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Author: Raheleh Jalali Keshavarz

Department: Department of Algebra

Supervisor: Prof. RNDr. Pavel Pudlák, DrSc, Institute of Mathematics,
Academy of Sciences of the Czech Republic

Abstract: This dissertation includes three parts. The first two parts are related
to each other. In [23] and [22], Iemhoff introduced a connection between the
existence of a terminating sequent calculus of a certain kind and the uniform in-
terpolation property of the super-intuitionistic logic that the calculus captures. In
the second part, we will generalize this relationship to also cover the substructural
setting on the one hand and a more powerful type of systems called semi-analytic
calculi, on the other. To be more precise, we will show that any sufficiently
strong substructural logic with a semi-analytic calculus has Craig interpolation
property and in case that the calculus is also terminating, it has uniform inter-
polation. This relationship then leads to some concrete applications. On the
positive side, it provides a uniform method to prove the uniform interpolation
property for the logics FLe, FLew, CFLe, CFLew, IPC, CPC and some of
their K and KD-type modal extensions. However, on the negative side the rela-
tionship finds its more interesting application to show that many sub-structural
logics including Ln, Gn, BL, R and RM e, almost all super-intutionistic logics
(except at most seven of them) and almost all extensions of S4 (except thirty
seven of them) do not have a semi-analytic calculus. It also shows that the logic
K4 and almost all extensions of the logic S4 (except six of them) do not have a
terminating semi-analytic calculus.
Then, in the second part, we pay attention solely to the systems Iemhoff in-
troduced in [23], i.e., focused calculi. She showed almost all super-intuitionistic
logics cannot have focused proof systems. In this part, we will provide a com-
plexity theoretic analogue of this negative result to show that even in the cases
that these systems exist, their proof-length would computationally explode.
In the third part, we investigate the proof complexity of a wide range of substruc-
tural systems. For any proof system P at least as strong as Full Lambek calculus,
FL, and polynomially simulated by the extended Frege system for some infinite
branching super-intuitionistic logic, we present an exponential lower bound on
the proof lengths. More precisely, we will provide a sequence of P-provable for-
mulas {An}∞

n=1 such that the length of the shortest P-proof for An is exponential
in the length of An. The lower bound also extends to the number of proof-lines
(proof-lengths) in any Frege system (extended Frege system) for a logic between
FL and any infinite branching super-intuitionistic logic. We will also prove a sim-
ilar result for the proof systems and logics extending Visser’s basic propositional
calculus BPC and its logic BPC, respectively. Finally, in the classical substruc-
tural setting, we will establish an exponential lower bound on the number of
proof-lines in any proof system polynomially simulated by the cut-free version of
CFLew.

Keywords: Propositional proof complexity, Sub-structural logics, Craig Inter-
polation, Uniform interpolation
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1. Introduction
Proof systems play a crucial role in proof theory, from consistency proofs and
proof mining techniques to the characterization of admissible rules. These inves-
tigations are based on some specific proof systems tailored for specific purposes;
an approach which we can call the instrumentalist approach to proof theory.
However, there can be another approach which studies generic proof systems as
the main objects of study as opposed to the technical tools that they always have
been. This dissertation belongs to this realm of study in which we are interested
in generic proof systems in their most general form.

As a first natural step in this area, in the second chapter of this dissertation
we investigate the existence of “nice” proof systems for a given class of logics and
for some natural interpretation for the adjective term “nice”. More precisely, we
approach this problem by proposing what we mean by nice proof systems and
then by finding an invariant property for the logic with such a system. These two
steps together provide a machinery to prove some logical properties for any logic
with a nice proof system and on the negative side, if we have a property that
almost all logics in a certain given class do not enjoy, we can show that almost
all logics in the class do not have a nice proof system.
This line of research in its present format was initiated by Iemhoff, who showed
that if a super-intuitionistic logic has a terminating proof system consisting of
focused rules and focused axioms, it has the uniform interpolation property [23].
In her setting, nice proof systems are focused proof systems; the correspond-
ing class is the class of super-intuitionistic logics; and the invariant is uniform
interpolation. Since only seven super-intuitionistic logics have uniform interpo-
lation, she showed that almost all super-intuitionistic logics do not have such a
proof system. In our second chapter, we will present a second approximation
for the adjective “nice”. Our candidate for natural well-behaved sequent-style
rules is semi-analytic rules, which is a generalization of Iemhoff’s focused rules.
Then we show that if a sufficiently strong sub-structural logic has a sequent-style
proof system only consisting of semi-analytic rules and focused axioms, it has
the Craig interpolation property. As a result, many substructural logics and all
super-intuitionistic logics, except seven of them, do not have a sequent calculus
of the mentioned form. Moreover, we also show that if a sufficiently strong sub-
structural logic has a terminating sequent-style proof system only consisting of
semi-analytic rules and focused axioms, it must have the uniform interpolation
property. Consequently, K4 and S4 do not have a terminating sequent calculus
of the mentioned form. The second chapter is a joint work with Amir Akbar
Tabatabai. It is submitted to a journal and is currently under review.

In the third chapter, we address the complexity analogue of the previous exis-
tence problem, asking whether a given logic has an efficient “nice” proof system.
We show that any calculus consisting only of two natural subclasses of focused
rules is inefficient, meaning that some short statements must have exponentially
long proofs in these systems. This result can be interpreted as the complexity
counterpart of the negative result in the second chapter, ensuring that even in
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the cases that Iemhoff’s systems exist, their proof-length will computationally
explode. This chapter is a paper published in International Workshop on Logic,
Language, Information, and Computation, [24].

Finally, in the last chapter of this dissertation, we will change our focus to the
most general form of proof systems as polynomial time computable functions that
are sound and complete with respect to the corresponding logics. Here, the main
interesting proof systems are Frege and extended Frege systems for substructural
logics and the extensions of Visser’s basic logic. In this direction, we will provide
an exponential lower bound on the lengths of proofs in extended Frege systems for
logics as strong as the basic substructural logic FL or Visser’s basic logic BPC and
weaker than some super-intuitionistic infinite branching logic. For Frege systems
for such logics, we can make the result even stronger by providing an exponential
lower bound on the number of proof-lines in the systems. This chapter is currently
available in the preprint format.
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2. Semi-analytic Rules and
Interpolation

2.1 Introduction
Proof systems have the main role in any proof theoretic investigation, from
Gentzen’s consistency proof and Kreisel’s proof mining program to the char-
acterizations of the admissible rules of the logical systems and their decidability
problems. In this respect, proof systems are nothing but some technical tools in
the study of their corresponding mathematical theories. They are designed and
used based on their expected applications and not their inherent mathematical
values. They are just the second rank citizens, far from the independent mathe-
matical objects that they could have been.

Fortunately, in the recent years, alongside this instrumentalist approach, an-
other approach has also been emerged; an approach that is more interested in
the general behaviour of the proof systems than their possible technical applica-
tions (for instance, see [22], [23] and [10]). We call this emerging approach, the
universal proof theory;1 a name we hope to be reminiscent of the technical term
universal algebra used for the theory that is supposed to investigate the generic
behaviour of the algebraic structures. This theory is admittedly a hypothetical
theory, but whatever it turns out to be, its agenda may include the following
fundamental problems:

(i) The existence problem to investigate the existence of the different sorts of
interesting proof systems such as the terminating systems, the normalizable
systems, etc.

(ii) The equivalence problem to investigate the natural notions of equivalence
between proof systems. This can be interpreted as an approach to address
the so-called Hilbert’s twenty fourth problem of studying the equivalence of
different mathematical proofs, rigorously.

(iii) And finally, the characterization problem to investigate the possible charac-
terizations of proof systems via a given equivalence relation as introduced
in (ii).

As the first step in this so-called universal proof theory and following the spirit
of [22] and [23], we begin with the most basic problem of the kind, the existence
problem, addressing the existence of the natural sequent style proof systems for a
given propositional and modal logic. The technique is developing a strong rela-
tionship between the existence of some sort of proof systems and some regularity
conditions for the logic that it represents. One loose example of such a rela-
tionship is the relationship between the existence of a terminating calculus for a
logic and its decidability. These relationships are important because they reduce
the existence problem partially or completely to the regularity conditions of the

1We are grateful to Masoud Memarzadeh for this elegant terminological suggestion.
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logic that are calculus-independent and probably more amenable to our technical
tools. Again using our loose example, we know that an undecidable logic can not
have a terminating calculus; a fact that solves the existence problem negatively.

This paper is devoted to one of these kinds of relationships and to explain
how, we have to browse the history a little bit, first. The story begins with Pitts’
seminal work, [35], in which he introduced a proof theoretic method to prove
the uniform interpolation property for the propositional intuitionistic logic. His
technique is built on the following two main ideas: First he extended the notion
of uniform interpolation from a logic to its sequent calculus in a way that the
uniform p-interpolants for a sequent are roughly the best left and right p-free
formulas that if we add them to the left or right side of the sequent, they make
the sequent provable. This reduces the task of proving uniform interpolation for
the logic, to the task of finding these new uniform interpolants for all sequents.
For the latter, he assigned two sets of p-free formulas to any sequent using the
structure of the formulas occurred in the sequent itself. To define these sets,
though, he needed the second crucial tool of the game namely the terminating
calculus for IPC, introduced in [13] by Dyckhoff. The terminating calculus pro-
vides a well-founded order on sequents on which we can define the sets that we
have mentioned before, recursively.

Later, as witnessed in [23], Iemhoff recognized that the main point in the first
part of Pitts’ argument is flexible enough to apply on any rule with a certain
general form. This observation then lets her to lift the technique from the intu-
itionistic logic to any extension of the intuitionistic logic presented with a generic
terminating calculus consisting of the usual axioms of the calculus LJ and the
above-mentioned rules that she calls focused axioms and focused rules, respec-
tively. These are the rules that are very natural to consider and they are roughly
the rules with one main formula in their consequence such that the rule respects
both the side of this main formula and the occurrence of atoms in it, i.e. if the
main formula is occurred in the left-side (right-side) of the consequence, all non-
contextual formulas in the premises should also occur in the left-side (right-side)
and any occurrence of any atom in these formulas must also occur in the main
formula. The usual conjunction and disjunction rules are the prototype examples
of these rules while the implication rules are the non-examples since they clearly
do not respect the side of the main formula.

As we explained, the investigations in [23] lead to an exciting relationship be-
tween the existence of a terminating calculus consisting only of the focused axioms
and focused rules for a logic and the uniform interpolation property of the logic.
Iemhoff used this relationship first in a positive manner to prove the uniform inter-
polation for some well-known super-intuitionistic and super-intuitionistic modal
logics including IPC, CPC, K and KD and their intuitionistic versions. And
then she switched to the negative part to show that no extension of the intu-
itionistic logic can have a terminating calculus consisting of focused axioms and
focused rules unless it has the uniform interpolation property. Since uniform in-
terpolation is a rare property for a logic, it excludes almost all logical systems,
including all super-intuitionistic logics, except the seven logics with the uniform
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interpolation property, from having such a terminating calculus.

Now we are ready to explain what we will pursue in this paper. Our approach
is a generalization of the approach in [22] and [23], in the following three aspects:
First we use a much more general class of rules that we will call semi-analytic
rules. These rules can be defined roughly as the focused rules relaxing the side
preserving condition. Therefore, they cover a vast variety of rules including fo-
cused rules, implication rules, non-context sharing rules in substructural logics
and so many others. Secondly, we generalize the focused axioms of [23] to cover
more general forms of axioms. And finally, we lower the base logic from the in-
tuitionistic logic to the basic substructural logic FLe to extend the applicability
of the final result to cover substructural logics as well.

After these generalizations, as in [23], our main result connects the existence
of proof systems consisting of semi-analytic rules and focused axioms to a strong
version of Craig interpolation property called the feasible interpolation and in the
case that the system is also terminating to an even stronger form of uniform in-
terpolation. As it is expected, this connection also has two sorts of applications.
First on the positive side, it says that if we manage to develop a terminating
calculus consisting of semi-analytic rules and focused axioms, there is a uniform
method to establish the uniform interpolation property. The logics with this
property include some substrucutral logics like FLe, FLew, CFLe, CFLew and
their K and KD modal extensions and intuitionistic and classical logics and some
of their modal extensions. (For the classical modal case see [7], for the substruc-
tural logics see [2] and for intuitionistic and intutionistic modal logics see [35]
and [23].) Moreover, note that there is a possibility that we manage to develop a
system of the mentioned form that fails to be terminating. In this case the con-
nection is still useful but only to establish the Craig interpolation. The logics in
this category include K4 and S4-type of modal extensions of some substructural
logics including the intutionistic and classical linear logics in which the exponen-
tials play the role of the S4-type modality.

Despite the possible use of the positive applications of the connection, it is
fair to say that developing a uniform method to prove interpolation is not very
useful. The reason is the common knowledge that it is genuinely rare for a logic to
have the interpolation property. To justify this feeling, note that in the substruc-
tural setting, there are a lot of relevant and semilinear logics ([43], [32]) that lack
this property and as we have already seen in the super-intutionistic case, there
is a well-known result by Maksimova [31] stating that among super-intuitionistic
logics, there are only seven specific logics that have Craig or uniform interpolation.

Using this insight, we will turn the relationship between the interpolation and
the existence of proof systems to its negative side to propose the main contri-
bution of this paper. We will use the connection to show that logics without
Craig interpolation do not have a calculus consisting only of semi-analytic rules
and focused axioms and if they have Craig interpolation but fail to have uni-
form interpolation, the proof system if exists will not be terminating. Given the
generality of these rules and axioms, this negative application excludes so many
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logics from having a reasonable proof system. To name a few concrete exam-
ples consider the logics Ln, Gn, BL, R and RM e in the substructural world, all
super-intuitionistic logics except IPC, LC, KC, Bd2, Sm, GSc and CPC in the
super-intuitionistic domain and all extensions of S4 except at most thirty seven
of them in the modal case. In the uniform case, there are also some concrete
examples including the logics K4 and all the extensions of S4 except at most six
of them for which our result shows the non-existence of a terminating calculus
consisting only of semi-analytic rules and focused axioms.

2.2 Preliminaries
In this section we will cover some of the preliminaries needed for the following
sections. The definitions are similar to the same concepts in [23] and [32], but
they have been changed whenever it is needed.

First, note that all of the finite objects that we will use here can be represented
by a fixed reasonable binary string code. Therefore, by the length of any object
O including formulas, proofs, etc. we mean the length of this string code and we
will denote it by |O|.
In the following, we define a translation between two arbitrary languages. The
reason for using such a notion is that in the upcoming sections we will consider
logics with a fixed but an arbitrary language. This is a generalization which
makes our results much stronger since their importance is that they are negative
results. Therefore, the broader the range of the logics is, the stronger the results
will be.

Definition 2.2.1. Let us denote p1, . . . , pn by p̄, where each pi is an atomic
formula. Let L and L′ be two languages. By a translation t : L → L′, we mean
an assignment which assigns a formula ϕC(p̄) ∈ L′ to any logical connective
C(p̄) ∈ L such that any pi has at most one occurrence in ϕC(p̄). It is possible
to extend a translation from the basic connectives of the language to all of its
formulas in an obvious compositional way. We will denote the translation of a
formula ϕ by ϕt and the translation of a multiset Γ, by Γt = {ϕt | ϕ ∈ Γ}.

Each translation is linearly bounded, i.e., for any translation t there exists a
number c such that |ψt| ≤ c|ψ|.
In this paper, we will work with a fixed but arbitrary language L that is aug-
mented by a translation t : {∧,∨,→,⊗, 0, 1} ∪ L → L in the single-conclusion
cases and by t : {∧,∨,→,⊗,⊕, 0, 1}∪L → L in multi-conclusion cases, that fixes
all logical connectives in L. For this reason and w.l.o.g, we will assume that the
language already includes the connectives {∧,∨,→,⊗, 0, 1} in single-conclusion
cases and {∧,∨,→,⊗,⊕, 0, 1} in multi-conclusion ones. In the case of modal
logics, the language L will be extended to contain the modal operator □, as well.

