t3, t4)δba

+
∑︂
ef

(︂
− Ωba,ae,ea,ab

ρ
1,(I)
bb (t4)

ρ
1,(I)
aa (t3)

Cba,ae,ea,ab(t4, t1, t2, t3) − Ωba,ae,ea,ab
ρ

1,(I)
bb (t4)

ρ
1,(I)
aa (t3)

Cba,ae,ea,ab(t3, t1, t2, t4)

− Ωba,ab,bf,fb
ρ

1,(I)
bb (t4)

ρ
1,(I)
bb (t3)

Cba,ab,bf,fb(t2, t1, t3, t4) + Ωbe,ea,ae,eb
ρ

1,(I)
bb (t4)

ρ
1,(I)
ee (t3)

Cbe,ea,ae,eb(t4, t2, t1, t3)

+ Ωbe,ea,ae,eb
ρ

1,(I)
bb (t4)

ρ
1,(I)
ee (t3)

Cbe,ea,ae,eb(t3, t2, t1, t4) − Ωbe,eb,ba,ab
ρ

1,(I)
bb (t4)

ρ
1,(I)
bb (t3)

Cbe,eb,ba,ab(t4, t3, t2, t1)

− Ωba,ab,bf,fb
ρ

1,(I)
bb (t4)

ρ
1,(I)
bb (t3)

Cba,ab,bf,fb(t1, t2, t3, t4) + Ωbe,ea,ae,eb
ρ

1,(I)
bb (t4)

ρ
1,(I)
ee (t3)

Cbe,ea,ae,eb(t4, t1, t2, t3)

+ Ωbe,ea,ae,eb
ρ

1,(I)
bb (t4)

ρ
1,(I)
ee (t3)

Cbe,ea,ae,eb(t3, t1, t2, t4) − Ωbe,eb,ba,ab
ρ

1,(I)
bb (t4)

ρ
1,(I)
bb (t3)

Cbe,eb,ba,ab(t4, t3, t1, t2)

− Ωba,af,fa,ab
ρ

1,(I)
bb (t4)

ρ
1,(I)
aa (t3)

Cba,af,fa,ab(t4, t2, t1, t3) − Ωba,af,fa,ab
ρ

1,(I)
bb (t4)

ρ
1,(I)
aa (t3)

Cba,af,fa,ab(t3, t2, t1, t4)
)︂

+
∑︂
ef

Ωbe,eb,bf,fa
ρ

1,(I)
bb (t4)

ρ
1,(I)
bb (t3)

Cbe,eb,bf,fa(t4, t3, t2, t1)δab

]︂
.

(3.66)

3.7.2 Discussion about decomposition into a linear com-
bination of first-order correlation functions

Is it possible to find out suitable approximation that would make it possible
to express the memory kernel with the correction to bath only using correlation
functions of the first order? When correcting ansatz linearly, we saw in the results
(Section 3.4) that such modifications are rather short-sighted and insufficiently
robust to describe the properties of finite systems. We want to reduce the com-
plexity of the correction and, at the same time, preserve the majority of the
correction.

In order to provide insight into the motivation for the chosen approximation,
we will demonstrate the reasoning behind its selection rather than simply present-
ing it. Previous work has demonstrated that further corrections to the RBP can
be obtained by adding additional interaction Hamiltonians under the trace over
bath DOF. However, to stay within the realm of first-order correlation functions,
we will restrict ourselves to using no more than two interaction Hamiltonians
in the interaction picture. Examining the previously obtained element M1a and
its corresponding integrals, we will attempt to identify an approximation that
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satisfies these constraints while still effectively describing the system

M ′
1a(t1, t2) =

∫︂ t2

0
dt3

∫︂ t3

0
dt4 ⟨a| trB

{︃
Ĥ

(I)
I (t1)Ĥ

(I)
I (t2)

1
ρ̂1,(I)(t3)

⊕ Ĥ
(I)
I (t3)×

× Ĥ
(I)
I (t4)ρ̂1,(I)(t4) ⊕ ŵ0,(I)(t4)

}︃
|b⟩

M ′
1a,abcd(t1, t2) =

∫︂ t2

0
dt3

∫︂ t3

0
dt4 ⟨a| trB

{︃
Ĥ

(I)
I (t1)Ĥ

(I)
I (t2)

1
ρ

1,(I)
cd (t3)

[︂
Ĥ

(I)
I (t3)×

× Ĥ
(I)
I (t4)ρ̂1,(I)(t4) ⊕ ŵ0,(I)(t4)

