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all 371 quasi-permutation matrices of size at most 4 × 4 into partial Wilf equiva-
lence classes (two quasi-permutation matrices belong to the same class if and only
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Introduction
A quasi-permutation matrix Q of size m × k is a 01-matrix (every entry of Q
is either zero or one) with m columns and k rows such that each column and
row contains at most one nonzero entry. A quasi-permutation matrix Q exactly
contains (as opposed to “partially” introduced later) a quasi permutation ma-
trix A if A is a submatrix of Q. If Q does not contain A, we say that Q exactly
avoids A. In this context, the quasi-permutation matrix A is usually called a pat-
tern. A permutation matrix P of order n is a quasi-permutation matrix of size
n×n with exactly n nonzero entries. Let Pn be the set of all permutation matri-
ces of order n. Moreover, for a pattern A, let PE

n (A) be the set of all permutation
matrices of order n that exactly avoid A and pE

n(A) := |PE
n (A)|.

If the patterns in the previous paragraph are only permutation matrices, we
obtain the well-known concept of avoidance of permutation matrices. One of
the central topics in this area is the classification of patterns into exact Wilf
equivalence classes. Formally, patterns A and B are exactly Wilf-equivalent if
pE

n(A) = pE
n(B) for every n ∈ N. The classification is the problem of partitioning

the set Q of all quasi-permutation matrices into exact Wilf equivalence classes
so that two patterns are in the same class if and only if they are exactly Wilf-
equivalent.

We briefly mention the known results on the classification of permutation
matrices into exact Wilf equivalence classes. In this paragraph only, a pattern
of order k is considered to be a permutation matrix of order k, and the words
“exact” or “exactly” are omitted. Since patterns of different order are never Wilf-
equivalent, it is sufficient to partition only the set Pk of patterns of order k into
Wilf equivalence classes for every k. The classification is trivial for k = 1, 2.
Any pattern of order 3 is avoided by cn permutations of order n, where cn is
the n-th Catalan number. Hence all patterns of order 3 belong to the same Wilf
equivalence class (e.g., [1, Section 4.2]). This is no longer true for k = 4. The
4! = 24 patterns of order 4 are partitioned into three Wilf equivalence classes
(see [1, Section 4.4] and the references therein). The complete classification of
patterns into Wilf equivalence classes is also known for k = 5, 6, 7 (see [2] and the
references therein).

Classification of permutation matrices into exact Wilf equivalence classes is
usually studied in terms of permutations. The definition given in the first and
second paragraphs is a straightforward translation from permutations to permu-
tation matrices. However, there is another possible definition of avoidance of
quasi-permutation matrices that generalizes the exact avoidance of permutation
matrices. For quasi-permutation matrices Q and R of the same size, we write
Q ≤ R if Qi,j ≤ Ri,j for all possible column indices i and row indices j. We say
that a quasi-permutation matrix Q partially contains a quasi-permutation ma-
trix A if there exists a submatrix Q′ of Q such that A ≤ Q′. We remark that if we
replace ’≤’ by ’=’ (the standard matrix equality symbol), we obtained the defi-
nition of exact containment introduced earlier. If Q does not partially contain A,
we say that Q partially avoids A. We give a small example demonstrating the dif-
ference between exact and partial avoidance: Q = ( 0 1

1 0 ) exactly avoids A = ( 0 0
1 0 )

but Q partially contains A. For a permutation matrix P and a permutation ma-
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trix A, we will show that P exactly avoids A if and only if P partially avoids A.
In fact, the equivalence still true if A is replaced by a row-permutation matrix
(i.e., a quasi-permutation matrix such that each row contains exactly one nonzero
entry). The equivalence is also true if A is replaced by a column-permutation ma-
trix, which is defined analogously.

In analogy with the concept of exact Wilf equivalence, we say that A and B are
partially Wilf-equivalent if the number pP

n(A) of permutation matrices of order n
partially avoiding A is the same as the number pP

n(B) of permutation matrices of
order n partially avoiding B for every n. In our thesis, we classify all 371 patterns
of size at most 4 × 4 into partial Wilf equivalence classes (two patterns belong
to the same class if and only if they are partially Wilf -equivalent). Along the
way, we prove several general results showing how to construct from one or two
quasi-permutation matrices more quasi-permutation matrices that are pairwise
partially Wilf-equivalent.

Outline
In the first chapter, we properly define the two types of avoidance (exact and
partial) of quasi-permutation matrices. We show that both types generalize the
well-known concept of avoidance of permutations. We define three basic symme-
try operations that preserve the number of permutation matrices avoiding a given
pattern. Finally, we introduce row- and column-permutation matrices on which
the exact and partial avoidance also agree.

In the following two chapters, we develop general results that play a crucial
role in the classification of patterns of size 4 × 4 into partial Wilf equivalence
classes. Namely, in Chapter 2, we study a connection between patterns obtained
from a pattern by appending a zero column or a zero row to any side of the
pattern. For example, for a pattern A, we show that A|0 (i.e., a pattern obtained
from A by adding a zero column after the last column of A) and 0|A are partially
Wilf-equivalent. If A is in addition a row-permutation matrix, we show that
pP

n(A|0) = n · pP
n−1(A).

In chapter 3, we define shape-Wilf equivalence and provide a short survey
of previously-known results about shape-Wilf equivalence between permutation
matrices. We observe that one of these results can be generalized to quasi-
permutation matrices: if A and B are shape-Wilf-equivalent quasi-permutation
matrices and Q is an arbitrary quasi-permutation matrix, then(

0 Q
A 0

)
and

(
0 Q
B 0

)
are partially Wilf-equivalent. Since X = ( 0 0 1

1 0 0 ) and Y = ( 1 0 0
0 0 1 ) are not shape

Wilf-equivalent (we will prove this fact later), the previous theorem says nothing
whether the patterns

X+ :=
( 0 0 0 0 1

0 0 1 0 0
1 0 0 0 0

)
and Y + :=

( 0 0 0 0 1
1 0 0 0 0
0 0 1 0 0

)
are partially Wilf-equivalent. In fact, they are not because pP

6 (X+) = 434 but
pP

6 (Y +) = 430 (these values were computed by our program [3]). Nevertheless,
we prove the following theorem: if Q is a quasi-permutation matrices such that
its first column is nonzero, then(

0 Q
X 0

)
and

(
0 Q
Y 0

)
3



are partially Wilf-equivalent.
In Chapter 4, we finally classify all patterns of size at most 4 × 4 into partial

Wilf equivalence classes. We conclude our thesis with possible further directions
and open problems in Chapter 5.
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1. Basic notation, definitions,
and results
We describe the outline of this chapter. In Section 1.1, we introduce basic nota-
tion and definitions, which we use repeatedly through this thesis. In Section 1.2,
we generalize the concept of permutation avoidance to quasi-permutation ma-
trices (i.e., matrices with at most one non-zero entry in each row and column).
In Section 1.3, we define row-permutation matrices (i.e., matrices with exactly
one nonzero entry in each row and with at most one nonzero entry in each col-
umn). Similarly, we define column-permutation matrices. In the next chapter, we
obtain more detailed results when we consider only row-permutation (or column-
permutation) matrices.

1.1 Preliminaries
Let N be the set of natural numbers {1, 2, . . . } and let N0 := N∪ {0}. For n ∈ N,
we define [n] to be the set {1, 2, . . . , n} and [0] := ∅. For n, k ∈ N0, the factorial
of n is denoted by n! (we suppose that 0! = 1) and, if k ≤ n, the symbol (n)k is
defined as (n)k := n!/(n − k)! = ∏k−1

i=0 (n − i). Most of the time we assume that
the numbers under consideration are natural numbers.

Convention I: Unless otherwise stated the letters i, j, k, ℓ,m, n and their
variants such as i′, i1, i2, . . . are always assumed to be natural numbers.

A linear ordering σ = σ1, σ2, · · · , σn of elements of the set [n] is called a per-
mutation of order n. Let Sn be the set of all permutations of order n. Every
permutation σ of order n can be represented by a matrix P σ ∈ {0, 1}n×n satisfy-
ing

∀i, j ∈ [n] : P σ
i,j = 1 ⇐⇒ σi = j, (⋆)

where P σ
i,j is the entry in the i-th column and the j-th row of P σ (see an example

in Figure 1.1). Every matrix P σ has exactly one nonzero entry in each row and
column. Such matrices have a special name.

Definition 1. A matrix P ∈ {0, 1}n×n is a permutation matrix of order n if every
row and every column of P contain exactly one nonzero entry.

Let Pn be the set of all permutation matrices of order n. Observe that (⋆)
defines a one-to-one correspondence between the set Sn of all permutations and
the set Pn of all permutation matrices. Indeed, map a permutation σ to a per-
mutation matrix P σ.

We prefer to work with permutation matrices rather than permutations for the
following reason—the concept of permutation avoidance (we define this notion in
the next section) seen in terms of permutation matrices can be straightforwardly
generalized to a larger set of matrices. In this thesis, we work only with matrices
in which each entry is either 0 (zero) or 1 (nonzero).
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Figure 1.1: Representation of permutation σ = 3, 1, 4, 5, 2 by a matrix P σ sat-
isfying (⋆). For clarity, we do not draw zeros (they are represented by empty
entries).

Convention II: All matrices have entries in {0, 1}.

A matrix A is of size m × k if it has m columns and k rows. Let {0, 1}m×k

be the set of all matrices of size m × k. We denote by Ai,j the entry in the i-th
column and j-th row of a matrix A. For two matrices A and B of the same size,
we write A = B (or A ≤ B) if and only if Ai,j = Bi,j (or Ai,j ≤ Bi,j) for all
indices i and j.

For a matrix A ∈ {0, 1}m×k and two sets of indices I = {i1, i2, . . . , im′} ⊆ [m],
J = {j1, j2, . . . , jk′} ⊆ [k] such that i1 < i2 < · · · < im′ and j1 < j2 < · · · < jk′ ,
a submatrix of A induced by (I, J) is the matrix A[I × J ] obtained from A by
erasing its i-th column and j-th row for all i ∈ [m] \ I and j ∈ [k] \ J . Formally,
A[I × J ] is the matrix of size m′ × k′ such that

∀a ∈ [m′], ∀b ∈ [k′] : A[I × J ]a,b = Aia,ib
.

We implicitly assume that the sets of indices I and J are ordered increasingly. In
general, any set of natural numbers in this thesis is ordered increasingly.

Convention III: Every set N = {n1, n2, . . . , nk} of natural numbers is
assumed to be ordered increasingly. That is, ni < nj whenever i < j.

A matrix B is a submatrix of A ∈ {0, 1}m×k if B = A[I × J ] for some set of
column indices I ⊆ [m] and some set of row indices J ⊆ [k].

Lastly, we draw matrices such that the columns and rows are indexed from
the left to right and from the bottom to top, respectively, by the first natural
numbers. Therefore, there is no ambiguity if we draw matrices without explicitly
indexing rows and columns. When we write small matrices in the text we replace 1
by • and 0 by ◦. For example, for a permutation σ = 2, 3, 1, we write

P σ =
( ◦ • ◦

• ◦ ◦
◦ ◦ •

)
instead of P σ =

( 0 1 0
1 0 0
0 0 1

)
.

On the other hand, when we draw matrices in figures, we depict only ones, while
zeros are represented by empty entries.
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1.2 Avoiding quasi-permutation matrices
In this section, we develop the foundations of our work—we introduce quasi-
permutation matrices and the concept of avoiding quasi-permutation matrices.
We start with recalling a similar concept of avoiding permutations.

Let σ = σ1, σ2, · · · , σn and τ = τ1, τ2, · · · , τk be two permutations. We say
that σ avoids τ if there is no sequence of indices

1 ≤ i1 < i2 < · · · < ik ≤ n such that ∀a, b ∈ [k] : τa < τb ⇐⇒ σia < σib
.

In other words, σ avoids τ if there is no linear suborder of σ isomorphic to τ .
The definition can be rephrased in the terms of permutation matrices. We say
that a permutation matrix P1 avoids a permutation matrix P2 if P2 is not a sub-
matrix of P1. Then σ avoids τ if and only if P σ avoids P τ . In this context, the
permutation τ and the permutation matrix P τ to be avoided are usually called
patterns of order k or simply patterns.

Given a pattern A, the ultimate goal is find, for all n, the number pn(A) of
permutation matrices of order n that avoid A. For example, if A =

( ◦ • ◦
• ◦ ◦
◦ ◦ •

)
, then

pn(A) is the n-th Catalan number cn = 1
n+1

(
2n
n

)
. Interestingly, if we consider any

other pattern A of order 3, then pn(A) is still cn (see for example [1, Section 4.2]).
Finding pn(A) for all patterns of order 4 is an open problem. For example, there
is not known exact formula for pn(P σ), where σ = 1, 3, 2, 4. A less ambitious goal
is to partition the patterns of order 4 into classes such that pn(A) = pn(B) if and
only if A and B belong to the same class. We know that 3 classes are necessary
and also sufficient for patterns of order 4 (see [1, Section 4.4] and the references
therein).

We generalize the notion that a permutation matrix P1 avoids a permutation
matrix P2 to quasi-permutation matrices. Let us start with the definition of
a quasi-permutation matrix

Definition 2. A matrix Q ∈ {0, 1}m×k is a quasi-permutation matrix of size m×k
if every row and every column of Q contains at most one nonzero entry.

Two notes about the definition. First, a quasi-permutation matrix may have
a different number of rows and columns. Second, every permutation matrix is
also a quasi-permutation matrix (but not vice versa). Let us denote by Q the set
of all quasi-permutation matrices and by Qm,k,ℓ the set of all quasi-permutation
matrices of size m× k with exactly ℓ nonzero entries. Note that Pn = Qn,n,n.

Definition 3. Let Q ∈ Qm,k,ℓ and A be quasi-permutation matrices. We say
that Q exactly contains A, written A ⪯E Q, if there exists a set of column indices
I ⊆ [m] and a set of row indices J ⊆ [k] such that

A = Q[I × J ].

The submatrix Q[I × J ] is called an exact copy of A in Q induced by (I, J). If Q
does not exactly contain A, we say that Q exactly avoids A.

However, there is yet another natural way to define that “Q avoids A”.
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Definition 4. Let Q ∈ Qm,k,ℓ and A be quasi-permutation matrices. We say
that Q partially contains A, written A ⪯P Q, if there exists a set of column
indices I ⊆ [m] and a set of row indices J ⊆ [k] such that

A ≤ Q[I × J ].

The submatrix Q[I × J ] is called a partial copy of A in Q induced by (I, J). If Q
does not exactly contain A, we say that Q partially avoids A.

In the context of Definitions 3 and 4, the quasi-permutation matrix A ∈
Qm′,k′,ℓ′ is sometimes called a pattern or a pattern of size m′ × k′ (with exactly ℓ′

nonzero entries).
Clearly, if Q partially avoids A, then also Q exactly avoids A. We remark that

the reverse implication is not true in general. For instance, Q = ( ◦ •
• ◦ ) exactly

avoids A = ( ◦ ◦
• ◦ ) but Q partially contains A. However, the reverse implication

is true when Q and A are permutation matrices. We prove this fact in the
next section in more general settings (see Lemma 14). Hence, if Q and A are
permutation matrices, Q exactly avoids A if and only if Q partially avoids A.
This shows that both definitions of avoidance for quasi-permutation matrices
(Definitions 3 and 4) generalize the notion of avoidance for permutation matrices.

We introduce few more notions before we state the main goal of this thesis.
Let PE

n (A) (or PP
n (A)) denote the set of all permutation matrices of order n that

exactly (or partially) avoid a pattern A. Moreover, let

pE
n(A) := |PE

n (A)| and pP
n(A) := |PP

n (A)|.

Let E∼ be a relation on Q given by A E∼ B if and only if pE
n(A) = pE

n(B). Similarly,
let P∼ be a relation on Q given by A P∼ B if and only if pP

n(A) = pP
n(B). It is easy

to see that E∼ and P∼ are both equivalence relations.

Definition 5. The relation E∼ is called exact Wilf equivalence. Patterns A and B
are exactly Wilf-equivalent if A E∼ B. Exact Wilf equivalence classes are the
equivalence classes of E∼.

Definition 6. The relation P∼ is called partial Wilf equivalence. Patterns A and B
are partially Wilf-equivalent if A P∼ B. Partial Wilf equivalence classes are the
equivalence classes of P∼.

The ultimate goal in pattern avoidance is, given a pattern A ∈ Qm,k,ℓ, de-
termine pE

n(A) and pP
n(A) for all n. A more feasible goal is, for small values

of m and k is, to determine the exact and partial Wilf equivalence class of every
A ∈ Qm,k,ℓ. In Chapter 4, we determine the partial Wilf equivalence classes of
every pattern of size at most 4 × 4.

The first step to determine the equivalence classes of E∼ and P∼ is to study
a symmetry relation on Q defined below. For that, we introduce the following
matrix operation.

Definition 7. Let Q ∈ {0, 1}m×k be a quasi-permutation matrix.

• The transpose of Q is a quasi-permutation matrix Q⊤ ∈ {0, 1}k×m such that

∀i ∈ [k], j ∈ [m] : Qi,j = (Q⊤)j,i.

8



• The column reversal of Q is a quasi-permutation matrix QC ∈ {0, 1}m×k

obtained by reversing the order of columns.

• The row reversal of Q is a matrix QR ∈ {0, 1}m×k obtained by reversing
the order of rows.

The symmetry relation ≈ on Q is defined by A ≈ B if and only if B can be
obtained from A by a sequence of transpose, column reversal, and row reversal
operations. It is not hard to see that ≈ is an equivalence relation on Q. The
equivalence classes of ≈ are called symmetry classes. And if A ≈ B, we say
that A is symmetric to B or that A and B are symmetric.

We show that if two patterns are symmetric, then they are also partially
(exactly) Wilf-equivalent. Hence the symmetry relation is a refinement of partial
(exact) Wilf equivalence.

Observation 8. Let Q and A be quasi-permutation matrices. Then

(i) A ⪯P Q if and only if A⊤ ⪯P Q
⊤,

(ii) A ⪯P Q if and only if AC ⪯P Q
C , and

(iii) A ⪯P Q if and only if AR ⪯P Q
R.

From Observation 8 readily follows the next observation.

Observation 9. Let P ∈ Pn be a permutation matrix and let A be a quasi-
permutation matrix. Then

(i) P ∈ PP
n (A) if and only if P⊤ ∈ PP

n (A⊤),

(ii) P ∈ PP
n (A) if and only if PC ∈ PP

n (AC), and

(iii) P ∈ PP
n (A) if and only if PR ∈ PP

n (AR).

We can finally conclude that two symmetric patterns A and B are also par-
tially Wilf-equivalent.

Observation 10. Let A and B be quasi-permutation matrices of the same size.
If A and B are symmetric, then A and B are partially Wilf-equivalent. In symbols,

A ≈ B =⇒ A
P∼ B.

Proof. Since A and B are symmetric, there exists a sequence of matrix operations
(see Definition 7) that transform A to B. For any n, take P ∈ PP

n (A) and trans-
form P to P ′ using the same sequence of matrix operations. By Observation 9,
P ∈ PP

n (A) if and only if P ′ ∈ PP
n (B). This defines a bijection between PP

n (A)
and PP

n (A). Thus, A and B are partially Wilf-equivalent.

Although we state Observations 8, 9, and 10 for partial Wilf equivalence, they
are true for exact Wilf equivalence as well—replace ’P’ by ’E’ and “partially” by
“exactly” in Observations 8, 9, and 10—with the identical proof. Hence if A
and B are symmetric, then A

P∼ B and A
E∼ B.

The next lemma says that, if B partially contains A, every permutation matrix
that partially avoids B also partially avoids A.

9



Lemma 11. Let A and B be two quasi-permutation matrices. If A ⪯P B, then
PP

n (A) ⊆ PP
n (B).

Proof. Let P ∈ PP
n (A) be a permutation matrix that partially avoids A. Since

A ⪯P B, P also partially avoids B (otherwise B ⪯P P would imply A ⪯P P ). In
other words, P ∈ Pn(B). Thus, PP

n (A) ⊆ PP
n (B).

1.3 Row- and column-permutation matrices
In this section, we introduce two special types of quasi-permutation matrices.

Definition 12. A quasi-permutation matrix Q ∈ {0, 1}m×k is called
row-permutation matrix if each row of Q contains exactly one nonzero entry.

Definition 13. A quasi-permutation matrix Q ∈ {0, 1}m×k is called
column-permutation matrix if each column of Q contains exactly one nonzero
entry.

Observe that a row-permutation (or column-permutation) matrix with m = k
is a permutation matrix. For m ≥ k, Qm,k,k is the set of row-permutation matrices
of size m × k. On the other hand, for m ≤ k, Qm,k,m is the set of column-
permutation matrices of size m× k.

For a row-permutation matrix A, we prove that the number of permutation
matrices exactly avoiding A is the same as the number of permutation matrices
partially avoiding A (Corollary 15). The immediate consequence is that two row-
permutation matrices are exactly Wilf-equivalent if and only if they are partially
Wilf-equivalent (Corollary 16). We start with the following key lemma.

Lemma 14. Let A ∈ {0, 1}m×k be a row-permutation matrix. For any permuta-
tion matrix P ∈ Pn, P partially avoids A if and only if P exactly avoids A.

Proof. First, we prove the forward implication by contrapositive. Suppose that P
exactly contains A. It implies that there exists an exact copy of A in P induced
by (I, J) for some set I ⊆ [n] of column indices and some set J ⊆ [n] of row
indices. In other words, A = P [I × J ]. Hence A ≤ P [I × J ] and so P partially
contains A.

Suppose that P partially contains A. It follows that there exists a partial copy
of A in P induced by (I, J) for some set I ⊆ [n] of column indices and some set
J ⊆ [n] of row indices. In other words, A ≤ P [I×J ]. We claim that A = P [I×J ].
Since A is a row-permutation matrix, for every row index j ∈ [k], there exists
a column index i(j) ∈ [m] such that Ai(j),j = 1. Hence Ai(j),j = P [I × J ]i(j),j.
Moreover, for every row index j ∈ [k] and column index i ∈ [m] \ {i(j)}, we have
Ai,j = P [I × J ]i,j = 0 because every row of A and P [I × J ] contains at most one
nonzero entry. Thus, A = P [I × J ] and so P exactly contains A.

Corollary 15. Let A ∈ {0, 1}k×m be a row-permutation matrix. For all n ∈ N,
we have

pE
n(A) = pP

n(A).

Proof. By Lemma 14 the sets PP
n (A) and PE

n (A) are identical. Therefore, pE
n(A) =

|PE
n (A)| = |PP

n (A)| = pP
n(A).

10



Suppose that A and B are exactly Wilf-equivalent row-permutation matrices.
It follows that pE

n(A) = pE
n(B) for all n. However, by Corollary 15, we have

pE
n(A) = pP

n(A) and pE
n(B) = pP

n(B). Hence A and B are also partially Wilf-
equivalent. Analogously, we show that if A P∼ B, then A

E∼ B. We summarized
this result in the following corollary.

Corollary 16. Let A and B be row-permutation matrices of the same size. Then

A
E∼ B if and only if A P∼ B.

We remark that a matrix Q is a column-permutation matrix if and only if
a matrix Q⊤ is a row-permutation matrix. Since Q contains A if and only if Q⊤

contains A⊤ by Observation 8, the three previous results for row-permutation
matrices holds also for column-permutation matrices.

11



2. Augmenting patterns by zeros
For a quasi-permutation matrix Q, let 0|Q and Q|0 be quasi-permutation matrices
obtained from Q by adding a zero column before the first column of Q and after
the last column of Q, respectively. Similarly, let Q0 and 0

Q
be quasi-permutation

matrices obtained from Q by adding a zero row below the first row of Q and
above the last row of Q, respectively.

In Section 2.1, for every quasi-permutation matrix A, we show that A|0 and
0|A are partially Wilf-equivalent, however, they are not in general exactly Wilf-
equivalent. If in addition A is a row-permutation matrix, we show that pP

n+1(A|0)
and pP

n+1(0|A) are both exactly n + 1 times larger than pP
n(A). Since A|0 and

0|A are still row-permutation matrices, we can use this result repeatedly. For
example, we can deduce that pP

n+2(0|A|0) is exactly (n + 2)(n + 1) times larger
than pP

n(A).
By symmetry, we conclude that also A

0 and 0
A

are partially Wilf-equivalent.

Moreover, if A is a column-permutation matrix, pP
n+1

(
A
0

)
and pP

n+1

(
0
A

)
are both

exactly n+ 1 times larger than pP
n(A).

Let A be a row-permutation matrix. We observe that A|0 is a row-permutation
matrix but A|0 is not a column-permutation matrix (even if A is a column-
permutation matrix). Hence we cannot combine the results from the last two

paragraphs to say something about pP
n+2

(
0
A|0

)
(i.e., about the number of per-

mutation matrices of order n that partially avoids a pattern A augmented by
adding a zero column after the last column and then adding a zero row above the
last row). Nonetheless, if A is a permutation matrix, we show in Section 2.2 that

pP
n+2

(
0
A|0

)
= pP

n+1(A) + (n+ 1)2 · pP
n(A).

2.1 Augmenting patterns by either zero rows or
columns

For a permutation matrix P ∈ Pn, we write P = (C1|C2| · · · |Cn) to denote that
the first column of P is C1, the second column of P is C2 and so on. This allows
us to easily describe matrices obtained from P by manipulating its columns. In
particular, (Cn|C1| · · · |Cn−1) ∈ Pn is the permutation matrix obtained from P
by cyclically rotating the order of the columns of P and (C1|C2| · · · |Cn−1) ∈
Qn−1,n,n−1 is the quasi-permutation matrix obtained from P by removing its last
column. Let A be a pattern (recall that a quasi-permutation matrix is sometimes
called a pattern in the context of avoidance). The following lemma plays a crucial
role in our proof that A|0 and 0|A are partially Wilf-equivalent.