Example 2.2.2. The usual language of classical propositional logic is a valid
language in our setting. In this case, there is a canonical translation that sends
fusion, addition, 1 and 0 to conjunction, disjunction, ⊤ and ⊥, respectively. In
this paper, whenever we pick this language, we assume that we are working with
this canonical translation.
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2.2.1 Sequent Calculi
We denote atomic formulas by small Roman letters, p, q, . . .. Formulas are defined
in the usual way from atomic formulas and atomic constants and connectives in
the language, and we denote them by small Greek letters ϕ, ψ, . . . or by capital
Roman letters A,B, . . .. We denote multisets of formulas by capital Greek letters
Γ,∆, . . . and we mean the order does not matter but the multiplicity of formulas
is important. However, sometimes we use the bar notation for multisets to make
everything simpler. For instance, by ϕ̄, we mean a multiset consisting of formulas
ϕ1, . . . , ϕn. We denote the number of elements (cardinality) of the multiset Γ by
||Γ||. By Γ ∪ ∆ or Γ,∆ we mean the multiset containing all the formulas ϕ which
is in Γ or in ∆. By a sequent, we mean an expression of the form Γ ⇒ ∆, where
Γ and ∆ are finite multisets of formulas in the language. By a single-conclusion
sequent Γ ⇒ ∆ we mean that the multiset ∆ contains at most one formula, and
we call it multi-conclusion otherwise. In the single-conclusion cases a sequent
Γ ⇒ ∆ is interpreted as ⨂ Γ → ∆, and if ∆ = ∅ as ⨂ Γ → 0, and in the multi-
conclusion cases it is interpreted as ⨂ Γ → ⨁ ∆, where by ⨂ Γ we mean the
formula γ1 ⊗ γ2 ⊗ . . . ⊗ γn, where each γi ∈ Γ; the formula ⨁ ∆ is defined simi-
larly. For a sequent S = (Γ ⇒ ∆), by Sa we mean the antecedent of the sequent,
which is Γ, and by Ss we mean the succedent of the sequent, which is ∆. The
multiplication of two sequents S and T is defined as S ·T = (Sa ∪T a ⇒ Ss ∪T s).
Meta-language, L̂, is the language in which we define the sequent calculi. It
consists of infinitely many formula variables ϕ̂, ψ̂, . . ., the logical connectives
∧,∨,→,⊗ (and ⊕ in the multi-conclusion cases and □ in modal cases), and con-
stants 0, 1,⊥,⊤. Meta-formulas are defined as usual: all formula variables, atomic
formulas and constants are meta-formulas and if ϕ and ψ are meta-formulas, so is
ϕ ◦ψ for ◦ ∈ {∧,∨,→,⊗} (and ϕ⊕ψ in multi-conclusion cases and □ϕ in modal
cases). We have also an infinite number of meta-multiset variables, also called
contexts, which are denoted by Γ̂, ∆̂, . . .. A meta-sequent is an expression of the
form Ŝ = X ⇒ Y such that X and Y contain finite number of meta-formulas
and meta-multisets. We will use multiset variables and contexts interchangeably.
The set of variables of a meta-formula ϕ, V (ϕ), is defined inductively. For any
constant c in the language, V (c) is defined as the empty set. For an atomic
formula p and for a formula variable ϕ̂ define V (p) = p and V (ϕ̂) = ϕ̂. For a
logical connective ◦ ∈ {∧,∨,→,⊗,⊕, \, /} define V (ϕ ◦ ψ) as V (ϕ) ∪ V (ψ). A
meta-formula ϕ is called p-free, for an atomic formula or meta-formula variable
p, when p /∈ V (ϕ).
A substitution σ is a map from the union of meta-multisets and meta-formulas in
L̂ to the union of multisets and formulas in L that works as follows: constants are
mapped to themselves, meta-formulas to formulas, meta-multisets to multisets,
and σ commutes with the logical connectives and the modal operator. Therefore,
σ(ϕ̂) will be a formula in L, σ(Γ̂) will be the multiset of formulas σ(γ̂), where
γ̂ ∈ Γ̂, and σ(Ŝ = X ⇒ Y ) will be σ(X) ⇒ σ(Y ).
A rule is an expression of the form

Ŝ1, · · · , Ŝn

Ŝ

where Ŝ, Ŝ1, . . . , Ŝn are meta-sequents. Meta-sequents above the line are called
premisses and below the line, conclusion. In the case the rule has no premises, it is
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called an axiom. It is called a left (right) rule if Ŝa (Ŝs) contains a meta-formula.
A rule is either a right rule or a left one. An instance of a rule is obtained by
using the substitution map on the rule as follows

σ(Ŝ1), · · · , σ(Ŝn)
σ(Ŝ)

Note that if there is a side condition on the rule, such as the meta-formulas must
everywhere be atoms, this condition works as a restriction on the substitution σ.
A rule is backward applicable to a sequent S, when there is at least one instance
of the rule where S is the conclusion.
By a sequent calculus G, we mean a finite set of rules. A sequent S is derivable
from a set of sequents Γ in G, denoted by Γ ⊢G S, if there exists a finite tree with
sequents as labels of the nodes such that the label of the root is S, labels of the
leaves are axioms of G or members of Γ, and in each node the set of the labels
of the children of the node together with the label of the node itself, constitute
an instance of a rule in G. This finite tree is called the proof of S in G which is
sometimes called a tree-like proof to emphasize its tree-like form. If Γ = ∅ then
we denote it by G ⊢ S and we say S is derivable in G. We will use the same
notation for a sequent calculus and its logic, i.e., the set of provable formulas in
it, i.e., {ϕ | G ⊢ (⇒ ϕ)}.

As it is usually a convention in proof theory papers, from now on we will
not mention “meta” in the meta-language and so on and we will omit the ˆ
notation. It will be always clear from the context which form we are working
with. Therefore, for instance by a meta sequent Γ, ϕ̄ ⇒ ψ, we mean Γ is a meta-
multiset, ϕ̄ is a possibly empty multiset of meta-formulas and ψ is meta-formulas.

Let us recall some of the notions related to sequent calculi and some of the
important systems that we will use throughout the paper. Consider the following
set of rules:

Identity:

ϕ ⇒ ϕ

Context-free Axioms:

⇒ 1 0 ⇒

Rules for 0 and 1:

Γ ⇒ ∆ (1w)Γ, 1 ⇒ ∆
Γ ⇒ ∆ (0w)Γ ⇒ 0,∆

Conjunction Rules:

Γ, ϕ ⇒ ∆ (L∧)Γ, ϕ ∧ ψ ⇒ ∆
Γ, ψ ⇒ ∆ (L∧)Γ, ϕ ∧ ψ ⇒ ∆

Γ ⇒ ϕ,∆ Γ ⇒ ψ,∆ (R∧)Γ ⇒ ϕ ∧ ψ,∆

Disjunction Rules:

Γ, ϕ ⇒ ∆ Γ, ψ ⇒ ∆ (L∨)Γ, ϕ ∨ ψ ⇒ ∆
Γ ⇒ ϕ,∆ (R∨)Γ ⇒ ϕ ∨ ψ,∆

Γ ⇒ ψ,∆ (R∨)Γ ⇒ ϕ ∨ ψ,∆
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Fusion Rules:

Γ, ϕ, ψ ⇒ ∆ (L⊗)Γ, ϕ⊗ ψ ⇒ ∆
Γ ⇒ ϕ,∆ Σ ⇒ ψ,Λ (R⊗)Γ,Σ ⇒ ϕ⊗ ψ,∆,Λ

Implication Rules:

Γ ⇒ ϕ,∆ Σ, ψ ⇒ Λ (L →)Γ,Σ, ϕ → ψ ⇒ ∆,Λ
Γ, ϕ ⇒ ψ,∆ (R →)Γ ⇒ ϕ → ψ,∆

The system consisting of the single-conclusion version of all of these rules is FLe
−.

If we also add the single-conclusion version of the following axioms, we will have
the system FLe.

Contextual Axioms:

Γ ⇒ ⊤,∆ Γ,⊥ ⇒ ∆

In the standard definition of FLe the language does not contain the constants
⊥ and ⊤ and therefore their axioms are not present in the sequent calculus, as
well. However, since the presence of ⊥ and ⊤ is essential in our discussions in the
future sections, we allow them in the language and their axioms in the sequent
calculus.
In the multi-conclusion case define CFLe

− and CFLe with the same rules as
FLe

− and FLe, this time in their full multi-conclusion version and add ⊕ to the
language and the following rules to the systems:

Rules for ⊕:

Γ, ϕ ⇒ ∆ Σ, ψ ⇒ Λ (L⊕)Γ,Σ, ϕ⊕ ψ ⇒ ∆,Λ
Γ ⇒ ϕ, ψ,∆ (R⊕)Γ ⇒ ϕ⊕ ψ,∆

The system MALL is defined as CFLe minus the implication rules. Moreover,
if we consider the following rules:

!Γ ⇒ ϕ †!Γ ⇒!ϕ
Γ, ϕ ⇒ ∆
Γ, !ϕ ⇒ ∆

Γ ⇒ ∆
Γ, !ϕ ⇒ ∆

Γ, !ϕ, !ϕ ⇒ ∆
Γ, !ϕ ⇒ ∆

we can define ILL as FLe plus the single-conclusion version of the above rules
and CLL as CFLe plus the above rules, themselves. In both cases, the rule † is
single-conclusion.
We will use later the structural rules given below:

Weakening rules:

Γ ⇒ ∆ (Lw)Γ, ϕ ⇒ ∆
Γ ⇒ ∆ (Rw)Γ ⇒ ϕ,∆

Note that in the single-conclusion cases, in the rule (Rw), ∆ must be empty.

Contraction rules:
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Γ, ϕ, ϕ ⇒ ∆ (Lc)Γ, ϕ ⇒ ∆
Γ ⇒ ∆, ϕ, ϕ (Rc)Γ ⇒ ϕ,∆

The rule (Rc) is only allowed in multi-conclusion systems.

If we consider the sequent calculus FLe and add the weakening rules (con-
traction rules), the resulting system is called FLew (FLec). In a similar manner,
we define CFLew and CFLec. Finally, adding all the structural rules to FLe, we
obtain the system FLewc in which the connectives ⊗ and ∧ become equivalent,
i.e., ϕ⊗ ψ ⇔ ϕ ∧ ψ will become provable in the system. Moreover, ⊥ and 0, and
⊤ and 1 will become equivalent in FLewc. Furthermore, in the system CFLewc,
we can also prove that ⊕ and ∨ are equivalent. Hence, it is possible to define
FLewc (CFLewc) even on the restricted language {∧,∨,⊤,⊥,→}. This system is
nothing but the usual sequent calculus LJ (LK) for the intuitionistic (classical)
logic.

We will also use the following rule in the future sections:

Context-sharing left implication:

Γ ⇒ ϕ Γ, ψ ⇒ ∆
Γ, ϕ → ψ ⇒ ∆

Finally, note that Γ and ∆ are multisets everywhere, therefore the exchange
rule is built in and hence admissible in our system. Moreover, note that the
calculi defined in this section are written in the given language which can be any
extension of the language of the system itself. For instance, FLe is the calculus
with the mentioned rules on our fixed language that can have more connectives
than {∧,∨,⊗,→,⊤,⊥, 1, 0}.
By a subsequent of a sequent Γ ⇒ ∆ we mean a sequent Γ′ ⇒ ∆′. We call it
proper if either Γ′ ⫋ Γ or ∆′ ⫋ ∆.

Definition 2.2.3. A calculus is terminating if for any sequent S, the number of
rules which are backward applicable to S are finite. Moreover, there is a well-
founded order on the sequents such that the order of the following are less than
the order of S:

◦ the premises of all instance of a rule whose conclusion is S;

◦ proper subsequents of S, and

◦ any sequent S ′ of the form (Γ,Π ⇒ ∆,Λ), where S is of the form (Γ,□Π ⇒
∆,□Λ). Note that Π ∪ Λ must be non-empty.

Definition 2.2.4. We will define the following sequent calculus for intuitionistic
logic, G4i, which was first introduced by Dyckhoff in [13].

ϕ ⇒ ϕ (Id) , Γ,⊥ ⇒ ∆ (L⊥) , Γ ⇒ ∆,⊤ (R⊤)

Γ ⇒ ∆ (Lw)Γ, ϕ ⇒ ∆
Γ ⇒ (Rw)Γ ⇒ ϕ
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Γ, ϕ, ψ ⇒ ∆ (L∧)Γ, ϕ ∧ ψ ⇒ ∆
Γ ⇒ ϕ,∆ Γ ⇒ ψ,∆ (R∧)Γ ⇒ ϕ ∧ ψ,∆

Γ, ϕ ⇒ ∆ Γ, ψ ⇒ ∆ (L∨)Γ, ϕ ∨ ψ ⇒ ∆
Γ ⇒ ϕ (R∨)Γ ⇒ ϕ ∨ ψ

Γ ⇒ ψ (R∨)Γ ⇒ ϕ ∨ ψ

Γ, ϕ ⇒ ψ (R →)Γ ⇒ ϕ → ψ

Γ, p, ψ ⇒ ∆ (L1 →)Γ, p, p → ψ ⇒ ∆
Γ, ϕ → (ψ → γ) ⇒ ∆ (L2 →)Γ, ϕ ∧ ψ → γ ⇒ ∆

Γ, ϕ → γ, ψ → γ ⇒ ∆ (L3 →)Γ, ϕ ∨ ψ → γ ⇒ ∆
Γ, ψ → γ ⇒ ϕ → ψ Γ, γ ⇒ ∆ (L4 →)Γ, (ϕ → ψ) → γ ⇒ ∆

where p is an atom. Structural rules and the cut rule are admissible in the system
and in each rule ∆ has at most one element. Note that this system is slightly
different than the usual G4i system. The usual definition does not include the
explicit weakening rules and the axioms for ⊤ and ⊥. It also has the axiom
Γ, p ⇒ p only for atomic formula p, instead of the axiom (Id) as we assumed.
The system we have introduced is clearly equivalent to the usual one and it is
also terminating with the same Dyckhoff order [13] that we will see in a moment.
The advantage of the new system, though, is that it is more in line with our later
general approach to sequent-style rules.

Define the rank of a propositional formula as follows:

r(p) = r(⊥) = r(⊤) = 1
r(ϕ ◦ ψ) = r(ϕ) + r(ψ) + 1 ◦ ∈ {∨,→}
r(ϕ ∧ ψ) = r(ϕ) + r(ψ) + 2

Then a sequent S is called lower than the sequent T if S is the result of replacing
the elements of T with any number of elements with lower ranks. With this
order, it is not hard to see that the system G4i is terminating. Note that with
this order, for any formula ψ and any atom p, the sequent Γ, ψ ⇒ ∆ is lower than
the sequent Γ, p → ψ ⇒ ∆. We will use this fact in Corollary 2.5.45.

Definition 2.2.5. By a logic L in the language L, we mean a subset of the set of
all L-formulas that is closed under arbitrary substitution and the following rules:

(i) The modus ponens rule: If ϕ → ψ ∈ L and ϕ ∈ L then ψ ∈ L.

(ii) The adjunction rule: If ϕ ∈ L and ψ ∈ L then ϕ ∧ ψ ∈ L.

Definition 2.2.6. Let L and L′ be two logics such that LL ⊆ LL′. We say L′ is
an extension of L (or L′ extends L) if L ⊢ A implies L′ ⊢ A.

Definition 2.2.7. Let G and H be two sequent calculi such that LG ⊆ LH . We
say H is an extension of G if all the rules of G are admissible in H, i.e., for
any instance of a rule R of G, if the premises are provable in H then so is its
consequence. Moreover, H is called an axiomatic extension of G (or H extends
G), if the provable sequents of G are considered as axioms of H, to which H adds
some rules.
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Definition 2.2.8. Let G be a sequent calculus and L be a logic with the same
language as G’s. We say G is a sequent calculus for the logic L when:

G ⊢ Γ ⇒ ∆ if and only if L ⊢ (⨂ Γ → ⨁ ∆).

Note that if the calculus is single-conclusion, by ⨁ ∆, we mean ∆ if ∆ is a
singleton, and 0 if ∆ is empty. Therefore, in this case we do not need the ⊕
operator.

Theorem 2.2.9. Let L be a logic and G a single-conclusion (multi-conclusion)
sequent calculus for L. Then, for any logic M ∈ {FLe

−,FLe, IPC} (M ∈
{CFLe

−,CFLe}), if we denote the calculus of M , defined previously in this sec-
tion, by GM , we have:

(i) If L extends FLe
− (CFLe

−), then the cut rule is admissible in G.

(ii) If L extends M , then G extends the calculus GM .

Proof. First, observe that for any formulas ϕ and ψ, if L ⊢ ϕ and L ⊢ ψ then we
have L ⊢ ϕ⊗ψ. The reason is that L extends FLe

− and FLe
− ⊢ ϕ → (ψ → ϕ⊗ψ).

Therefore, L ⊢ ϕ → (ψ → ϕ⊗ψ). Since L is closed under modus ponens, if L ⊢ ϕ
and L ⊢ ψ then L ⊢ ϕ⊗ ψ.

Now let us prove (i). For the single-conclusion case, set ⨁ ∆ as ϕ when ∆ = ϕ
and ⨁ ∆ = 0, when ∆ is empty. Assume that G ⊢ Γ ⇒ A,∆ and G ⊢ Γ′, A ⇒ ∆′.
Hence L ⊢ ⨂ Γ → A⊕ (⨁ ∆) and L ⊢ (⨂ Γ′) ⊗A → (⨁ ∆′) by the soundness of
G. Therefore, by the previous observation we have

L ⊢ [⨂ Γ → A⊕ (⨁ ∆)] ⊗ [(⨂ Γ′) ⊗ A → (⨁ ∆′)]
Since L extends FLe

− (CFLe
−) and in this logic the previous formula implies

the formula
[(⨂ Γ) ⊗ (⨂ Γ′) → (⨁ ∆) ⊕ (⨁ ∆′)]

By modus ponens in L the last formula is also provable in L which implies
G ⊢ Γ,Γ′ ⇒ ∆,∆′ again by the completeness of G.