]︂
cd

|c⟩⟨d|
}︃

|b⟩

(3.67)

and there are five combinations in which it is possible to eliminate two of the
interaction Hamiltonians, resulting in a simple correlation function. We denote
this integrated element as a function of two-time variables. If we choose to omit
any of the first two Hamiltonians, represented by the combinations (t1, t2), (t1, t3),
(t1, t4), (t2, t3), or (t2, t4), it would effectively mean that the form M ′

1a(t1, t2) is
dependent on an only one-time variable. However, such a crude approximation
would compromise the final form of the corrected QME-RDM and its character, as
it would not accurately represent the meaning of the memory kernel in the QME.
To maintain a nonzero and approximated form of M ′

1a(t1, t2), we must consider an
odd number of interaction Hamiltonians instead. One option is to approximate
the Hamiltonians (t3, t4), or more specifically, their action on the RDM added
to the RBP. A simple and intuitive choice is to take an approximation for a
slowly evolving bath in the interaction picture, which is equivalent to the Markov
approximation. We will now demonstrate the steps involved in this approximation

∫︂ t2

0
dt3

∫︂ t3

0
dt4 ⟨c| Ĥ

(I)
I (t3)Ĥ

(I)
I (t4)

[︂
ρ̂1,(I)(t4) ⊕ ŵ0,(I)(t4)

]︂
ef

|e⟩⟨f | |d⟩ =

=
∫︂ t2

0
dt3

∫︂ t3

0
dt4 ⟨c| Ĥ

(I)
I (t3)Ĥ

(I)
I (t4) |e⟩

[︂
ρ̂1,(I)(t4) ⊕ ŵ0,(I)(t4)

]︂
ef

δfd

=
∫︂ t2

0
dt3

∫︂ t3

0
dt4 ⟨c| Ĥ

(I)
I (t3)Ĥ

(I)
I (t3 − t4) |e⟩

[︂
ρ̂1,(I)(t3 − t4) ⊕ ŵ0,(I)(t3 − t4)

]︂
ef

δfd

=
∫︂ t2

0
dt3

∫︂ t3

0
dt4 ⟨c| Ĥ

(I)
I (t3)Ĥ

(I)
I (t3 − t4) |e⟩

[︂
ρ̂1,(I)(t3) ⊕ ŵ0,(I)(t3)

]︂
ef

δfd,

(3.68)

where in the third row, we used the substitution t4 = t3 − t′
4, then changed t′

4
back to t4 and finally, on the last row, we used the approximation that[︂

ρ̂1,(I)(t3 − t4) ⊕ ŵ0,(I)(t3 − t4)
]︂

ef
= ρ

1,(I)
ef (t3)ŵeq

= ρ
1,(I)
ef (t3 − t4)ŵeq

≈ ρ
1,(I)
ef (t3)ŵeq

=
[︂
ρ̂1,(I)(t3) ⊕ ŵ0,(I)(t3)

]︂
ef

.

(3.69)

These steps definitely moved us forward to something usable. However, we would
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still have to use the history of RDM ρ̂1,(I)(t3) under the first integral sign
∫︂ t2

0
dt3

∫︂ t3

0
dt4 ⟨c| Ĥ

(I)
I (t3)Ĥ

(I)
I (t3 − t4) |e⟩

[︂
ρ̂1,(I)(t3) ⊕ ŵ0,(I)(t3)

]︂
ef

δfd =

=
∫︂ t2

0
dt3

∫︂ t3

0
dt4 ⟨c| Ĥ

(I)
I (t2 − t3)Ĥ

(I)
I (t3) |e⟩

[︂
ρ̂1,(I)(t2 − t3) ⊕ ŵ0,(I)(t2 − t3)

]︂
ef

δfd

=
[︃ ∫︂ t2

0
dt3

∫︂ t3

0
dt4 ⟨c| Ĥ

(I)
I (t2 − t3)Ĥ

(I)
I (t3) |e⟩

]︃[︂
ρ̂1,(I)(t2) ⊕ ŵ0,(I)(t2)

]︂
ef

δfd.