Lemma 17. Let P = (C1|C2| · · · |Cn) be a permutation matrix and A ∈ {0, 1}m×k

be a quasi-permutation matrix. The following statements are equivalent:

12



(i) (C1|C2| · · · |Cn) partially contains (A|0),

(ii) (Cn|C1| · · · |Cn−1) partially contains (0|A), and

(iii) (C1|C2| · · · |Cn−1) partially contains A.

Proof. Since the statements (i), (ii), (iii) are trivially false for n = 1, the state-
ments are equivalent for n = 1. In the rest of the proof, we assume that n ≥ 2.
Moreover, let Q := (C1|C2| · · · |Cn−1).

Let us start by proving the equivalence (i) ⇐⇒ (iii). Suppose that P partially
contains A|0. Let P [I×J ] be a partial copy of A|0 in P induced (I, J) for some set
of column indices I = {i1, i2, . . . , im} and some set of row indices J . Recall that
we implicitly assume that I and J are ordered increasingly. Let I ′ := I \ {im}.
Since im ≤ n, we know that n /∈ I ′. It follows that Q[I ′ × J ] is a partial copy
of A in Q induced by (I ′, J). Hence Q partially contains A.

On the other hand, suppose that Q partially contains A. Let Q[I × J ] be
a partial copy of A in Q induced by (I, J) for some set of column indices I and
some set of row indices J . Note that n /∈ I because Q has only n − 1 columns.
Let I ′ := I ∪ {n}. We claim that A|0 ≤ P [I ′ × J ]. Take i ∈ [m + 1] and j ∈ [k]
arbitrary. If i < m+ 1, then

(A|0)i,j = Ai,j ≤ Q[I × J ]i,j = P [I ′ × J ]i,j.

If i = m+ 1, then (A|0)i,j = 0 ≤ P [I ′ × J ]. Thus, P [I ′ × J ] is a partial copy of A
in Q induced by (I ′, J) and so P partially contains A|0.

The equivalence (ii) ⇐⇒ (iii) is proved analogously. The last equivalence
(i) ⇐⇒ (ii) follows from the previous two equivalences.

It is now straightforward to prove the first main result of this section.

Theorem 18. Let A be a quasi-permutation matrix. Then

A|0 P∼ 0|A.

Proof. For every n ∈ N, let us choose P = (C1|C2| · · · |Cn) ∈ Pn arbitrarily. By
Lemma 17, we know that

(A|0) ⪯P (C1|C2| · · · |Cn) if and only if (0|A) ⪯P (Cn|C1| · · · |Cn−1).

This defines a bijection between Pn \ PP
n (A|0) and Pn \ PP

n (0|A). Thus,

pP
n(A|0) = |PP

n (A|0)| = |PP
n (0|A)| = pP

n(0|A).

We remark that the proof of Lemma 17 is not valid for exact avoidance. The
problem is that P [I ′ × J ] (defined in the third paragraph) might not be an exact
copy of A|0 in P induced by (I ′, J) because the last column of P [I ′ × J ] can
contain a nonzero entry. This is not surprising because Theorem 18 is not true
in general if we replace ’P’ by ’E’. For instance, our computer enumeration (see
Table A.2 in Appendix) reveals that the patterns( ◦ ◦ ◦ ◦

◦ • ◦ ◦
• ◦ ◦ ◦

)
and

( ◦ ◦ ◦ ◦
◦ ◦ • ◦
◦ • ◦ ◦

)
13
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Figure 2.1: Let P := P 3,1,4,5,2 be a permutation matrix from Figure 1.1. On the
left side is a permutation P [3, 3]+. The added column and row are shaded. On
the right is a permutation P [1, 2]−.

are not exactly Wilf-equivalent.
By symmetry, we can conclude that the patterns A0

P∼ 0
A

are also partially
Wilf-equivalent.

Corollary 19. Let A be a quasi-permutation matrix. Then

A
0

P∼ 0
A
.

Proof. By Theorem 18, we know that A⊤|0 P∼ 0|A⊤. Hence (A⊤|0)⊤ P∼ (0|A⊤)⊤

by Observation 8. Since (A⊤|0)⊤ = A
0 and (0|A⊤)⊤ = 0

A
, we have A0

P∼ 0
A

.

If we concentrate only on row-permutation matrices, we prove a stronger result
than Theorem 18. The second main result of this section says that pP

n(A|0) =
n · pP

n−1(A) for every row-permutation matrix A and n ≥ 2. Before we prove this
result, we introduce two operations modifying permutation matrices and prove
one technical lemma.

Let P be a permutation matrix of order n. For the indices i, j ∈ [n + 1], let
P [i, j]+ be a permutation matrix of order n + 1 obtained from P by inserting
a zero column after the (i− 1)-th column and a zero row after the (j− 1)-th row,
and then setting the entry lying on the intersection of i-th column and j-th row
to 1.1 On the other hand, we can erase the i-th column and j-th row—let P [i, j]−
be a matrix obtained from P by erasing its i-th column and j-th row. Note that
P [i, j]− is not necessarily a permutation matrix. Indeed, P [i, j]− is a permutation
matrix if and only if Pi,j = 1. See Figure 2.1 for an illustration.

Lemma 20. Let P1 and P2 be permutation matrices of order n−1. For j, j′ ∈ [n],
the following holds:

(i) If j ̸= j′, then P1[n, j]+ ̸= P2[n, j′]+.
1For i = 1, we insert a zero column to the left of the first column. For j = 1, we insert a zero

row below the first row.
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(ii) If P1 ̸= P2, then P1[n, j]+ ̸= P2[n, j′]+.

Proof. For the sake of the proof, let P+
1 := P1[n, j]+ and P+

2 := P2[n, j′]+. Choose
j, j′ ∈ [n] arbitrarily.

We prove the case (i) first. If j ̸= j′, then (P+
1 )n,j = 1 and (P+

2 )n,j = 0
because (P+

2 )n,j′ = 1 and every column contains exactly one nonzero entry. Hence
P+

1 ̸= P+
2 .

Now we prove the case (ii). Suppose that P1 ̸= P2. If j ̸= j′, then P+
1 ̸= P+

2
by (i). Otherwise, j = j′. Since P1 ̸= P2, there are indices a, b ∈ [n− 1] such that
(P1)a,b ̸= (P2)a,b. Hence (P+

1 )a,b′ ̸= (P+
2 )a,b′ for some b′ ∈ {b, b + 1} depending

on j = j′. Thus, P+
1 ̸= P+

2 .

Theorem 21. Let A ∈ {0, 1}m×k be a row-permutation matrix. For n ≥ 2, we
have

pP
n(A|0) = n · pP

n−1(A).

Proof. Let us start by showing that

pP
n(A|0) ≥ n · pP

n−1(A).

For every P ∈ PP
n−1(A) and j′ ∈ [n], we claim that P [n, j′]+ ∈ PP

n (A|0). We
proceed by contradiction. Suppose that P [n, j′]+ contains a partial copy of A|0
in P [n, j′]+ induced by (I, J) for some set of column indices I = {i1, i2, . . . , im}
and some set of row indices J . Since (A|0) is a row-permutation matrix, for every
j ∈ J there exists i ∈ I \ im such that P [n, j′]+i,j = 1. This particularly means
that j′ /∈ J because P [n, j′]+n,j′ = 1 and n /∈ I \ im. However, P contains a partial
copy of A induced by (I \ {im}, J), a contradiction. By Lemma 20, for every
P ∈ PP

n−1(A) and j′ ∈ [n], the permutation matrices P [n, j′]+ of order n are
pairwise different. Thus, there are at least n · pP

n−1(A) permutation matrices of
order n that partially avoid A|0.

On the other hand, we claim that

pP
n(A|0) ≤ n · pP

n−1(A).

For every P ∈ PP
n (A|0), we show that there is a unique permutation matrix P ′ ∈

PP
n−1(A) and a unique row index j ∈ [n] such that P = P ′[n, j]+. Let j ∈ [n] be an

index such that Pn,j = 1 and let P ′ := P [n, j]−. Recall that P ′ is a permutation
matrix of order n− 1 and P ′[n, j]+ = P . It remains to show that P ′ ∈ PP

n−1(A).
We consider two cases. If P ∈ PP

n (A), then clearly P ′ = P [n, j]− ∈ PP
n−1(A).

Otherwise, P /∈ PP
n (A). Let P [I × J ] be any partial copy of A in P induced by

(I, J) for some set of column indices I and some set of row indices J . Observe
that n ∈ I. To see this, suppose that n /∈ I. Then P would contain a partial copy
of A|0 induced by (I ∪ {n}, J). It follows that P ′ = P [n, j]− ∈ PP

n−1(A) because
every copy of A in P induced by (I, J) contains the last column of P (i.e., n ∈ I),
which has been removed to obtain P ′.

The uniqueness of P ′ ∈ Pn−1(A) and j ∈ [n] for P ∈ Pn(A|0) follows from
Lemma 20. Therefore, we find a one-to-one mapping from Pn(A|0) to [n] ×
Pn−1(A), which completes the proof.

By symmetry, we obtain the same enumeration result when we add a zero
column before the first column. Moreover, analogous results hold also for column-
permutation matrices and adding a zero row.

15



Corollary 22. Let A be a row-permutation matrix. Moreover, let B be a column-
permutation matrix. For n ≥ 2, we have

(i) pP
n(0|A) = n · pP

n−1(A),

(ii) pP
n

(
B
0

)
= n · pP

n−1(B),

(iii) pP
n

(
0
B

)
= n · pP

n−1(B).

Let A be a row-permutation matrix. We observe that A|0 and 0|A are also
row-permutation matrices. Hence pP

n(0|A|0) = n · pP
n−1(A|0) = n(n− 1) · Pn−2(A)

by the application of Theorem 21 and Corollary 22. In particular, for A = ( ◦ •
• ◦ ),

we get pn ( ◦ ◦ • ◦
◦ • ◦ ◦ ) = n(n − 1). Obviously, we can add more zero columns before

the first column or the last column and apply Theorem 21 as many times as the
number of added zero columns. We obtain the following result. For A ∈ Qm,k,ℓ,
let (0m×ℓ1|A|0m×ℓ2) ∈ Qm+ℓ1+ℓ2,k,ℓ be a quasi-permutation matrix obtained from A
by adding ℓ1 zero columns before the first column of A and adding ℓ2 zero columns
after the last column of A.

Corollary 23. Let A ∈ {0, 1}m×k be a row-permutation matrix. For all ℓ1, ℓ2 ∈
N0, if n > ℓ1 + ℓ2, then

pP
n(0m×ℓ1|A|0m×ℓ2) = (n)ℓ1+ℓ2 · pP

n−ℓ1−ℓ2(A).

Again, by symmetry, we conclude an analogous result for column-permutation
matrices. For B ∈ Qm,k,ℓ, let⎛⎜⎝0ℓ1×k

B
0ℓ2×k

⎞⎟⎠ := (0k×ℓ1|B⊤|0k×ℓ2)T .

Corollary 24. Let B ∈ {0, 1}m×k be a column-permutation matrix. For all
ℓ1, ℓ2 ∈ N0, if n > ℓ1 + ℓ2, then

pP
n

⎛⎜⎝0ℓ1×k

B
0ℓ2×k

⎞⎟⎠ = (n)ℓ1+ℓ2 · pP
n−ℓ1−ℓ2(B).

2.2 Augmenting permutation matrices by zero
row and column

For a quasi-permutation matrix A ∈ Qm,k,ℓ, through this section let

( 0 0
A 0 ) :=

(
0
A|0

)
∈ Qm+1,k+1,ℓ.

Let us mention a limitation of applications of the results (Theorem 21 and
Corollary 22) from the previous section. Let A be a row-permutation. Since
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A|0 and 0|A are not column-permutation matrices, we cannot combine Theo-
rem 21 with Corollary 22 to say something about pP

n ( 0 0
A 0 ). Nevertheless, if A is

a permutation matrix, we claim that

pP
n+2 ( 0 0

A 0 ) = pP
n+1(A) + (n+ 1)2 · pP

n(A).

Before we present a proof of this claim, we prove three auxiliary lemmas. Re-
member that P [n, n]− is a submatrix of a permutation matrix P obtained by
erasing its n-th row and n-th column.

Lemma 25. Let A ∈ Pk and P ∈ Pn be permutation matrices. The permutation
matrix P partially contains ( 0 0

A 0 ) if and only if P [n, n]− partially contains A.

Proof. For the sake of the proof, let A0 := ( 0 0
A 0 ) ∈ Qk+1,k+1,k. First, suppose

that P partially contains A0. Let P [I × J ] be a partial copy of A0 in P induced
by (I, J) for some set of column indices I = {i1, . . . , ik+1} and some set of row
indices J = {j1, . . . , jk+1}. Then (I ′, J ′), where I ′ := I \ {ik+1} and J ′ :=
J \ {jk+1}, induce a partial copy of A in P . Since n /∈ I ′ and n /∈ J ′, (I ′, J ′)
induce also a partial copy of A in P [n, n]−. Thus, P [n, n]− partially contains A.

Second, suppose that P− := P [n, n]− partially contains A. Let P−[I ′ × J ′] be
a partial copy of A in P− induced by (I ′, J ′) for some set of column indices I ′

and some set of row indices J ′. Then (I ′ ∪{n}, J ′ ∪{n}) induce a partial copy A0

in P (to see this, proceed similarly as we do in the second part of the proof of
Lemma 17.). Thus, P partially contains A0. We remark that (I, J) does not
necessarily induce an exact copy of A0 in P because the entry Pn,n can be equal
to 1.

If we erase all zero columns and rows from a quasi-permutation matrix Q ∈
Qm,k,ℓ, we obtain a submatrix perm(Q) of Q such that perm(Q) is a permutation
matrix of order ℓ. Formally, let perm(Q) := Q[I × J ], where I is the set of all
column indices i ∈ [m] such that the i-th column of Q is nonzero and J is the set
of all row indices j ∈ [k] such that the j-th row of Q is nonzero.

The second lemma says that whether a quasi-permutation matrix Q partially
contains a permutation matrix A only depends on perm(Q).

Lemma 26. Let A be a permutation matrix and let Q be a quasi-permutation ma-
trix. The quasi-permutation matrix Q partially contains A if and only if perm(Q)
partially contains A.

Proof. Suppose that Q partially contains A. Let Q[I × J ] be a partial copy of A
induced by (I, J) for some set of column indices I and some set of row indices J .
Since A is a permutation matrix, for every i ∈ I, the i-th column of Q is nonzero
because there exists j ∈ J such that Qi,j = 1. Similarly, for every j ∈ J , we show
that the j-th row of Q is nonzero. Hence no i-th row and j-th is removed from Q
to obtain perm(Q). Thus, perm(Q) partially contains A.

On the other hand, suppose that perm(Q) partially contains A. Inserting zero
rows and columns into perm(Q) does not destroy any partial copy of A. Clearly,
we can insert back zero rows and columns into perm(Q) to obtain Q. Thus, Q
partially contains A.
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For a permutation matrix P of order n and the indices i, j ∈ [n+1], let P [i, j]0
be a quasi-permutation matrix of size (n + 1) × (n + 1) with exactly n nonzero
entries obtained from P by inserting a zero column above the (i − 1)-th column
and a zero row to the right of the (j − 1)-th row.2 Notice the slight difference
between P [i, j]0 and P [i, j]+: they agree on all entries but (i, j), where we have
P [i, j]0i,j = 0 and P [i, j]+i,j = 1.
Lemma 27. Let P1 and P2 be permutation matrices of order n−2. For i, i′, j, j′ ∈
[n− 1], the following holds:

(i) If i ̸= i′ or j ̸= j′, then P1[i, j]0 ̸= P2[i′, j′]0.

(ii) If P1 ̸= P2, then P1[i, j]0 ̸= P2[i′, j′]0.
Proof. For the sake of the proof, let P 0

1 := P1[i, j]0 and P 0
2 := P2[i′, j′]0.

If i ̸= i′, then the i-th column is the only zero column of P 0
1 and i′-th column

is the only zero column of P 0
2 . Hence P 0

1 ̸= P 0
2 . We proceed analogously if j ̸= j′.

Now we prove the case (ii). Suppose that P1 ̸= P2. If i ̸= i′ or j ̸= j′,
then P 0

1 ̸= P 0
2 by (i). Otherwise, i = i′ and j = j′. Since P1 ̸= P2, there are

indices a, b ∈ [n − 2] such that (P1)a,b ̸= (P2)a,b. Hence (P 0
1 )a′,b′ ̸= (P 0

2 )a′,b′ for
some a′ ∈ {a, a+ 1} and b′ ∈ {b, b+ 1} depending on i, j. Thus, P 0

1 ̸= P 0
2 .

Finally, in order to prove the main result of this section, we extend the notion
of PP

n (A) and pP
n(A) to quasi-permutation matrices as follows. For a pattern A,

let QP
m,k,ℓ(A) be the set of all quasi-permutation matrices of size m × k with

exactly ℓ nonzero entries that partially avoid A and let qP
m,k,ℓ(A) := |QP

m,k,ℓ(A)|.
Theorem 28. Let A be a permutation matrix of order k. For every n ≥ 3, we
have

pP
n ( 0 0

A 0 ) = pn−1(A) + (n− 1)2 · pn−2(A).
Proof. For the sake of the proof, let A0 := ( 0 0

A 0 ). For a permutation ma-
trix P ∈ Pn, P partially contains A0 if and only if P [n, n]− partially contains A
by Lemma 25. Recall that P [n, n]− is either a permutation matrix of order n− 1
or a quasi-permutation matrix of size (n−1)× (n−1) with exactly n−2 nonzero
entries. Hence Lemma 25 defines a one-to-one correspondence between the set
PP

n (A0) and the set PP
n−1(A) ∪ QP

n−1,n−1,n−2(A). Thus,

pP
n(A0) = pP

n−1(A) + qP
n−1,n−1,n−2(A).

In the rest of the proof, we show that qP
n−1,n−1,n−2(A) = (n− 1)2 · pP

n−2(A).
For every P ∈ PP

n−2(A) and i, j ∈ [n − 1], the quasi-permutation matrix
P [i, j]0 partially avoids A because A is a permutation matrix. In other words,
P [i, j]0 ∈ QP

n−1,n−1,n−2(A). Moreover, by Lemma 27, if P1, P2 ∈ Pn−2(A) are
permutation matrices, then P1[i, j]0 ̸= P2[i′, j′]0 for every i, i′, j, j′ ∈ [n − 1]. It
follows that (n− 1)2 · pn−2(A) ≤ qP

n−1,n−1,n−2(A).
On the other hand, every Q ∈ QP

n−1,n−1,n−2(A) is constructed at least once in
the last paragraph. Indeed, let i, j ∈ [n − 1] such that the i-th row of Q is zero
and j-th column of Q is zero. Observe that perm(Q) ∈ PP

n−2(A) by Lemma 26
and Q = perm(Q)[i, j]0. Therefore, (n − 1)2 · pn−2(A) ≥ qP

n−1,n−1,n−2(A), which
finishes the proof.

2For i = 1, we insert a zero column to the left of the first column. For j = 1, we insert a zero
row below the first row.
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Using this theorem and symmetry we conclude that pP
n ( 0 0

0 A ), pP
n ( 0 A

0 0 ), and
pP

n ( A 0
0 0 ) are given by the same recurrence as pP

n ( 0 0
A 0 ). It implies that these

patterns belong to the same partial Wilf-equivalence class.

Corollary 29. Let A be a permutation matrix of order k. For all n ≥ 3, we have

pP
n ( 0 0

A 0 ) = pP
n ( 0 0

0 A ) = pP
n ( 0 A

0 0 ) = pP
n ( A 0

0 0 ) = pn−1(A) + (n− 1)2 · pn−2(A).

Proof. By Theorem 28 and Observation 10, we have

pP
n

(
0 0

AR 0

)
= pn−1(AR) + (n− 1)2 · pn−2(AR)
= pn−1(A) + (n− 1)2 · pn−2(A).

Since
(

0 0
AR 0

)R
= ( 0 0

0 A ), we can write

pP
n ( 0 0

0 A ) = pP
n

(
0 0

AR 0

)
= pn−1(A) + (n− 1)2 · pn−2(A) = pP

n ( 0 0
A 0 ) .

Analogously, we prove the remaining two equalities.

We mention at least one nice consequence of the previous result. Recall that
pP

n(A) = cn for any permutation matrix of order 3, where cn is the n-th Catalan
number. Using Corollary 29 we obtain the following enumerating result.

Corollary 30. Let A be a permutation matrices of order 3. For n ≥ 3 and all
i, j ∈ {1, 4}, we have

pP
n

(
A[i, j]0

)
= cn−1 + (n− 1)2 · cn−2.

In particular, all patterns of the form
(

A3 A4
A1 A2

)
∈ Q4,4,3 belong to the same

partial Wilf equivalence class, where Ai is a permutation matrix of order 3 and
the other Aj are 0.

The reader may pose a question if there exists an analogy of Corollary 29 for
the exact avoidance. The answer is no. Indeed, let A =

( ◦ • ◦
• ◦ ◦
◦ ◦ •

)
. The computer

enumeration shows that ( 0 0
A 0 ) and ( A 0

0 0 ) are not exactly Wilf-equivalent (see
Table A.2 in Appendix).
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3. Shape-Wilf equivalence and
nice filled Ferrers diagrams
For quasi-permutation matrices A ∈ Qm,k,ℓ and B ∈ Qm′,k′,ℓ′ , let

( 0 B
A 0 ) ∈ Qm+m′,k+k′,ℓ+ℓ′

be a quasi-permutation matrix whose bottom-left corner contains the matrix A,
its top-right corner contains the matrix B, and the remaining entries are equal
to zero. We note that if A and B are permutation matrices, then ( 0 B

A 0 ) is also
a permutation matrix.

A pattern A is said to be small if it has at most 4 columns and at most 4
rows. By the results obtained so far, we can classify the majority of the small
patterns into partial Wilf equivalence classes. After this chapter, we will be able
to resolve the remaining small patterns.

This chapter is motivated by the result by Backelin, West, and Xin [4]: if A
and B are shape-Wilf-equivalent permutation matrices and C is an arbitrary
permutation matrix, then

( 0 C
A 0 ) and ( 0 C

B 0 ) ,

are shape-Wilf-equivalent and hence also partial Wilf-equivalent. In Section 3.1,
we provide a necessary background for the definition of shape-Wilf equivalence,
which is given in Section 3.2. For now, think of shape-Wilf equivalence as some re-
finement of partial Wilf equivalence. Careful examination of the proof of this
result shows that we can replace the permutation matrices A,B, and A by quasi-
permutation matrices. For example, we can deduce that the patterns( ◦ ◦ ◦ •

◦ • ◦ ◦
• ◦ ◦ ◦

)
and

( ◦ ◦ ◦ •
• ◦ ◦ ◦
◦ • ◦ ◦

)
are partial Wilf-equivalent because it is well known that ( ◦ •

• ◦ ) and ( • ◦
◦ • ) are shape-

Wilf-equivalent. We summarize the known results about shape-Wilf equivalence
in Section 3.2.

In Sections 3.3 and 3.4, we prove that

( 0 A
X 0 ) and ( 0 A

Y 0 ) ,

are partial Wilf-equivalent, where X = ( ◦ ◦ •
• ◦ ◦ ), Y = ( • ◦ ◦

◦ ◦ • ) and A is any quasi-
permutation matrix whose first column is nonzero. We remark that X and Y are
not shape-Wilf-equivalent as we will see in Section 3.2 and the assumption that
the first column of C is nonzero cannot be omitted.

3.1 Ferrers diagrams
The main objective here is to introduce the necessary background for the following
three sections. Let us start with the definitions of a diagram and a Ferrers
diagram.
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Figure 3.1: On the left side is a diagram D represented by the set
{(1, 3), (2, 1), (2, 2), (2, 3), (3, 2), (4, 2), (4, 3)}. On the right side is a diagram D′

represented by the set {(i, j) | i, j ∈ [5], i + j ≤ 6}. Only the diagram D′ is
a Ferrers diagram.

Definition 31. A diagram is a finite set of cells in the plane, where each cell is
a square of unit size whose vertices have positive integer coordinates.

We remark that each cell C in the plane is uniquely identified by a pair
(i, j) ∈ N × N, where i is the x-coordinate and j is the y-coordinate of bottom-
left vertex of C. Thus, there is a one-to-one correspondence between the set of all
diagrams and the set of all finite subset of N×N. We will use both representations
interchangeably (see the examples in Figure 3.1).

Let D be a diagram. The j-th row Rj(D) of D is the set of all cells of D which
are identified by pairs (ℓ, j) for some ℓ ∈ N and the i-th column Ci(D) of D is the
set of all cells of D which are identified by pairs (i, ℓ) for some ℓ ∈ N. In other
words,

Rj(D) = {(ℓ, j) ∈ D | ℓ ∈ N} and Ci(D) = {(i, ℓ) ∈ D | ℓ ∈ N}.

The size of j-th row Rj(D) is rj(D) := |Rj(D)| and the size of i-th column Ci(D)
is ci(D) := |Ci(D)|. We write Rj, Ci, rj, ci instead of Rj(D), Ci(D), rj(D), ci(D),
respectively, if it is clear from the context which diagram is meant.

Definition 32. A Ferrers diagram1 F is a diagram satisfying, for every j ∈ N,
the following two conditions:

(i) Rj(F ) =
{

(ℓ, j) ∈ F | ℓ ∈ [rj(F )]
}

and

(ii) rj(F ) ≥ rj+1(F ).