For (ii), let R be an instance of a rule in the system M and let S1, · · · ,
Sn and S0 be the premises and the consequence of R, respectively. Define
F (Γ ⇒ ∆) = [⨂ Γ → ⨁ ∆]. Then there are three cases to consider:

1. R is an instance of an axiom. Then M proves F (S0). Since L extends
M ,we have L ⊢ F (S0) which implies G ⊢ S0.

2. R is an instance of the conjunction, the disjunction or the structural rules
(in this case M = IPC). Then it is easy to see that the formula

n⋀
i=1

F (Si) → F (S0)

is provable in M and hence in L. Now, if G ⊢ Si for all 1 ≤ i ≤ n, we have
L ⊢ F (Si) which implies L ⊢ ⋀n

i=1 F (Si) by the adjunction rule. Since L is closed
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under modus ponens, L ⊢ F (S0) which implies G ⊢ S0 by the completeness of G.

3. R is an instance of the rules for 0 and 1, the fusion, the addition or the
implication rule. Then it is easy to see that the formula

n⨂
i=1

F (Si) → F (S0)

is provable in M and hence in L. Now, if G ⊢ Si for all 1 ≤ i ≤ n, we have
L ⊢ F (Si) which implies L ⊢ ⨂n

i=1 F (Si) by the previous observation. Finally,
since L is closed under modus ponens, L ⊢ F (S0) which implies G ⊢ S0 by the
completeness of G.

2.2.2 Logical Systems
In this subsection we will recall the Craig interpolation property, the uniform
interpolation property and also some useful substructural logics that we will need
in the rest of the paper.

Definition 2.2.10. We say that a logic L has Craig interpolation property if for
any formulas ϕ and ψ if L ⊢ ϕ → ψ, then there exists a formula θ such that
L ⊢ ϕ → θ and L ⊢ θ → ψ and V (θ) ⊆ V (ϕ) ∩ V (ψ).

Definition 2.2.11. We say a logic L has the uniform interpolation property if
for any formulas ϕ and any atomic formula p, there are two p-free formulas, the
p-pre-interpolant, ∀pϕ and the p-post-interpolant ∃pϕ, such that V (∃pϕ) ⊆ V (ϕ)
and V (∀pϕ) ⊆ V (ϕ) and

(i) L ⊢ ∀pϕ → ϕ,

(ii) For any p-free formula ψ if L ⊢ ψ → ϕ then L ⊢ ψ → ∀pϕ,

(iii) L ⊢ ϕ → ∃pϕ, and

(iv) For any p-free formula ψ if L ⊢ ϕ → ψ then L ⊢ ∃pϕ → ψ.

To recall some of the well known substructural logics and following [32], we
have to introduce the semantical framework, first.

Definition 2.2.12. By a pointed commutative residuated lattice we mean an alge-
braic structure A = ⟨A,∧,∨,⊗,→, 0, 1⟩ where ∧,∨,⊗,→ are binary operations,
and 0, 1 are constants such that ⟨A,∧,∨⟩ is a lattice with partial order ≤ and
⟨A,⊗, 1⟩ is a commutative monoid. We define for all x, y, z ∈ A, x ⊗ y ≤ z if
and only if x ≤ y → z. For a single pointed commutative residuated lattice A
and a class of pointed commutative residuated lattices K, denote V(A) and V(K)
as the varieties generated by A and K, respectively.

In the following we will borrow the definitions of some logics from [32]. First,
we need the following equational conditions for pointed commutative residuated
lattices.

• (prl) prelinearity : 1 ≤ (x → y) ∨ (y → x)
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• (dis) distributivity : x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

• (inv) involutivity : ¬¬x = x

• (int) integrality : x ≤ 1

• (bd) boundedness : 0 ≤ x

• (id) idempotence : x = x⊗ x

• (fp) fixed point negation : 0 = 1

• (div) divisibility : x⊗ (x → y) = y ⊗ (y → x)

• (can) cancellation : x → (x⊗ y) = y

• (rcan) restricted cancellation : 1 = ¬x ∨ ((x → (x⊗ y)) → y)

• (nc) non-contradiction : x ∧ ¬x ≤ 0

In the following, we have the definitions of some logics that we are interested
in. Note that in all of them, both of the axioms (prl) and (dis) are present, and
hence we just mention the other axioms.

• (UL−) unbounded uninorm logic

• (IUL−) unbounded involutive uninorm logic : (inv)

• (MTL) monoidal t-norm logic : (int), (bd)

• (SMTL) strict monoidal t-norm logic : (int), (bd), (nc)

• (IMTL) involutive monoidal t-norm logic : (int), (bd), (inv)

• (BL) basic fuzzy logic : (int), (bd), (div)

• (G) Gödel logic : (int), (bd), (id)

• (L) Lukasiewicz logic : (int), (bd), (div), (inv)

• (P ) product logic : (int), (bd), (div), (rcan)

• (CHL) cancellative hoop logic : (int), (fp), (div), (can)

• (UML−) unbounded uninorm mingle logic : (id)

• (RM e) R-mingle with unit : (id), (inv)

• (IUML−) unbounded involutive uninorm mingle logic : (id), (inv), (fp)

• (A) abelian logic : (inv), (fp), (can)

Furthermore, we will define the following important logics, as well.
For n > 1 define

Ln = {0, 1
n−1 , · · · , n−2

n−1 , 1} , L∞ = [0, 1]
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and the pointed commutative residuated lattices (again for n > 1)

Ln = ⟨Ln,min,max,⊗L,→L, 1, 0⟩

and

Gn = ⟨Ln,min,max,min,→G, 1, 0⟩

where x⊗L y = max(0, x+ y− 1), x →L y = min(1, 1 − x+ y), and x →G y is y
if x > y, otherwise 1. Then, for n > 1, Ln and Gn are the logics with equivalent
algebraic semantics V(Ln) and V(Gn), respectively. The logics G∞ and H∞ are
the Gödel logic and Lukasiewicz logic, as defined before.

R is the logic of a variety consisting of all distributive pointed commutative
residuated lattices with the condition that x⊗ x ≤ x for all x.

Now consider the following binary functions on the set of integers Z, where ∧
and ∨ are min and max, respectively, and |x| is the absolute value of x:

x⊗ y =

⎧⎪⎪⎨⎪⎪⎩
x ∧ y if |x| = |y|
y if |x| < |y|
x if |y| < |x|

x → y =

⎧⎨⎩−(x) ∨ y if x ≤ y

−(x) ∧ y otherwise

And finally define the following algebras:

S2m = ⟨{−m,−m+ 1, · · · ,−1, 1, · · · ,m− 1,m},∧,∨,⊗,→, 1,−1⟩ (m ≥ 1)

S2m+1 = ⟨{−m,−m+ 1, · · · ,−1, 0, 1, · · · ,m− 1,m},∧,∨,⊗,→, 0, 0⟩ (m ≥ 0)

and define RM e
n as the logic of V(Sn).

2.3 Semi-analytic Rules
In this section we will introduce a class of rules which we will investigate in the
rest of this paper. We will only consider the rules with exactly one main formula ϕ
in the conclusion, i.e., the only active formula in the conclusion, which is different
from the contexts (or multiset variables) which are denoted by Γi,Πj or ∆i.
By the notation ⟨⟨Sir⟩r⟩i we mean first considering the sequents Sir ranging over
r and then ranging over i. For instance, ⟨⟨Γi, ϕ̄ir ⇒ ψ̄ir,∆i⟩r⟩i is short for the
following set of sequents where 1 ≤ r ≤ mi and 1 ≤ i ≤ n:

Γ1, ϕ̄11 ⇒ ψ̄11,∆1, · · · ,Γ1, ϕ̄1m1 ⇒ ψ̄1m1 ,∆1,

Γ2, ϕ̄21 ⇒ ψ̄21,∆2, · · · ,Γ2, ϕ̄2m2 ⇒ ψ̄2m2 ,∆2,

...

Γn, ϕ̄n1 ⇒ ψ̄n1,∆n, · · · ,Γn, ϕ̄nmn ⇒ ψ̄nmn ,∆n.
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where each ϕ̄ir is a multiset of meta-formulas ϕ1
ir, . . . , ϕ

kir
ir or the empty sequence

and ψ̄ir is a multiset of meta-formulas ψ1
ir, . . . , ψ

k′
ir

ir or the empty sequence. The
reason for such a complicated notation is that we want to be able to talk about
rules as general as possible. The premises in a rule may be made of sequents with
the same contexts or/and sequents with different contexts. At a closer look, in
the ith horizontal line in the definition above, there are mi sequents with the same
contexts Γi and ∆i and possibly different sequences of meta-formulas ϕ̄imi

and
ψ̄imi

. In each sequent Γi, ϕ̄ir ⇒ ψ̄ir,∆i, the multiset variable Γi is called the left
context and ∆i the right context. ⟨⟨Γi, ϕ̄ir ⇒ ∆i⟩r⟩i and ⟨⟨Πj, ψ̄js ⇒ θ̄js⟩s⟩j are
defined similarly. In the former, there are no sequences of meta-formulas in the
succedents of sequents and in the latter, there are no contexts in the succedents
of sequents.

Definition 2.3.13. A rule is called occurrence preserving if the set of variables
of any meta-formula appeared in any of the premises is a subset of the set of
variables of the main formula in the conclusion. For instance for the following
rule

⟨⟨Πj, ψ̄js ⇒ θ̄js⟩s⟩j ⟨⟨Γi, ϕ̄ir ⇒ ∆i⟩r⟩i

Π1, · · · ,Πm,Γ1, · · · ,Γn, ϕ ⇒ ∆1, · · · ,∆n

the occurrence preserving condition is⋃
i,r V (ϕ̄ir) ∪ ⋃

j,s V (ψ̄js) ∪ ⋃
j,s V (θ̄js) ⊆ V (ϕ).

Note that the occurrence preserving condition is defined on the form of the
rule and not on an instance of a rule. Therefore, when we say a variable is
occurred in the premises we mean in ψ̄js, θ̄js or ϕ̄ir.
In the following we will define semi-analytic rules. Because of the occurrence
preserving condition, we call these rules semi-analytic. This occurrence preserving
condition is a weaker version of the analycity property in the analytic rules, which
demands the formulas in the premises to be subformulas of the formulas in the
consequence. Based on a rule being single-conclusion, multi-conclusion, context-
sharing or a modal rule, the notion of being semi-analytic is defined as follows.

Definition 2.3.14. Let Γi,Πj and ∆i be pairwise distinct multiset variables, ψ̄js

and ϕ̄ir be multisets of meta-formulas and ϕ be a meta-formula where i ≤ n and
j ≤ m. In the left single-conclusion semi-analytic rule, ||∆i|| ≤ 1 and θ̄js is
either one meta-formula or empty for each i, j, and s. Also, in the right single-
conclusion semi-analytic rule,ψ̄ir is either one meta-formula or empty for each i
and r. A rule is called semi-analytic if it is occurrence preserving and has one of
the following forms.

• left single-conclusion semi-analytic:

⟨⟨Πj, ψ̄js ⇒ θ̄js⟩s⟩j ⟨⟨Γi, ϕ̄ir ⇒ ∆i⟩r⟩i

Π1, · · · ,Πm,Γ1, · · · ,Γn, ϕ ⇒ ∆1, · · · ,∆n

• right single-conclusion semi-analytic:

⟨⟨Γi, ϕ̄ir ⇒ ψ̄ir⟩r⟩i

Γ1, · · · ,Γn ⇒ ϕ
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• context-sharing semi-analytic:

⟨⟨Γi, ψ̄is ⇒ θ̄is⟩s⟩i ⟨⟨Γi, ϕ̄ir ⇒ ∆i⟩r⟩i

Γ1, · · · ,Γn, ϕ ⇒ ∆1, · · · ,∆n

• left multi-conclusion semi-analytic:

⟨⟨Γi, ϕ̄ir ⇒ ψ̄ir,∆i⟩r⟩i

Γ1, · · · ,Γn, ϕ ⇒ ∆1, · · · ,∆n

• right multi-conclusion semi-analytic:

⟨⟨Γi, ϕ̄ir ⇒ ψ̄ir,∆i⟩r⟩i

Γ1, · · · ,Γn ⇒ ϕ,∆1, · · · ,∆n

• A rule is called modal semi-analytic if it has one of the following forms:

Γ ⇒ ϕ
K□Γ ⇒ □ϕ

Γ ⇒
D□Γ ⇒

with the conditions that whenever the rule (D) is present, the rule (K) must
be present.

Note that in the left single-conclusion semi-analytic rule since the number of
elements of the succedent of the conclusion of the rule must be at most 1, it
means that at most one of ∆i’s can be non-empty. Whenever it is clear from the
context, we will omit the phrase “multi-conclusion”.

Moreover, consider the following modal rules that we do not consider as semi-
analytic but we will address in our investigations. We assume that whenever the
rule (4D) is present in a system the modal rule (4) must be present, as well and
whenever the rule (RS4) is present in a system, the rule, (LS4), must be present.

□Γ,Γ ⇒ ϕ 4
□Γ ⇒ □ϕ

□Γ,Γ ⇒
4D□Γ ⇒

□Γ ⇒ ϕ
RS4□Γ ⇒ □ϕ

Γ, ϕ ⇒ ∆
LS4Γ,□ϕ ⇒ ∆

where Γ and ∆ are both multiset variables and we use the convention that □∅ = ∅.

Example 2.3.15. A generic example of a left semi-analytic rule is the following:
Γ, ϕ1, ϕ2 ⇒ ψ Γ, θ ⇒ η Π, µ1, µ2, µ3 ⇒ ∆

Γ,Π, α ⇒ ∆
where

V (ϕ1, ϕ2, ψ, θ, η, µ1, µ2, µ3) ⊆ V (α).

Note that the premises on the left and in the middle of the example have the same
context Γ in the antecedent and have no context in the succedents. Therefore,
there should be only one copy of Γ in the antecedent of the conclusion. A generic
example of a context-sharing left semi-analytic rule is:
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Γ, θ ⇒ η Γ, µ1, µ2, µ3 ⇒ ∆
Γ, α ⇒ ∆

where

V (θ, η, µ1, µ2, µ3) ⊆ V (α)

Moreover, for a generic example of a right semi-analytic rule we can have

Γ, ϕ ⇒ ψ Γ, θ1, θ2 ⇒ η Π, µ1, µ2,⇒ ν

Γ,Π ⇒ α

where

V (ϕ, ψ, θ1, θ2, η, µ1, µ2, ν) ⊆ V (α)

Here are some remarks. First note that in any left single-conclusion semi-
analytic rule there are two types of premises. In the first type, the succedent of
the sequent includes only a meta-formula and in the second type the succedent of
the sequent includes only a context. This is a crucial point to consider. Any left
semi-analytic rule allows any kinds of combination of sharing/combining contexts
in any type. However, between two types, we can only combine the contexts in
the antecedent. The case in which we can share the contexts of the antecedents of
sequents of the two types is called context-sharing semi-analytic rule. This should
explain why our second example is called context-sharing left semi-analytic while
the first one is not. The reason is the fact that the two types share the same
context of the antecedent in the second rule while in the first one this situation
happens in just one type. The second point is the presence of contexts. This is
very crucial for almost all the arguments in this paper, that any sequent present
in a semi-analytic rule must have multiset variables as left contexts and in the
case of left rules, at least one multiset variable for the right hand-side must be
present.

Example 2.3.16. Now for more concrete examples, note that all the usual con-
junction, disjunction and implication rules for IPC are semi-analytic. The same
also holds for all the rules in substructural logic FLe, the weakening and the con-
traction rules and some of the well-known restricted versions of them including
the following rules for exponentials in linear logic:

Γ, !ϕ, !ϕ ⇒ ∆
Γ, !ϕ ⇒ ∆

Γ ⇒ ∆
Γ, !ϕ ⇒ ∆

For a context-sharing semi-analytic rule, consider the following rule in the
Dyckhoff calculus for IPC (see [13]):

Γ, ψ → γ ⇒ ϕ → ψ Γ, γ ⇒ ∆
Γ, (ϕ → ψ) → γ ⇒ ∆

Example 2.3.17. For a concrete non-example consider the cut rule; it is not a
semi-analytic rule because it does not preserve the variable occurrence condition.
Moreover, the following rule in the calculus of KC:

Γ, ϕ ⇒ ψ,∆
Γ ⇒ ϕ → ψ,∆
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in which ∆ should consist of negation formulas is not a multi-conclusion semi-
analytic rule, simply because the context is not free for all possible substitutions.
The rule of thumb is that any rule in which we have side conditions on the contexts
is not semi-analytic.