(3.70)

Despite using the Markov approximation to solve for the dependency of the RDM
on t3 and t4, two interaction Hamiltonians still act on the RBP ŵ0,(I)(t2), which
has the size of the entire system. In order to remove these Hamiltonians from the
trace over the bath DOF, it would be necessary to reduce them to constant oper-
ators acting on the RBP. One potential approach towards achieving this drastic
approximation is to assume that the action of the two interaction Hamiltonians
on the RDM in equilibrium does not alter the RDM. This assumption would allow
us to simplify the correction and maintain a reasonable level of accuracy[︃ ∫︂ t2

0
dt3

∫︂ t3

0
dt4 ⟨c| Ĥ

(I)
I (t2 − t3)Ĥ

(I)
I (t3) |e⟩

]︃[︂
ρ̂1,(I)(t2) ⊕ ŵ0,(I)(t2)

]︂
ef

δfd ≈

≈
[︂
ρ̂1,(I)(t2) ⊕ ŵ0,(I)(t2)

]︂
fd

δceδfd.
(3.71)

With additional approximation, rhoˆ 1,(I)(t3) ≈ ρ̂1,(I)(t2), the approximated ele-
ment of the memory kernel would look like following

Mabcd(t1, t2; ŵ1,(I)) = Mabcd(t1, t2; ŵ0,(I))
(︃

1 − ρ̂
1,(I)
cd (t2)

ρ̂
1,(I)
cd (t2)

)︃
= 0, (3.72)

here we can see clearly that such approximations will lead to nothing useful.
Another possibility is to avoid Markov approximation but still assume that the
RBP will remain in equilibrium (3.72). We have to be observant and add division
by the length of interval on which we are integrating [0, t4] contribution of RDM
ρ̂

1,(I)
cd (t4)

M ′
1a,abcd(t1, t2) =

∫︂ t2

0
dt3

∫︂ t3

0
dt4 ⟨a| trB

{︃
Ĥ

(I)
I (t1)Ĥ

(I)
I (t2)

1
ρ

1,(I)
cd (t3)

[︂
Ĥ

(I)
I (t3)×

× Ĥ
(I)
I (t4)ρ̂1,(I)(t4) ⊕ ŵ0,(I)(t4)

]︂
cd

|c⟩⟨d|
}︃

|b⟩ ≈

≈ ⟨a| trB

{︃
Ĥ

(I)
I (t1)Ĥ

(I)
I (t2)ŵeq |c⟩⟨d|

}︃
|b⟩ 1

t2t3

∫︂ t2

0
dt3

∫︂ t3

0
dt4

ρ̂
1,(I)
cd (t4)

ρ
1,(I)
cd (t3)

.

(3.73)

It is worth noting that while it is possible to evaluate Mabcd(t1, t2; ŵ1,(I)) and
obtain nonzero elements; the following property must be satisfied in order for the
corrected RBP to adhere to the definition of RBP

trB{ŵ
1,(I)
cd } = 1. (3.74)
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Our analysis indicates that the assumption of a constant bath in the first cor-
rection of the RBP is flawed (3.73). As a result, we are unable to express the
corrected RBP as linear combinations of first-order correlated functions. While
it is theoretically possible to map the exact solution onto correlation functions of
the first order with time-dependent coefficients, this approach does not provide
any additional insight. It appears that the bath correction from equilibrium can-
not be derived solely from the bath itself but rather requires the use of interaction
Hamiltonians. At least, this is the case within the approximations considered in
this study.

3.7.3 The limit of high temperature
In Subsection 3.7.1, we were able to derive a correction to the Redfield equations
for an infinite bath comprising LHO modes. However, we have not yet considered
the scenario where we have only a finite number of modes. When working with
finite systems, it is necessary to avoid the high-temperature limit unless we can
afford a larger number of states on each mode. This can be computationally
demanding. Fortunately, we were able to derive the corrected memory kernel
Mabcd(t1, t2; ŵ1,(I)) for an infinite number of states, allowing us to examine the
high-temperature limit safely.

At high temperatures, the correlation function for the LHO bath (see Eq. 1.36)
is approximately real. While this correlation function is expressed in the local
electron basis, the transformation into the excitonic basis will simply result in ad-
ditional prefactors for Cnm(t1, t2). Examining the derivation of Mabcd(t1, t2; ŵ1,(I))
in Subsection 3.7.1, we can see that there are only five unique combinations of
real second-order correlation functions due to the property described in Eq. 1.58.
Upon examining the decomposition of the memory kernel Mabcd(t1, t2; ŵ1,(I)) in
Eq. 3.59, we see that these groups of identical real correlation functions are
present

Cae,ef,fg,gc(t1, t2, t3, t4) : {M1a}
Cae,ef,fc,db(t1, t2, t3, t4) : {M1b, M1c, M2a, M3a}
Cae,ec,fb,df (t1, t2, t3, t4) : {M1d, M2b, M2c, M3b, M3d, M4a}
Cae,fb,ef,fc(t1, t2, t3, t4) : {M2d, M3d, M4b, M4c}
Cgb,fg,ef,de(t1, t2, t3, t4) : {M4d}.