Remember that [rj(F )] = {1, 2, . . . , ri(F )} is the empty set if ri(F ) = 0. The
first condition says that the cells of every nonempty row Rj(F ) are contiguous
and the leftmost cell of Rj(F ) is (1, j). The second condition says that the size
of (j + 1)-th row is not larger than the size of j-th row. In Figure 3.1 (b), we see
an example of a Ferrers diagram, however, the diagram in Figure 3.1 (a) is not
a Ferrers diagram.

1Sometimes Ferrers diagram is called Ferrers shape.
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Figure 3.2: Quasi-permutation ma-
trix

( ◦ ◦ • ◦ ◦
• ◦ ◦ ◦ ◦
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considered as a fill-

ing of a rectangular diagram.
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Figure 3.3: Permutation matrix
from Figure 1.1 considered as
a transversal.

Since (1, 1) is the most bottom-left cell of any nonempty Ferrers diagram,
henceforth, as no confusion can arise, we do not depict the x-axis and y-axis
when we draw a Ferrers diagram F (as we do in Figure 3.1 (b)).

For a Ferrers diagram F , let r(F ) denote the number of nonempty rows of F
and let c(F ) denote the number of nonempty columns of F . Observe that the
rows R1, R2, . . . , Rr(F ) are exactly the nonempty rows in F . Similarly, the columns
C1, C2 . . . , Cc(F ) are exactly the nonempty columns in F . We remark that r(F ) =
c1 and c(F ) = r1. Despite these simple equalities, it is usually more transparent
to write r(F ) instead of c1 and c(F ) instead of r1. A Ferrers diagram F is called
rectangular if r1 = rr(F ). In other words, F is rectangular if all rows of F have
the same size (and hence all columns have the same size). If, in addition to
r1(F ) = rr(F ) it holds r(F ) = c(F ), the Ferrers diagram F is called square. We
simply write a rectangular (square) diagram instead of a rectangular (square)
Ferrers diagram.

Our intention is to generalize quasi-permutation matrices so that their rows
(or columns) may consist of different number of entries. For this purpose, we
define diagrams. It remains to fill each cell by a number 0 or 1 in such a way that
every row and every column contain at most one nonzero cell. This is captured
in the following definition.

Definition 33. A filled diagram is a pair (D,φ), where D is diagram endowed
with a mapping φ : D → {0, 1} such that

• the number of cells C in any row Rj of D with φ(C) = 1 is at most one,

• the number of cells C in any column Ci of D with φ(C) = 1 is at most one.

The underlying diagram and underlying mapping of a filled diagram (D,φ) is
the diagram D and the mapping φ, respectively. Instead of φ((i, j)), although
it is formally correct, we write φ(i, j). If no confusion can arise, we use the
same symbol D to denote both the filled diagram (D,φ) and the underlying
diagram D. In this case, we write D(i, j) to denote φ(i, j). A filled diagram
(D,φ) is called a filled Ferrers diagram if the underlying diagram D is a Ferrers
diagram. Similarly, we define a filled rectangular (square) diagram. Similarly as
for matrices, when we draw filled diagrams, we usually depict only ones, while
zeros are represented by empty cells.

Let (D,φ) be a filled diagram. A cell C in D is called zero (with respect
to φ) if φ(C) = 0 and nonzero if φ(C) = 1. We extend this definition to rows and
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columns—a nonempty rowRi ofD is called zero (with respect to φ) if φ(Ri) = {0}
and nonzero if it is not zero. Analogously, we define zero and nonzero columns.

Definition 34. A transversal is a filled Ferrers diagram (F, φ) such that no row
or no column of F is zero.

Every quasi-permutation matrix naturally corresponds to a filled rectangular
diagram and vice versa (see Figure 3.2). Moreover, there is also a straightforward
one-to-one correspondence between permutation matrices and transversals (see
Figure 3.3). All definitions for filled diagrams are consistent with the definitions
for quasi-permutation matrices. Hence filled diagrams may be regarded as gener-
alization of quasi-permutation matrices. From this point forward, we move from
quasi-permutation matrices to filled rectangular diagrams and vice versa without
usually saying it explicitly.

Finally, we define a notion of avoidance of filled diagrams, which may be
viewed as a generalization of partial avoidance of quasi-permutation matrices
(Definition 4). For two filled diagrams D and D′ with the same underlying
diagram, we write D ≤ D′ if ∀(a, b) ∈ D : D(a, b) ≤ D′(a, b). Moreover, we
write D = D′ if D ≤ D′ and D′ ≤ D.

Definition 35. Let D be a filled diagram. For a set of column indices I =
{i1, i2, . . . , im} and a set of row indices J = {j1, j2, . . . , jk}, a filled subdiagram
of D induced by (I, J), denoted D[I×J ], is the filled diagram with cells in [m]×[k]
such that, for every a ∈ [m] and b ∈ [k],

• (a, b) ∈ D[I × J ] if and only if (ia, jb) ∈ D

• if (a, b) ∈ D[I × J ], then D[I × J ](a, b) = D(ia, ib).

It is not hard to see that if F is a filled Ferrers diagram, then F [I × J ] is
also a filled Ferrers diagram for any set of column indices I and any set of row
indices J .

Definition 36. Let A be a filled Ferrers diagram. We say that a filled diagram D
contains A if there exists a set of column indices I and a set of row indices J such
that

A ≤ D[I × J ].
The filled subdiagram D[I × J ] is called a copy of A in D induced by (I, J). If D
does not contain A, we say that D avoids A.

More specifically, we say that D contains a copy of A induced by (I, J) or
(I, J) induced a copy of A in D if D[I × J ] is a copy of A in D induced by
(I, J). Intuitively, D contains a copy of A induced by (I, J) if we can erase all
columns from D except those whose indices are in I and all rows from D except
those whose indices are in J to obtain a diagram D′ of the same “shape” as the
“shape” of A and, moreover, every cell in D′ contains a number that is not smaller
than the number in the corresponding cell in A. For example, the transversal in
Figure 3.3 contains a copy of the rectangular diagram in Figure 3.2 induced by
({1, 2, 3, 4, 5}, {2, 3, 4}) (i.e., we erase the first and last rows). In our settings,
a filled Ferrers diagram A in Definition 36 is always a quasi-permutation matrix
considered as a filled rectangular diagram and it is sometimes called a pattern.
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Later it will be useful to construct from a filled diagram smaller filled diagrams
by removing cells from the diagram that do not satisfy certain conditions. For
two filled diagrams D and D′, we say that D′ is a filled subdiagram of D if

D′ ⊆ D and ∀(a, b) ∈ D′ : D′(i, j) = D(i, j).

We use this notion to introduce new filled diagrams—for a diagram D, by saying
“let D′ be a filled subdiagram of D with the underlying diagram C” (we assume
that C ⊆ D) we define the unique filled diagram D′ such that D′ is a filled
subdiagram of D and the underlying diagram of D′ is C.

3.2 Shape-Wilf equivalence
In this section, we define shape-Wilf equivalence as an analogy of Wilf equivalence
for transversals. Then we state known results about shape-Wilf equivalence that
we use to classify small patterns into partial Wilf equivalence classes in Chapter 4.

For a Ferrers diagram F and a pattern A, let TF (A) be the set of all transver-
sals with the underlying diagram F that avoid A. We say that two quasi-
permutation matrices A and B considered as filled rectangular diagrams are
shape-Wilf-equivalent, written A

s∼ B, if for every Ferrers diagram F , we have
|TF (A)| = |TF (B)|

Since the transversals of square Ferrers diagram F are exactly permutation
matrices of order c(F ) = r(F ), if two patterns are shape-Wilf-equivalent, then
they are also partially Wilf-equivalent.

Observation 37. Let A and B be quasi-permutation matrices. Then

A
s∼ B =⇒ A

P∼ B.

Theorem 38 ([4]). Let A and B be two shape-Wilf equivalent permutation ma-
trices, and let C be an arbitrary permutation matrix. Then

( 0 C
A 0 ) s∼ ( 0 C

B 0 ) .

A careful examination of the proof of Theorem 38 by Jeĺınek in [5, Proof of
Proposition 1] shows that we can replace the permutation matrices A,B, and C
by quasi-permutation matrices to obtain the following theorem.

Theorem 39. Let A and B be two shape-Wilf-equivalent quasi-permutation ma-
trices, and let C be an arbitrary quasi-permutation matrix. Then

( 0 C
A 0 ) P∼ ( 0 C

B 0 ) .

We remark that in the previous theorem, we can strengthen the conclusion
by replacing P∼ by s∼. However, we do not need this added generality. The proofs
of Theorems 38 and 39 are omitted because they follow similar ideas as the proof
of Theorem 42 proved in Section 3.4.

Let Ik be the identity matrix of order k and Jk be the anti-identity matrix of
order k. Formally,

(Ik)i,j =

⎧⎨⎩1 if i = j

0 otherwise
and (Jk)i,j =

⎧⎨⎩1 if i+ j = k + 1
0 otherwise.
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Figure 3.4: The first 6 transversals contain X = ( ◦ ◦ •
• ◦ ◦ ) and the last 9 transver-

sals contain Y = ( • ◦ ◦
◦ ◦ • ) . Since we consider all transversals of the underlying

diagram, it implies that X and Y are not shape Wilf-equivalent.

The theorem by Backelin, West, and Xin [4] says that Ik and Jk are shape Wilf-
equivalent.

Theorem 40 ([4]). For all k ∈ N, we have

Ik
s∼ Jk.

For future reference, we prove here that X = ( ◦ ◦ •
• ◦ ◦ ) and Y = ( • ◦ ◦

◦ ◦ • ) are not
shape Wilf-equivalent. It is sufficient to find a single Ferrers diagram F for which
|FF (X)| ≠ |FF (Y )|. See Figure 3.4 for a proof.

Observation 41. The patterns ( ◦ ◦ •
• ◦ ◦ ) and ( • ◦ ◦

◦ ◦ • ) are not shape Wilf-equivalent.

3.3 Nice filled Ferrers diagrams
Through this section, let X := ( ◦ ◦ •

• ◦ ◦ ) and Y := ( • ◦ ◦
◦ ◦ • ). We aim to prove the

following theorem.

Theorem 42. Let A ∈ Qm,k,ℓ be a quasi-permutation matrix. If there there exists
t ∈ [k] such that A1,t = 1, then

( 0 A
X 0 ) P∼ ( 0 A

Y 0 ) .

We remark that this theorem does not follow from Theorem 38 because X
and Y are not shape-Wilf-equivalent as we have seen in the last section. Moreover,
the assumption that the first column of A is nonzero cannot be ommited because
the patterns

X ′ :=
( ◦ ◦ ◦ ◦ •

◦ ◦ • ◦ ◦
• ◦ ◦ ◦ ◦

)
and Y ′ :=

( ◦ ◦ ◦ ◦ •
• ◦ ◦ ◦ ◦
◦ ◦ • ◦ ◦

)
are not partially Wilf-equivalent since pP

6 (X ′) = 434 and pP
6 (Y ′) = 430 (these

values were computed by our program [3]).
Let us first prove Thereom 42 for A = ( • ). In other words, we want to prove

that
X+ :=

( ◦ ◦ ◦ •
◦ ◦ • ◦
• ◦ ◦ ◦

)
and Y + :=

( ◦ ◦ ◦ •
• ◦ ◦ ◦
◦ ◦ • ◦

)
are partially Wilf-equivalent. The first step is to give a right characterization
of permutation matrices avoiding X+ and Y +, respectively (see Observation 44).
For that, we restate the definition of right-to-left maxima of permutation in terms
of permutation matrices.
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Definition 43. Let P ∈ Pn be a permutation matrix. A pair (a, b) is a right-to-
left maximum of P if Pa,b = 1 and Pi,j = 0 for all a < i ≤ n and b < j ≤ n.

We denote by RL(P ) the set of all right-to-left maxima of P . Observe that
(n, j) ∈ RL(P ) for any permutation matrix P ∈ Pn, where j ∈ [n] is an index
such that Pn,j = 1. For a permutation matrix P , let F (P ) be a filled subdiagram
of P with the underlying diagram

{(i, j) | ∃(a, b) ∈ RL(P ) : i < a and j < b}.

We claim that F (P ) is a filled Ferrers diagram. Indeed, if (i, j + 1) ∈ F (P ),
then (i, j) ∈ F (P ). And if (i + 1, j) ∈ F (P ), then (i, j) ∈ F (P ). It implies that
conditions (i) and (ii) in Definition 32 are satisfied. We have the following sim-
ple characterization of permutation matrices avoiding the patterns X+ and Y +,
respectively.

Observation 44. A permutation matrix P partially avoids X+ (or Y +) if and
only if F (P ) avoids X (or Y ).

Let P be a permutation matrix of order n and let F := F (P ). We claim
that if ci(F ) > ci+1(F ), then the column Ci+1(F ) is zero. It is enough to show
that (i + 1, ci + 1) is a right-to-left maximum of P , where ci := ci(F ). Since
(i, ci) ∈ F (P ) and (i, ci + 1) /∈ F (P ), there exists a right-to-left maximum (a, b)
of P such that a > i and b = ci + 1. Moreover, since (i + 1, ci) /∈ F , we have
a = i + 1. Hence (a, b) = (i + 1, ci + 1) is a right-to-left of maximum of P . It
follows that Ci+1(F ) is zero because (i+ 1, ci + 1) /∈ F is the only nonzero entry
in Ci+1(P ). In general, we call any filled diagram with such property “nice”.

Definition 45. A filled Ferrers diagram F is called nice if, for every i ∈ [c(F )−1],
the column Ci+1(F ) is zero whenever ci(F ) > ci+1(F ).

For a Ferrers diagram G, let NG be the set of all nice filled Ferrers diagrams
with the underlying diagram G. And for a pattern A, let NG(A) be the set of
all nice filled diagrams from NG that avoid A. Although the patterns X and Y
are not shape-Wilf-equivalent, they are “nice-Wilf-equivalent” if we consider nice
filled Ferrers diagrams. More precisely, we prove the following lemma.

Lemma 46. Let G be a Ferrers diagram. Then there exists a bijection

Ψ: NG(X) −→ NG(Y )

preserving the position of zero columns and zero rows.

We are now ready to sketch the proof that X+ and Y + are partially Wilf-
equivalent. We use Lemma 46 to find a bijection Φ: PP

n (X+) → PP
n (Y +) .

Take P ∈ PP
n (X+) and construct F (P ). Let G be the underlying Ferrers di-

agram of F (P ). Since F (P ) ∈ NG(X) by Observation 44, we replace F (P )
in P by Ψ(F (P )) to obtain a permutation matrix P ′. It can be shown that
F (P ′) = Ψ(F (P )). Since F (P ′) ∈ NG(Y ), we know that P ′ partially avoids Y +

by Observation 44. Using a similar idea we prove Theorem 42 in full generality
in the next section. The rest of this section is devoted to the proof of Lemma 46.
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Figure 3.5: The partition of columns and partition rows of given filled nice Ferrers
diagram H by their sizes. The shaded cells form a filled subdiagram H|2×≥3.

The crucial step in our proof of Lemma 46 is to find an appropriate char-
acterization of nice filled Ferrers diagrams avoiding X and Y , respectively (see
Lemma 47 and Lemma 48). For that, we need to partition the set of columns
and the set of rows of a (filled) Ferrers diagram by their sizes.

For a Ferrers diagram G, we define an equivalence relation ⊓ on the set of all
nonempty columns of G as follows: Ci ⊓ Cj if and only if ci = cj (i.e., Ci and Cj

have the same size). We denote by C1(G), . . . , Cℓ(G) the partition of the set of all
nonempty columns of G induced by ⊓. Moreover, we assume that this partition
is ordered decreasingly; that is, if Ci ∈ Ca(G) and Cj ∈ Cb(G) for a < b, then
ci > cj. We refer to this ordered partition simply as the partition of columns
of G by their sizes. In a similar way, we define the partition of rows of G by
their sizes into R1(G), . . . ,Rℓ′(G). However, contrary to the order of partition
of columns, we assume that the partition of rows is ordered increasingly; that is,
if Ri ∈ Ra(G) and Rj ∈ Rb(G) for a < b, then ri < rj. Moreover, for a ∈ [ℓ], let
I(Ca(G)) be the set of all indices of columns in Ca(G). Formally,

I(Ca(G)) := {i | Ci ∈ Ca(G)}.

For a filled Ferrers diagram F , we define the partition of columns (or rows)
of F by their sizes to be the partition of columns (or rows) of the underlying
diagram of F by their sizes. See Figure 3.5 for an illustration.

Two following remarks are worth mentioning. First, we have ℓ = ℓ′ for every
Ferrers diagram G. Second, if F and F ′ are two filled Ferrers diagrams with the
same underlying diagram, the partition of columns (rows) of F by their sizes is
the same as the partition of columns (rows) of F ′ by their sizes.

Unless otherwise stated, till the beginning of the proof of Lemma 46,
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let F be an arbitrary but fixed nice filled Ferrers diagram with the par-
tition C1, . . . , Cℓ of columns of F by their sizes and partition R1, . . . ,Rℓ

of rows of F by their sizes.

We characterize nice filled Ferrers diagrams avoiding X by looking only at
columns in Ca−1 and Ca for every a ∈ [ℓ] \ {1}. Before that, we introduce a few
more definitions. For a, b ∈ [ℓ], we denote by F |a×≥b a filled subdiagram of F
with the underlying diagram

F ∩ Ca ∩
ℓ⋃

k=b

Rk.

See Figure 3.5 for an example. We say that F |a×≥b is zero if F |a×≥b(i, j) = 0 for
every cell (i, j) ∈ F |a×≥b and F |a×≥b is nonzero if it is not zero. Moreover, let
Ha,b(F ) and La,b(F ) be the highest and lowest index of nonempty row of F |a×≥b,
respectively. Formally,

Ha,b(F ) := max{j | (i, j) ∈ F |a×≥b and F (i, j) ̸= 0}

and
La,b(F ) := min{j | (i, j) ∈ F |a×≥b and F (i, j) ̸= 0}.

If F |a×≥b is zero, then Ha,b(F ) and La,b(F ) are undefined.

Unless otherwise stated, till the beginning of the proof of Lemma 46,
we assume that for every a ∈ [ℓ], F |a×≥a is nonzero.

Note that by the assumption Ha,a(F ) and La,a(F ) are always well-defined for
every a ∈ [ℓ]. Moreover, it also says that every column partition Ca contain at
least one column that is nonzero in F . We are now ready to give a characterization
of nice filled Ferrers diagrams avoiding X.

Lemma 47. The nice filled Ferrers diagram F avoids X if and only if, for all
a ∈ [ℓ], the following two conditions hold

(i) F |a×≥a avoids X and

(ii) if a ≥ 2, then either F |a−1×≥a is zero or La−1,a(F ) > Ha,a(F ).

Proof. Suppose first that F avoids X. For all a ∈ [ℓ], F |a×≥a avoids X be-
cause F |a×≥a is a filled subdiagram of F . For the sake of contradiction, assume
that there exists a ∈ [ℓ] \ {1} such that F |a−1×≥a is nonzero and La−1,a(F ) <
Ha,a(F ). It follows that there exist two nonzero cells (i1, j1) ∈ F |a−1×≥a and
(i2, j2) ∈ F |a×≥a such that i1 < i2 and j1 < j2. Let m be the index of the leftmost
nonempty column in F |a×≥a. Since F is a nice filled diagram, the column Cm(F )
is zero. Hence i1 < m < i2. It implies that F contains a copy of X induced by
({i1,m, i2}, {j1, j2}), a contradiction. Thus, the conditions (i) and (ii) are true
for all a ∈ [ℓ].

On the other hand, suppose that F contains X. Let F [I × J ] be a copy of X
in F induced by (I, J) for some set of column indices I = {i1, i2, i3} and some set
of row indices J = {j1, j2} such that the difference i3 − i1 is as small as possible.
If I ⊆ I(Ca) for some a ∈ [ℓ], then also F |a×≥a contains X. Otherwise, i1 ∈ I(Cb)
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and i3 ∈ I(Ca) for 1 ≤ b < a ≤ ℓ. We consider two cases. First, suppose that
b = a − 1. Since F (i1, j1) = 1 and F (i3, j2) = 1, we have La−1,a(F ) ≤ j1 and
Ha,a(F ) ≥ j2. Hence

La−1,a(F ) ≤ j1 < j2 ≤ Ha,a(F )

and so the condition (ii) is not true for some a ∈ [ℓ].
Second, suppose that b < a − 1. If F |a−1×≥a is zero, then let (i′3, j′

2) be
a nonzero cell in F |a−1×≥a−1 (remember that F |a−1×≥a−1 is nonzero). Observe
that j′

2 > j2. Moreover, let i′2 be the index of the leftmost nonempty column in
F |a−1×≥a−1. Since i1 < i′2 < i′3 < i3 and j1 < j2 < j′

2, F [{i1, i′2, i′3} × {j1, j
′
2}] is

a copy of X in F such that i1 − i′3 < i1 − i3, a contradiction with the choice of I.
We can now assume that F |a−1×≥a is nonzero. If there exists a nonzero cell

(i′3, j′
2) ∈ F |a−1×≥a such that j′

2 > j2, then we reach a contradiction in the same
way as in the previous paragraph. Otherwise, all cells (i, j) ∈ F |a−1×≥a such
that j > j2 are zero. In particular, La−1,a(F ) < j2 . On the other hand, clearly
Ha,a(F ) ≥ j2. Hence La−1,a(F ) < Ha,a(F ). Thus, at least one condition (i) or (ii)
is not true for some a ∈ [ℓ] as required.

Along the same line, we characterize nice filed Ferrers diagrams avoiding Y ,
however, it is not sufficient to look only at the columns in Ca−1 and Ca for every
a ∈ [ℓ] \ {1}. For a ∈ [ℓ] \ {1}, let b(F, a) ∈ [a − 1] be the largest number such
that F |b(F,a)×≥a is nonzero. If no such number exists, we set b(F, a) := 0.

Lemma 48. The nice filled Ferrers diagram F avoids Y if and only if, for all
a ∈ [ℓ], the following two conditions hold

(i) F |a×≥a avoids Y and

(ii) if a ≥ 2 and b(F, a) > 0, then Hb(F,a),a(F ) < La,a(F ).

Proof. We omit the proof of the forward implication since it is similar to the
proof of forward implication of Lemma 47.

For the backward implication, suppose that F contains Y . Let F [I × J ] be
a copy of Y in F induced by (I, J) for some set of column indices I = {i1, i2, i3}
and some set of row indices J = {j1, j2} such that the difference i3 − i1 is as small
as possible. If I ⊆ I(Ca) for some a ∈ [ℓ], then F |a×≥a contains Y . Otherwise,
i1 ∈ I(Cb) and i3 ∈ I(Ca) from some a, b ∈ [ℓ] such that b < a. By the choice of I,
we have b = b(F, a). Observe that Hb,a(F ) ≥ j2 and La,a(F ) ≤ j1. Hence

Hb,a(F ) ≥ j2 > j1 ≥ La,a(F ).

Thus, the condition (i) or the condition (ii) is not true for some a ∈ [ℓ].

Suppose for a moment that F avoids X. In other words, F satisfies the
conditions (i) and (ii) in Lemma 47 for every a ∈ [ℓ]. Roughly speaking, the main
idea of proof of Lemma 46 is transform F into a nice filled Ferrers diagram F ′

in ℓ successive steps while keeping the following invariant: after each step t ∈ [ℓ],
F ′ satisfies the conditions (i) and (ii) in Lemma 48 for every a ∈ [t] and the
conditions (i) and (ii) in Lemma 47 for every a ∈ {t+1, t+2 . . . , ℓ}. After the last
step, notice that F ′ avoids Y by Lemma 48. We now describe the transforming
operations.
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Figure 3.6: Recall the nice filled diagram H from Figure 3.5. In this figure, we
see the nice filled diagram φ2(H) obtained from H by reverting the ordered of
nonzero row in H|2×≥2.

Fix a, b ∈ [ℓ]. We denote by F |≤a×≥b a filled subdiagram of F with the
underlying diagram

F ∩
a⋃

k=1
Ck ∩

ℓ⋃
k=b

Rk.

A row Rj(F ) of F is said to be zero in F |a×≥b if Rj(F |a×≥b) is a zero row, and
nonzero in F |a×≥b otherwise. Similarly, a row Rj(F ) of F is said to be zero in
F |≤a×≥b if Rj(F |≤a×≥b) is a zero row, and nonzero in F |≤a×≥b otherwise. Let

Ea(F ) := {j ∈ [r(F )] | the j-th row Rj(F ) is nonzero in F |a×≥a}

and

E≤a(F ) := {j ∈ [r(F )] | the j-th row Rj(F ) is nonzero in F |≤a×≥a}.

Let G be the underlying diagram of F . Note that the partition of column
of G by their sizes is C1, . . . , Cℓ and the partition of rows of G by their sizes is
R1, . . . ,Rℓ. For a ∈ [ℓ], the first transforming operation

φa : NG → NG

is defined as follows. Given a nice filled Ferrers diagram F ∈ NG, the operation φa

reverts the order of nonzero rows in F |a×≥a. Suppose that Ea(F ) = {j1, j2, . . . , jk}.
Formally, F ′ = φa(F ) is a nice filled Ferrers diagram with the underlying G such
that

• ∀i ∈ I(Ca), ∀jt ∈ Ea(F ) : F ′(i, jt) = F (i, jk−t+1) and
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• ∀(i, j) ∈ F : i /∈ I(Ca) ∨ j /∈ Ea(F ) =⇒ F ′(i, j) = F (i, j).