Definition 2.3.18. A sequent is called a focused axiom if it has one of the fol-
lowing forms:

(1) Identity axiom: (ϕ ⇒ ϕ)

(2) Context-free right axiom: (⇒ ᾱ)

(3) Context-free left axiom: (β̄ ⇒)

(4) Contextual left axiom: (Γ, ϕ̄ ⇒ ∆)

(5) Contextual right axiom: (Γ ⇒ ϕ̄,∆)

where Γ and ∆ are multiset variables and ᾱ, β̄, ϕ̄ are multisets of meta-formulas
and ϕ is a meta-formul. Moreover, in (2) the variables in any pair of elements in
ᾱ are equal, or in other words V (µ) = V (ν) for any µ, ν ∈ ᾱ. The same condition
also holds for any pair of elements in β̄ in (3) or in ϕ̄ in (4) and (5). A sequent
is called context-free focused axiom if it has the form (1), (2) or (3).

Example 2.3.19. It is easy to see that the axioms given in the preliminaries are
examples of focused axioms. Here are some more examples:

¬1 ⇒ , ⇒ ¬0

ϕ,¬ϕ ⇒ , ⇒ ϕ,¬ϕ

Γ,¬⊤ ⇒ ∆ , Γ ⇒ ∆,¬⊥

where the first four are context-free while the last two are contextual. As a non-
example consider p,¬p, q ⇒. It is not a focused axiom since the set of variables
of p and q (or ¬p and q) are not equivalent.

2.4 Craig Interpolation
In this section we will investigate the relationship between the semi-analytic rules
and the Craig interpolation property. Apart from its clear use in proving inter-
polation for different logics, it has a very interesting application to show that
some of the natural substructural and super-intuitionistic logics can not have a
calculus consisting only of semi-analytic rules and the focused axioms.

First, let us define the interpolation property for a sequent calculus.

Definition 2.4.20. (essentially Maehara) Let G and H be sequent calculi. G
has H-interpolation if for any sequent S = (Σ,Λ ⇒ ∆) if S is provable in G
by a tree-like proof π, then there exists a formula C such that (Σ ⇒ C) and
(Λ, C ⇒ ∆) are provable in H and V (C) ⊆ V (Σ) ∩ V (Λ ∪ ∆), where V (A) is the
set of the atoms of A. We say G has H-feasible interpolation if we also have the
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bound |C| ≤ |π|O(1).
Moreover, we say G has strong H-interpolation if for any sequent S = (Σ,Λ ⇒
Θ,∆) if S is provable in G by a tree-like proof π, then there exists a formula C
such that (Σ ⇒ C,Θ) and (Λ, C ⇒ ∆) are provable in H and V (C) ⊆ V (Σ ∪
Θ) ∩ V (Λ ∪ ∆). We say G has strong H-feasible interpolation if we also have the
bound |C| ≤ |π|O(1).

The following theorem shows that the interpolation property of a sequent
calculus leads to the Craig interpolation of its logic.

Theorem 2.4.21. If a logic L has a complete sequent calculus G with the G-
interpolation property, then L has Craig interpolation.

Proof. Let L ⊢ ϕ → ψ. Since G is complete for L, we have G ⊢ ϕ ⇒ ψ. Since G
has the interpolation property, there exists θ such that G ⊢ ϕ ⇒ θ, G ⊢ θ ⇒ ψ
and V (θ) ⊆ V (ϕ) ∩ V (ψ). Again from the completeness of G, L ⊢ ϕ → θ and
L ⊢ θ → ψ which completes the proof.

The following theorem ensures that any set of focused axioms of a sequent
calculus H, has H-interpolation property. It can also serve as an example to show
how this notion of relative interpolation works.

Theorem 2.4.22. Let G and H be two sequent calculi such that every provable
sequent in G is also provable in H, and let G consist of only focused (context-free
focused) axioms. Then:

(i) If both G and H are single-conclusion and H extends FLe (FLe
−), G has

H-feasible interpolation.

(ii) If both of G and H are multi-conclusion and H extends CFLe (CFLe
−),

G has strong H-feasible interpolation.

Proof. To prove (i), note that a sequent S is provable in G if it is one of the
focused axioms. We will check each case separately:

(1) In this case the sequent S is of the form (ϕ ⇒ ϕ). For any partition Σ
and Λ that we have (Σ,Λ ⇒ ϕ) in G, we have to find a formula C such
that (Σ ⇒ C) and (Λ, C ⇒ ϕ) are provable in H. There are two cases
to consider. First, if Σ = {ϕ} and Λ = ∅. For this case define C to be
ϕ. Obviously both conditions hold since we have (ϕ ⇒ ϕ) as an axiom.
Second, if Σ = ∅ and Λ = {ϕ} define C as 1. We must have (⇒ 1) and
(1, ϕ ⇒ ϕ) in H. The first one is an axiom of G and hence provable in H,
and the second is the consequence of an instance of the rule (1w) and the
fact that (ϕ ⇒ ϕ) is provable in H.

(2) For the case (⇒ ᾱ), consider C to be 1. Then since both Σ and Λ are
empty sequents, we must have (⇒ 1) and (1 ⇒ ᾱ) in H. The first one is
an axiom of G and hence provable in H, and the second is the consequence
of an instance of the rule (1w) and the fact that (⇒ ᾱ) is provable in H.

(3) For the axiom (β̄ ⇒), there are three cases to consider:
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(i) If β̄ ⊆ Λ. Then define C = 1. It is clear that Σ = ∅ and hence Σ ⇒ 1.
Moreover, since we have Λ = β̄, by the axiom and the rule (1w) we
will have Λ, 1 ⇒.

(ii) If β̄ ⊆ Σ, define C = 0. The reasoning is dual of the argument in (i).
(iii) If none of the above happens, there are at least one element in β̄ ∩ Σ

and β̄ ∩ Λ. Define C = ⨂ Σ. Then Σ ⇒ C by (R⊗) and Λ, C ⇒ holds
by the axiom itself and (L⊗). For the variables, note that if p ∈ V (C),
then p is clearly occurring in Σ. Moreover, since Σ ∪ Λ = β̄, we know
that p is in one of the members in β̄. Since there is at least one of
β̄’s in Λ and each pair of the elements of β̄ have the same variables,
p ∈ V (Λ) which completes the proof.

(4) If S is of the form Γ, ϕ̄ ⇒ ∆, there are three cases to consider:

(i) If ϕ̄ ⊆ Λ. Then define C = ⊤. It is clear that Σ ⇒ ⊤. Moreover, if we
substitute {⊤} ∪ Λ − ϕ̄ for the left context in the original axiom, we
have ⊤,Λ ⇒ ∆.

(ii) If ϕ̄ ⊆ Σ, define C = ⊥. The reasoning is similar to (i).
(iii) If none of the above happens, there are at least one element in ϕ̄ ∩ Σ

and ϕ̄ ∩ Λ. Define C = ⨂(Σ ∩ ϕ̄) ⊗ ⊤n where n is the cardinal of
Σ − Σ ∩ ϕ̄. First we have Σ ⇒ C, simply because for any ϕi ∈ Σ ∩ ϕ̄,
ϕi ⇒ ϕi and for any ψ ∈ Σ − Σ ∩ ϕ̄ we have ψ ⇒ ⊤, and at the end
we use the rule (R⊗). Secondly, Λ, C ⇒ ∆. The reason is that the
part of ϕ̄ which is occurred in Σ (and now in C) together with the
part of ϕ̄ in Λ completes ϕ̄. Therefore, the left hand-side of Λ, C ⇒ ∆
contains ϕ̄ (after suitable partitioning and staring the parts) and hence,
the sequent is the consequence of an instance of the axiom and it is
valid. Finally, for the variables, note that if p ∈ V (C) then p is clearly
occurring in Σ. Moreover, p is in one of the members in ϕ̄. Since there
is at least one of ϕ̄’s in Λ and each pair of the elements of ϕ̄ have the
same variables, p ∈ V (Λ) which completes the proof.

(5) If S is of the form (Γ ⇒ ϕ̄,∆) define C = ⊤. Note that Σ ⇒ ⊤ is valid on
the one hand and C,Λ ⇒ ϕ̄,∆ on the other. The latter is an instance of
the axiom itself and hence valid.

It is easy to check that in each case the length of C is bounded by the length
of the sequent itself. For instance in case (4)(iii), the length of ⨂(Σ ∩ ϕ̄) ⊗ ⊤n

is bounded by the length of Σ which is bounded by the length of (Γ, ϕ̄) in the
sequent Γ, ϕ̄ ⇒ ∆. Hence C is polynomially bounded. Proving (ii) is similar.

2.4.1 The Single-conclusion Case
Now we are ready to prove that semi-analytic rules respect the interpolation
property. First, we will consider the single-conclusion case. More precisely:

Theorem 2.4.23. Let G and H be two single-conclusion sequent calculi such
that H is an axiomatic extension of G with single-conclusion semi-analytic rules
or S4 rules and H extends FLe

−. Then if G has H-interpolation (H-feasible
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interpolation), so does H. Moreover, for any rule R from the following set of
rules, there exists a corresponding set of rules SR, presented below, such that if
we add the rule R to H and if we know that all the rules in SR are admissible in
H, then the same claim holds.

(i) If R is the modal rule 4 or 4D, then SR consists of the left weakening rule
for boxed formulas.

(ii) If R is a context-sharing semi-analytic rule then SR consists of the left
weakening, right weakening and left context-sharing implication rules.

Proof. First we prove the interpolation property and then we will investigate the
feasibility case. The proof uses induction on the H-length of π (note that by
the H-length we mean counting just the new rules that H adds to the provable
sequents in G that H considers as axioms). For the zero H-length, the proof is
in G and the existence of the interpolation is proved by the assumption. For the
rest, we will consider the last rule used in the proof and there are several cases
to investigate.

First we will prove (i).

◦ Consider the case where the last rule used in the proof is a left semi-analytic
rule and the main formula, ϕ, is in Λ in the Definition 2.4.20 (or informally,
ϕ appears in the same sequent as ∆ appears). Hence, the sequent S is
of the form (Γ′,Γ′′,Π′,Π′′, ϕ ⇒ ∆) and we have to find a formula C that
satisfies (Γ′,Π′ ⇒ C) and (Γ′′,Π′′, ϕ, C ⇒ ∆), where Σ = {Γ′,Π′} and
Λ = {Γ′′,Π′′, ϕ}. Therefore, we must have had the following instance of the
rule

⟨⟨Π′
j,Π′′

j , ψ̄js ⇒ θ̄js⟩s⟩j ⟨⟨Γ′
i,Γ′′

i , ϕ̄ir ⇒ ∆i⟩r⟩i

Π′,Π′′,Γ′,Γ′′, ϕ ⇒ ∆

Using the induction hypothesis for the premises we have

Π′
j ⇒ Cjs , Π′′

j , ψ̄js, Cjs ⇒ θ̄js

Γ′
i ⇒ Dir , Γ′′

i , ϕ̄ir, Dir ⇒ ∆i

Using the rules (R∧) and (L∧) we have

Π′
j ⇒ ⋀

s
Cjs , Π′′

j , ψ̄js,
⋀
s
Cjs ⇒ θ̄js

Γ′
i ⇒ ⋀

r
Dir , Γ′′

i , ϕ̄ir,
⋀
r
Dir ⇒ ∆i

For the left sequents, using the rule (R⊗) we have

Π′,Γ′ ⇒ (⨂
j

⋀
s
Cjs) ⊗ (⨂

i

⋀
r
Dir)
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And if we substitute the right sequents in the original rule and using the
rule (L⊗), we conclude

Π′′,Γ′′, (⨂
j

⋀
s
Cjs) ⊗ (⨂

i

⋀
r
Dir), ϕ ⇒ ∆

Therefore, we let C be (⨂
j

⋀
s
Cjs) ⊗ (⨂

i

⋀
r
Dir) and we have proved (Γ′,Π′ ⇒

C) and (Γ′′,Π′′, ϕ, C ⇒ ∆).

To check V (C) ⊆ V (Σ) ∩ V (Λ ∪ ∆), note that an atom is in C if and only
if it is in one of Cjs or Dir. If it is in Cjs, by induction hypothesis, it is
either in Π′

j (which means it is in Σ), or it is in {Π′′
j , ψ̄js, θ̄js}. If it is in Π′′

j ,
then it is in Λ and if it is in either ψ̄js or θ̄js, since the rule is occurence
preserving, it also appears in ϕ which means it appears in Λ.
If the atom is in Dir, we reason in the similar way, and it either appears in
Γ′

i (and hence in Σ) or it appears in {Γ′′
i , ϕ̄ir,∆i} and hence in Λ ∪ ∆.

◦ Consider the case where the last rule used in the proof is a left semi-analytic
rule and the main formula, ϕ, is this time in Σ in the Definition 2.4.20.
Hence, the sequent S is again of the form (Γ′,Γ′′,Π′,Π′′, ϕ ⇒ ∆) and we
have to find a formula C that satisfies (Γ′,Π′, ϕ ⇒ C) and (Γ′′,Π′′, C ⇒ ∆),
where Σ = {Γ′,Π′, ϕ} and Λ = {Γ′′,Π′′}. W.l.o.g. suppose that for i ̸= 1
we have ∆i = ∅ and ∆1 = ∆. Therefore, we must have had the following
instance of the rule

⟨⟨Π′
j,Π′′

j , ψ̄js ⇒ θ̄js⟩s⟩j ⟨⟨Γ′
i,Γ′′

i , ϕ̄ir ⇒⟩r⟩i ̸=1 ⟨Γ′
1,Γ′′

1, ϕ̄1r ⇒ ∆⟩r

Π′,Π′′,Γ′,Γ′′, ϕ ⇒ ∆

Using the induction hypothesis for the premises we have (for i ̸= 1)

Π′
j, ψ̄js, Cjs ⇒ θ̄js , Π′′

j ⇒ Cjs

Γ′
i, ϕ̄ir, Dir ⇒ , Γ′′

i ⇒ Dir

Γ′
1, ϕ̄1r ⇒ D1r , Γ′′

1, D1r ⇒ ∆

Using the rules (L∧), (R∧), (R∨) and (L∨), we have (for i ̸= 1)

Π′
j, ψ̄js,

⋀
s
Cjs ⇒ θ̄js , Π′′

j ⇒ ⋀
s
Cjs

Γ′
i, ϕ̄ir,

⋀
r
Dir ⇒ , Γ′′

i ⇒ ⋀
r
Dir

Γ′
1, ϕ̄1r ⇒ ⋁

r
D1r , Γ′′

1,
⋁
r
D1r ⇒ ∆

If we substitute the left sequents in the original rule, we get (for i ̸= 1)
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Π′,Γ′,
⋀
s
Cjs,

⋀
r
Dir, ϕ ⇒ ⋁

r
D1r

First, using the rule (L⊗) and then (R →) we get

Π′,Γ′, ϕ ⇒ (⨂
i ̸=1

⋀
r
Dir) ⊗ (⨂

j

⋀
s
Cjs) → ⋁

r
D1r

On the other hand, using the rules (R⊗) and (L →) for the right sequents
we have

Π′′,Γ′′, (⨂
i ̸=1

⋀
r
Dir) ⊗ (⨂

j

⋀
s
Cjs) → ⋁

r
D1r ⇒ ∆

It is enough to take C as (⨂
i ̸=1

⋀
r
Dir)⊗(⨂

j

⋀
s
Cjs) → ⋁

r
D1r to finish the proof

of this case.

To check V (C) ⊆ V (Σ) ∩V (Λ ∪ ∆), note that an atom is in C if and only if
it is either in one of Cjs or Dir for (i ̸= 1) or in D1r. By induction hypothesis
if it is in Cjs, it is both in {Π′

j, ψ̄js, θ̄js} and in Π′′
j . If it is in Dir for (i ̸= 1),

then it is both in {Γ′
i, ϕ̄ir} and in Γ′′

i . And if it is in D1r, then it is both
in {Γ′

1, ϕ̄1r} and in {Γ′′
1,∆}. One can easily check that therefore, the atom

will be both in Σ = {Γ′,Π′, ϕ} and in Λ ∪ ∆ = {Γ′′,Π′′,∆}. Note that in
the reasoning we will need the occurrence preserving property, as well.

◦ Consider the case where the last rule used in the proof is a right semi-
analytic rule. Hence, the sequent S is of the form (Γ′,Γ′′ ⇒ ϕ) and we have
to find a formula C that satisfies (Γ′′ ⇒ C) and (Γ′, C ⇒ ϕ), where Σ = Γ′′,
Λ = Γ′ and ∆ = ϕ . Therefore, we must have had the following instance of
the rule

⟨⟨Γ′
i,Γ′′

i , ϕ̄ir ⇒ ψ̄ir⟩r⟩i

Γ′,Γ′′ ⇒ ϕ

Using the induction hypothesis we get

Γ′
i, Cir, ϕ̄ir ⇒ ψ̄ir , Γ′′

i ⇒ Cir

Using the rules (L∧) and (R∧) we have

Γ′
i,

⋀
r
Cir, ϕ̄ir ⇒ ψ̄ir , Γ′′

i ⇒ ⋀
r
Cir

Substituting the left sequent in the original rule and then using the rule
(L⊗), we conclude

Γ′,
⨂
i

(⋀
r
Cir) ⇒ ϕ.
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On the other hand, using the rule (R⊗) for the sequents Γ′′
i ⇒ ⋀

r
Cir, we

get Γ′′ ⇒ ⨂
i

(⋀
r
Cir) which means that the sequent ⨂

i
(⋀

r
Cir) serves as the

formula C.