(3.75)

With separated groups of real correlation functions we can simplify Mabcd(t1, t2; ŵ1,(I))
into the following form
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Mabcd(t1, t2; ŵ1,(I)) =
∑︂

e

[︂
eiωaet1+iωect2Caeec(t1, t2)δdb + eiωdet1+iωebt2Cdeeb(t1, t2)δac

]︂
− eiωact1+iωdbt2Cdbac(t2, t1) − eiωact2+iωdbt1Cdbac(t1, t2)

− 1
ℏ2

∫︂ t2

0
dt3

∫︂ t3

0
dt4

[︂
+
∑︂
efg

Ωae,ef,fg,gc
ρ

1,(I)
cd (t4)

ρ
1,(I)
fd (t3)

Cae,ef,fg,gc(t1, t2, t3, t4)δdb

− ρ
1,(I)
cd (t4)

∑︂
ef

(︂Ωdb,ae,ef,fc

ρ
1,(I)
fb (t3)

+ Ωdb,ae,ef,fc

ρ
1,(I)
fb (t3)

+ Ωdb,ae,ef,fc

ρ
1,(I)
ed (t3)

+ Ωdb,ae,ef,fc

ρ
1,(I)
ed (t3)

)︂
Cae,ef,fc,db(t1, t2, t3, t4)

+ ρ
1,(I)
cd (t4)

∑︂
ef

(︂Ωdf,fb,ae,ec

ρ
1,(I)
cb (t3)

+ Ωdf,fb,ae,ec

ρ
1,(I)
ef (t3)

+ Ωdf,fb,ae,ec

ρ
1,(I)
ef (t3)

+ Ωdf,fb,ae,ec

ρ
1,(I)
ef (t3)

+ Ωdf,fb,ae,ec

ρ
1,(I)
ef (t3)

+ Ωdf,fb,ae,ec

ρ
1,(I)
ad (t3)

)︂
× Cae,ec,fb,df (t1, t2, t3, t4)

− ρ
1,(I)
cd (t4)

∑︂
ef

(︂Ωde,ef,fb,ac

ρ
1,(I)
cf (t3)

+ Ωde,ef,fb,ac

ρ
1,(I)
cf (t3)

+ Ωde,ef,fb,ac

ρ
1,(I)
ae (t3)

+ Ωde,ef,fb,ac

ρ
1,(I)
ae (t3)

)︂
Cae,fb,ef,fc(t1, t2, t3, t4)

+
∑︂
efg

Ωde,ef,fg,gb
ρ

1,(I)
cd (t4)

ρ
1,(I)
cf (t3)

Cgb,fg,ef,de(t1, t2, t3, t4)δac

]︂
.

(3.76)

3.8 Discussion of findings
In the previous study, [Her20], it was found that the constant ansatz provided
a satisfactory approximation only for short lengths of simulations. Results were
obtained by using the RK4 method to evaluate operators within a finite basis,
which was dependent on the step size chosen. However, it was observed that the
QME might exhibit slow evolution at the beginning of an evolution in interaction
picture, known as a ”cold start”. A the beginning of the simulation, small errors
in the evolution will only increase with the length of the simulation. We have
successfully addressed this issue in the present work by accurately solving the
IDEs to the required precision, as outlined in Section 2.3. Additionally, we have
carefully determined the necessary precision for stable results for specific types
of problems and have consistently evaluated the stability of the QME solution,
as described in Section 3.2. Overall, we can confidently assert that the numerical
aspect of the problem has been effectively addressed for finite systems.

In this chapter, we attempted to directly correct the evolution of the bath
part (RBP) in Section 3.3. As discussed in Section 3.4, the constant ansatz (3.4)
provides a good approximation for the evolution of the bath and is generally su-
perior to Redfield equations. We also attempted to utilise the entire Hamiltonian
in conjunction with the Taylor approximation of evolution operators for the evo-
lution of the RBP. These corrections are the L1 ansatz (3.7) and the L2 ansatz
(Eq. 3.9, in which a higher number of linear corrections are applied to the bath
in the L2 ansatz). The limitation of this approach is that polynomial evolution
correction is generally valid for a limited simulation duration. However, we were
able to demonstrate with these ansatzes that more precise corrections in the bath
will eventually lead to the correct evolution of the RDM. This emphasises the
importance of correcting the evolution of the bath, even when working with fi-
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nite systems. As a next U1 ansatz (3.10) and U2 ansatz (3.13) demonstrate that
it is not sufficient to take only the evolution of different electronic parts of the
RBP, but the transport between parts of RBP has to be taken into account. This
transport can be obviously taken from the correct evolution of the RDM, but
that is inaccessible to us.