See Figure 3.6 for an illustration. Note that this transforming operation pre-
serves the positions of zero columns and rows. Since Rjt(F ) is nonzero in F |a×≥a

if and only if Rjk−t+1(F ′) is nonzero in F ′|a×≥a, we have Ea(F ′) = Ea(F ). It implies
that

F (i, jt) = F ′(i, jk−t+1) = F ′′(i, jk−(k−t+1)+1) = F ′′(i, jt),

where F ′′ := φa(F ′) = φa(φa(F )). Hence F = φa(φa(F )) and so φa is a bijection.
We summarize this results in the following observation.

Observation 49. Let a ∈ [ℓ]. The transforming operation φa : NG → NG is
a bijection preserving the positions of zero columns and zero rows. Moreover, for
every F ∈ NG and b ∈ [ℓ], the following holds:

(i) if b ̸= a, then F ′|b×≥b = F |b×≥b,

(ii) Eb(F ′) = Eb(F ),

(iii) F |b×≥a is zero if and only if F ′|b×≥a is zero,

(iv) Lb,b(F ) = Lb,b(F ′) and Hb,b(F ) = Hb,b(F ′).

where F ′ = φa(F ).

Proof. To see the case (i), take (i, j) ∈ F such that i ∈ I(Cb) for some b ̸= a and
observe that F ′(i, j) = F (i, j) by definition.

For a = b, we have already observed that Eb(F ′) = Eb(F ). For b ̸= a, this
equality holds by the case (i). The cases (iii) and (iv) directly follow from (ii).

By reverting the order of nonzero rows in X we obtain Y and vice versa. In
other words, we have φ1(X) = Y and hence the following observation.

Observation 50. Let F be a nice filled Ferrers diagram. For a ∈ [ℓ], F |a×≥a

avoids X if and only if φa(F )|a×≥a avoids Y .

For a ∈ [ℓ] and m ∈ {0, 1, . . . r(G)}, the second transforming operation

ψa,m : NG → NG

is defined as follows. Given a nice filled Ferrers diagram F ∈ NG with E≤a(F ) =
{j1, j2, . . . , jk}. For 0 ≤ m ≤ k, the operation ψa,m swaps the block of nonzero
rows {Rj1(F ), . . . , Rjm(F )} and the block of nonzero rows {Rjm+1 , . . . , Rjk

(F )}
while keeping the order inside of each block. Formally, F ′ := ψa,m(F ) is a nice
filled Ferrers diagram with the underlying diagram G such that

• ∀i ∈ ⋃a
s=1 I(Cs), ∀t ∈ {1, . . . ,m} : F ′(i, jt) = F (i, jt+k−m),

• ∀i ∈ ⋃a
s=1 I(Cs), ∀t ∈ {m+ 1, . . . , k} : F ′(i, jt) = F (i, jt−m),

• ∀(i, j) ∈ F : i /∈ ⋃a
t=1 I(Ct) ∨ j /∈ E≤a(F ) =⇒ F ′(i, j) = F (i, j).
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Figure 3.7: Recall the nice filled diagram φ2(H) from Figure 3.6. In this figure,
we see the nice filled diagram ψ2,3(φ2(H)).

For m > k, we define ψa,m(F ) = F .
See Figure 3.7 for an illustration. Observe that also the second transforming

operation preserves the position of zero columns and rows. Moreover, we claim
that E≤a(φa,m(F )) = E≤a(F ). For m = 0 or m > k, the equality holds trivially.
For 0 < m ≤ k, it follows from the fact that the function f : [m] → [m] defined
as

f(t) =

⎧⎨⎩t+ k −m if t ≤ m,

t−m if t > m

is a bijection.
Finally, we prove that ψa,m is a bijection. It is sufficient to show that ψa,m

is injective. Let F1 and F2 be different nice filled Ferrers diagrams with the
same underlying diagram G. If E≤a(F1) = E≤a(F2), then ψa,m(F1) ̸= ψa,m(F2) be-
cause ψa,m swaps the same two blocks of rows in both nice filled Ferrers diagrams.
Otherwise, E≤a(F1) ̸= E≤a(F2). In this case, we also have ψa,m(F1) ̸= ψa,m(F2)
because E≤a(ψa,m(Fi)) = E≤a(Fi) for i ∈ {1, 2}.

Observation 51. For a ∈ [ℓ] and m ∈ {0, 1, . . . , r(G)}, the transforming opera-
tion ψa,m : NG −→ NG is a bijection preserving the position of zero columns and
rows.

Proof of Lemma 46. Let G be a Ferrers diagram with the partition C1, C2, . . . , Cℓ

of columns by their sizes and the partition R1,R2, . . . ,Rℓ of rows by their sizes.
For k ∈ [ℓ+ 1], let N k

G be the set of all nice filled diagrams F with the underlying
diagram G such that F |a×≥a is nonzero for every a ∈ [ℓ] and satisfies the following
three conditions:
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(i) ∀a ∈ {1, 2, . . . k − 1} : F |a×≥a avoids Y and if a ≥ 2 and b(F, a) > 0, then
Hb(F,a),a(F ) < La,a(F ),

(ii) ∀a ∈ {k, k + 1, . . . ℓ} : F |a×≥a avoids X and if a ≥ 2, then either F |a−1×≥a

is zero or La−1,a(F ) > Ha,a(F ),

(iii) let a(F, k) be the smallest number such that F |a(F,k)×≥k is nonzero; if
a(F, k) < k ≤ ℓ, then La(F,k),k(F ) > Hk,k(F ).

For every k ∈ [ℓ], a(F, k) is well-defined because F |k×≥k is nonzero, and it
satisfies 1 ≤ a(F, k) ≤ k. Note that the condition (i) above is equivalent to
the assumption that F has no copy of Y in F |≤k−1×≥1, while the conditions (ii)
and (iii) together guarantee that F has no copy of X whose rightmost column is
in ⋃ℓ

t=k Ct.
The main step of the proof is to construct a bijection χk

G : N k
G → N k+1

G pre-
serving the position of zero columns and zero rows for every k ∈ ℓ. If no confusion
can arise, we drop the lower index in N k

G and χk
G.

To properly refer to the conditions (i), we say that a nice filled Ferrers dia-
gram F satisfies the condition (i) for k′ (or k = k′) if the condition (i) is true
for F and k = k′. Similarly, F satisfies the conditions (ii) and (iii) for k′ (or
k = k′).

If k = 1, we define χ1 : N 1 → N 2 as follows

∀F ∈ N 1 : χ1(F ) := φ1(F ).

By Observation 49, we know that χ1 is injective and preserves the position of zero
columns and rows. We claim that χ1(F ) ∈ N 2 for every F ∈ N 1. Let F ∈ N 1 be
arbitrary and let F ′ := χ1(F ). Since F |1×≥1 avoids X, by Observation 50, F ′|1×≥1
avoids Y . Hence F ′ satisfies the condition (i) for k = 2. By Observation 49,
F ′ satisfies the condition (ii) for k = 2. Moreover, the condition (ii) and (iii)
are equivalent for k = 2. Hence F ′ satisfies the condition (iii) for k = 2 and
so F ′ ∈ N 2. It remains to show that χ1 is surjective. Take F ′ ∈ N 2 and
let F := φ1(F ′). We claim that F ∈ N 1. Note that F trivially satisfies the
conditions (i) and (iii) for k = 1. Moreover, it satisfies the condition (ii) for
k = 1 by Observation 49. Finally, recall that χ1(F ) = φ1(F ) = φ1(φ1(F ′)) = F ′.
Thus, χ1 is a bijection from N 1 to N 2 preserving the position of zero columns
and zero rows.

Let k ∈ [ℓ] \ {1} be arbitrary. We first explore the structure of nice filled
Ferrers diagrams in N k. Take an arbitrary nice filled Ferrers diagram F from
F ∈ N k.

Claim 1. Let {a1, a2, . . . , ah} be the set of all numbers such that F |ai×≥k is
nonzero and ai < k. Then

La1,k(F ) < La2,k(F ) < · · · < Lah,k(F ).

Proof. There is nothing to prove for h ≤ 1. If h ≥ 2, take an arbitrary number i
such that 2 ≤ i ≤ h. Since ai < k and F satisfies the condition (i) for k, we know
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that b(F, ai) = ai−1 and so Hai−1,ai
(F ) < Lai,ai

(F ). Hence Hai−1,k(F ) < Lai,k(F )
because F |ai−1×≥k and F |ai×≥k are both nonzero. Thus,

Lai−1,k(F ) ≤ Hai−1,k(F ) < Lai,k(F )

as required.

If a(F, k) < k ≤ ℓ, then a(F, k) = a1 and

Hk,k(F ) < La(F,k),k(F ) < La2,k(F ) < · · · < Lah,k(F )

by previous claim. Suppose that E≤k(F ) = {j1, j2, . . . jt}. The direct conse-
quence of the chain of inequalities is that there exists a unique m ∈ [t] such
that Ek(F ) = {j1, j2, . . . , jm}. For future reference, let E := E≤k(F ) \ Ek(F ) =
{jm+1, jm+2, . . . , jt}. We construct χk : N k → N k+1 as follows

∀F ∈ N k : χk(F ) := ψk,m(φk(F )).

We remark that the exact value of ’m’ depends on F and k. We claim that
χk(F ) ∈ N k+1. We first discuss the properties of F ′ := φk(F ).

Claim 2. The nice filled Ferrers diagram F ′ satisfies the condition (i) and (iii)
for k and satisfies the condition (ii) for k + 1. Moreover, Ek(F ′) = Ek(F ) and
E≤k(F ′) = E≤k(F ). In particular, E = E≤k(F ′) \ Ek(F ′).

Proof. Directly follows from Observation 49.

Second, we show that F ′′ := ψk,m(F ′) = χk(F ) satisfies the conditions (i),(ii),
and (iii) for k + 1. Recall that E≤k(F ′′) = E≤k(F ′). Moreover, we have

Ek(F ′′) = {jt−m+1, jt−m+2, . . . , jt}.

Let E ′′ := Ek(F ′′) \ Ek(F ′′) = {j1, j2, . . . jt−m}.

Claim 3. For every a ∈ [k]\{1}, if b(F ′′, a) > 0, then Hb(F ′′,a),a(F ′′) < La,a(F ′′).

Proof. First, take a ∈ [k−1]\{1} arbitrary such that b(F ′′, a) > 0. Observe that
b := b(F ′′, a) = b(F ′, a). Suppose that La,a(F ′) = j and Hb,a(F ) = j′. Since F ′

satisfies the condition (i) for k, we know that j′ < j. We consider three cases:

• j, j′ ∈ E ; let s, s′ ∈ {m + 1,m+ 2, . . . , t} be such that j = js and j′ = js′ .
Clearly, s′ < s. Notice that La,a(F ′′) = js−m and Hb,a(F ′′) = js′−m. Since
s′ −m < s−m, we have Hb,a(F ′′) < La,a(F ′′).

• j /∈ E and j′ ∈ E ; from the previous case we know that Hb,a(F ′′) = js′−m.
Moreover, La,a(F ′′) = La,a(F ′) because nonzero rows in F ′|a×≥a are not
reordered. Hence

Hb,a(F ′′) = js′−m < jt < La,a(F ′) = La,a(F ′′).

• j, j′ /∈ E ; from the previous case we know that La,a(F ′′) = La,a(F ′). For all
i ∈ [r(G)] \ E , the i-th row of F ′ is nonzero in F ′|a×≥a if and only if the
i-th row of F ′′ is nonzero in F ′′|a×≥a Moreover, since E≤a(F ′′) = E≤a(F ′),
we have Hb,a(F ′′) = Hb,a(F ′). Hence

Hb,a(F ′′) = Hb,a(F ′) < La,a(F ′) = La,a(F ′′).
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Second, suppose that a = k and b(F ′′, k) > 0. Again observe that b :=
b(F ′′, k) = b(F ′, k). Hence a(F ′, k) < k. Since F ′ satisfies the condition (iii)
for k, we have La(F ′,k),k(F ′) > Hk,k(F ). By Claim 1 and Observation 49,

Hk,k(F ′) < La1,k(F ′) < La2,k(F ′) < · · · < Lah,k(F ′).

Observe that a1 = a(F ′, k) and ah = b. In particular,

Lk,k(F ′) ≤ Hk,k(F ′) < Lb,k(F ′) ≤ Hb,k(F ′).

Hence Hb,k(F ′′) < Lk,k(F ′′).

Claim 4. For every a ∈ [k], F ′′|a×≥a avoids Y .

Proof. Since F ′ satisfies the condition (i) for k, F ′|a×≥a avoids Y for every a ∈
[k− 1]. Moreover, F ′|k×≥k avoids Y by Observation 50 because F |k×≥k avoids X.
Let a ∈ [k] be arbitrary. Note that F ′′|a×≥a also avoids Y because only the
positions of nonzero rows in F ′|a×≥a are changed but not their order.

Claim 5. The nice filled Ferrers diagram F ′′ satisfies the condition (i) for k+ 1.

Proof. Combine Claim 3 and Claim 4.

Claim 6. The nice filled Ferrers diagram F ′′ satisfies the condition (ii) for k+1.

Proof. Since F ′′|a×≥a = F ′|a×≥a for every a ∈ {k + 1, . . . , ℓ} and F ′ satisfies
condition (ii) for k+1, we know that F ′′|a×≥a avoids X for every a ∈ {k+1, . . . , ℓ}
and, if F |a−1×≥a is nonzero, La−1,a(F ′′) > Ha,a(F ′′) for every a ∈ {k + 2, . . . , ℓ}.

It remains to verify that

Lk,k+1(F ′′) > Hk+1,k+1(F ′′) = Hk+1,k+1(F ′)

if F ′′|k×≥k+1 is nonzero. Suppose that F ′′|k×≥k+1 is nonzero. Observe that
F ′|k×≥k+1 is nonzero. Hence Lk,k+1(F ′) > Hk+1,k+1(F ′) because F ′ satisfies the
condition (ii) for k + 1. Clearly, Lk,k+1(F ′′) ≥ Lk,k+1(F ′), which completes the
proof.

Claim 7. The nice filled Ferrers diagram F ′′ satisfies the condition (iii) for k+1.

Proof. Let a := a(F ′′, k + 1) be the smallest number such that F ′′|a×≥k+1 is
nonzero and a < k + 1 ≤ ℓ. We claim that

La,k(F ′′) > Hk+1,k+1(F ′′).

Observe that a = a(F ′, k) because F ′′|b×≥k is zero for all b < a by Claims 1 and 2.
Hence La,k(F ′′) = Lk,k(F ′). It follows that F ′|k×≥k+1 is nonzero. Since F ′ satisfies
the condition (ii) for k + 1, we know that Lk,k+1(F ′) > Hk+1,k+1(F ′). Hence

La,k(F ′′) = Lk,k(F ′) = Lk,k+1(F ′) > Hk+1,k+1(F ′) = Hk+1,k+1(F ′′).
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Thus, χk is a mapping from N k to N k+1. Moreover, it preserves the position
of zero columns and rows because φm and ψk,m also preserve the position of zero
columns and rows. We claim that χk is injective. Let F,H ∈ N k be two distinct
nice filled Ferrers diagrams. Moreover, let m := |Ek(F )| and m′ := |Ek(H)|.
Recall that

χk(F ) = ψk,m(φk(F )) and χk(H) = ψk,m′(φk(H)).

Since φk is a bijection, we know that φk(F ) ̸= φk(H). If m = m′, then χk(F ) ̸=
χk(H) because ψk,m is a bijection. If m ̸= m′, then χk(F ) ̸= χk(H) because
both φk, ψk,m preserve the number of nonzero rows in F |k×≥k and both φk, ψk,m′

preserve the number of nonzero rows in H|k×≥k. Hence χk is injective as claimed.
The next part of the proof shows that χk is surjective. This part should be

considered as a new proof and, unless noted otherwise, the objects introduced
here have no connection to the object introduced so far. Let F ′′ ∈ N k+1. Our
goal is to find F ∈ N k such that χk(F ) = F ′′.

Claim 8. Let {a1, a2, . . . , ah} be the set of all numbers such that F ′′|ai×≥k is
nonzero and ai ≤ k. Then

La1,k(F ′′) < La2,k(F ′′) < · · · < Lah,k(F ′′).

Proof. Almost identical to the proof of Claim 1.

Since F ′′|k×≥k is nonzero, we have ah = k. Suppose that

E≤k(F ′′) = {j1, j2, . . . , jt}.

It follows that there exists a unique m ∈ [t] such that Ek(F ′′) = {jm, jm+1, . . . , jt}.
For further reference, let E ′′ = E≤k(F ′′) \ Ek(F ′′) = {j1, j2, . . . , jm−1}. We claim
that

F := φk(ψk,m−1(F ′′))

belongs to N k. Observe that χk(F ) = F ′′. Let us first consider F ′ := ψk,m−1(F ′′).

Claim 9. The filled nice Ferrers diagram F ′ satisfies the condition (iii) for k.

Proof. Suppose that a(F ′′, k) < k. Since E≤k(F ′′) = E≤k(F ′), we know that
a := a(F ′, k) = a(F ′′, k). Clearly, a1 = a and ah = k. Hence La,k(F ′′) <
Lk,k(F ′′) ≤ Hk,k(F ′′) by Claim 8. Thus, La,k(F ′) > Hk,k(F ′) as claimed.

Claim 10. The filled nice Ferrers diagram F ′ satisfies the condition (ii) for k+1.

Proof. By slightly adjusting the first paragraph in the proof of Claim 6, it is
enough to verify that

Lk,k+1(F ′) > Hk+1,k+1(F ′),

if F ′|k×≥k+1 is nonzero. Recall that Hk+1,k+1(F ′) = Hk+1,k+1(F ′′).
Suppose that F ′|k×≥k+1 is nonzero. It follows that a(F ′′, k+ 1) < k+ 1. Since

F ′′ satisfies the condition (iii) for k+1, we have La(F ′′,k+1),k+1(F ′′) > Hk+1,k+1(F ′′).
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Note that Lk,k(F ′) = La(F ′′,k),k(F ′′) . Moreover, Lk,k+1(F ′) = Lk,k(F ′) because
F ′|k×≥k+1 is nonzero. Hence

Lk,k+1(F ′) = Lk,k(F ′) = La(F ′′,k),k(F ′′) > Hk+1,k+1(F ′′) = Hk+1,k+1(F ′).

Claim 11. For every a ∈ [k] \ {1}, if b(F, a) > 0, then Hb(F ′,a),a(F ′) < La,a(F ′).

Proof. Analogous to the first paragraph in the proof of Claim 3. The only differ-
ence is that the nonzero rows in F ′′|≤k−1×≥k are moved up and not down.

Claim 12. For every a ∈ [k], F ′|a×≥a avoids Y .

Proof. Let a ∈ [k] be arbitrary. Since F ′′|a×≥a avoids Y , F ′|a×≥a also avoids Y
because only the positions of nonzero rows in F ′′|a×≥a is changed but not their
order.

Claim 13. The filled nice Ferrers diagram F ′ satisfies the condition (i) for k.

Proof. Combine Claim 11 and Claim 12.

Finally, we show that F satisfies the conditions (i), (ii), and (iii) for k.

Claim 14. The filled nice Ferrers diagram F satisfies the condition (i) and (iii)
for k.

Proof. Since F ′ satisfies the condition (i) and (iii) for k, the claim directly follows
from Observation 49.

Claim 15. The filled nice Ferrers diagram F satisfies the condition (ii) for k.

Proof. Since F ′|k×≥k avoids Y , F |k×≥k avoids X by Observation 50. Recall that
F |a×≥a = F ′|a×≥a for every a ∈ {k + 1, k + 2, . . . , ℓ}. Hence F |a×≥a avoids X
for every a ∈ {k, k + 1, . . . , ℓ} because F ′ satisfies the condition (ii) for k + 1.
Moreover, since F ′ satisfies the condition (ii) for k + 1, we have La−1,a(F ) >
Ha,a(F ) for every a ∈ {k + 1, k + 2, . . . , ℓ} whenever F |a−1×≥a is nonzero.

It remains to verify that if F |k−1×≥k is nonzero, then

Lk−1,k(F ) > Hk,k(F ).

Suppose that F |k−1×≥k is nonzero. It implies that F ′′|k−1×≥k is nonzero. Hence
Lk−1,k(F ′′) < Lk,k(F ′′) ≤ Hk,k(F ′′) by Claim 8. Hence Lk−1,k(F ′) > Hk,k(F ′) and
so Lk−1,k(F ) > Hk,k(F ) as required.

Thus, χk
G is a bijection from N k

G to N k+1
G preserving the position of nonzero

columns and rows. Hence, for every Ferrers diagram G, there exists a bijection χ∗
G

from N 1
G to N ℓ+1

G preserving the position of nonzero columns and rows of G.
Observe that N 1

G ⊆ NG(X) and N ℓ+1
G ⊆ NG(Y ) by Lemma 47 and Lemma 48,

respectively. However, both sets N 1
G and N ℓ+1

G do not contain nice filled Ferrers
diagrams F (with the underlying diagram G) such that F |a×≥a is zero for some
a ∈ [ℓ]. Let us define the size of the partition C1(G), C2(G), . . . , Cℓ(G) of columns
of G by their sizes to be ℓ. For a Ferrers diagram G, we define a bijection
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χG : NG(X) → NG(Y ) by induction on the size ℓ of the partition of columns of G
by their sizes.

Let G be a Ferrers diagram and let C1(G), C2(G), . . . , Cℓ(G) be the partition
of columns of G by their sizes. If ℓ = 1, we define χG as follows

∀F ∈ NG(X) : χG(F ) := φ1(F ).

Note that χG has the required properties by Observations 49 and 50.
Suppose that ℓ ≥ 2 and take F ∈ NG(X) arbitrary. If F |a×≥a is nonzero for

every a ∈ ℓ, we define χG(F ) := χ∗
G(F ). Otherwise, let a ∈ [ℓ] be the smallest

index such that F |a×≥a is zero. We temporarily erase the zero columns in F |a×≥a.
Formally, we consider the following nice filled Ferrers diagram

F ′ := F [[c(G)] \ I(Ca(G)) × [r(G)]].

Let G′ be the underlying diagram of F ′. Note that the partition of columns of G′

by their sizes is
C1(G), . . . , Ca−1(G), Ca+1(G), . . . , Cℓ(G).

Hence, by induction hypothesis, there exists a bijection χG′ : NG′(X) → NG′(Y )
preserving the position of zero columns and rows. Let χG(F ) be a nice filled
Ferrers diagram obtained from χG′(F ′) by inserting back the zero columns so
that its underlying diagram is G. Lemma 52 and Lemma 53, which are stated
and proved after the end of this proof, ensure that this construction is correct: F ′

avoids X and χG(F ) avoids Y . Moreover, notice that χG preserves the position
of zero columns and rows by the construction.

Finally, we claim that χG is invertible. Take F ∈ NG(Y ) arbitrary. If F |a×≥a

is nonzero for every a ∈ [ℓ], then χ−1
G (F ) = (χ∗

G)−1(F ). Otherwise, let a ∈ [ℓ] be
the smallest index such that F |a×≥a is zero. Again, consider

F ′ := F [[c(G)] \ I(Ca(G)) × [r(G)]].

Let G′ be the underlying diagram of F ′. Then χ−1
G (F ) is obtained from χ−1

G′ (F ′)
by inserting back the zero columns so that its underlying diagram is G. Lemma 53
ensures that F ′ avoids Y and Lemma 52 ensures that χ−1

G (F ) avoids X. There-
fore, χG is a bijection from NG(X) to NG(Y ) preserving the position of zero
columns and zero rows.

Finally, we state and prove two lemmas used in the proof of Lemma 46. For
a filled Ferrers diagram F with the partition C1, C2, . . . , Cℓ of columns of F by
their sizes, let F \ Ca be a shorthand for F [[c(F )] \ I(Ca) × [r(F )]]. Intuitively,
F \ Ca is a filled Ferrers diagram obtained from F by erasing all its columns in
Ca.

Lemma 52. Let F be a nice filled Ferrers diagram and let C1, . . . , Cℓ be partition
of columns of F by their sizes. If F |a×≥a is zero for some a ∈ [ℓ], F avoids X if
and only if F \ Ca avoids X.

Proof. If F avoids X, then F \ Ca avoids X as well.
On the other hand, suppose that F contains X. We claim that F \ Ca also

contains X. To see this, it is sufficient to find a copy of X in F induced by (I, J)
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for some set of column indices I and some set of row indices J such that i /∈ I(Ca)
for every i ∈ I.

Let F [I×J ] be a copy of X in F induced by (I, J), where I = {i1, i2, i3} is a set
of columns indices and J = {j1, j2} is a set of rows indices such that the difference
i3 − i2 is as small as possible. We claim that i /∈ I(Ca) for every i ∈ I. Since
F |a×≥a is zero, we know that i1, i3 /∈ I(Ca). For the sake of contradiction, suppose
that i2 ∈ I(Ca). Let b > a be an index such that i3 ∈ I(Cb) and let i′2 ∈ I(Cb)
be the index of the leftmost nonempty column in F |b×≥b. Since F is a nice filled
Ferrers diagram, we have F (i′2, j) = 0 for every j such that (i′2, j) ∈ F . Hence
i′2 < i3. Let I ′ := {i1, i′2, i3}. Thus, F [I ′ × J ] is a copy of X in F induced by
(I ′, J). This contradicts the choice of I and J because i2 < i′2.

The same lemma is true if we replace X by Y . The proof is a verbatim copy
of the previous proof and it is omitted.

Lemma 53. Let F be a nice filled Ferrers diagram C1, . . . , Cℓ be partition of
columns of F by their sizes. If F |a×≥a is zero for some a ∈ [ℓ], then F avoids Y
if and only if F \ Ca avoids Y .