To check V (C) ⊆ V (Σ) ∩ V (Λ ∪ ∆), note that an atom is in C if and
only if it is either in one of Cir. Then by induction hypothesis it is both
in {Γ′

i, ϕ̄ir, ψ̄ir} and in Γ′′
i . It is easy to check that it meets the conditions

needed.

◦ And finally, consider the case where the last rule used in the proof is a
modal rule. We will investigate K and D together first, and second 4 and
4D together, and at last, we will investigate the rule RS4.
Consider the case where the last rule used in the proof is either K or D.
Then, the sequent S is of the form □Γ′,□Γ′′ ⇒ □∆, where ||∆|| ≤ 1 and
we have to find a formula C that satisfies □Γ′ ⇒ C and C,□Γ′′ ⇒ □∆.
Therefore, we must have had the following instance of the rule

Γ′,Γ′′ ⇒ ∆
□Γ′,□Γ′′ ⇒ □∆

Using the induction hypothesis there exists D such that

Γ′ ⇒ D , Γ′′, D ⇒ ∆

Then, using the rule K for both of them (or if ∆ = ∅, use the rule D for
(Γ′′, D ⇒)), we get

□Γ′ ⇒ □D , □Γ′′,□D ⇒ □∆

Let □D be the formula C and we are done. And since V (D) ⊆ V (Γ′) ∩
V (Γ′′ ∪ ∆) we have V (C) ⊆ V (□Γ′) ∩ V (□Γ′′ ∪ □∆), because the set of
atoms of □Π for a multiset Π is the same as atoms in Π.
Now, consider the case that the last rule used in the proof is 4. Then, the
sequent S is of the form □Γ′,□Γ′′ ⇒ □ϕ, and we have to find a formula C
that satisfies □Γ′ ⇒ C and C,□Γ′′ ⇒ □ϕ. Therefore, we must have had
the following instance of the rule

Γ′,Γ′′,□Γ′,□Γ′′ ⇒ ϕ

□Γ′,□Γ′′ ⇒ □ϕ

Using the induction hypothesis there exists D such that

Γ′,□Γ′ ⇒ D , Γ′′,□Γ′′, D ⇒ ϕ

If we use the rule 4 on the left sequent and using the left weakening rule
on the right sequent (adding □D to the left hand side of the sequent) and
then using the rule 4, we get
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□Γ′ ⇒ □D , □Γ′′,□D ⇒ □ϕ

If we take C = □D, then the claim follows. Checking the atoms is similar
as before.
For the proof of the case 4D is identical to the proof of the rule 4, if we
ignore ϕ and □ϕ everywhere.

If the last rule used in the proof is the rule RS4, then the sequent S is of
the form □Γ′,□Γ′′ ⇒ □ϕ, and we have to find a formula C that satisfies
□Γ′ ⇒ C and C,□Γ′′ ⇒ □ϕ. Therefore, we must have had the following
instance of the rule

□Γ′,□Γ′′ ⇒ ϕ

□Γ′,□Γ′′ ⇒ □ϕ

Using the induction hypothesis there exists D such that

□Γ′ ⇒ D , □Γ′′, D ⇒ ϕ

On the left sequent, use the rule RS4. On the right sequent, use the rule
LS4 (since the rule LS4 is present in the system, whenever we have RS4)
and then use the rule RS4. We get

□Γ′ ⇒ □D , □Γ′′,□D ⇒ □ϕ

It is easy to see that C = □D works in this case.

Now, we will prove part (ii). We have discussed the cases of left and right
semi-analytic and modal rules in the previous part. It only remains to investigate
the case of context-sharing semi-analytic rules.

◦ Consider the case where the last rule used in the proof is a context-sharing
semi-analytic rule and the main formula, ϕ, is in Λ in the Definition 2.4.20
(or informally, ϕ appears in the same sequent as ∆ appears). Hence, the
sequent S is of the form (Γ′,Γ′′, ϕ ⇒ ∆) and we have to find a formula C that
satisfies (Γ′ ⇒ C) and (Γ′′, ϕ, C ⇒ ∆), where Σ = {Γ′} and Λ = {Γ′′, ϕ}.
Therefore, we must have had the following instance of the rule

⟨⟨Γ′
i,Γ′′

i , ψ̄is ⇒ θ̄is⟩s⟩i ⟨⟨Γ′
i,Γ′′

i , ϕ̄ir ⇒ ∆i⟩r⟩i

Γ′,Γ′′, ϕ ⇒ ∆

Using the induction hypothesis for the premises we have

Γ′
i ⇒ Cis , Γ′′

i , ψ̄is, Cis ⇒ θ̄is

Γ′
i ⇒ Dir , Γ′′

i , ϕ̄ir, Dir ⇒ ∆i

Using the rules (R∧) and (L∧) we have
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Γ′
i ⇒ ⋀

s
Cis , Γ′′

i , ψ̄is,
⋀
s
Cis ⇒ θ̄is

Γ′
i ⇒ ⋀

r
Dir , Γ′′

i , ϕ̄ir,
⋀
r
Dir ⇒ ∆i

We want to the make the contexts of the above sequents in the right the
same, so that we can use them in the original rule. Therefore, using the
rule (L∧) we have

Γ′′
i , ψ̄is, (

⋀
s
Cis) ∧ (⋀

r
Dir) ⇒ θ̄is , Γ′′

i , ϕ̄ir, (
⋀
r
Dir) ∧ (⋀

s
Cis) ⇒ ∆i

Now, we can substitute them in the original rule and conclude

Γ′′, ⟨(⋀
r
Dir) ∧ (⋀

s
Cis)⟩i, ϕ ⇒ ∆

And using the rule (L⊗) we get

Γ′′,
⨂
i

[(⋀
r
Dir) ∧ (⋀

s
Cis)], ϕ ⇒ ∆

On the other hand, considering the sequents (Γ′
i ⇒ ⋀

s
Cis) and (Γ′

i ⇒ ⋀
r
Dir)

and using the rule (R∧) for every i, we get

Γ′
i ⇒ (⋀

r
Dir) ∧ (⋀

s
Cis)

and then using the rule (R⊗) we have

Γ′ ⇒ ⨂
i

[(⋀
r
Dir) ∧ (⋀

s
Cis)]

and we can see that ⨂
i

[(⋀
r
Dir) ∧ (⋀

s
Cis)] serves as C.

To check V (C) ⊆ V (Σ) ∩ V (Λ ∪ ∆), note that an atom is in C if and only
if it is either in one of Cis or Dir. By induction hypothesis, if it is in Cis,
then it is both in Γ′

i and in {Γ′′
i , ψ̄is, θ̄is} and if it is in Dir, then it is both

in Γ′
i and in {Γ′′

i , ϕ̄ir,∆i}. It is easy to check that it meets the conditions.

◦ Consider the case where the last rule used in the proof is a context-sharing
semi-analytic rule and the main formula, ϕ, is this time in Σ in the Definition
2.4.20. Hence, the sequent S is of the form (Γ′,Γ′′, ϕ ⇒ ∆) and we have
to find a formula C that satisfies (Γ′, ϕ ⇒ C) and (Γ′′, C ⇒ ∆), where
Σ = {Γ′, ϕ} and Λ = {Γ′′}. W.l.o.g. suppose that for i ̸= 1 we have ∆i = ∅
and ∆1 = ∆. Therefore, we must have had the following instance of the
rule

⟨⟨Γ′
i,Γ′′

i , ψ̄is ⇒ θ̄is⟩s⟩i ⟨⟨Γ′
i,Γ′′

i , ϕ̄ir ⇒⟩r⟩i ̸=1 ⟨Γ′
1,Γ′′

1, ϕ̄1r ⇒ ∆⟩r

Γ′,Γ′′, ϕ ⇒ ∆

Using the induction hypothesis for the premises we have (for i ̸= 1)
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Γ′
i, ψ̄is, Cis ⇒ θ̄is , Γ′′

i ⇒ Cis

Γ′
i, ϕ̄ir, Dir ⇒ , Γ′′

i ⇒ Dir

Γ′
1, ϕ̄1r ⇒ D1r , Γ′′

1, D1r ⇒ ∆

Using the rules (L∧), (R∧), (R∨) and (L∨), we have (for i ̸= 1)

Γ′
i, ψ̄is,

⋀
s
Cis ⇒ θ̄is , Γ′′

i ⇒ ⋀
s
Cis

Γ′
i, ϕ̄ir,

⋀
r
Dir ⇒ , Γ′′

i ⇒ ⋀
r
Dir

Γ′
1, ϕ̄1r ⇒ ⋁

r
D1r , Γ′′

1,
⋁
r
D1r ⇒ ∆

Γ′
1, ψ̄1s,

⋀
s
C1s ⇒ θ̄is , Γ′′

1 ⇒ ⋀
s
C1s

Now, we want to make the contexts of the sequents in the left the same,
so that we can use them in the original rule. For (i ̸= 1) use the rule
(L∧) to make the context {Γ′

i, (
⋀
s
Cis) ∧ (⋀

r
Dir)} and for (i = 1) use the

left weakening rule to make the context {Γ′
1,

⋀
s
C1s}. If we substitute the

updated left sequents in the original rule, we get (for i ̸= 1)

Γ′, ⟨(⋀
s
Cis) ∧ (⋀

r
Dir)⟩i ̸=1,

⋀
s
C1s, ϕ ⇒ ⋁

r
D1r

First, using the rule (L⊗) and then (R →) we get

Γ′, ϕ ⇒ (⨂
i ̸=1

[(⋀
s
Cis) ∧ (⋀

r
Dir)] ⊗ ⋀

s
C1s) → ⋁

r
D1r.

On the other hand, using the rule (R∧) for every (i ̸= 1) we have Γ′′
i ⇒

(⋀
s
Cis) ∧ (⋀

r
Dir). Together with the sequent Γ′′

1 ⇒ ⋀
s
C1s, and using the

rule (R⊗) we get

Γ′′ ⇒ (⨂
i ̸=1

[(⋀
s
Cis) ∧ (⋀

r
Dir)] ⊗ ⋀

s
C1s).

We have Γ′′
1,

⋁
r
D1r ⇒ ∆. Use the left weakening rule to get Γ′′,

⋁
r
D1r ⇒ ∆.

Now, we can use the rule left sharing implication to get

Γ′′, (⨂
i ̸=1

[(⋀
s
Cis) ∧ (⋀

r
Dir)] ⊗ ⋀

s
C1s) → ⋁

r
D1r ⇒ ∆.
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We can see that (⨂
i ̸=1

[(⋀
s
Cis) ∧ (⋀

r
Dir)] ⊗ ⋀

s
C1s) → ⋁

r
D1r serves as C and

we are done.

To check V (C) ⊆ V (Σ) ∩ V (Λ ∪ ∆), note that an atom is in C if and only
if it is either in one of Cis or Dir. By induction hypothesis, if it is in Cis,
then it is both in {Γ′

i, ψ̄is, θ̄is} and in Γ′′
i and if it is in Dir for (i ̸= 1), then

it is both in Γ′
i, ϕ̄ir, and in {Γ′′

i }. If it is in D1r, then it is both in Γ′
1, ϕ̄1r,

and in {Γ′′
1,∆}. It is easy to check that it meets the conditions.

It is easy to check that in both cases of (i) and (ii), if G has H-feasible interpola-
tion, then so does H. By the assumption, we know that there exists a number m
(which only depends on the proof system G) such that |C| ≤ |π|m. Now for the
proofs in H we will claim that our previously constructed interpolant C has the
property |C| ≤ |π|M where M = max{m, 2} and we will prove it by induction on
the H-length of π.

If the H-length of the proof is 0, then there is no new rule of H in the proof
π, and since G has H-feasible interpolation, by Definition |C| ≤ |π|m and hence
|C| ≤ |π|M . For the rest, note that in each of the above cases, the number of the
formulas which appear in C (we have denoted them by Cjs and Dir) is equal to
the number of premises of the last rule used in the proof. The rest of the symbols
appeared in C are connectives, and the number of them is less than or equal to
NR, where NR is the number of the premises of the rule R, which is the last
rule used in the proof. Since the sequent S is the conclusion of a rule in H, the
H-lengths of the proofs of its premises are less than the H-length of π and we
can use the induction hypothesis for them. Then |C| ≤ Σj,s|Cjs|+Σi,r|Dir|+NR.
By induction hypothesis we have |Cjs| ≤ |πjs|M and |Dir| ≤ |πir|M , where πjs (or
πir) is the proof of the sequent whose interpolant is Cjs (or Dir). But since the
proof is tree-like, we have Σj,s|πj,s| + Σi,r|πi,r| + 1 ≤ |π|. It is easy to see that
|C| ≤ Σj,s|πj,s|M + Σi,r|πi,r|M +NR ≤ (Σj,s|πj,s| + Σi,r|πi,r| + 1)M ≤ |π|M , and the
claim follows. The last inequality uses the fact M ≥ 2 and

NR ≤ Σj,s|πj,s| + Σi,r|πi,r|

The latter is an easy consequence of the fact that the number of πj,s and πi,r

in total is NR.

2.4.2 The Multi-conclusion Case
In this subsection we will generalize the Theorem 2.4.23 to also cover the multi-
conclusion case.

Theorem 2.4.24. Let G and H be two multi-conclusion sequent calculi such
that H extends CFLe

−. Suppose H is an axiomatic extension of G with multi-
conclusion semi-analytic rules or S4 rules and if we also add the modal rule 4 or
4D in H, the left weakening rule for boxed formulas is admissible in H. Then if
G has strong H-interpolation (strong H-feasible interpolation), so does H.

Proof. The proof is similar to the proof of Theorem 2.4.23 and again it uses
induction on the H-length of π. For the zero H-length, the proof is in G and
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the existence of the interpolation is proved by the assumption. For the rest,
we will consider the last rule used in the proof and there are several cases to
investigate. Throughout the proof we use the convention A = A1, · · · , Ak for
different sequents A and different numbers k, for simplicity.

◦ Consider the case where the last rule used in the proof is a left multi-
conclusion semi-analytic rule and the main formula, ϕ, is in Λ in the Defini-
tion 2.4.20. Hence, the sequent S is of the form (Γ′,Γ′′, ϕ ⇒ ∆′,∆′′) and we
have to find a formula C that satisfies (Γ′ ⇒ C,∆′) and (Γ′′, ϕ, C ⇒ ∆′′).
Therefore, we must have had the following instance of the rule

⟨⟨Γ′
i,Γ′′

i , ϕ̄ir ⇒ ψ̄ir,∆′
i,∆′′

i ⟩r⟩i

Γ′,Γ′′, ϕ ⇒ ∆′,∆′′

Using the induction hypothesis for the premises we have for every i and r

Γ′
i ⇒ Cir,∆′

i , Γ′′
i , ϕ̄ir, Cir ⇒ ψ̄ir,∆′′

i

Using the rule (R∧) and (L∧) we have for every i

Γ′
i ⇒ ⋀

r
Cir,∆′

i , Γ′′
i , ϕ̄ir,

⋀
r
Cir ⇒ ψ̄ir,∆′′

i

Using the rule (R⊗) for the left sequents we get

Γ′ ⇒ ⨂
i

⋀
r
Cir,∆′

and, if we substitute the right sequents in the original rule, and then using
the rule (L⊗), we get

Γ′′, ϕ,
⨂
i

⋀
r
Cir ⇒ ∆′′

Hence, we take C as ⨂
i

⋀
r
Cir and we are done.

To check V (C) ⊆ V (Γ′ ∪ ∆′) ∩ V ({Γ′′ ∪ {ϕ}} ∪ ∆′′), note that an atom is
in C if and only if it is in one of Cir’s. Then, by induction hypothesis, it is
in (Γ′

i ∪ ∆′
i) and in {Γ′′

i , ϕ̄ir, ψ̄ir,∆′′
i }. It can be easily seen that the claim

holds; the only thing to remember is that if the atom is in either ϕ̄ir or in
ψ̄ir, since the rule is occurrence preserving, it also appears in ϕ.