After demonstrating the limitations of directly treating the bath without ac-
counting for the evolution of the RDM, we proposed an iterative method for
calculating the QME (QME). This approach involves calculating the RDM and
the RBP in a sequential manner, using the previously obtained results for each
iteration. As discussed in Section 3.6, this method is numerically feasible for a
finite number of modes and states, which we refer to as IQME.

Through simulations of integrodifferential equations in Section 3.4, we found
that our proposed iterative treatment of the RBP is effective for weak inter-
actions, as seen in the first correction. The iterative treatments using Markov
approximation, namely the I.M1 ansatz (3.29) and the I.M2 ansatz (3.30), also
showed promise in correcting the evolution of the RDM for weak interactions in
higher orders. However, we observed that the correction itself converged to a
solution different from the exact solution, indicating that the current formulation
of IQME, which applies equal corrections to the RDM and RBP, may not be
optimal.

Despite this, we demonstrated that, for aggregates with only two modes, the
I.M1 ansatz provides a generally better solution for weak interactions than Red-
field equations. This suggests that IQME may be a promising direction for cor-
recting the evolution of the bath in the regime of weak interactions and beyond
the scope of Redfield equations.

In the final sections of this chapter, we successfully derived the first correction
to the memory kernel, which is a direct correction to the constant ansatz kernel
and, in turn, a minor correction to the kernel in Redfield equations. While ex-
tending this approach to higher-order corrections is possible, we believe this may
not be the most effective method for consistently correcting the bath’s evolution
while maintaining the equations’ simplicity.

Instead, we propose using the first correction of the memory kernel as a way to
consistently correct the evolution of the RDM even for higher orders of correction.
This approach utilises only the previous results of the RDM evolution and still
allows for relatively simple integration of the memory kernel over two hidden time
variables. We utilised the fact that the gaussian bath allows for the decomposition
of higher-order correlation functions, resulting in a final form of the corrected
memory kernel that only contains products of first-order correlation functions.
We also do not believe it is possible to derive the correction of the memory
kernel using only a linear combination of first-order correlation functions without
decomposition into orthonormal functions of time for the RDM (as discussed in
Subsection 3.7.2). Additionally, we derived the corrected memory kernel for the
high-temperature limit.

81



Conclusion
In this work, we tried various ansatzes for bath evolution so that we end up with
a more precise solution for system evolution in comparison to Redfield equations.
Redfield equations assume constant evolution of the bath in the interaction pic-
ture, and all our corrections start from the assumption of constant bath evolution.
Within this work, we implemented a method that can directly solve the integrod-
ifferential form of altered quantum master equations to chosen precision.

In the first part of this work, we defined several direct corrections of bath
evolution without incorporating the evolution of the system directly into those
corrections. These proposed corrections provided insight into the behaviour of an
aggregate with two molecules. Not in the form of satisfactory correction, but on
the other hand, confirming that the correction of the bath without consideration
of the evolution of a system is not simply sufficient. We are concluding that in
order to correct the Redfield equation while still working with the system and
bath separately, one has to take into account the effect of system evolution on
bath evolution.

We defined the formal remainder of the reduced density matrix that we call
the relative bath part. Both operators together give us full information about the
whole system. This split of density operator allows us also to split the quantum
master equation and to derive the so-called Iterative Quantum Master Equation
that uses reduced density matrix and relative bath part. This iterative approach
can be numerically solved for finite systems for both the system and bath parts.

In the final step of our analysis, we expressed the corrected version of the bath
evolution solely in terms of the evolution of the system and bath at equilibrium.
This allowed us to write the first corrected bath evolution in terms of the first
corrected evolution of the reduced density matrix. This led to the derivation of
the first corrected memory kernel, which determines the evolution of the system
given an initial condition. We also proposed that this correction can be used for
the sequential improvement of system evolution using the results of the previous
evolution. To obtain altered iterative master equations, we applied the Markov
approximation. This part of the analysis was successfully validated for the aggre-
gate with two molecules, demonstrating convergence towards the correct solution
and superior performance compared to the Redfield equations in the regime of
weak interaction. This is a promising result for potential applications as the spec-
tral density function can be modelled by an infinite number of weakly coupled
modes.