3.4 Matrix bottom-left corner extension
As in the previous section, let X := ( ◦ ◦ •

• ◦ ◦ ) and Y := ( • ◦ ◦
◦ ◦ • ). Our aim is to

prove Theorem 42, which says that if A is a quasi-permutation matrix whose first
column is nonzero, then

( 0 A
X 0 ) P∼ ( 0 A

Y 0 ) .

For a permutation matrix P considered as a transversal and a cell (a, b) ∈ P ,
let Fa,b(P ) be a filled subdiagram of P with the underlying diagram

{(i, j) | a < i ≤ n and b < j ≤ n}.

Proof of Theorem 42. Let A ∈ Qm,k,ℓ be a quasi-permutation matrix whose first
column is nonzero. It follows that there exists a row index t ∈ [k] such that
A1,t = 1. Moreover, for the rest of the proof, let

X+ := ( 0 A
X 0 ) and Y + := ( 0 A

Y 0 ) .

Note that X+, Y + ∈ Qm+3,k+2,ℓ+2.
For every n ∈ N, our goal is to show that pP

n(X+) = pP
n(Y +). For that, we fix

n ∈ N and construct a bijection

Φ: PP
n (X+) −→ PP

n (Y +).

Let P ∈ PP
n (X+) be an arbitrary permutation matrix of order n that partially

avoids X+. Recall that we look at permutation matrices as transversals and vice
versa.

The initial step is to extract a filled subdiagram of P that avoids X. Let us
color the cells of P by either green or red as follows—a cell (a, b) ∈ P is colored
green in P if Fa,b(P ) contains A; otherwise, the cell (a, b) is colored red. We say

39



that a cell (a, b) is green (or red) in P if it is colored green (or red) in P . Let
FG := FG(P ) be a filled subdiagram of P with the underlying diagram

{(a, b) ∈ P | (a, b) is colored green}

and let FR := FR(P ) be a filled subdiagram of P with the underlying diagram

{(a, b) ∈ P | (a, b) is colored red}.

The notions defined for P in this paragraph are defined in the same way for
any other permutation matrix of order n. We remark that if A = ( • ), then
FG = F (P ), where F (P ) is defined in the previous section.

We now prove several claims about the coloring and the filled diagrams FG

and FR. The following claim is a simple observation.

Claim 0. If (a + 1, b + 1) is a green cell in P , then (a + 1, b) and (a, b + 1) are
green cells in P .

Claim 1. The filled diagram FG is a nice filled Ferrers diagram.

Proof of Claim 1. By Claim 0, FG is a filled Ferrers diagram. It remains to prove
that FG is nice. Let i ∈ [c(FG)−1] be a column index such that ci(FG) > ci+1(FG).
We claim that Ci+1(FG) is a zero column. Let ci := ci(FG). Since (i, ci) ∈ FG and
(i+ 1, ci) /∈ FG, every copy of A in Fi,ci

(P ) induced by (I, J) contains (i+ 1)-th
column of P (i.e., i+1 ∈ I). Since the leftmost column of A is nonzero, there must
exist a row index j > ci such that P (i+ 1, j) = 1. In particular, P (i+ 1, j′) = 0
for every j′ < j. Hence Ci+1(FG) is a zero column.

Claim 2. The nice filled Ferrers diagram FG avoids X.

Proof of Claim 2. We proceed by contradiction. Suppose that FG contains a copy
of X induced by (I, J) for some I = {i1, i2, i3} and J = {j1, j2}. Since (i3, j2)
is a green cell in P , the filled diagram Fi3,j2(P ) contains a copy of A induced by
(I ′, J ′). Observe that i3 < i′ for every i′ ∈ I ′ and j2 < j′ for every J ′. Hence
P contains a copy of X+ induced by (I ∪ I ′, J ∪ J ′), a contradiction (here it is
crucial that we require only that X+ ≤ P [I ∪ I ′ × J ∪ J ′] and not equality).

Claim 3. If (a, b) ∈ P is a green cell in P , then there is a copy of A in Fa,b(P )
induced by (I, J) such that, for every i ∈ I and j ∈ J , the cell (i, j) is red in P .

Proof of Claim 3. Let Fa,b(P )[I × J ] be a copy of A induced by (I, J) for some
I = {i1, i2, . . . , im} and J = {j1, j2, . . . , jk} such that i1 is a large as possible. We
claim that (i1, j1) is a red cell in P . If not, we can find a copy of A in Fi1,j1(P )
induced by (I ′, J ′), a contradiction because i1 < i′ for all i′ ∈ I ′. Moreover, for
every i ∈ I and j ∈ J , the cell (i, j) is red in P by Claim 0 because (i1, j1) is red
in P and i1 ≤ i, j1 ≤ j, which finishes the proof of this claim.

Let G be the underlying Ferrers diagram of FG. Note that FG ∈ NG(X) by
Claims 1 and 2. Let P ′ be a permutation matrix of order n obtained from P
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by replacing FG(P ) by Ψ(FG(P )), where Ψ: NG(X) −→ NG(Y ) is the bijection
from Lemma 46. Formally,

P ′(a, b) =

⎧⎨⎩P (a, b) if (a, b) ∈ FR(P )
Ψ(FG(P ))(a, b) if (a, b) ∈ FG(P ).

Observe that P ′ is indeed a permutation matrix because Ψ preserves the position
of zero rows and zero columns.

Let us color the cell of P ′ by either green or red using the same rule as we
color the cells of P . Moreover, define F ′

G := FG(P ′) and F ′
R := FR(P ′) in the

same way as we define FG(P ) and FR(P ).

Claim 4. F ′
R = FR.

Proof of Claim 4. We need to only verify that the underlying diagram of F ′
R is

the same as the underlying diagram of FR. If (a, b) is a red cell in P , then (a, b)
is also a red cell in P ′ because Fa,b(P ) = Fa,b(P ′) by definition. On the other
hand, if (a, b) is a green cell in P , there is a copy of A in Fa,b(P ) induced by (I, J)
such that, for every i ∈ I and j ∈ J , the cell (i, j) is red in P by Claim 3. Since
red cells in P are also red in P ′, Fa,b(P ′) contains a copy of A induced by (I, J).
Hence (a, b) is a green cell in P ′.

It implies that the underlying diagram of F ′
G is the same as the underlying

diagram of FG. Hence, Ψ(FG) = F ′
G.

Claim 5. P ′ ∈ PP
n (Y +).

Proof of Claim 5. We proceed by contradiction. Suppose that P ′ contains a copy
of Y + induced by (I, J) for some I = {i1, i2, . . . , im+3} and J = {j1, j2, . . . , ik+2}.
In particular, P ′ contains a copy of Y induced by ({i1, i2, i3}, {j1, j2}). Since
Ψ(FG) = F ′

G and FG avoids X by Claim 2, we know that F ′
G avoids Y by

Lemma 46. It implies that (a, b) is a red cell in P ′ for some a ∈ {i1, i2, i3} and
b ∈ {j1, j2}. However, Fa,b(P ′) contains a copy of A induced by ({i4, i5, . . . , im+3},
{j3, j4, . . . , jk+2}), a contradiction because (a, b) is a red cell in P ′.

We define the bijection Φ: PP
n (X+) −→ PP

n (Y +) by letting Φ(P ) := P ′. It
remains to show that Φ is indeed a bijection or, equivalently, that Φ is invertible.
The latter one follows from two facts: first that Ψ is invertible and second that Φ
preserves the color of cells (see Claim 4). Our proof of Theorem 42 is now
complete.
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4. Classification of small patterns
Recall that P∼ is an equivalence on the set Q of all quasi-permutation matrices
given by A

P∼ B if and only if pP
n(A) = pP

n(A) for every n. The equivalence P∼
is called partial Wilf equivalence and A and B are said to be partially Wilf-
equivalent if A P∼ B. For a pattern A ∈ Q, we denote by

[A]P := {B ∈ Q | A P∼ B}

the partial Wilf equivalence class of A.
In this chapter, we utilize the results from previous chapters to classify pat-

terns of size at most 4×4 into partial Wilf equivalence classes—for every pattern
A ∈ Qm,k,ℓ, where 1 ≤ m, k ≤ 4 and 0 ≤ ℓ ≤ min{m, k}, we determine its partial
Wilf equivalence class [A]P. Since A and A⊤ are symmetric, their partial Wilf
equivalence classes are the same.

Observation 54. Let A ∈ Qm,k,ℓ be a quasi-permutation matrix. Then

[A]P = [A⊤]P.

Hence it is sufficient to determine only the partial Wilf equivalence classes of
patterns that have at least as many columns as rows. In the following observation,
we reduce the number of patterns that can belong to the partial Wilf equivalence
class of A.

Observation 55. Let A ∈ Qm,k,ℓ and B ∈ Qm′,k′,ℓ′ be quasi-permutation matri-
ces. If max{m, k} ≠ max{m′, k′}, then A and B are not partially Wilf-equivalent.

Proof. Without loss of generality, we can assume that max{m, k} = m and
max{m′, k} = m′ (otherwise we consider A⊤ or B⊤). Moreover, we can also
assume that m < m′ (otherwise we interchange the role of A and B).

Every permutation matrix P of order m partially avoids B because B has
too many columns. On the other hand, there exists a permutation matrix P ′ of
order m that partially contains A. We construct P ′ from A by adding m−k zero
rows and after that m − ℓ ones so that every column and row contains exactly
one nonzero entry. Hence pP

m(A) < pP
m(B) = m!.

Let Q∗
≤m,≤k be the set of all quasi-permutation matrices of size at most m×k

that have at least as many columns as rows. Our goal is to determine the partial
Wilf equivalence class of every pattern A ∈ Q∗

≤4,≤4. By Observation 55, no pattern
with more than 4 columns or more than 4 rows is partially Wilf-equivalent to
a pattern of size at most 4 × 4. Thus, it remains to decide which patterns
in Q∗

≤4,≤4 are partially Wilf-equivalent to A.
We have created a computer program [3] that enumerates the number pP

n(A) of
permutation matrices of order n that partially avoid a given pattern A ∈ Q∗

≤4,≤4
for every n ∈ [8]. With this data (see Table A.1 in Appendix), we easily identify
pairs of patterns of size at most 4×4 that are not partially Wilf-equivalent. On the
other hand, the data suggest which patterns might be partially Wilf-equivalent.
Trivially, symmetric patterns are partially Wilf-equivalent (see Observation 10).
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The interesting part is to prove or disprove that nonsymmetric patterns A and B
are partially Wilf-equivalent if pP

n(A) = pP
n(B) for every n ∈ [8]. Using the results

from the two previous chapters, we prove that all such patterns A and B are
indeed partially Wilf-equivalent.

The plan of this chapter is as follows. In Section 4.1, we introduce a “one-line”
representation of quasi-permutation matrices, which is a more compact represen-
tation than a 2-dimensional array for listing a large number of patterns. In
Section 4.2, we determine the partial Wilf equivalence class of zero pattern 0m×k

for arbitrary m and k, where 0m×k is the unique pattern in Qm,k,0. Moreover, we
determine the partial Wilf equivalence classes of patterns of size at most 4 × 4
with exactly one nonzero entry. Finally, in Section 4.3, we determine the partial
Wilf equivalence classes of the remaining patterns of size at most 4 × 4.

4.1 Linear representation of quasi-permutation
matrices

It is not practical to draw hundreds of patterns as 2-dimensional arrays because
each of them occupies a nontrivial space on a printed page. For this reason, we
introduce a “one-line” representation of quasi-permutation matrices. This repre-
sentation is used in Section 4.3 and Appendix. We represent a quasi-permutation
matrix Q ∈ Qm,k,ℓ as a sequence of numbers (a1, a2, . . . , am)|k, where

ai =

⎧⎨⎩j if there exists j ∈ [k] such that Qi,j = 1
0 otherwise.

If k is clear from the context, we write (a1, a2, . . . , am). Observe that the sequence
(a1, a2, . . . , am)|k contains m − ℓ zeros and ℓ distinct numbers from [k]. On the
other hand, every such sequence represents a unique quasi-permutation matrix.
For example, ( • ◦ ◦ ◦

◦ ◦ ◦ • ) is represented by (2, 0, 0, 1)|2 but (2, 0, 0, 1)|3 represents( ◦ ◦ ◦ ◦
• ◦ ◦ ◦
◦ ◦ ◦ •

)
.

If we write a sequence (a1, a2, . . . , am)|k, we automatically assume that 0 ≤
ai ≤ k for every i ∈ [m]. Since every sequence (a1, a2, . . . , am)|k denotes a unique
quasi-permutation matrix Q, we can write (a1, a2, . . . , am)|k anywhere we can
write Q. For example, we say (a1, a2, . . . , am)|k and (b1, b2, . . . , bm)|k are partially
Wilf-equivalent meaning that the quasi-permutation matrices represented by the
sequences are partially Wilf-equivalent.

Reformulation of theorems

For the reader’s convenience, we restate some theorems from previous chapters
in the “one-line” representation.
Theorem 56 (Theorem 18 restated). Let

(a1, a2, . . . , am)|k
be a quasi-permutation matrix. Then

(0, a1, a2, . . . , am)|k P∼ (a1, a2, . . . , am, 0).
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For the next set of theorems, it is useful the introduce the following notion.
The direct sum of quasi-permutation matrices

(a1, a2, . . . , am)|k and (b1, b2, . . . , bm′)|k′

is the quasi-permutation matrix

(a1, a2, . . . , am)|k ⊕ (b1, b2, . . . , bm′)|k′ = (c1, c2, . . . , cm+m′)|k+k′ ,

where

ci =

⎧⎪⎪⎨⎪⎪⎩
ai if i ≤ m

bi−m + k if i > m and bi−m > 0
0 otherwise.

Theorem 57 (Theorem 38 restated). Let (a1, a2, . . . , am)|m and (b1, b2, . . . , bm)|m
be shape-Wilf-equivalent permutation matrices. For any quasi-permutation matrix
(c1, c2, . . . , cm′)|k′, we have

(a1, a2, . . . , am)|m ⊕ (c1, c2, . . . , cm′)k′
s∼ (b1, b2, . . . , bm)|m ⊕ (c1, c2, . . . , cm′)k′ .

Theorem 58 (Theorem 42 restated). Let

(a1, a2, . . . , am)|k

be a quasi-permutation matrix such that a1 ̸= 0. Then

(1, 0, 2) ⊕ (a1, a2, . . . , am)|k P∼ (2, 0, 1) ⊕ (a1, a2, . . . , am)|k.

Theorem 59 (Theorem 40 restated). For any k ∈ N, we have

(1, 2, . . . , k)k
s∼ (k, k − 1, . . . , 1)k.

4.2 Zero and single-one patterns
Let us denote by 0m×k the unique pattern in Qm,k,0. It is easy to compute
the number of permutation matrices partially avoiding 0m×k and A ∈ Qm,1,1,
respectively.

Observation 60. If k ≤ m, then

pP
n(0m×k) =

⎧⎨⎩n! if n < m

0 otherwise.

Observation 61. Let A ∈ Qm,1,1 be a quasi-permutation matrix. Then

pP
n(A) =

⎧⎨⎩n! if n < m

0 otherwise.

Proof. Let i ∈ [m] be a column index such that Ai,1 = 1. We claim that any
permutation matrix P of order n ≥ m partially contains A. Indeed, let j ∈ [n]
be a row index such that Pi,j = 1. Then P contains a partial copy of A induced
by ([m], {j}).
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We show that patterns of the same shape with exactly one nonzero entry are
partially Wilf-equivalent.

Lemma 62. Let A,B ∈ Qm,k,1 be quasi-permutation matrices. Then A
P∼ B.

Proof. Let i ∈ [m] and j ∈ [k] be such that Ai,j = 1. The first i− 1 columns of A
and the first j − 1 rows of A are zero. Let C ∈ Qm,1,1 be a quasi-permutation
matrix obtained from A by moving the first i−1 columns of A after the last column
and moving the first j − 1 rows of A after the last row. Note that C1,1 = 1. By
Theorem 18 and Corollary 19, we have A P∼ C.

Analogously, we deduce that B P∼ C. Thus, A P∼ B as required.

Next, we claim that if a nonzero pattern has at least two columns and two
rows, then the pattern is avoided by a sufficiently large permutation matrix. Let
1m×k ∈ Qm,k,1 be a quasi-permutation matrix such that (1m×k)1,k = 1.

Observation 63. Let A ∈ Qm,k,ℓ be a quasi-permutation matrix with ℓ ≥ 1. If
2 ≤ k ≤ m, then pP

m(A) > 0.

Proof. Let B ∈ Qm,k,1 be a partial copy of A with exactly one nonzero entry (B
is obtained from A by changing some ones to zeros). By Lemma 11, we know
that pP

m(B) ≤ pP
m(A). And by Lemma 62, we know that B P∼ 1m×k. Moreover,

pP
m(1m×k) > 0 because any permutation matrix P of size m × m with P1,1 = 1

partially avoids 1m×k. Hence

0 < pP
m(1m×k) = pP

m(B) ≤ pP
m(A).

We are finally prepared to determine the partial Wilf equivalence classes of
zero patterns. Let Qm,≤m,0 := ⋃m

b=1 Qm,b,0 and Q≤m,m,0 := ⋃m
a=1 Qa,m,0.

Theorem 64. For every m, k ∈ N such that k ≤ m, we have

[0m×k]P = Qm,≤m,0 ∪ Q≤m,m,0 ∪ Qm,1,1 ∪ Q1,m,1.

Proof. By Observations 60 and 61, we have

Qm,≤m,0 ∪ Qm,1,1 ⊆ [0m×k]P.

Moreover,
Q≤m,m,0 ∪ Q1,m,1 ⊆ [0m×k]P

because symmetric patterns belong to the same partial Wilf-equivalence class.
Let A ∈ Qm′,k′,ℓ′ be a pattern. Without loss of generality, we can assume

that k′ ≤ m′. If m′ ̸= m, then A and 0m×k are not partially Wilf-equivalent
by Observation 55. From now on, we assume that that m′ = m. If ℓ′ = 0, or
if ℓ′ = 1 and k′ = 1, we know that A ∈ Qm,≤m,0 or A ∈ Qm,1,1. Otherwise,
ℓ′ ≥ 1 and k′ ≥ 2. In this case, A and 0m×k are not partially Wilf-equivalent by
Observation 63. Therefore,

[0m×k]P = Qm,≤m,0 ∪ Q≤m,m,0 ∪ Qm,1,1 ∪ Q1,m,1.

45



Recall that a pattern A ∈ Qm,k,1 is partially Wilf-equivalent to every pattern
B ∈ Qm,k,1. Hence A is also partially Wilf-equivalent to every pattern B ∈ Qk,m,1.
In general, we do not know whether A is partially Wilf-equivalent to some pattern
with at least two nonzero entries. Nevertheless, for 2 ≤ m ≤ 4 and 2 ≤ k ≤ 4,
we prove that [A]P = Qm,k,1 ∪ Qk,m,1.

Theorem 65. Let A ∈ Qm,k,1 be a quasi-permutation matrix. If 2 ≤ m ≤ 4 and
2 ≤ k ≤ 4, then

[A]P = Qm,k,1 ∪ Qk,m,1.

Proof. It follows from Observation 55, Lemma 62 and the computer enumeration
(see Table A.1 in Appendix).

By Theorem 64, we have [A]P = [0m×m]P for every pattern A ∈ Qm,1,1. Thus,
we determine the partial Wilf-equivalence classes of every pattern of size at most
4 × 4 with exactly one nonzero entry.

4.3 Small patterns with at least two ones
For every m, k, ℓ ∈ N such that 2 ≤ ℓ ≤ k ≤ m ≤ 4, the computer enumeration
(see Table A.1 in Appendix) shows that the partial Wilf equivalence class of
A ∈ Qm,k,ℓ satisfies

[A]P ⊆ Qm,k,ℓ ∪ Qk,m,ℓ.

We have seen in the previous section that the inclusion is not true for all patterns.
Hence, for each m, k, ℓ ∈ N such that 2 ≤ ℓ ≤ k ≤ m ≤ 4, we describe all
partial Wilf equivalence classes on Qm,k,ℓ ∪ Qk,m,ℓ as follows. Since a partial
Wilf equivalence class consists of more than one symmetry class in general (see
Observation 10), we describe the partial Wilf equivalence class by listing the
representatives of these symmetry classes. It is tedious but not hard to verify
that every pattern of size at most 4 × 4 with at least two nonzero entries belongs
to one of the listed symmetry classes. Moreover, for each partial Wilf equivalence,
we give eight numbers

pP
1 (A), pP

2 (A), . . . , pP
8 (A),

where A is an arbitrary pattern from the partial Wilf equivalence class. Using
this sequence, the reader can easily verify that every two partial Wilf equivalence
classes are different. For each partial Wilf equivalence class, we only verify that
the listed representatives of symmetry classes indeed belong to this partial Wilf
equivalence class. For a partial Wilf equivalence class A, let pP

n(A) := pP
n(A),

where A ∈ A is chosen arbitrarily.
More exactly, we describe all partial Wilf-equivalence classes on Qm,k,ℓ∪Qk,m,ℓ

by a table that has as many rows as the number of partial Wilf equivalence classes
on Qm,k,ℓ∪Qk,m,ℓ. For each partial Wilf equivalence class, we describe its elements
by listing the representatives of the symmetry classes, which form the partial Wilf
equivalence class. Moreover, we give a reference to the theorem from which it
follows that the representatives are indeed partially Wilf-equivalent.

Recall that Qm,m,m are exactly the permutation matrices of order m. Since
[A]P ⊆ Qm,m,m for any permutation matrix A of order 2 ≤ m ≤ 4, the partial Wilf
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equivalence class of any permutation matrix of order m contains only permutation
matrices and hence [A]P is well-known (for example, see [1, Chapter 4]). From
now on, we only deal with patterns that contain at least one zero column or zero
row.

In Tables 4.1, 4.2, 4.3, and 4.4, we see partial Wilf equivalence classes of

Q3,2,2 ∪ Q3,2,2, Q3,3,2 ,Q4,2,2 ∪ Q4,2,2, and Q4,3,2 ∪ Q3,4,2,

respectively. We remark that pP
n(B3,2,2) = Fn+1, where Fn+1 is the (n + 1)-th

Fibonacci number1 Hence pP
n(B4,2,2) = n · Fn by Corollary 24. Since these results

are not necessary to determine the partial Wilf equivalence classes, we do not
prove them.

Wilf
class Representatives of symmetry classes Ref pP

n(·)

A3,2,2 ( ◦ • ◦
• ◦ ◦ ) 1, 2, 3, 4, 5, 6

7, 8, . . .

B3,2,2 ( ◦ ◦ •
• ◦ ◦ ) 1, 2, 3, 5, 8, 13

21, 34, . . .

Table 4.1: Partition of Q3,2,2 ∪ Q2,3,2 into partial Wilf equivalence classes. By
Theorem 21, we have pP

n(A3,2,2) = n for every n ∈ N.

Wilf
class Representatives of symmetry classes Ref pP

n(·)

A3,3,2
( ◦ ◦ ◦

• ◦ ◦
◦ • ◦

) ( ◦ ◦ ◦
◦ • ◦
◦ ◦ •

)
Thm 18 1, 2, 5, 10, 17, 26

37, 50, . . .

B3,3,2
( ◦ • ◦

◦ ◦ ◦
• ◦ ◦

) 1, 2, 5, 10, 20, 38
71, 130, . . .

C3,3,2
( ◦ ◦ •

◦ ◦ ◦
• ◦ ◦

) 1, 2, 5, 11, 24, 53
117, 258, . . .

Table 4.2: Partition of Q3,3,2 into partial Wilf equivalence classes. By Theorem 28,
we have pP

n(A3,3,2) = 1 + (n− 1)2 for every n ∈ N.
1The Fibonacci numbers Fn are defined as follows: F1 = F2 = 1 and Fn = Fn−1 + Fn−2 for

n ≥ 3.
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Wilf
class Representatives of symmetry classes Ref pP

n(·)

A4,2,2 ( ◦ • ◦ ◦
• ◦ ◦ ◦ ) ( ◦ ◦ • ◦

◦ • ◦ ◦ ) Thm 18 1, 2, 6, 12, 20, 30
42, 56, . . .

B4,2,2 ( ◦ ◦ • ◦
• ◦ ◦ ◦ ) 1, 2, 6, 12, 25, 48

91, 168, . . .

C4,2,2 ( ◦ ◦ ◦ •
• ◦ ◦ ◦ ) 1, 2, 6, 12, 25, 57

124, 268, . . .

Table 4.3: Partition of Q4,2,2 ∪ Q2,4,2 into partial Wilf equivalence classes. By
Corollary 24, we have pP

n(A4,2,2) = n · (n− 1) for n ≥ 2.

Wilf
class Representatives of symmetry classes Ref pP

n(·)

A4,3,2
( ◦ ◦ ◦ ◦

◦ • ◦ ◦
• ◦ ◦ ◦

) ( ◦ ◦ ◦ ◦
• ◦ ◦ ◦
◦ • ◦ ◦

) ( ◦ ◦ ◦ ◦
◦ ◦ • ◦
◦ • ◦ ◦

)
Thm 18 1, 2, 6, 18, 44, 90

192, 266, . . .

B4,3,2
( ◦ • ◦ ◦

◦ ◦ ◦ ◦
• ◦ ◦ ◦

) ( ◦ ◦ • ◦
◦ ◦ ◦ ◦
◦ • ◦ ◦

)
Thm 18 1, 2, 6, 18, 44, 102

222, 466, . . .