◦ Consider the case where the last rule used in the proof is a left multi-
conclusion semi-analytic rule and the main formula, ϕ, is in Σ in the Defini-
tion 2.4.20. Hence, the sequent S is again of the form (Γ′,Γ′′, ϕ ⇒ ∆′,∆′′)
and we have to find a formula C that satisfies (Γ′, ϕ ⇒ C,∆′) and (Γ′′, C ⇒
∆′′). Therefore, we must have had the following instance of the rule

⟨⟨Γ′
i,Γ′′

i , ϕ̄ir ⇒ ψ̄ir,∆′
i,∆′′

i ⟩r⟩i

Γ′,Γ′′, ϕ ⇒ ∆′,∆′′
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Using the induction hypothesis for the premises we have for every i and r

Γ′
i, ϕ̄ir ⇒ ψ̄ir, Cir,∆′

i , Γ′′
i , Cir ⇒ ∆′′

i

Using the rules (R∨) and (L∨), we have for every i

Γ′
i, ϕ̄ir ⇒ ψ̄ir,

⋁
r
Cir,∆′

i , Γ′′
i ,

⋁
r
Cir ⇒ ∆′′

i

If we substitute the left sequents in the original rule, we get

Γ′, ϕ ⇒ ⋁
r
Cir,∆′

and, using the rule (R⊕) we get

Γ′, ϕ ⇒ ⨁
i

⋁
r
Cir,∆′

On the other hand, using the rule (L⊕) for the right sequents we have

Γ′′,
⨁
i

⋁
r
Cir ⇒ ∆′′

It is enough to take C as ⨁
i

⋁
r
Cir to finish the proof of this case.

To check V (C) ⊆ V ({Γ′ ∪ {ϕ}} ∪ ∆′) ∩ V (Γ′′ ∪ ∆′′), note that an atom is
in C if and only if it is in one of Cir’s. Then, by induction hypothesis, it is
in {Γ′

i, ϕ̄ir, ψ̄ir,∆′
i} and in (Γ′′

i ∪ ∆′′
i ). It can be easily seen that the claim

holds; the only thing to remember is that if the atom is in either ϕ̄ir or in
ψ̄ir, since the rule is occurrence preserving, it also appears in ϕ.

◦ Consider the case where the last rule used in the proof is a modal multi-
conclusion one. The case where it is the rule D or 4D is similar to the proof
of the same cases in the Theorem 2.4.23. Let the last rule used in the proof
be the rule K. Then, S is of the form □Γ′,□Γ′′ ⇒ □ϕ. Therefore, there
can be two cases based on the partition of the right side of the sequent. In
the first one, we have to show that there exists C such that □Γ′ ⇒ C and
□Γ′′, C ⇒ □ϕ hold. In the second one, we have to show that there exists
C such that □Γ′ ⇒ C,□ϕ and □Γ′′, C ⇒ hold. Since the proof of the first
case is similar to the proof in Theorem 2.4.23, we will investigate the second
case. Hence, we must have had the following instance of the rule

Γ′,Γ′′ ⇒ ϕ

□Γ′,□Γ′′ ⇒ □ϕ

Using the induction hypothesis for the premise, there exists D such that we
have

Γ′ ⇒ D,ϕ , D,Γ′′ ⇒
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Using the rule (L →) together with the axiom (⇒ 0) on the one hand and
on the other, using the rule (0w) and (R →) we have

Γ′,¬D ⇒, ϕ , Γ′′ ⇒ ¬D

Use the rule K to derive

□Γ′,□¬D ⇒ □ϕ , □Γ′′ ⇒ □¬D

And we can derive

□Γ′ ⇒ ¬□¬D,□ϕ , ¬□¬D,□Γ′′ ⇒

which means we have to take C = ¬□¬D. The atom check is easy.

Now, consider the case where the last rule used in the proof is the rule 4.
Then S is of the form □Γ′,□Γ′′ ⇒ □ϕ and there are the exact two cases
as above, in the case of the rule K, and again since the second case is new
(the proof of the other one is similar to the proof in Theorem 2.4.23), we
will investigate that one. Hence, we have to show that there exists C such
that □Γ′ ⇒ C,□ϕ and □Γ′′, C ⇒ hold. Therefore we must have had the
following instance of the rule

Γ′,Γ′′,□Γ′,□Γ′′ ⇒ ϕ

□Γ′,□Γ′′ ⇒ □ϕ

Using the induction hypothesis for the premise, there exists D such that we
have

Γ′,□Γ′ ⇒ D,ϕ , D,Γ′′,□Γ′′ ⇒

Using the rule (L →) together with the axiom (⇒ 0) on the one hand and
on the other, using the rule (0w) and (R →) we have

Γ′,□Γ′,¬D ⇒ ϕ , Γ′′,□Γ′′ ⇒ ¬D

Use the left weakening rule for the left sequent (to add □¬D to the left side
of the sequent) and then apply the rule 4 to get

□Γ′,□¬D ⇒ □ϕ , □Γ′′ ⇒ □¬D

And we can derive

□Γ′ ⇒ ¬□¬D,□ϕ , ¬□¬D,□Γ′′ ⇒

If we take C = ¬□¬D, we are done. And it is easy to check the condition
for atoms.
In the case of the rule (RS4), we have exactly the same cases as in the rule
K:
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□Γ′ ⇒ C , □Γ′′, C ⇒ □ϕ

and

□Γ′ ⇒ C,□ϕ , □Γ′′, C ⇒

Only the second case is new (the proof for the first one is the same as the
proof of the same case in theorem 2.4.23). The proof of the second case is
the same as the case for the rule K in the above, and C = ¬□¬D works
here, as well.

The cases where the last rule in the proof is a right multi-conclusion semi-analytic
one is similar and we do not investigate them here. The proof for the feasibility
part is easy and similar to the proof in the Theorem 2.4.23.

Therefore, combining the Theorems 2.4.22, 2.4.23 and 2.4.24 we will have:

Theorem 2.4.25. (i) For any calculus H which is an FLe-extension (FLe
−-

extension) single-conclusion calculus consisting of semi-analytic rules and
focused axioms (context-free focused axioms), H has H-feasible interpola-
tion.

(ii) For any IPC-extension single-conclusion calculus H consisting of semi-
analytic rules, context-sharing semi-analytic rules and focused axioms, H
has H-feasible interpolation.

(iii) For any CFLe-extension (CFLe
−-extension) multi-conclusion H consisting

of semi-analytic rules and focused axioms (context-free focused axioms), H
has H-feasible interpolation.

Combining the Theorem 2.4.25, Theorem 2.2.9 and Theorem 2.4.21, we have:

Corollary 2.4.26. (i) If FLe ⊆ L, (FLe
− ⊆ L) and L has a single-conclusion

calculus consisting of semi-analytic rules and focused axioms (context-free
focused axioms), then L has Craig interpolation.

(ii) If IPC ⊆ L and L has a single-conclusion sequent calculus consisting of
semi-analytic rules, context-sharing semi-analytic rules and focused axioms,
then L has Craig interpolation.

(iii) If CFLe ⊆ L, (CFLe
− ⊆ L) and L has a multi-conclusion sequent calculus

consisting of semi-analytic rules and focused axioms (context-free focused
axioms), then L has Craig interpolation.

The following are the applications of the main corollary of this section i.e.,
Corollary 2.4.26. To begin, let us consider the positive application:

Corollary 2.4.27. The logics FLe, FLec, FLew, CFLe, CFLew, CFLec, ILL,
CLL, IPC, CPC and their K, KD and S4 versions have the Craig interpolation
property. The same also goes for K4 and K4D extensions of IPC and CPC.

Proof. Note that the usual cut-free sequent calculus for all of these logics consists
of semi-analytic rules and focused axioms. Therefore, by the Corollary 2.4.26 we
can prove the Craig interpolation property for all of them.
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For the negative applications, we use the results in [16], [32] and [43] to ensure
that the following logics do not have Craig interpolation. Then we will use the
Corollary 2.4.26 to prove that these logics do not have a semi-analytic calculus
consisting only of the focused axioms and semi-analytic rules.

Corollary 2.4.28. None of the logics R, UL−, IUL−, MTL, SMTL, IMTL,
BL, L∞, Ln for n ≥ 3, P , CHL and A have a single-conclusion sequent calculus
consisting only of single-conclusion semi-analytic rules and context-free focused
axioms.

Corollary 2.4.29. None of the logics IUL−, IMTL, L∞, Ln for n ≥ 3 and
A have a multi-conclusion sequent calculus consisting only of multi-conclusion
semi-analytic rules and context-free focused axioms.

Corollary 2.4.30. Except G, G3 and CPC, none of the consistent logics which
are BL-extensions have a single-conclusion sequent calculus consisting only of
single-conclusion semi-analytic rules and context-free focused axioms.

Corollary 2.4.31. The only IMTL-extension with a calculus consisting of single-
conclusion (multi-conclusion) semi-analytic rules and context-free focused axioms,
is CPC.

Corollary 2.4.32. Except RM e, IUML−, CPC, RM e
3 , RM e

4 , CPC∩IUML−,
RM e

4 ∩ IUML−, and CPC ∩ RM e
3 , none of the consistent extensions of RM e

have a single-conclusion (multi-conclusion) sequent calculus consisting only of
single-conclusion (multi-conclusion) semi-analytic rules and context-free focused
axioms. This category includes:

(i) RM e
n for n ≥ 5,

(ii) RM e
2m ∩RM e

2n+1 for n ≥ m ≥ 1 with n ≥ 2.,

(iii) RM e
2m ∩ IUML− for m ≥ 3.

Corollary 2.4.33. Except IPC, LC, KC, Bd2, Sm, GSc and CPC, none of
the consistent super-intuitionistic logics have a single-conclusion sequent calcu-
lus consisting only of single-conclusion semi-analytic rules, context-sharing semi-
analytic rules and focused axioms.

Corollary 2.4.34. Except at most thirty seven logics, none of the consistent ex-
tensions of S4 have a single-conclusion (multi-conclusion) sequent calculus con-
sisting only of single-conclusion (multi-conclusion) semi-analytic rules, context-
sharing semi-analytic rules, the modal rules K, D, 4, 4D, RS4 and focused ax-
ioms.

2.5 Uniform Interpolation
In this section we will generalize the investigations of [23] to also cover the sub-
structural setting and semi-analytic rules. We will show that any extension of
a sequent calculus by semi-analytic rules preserves uniform interpolation if the
resulted system turns out to be terminating. Our method here is similar to the
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method used in [23].

As a first step, let us generalize the notion of uniform interpolation from
logics to sequent calculi. The following definition offers three versions of such a
generalization, each of which suitable for different forms of rules.

Definition 2.5.35. Let G and H be two sequent calculi. G has H-uniform in-
terpolation if for any sequent S and T where T s = ∅ and any atom p, there exist
p-free formulas I(S) and J(T ) such that V (I(S)) ⊆ V (Sa ∪ Ss) and V (J(T )) ⊆
V (T a) and

(i) S · (I(S) ⇒) is derivable in H.

(ii) For any p-free multiset Γ, if S · (Γ ⇒) is derivable in G then Γ ⇒ I(S) is
derivable in H.

(iii) T · (⇒ J(T )) is derivable in H.

(iv) For any p-free multisets Γ and ∆, if T · (Γ ⇒ ∆) is derivable in G then
J(T ),Γ ⇒ ∆ is derivable in H.

Similarly, we say G has weak H-uniform interpolation if instead of (ii) we have

(ii′) For any p-free multiset Γ, if S ·(Γ ⇒) is derivable in G then J(S̃),Γ ⇒ I(S)
is derivable in H where S̃ = (Sa ⇒).

We say G has strong H-uniform interpolation if instead of (ii) we have

(ii′′) For any p-free multisets Γ and ∆, if S · (Γ ⇒ ∆) is derivable in G then
Γ ⇒ I(S),∆ is derivable in H.

Note that in the case of the strong uniform interpolation, T s can be non-empty,
and we have multi-conclusion rules.

We call I(S) a left p-interpolant (weak p-interpolant, strong p-interpolant)
of S and J(T ) a right p-interpolant (weak right p-interpolant, strong right p-
interpolant) of T in G relative to H. The system H has unifrom interpolation
property (weak unifrom interpolation property, strong unifrom interpolation prop-
erty) if it has H-uniform interpolation (weak H-uniform interpolation, strong
H-uniform interpolation).

Theorem 2.5.36. If G is a sequent calculus with (weak/strong) uniform interpo-
lation and complete for a logic L extending (FLe/CFLe) FLe, L has the uniform
interpolation property.

Proof. First note that since G is complete for L, L ⊢ ϕ → ψ iff G ⊢ ϕ ⇒ ψ. Hence
we can rewrite the definition of the uniform interpolation using the sequent system
G. Now pick S = (⇒ A). By uniform interpolation property of G, there is a
p-free formula I(S) such that S · (I(S) ⇒) and for any p-free Σ if S · (Σ ⇒),
then Σ ⇒ I(S). It is clear that I(S) works as the p-pre-interpolant of A, because
firstly I(S) ⇒ A and secondly if B ⇒ A then B ⇒ I(S) for any p-free B. The
same argument also works for the p-post-interpolant. In the case of weak uniform
interpolation, first note that by definition if T = (⇒) then (⇒ J(T )). Secondly,
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note that since G is complete for L, the calculus should admit the cut rule by
Theorem 2.2.9. Now we claim that I(S) works again. The reason now is that
if B ⇒ A for a p-free B, then J(S̃), B ⇒ I(S). Since S̃ = T and we have the
cut rule, B ⇒ I(S). The case for strong uniform interpolation is similar to the
interpolation case.

In the following theorem, we will check the uniform interpolation property for
a set of focused axioms. It can also be considered as an example to show how
this notion works in practice.

Theorem 2.5.37. Let G and H be two sequent calculi such that every provable
sequent in G is also provable in H and G consists only of finite focused axioms.
Then:

(i) If G and H are single-conclusion and H extends FLe, then G has H-uniform
interpolation.

(ii) If G and H are single-conclusion and H extends FLe and has the left weak-
ening rule, then G has weak H-uniform interpolation.

(iii) If G and H are multi-conclusion and H extends CFLe, then G has strong
H-uniform interpolation.

Proof. To prove part (i) of the theorem, we have to find I(S) and J(T ) for given
sequents S = (Σ ⇒ Λ) and T = (Π ⇒) such that the four conditions in the Defini-
tion 2.5.35 hold. We will denote our I(S) and J(T ) by ∀pS and ∃pT , respectively.

First, we will prove (i) and we will investigate the case ∃pT , first. For that
purpose, define ∃pT as the following

[(
⨂

Πp) ⊗ ⊤] ∧ 0 ∧ ⊥

where Πp is the subset of Π consisting of all p-free formulas and by ⨂ Πp we mean
ϕ1 ⊗· · ·⊗ϕk, where {ϕ1, · · · , ϕk} = Πp. Note that ⊤ appears in the first conjunct
only when Π − Πp is non-empty. Moreover, 0 only appears as a conjunct when T
is of the form axiom 3 (which is β̄ ⇒) and β̄ = Π, and ⊥ only appears as a con-
junction when T is of the form of axiom 4 (which is Σ, ϕ̄ ⇒ Λ) and we have ϕ̄ ⊆ Π.

First, we have to show that Π ⇒ ∃pT holds in H. Note that Π is of the
form Πp ∪ (Π − Πp). By definition, for every ψ ∈ Πp we have ψ ⇒ ψ and hence
using the rule (R⊗) we have Πp ⇒ ⨂ Πp holds in H (note that since H extends
FLe, it has the rule (R⊗)). On the other hand, using the axiom for ⊤ we have
Π − Πp ⇒ ⊤ and then using the rule (R⊗) we have Πp,Π − Πp ⇒ (⨂ Πp) ⊗ ⊤,
which is Π ⇒ (⨂ Πp) ⊗ ⊤.

The formula 0 appears as a conjunct when T is of the form axiom 3 and
β̄ = Π, which means that in this case Π ⇒ is an instance of axiom 3 and it holds
in H. Hence, using the rule (0w) we have Π ⇒ 0.
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The formula ⊥ appears as a conjunct when T is of the form axiom 4 and
ϕ̄ ⊆ Π. Hence, Π ⇒ ⊥ is an instance of axiom 4 when we let ∆ to be ⊥.

Now, we have to show that if for p-free sequents C̄ and D̄ if Π, C̄ ⇒ D̄ is
provable in G, then ∃pT, C̄ ⇒ D̄ is provable in H. Therefore, Π, C̄ ⇒ D̄ is of the
form of one of the focused axioms and we have five cases to consider:

(1) If Π, C̄ ⇒ D̄ is of the form of the axiom ϕ ⇒ ϕ. Then, since D̄ = ϕ, it
means that ϕ is p-free. There are two cases; first, if Π = ϕ and C̄ = ∅, then⨂ Πp = ϕ and since Π − Πp = ∅, we do not have ⊤ in the conjunct. Hence,
Π ⇒ ϕ and using the rule (L∧) we have ∃pT ⇒ D̄. Second, if Π = ∅ and
C̄ = ϕ, then ⨂ Πp = 1 and since Π − Πp = ∅, then ⊤ does not appear in
the first conjunct in the definition of ∃pT . Hence, since C̄ ⇒ D̄ is equal to
ϕ ⇒ ϕ and this is of the form of the axiom 1, using the rule (1w) we have
1, ϕ ⇒ ϕ and using (L∧) we have ∃pT, C̄ ⇒ D̄.