We believe there might also be two reasons why we do not observe better
improvement while simulating the systems in this work with respect to exact
dynamics. It is possible that finite systems are not well suited for a reliable
comparison of our new iterative treatment with exact dynamics. We suggest
inspecting the memory kernel with linear harmonic modes in the bath but with
an infinite size of bath basis and a finite number of modes. The second point is
that iterative treatment with the same rate of correction for the evolution of the
system and the evolution of the bath may always converge slowly.

Overall, we can conclude that this work’s results managed to improve Redfield
equations in a regime of weak interaction. This result is not entirely satisfactory
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for two reasons. The improvement could be more remarkable, and the new mem-
ory kernel is rather complex. The fact that now we know that this path won’t
lead to surprisingly good improvement can also be considered a positive result.
We risked going into the unknown, and we found out how far we could go.

As a next step, we suggest numerically confirming the convergence for a finite
number of modes and higher orders of corrections to ensure that the convergence
property is satisfied. Additionally, we propose revising the equations in such a
way that the correction of the solution for system and bath evolution will be done
quicker in favour of the system part.
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3.26 Population of the first molecule in exciton basis (top). The baseline
is the evolution of the system with interaction (bottom). We see
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3.33 On every heatmap we can see the comparison of the performance
for different approaches in comparison to the exact solution scored
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A. Attachments

A.1 Correlation function properties
There is a case when we are able to simplify the correlation function to the
form similar to 1.30 and that is when we select exiton basis for system and used
properties of interaction Hamiltonian in interaction picture as shown in section
1.1.2

trB

{︂
ĤI,αβ(t1)ĤI,γδ(t2)ŵeq

}︂
=

= eiωαβt1+iωγδt2 trB

{︃
Û

†
B(t1)∆V̂ αβÛB(t1)Û

†
B(t2)∆V̂ γδÛB(t2)ŵeq

}︃
= eiωαβt1+iωγδt2 trB

{︃
Û

†
B(t1)∆V̂ αβÛB(t1)Û

†
B(t2)∆V̂ γδŵeqÛB(t2)

}︃
= eiωαβt1+iωγδt2 trB

{︃
Û

†
B(t1 − t2)∆V̂ αβÛB(t1 − t2)∆V̂ γδŵeq

}︃
= eiωαβt1+iωγδt2 trB

{︂
∆V̂ αβ(t1 − t2)∆V̂ γδŵeq

}︂
,

(A.1)

where in the second line we used the fact that the evolution operator of system is
diagonal and frequencies are defined in section 1.1.2. In the third row we used the
equilibrium property of the bath which stays that Û

†
B(t)ŵeqÛB(t) = ŵeq. In the

next row we used the fact that we can rotate operators under the trace sign and
in the last row we wrote part of interaction Hamiltonian in interaction picture in
more compact form that can be also written as correlation function of one time
variable

Cαβγδ(t) = trB

{︂
∆V̂ αβ(t)∆V̂ γδŵeq

}︂
. (A.2)

Similarly, we can discuss the correlation function of the second order in a
similar fashion. Rearranging the evolution operators of the bath will lead us to
the following form

Cαβγδµνϵη(t1, t2, t3, t4) = eiωαβt1+iωγδt2+iωµνt3iωϵηt4×

× trB

{︃
Û

†
B(t1 − t4)∆V̂ αβÛB(t2 − t1)∆V̂ γδ

Û
†
B(t3 − t2)∆V̂ µνÛB(t3 − t4)∆V̂ ϵηŵeq

}︃
.

(A.3)

The trace over bath DOF with all operators inside is in fact dependent only on
three-time variables, for example setting τ1 = t1 − t4, τ2 = t2 − t1 and τ3 = t3 − t2
will lead us to the following

Cαβγδµνϵη(τ1, τ2, τ3) =

= trB

{︃
Û

†
B(τ1)∆V̂ αβÛB(τ2)∆V̂ γδÛ

†
B(τ3)∆V̂ µνÛB(τ1 − τ2 + τ3)∆V̂ ϵηŵeq

}︃
.

(A.4)

Therefore we showed that the correlation function of first order is in fact function
of one time variable and the correlation function of the second order is a function
of three time variables.
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