C4,3,2
( ◦ ◦ ◦ ◦

• ◦ ◦ ◦
◦ ◦ • ◦

) ( ◦ ◦ ◦ ◦
◦ • ◦ ◦
◦ ◦ ◦ •

)
Thm 18 1, 2, 6, 18, 45, 108

241, 518, . . .

D4,3,2
( ◦ ◦ ◦ ◦

◦ ◦ ◦ •
• ◦ ◦ ◦

) 1, 2, 6, 18, 45, 114
288, 704, . . .

E4,3,2
( ◦ ◦ • ◦

◦ ◦ ◦ ◦
• ◦ ◦ ◦

) 1, 2, 6, 18, 48, 124
315, 786, . . .

F4,3,2
( ◦ ◦ ◦ •

◦ ◦ ◦ ◦
• ◦ ◦ ◦

) 1, 2, 6, 18, 48, 129
352, 960, . . .

Table 4.4: Partition of Q4,3,2 ∪ Q3,4,2 into partial Wilf equivalence classes.

Wilf
class Representatives of symmetry classes Ref pP

n(·)

A4,3,3
( ◦ ◦ • ◦

• ◦ ◦ ◦
◦ • ◦ ◦

) ( ◦ ◦ • ◦
◦ • ◦ ◦
• ◦ ◦ ◦

) ( ◦ • ◦ ◦
◦ ◦ • ◦
• ◦ ◦ ◦

)
Thm 21 1, 2, 6, 20, 70, 252

924, 3432, . . .

B4,3,3
( ◦ ◦ ◦ •

• ◦ ◦ ◦
◦ ◦ • ◦

) ( ◦ ◦ ◦ •
◦ ◦ • ◦
• ◦ ◦ ◦

) ( ◦ ◦ ◦ •
• ◦ ◦ ◦
◦ • ◦ ◦

)
Thm 66 1, 2, 6, 20, 71, 264

1015, 4002, . . .

Table 4.5: Partition of Q4,3,3 ∪ Q3,4,3 into partial Wilf equivalence classes. By
Theorem 21, we have pP

n(A4,3,3) = (n+ 1) · cn =
(

2n−2
n−1

)
for every n ∈ N, where cn

is the n-th Catalan numer.
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In Tables 4.5, 4.6, and 4.7, we see partial Wilf equivalence classes of

Q4,3,3 ∪ Q3,4,3, Q4,4,2 , and Q4,4,3 ∪ Q3,4,2,

respectively. The following four theorems clarify that the representatives listed
in B4,3,3, A4,4,2, B4,4,2, and B4,4,3, respectively, are partially Wilf-equivalent.

Theorem 66. The following patterns

B1 = (2, 0, 1, 3)|3, B2 = (1, 0, 2, 3)|3, B3 = (2, 1, 0, 3)|3

belong to the partial Wilf equivalence class B4,3,3.

Proof. By Theorem 58, B1
P∼ B2. Moreover, note that B2 ≈ (1, 2, 0, 3)|3. Since

(1, 2, 0, 3)|3 P∼ B3 by Theorem 57, we have B2
P∼ B3.

Theorem 67. The following patterns

A1 = (0, 1, 2, 0)|4, A2 = (1, 2, 0, 0)|4, A3 = (0, 3, 2, 0)|4, A4 = (0, 0, 1, 2)|4

belong to the partial Wilf equivalence class A4,4,2.

Proof. By Theorem 56, we have A1
P∼ A2 and A1

P∼ A4. Observe that A1 ≈
(3, 2, 0, 0)|4. Hence (3, 2, 0, 0)|4 P∼ A3 by Theorem 56 and so A1

P∼ A3.

Theorem 68. The following patterns

B1 = (2, 4, 0, 0)|4, B2 = (0, 2, 4, 0)|4, B3 = (1, 3, 0, 0)|4,

belong to the partial Wilf equivalence class B4,4,2.

Proof. By Theorem 56, we have A1
P∼ A2. Observe that A2 ≈ (0, 1, 3, 0)|4. Hence

(0, 1, 3, 0)|4 P∼ A3 by Theorem 56 and so A2
P∼ A3.

Theorem 69. The following patterns

B1 = (1, 2, 4, 0)|4, B2 = (0, 1, 2, 4)|4, B3 = (0, 1, 4, 3)|4,
B4 = (2, 4, 1, 0)|4, B5 = (1, 4, 3, 0)|4, B6 = (0, 2, 4, 1)|4

belong to the partial Wilf equivalence class B4,4,3.

Proof. It is sufficient to show that the given patterns are pairwise partially Wilf-
equivalent. By Theorem 18, we have

B1
P∼ B2, B3

P∼ B5, and B4
P∼ B6.

Note that B3 ≈ (2, 1, 4, 0)|4. Moreover, B1
P∼ (2, 1, 4, 0)|4 by Theorem 38. Hence

B1
P∼ B3. Finally, observe that B2 ≈ (1, 0, 2, 3)|4 and B4 ≈ (2, 0, 1, 3)|4. Since

(1, 0, 2, 3)|4 P∼ (2, 0, 1, 3)|4 by Theorem 42, we have B2
P∼ B4, which completes the

proof.
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Wilf
class Representatives of symmetry classes Ref pP

n(·)

A4,4,2

( ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ • ◦
◦ • ◦ ◦

) ( ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ • ◦ ◦
• ◦ ◦ ◦

) ( ◦ ◦ ◦ ◦
◦ • ◦ ◦
◦ ◦ • ◦
◦ ◦ ◦ ◦

) ( ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ •
◦ ◦ • ◦

)
Thm 67 1, 2, 6, 22, 74, 210

502, 1046, . . .

B4,4,2

( ◦ • ◦ ◦
◦ ◦ ◦ ◦
• ◦ ◦ ◦
◦ ◦ ◦ ◦

) ( ◦ ◦ • ◦
◦ ◦ ◦ ◦
◦ • ◦ ◦
◦ ◦ ◦ ◦

) ( ◦ ◦ ◦ ◦
◦ • ◦ ◦
◦ ◦ ◦ ◦
• ◦ ◦ ◦

)
Thm 68 1, 2, 6, 22, 74, 216

586, 1474, . . .

C4,4,2

( ◦ ◦ • ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ • ◦ ◦

) ( ◦ ◦ ◦ •
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ • ◦

)
Thm 18 1, 2, 6, 22, 74, 218

628, 1756, . . .

D4,4,2

( ◦ ◦ • ◦
◦ ◦ ◦ ◦
• ◦ ◦ ◦
◦ ◦ ◦ ◦

) ( ◦ ◦ ◦ •
◦ ◦ ◦ ◦
◦ • ◦ ◦
◦ ◦ ◦ ◦

)
Thm 18 1, 2, 6, 22, 75, 232

689, 1978, . . .

E4,4,2

( ◦ ◦ • ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
• ◦ ◦ ◦

) 1, 2, 6, 22, 75, 236
728, 2228, . . .

F4,4,2

( ◦ ◦ ◦ •
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
• ◦ ◦ ◦

) 1, 2, 6, 22, 75, 241
772, 2488, . . .

Table 4.6: Partition of Q4,4,2 into partial Wilf equivalence classes.

Wilf
class Representatives of symmetry classes Ref pP

n(·)

A4,4,3

( ◦ ◦ • ◦
◦ • ◦ ◦
• ◦ ◦ ◦
◦ ◦ ◦ ◦

) ( ◦ ◦ ◦ ◦
◦ ◦ ◦ •
◦ • ◦ ◦
◦ ◦ • ◦

) ( ◦ ◦ ◦ ◦
◦ ◦ • ◦
• ◦ ◦ ◦
◦ • ◦ ◦

) ( ◦ ◦ ◦ •
◦ • ◦ ◦
◦ ◦ • ◦
◦ ◦ ◦ ◦

)
Cor 30 1, 2, 6, 23, 94, 392

1644, 6897, . . .( ◦ ◦ ◦ •
◦ ◦ • ◦
◦ • ◦ ◦
◦ ◦ ◦ ◦

) ( ◦ ◦ • ◦
• ◦ ◦ ◦
◦ • ◦ ◦
◦ ◦ ◦ ◦

)

B4,4,3

( ◦ ◦ • ◦
◦ ◦ ◦ ◦
◦ • ◦ ◦
• ◦ ◦ ◦

) ( ◦ ◦ ◦ •
◦ ◦ ◦ ◦
◦ ◦ • ◦
◦ • ◦ ◦

) ( ◦ ◦ • ◦
◦ ◦ ◦ •
◦ ◦ ◦ ◦
◦ • ◦ ◦

) ( ◦ • ◦ ◦
◦ ◦ ◦ ◦
• ◦ ◦ ◦
◦ ◦ • ◦

)
Thm 69 1, 2, 6, 23, 94, 396

1704, 7442, . . .( ◦ • ◦ ◦
◦ ◦ • ◦
◦ ◦ ◦ ◦
• ◦ ◦ ◦

) ( ◦ ◦ • ◦
◦ ◦ ◦ ◦
◦ • ◦ ◦
◦ ◦ ◦ •

)

C4,4,3

( ◦ ◦ ◦ •
◦ ◦ ◦ ◦
◦ ◦ • ◦
• ◦ ◦ ◦

) ( ◦ ◦ ◦ •
◦ ◦ ◦ ◦
• ◦ ◦ ◦
◦ ◦ • ◦

)
Thm 42 1, 2, 6, 23, 94, 401

1764, 7951, . . .

D4,4,3

( ◦ • ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ •
• ◦ ◦ ◦

) 1, 2, 6, 23, 95, 407
1795, 8109, . . .

E4,4,3

( ◦ ◦ ◦ •
◦ ◦ ◦ ◦
◦ • ◦ ◦
• ◦ ◦ ◦

) ( ◦ ◦ ◦ •
◦ ◦ ◦ ◦
• ◦ ◦ ◦
◦ • ◦ ◦

)
Thm 38 1, 2, 6, 23, 95, 407

1797, 8135, . . .

Table 4.7: Partition of Q4,4,3 into partial Wilf equivalence classes.
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5. Conclusion
In this thesis, we studied two generalizations of the concept of avoidance of per-
mutation matrices: a permutation matrix P partially (or exactly) avoids a quasi-
permutation matrix A if there is no submatrix P ′ of P such that A ≤ P ′ (or
A = P ′). We showed that partial avoidance and exact avoidance agree not
only on the set of permutation matrices but also on the set of row- or column-
permutation matrices. From this point forward, we worked only with partial
avoidance of quasi-permutation matrices. Our main motivation was to classify
all 371 patterns (i.e., quasi-permutation matrices) of size at most 4 × 4 into par-
tial Wilf equivalence classes, which we did successfully in Chapter 4. During this
journey, we developed some general results showing how to create from one or two
quasi-permutation matrices more quasi-permutation matrices that are pairwise
partially Wilf-equivalent. In Chapter 2, we proved that patterns obtained from
a pattern by appending a zero column or a zero row (to any side of the pattern)
are partially Wilf-equivalent. Next, in Chapter 3, we showed that the direct sum
of X and Q is partially Wilf-equivalent to the direct sum of Y and Q, where
X = ( ◦ ◦ •

• ◦ ◦ ), Y = ( • ◦ ◦
◦ ◦ • ), and Q is any quasi-permutation matrix such that its

first column is nonzero (and this assumption cannot be omitted). A straightfor-
ward continuation of our work is to determine the partial Wilf-equivalence classes
of patterns that have at least 5 columns or 5 rows.

By looking at the Tables 4.1, 4.2, 4.3, 4.4, and 4.6, it seems that a pattern
avoids more permutation matrices if the ones are “far” from each other than
a pattern whose ones are “close” to each other. Formally, for a quasi-permutation
matrix Qm,k,2, we define a distance of A as

d(A) := |i− i′| + |j − j′|,

where (i, j) and (i′, j′) are two distinct entries such that Ai,j = 1 and Ai′,j′ = 1.

Question 1. Let A,B ∈ Qm,k,2 be quasi-permutation matrices. It is true that if
d(A) < d(B), then pP

n(A) ≤ pP
n(B) for all n ∈ N?

Moreover, we can ask the same question for patterns of different shape. The
answer will somewhat depend not only on the distance but also on the shape.
The first step might be to study patterns whose nonzero entries are in the corners.
Formally, for m, k ∈ N, let Am,k ∈ Qm,k,2 be a quasi-permutation matrix such
that A1,1 = 1 and Am,k = 1.

Question 2. It is true that if d(Am,k) < d(Am′,k′), then there exists N ∈ N such
that pP

n(Am,k) ≤ pP
n(m′,k′) for all n ≥ N?
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A. Appendix
The partial avoidance sequence of a pattern A is a sequence of numbers

pP
1 (A), pP

2 (A), pP
3 (A), . . .

and the exact avoidance sequence of a pattern A is a sequence of numbers

pE
1 (A), pE

2 (A), pE
3 (A), . . . .

In order to classify patterns of size at most 4 × 4 into partial Wilf equivalence
classes, we created a program [3] that, for each pattern A of size at most 4×4, com-
putes either the partial or exact avoidance sequence of A up to a given number n
(the choice of partial or exact avoidance is fixed throughout the computation).
We print both outputs of the program for n = 8 (see Table A.1 and Table A.2).
Both outputs are sorted lexicographically according to the partial/exact avoid-
ance sequences and the patterns are written in the “one-line” notation introduced
in Section 4.1.

Table A.1: Partial avoidance sequence of each pattern of
size at most 4 × 4.

Patterns Partial avoidance sequence (from 1 to 8)
(0)1 0, 0, 0, 0, 0, 0, 0, 0
(1)1 0, 0, 0, 0, 0, 0, 0, 0
(0,0)1 1, 0, 0, 0, 0, 0, 0, 0
(0,0)2 1, 0, 0, 0, 0, 0, 0, 0
(0,1)1 1, 0, 0, 0, 0, 0, 0, 0
(1,0)1 1, 0, 0, 0, 0, 0, 0, 0
(0,1)2 1, 1, 0, 0, 0, 0, 0, 0
(0,2)2 1, 1, 0, 0, 0, 0, 0, 0
(1,0)2 1, 1, 0, 0, 0, 0, 0, 0
(2,0)2 1, 1, 0, 0, 0, 0, 0, 0
(1,2)2 1, 1, 1, 1, 1, 1, 1, 1
(2,1)2 1, 1, 1, 1, 1, 1, 1, 1
(0,0,0)1 1, 2, 0, 0, 0, 0, 0, 0
(0,0,0)2 1, 2, 0, 0, 0, 0, 0, 0
(0,0,0)3 1, 2, 0, 0, 0, 0, 0, 0
(0,0,1)1 1, 2, 0, 0, 0, 0, 0, 0
(0,1,0)1 1, 2, 0, 0, 0, 0, 0, 0
(1,0,0)1 1, 2, 0, 0, 0, 0, 0, 0
(0,0,1)2 1, 2, 2, 0, 0, 0, 0, 0
(0,0,2)2 1, 2, 2, 0, 0, 0, 0, 0

Continued on next page
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Patterns Partial avoidance sequence (from 1 to 8)
(0,1,0)2 1, 2, 2, 0, 0, 0, 0, 0
(0,2,0)2 1, 2, 2, 0, 0, 0, 0, 0
(1,0,0)2 1, 2, 2, 0, 0, 0, 0, 0
(2,0,0)2 1, 2, 2, 0, 0, 0, 0, 0
(0,1,2)2 1, 2, 3, 4, 5, 6, 7, 8
(0,2,1)2 1, 2, 3, 4, 5, 6, 7, 8
(1,2,0)2 1, 2, 3, 4, 5, 6, 7, 8
(2,1,0)2 1, 2, 3, 4, 5, 6, 7, 8
(1,0,2)2 1, 2, 3, 5, 8, 13, 21, 34
(2,0,1)2 1, 2, 3, 5, 8, 13, 21, 34
(0,0,1)3 1, 2, 4, 4, 0, 0, 0, 0
(0,0,2)3 1, 2, 4, 4, 0, 0, 0, 0
(0,0,3)3 1, 2, 4, 4, 0, 0, 0, 0
(0,1,0)3 1, 2, 4, 4, 0, 0, 0, 0
(0,2,0)3 1, 2, 4, 4, 0, 0, 0, 0
(0,3,0)3 1, 2, 4, 4, 0, 0, 0, 0
(1,0,0)3 1, 2, 4, 4, 0, 0, 0, 0
(2,0,0)3 1, 2, 4, 4, 0, 0, 0, 0
(3,0,0)3 1, 2, 4, 4, 0, 0, 0, 0
(0,1,2)3 1, 2, 5, 10, 17, 26, 37, 50
(0,2,1)3 1, 2, 5, 10, 17, 26, 37, 50
(0,2,3)3 1, 2, 5, 10, 17, 26, 37, 50
(0,3,2)3 1, 2, 5, 10, 17, 26, 37, 50
(1,2,0)3 1, 2, 5, 10, 17, 26, 37, 50
(2,1,0)3 1, 2, 5, 10, 17, 26, 37, 50
(2,3,0)3 1, 2, 5, 10, 17, 26, 37, 50
(3,2,0)3 1, 2, 5, 10, 17, 26, 37, 50
(0,1,3)3 1, 2, 5, 10, 20, 38, 71, 130
(0,3,1)3 1, 2, 5, 10, 20, 38, 71, 130
(1,0,2)3 1, 2, 5, 10, 20, 38, 71, 130
(1,3,0)3 1, 2, 5, 10, 20, 38, 71, 130
(2,0,1)3 1, 2, 5, 10, 20, 38, 71, 130
(2,0,3)3 1, 2, 5, 10, 20, 38, 71, 130
(3,0,2)3 1, 2, 5, 10, 20, 38, 71, 130
(3,1,0)3 1, 2, 5, 10, 20, 38, 71, 130
(1,0,3)3 1, 2, 5, 11, 24, 53, 117, 258