(2) If Π, C̄ ⇒ D̄ is of the form of the axiom ⇒ ᾱ. Then, since D̄ = ᾱ, it means
that ᾱ is p-free and Π = C̄ = ∅. Hence, like the above case ⨂ Πp = 1 and
we do not have ⊤ in the definition, either. Again, using the rule (1w) we
have 1 ⇒ ᾱ and by (L∧) we have ∃pT ⇒ ᾱ.

(3) If Π, C̄ ⇒ D̄ is of the form of the axiom (β̄ ⇒). Then there are two cases;
first if β̄ = Π, then we must have 0 as one of the conjuncts in the definition
of ∃pT . We have C̄ = D̄ = ∅ and 0 ⇒ is an axiom in H and using the rule
(L∧) we have ∃pT ⇒. Second, if Π ⊊ β̄, since we have β̄ = Π, C̄ and C̄ is
p-free, and we have this condition that for any two formulas in β̄ they have
the same variables, we have Π is p-free, as well, which means every formula
in Π is p-free and Π = Πp and ⊤ does not appear in the definition of ∃pT .
Hence, using the rule (L⊗) on Π, C̄ ⇒, we have ⨂ Πp, C̄ ⇒ and by the rule
(L∧) we have ∃pT, C̄ ⇒.

(4) If Π, C̄ ⇒ D̄ is of the form of the axiom Γ, ϕ̄ ⇒ ∆, then there are two
cases; first if ϕ̄ ⊆ Π, then by definition of ∃pT , ⊥ is one of the conjuncts.
Therefore, since ⊥, C̄ ⇒ D̄ is an instance of an axiom in H, using the rule
(L∧) we have ∃pT, C̄ ⇒ D̄ is derivable in H. Second, if ϕ̄ ⊈ Π, then at
least one of the elements in ϕ̄ is in C̄ and hence it is p-free. Therefore, by
the condition that for any two formulas in ϕ̄ they have the same variables,
ϕ̄ is p-free. Hence, there can not be any element of ϕ̄ present in Π − Πp and
hence ϕ̄ ⊆ Πp, C̄ and then ϕ̄ ⊆ Πp, C̄,⊤. Therefore, we have Πp, C̄ ⇒ D̄
because it is of the form of the axiom Γ, ϕ̄ ⇒ ∆ of G and hence it is provable
in H. Therefore, using the axiom (L⊗) we have (⨂ Πp) ⊗ ⊤, C̄ ⇒ D̄ and
by (L∧), ∃pT, C̄ ⇒ D̄. (Note that it is possible that Π − Πp is empty. It is
easy to show that in this case the claim also holds. It is enough to drop ⊤
in the last part of the proof.)

(5) Consider the case where Π, C̄ ⇒ D̄ is of the form of the axiom Γ ⇒ ϕ̄,∆.
Then, since ϕ̄ ⊆ D̄, we have ∃pT, C̄ ⇒ D̄ is an instance of the same axiom
Γ ⇒ ϕ̄,∆ when we substitute Γ by ∃pT, C̄.
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Now, we will investigate the case ∀pS for S of the form Σ ⇒ Λ. Define ∀pS as
the following

[(
⨂

Σp → ⊥)] ∨ [
⨂

(β̄ − Σ)] ∨ ϕ ∨ 1 ∨ ⊤
where in the first disjunct, Σp means the p-free part of Σ, the second disjunct
appears whenever there exists an instance of an axiom of the form (3) in G where
Σ ⊆ β̄, Λ = ∅ and β̄ is p-free. The third disjunct appears if Σ = ∅ and Λ = ϕ
where ϕ is p-free. The fourth disjunct appears if Σ ⇒ Λ equals to one of the
instances of the axiom (1), (2), or (3) in G. And finally, the fifth disjunct appears
when ϕ̄ ⊆ Σ for an instance of ϕ̄ in axiom (4) in G or ϕ̄ ⊆ Λ for an instance of ϕ̄
in axiom (5) in G.

First we have to show that Σ,∀pS ⇒ Λ. For this purpose, we have to prove
that for any possible disjunct X, we have Σ, X ⇒ Λ. For the first disjunct note
that Σp ⇒ ⨂ Σp and Σ − Σp,⊥ ⇒ Λ. Hence, Σ, (⨂ Σp → ⊥) ⇒ Λ using the rule
(→ L).
For the second disjucnt, we have Σ ⊆ β̄ and Λ = ∅. Therefore

Σ,
⨂

(β̄ − Σ) ⇒ Λ

by the axiom (3) itself. For the third disjunct, note that Σ = ∅ and Λ = ϕ where
ϕ is p-free. Hence Σ, ϕ ⇒ Λ by axiom (1). For the fourth disjunct, note that
Σ ⇒ Λ is an axiom itself and hence Σ, 1 ⇒ Λ. Finally, for the fifth disjunct, note
that Σ ⇒ Λ is an instance of the axioms (4) or (5) which means if we also add ⊤
to the left hand-side of the sequent, it remains provable.

Now we have to prove that if Σ, C̄ ⇒ Λ in G then C̄ ⇒ ∀pS in H. For this
purpose, we will check all possible axiomatic forms for Σ, C̄ ⇒ Λ.

(1) If Σ, C̄ ⇒ Λ is an instance of the axiom (1), there are two possible cases.
First if Σ = ∅ and C̄ = ϕ and Λ = ϕ. Then ϕ will be p-free and hence ϕ
appears in ∀pS as a disjunct. Since C̄ ⇒ ϕ, we have C̄ ⇒ ∀pS. For the
second case, if Σ = ϕ and C̄ = ∅ then Σ ⇒ Λ is an instance of the axiom
(1) which means that 1 is a disjunct in ∀pS. Since (⇒ 1) and C̄ = ∅ we
have C̄ ⇒ ∀pS.

(2) If Σ, C̄ ⇒ Λ is an instance of the axiom (2). Then Σ = C̄ = ∅ and Λ = ᾱ.
Therefore, 1 is a disjunct in ∀pS and since C̄ = ∅ we have C̄ ⇒ ∀pS.

(3) If Σ, C̄ ⇒ Λ is an instance of the axiom (3). Then there are two cases to
consider. First if Σ = β̄. Then C̄ = ∅ and Λ = ∅. By definition, 1 is
a disjunct in ∀pS and again like the previous cases C̄ ⇒ ∀pS. Second if
Σ ⊊ β̄. Then β̄∩C̄ is non-empty. Pick ψ ∈ β̄∩C̄. ψ is p-free, since any pair
of the elements in β̄ have the same variables, β̄ is p-free. Now by definition,⨂(β̄ − Σ) is a disjunct in ∀pS. Since C̄ = β − Σ, we have C̄ ⇒ ∀pS.

(4) If Σ, C̄ ⇒ Λ is an instance of the axiom (4). Similar to the previous case,
there are two cases. If ϕ̄ ⊆ Σ, then by definition ⊤ is a disjunct in ∀pS and
there is nothing to prove. In the second case, at least one the elements of
ϕ is in C̄ and hence p-free. Since any pair of the elements in ϕ̄ have the
same variables, ϕ̄ is p-free. We can partition Σ, C̄ to Σp, C̄, (Σ − Σp). Since
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every element of (Σ − Σp) has p, and ϕ̄ is p-free, the whole ϕ should belong
to Σp, C̄. Therefore, by the axiom (4) itself, Σp, C̄ ⇒ ⊥ which implies
C̄ ⇒ (⨂ Σp → ⊥). By definition (⨂ Σp) → ⊥ is a disjunct in ∀pS and
hence C̄ ⇒ ∀pS.

(5) If Σ, C̄ ⇒ Λ is an instance of the axiom (5). Then ϕ̄ ⊆ Λ. By definition ⊤
is a disjunct in ∀pS and therefore, there is nothing to prove.

For (ii), note that using the part (i) we have formulas ∃pT and ∀pS for any
sequents S and T (T s = ∅) with the conditions of H-uniform interpolation. The
conditions for the weak H-uniform interpolation is the same except for the sec-
ond part of the left weak p-interpolant which demands that if Σ, C̄ ⇒ Λ, then
∃pS̃, C̄ ⇒ ∀pS. If we use the same uniform interpolants, we satisfy all the condi-
tions of weak H-uniform interpolation. The reason is that except the mentioned
condition, all of the others are the same as the conditions for H-interpolation and
for the other condition, we can argue as follows: By Σ, C̄ ⇒ Λ, we have C̄ ⇒ ∀pS
and by the left weakening rule we will have ∃pS̃, C̄ ⇒ ∀pS.

For (iii), first note that proving the existence of the right interpolants is
enough. It is sufficient to define ∀pS = ¬∃pS and using the assumption that
CFLe is admissible in H to reduce the conditions of ∀pS to ∃pS. Now define
∃pS for any S = (Σ ⇒ Λ) as:

[(
⨂

Σp) ⊗ ⊤] ∧ [¬(⊥ ⊕ (
⨁

Λp))] ∧ 0 ∧ ⊥

where by ⨂ Σp we mean ψ1 ⊗ · · · ⊗ ψr, where {ψ1, · · · , ψr} = Σp and ⨁ Λp is
defined similarly. Note that in [(⨂ Σp) ⊗ ⊤] the formula ⊤ appears iff Σ ̸= Σp,
and ⊥ appears in the second conjunct iff Λ ̸= Λp. The third conjunct appears
if Σ ⇒ Λ is an instance of an axiom of the forms (1), (2) and (3) in G and the
fourth conjunct appears if Σ ⇒ Λ is an instance of an axiom of the forms (4), (5)
in G.

First, we have to show that Σ ⇒ ∃pS,Λ. For that purpose, we have to check
that for any conjunct X we have Σ ⇒ X,Λ. For the first conjunct, if Σ ̸= Σp

then note that Σp ⇒ ⨂ Σp and Σ − Σp ⇒ ⊤,Λ therefore

Σ ⇒ [(
⨂

Σp) ⊗ ⊤],Λ

If Σ = Σp, then there is no need for ⊤ and the claim is clear by Σ ⇒ ⨂ Σp. For
the second conjunct, if Λ ̸= Λp note that ⨁ Λp ⇒ Λp and Σ,⊥ ⇒ Λ − Λp, hence

Σ, [⊥ ⊕ (
⨁

Λp)] ⇒ Λ

hence
Σ ⇒ [¬(⊥ ⊕ (

⨁
Λp))],Λ

If Λ = Λp, similar to the case before, there is no need for ⊥.

The cases for the third and the fourth conjuncts are similar to the similar
cases in the proof of (i).

Now we want to prove that if Σ, C̄ ⇒ Λ, D̄ in G, then ∃pS, C̄ ⇒ D̄ in H. For
this purpose, we will check all the cases one by one:
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(1) If Σ, C̄ ⇒ Λ, D̄ is an instance of the axiom (1), we have four cases to check.

• If ϕ ∈ C̄ and ϕ ∈ D̄, then Σ = Λ = ∅ and C̄ = D̄ = ϕ. Hence⨂ Σp = 1. Therefore, since 1, C̄ ⇒ D̄ we have ∃pS, C̄ ⇒ D̄.
• If ϕ ∈ C̄ and ϕ /∈ D̄ then Σ = ∅ and Λ = ϕ. Therefore, ϕ is p-free

and hence Λp = ϕ. Since D̄ = ∅ and Λ = ϕ, we have ,¬ϕ, C̄ ⇒ D̄.
Therefore, ¬(⨁ Λp), C̄ ⇒ D̄.

• If ϕ /∈ C̄ and ϕ ∈ D̄. This case is similar to the previous case.
• If ϕ /∈ C̄ and ϕ /∈ D̄ then Σ = Λ = ϕ and C̄ = D̄ = ∅. Hence, by

definition, we have 0 as a conjunct in ∃pS. Since 0 ⇒, we will have
∃pS, C̄ ⇒ D̄.

(2) If Σ, C̄ ⇒ Λ, D̄ is an instance of the axiom (2). Then Σ = C̄ = ∅. There
are two cases to consider. If Λ = ᾱ. Then by definition 0 appears in ∃pS.
Since D̄ = ∅ and (0 ⇒) we have C̄,∃pS ⇒ D̄. If Λ ⊊ ᾱ, then D̄ ∩ ᾱ is non
empty. Therefore, there exists a p-free formula in ᾱ. Since the variables
of any pair in ᾱ are equal, ᾱ is p-free. Therefore, Λ ⊆ ᾱ is p-free, hence
Λ = Λp (and ⊥ does not appear in the second conjunct). Since (⇒ Λ, D̄),
we have (⇒ ⨁ Λ, D̄) therefore (¬(⨁ Λp) ⇒ D̄) which implies (∃pS ⇒ D̄).

(3) If Σ, C̄ ⇒ Λ, D̄ is an instance of the axiom (3). This case is similar to the
previous case (2).

(4) If Σ, C̄ ⇒ Λ, D̄ is an instance of the axiom (4). There are two cases to
consider. If ϕ̄ ⊆ Σ. Then by definition ⊥ is a conjunct in ∃pS and therefore
there is nothing to prove. For the second case, if ϕ̄ ⊈ Σ, then ϕ̄∩ C̄ is non-
empty. Hence, ϕ̄ has a p-free element. Since the variables of any pair in ϕ̄
are equal, ϕ̄ is p-free. Since ϕ̄ ⊆ Σp, C̄,Σ−Σp and ϕ̄ is p-free, we should have
ϕ̄ ⊆ Σp, C̄. Therefore, if Σ ̸= Σp, by the axiom (4) itself, ⊤,Σp, C̄ ⇒ D̄.
Since (⨂ Σp) ⊗ ⊤ is a conjunct in ∃pS, we will have ∃pS, C̄ ⇒ D̄. Note
that if Σ = Σp, then we will use Σp, C̄ ⇒ D̄ instead of ⊤,Σp, C̄ ⇒ D̄.

(5) If Σ, C̄ ⇒ Λ, D̄ is an instance of the axiom (5). This case is similar to the
previous case 4.

2.5.1 The Single-conclusion Case
In this section, we assume that for any sequent S = Γ ⇒ ∆, the nimber of ele-
ments of ∆ is at most one. We will show how the single-conclusion semi-analytic
and context-sharing semi-analytic rules preserve the uniform interpolation prop-
erty. For this purpose, we will investigate these two kinds of rules separately.
First we will study the semi-analytic rules and then we will show in the pres-
ence of weakening and context-sharing implication rules, we can also handle the
context-sharing semi-analytic rules.
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Semi-analytic Case

Let us begin right away with the following theorem which is one of the main
theorems of this paper.

Theorem 2.5.38. Let G and H be two single-conclusion sequent calculi and H
extends FLe. If H is a terminating sequent calculus axiomatically extending G
with only single-conclusion semi-analytic rules, then if G has H-uniform inter-
polation property, then so does H.

Proof. For any sequent U and V where V s = ∅ and any atom p, we define two
p-free formulas, denoted by ∀pU and ∃pV and we will prove that they meet the
conditions for the left and the right p-interpolants of U and V , respectively. We
define them simultaneously and the definition uses recursion on the rank of se-
quents which is specified by the terminating condition of the sequent calculus H.

If V is the empty sequent we define ∃pV as 1 and otherwise, we define ∃pV
as the following

(
⋀
par

⨂
i

∃pSi)∧(
⋀
LR

[(
⨂

j

⋀
s

∀pTjs)⊗(
⨂
i ̸=1

⋀
r

∀pSir) →
⋁
r

∃pS1r])∧(□∃pV ′)∧(∃GpV ).

In the first conjunct, the conjunction is over all non-trivial partitions of V =
S1 · · · · · Sn and i ranges over the number of Si’s, in this case 1 ≤ i ≤ n. In the
second conjunct, the first big conjunction is over all left semi-analytic rules that
are backward applicable to V in H. Since H is terminating, there are finitely
many of such rules. The premises of the rule are ⟨⟨Tjs⟩s⟩j, ⟨⟨Sir⟩r⟩i ̸=1 and ⟨S1r⟩
and the conclusion is V , where Tjs = (Πj, ψ̄js ⇒ θ̄js) and Sir = (Γi, ϕ̄ir ⇒ ∆i)
which means that Sir’s are those who have context in the right side of the se-
quents (∆i) in the premises of the left semi-analytic rule. (Note that picking
the block ⟨S1r⟩ is arbitrary and we include all conjuncts related to any choice of
⟨S1r⟩.) The conjunct □∃pV ′ appears in the definition whenever V is of the form
(□Γ ⇒) and we consider V ′ to be (Γ ⇒). And finally, since G has the H-uniform
interpolation property, by definition there exists J(V ) as right p-interpolant of V .
We choose one such J(V ) and denote it as ∃GpV and include it in the definition.