Continued on next page
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Patterns Partial avoidance sequence (from 1 to 8)
(3,0,1)3 1, 2, 5, 11, 24, 53, 117, 258
(1,2,3)3 1, 2, 5, 14, 42, 132, 429, 1430
(1,3,2)3 1, 2, 5, 14, 42, 132, 429, 1430
(2,1,3)3 1, 2, 5, 14, 42, 132, 429, 1430
(2,3,1)3 1, 2, 5, 14, 42, 132, 429, 1430
(3,1,2)3 1, 2, 5, 14, 42, 132, 429, 1430
(3,2,1)3 1, 2, 5, 14, 42, 132, 429, 1430
(0,0,0,0)1 1, 2, 6, 0, 0, 0, 0, 0
(0,0,0,0)2 1, 2, 6, 0, 0, 0, 0, 0
(0,0,0,0)3 1, 2, 6, 0, 0, 0, 0, 0
(0,0,0,0)4 1, 2, 6, 0, 0, 0, 0, 0
(0,0,0,1)1 1, 2, 6, 0, 0, 0, 0, 0
(0,0,1,0)1 1, 2, 6, 0, 0, 0, 0, 0
(0,1,0,0)1 1, 2, 6, 0, 0, 0, 0, 0
(1,0,0,0)1 1, 2, 6, 0, 0, 0, 0, 0
(0,0,0,1)2 1, 2, 6, 6, 0, 0, 0, 0
(0,0,0,2)2 1, 2, 6, 6, 0, 0, 0, 0
(0,0,1,0)2 1, 2, 6, 6, 0, 0, 0, 0
(0,0,2,0)2 1, 2, 6, 6, 0, 0, 0, 0
(0,1,0,0)2 1, 2, 6, 6, 0, 0, 0, 0
(0,2,0,0)2 1, 2, 6, 6, 0, 0, 0, 0
(1,0,0,0)2 1, 2, 6, 6, 0, 0, 0, 0
(2,0,0,0)2 1, 2, 6, 6, 0, 0, 0, 0
(0,0,0,1)3 1, 2, 6, 12, 12, 0, 0, 0
(0,0,0,2)3 1, 2, 6, 12, 12, 0, 0, 0
(0,0,0,3)3 1, 2, 6, 12, 12, 0, 0, 0
(0,0,1,0)3 1, 2, 6, 12, 12, 0, 0, 0
(0,0,2,0)3 1, 2, 6, 12, 12, 0, 0, 0
(0,0,3,0)3 1, 2, 6, 12, 12, 0, 0, 0
(0,1,0,0)3 1, 2, 6, 12, 12, 0, 0, 0
(0,2,0,0)3 1, 2, 6, 12, 12, 0, 0, 0
(0,3,0,0)3 1, 2, 6, 12, 12, 0, 0, 0
(1,0,0,0)3 1, 2, 6, 12, 12, 0, 0, 0
(2,0,0,0)3 1, 2, 6, 12, 12, 0, 0, 0
(3,0,0,0)3 1, 2, 6, 12, 12, 0, 0, 0
(0,0,1,2)2 1, 2, 6, 12, 20, 30, 42, 56
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Patterns Partial avoidance sequence (from 1 to 8)
(0,0,2,1)2 1, 2, 6, 12, 20, 30, 42, 56
(0,1,2,0)2 1, 2, 6, 12, 20, 30, 42, 56
(0,2,1,0)2 1, 2, 6, 12, 20, 30, 42, 56
(1,2,0,0)2 1, 2, 6, 12, 20, 30, 42, 56
(2,1,0,0)2 1, 2, 6, 12, 20, 30, 42, 56
(0,1,0,2)2 1, 2, 6, 12, 25, 48, 91, 168
(0,2,0,1)2 1, 2, 6, 12, 25, 48, 91, 168
(1,0,2,0)2 1, 2, 6, 12, 25, 48, 91, 168
(2,0,1,0)2 1, 2, 6, 12, 25, 48, 91, 168
(1,0,0,2)2 1, 2, 6, 12, 25, 57, 124, 268
(2,0,0,1)2 1, 2, 6, 12, 25, 57, 124, 268
(0,0,0,1)4 1, 2, 6, 18, 36, 36, 0, 0
(0,0,0,2)4 1, 2, 6, 18, 36, 36, 0, 0
(0,0,0,3)4 1, 2, 6, 18, 36, 36, 0, 0
(0,0,0,4)4 1, 2, 6, 18, 36, 36, 0, 0
(0,0,1,0)4 1, 2, 6, 18, 36, 36, 0, 0
(0,0,2,0)4 1, 2, 6, 18, 36, 36, 0, 0
(0,0,3,0)4 1, 2, 6, 18, 36, 36, 0, 0
(0,0,4,0)4 1, 2, 6, 18, 36, 36, 0, 0
(0,1,0,0)4 1, 2, 6, 18, 36, 36, 0, 0
(0,2,0,0)4 1, 2, 6, 18, 36, 36, 0, 0
(0,3,0,0)4 1, 2, 6, 18, 36, 36, 0, 0
(0,4,0,0)4 1, 2, 6, 18, 36, 36, 0, 0
(1,0,0,0)4 1, 2, 6, 18, 36, 36, 0, 0
(2,0,0,0)4 1, 2, 6, 18, 36, 36, 0, 0
(3,0,0,0)4 1, 2, 6, 18, 36, 36, 0, 0
(4,0,0,0)4 1, 2, 6, 18, 36, 36, 0, 0
(0,0,1,2)3 1, 2, 6, 18, 44, 90, 162, 266
(0,0,2,1)3 1, 2, 6, 18, 44, 90, 162, 266
(0,0,2,3)3 1, 2, 6, 18, 44, 90, 162, 266
(0,0,3,2)3 1, 2, 6, 18, 44, 90, 162, 266
(0,1,2,0)3 1, 2, 6, 18, 44, 90, 162, 266
(0,2,1,0)3 1, 2, 6, 18, 44, 90, 162, 266
(0,2,3,0)3 1, 2, 6, 18, 44, 90, 162, 266
(0,3,2,0)3 1, 2, 6, 18, 44, 90, 162, 266
(1,2,0,0)3 1, 2, 6, 18, 44, 90, 162, 266
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Patterns Partial avoidance sequence (from 1 to 8)
(2,1,0,0)3 1, 2, 6, 18, 44, 90, 162, 266
(2,3,0,0)3 1, 2, 6, 18, 44, 90, 162, 266
(3,2,0,0)3 1, 2, 6, 18, 44, 90, 162, 266
(0,0,1,3)3 1, 2, 6, 18, 44, 102, 222, 466
(0,0,3,1)3 1, 2, 6, 18, 44, 102, 222, 466
(0,1,3,0)3 1, 2, 6, 18, 44, 102, 222, 466
(0,3,1,0)3 1, 2, 6, 18, 44, 102, 222, 466
(1,3,0,0)3 1, 2, 6, 18, 44, 102, 222, 466
(3,1,0,0)3 1, 2, 6, 18, 44, 102, 222, 466
(0,1,0,2)3 1, 2, 6, 18, 45, 108, 241, 518
(0,2,0,1)3 1, 2, 6, 18, 45, 108, 241, 518
(0,2,0,3)3 1, 2, 6, 18, 45, 108, 241, 518
(0,3,0,2)3 1, 2, 6, 18, 45, 108, 241, 518
(1,0,2,0)3 1, 2, 6, 18, 45, 108, 241, 518
(2,0,1,0)3 1, 2, 6, 18, 45, 108, 241, 518
(2,0,3,0)3 1, 2, 6, 18, 45, 108, 241, 518
(3,0,2,0)3 1, 2, 6, 18, 45, 108, 241, 518
(1,0,0,2)3 1, 2, 6, 18, 45, 114, 288, 704
(2,0,0,1)3 1, 2, 6, 18, 45, 114, 288, 704
(2,0,0,3)3 1, 2, 6, 18, 45, 114, 288, 704
(3,0,0,2)3 1, 2, 6, 18, 45, 114, 288, 704
(0,1,0,3)3 1, 2, 6, 18, 48, 124, 315, 786
(0,3,0,1)3 1, 2, 6, 18, 48, 124, 315, 786
(1,0,3,0)3 1, 2, 6, 18, 48, 124, 315, 786
(3,0,1,0)3 1, 2, 6, 18, 48, 124, 315, 786
(1,0,0,3)3 1, 2, 6, 18, 48, 129, 352, 960
(3,0,0,1)3 1, 2, 6, 18, 48, 129, 352, 960
(0,1,2,3)3 1, 2, 6, 20, 70, 252, 924, 3432
(0,1,3,2)3 1, 2, 6, 20, 70, 252, 924, 3432
(0,2,1,3)3 1, 2, 6, 20, 70, 252, 924, 3432
(0,2,3,1)3 1, 2, 6, 20, 70, 252, 924, 3432
(0,3,1,2)3 1, 2, 6, 20, 70, 252, 924, 3432
(0,3,2,1)3 1, 2, 6, 20, 70, 252, 924, 3432
(1,2,3,0)3 1, 2, 6, 20, 70, 252, 924, 3432
(1,3,2,0)3 1, 2, 6, 20, 70, 252, 924, 3432
(2,1,3,0)3 1, 2, 6, 20, 70, 252, 924, 3432
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Patterns Partial avoidance sequence (from 1 to 8)
(2,3,1,0)3 1, 2, 6, 20, 70, 252, 924, 3432
(3,1,2,0)3 1, 2, 6, 20, 70, 252, 924, 3432
(3,2,1,0)3 1, 2, 6, 20, 70, 252, 924, 3432
(1,0,2,3)3 1, 2, 6, 20, 71, 264, 1015, 4002
(1,0,3,2)3 1, 2, 6, 20, 71, 264, 1015, 4002
(1,2,0,3)3 1, 2, 6, 20, 71, 264, 1015, 4002
(1,3,0,2)3 1, 2, 6, 20, 71, 264, 1015, 4002
(2,0,1,3)3 1, 2, 6, 20, 71, 264, 1015, 4002
(2,0,3,1)3 1, 2, 6, 20, 71, 264, 1015, 4002
(2,1,0,3)3 1, 2, 6, 20, 71, 264, 1015, 4002
(2,3,0,1)3 1, 2, 6, 20, 71, 264, 1015, 4002
(3,0,1,2)3 1, 2, 6, 20, 71, 264, 1015, 4002
(3,0,2,1)3 1, 2, 6, 20, 71, 264, 1015, 4002
(3,1,0,2)3 1, 2, 6, 20, 71, 264, 1015, 4002
(3,2,0,1)3 1, 2, 6, 20, 71, 264, 1015, 4002
(0,0,1,2)4 1, 2, 6, 22, 74, 210, 502, 1046
(0,0,2,1)4 1, 2, 6, 22, 74, 210, 502, 1046
(0,0,2,3)4 1, 2, 6, 22, 74, 210, 502, 1046
(0,0,3,2)4 1, 2, 6, 22, 74, 210, 502, 1046
(0,0,3,4)4 1, 2, 6, 22, 74, 210, 502, 1046
(0,0,4,3)4 1, 2, 6, 22, 74, 210, 502, 1046
(0,1,2,0)4 1, 2, 6, 22, 74, 210, 502, 1046
(0,2,1,0)4 1, 2, 6, 22, 74, 210, 502, 1046
(0,2,3,0)4 1, 2, 6, 22, 74, 210, 502, 1046
(0,3,2,0)4 1, 2, 6, 22, 74, 210, 502, 1046
(0,3,4,0)4 1, 2, 6, 22, 74, 210, 502, 1046
(0,4,3,0)4 1, 2, 6, 22, 74, 210, 502, 1046
(1,2,0,0)4 1, 2, 6, 22, 74, 210, 502, 1046
(2,1,0,0)4 1, 2, 6, 22, 74, 210, 502, 1046
(2,3,0,0)4 1, 2, 6, 22, 74, 210, 502, 1046
(3,2,0,0)4 1, 2, 6, 22, 74, 210, 502, 1046
(3,4,0,0)4 1, 2, 6, 22, 74, 210, 502, 1046
(4,3,0,0)4 1, 2, 6, 22, 74, 210, 502, 1046
(0,0,1,3)4 1, 2, 6, 22, 74, 216, 586, 1474
(0,0,2,4)4 1, 2, 6, 22, 74, 216, 586, 1474
(0,0,3,1)4 1, 2, 6, 22, 74, 216, 586, 1474
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Patterns Partial avoidance sequence (from 1 to 8)
(0,0,4,2)4 1, 2, 6, 22, 74, 216, 586, 1474
(0,1,0,2)4 1, 2, 6, 22, 74, 216, 586, 1474
(0,1,3,0)4 1, 2, 6, 22, 74, 216, 586, 1474
(0,2,0,1)4 1, 2, 6, 22, 74, 216, 586, 1474
(0,2,0,3)4 1, 2, 6, 22, 74, 216, 586, 1474
(0,2,4,0)4 1, 2, 6, 22, 74, 216, 586, 1474
(0,3,0,2)4 1, 2, 6, 22, 74, 216, 586, 1474
(0,3,0,4)4 1, 2, 6, 22, 74, 216, 586, 1474
(0,3,1,0)4 1, 2, 6, 22, 74, 216, 586, 1474
(0,4,0,3)4 1, 2, 6, 22, 74, 216, 586, 1474
(0,4,2,0)4 1, 2, 6, 22, 74, 216, 586, 1474
(1,0,2,0)4 1, 2, 6, 22, 74, 216, 586, 1474
(1,3,0,0)4 1, 2, 6, 22, 74, 216, 586, 1474
(2,0,1,0)4 1, 2, 6, 22, 74, 216, 586, 1474
(2,0,3,0)4 1, 2, 6, 22, 74, 216, 586, 1474
(2,4,0,0)4 1, 2, 6, 22, 74, 216, 586, 1474
(3,0,2,0)4 1, 2, 6, 22, 74, 216, 586, 1474
(3,0,4,0)4 1, 2, 6, 22, 74, 216, 586, 1474
(3,1,0,0)4 1, 2, 6, 22, 74, 216, 586, 1474
(4,0,3,0)4 1, 2, 6, 22, 74, 216, 586, 1474
(4,2,0,0)4 1, 2, 6, 22, 74, 216, 586, 1474
(0,0,1,4)4 1, 2, 6, 22, 74, 218, 628, 1756
(0,0,4,1)4 1, 2, 6, 22, 74, 218, 628, 1756
(0,1,4,0)4 1, 2, 6, 22, 74, 218, 628, 1756
(0,4,1,0)4 1, 2, 6, 22, 74, 218, 628, 1756
(1,0,0,2)4 1, 2, 6, 22, 74, 218, 628, 1756
(1,4,0,0)4 1, 2, 6, 22, 74, 218, 628, 1756
(2,0,0,1)4 1, 2, 6, 22, 74, 218, 628, 1756
(2,0,0,3)4 1, 2, 6, 22, 74, 218, 628, 1756
(3,0,0,2)4 1, 2, 6, 22, 74, 218, 628, 1756
(3,0,0,4)4 1, 2, 6, 22, 74, 218, 628, 1756
(4,0,0,3)4 1, 2, 6, 22, 74, 218, 628, 1756
(4,1,0,0)4 1, 2, 6, 22, 74, 218, 628, 1756
(0,1,0,3)4 1, 2, 6, 22, 75, 232, 689, 1978
(0,2,0,4)4 1, 2, 6, 22, 75, 232, 689, 1978
(0,3,0,1)4 1, 2, 6, 22, 75, 232, 689, 1978
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Patterns Partial avoidance sequence (from 1 to 8)
(0,4,0,2)4 1, 2, 6, 22, 75, 232, 689, 1978
(1,0,3,0)4 1, 2, 6, 22, 75, 232, 689, 1978
(2,0,4,0)4 1, 2, 6, 22, 75, 232, 689, 1978
(3,0,1,0)4 1, 2, 6, 22, 75, 232, 689, 1978
(4,0,2,0)4 1, 2, 6, 22, 75, 232, 689, 1978
(0,1,0,4)4 1, 2, 6, 22, 75, 236, 728, 2228
(0,4,0,1)4 1, 2, 6, 22, 75, 236, 728, 2228
(1,0,0,3)4 1, 2, 6, 22, 75, 236, 728, 2228
(1,0,4,0)4 1, 2, 6, 22, 75, 236, 728, 2228
(2,0,0,4)4 1, 2, 6, 22, 75, 236, 728, 2228
(3,0,0,1)4 1, 2, 6, 22, 75, 236, 728, 2228
(4,0,0,2)4 1, 2, 6, 22, 75, 236, 728, 2228
(4,0,1,0)4 1, 2, 6, 22, 75, 236, 728, 2228
(1,0,0,4)4 1, 2, 6, 22, 75, 241, 772, 2488
(4,0,0,1)4 1, 2, 6, 22, 75, 241, 772, 2488
(0,1,2,3)4 1, 2, 6, 23, 94, 392, 1644, 6897
(0,1,3,2)4 1, 2, 6, 23, 94, 392, 1644, 6897
(0,2,1,3)4 1, 2, 6, 23, 94, 392, 1644, 6897
(0,2,3,1)4 1, 2, 6, 23, 94, 392, 1644, 6897
(0,2,3,4)4 1, 2, 6, 23, 94, 392, 1644, 6897
(0,2,4,3)4 1, 2, 6, 23, 94, 392, 1644, 6897
(0,3,1,2)4 1, 2, 6, 23, 94, 392, 1644, 6897
(0,3,2,1)4 1, 2, 6, 23, 94, 392, 1644, 6897
(0,3,2,4)4 1, 2, 6, 23, 94, 392, 1644, 6897
(0,3,4,2)4 1, 2, 6, 23, 94, 392, 1644, 6897
(0,4,2,3)4 1, 2, 6, 23, 94, 392, 1644, 6897
(0,4,3,2)4 1, 2, 6, 23, 94, 392, 1644, 6897
(1,2,3,0)4 1, 2, 6, 23, 94, 392, 1644, 6897
(1,3,2,0)4 1, 2, 6, 23, 94, 392, 1644, 6897
(2,1,3,0)4 1, 2, 6, 23, 94, 392, 1644, 6897
(2,3,1,0)4 1, 2, 6, 23, 94, 392, 1644, 6897
(2,3,4,0)4 1, 2, 6, 23, 94, 392, 1644, 6897
(2,4,3,0)4 1, 2, 6, 23, 94, 392, 1644, 6897
(3,1,2,0)4 1, 2, 6, 23, 94, 392, 1644, 6897
(3,2,1,0)4 1, 2, 6, 23, 94, 392, 1644, 6897
(3,2,4,0)4 1, 2, 6, 23, 94, 392, 1644, 6897
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Patterns Partial avoidance sequence (from 1 to 8)
(3,4,2,0)4 1, 2, 6, 23, 94, 392, 1644, 6897
(4,2,3,0)4 1, 2, 6, 23, 94, 392, 1644, 6897
(4,3,2,0)4 1, 2, 6, 23, 94, 392, 1644, 6897
(0,1,2,4)4 1, 2, 6, 23, 94, 396, 1704, 7442
(0,1,3,4)4 1, 2, 6, 23, 94, 396, 1704, 7442
(0,1,4,2)4 1, 2, 6, 23, 94, 396, 1704, 7442
(0,1,4,3)4 1, 2, 6, 23, 94, 396, 1704, 7442
(0,2,1,4)4 1, 2, 6, 23, 94, 396, 1704, 7442
(0,2,4,1)4 1, 2, 6, 23, 94, 396, 1704, 7442
(0,3,1,4)4 1, 2, 6, 23, 94, 396, 1704, 7442
(0,3,4,1)4 1, 2, 6, 23, 94, 396, 1704, 7442
(0,4,1,2)4 1, 2, 6, 23, 94, 396, 1704, 7442
(0,4,1,3)4 1, 2, 6, 23, 94, 396, 1704, 7442
(0,4,2,1)4 1, 2, 6, 23, 94, 396, 1704, 7442
(0,4,3,1)4 1, 2, 6, 23, 94, 396, 1704, 7442
(1,0,2,3)4 1, 2, 6, 23, 94, 396, 1704, 7442
(1,0,3,2)4 1, 2, 6, 23, 94, 396, 1704, 7442
(1,2,0,3)4 1, 2, 6, 23, 94, 396, 1704, 7442
(1,2,4,0)4 1, 2, 6, 23, 94, 396, 1704, 7442
(1,3,0,2)4 1, 2, 6, 23, 94, 396, 1704, 7442
(1,3,4,0)4 1, 2, 6, 23, 94, 396, 1704, 7442
(1,4,2,0)4 1, 2, 6, 23, 94, 396, 1704, 7442
(1,4,3,0)4 1, 2, 6, 23, 94, 396, 1704, 7442
(2,0,1,3)4 1, 2, 6, 23, 94, 396, 1704, 7442
(2,0,3,1)4 1, 2, 6, 23, 94, 396, 1704, 7442
(2,0,3,4)4 1, 2, 6, 23, 94, 396, 1704, 7442
(2,0,4,3)4 1, 2, 6, 23, 94, 396, 1704, 7442
(2,1,0,3)4 1, 2, 6, 23, 94, 396, 1704, 7442
(2,1,4,0)4 1, 2, 6, 23, 94, 396, 1704, 7442
(2,3,0,1)4 1, 2, 6, 23, 94, 396, 1704, 7442
(2,3,0,4)4 1, 2, 6, 23, 94, 396, 1704, 7442
(2,4,0,3)4 1, 2, 6, 23, 94, 396, 1704, 7442
(2,4,1,0)4 1, 2, 6, 23, 94, 396, 1704, 7442
(3,0,1,2)4 1, 2, 6, 23, 94, 396, 1704, 7442
(3,0,2,1)4 1, 2, 6, 23, 94, 396, 1704, 7442
(3,0,2,4)4 1, 2, 6, 23, 94, 396, 1704, 7442
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Patterns Partial avoidance sequence (from 1 to 8)
(3,0,4,2)4 1, 2, 6, 23, 94, 396, 1704, 7442
(3,1,0,2)4 1, 2, 6, 23, 94, 396, 1704, 7442
(3,1,4,0)4 1, 2, 6, 23, 94, 396, 1704, 7442
(3,2,0,1)4 1, 2, 6, 23, 94, 396, 1704, 7442
(3,2,0,4)4 1, 2, 6, 23, 94, 396, 1704, 7442
(3,4,0,2)4 1, 2, 6, 23, 94, 396, 1704, 7442
(3,4,1,0)4 1, 2, 6, 23, 94, 396, 1704, 7442
(4,0,2,3)4 1, 2, 6, 23, 94, 396, 1704, 7442
(4,0,3,2)4 1, 2, 6, 23, 94, 396, 1704, 7442
(4,1,2,0)4 1, 2, 6, 23, 94, 396, 1704, 7442
(4,1,3,0)4 1, 2, 6, 23, 94, 396, 1704, 7442
(4,2,0,3)4 1, 2, 6, 23, 94, 396, 1704, 7442
(4,2,1,0)4 1, 2, 6, 23, 94, 396, 1704, 7442
(4,3,0,2)4 1, 2, 6, 23, 94, 396, 1704, 7442
(4,3,1,0)4 1, 2, 6, 23, 94, 396, 1704, 7442
(1,0,2,4)4 1, 2, 6, 23, 94, 401, 1764, 7951
(1,0,4,2)4 1, 2, 6, 23, 94, 401, 1764, 7951
(1,3,0,4)4 1, 2, 6, 23, 94, 401, 1764, 7951
(1,4,0,3)4 1, 2, 6, 23, 94, 401, 1764, 7951
(2,0,1,4)4 1, 2, 6, 23, 94, 401, 1764, 7951
(2,4,0,1)4 1, 2, 6, 23, 94, 401, 1764, 7951
(3,0,4,1)4 1, 2, 6, 23, 94, 401, 1764, 7951
(3,1,0,4)4 1, 2, 6, 23, 94, 401, 1764, 7951
(4,0,1,3)4 1, 2, 6, 23, 94, 401, 1764, 7951
(4,0,3,1)4 1, 2, 6, 23, 94, 401, 1764, 7951
(4,1,0,2)4 1, 2, 6, 23, 94, 401, 1764, 7951
(4,2,0,1)4 1, 2, 6, 23, 94, 401, 1764, 7951
(1,4,0,2)4 1, 2, 6, 23, 95, 407, 1795, 8109
(2,0,4,1)4 1, 2, 6, 23, 95, 407, 1795, 8109
(3,0,1,4)4 1, 2, 6, 23, 95, 407, 1795, 8109
(4,1,0,3)4 1, 2, 6, 23, 95, 407, 1795, 8109
(1,0,3,4)4 1, 2, 6, 23, 95, 407, 1797, 8135
(1,0,4,3)4 1, 2, 6, 23, 95, 407, 1797, 8135
(1,2,0,4)4 1, 2, 6, 23, 95, 407, 1797, 8135
(2,1,0,4)4 1, 2, 6, 23, 95, 407, 1797, 8135
(3,4,0,1)4 1, 2, 6, 23, 95, 407, 1797, 8135
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Patterns Partial avoidance sequence (from 1 to 8)
(4,0,1,2)4 1, 2, 6, 23, 95, 407, 1797, 8135
(4,0,2,1)4 1, 2, 6, 23, 95, 407, 1797, 8135
(4,3,0,1)4 1, 2, 6, 23, 95, 407, 1797, 8135
(1,3,4,2)4 1, 2, 6, 23, 103, 512, 2740, 15485
(1,4,2,3)4 1, 2, 6, 23, 103, 512, 2740, 15485
(2,3,1,4)4 1, 2, 6, 23, 103, 512, 2740, 15485
(2,4,1,3)4 1, 2, 6, 23, 103, 512, 2740, 15485
(2,4,3,1)4 1, 2, 6, 23, 103, 512, 2740, 15485
(3,1,2,4)4 1, 2, 6, 23, 103, 512, 2740, 15485
(3,1,4,2)4 1, 2, 6, 23, 103, 512, 2740, 15485
(3,2,4,1)4 1, 2, 6, 23, 103, 512, 2740, 15485
(4,1,3,2)4 1, 2, 6, 23, 103, 512, 2740, 15485
(4,2,1,3)4 1, 2, 6, 23, 103, 512, 2740, 15485
(1,2,3,4)4 1, 2, 6, 23, 103, 513, 2761, 15767
(1,2,4,3)4 1, 2, 6, 23, 103, 513, 2761, 15767
(1,4,3,2)4 1, 2, 6, 23, 103, 513, 2761, 15767
(2,1,3,4)4 1, 2, 6, 23, 103, 513, 2761, 15767
(2,1,4,3)4 1, 2, 6, 23, 103, 513, 2761, 15767
(2,3,4,1)4 1, 2, 6, 23, 103, 513, 2761, 15767
(3,2,1,4)4 1, 2, 6, 23, 103, 513, 2761, 15767
(3,4,1,2)4 1, 2, 6, 23, 103, 513, 2761, 15767
(3,4,2,1)4 1, 2, 6, 23, 103, 513, 2761, 15767
(4,1,2,3)4 1, 2, 6, 23, 103, 513, 2761, 15767
(4,3,1,2)4 1, 2, 6, 23, 103, 513, 2761, 15767
(4,3,2,1)4 1, 2, 6, 23, 103, 513, 2761, 15767
(1,3,2,4)4 1, 2, 6, 23, 103, 513, 2762, 15793
(4,2,3,1)4 1, 2, 6, 23, 103, 513, 2762, 15793
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Table A.2: Exact avoidance sequence of each pattern of
size at most 4 × 4.

Patterns Exact avoidance sequence (from 1 to 8)
(1)1 0, 0, 0, 0, 0, 0, 0, 0
(0)1 1, 0, 0, 0, 0, 0, 0, 0
(0,1)1 1, 0, 0, 0, 0, 0, 0, 0
(1,0)1 1, 0, 0, 0, 0, 0, 0, 0
(1,2)2 1, 1, 1, 1, 1, 1, 1, 1
(2,1)2 1, 1, 1, 1, 1, 1, 1, 1
(0,0,1)1 1, 2, 0, 0, 0, 0, 0, 0
(0,0)1 1, 2, 0, 0, 0, 0, 0, 0
(0,1,0)1 1, 2, 0, 0, 0, 0, 0, 0
(0,1)2 1, 2, 0, 0, 0, 0, 0, 0
(0,2)2 1, 2, 0, 0, 0, 0, 0, 0
(1,0,0)1 1, 2, 0, 0, 0, 0, 0, 0
(1,0)2 1, 2, 0, 0, 0, 0, 0, 0
(2,0)2 1, 2, 0, 0, 0, 0, 0, 0
(0,1,2)2 1, 2, 3, 4, 5, 6, 7, 8
(0,2,1)2 1, 2, 3, 4, 5, 6, 7, 8
(1,2,0)2 1, 2, 3, 4, 5, 6, 7, 8
(2,1,0)2 1, 2, 3, 4, 5, 6, 7, 8
(1,0,2)2 1, 2, 3, 5, 8, 13, 21, 34
(2,0,1)2 1, 2, 3, 5, 8, 13, 21, 34
(1,2,3)3 1, 2, 5, 14, 42, 132, 429, 1430
(1,3,2)3 1, 2, 5, 14, 42, 132, 429, 1430
(2,1,3)3 1, 2, 5, 14, 42, 132, 429, 1430
(2,3,1)3 1, 2, 5, 14, 42, 132, 429, 1430
(3,1,2)3 1, 2, 5, 14, 42, 132, 429, 1430
(3,2,1)3 1, 2, 5, 14, 42, 132, 429, 1430
(0,0,0,1)1 1, 2, 6, 0, 0, 0, 0, 0
(0,0,0)1 1, 2, 6, 0, 0, 0, 0, 0
(0,0,1,0)1 1, 2, 6, 0, 0, 0, 0, 0
(0,0,1)2 1, 2, 6, 0, 0, 0, 0, 0
(0,0)2 1, 2, 6, 0, 0, 0, 0, 0
(0,0,2)2 1, 2, 6, 0, 0, 0, 0, 0
(0,1,0,0)1 1, 2, 6, 0, 0, 0, 0, 0
(0,1,0)2 1, 2, 6, 0, 0, 0, 0, 0
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Patterns Exact avoidance sequence (from 1 to 8)
(0,2,0)2 1, 2, 6, 0, 0, 0, 0, 0
(1,0,0,0)1 1, 2, 6, 0, 0, 0, 0, 0
(1,0,0)2 1, 2, 6, 0, 0, 0, 0, 0
(2,0,0)2 1, 2, 6, 0, 0, 0, 0, 0
(0,1,2)3 1, 2, 6, 11, 18, 27, 38, 51
(0,2,1)3 1, 2, 6, 11, 18, 27, 38, 51
(0,2,3)3 1, 2, 6, 11, 18, 27, 38, 51
(0,3,2)3 1, 2, 6, 11, 18, 27, 38, 51
(1,2,0)3 1, 2, 6, 11, 18, 27, 38, 51
(2,1,0)3 1, 2, 6, 11, 18, 27, 38, 51
(2,3,0)3 1, 2, 6, 11, 18, 27, 38, 51
(3,2,0)3 1, 2, 6, 11, 18, 27, 38, 51
(0,1,3)3 1, 2, 6, 11, 22, 41, 76, 138
(0,3,1)3 1, 2, 6, 11, 22, 41, 76, 138
(1,0,2)3 1, 2, 6, 11, 22, 41, 76, 138
(1,3,0)3 1, 2, 6, 11, 22, 41, 76, 138
(2,0,1)3 1, 2, 6, 11, 22, 41, 76, 138
(2,0,3)3 1, 2, 6, 11, 22, 41, 76, 138
(3,0,2)3 1, 2, 6, 11, 22, 41, 76, 138
(3,1,0)3 1, 2, 6, 11, 22, 41, 76, 138
(0,0,1,2)2 1, 2, 6, 12, 20, 30, 42, 56
(0,0,2,1)2 1, 2, 6, 12, 20, 30, 42, 56
(0,1,2,0)2 1, 2, 6, 12, 20, 30, 42, 56
(0,2,1,0)2 1, 2, 6, 12, 20, 30, 42, 56
(1,2,0,0)2 1, 2, 6, 12, 20, 30, 42, 56
(2,1,0,0)2 1, 2, 6, 12, 20, 30, 42, 56
(0,1,0,2)2 1, 2, 6, 12, 25, 48, 91, 168
(0,2,0,1)2 1, 2, 6, 12, 25, 48, 91, 168
(1,0,2,0)2 1, 2, 6, 12, 25, 48, 91, 168
(2,0,1,0)2 1, 2, 6, 12, 25, 48, 91, 168
(1,0,0,2)2 1, 2, 6, 12, 25, 57, 124, 268
(2,0,0,1)2 1, 2, 6, 12, 25, 57, 124, 268
(1,0,3)3 1, 2, 6, 13, 29, 68, 156, 357
(3,0,1)3 1, 2, 6, 13, 29, 68, 156, 357
(0,1,2,3)3 1, 2, 6, 20, 70, 252, 924, 3432
(0,1,3,2)3 1, 2, 6, 20, 70, 252, 924, 3432
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Patterns Exact avoidance sequence (from 1 to 8)
(0,2,1,3)3 1, 2, 6, 20, 70, 252, 924, 3432
(0,2,3,1)3 1, 2, 6, 20, 70, 252, 924, 3432
(0,3,1,2)3 1, 2, 6, 20, 70, 252, 924, 3432
(0,3,2,1)3 1, 2, 6, 20, 70, 252, 924, 3432
(1,2,3,0)3 1, 2, 6, 20, 70, 252, 924, 3432
(1,3,2,0)3 1, 2, 6, 20, 70, 252, 924, 3432
(2,1,3,0)3 1, 2, 6, 20, 70, 252, 924, 3432
(2,3,1,0)3 1, 2, 6, 20, 70, 252, 924, 3432
(3,1,2,0)3 1, 2, 6, 20, 70, 252, 924, 3432
(3,2,1,0)3 1, 2, 6, 20, 70, 252, 924, 3432
(1,0,2,3)3 1, 2, 6, 20, 71, 264, 1015, 4002
(1,0,3,2)3 1, 2, 6, 20, 71, 264, 1015, 4002
(1,2,0,3)3 1, 2, 6, 20, 71, 264, 1015, 4002
(1,3,0,2)3 1, 2, 6, 20, 71, 264, 1015, 4002
(2,0,1,3)3 1, 2, 6, 20, 71, 264, 1015, 4002
(2,0,3,1)3 1, 2, 6, 20, 71, 264, 1015, 4002
(2,1,0,3)3 1, 2, 6, 20, 71, 264, 1015, 4002
(2,3,0,1)3 1, 2, 6, 20, 71, 264, 1015, 4002
(3,0,1,2)3 1, 2, 6, 20, 71, 264, 1015, 4002
(3,0,2,1)3 1, 2, 6, 20, 71, 264, 1015, 4002
(3,1,0,2)3 1, 2, 6, 20, 71, 264, 1015, 4002
(3,2,0,1)3 1, 2, 6, 20, 71, 264, 1015, 4002
(1,3,4,2)4 1, 2, 6, 23, 103, 512, 2740, 15485
(1,4,2,3)4 1, 2, 6, 23, 103, 512, 2740, 15485
(2,3,1,4)4 1, 2, 6, 23, 103, 512, 2740, 15485
(2,4,1,3)4 1, 2, 6, 23, 103, 512, 2740, 15485
(2,4,3,1)4 1, 2, 6, 23, 103, 512, 2740, 15485
(3,1,2,4)4 1, 2, 6, 23, 103, 512, 2740, 15485
(3,1,4,2)4 1, 2, 6, 23, 103, 512, 2740, 15485
(3,2,4,1)4 1, 2, 6, 23, 103, 512, 2740, 15485
(4,1,3,2)4 1, 2, 6, 23, 103, 512, 2740, 15485
(4,2,1,3)4 1, 2, 6, 23, 103, 512, 2740, 15485
(1,2,3,4)4 1, 2, 6, 23, 103, 513, 2761, 15767
(1,2,4,3)4 1, 2, 6, 23, 103, 513, 2761, 15767
(1,4,3,2)4 1, 2, 6, 23, 103, 513, 2761, 15767
(2,1,3,4)4 1, 2, 6, 23, 103, 513, 2761, 15767

Continued on next page

66



Patterns Exact avoidance sequence (from 1 to 8)
(2,1,4,3)4 1, 2, 6, 23, 103, 513, 2761, 15767
(2,3,4,1)4 1, 2, 6, 23, 103, 513, 2761, 15767
(3,2,1,4)4 1, 2, 6, 23, 103, 513, 2761, 15767
(3,4,1,2)4 1, 2, 6, 23, 103, 513, 2761, 15767
(3,4,2,1)4 1, 2, 6, 23, 103, 513, 2761, 15767
(4,1,2,3)4 1, 2, 6, 23, 103, 513, 2761, 15767
(4,3,1,2)4 1, 2, 6, 23, 103, 513, 2761, 15767
(4,3,2,1)4 1, 2, 6, 23, 103, 513, 2761, 15767
(1,3,2,4)4 1, 2, 6, 23, 103, 513, 2762, 15793
(4,2,3,1)4 1, 2, 6, 23, 103, 513, 2762, 15793
(0,0,0,0)1 1, 2, 6, 24, 0, 0, 0, 0
(0,0,0,1)2 1, 2, 6, 24, 0, 0, 0, 0
(0,0,0)2 1, 2, 6, 24, 0, 0, 0, 0
(0,0,0,2)2 1, 2, 6, 24, 0, 0, 0, 0
(0,0,1,0)2 1, 2, 6, 24, 0, 0, 0, 0
(0,0,1)3 1, 2, 6, 24, 0, 0, 0, 0
(0,0,2,0)2 1, 2, 6, 24, 0, 0, 0, 0
(0,0,2)3 1, 2, 6, 24, 0, 0, 0, 0
(0,0,3)3 1, 2, 6, 24, 0, 0, 0, 0
(0,1,0,0)2 1, 2, 6, 24, 0, 0, 0, 0
(0,1,0)3 1, 2, 6, 24, 0, 0, 0, 0
(0,2,0,0)2 1, 2, 6, 24, 0, 0, 0, 0
(0,2,0)3 1, 2, 6, 24, 0, 0, 0, 0
(0,3,0)3 1, 2, 6, 24, 0, 0, 0, 0
(1,0,0,0)2 1, 2, 6, 24, 0, 0, 0, 0
(1,0,0)3 1, 2, 6, 24, 0, 0, 0, 0
(2,0,0,0)2 1, 2, 6, 24, 0, 0, 0, 0
(2,0,0)3 1, 2, 6, 24, 0, 0, 0, 0
(3,0,0)3 1, 2, 6, 24, 0, 0, 0, 0
(0,1,2,0)3 1, 2, 6, 24, 50, 98, 172, 278
(0,2,1,0)3 1, 2, 6, 24, 50, 98, 172, 278
(0,2,3,0)3 1, 2, 6, 24, 50, 98, 172, 278
(0,3,2,0)3 1, 2, 6, 24, 50, 98, 172, 278
(0,1,3,0)3 1, 2, 6, 24, 50, 117, 249, 518
(0,3,1,0)3 1, 2, 6, 24, 50, 117, 249, 518
(0,2,0,1)3 1, 2, 6, 24, 51, 121, 264, 561
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Patterns Exact avoidance sequence (from 1 to 8)
(0,2,0,3)3 1, 2, 6, 24, 51, 121, 264, 561
(1,0,2,0)3 1, 2, 6, 24, 51, 121, 264, 561
(3,0,2,0)3 1, 2, 6, 24, 51, 121, 264, 561
(0,0,1,2)3 1, 2, 6, 24, 52, 100, 174, 280
(0,0,2,1)3 1, 2, 6, 24, 52, 100, 174, 280
(0,0,2,3)3 1, 2, 6, 24, 52, 100, 174, 280
(0,0,3,2)3 1, 2, 6, 24, 52, 100, 174, 280
(1,2,0,0)3 1, 2, 6, 24, 52, 100, 174, 280
(2,1,0,0)3 1, 2, 6, 24, 52, 100, 174, 280
(2,3,0,0)3 1, 2, 6, 24, 52, 100, 174, 280
(3,2,0,0)3 1, 2, 6, 24, 52, 100, 174, 280
(0,0,1,3)3 1, 2, 6, 24, 52, 120, 254, 526
(0,0,3,1)3 1, 2, 6, 24, 52, 120, 254, 526
(1,3,0,0)3 1, 2, 6, 24, 52, 120, 254, 526
(3,1,0,0)3 1, 2, 6, 24, 52, 120, 254, 526
(0,1,0,2)3 1, 2, 6, 24, 52, 124, 268, 568
(0,3,0,2)3 1, 2, 6, 24, 52, 124, 268, 568
(2,0,1,0)3 1, 2, 6, 24, 52, 124, 268, 568
(2,0,3,0)3 1, 2, 6, 24, 52, 124, 268, 568
(1,0,0,2)3 1, 2, 6, 24, 52, 127, 326, 782
(2,0,0,1)3 1, 2, 6, 24, 52, 127, 326, 782
(2,0,0,3)3 1, 2, 6, 24, 52, 127, 326, 782
(3,0,0,2)3 1, 2, 6, 24, 52, 127, 326, 782
(0,1,0,3)3 1, 2, 6, 24, 60, 156, 416, 1068
(0,3,0,1)3 1, 2, 6, 24, 60, 156, 416, 1068
(1,0,3,0)3 1, 2, 6, 24, 60, 156, 416, 1068
(3,0,1,0)3 1, 2, 6, 24, 60, 156, 416, 1068
(1,0,0,3)3 1, 2, 6, 24, 64, 174, 496, 1465
(3,0,0,1)3 1, 2, 6, 24, 64, 174, 496, 1465
(0,1,3,2)4 1, 2, 6, 24, 97, 401, 1672, 6987
(0,2,1,3)4 1, 2, 6, 24, 97, 401, 1672, 6987
(0,3,4,2)4 1, 2, 6, 24, 97, 401, 1672, 6987
(0,4,2,3)4 1, 2, 6, 24, 97, 401, 1672, 6987
(2,3,1,0)4 1, 2, 6, 24, 97, 401, 1672, 6987
(2,4,3,0)4 1, 2, 6, 24, 97, 401, 1672, 6987
(3,1,2,0)4 1, 2, 6, 24, 97, 401, 1672, 6987
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Patterns Exact avoidance sequence (from 1 to 8)
(3,2,4,0)4 1, 2, 6, 24, 97, 401, 1672, 6987
(0,1,4,2)4 1, 2, 6, 24, 97, 406, 1740, 7577
(0,4,1,3)4 1, 2, 6, 24, 97, 406, 1740, 7577
(2,0,1,3)4 1, 2, 6, 24, 97, 406, 1740, 7577
(2,4,0,3)4 1, 2, 6, 24, 97, 406, 1740, 7577
(2,4,1,0)4 1, 2, 6, 24, 97, 406, 1740, 7577
(3,0,4,2)4 1, 2, 6, 24, 97, 406, 1740, 7577
(3,1,0,2)4 1, 2, 6, 24, 97, 406, 1740, 7577
(3,1,4,0)4 1, 2, 6, 24, 97, 406, 1740, 7577
(0,1,2,3)4 1, 2, 6, 24, 98, 405, 1685, 7028
(0,2,3,4)4 1, 2, 6, 24, 98, 405, 1685, 7028
(0,2,4,3)4 1, 2, 6, 24, 98, 405, 1685, 7028
(0,3,1,2)4 1, 2, 6, 24, 98, 405, 1685, 7028
(0,3,2,1)4 1, 2, 6, 24, 98, 405, 1685, 7028
(0,4,3,2)4 1, 2, 6, 24, 98, 405, 1685, 7028
(1,2,3,0)4 1, 2, 6, 24, 98, 405, 1685, 7028
(2,1,3,0)4 1, 2, 6, 24, 98, 405, 1685, 7028
(2,3,4,0)4 1, 2, 6, 24, 98, 405, 1685, 7028
(3,2,1,0)4 1, 2, 6, 24, 98, 405, 1685, 7028
(3,4,2,0)4 1, 2, 6, 24, 98, 405, 1685, 7028
(4,3,2,0)4 1, 2, 6, 24, 98, 405, 1685, 7028
(0,2,3,1)4 1, 2, 6, 24, 98, 406, 1692, 7062
(0,3,2,4)4 1, 2, 6, 24, 98, 406, 1692, 7062
(1,3,2,0)4 1, 2, 6, 24, 98, 406, 1692, 7062
(4,2,3,0)4 1, 2, 6, 24, 98, 406, 1692, 7062
(0,1,3,4)4 1, 2, 6, 24, 98, 410, 1755, 7635
(0,1,4,3)4 1, 2, 6, 24, 98, 410, 1755, 7635
(0,4,1,2)4 1, 2, 6, 24, 98, 410, 1755, 7635
(0,4,2,1)4 1, 2, 6, 24, 98, 410, 1755, 7635
(1,2,0,3)4 1, 2, 6, 24, 98, 410, 1755, 7635
(1,2,4,0)4 1, 2, 6, 24, 98, 410, 1755, 7635
(2,0,3,4)4 1, 2, 6, 24, 98, 410, 1755, 7635
(2,0,4,3)4 1, 2, 6, 24, 98, 410, 1755, 7635
(2,1,0,3)4 1, 2, 6, 24, 98, 410, 1755, 7635
(2,1,4,0)4 1, 2, 6, 24, 98, 410, 1755, 7635
(3,0,1,2)4 1, 2, 6, 24, 98, 410, 1755, 7635
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Patterns Exact avoidance sequence (from 1 to 8)
(3,0,2,1)4 1, 2, 6, 24, 98, 410, 1755, 7635
(3,4,0,2)4 1, 2, 6, 24, 98, 410, 1755, 7635
(3,4,1,0)4 1, 2, 6, 24, 98, 410, 1755, 7635
(4,3,0,2)4 1, 2, 6, 24, 98, 410, 1755, 7635
(4,3,1,0)4 1, 2, 6, 24, 98, 410, 1755, 7635
(0,1,2,4)4 1, 2, 6, 24, 98, 411, 1759, 7647
(0,4,3,1)4 1, 2, 6, 24, 98, 411, 1759, 7647
(1,0,2,3)4 1, 2, 6, 24, 98, 411, 1759, 7647
(1,3,4,0)4 1, 2, 6, 24, 98, 411, 1759, 7647
(2,3,0,4)4 1, 2, 6, 24, 98, 411, 1759, 7647
(3,2,0,1)4 1, 2, 6, 24, 98, 411, 1759, 7647
(4,0,3,2)4 1, 2, 6, 24, 98, 411, 1759, 7647
(4,2,1,0)4 1, 2, 6, 24, 98, 411, 1759, 7647
(0,2,1,4)4 1, 2, 6, 24, 98, 411, 1762, 7671
(0,2,4,1)4 1, 2, 6, 24, 98, 411, 1762, 7671
(0,3,1,4)4 1, 2, 6, 24, 98, 411, 1762, 7671
(0,3,4,1)4 1, 2, 6, 24, 98, 411, 1762, 7671
(1,0,3,2)4 1, 2, 6, 24, 98, 411, 1762, 7671
(1,3,0,2)4 1, 2, 6, 24, 98, 411, 1762, 7671
(1,4,2,0)4 1, 2, 6, 24, 98, 411, 1762, 7671
(1,4,3,0)4 1, 2, 6, 24, 98, 411, 1762, 7671
(2,0,3,1)4 1, 2, 6, 24, 98, 411, 1762, 7671
(2,3,0,1)4 1, 2, 6, 24, 98, 411, 1762, 7671
(3,0,2,4)4 1, 2, 6, 24, 98, 411, 1762, 7671
(3,2,0,4)4 1, 2, 6, 24, 98, 411, 1762, 7671
(4,0,2,3)4 1, 2, 6, 24, 98, 411, 1762, 7671
(4,1,2,0)4 1, 2, 6, 24, 98, 411, 1762, 7671
(4,1,3,0)4 1, 2, 6, 24, 98, 411, 1762, 7671
(4,2,0,3)4 1, 2, 6, 24, 98, 411, 1762, 7671
(1,0,2,4)4 1, 2, 6, 24, 98, 417, 1830, 8238
(1,3,0,4)4 1, 2, 6, 24, 98, 417, 1830, 8238
(4,0,3,1)4 1, 2, 6, 24, 98, 417, 1830, 8238
(4,2,0,1)4 1, 2, 6, 24, 98, 417, 1830, 8238
(1,0,4,2)4 1, 2, 6, 24, 98, 418, 1840, 8312
(1,4,0,3)4 1, 2, 6, 24, 98, 418, 1840, 8312
(2,0,1,4)4 1, 2, 6, 24, 98, 418, 1840, 8312
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Patterns Exact avoidance sequence (from 1 to 8)
(2,4,0,1)4 1, 2, 6, 24, 98, 418, 1840, 8312
(3,0,4,1)4 1, 2, 6, 24, 98, 418, 1840, 8312
(3,1,0,4)4 1, 2, 6, 24, 98, 418, 1840, 8312
(4,0,1,3)4 1, 2, 6, 24, 98, 418, 1840, 8312
(4,1,0,2)4 1, 2, 6, 24, 98, 418, 1840, 8312
(1,4,0,2)4 1, 2, 6, 24, 100, 430, 1908, 8682
(2,0,4,1)4 1, 2, 6, 24, 100, 430, 1908, 8682
(3,0,1,4)4 1, 2, 6, 24, 100, 430, 1908, 8682
(4,1,0,3)4 1, 2, 6, 24, 100, 430, 1908, 8682
(1,0,3,4)4 1, 2, 6, 24, 100, 430, 1910, 8707
(1,0,4,3)4 1, 2, 6, 24, 100, 430, 1910, 8707
(1,2,0,4)4 1, 2, 6, 24, 100, 430, 1910, 8707
(2,1,0,4)4 1, 2, 6, 24, 100, 430, 1910, 8707
(3,4,0,1)4 1, 2, 6, 24, 100, 430, 1910, 8707
(4,0,1,2)4 1, 2, 6, 24, 100, 430, 1910, 8707
(4,0,2,1)4 1, 2, 6, 24, 100, 430, 1910, 8707
(4,3,0,1)4 1, 2, 6, 24, 100, 430, 1910, 8707
(0,0,0,0)2 1, 2, 6, 24, 120, 0, 0, 0
(0,0,0,1)3 1, 2, 6, 24, 120, 0, 0, 0
(0,0,0,2)3 1, 2, 6, 24, 120, 0, 0, 0
(0,0,0)3 1, 2, 6, 24, 120, 0, 0, 0
(0,0,0,3)3 1, 2, 6, 24, 120, 0, 0, 0
(0,0,1,0)3 1, 2, 6, 24, 120, 0, 0, 0
(0,0,2,0)3 1, 2, 6, 24, 120, 0, 0, 0
(0,0,3,0)3 1, 2, 6, 24, 120, 0, 0, 0
(0,1,0,0)3 1, 2, 6, 24, 120, 0, 0, 0
(0,2,0,0)3 1, 2, 6, 24, 120, 0, 0, 0
(0,3,0,0)3 1, 2, 6, 24, 120, 0, 0, 0
(1,0,0,0)3 1, 2, 6, 24, 120, 0, 0, 0
(2,0,0,0)3 1, 2, 6, 24, 120, 0, 0, 0
(3,0,0,0)3 1, 2, 6, 24, 120, 0, 0, 0
(0,2,3,0)4 1, 2, 6, 24, 120, 252, 572, 1152
(0,3,2,0)4 1, 2, 6, 24, 120, 252, 572, 1152
(0,1,3,0)4 1, 2, 6, 24, 120, 260, 702, 1711
(0,2,0,3)4 1, 2, 6, 24, 120, 260, 702, 1711
(0,2,4,0)4 1, 2, 6, 24, 120, 260, 702, 1711
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Patterns Exact avoidance sequence (from 1 to 8)
(0,3,0,2)4 1, 2, 6, 24, 120, 260, 702, 1711
(0,3,1,0)4 1, 2, 6, 24, 120, 260, 702, 1711
(0,4,2,0)4 1, 2, 6, 24, 120, 260, 702, 1711
(2,0,3,0)4 1, 2, 6, 24, 120, 260, 702, 1711
(3,0,2,0)4 1, 2, 6, 24, 120, 260, 702, 1711
(0,0,2,3)4 1, 2, 6, 24, 120, 262, 586, 1170
(0,0,3,2)4 1, 2, 6, 24, 120, 262, 586, 1170
(0,1,2,0)4 1, 2, 6, 24, 120, 262, 586, 1170
(0,2,1,0)4 1, 2, 6, 24, 120, 262, 586, 1170
(0,3,4,0)4 1, 2, 6, 24, 120, 262, 586, 1170
(0,4,3,0)4 1, 2, 6, 24, 120, 262, 586, 1170
(2,3,0,0)4 1, 2, 6, 24, 120, 262, 586, 1170
(3,2,0,0)4 1, 2, 6, 24, 120, 262, 586, 1170
(0,1,4,0)4 1, 2, 6, 24, 120, 267, 754, 2144
(0,4,1,0)4 1, 2, 6, 24, 120, 267, 754, 2144
(2,0,0,3)4 1, 2, 6, 24, 120, 267, 754, 2144
(3,0,0,2)4 1, 2, 6, 24, 120, 267, 754, 2144
(0,0,2,4)4 1, 2, 6, 24, 120, 270, 714, 1736
(0,0,3,1)4 1, 2, 6, 24, 120, 270, 714, 1736
(0,2,0,1)4 1, 2, 6, 24, 120, 270, 714, 1736
(0,3,0,4)4 1, 2, 6, 24, 120, 270, 714, 1736
(1,0,2,0)4 1, 2, 6, 24, 120, 270, 714, 1736
(1,3,0,0)4 1, 2, 6, 24, 120, 270, 714, 1736
(4,0,3,0)4 1, 2, 6, 24, 120, 270, 714, 1736
(4,2,0,0)4 1, 2, 6, 24, 120, 270, 714, 1736
(0,0,1,2)4 1, 2, 6, 24, 120, 284, 612, 1200
(0,0,2,1)4 1, 2, 6, 24, 120, 284, 612, 1200
(0,0,3,4)4 1, 2, 6, 24, 120, 284, 612, 1200
(0,0,4,3)4 1, 2, 6, 24, 120, 284, 612, 1200
(1,2,0,0)4 1, 2, 6, 24, 120, 284, 612, 1200
(2,1,0,0)4 1, 2, 6, 24, 120, 284, 612, 1200
(3,4,0,0)4 1, 2, 6, 24, 120, 284, 612, 1200
(4,3,0,0)4 1, 2, 6, 24, 120, 284, 612, 1200
(0,0,1,3)4 1, 2, 6, 24, 120, 284, 752, 1796
(0,0,4,2)4 1, 2, 6, 24, 120, 284, 752, 1796
(0,1,0,2)4 1, 2, 6, 24, 120, 284, 752, 1796
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Patterns Exact avoidance sequence (from 1 to 8)
(0,4,0,3)4 1, 2, 6, 24, 120, 284, 752, 1796
(2,0,1,0)4 1, 2, 6, 24, 120, 284, 752, 1796
(2,4,0,0)4 1, 2, 6, 24, 120, 284, 752, 1796
(3,0,4,0)4 1, 2, 6, 24, 120, 284, 752, 1796
(3,1,0,0)4 1, 2, 6, 24, 120, 284, 752, 1796
(0,0,1,4)4 1, 2, 6, 24, 120, 284, 784, 2208
(0,0,4,1)4 1, 2, 6, 24, 120, 284, 784, 2208
(1,0,0,2)4 1, 2, 6, 24, 120, 284, 784, 2208
(1,4,0,0)4 1, 2, 6, 24, 120, 284, 784, 2208
(2,0,0,1)4 1, 2, 6, 24, 120, 284, 784, 2208
(3,0,0,4)4 1, 2, 6, 24, 120, 284, 784, 2208
(4,0,0,3)4 1, 2, 6, 24, 120, 284, 784, 2208
(4,1,0,0)4 1, 2, 6, 24, 120, 284, 784, 2208
(0,2,0,4)4 1, 2, 6, 24, 120, 304, 907, 2696
(0,3,0,1)4 1, 2, 6, 24, 120, 304, 907, 2696
(1,0,3,0)4 1, 2, 6, 24, 120, 304, 907, 2696
(4,0,2,0)4 1, 2, 6, 24, 120, 304, 907, 2696
(0,1,0,3)4 1, 2, 6, 24, 120, 321, 938, 2785
(0,4,0,2)4 1, 2, 6, 24, 120, 321, 938, 2785
(2,0,4,0)4 1, 2, 6, 24, 120, 321, 938, 2785
(3,0,1,0)4 1, 2, 6, 24, 120, 321, 938, 2785
(0,1,0,4)4 1, 2, 6, 24, 120, 341, 1044, 3339
(0,4,0,1)4 1, 2, 6, 24, 120, 341, 1044, 3339
(1,0,0,3)4 1, 2, 6, 24, 120, 341, 1044, 3339
(1,0,4,0)4 1, 2, 6, 24, 120, 341, 1044, 3339
(2,0,0,4)4 1, 2, 6, 24, 120, 341, 1044, 3339
(3,0,0,1)4 1, 2, 6, 24, 120, 341, 1044, 3339
(4,0,0,2)4 1, 2, 6, 24, 120, 341, 1044, 3339
(4,0,1,0)4 1, 2, 6, 24, 120, 341, 1044, 3339
(1,0,0,4)4 1, 2, 6, 24, 120, 374, 1219, 4121
(4,0,0,1)4 1, 2, 6, 24, 120, 374, 1219, 4121
(0,0,0,0)3 1, 2, 6, 24, 120, 720, 0, 0
(0,0,0,1)4 1, 2, 6, 24, 120, 720, 0, 0
(0,0,0,2)4 1, 2, 6, 24, 120, 720, 0, 0
(0,0,0,3)4 1, 2, 6, 24, 120, 720, 0, 0
(0,0,0,4)4 1, 2, 6, 24, 120, 720, 0, 0
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Patterns Exact avoidance sequence (from 1 to 8)
(0,0,1,0)4 1, 2, 6, 24, 120, 720, 0, 0
(0,0,2,0)4 1, 2, 6, 24, 120, 720, 0, 0
(0,0,3,0)4 1, 2, 6, 24, 120, 720, 0, 0
(0,0,4,0)4 1, 2, 6, 24, 120, 720, 0, 0
(0,1,0,0)4 1, 2, 6, 24, 120, 720, 0, 0
(0,2,0,0)4 1, 2, 6, 24, 120, 720, 0, 0
(0,3,0,0)4 1, 2, 6, 24, 120, 720, 0, 0
(0,4,0,0)4 1, 2, 6, 24, 120, 720, 0, 0
(1,0,0,0)4 1, 2, 6, 24, 120, 720, 0, 0
(2,0,0,0)4 1, 2, 6, 24, 120, 720, 0, 0
(3,0,0,0)4 1, 2, 6, 24, 120, 720, 0, 0
(4,0,0,0)4 1, 2, 6, 24, 120, 720, 0, 0
(0,0,0,0)4 1, 2, 6, 24, 120, 720, 5040, 0
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