If U is the empty sequent define ∀pU as 0. Otherwise, define ∀pU as the
following

(
⋁
par

(
⨂
i ̸=1

∃pSi → ∀pS1)) ∨ (
⋁
LR

[(
⨂

j

⋀
s

∀pTjs) ⊗ (
⨂

i

⋀
r

∀pSir)])

∨(
⋁
RR

(
⨂

i

⋀
r

∀pSir)) ∨ (□∀pU ′) ∨ (∀GpU).

In the first disjunct, the big disjunction is over all partitions of U = S1 · · · · · Sn

such that for each i ̸= 1 we have Ss
i = ∅ and S1 ̸= U . (Note that in this case,

if Ss = ∅ it may be possible that for one i ̸= 1 we have Si = U . Then the first
disjunct of the definition must be ∃pU → ∀pS1 where ∀pS1 = 0. But this does not
make any problem, since the definition of ∃pU is prior to the definition of ∀pU .)
In the second disjunct, the big disjunction is over all left semi-analytic rules that
are backward applicable to U in H. Since H is terminating, there are finitely
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many of such rules. The premises of the rule are ⟨⟨Tjs⟩s⟩j and ⟨⟨Sir⟩r⟩i and the
conclusion is U . In the third disjunct, the big disjunction is over all right semi-
analytic rules backward applicable to U in H. The premise of the rule is ⟨⟨Sir⟩r⟩i

and the conclusion is U . The fourth disjunct is on all semi-analytic modal rules
with the result U and the premise U ′. And finally, since G has the H-uniform
interpolation property, by definition there exists I(U) as left p-interpolant of U .
We choose one such I(U) and denote it as ∀GpU and include it in the definition.

To prove the theorem we use induction on the order of the sequents and we
prove both cases ∀pU and ∃pV simultaneously. First note that both ∀pU and
∃pV are p-free by construction and since in all the rules the variables in the
premises also occurs in the consequence, we have V (∀pU) ⊆ V (Ua) ∪ V (U s) and
V (∃pV ) ⊆ V (V a). Secondly, we have to show that:

(i) V · (⇒ ∃pV ) is derivable in H.

(ii) U · (∀pU ⇒) is derivable in H.

We show them using induction on the order of the sequents U and V . When
proving (i), we assume that (i) holds for sequents whose succedents are empty
and with order less than the order of V and (ii) holds for any sequent with or-
der less than the order of V . We have the same condition for U when proving (ii).

To prove (i), note that if V is the empty sequent, then by definition ∃pV = 1
and hence (i) holds. For the rest, we have to show that V · (⇒ X) is derivable in
H for any X that is one of the conjuncts in the definition of ∃pV . Then, using
the rule (R∧) it follows that V · (⇒ ∃pV ). Since V is of the form Γ ⇒, we have
to show Γ ⇒ X is derivable in H.

◦ In the case that the conjunct is ( ⋀
par

⨂
i

∃pSi), we have to show that for any
non-trivial partition S1 · · · · · Sn of V we have Γ ⇒ ⨂

i
∃pSi is derivable in

H. Since the order of each Si is less than the order of V and Ss
i = (Γi ⇒)

for 1 ≤ i ≤ n where
n⋃

i=1
Γi = Γ, we can use the induction hypothesis and we

have Γi ⇒ ∃pSi. Using the right rule for (⊗) we have Γ1, · · · ,Γn ⇒ ⨂
i

∃pSi

which is Γ ⇒ ⨂
i

∃pSi.

◦ For the second conjunct in the definition of ∃pV , we have to check that for
every left semi-analytic rule we have

V · (⇒ [(
⨂

j

⋀
s

∀pTjs) ⊗ (
⨂
i ̸=1

⋀
r

∀pSir) →
⋁
r

∃pS1r]).

is derivable in H. Therefore, V is the conclusion of a left semi-analytic
rule such that the premises are ⟨⟨Tjs⟩s⟩j, ⟨⟨Sir⟩r⟩i and ⟨S1r⟩r and hence the
order of all of them are less than the order of V . We can easily see that the
claim holds since by induction hypothesis we can add ∀pTjs and ∀pSir to
the left side of the sequents Tjs and Sir for i ̸= 1. And again by induction
hypothesis we can add ∃pS1r to the right side of the sequents S1r. Then
using the rules L∧, L⊗ and R∨ the claim follows. What we have said so
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far can be seen precisely in the following:

Note that ⟨⟨Tjs⟩s⟩j is of the form ⟨⟨Πj, ψ̄js ⇒ θ̄js⟩s⟩j and ⟨⟨Sir⟩r⟩i is of the
form ⟨⟨Γi, ϕ̄ir ⇒⟩r⟩i and V is of the form

Π1, · · · ,Πm,Γ1, · · · ,Γn, ϕ ⇒

Using induction hypothesis we have for every 1 ≤ j ≤ m

(Πj,∀pTj1, ψ̄j1 ⇒ θ̄j1), · · · , (Πj,∀pTjs, ψ̄js ⇒ θ̄js), · · ·

for every 1 < i ≤ n we have

(Γi,∀pSi1, ϕ̄i1 ⇒), · · · , (Γi,∀pSir, ϕ̄ir ⇒), · · ·

and for i = 1 we have

(Γ1, ϕ̄11 ⇒ ∃pS11), · · · , (Γ1, ϕ̄1r ⇒ ∃pS1r), · · ·

Hence, using the rule (L∧), for every 1 ≤ j ≤ m we have

(Πj,
⋀
s

∀pTjs, ψ̄j1 ⇒ θ̄j1), · · · , (Πj,
⋀
s

∀pTjs, ψ̄js ⇒ θ̄js), · · ·

and for every 1 < i ≤ n we have

(Γi,
⋀
r

∀pSir, ϕ̄i1 ⇒), · · · (Γi,
⋀
r

∀pSir, ϕ̄ir ⇒), · · ·

and using the rule (R∨), for i = 1 we have

(Γ1, ϕ̄11 ⇒
⋁
r

∃pS1r), · · · , (Γ1, ϕ̄1r ⇒
⋁
r

∃pS1r) · · ·

Substituting all these three in the original left semi-analytic rule (we can do
this, since in the original rule, there are contexts, ∆i’s in the right hand side
of the sequents S ′

irs), we conclude for Π = Π1, · · · ,Πm and Γ = Γ1, · · · ,Γn

Π,Γ, ϕ, ⟨
⋀
s

∀pTjs⟩j, ⟨
⋀
r

∀pSir⟩i ̸=1 ⇒
⋁
r

∃pS1r

where we have
⟨
⋀
s

∀pTjs⟩j =
⋀
s

∀pT1s, · · · ,
⋀
s

∀pTms

and
⟨
⋀
r

∀pSir⟩i ̸=1 =
⋀
r

∀pS2r, · · · ,
⋀
r

∀pSnr.

Now, using the rule (L⊗) we have

Π,Γ, ϕ, (
⨂

j

⋀
s

∀pTjs) ⊗ (
⨂
i ̸=1

⋀
r

∀pSir) ⇒
⋁
r

∃pS1r.

And finally, using the rule R → we conclude

Π,Γ, ϕ ⇒ [(
⨂

j

⋀
s

∀pTjs) ⊗ (
⨂
i ̸=1

⋀
r

∀pSir) →
⋁
r

∃pS1r].
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◦ Consider the conjunct □∃pT ′. In this case, T must have been of the form
(□Γ ⇒) and T ′ of the form (Γ ⇒). By definition, the order of T ′ is less than
the order of T . Hence, by induction hypothesis we have T ′ · (⇒ ∃pT ′) or in
other words Γ ⇒ ∃pT ′. Now, we use the rule K and we have □Γ ⇒ □∃pT ′

which means T · (⇒ □∃pT ′).

◦ The last case is ∃GpV . We have to show V ·(⇒ ∃GpV ) is provable inH which
is the case since G has H-uniform interpolation property and by Definition
2.5.35 part (iii) there exists p-free formula J such that V ·(⇒ J) is derivable
in H. We chose one such J and call it ∃GpV , hence V · (⇒ ∃GpV ) in H by
definition.

To prove (ii), note that if U is the empty sequent, then by definition ∀pU = 0
and hence (ii) holds. For the rest, we have to show that U · (X ⇒) is derivable
in H for any X that is one of the disjuncts in the definition of ∀pU . Then, using
the rule (L∨) it follows that U · (∀pU ⇒). Since U is of the form Γ ⇒ ∆, we have
to show that Γ, X ⇒ ∆ is derivable in H.

◦ In the case that the disjunct is ( ⋁
par

(⨂
i ̸=1

∃pSi → ∀pS1)) we have to prove that

for any partitions of U = S1 · · · · · Sn such that Ss
i = ∅ for each i ̸= 1 and

S1 ̸= U , we have U · ((⨂
i ̸=1

∃pSi → ∀pS1) ⇒). First, consider the case that

none of Si’s are equal to U (or in other words, Ss ̸= ∅); then the order of
each Si is less than the order of S and we can use the induction hypothesis.
Since for i ̸= 1 the succedent of each Si is empty, we have Si = (Γi ⇒) and
(Γi ⇒ ∃pSi) and using the rule R⊗ we have (Γ2, · · · ,Γn ⇒ ⨂

i ̸=1
∃pSi). And

for S1 = Γ1 ⇒ ∆ we have Γ1,∀pS1 ⇒ ∆. Hence using the rule L → we
conclude

Γ1, · · · ,Γn,
⨂
i ̸=1

∃pSi → ∀pS1 ⇒ ∆

and the claim follows.
In the case that U s = ∅, it is possible that for i ̸= 1, one of Si’s is equal to
U . In this case what appears in the definition of ∀pU is ∃pU → ∀pS1 which
is equivalent to ∃pU → 0. But, we can do this, since we defined ∃pU prior
to the definition of ∀pU and we have proved U · (⇒ ∃pU) prior to the case
that we are checking now.

◦ In the case that the disjunct is ( ⋁
LR

[(⨂
j

⋀
s

∀pTjs) ⊗ (⨂
i

⋀
r

∀pSir)]), we have
to prove that for any left semi-analytic rule that is backward applicable to
U in H we have U · ((⨂

j

⋀
s

∀pTjs) ⊗ (⨂
i

⋀
r

∀pSir) ⇒). The premises of the

rule are ⟨⟨Tjs⟩s⟩j and ⟨⟨Sir⟩r⟩i and the conclusion is U . Since the orders
of all Tjs’s and Sir’s are less than the order of U we can use the induction
hypothesis and have Tjs · (∀pTjs ⇒) and Sir · (∀pSir ⇒). Using the rule
(L∧) for context sharing sequents (when j is fixed and i is fixed we have
context sharing sequents) and then using the rule (L⊗) for non context
sharing sequents (when s and r are fixed and we are ranging over j and i)
and then applying the same left rule we can prove the claim. The proof is
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similar to the second case of (i) and precisely it goes as the following: Using
induction hypothesis we have for every 1 ≤ j ≤ m

(Πj,∀pTj1, ψ̄j1 ⇒ θ̄j1), · · · , (Πj,∀pTjs, ψ̄js ⇒ θ̄js), · · ·

and for every 1 ≤ i ≤ n we have

(Γi,∀pSi1, ϕ̄i1 ⇒ ∆i), · · · , (Γi,∀pSir, ϕ̄ir ⇒ ∆i), · · ·

Hence, using the rule (L∧), for every 1 ≤ j ≤ m we have

(Πj,
⋀
s

∀pTjs, ψ̄j1 ⇒ θ̄j1), · · · , (Πj,
⋀
s

∀pTjs, ψ̄js ⇒ θ̄js), · · ·

and for every 1 ≤ i ≤ n we have

(Γi,
⋀
r

∀pSir, ϕ̄i1 ⇒ ∆i), · · · , (Γi,
⋀
r

∀pSir, ϕ̄ir ⇒ ∆i), · · ·

Substituting these two in the original left semi-analytic rule, we conclude

Π,Γ, ϕ, ⟨
⋀
s

∀pTjs⟩j, ⟨
⋀
r

∀pSir⟩i ⇒ ∆,

and using the rule (L⊗) we have

Π,Γ, ϕ, (
⨂

j

⋀
s

∀pTjs) ⊗ (
⨂

i

⋀
r

∀pSir) ⇒ ∆.

◦ In the case that the disjunt is ( ⋁
RR

(⨂
i

⋀
r

∀pSir)), we have to prove that for
any right semi-analytic rule backward applicable to U in H, we have U ·
(⨂

i

⋀
r

∀pSir ⇒). In this case the premises of the rule are ⟨⟨Sir⟩r⟩i, where

Sir = (Γi, ϕ̄ir ⇒ ψ̄ir) and the conclusion is U = (Γ1, · · · ,Γn ⇒ ϕ). Since
the order of each Sir is less than the order of S, we can use the induction
hypothesis and for every 1 ≤ i ≤ n we have

(Γi,∀pSi1, ϕ̄i1 ⇒ ψ̄i1), · · · , (Γi,∀pSir, ϕ̄ir ⇒ ψ̄ir), · · ·

Using the rule L∧ we have

(Γi,
⋀
r

∀pSir, ϕ̄i1 ⇒ ψ̄i1), · · · , (Γi,
⋀
r

∀pSir, ϕ̄ir ⇒ ψ̄ir), · · ·

and substituting it in the original right rule, we conclude

Γ, ⟨
⋀
r

∀pSir⟩i ⇒ ϕ,

and using the rule (L⊗) we have

Γ,
⨂

i

⋀
r

∀pSir ⇒ ϕ.
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◦ For the case that the disjunct is □∀pU ′ we have that U is the conclusion
of a semi-analytic modal rule and the premise is U ′. Hence, U is of the
form (□Γ ⇒ □∆) and U ′ is of the form (Γ ⇒ ∆). Since the order of U ′ is
less than the order of U , we can use the induction hypothesis and we have
(Γ,∀pU ′ ⇒ ∆). Now, using the rule K we can conclude (□Γ,□∀pU ′ ⇒ □∆)
which is equivalent to U · (□∀pU ′ ⇒).

◦ And finally, for the case that the disjunct is ∀GpU we have to show that
U · (∀GpU ⇒) holds in H, which does since G has H-uniform interpolation
property and by Definition 2.5.35 part (i) there exists p-free formula I such
that U · (I ⇒) is derivable in H. We choose one such I and call it ∀GpU
and hence we have U · (∀GpU ⇒) in H by definition.

So far we have proved (i) and (ii). We want to show that H has H-uniform
interpolation. Therefore, based on the Definition 2.5.35, we have to prove the
following, as well:

(iii) For any p-free multisets C̄ and D̄, if V · (C̄ ⇒ D̄) is derivable in G then
∃pV, C̄ ⇒ D̄ is derivable in H, where C̄ = C1, · · · , Ck and |D̄| ≤ 1.

(iv) For any p-free multiset C̄, if U · (C̄ ⇒) is derivable in G then C̄ ⇒ ∀pU is
derivable in H, where C̄ = C1, · · · , Ck.

Recall that V is of the form (Γ ⇒) and U is of the form (Γ ⇒ ∆). We will
prove (iii) and (iv) simultaneously using induction on the length of the proof
and induction on the order of U and V . More precisely, first by induction on the
order of U and V and then inside it, by induction on n, we will show:

• For any p-free multisets C̄ and D̄, if V · (C̄ ⇒ D̄) has a proof in G with
length less than or equal to n, then ∃pV, C̄ ⇒ D̄ is derivable in H.

• For any p-free multiset C̄, if U · (C̄ ⇒) has a proof in G with length less
than or equal to n, then C̄ ⇒ ∀pU is derivable in H.

Where by the length we mean counting just the new rules that H adds to G.

First note that for the empty sequent and for (iii), we have to show that if
C̄ ⇒ D̄ is valid in G, then C̄, 1 ⇒ D̄ is valid in H, which is trivial by the rule
(1w). Similarly, for (iv), if C̄ ⇒ is valid in G, then C̄ ⇒ 0 is valid in H, which is
trivial by the rule (0w).

For the base of the other induction, note that if n = 0, for (iii) it means
that Γ, C̄ ⇒ D̄ is valid in G. By Definition 2.5.35 part (iv), ∃GpV, C̄ ⇒ D̄ and
hence ∃pV, C̄ ⇒ D̄ is provable in H. For (iv), it means that Γ, C̄ ⇒ ∆ is valid
in G. Therefore, again by Definition 2.5.35, C̄ ⇒ ∀GpU and hence C̄ ⇒ ∀pU is
provable in H.

For n ̸= 0, to prove (iii), we have to consider the following cases:

◦ The case that the last rule used in the proof of V · (C̄ ⇒ D̄) is a left semi-
analytic rule and ϕ ∈ C̄ (which means that the main formula of the rule,
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ϕ, is one of Ci’s). Therefore, V · (C̄ ⇒ D̄) = (Π,Γ, X̄, Ȳ , ϕ ⇒ ∆) is the
conclusion of a left semi-analytic rule and V is of the form (Π,Γ ⇒) and
C̄ = (X̄, Ȳ , ϕ) and we want to prove (∃pV, X̄, Ȳ , ϕ ⇒ ∆). Hence, we must
have had the following instance of the rule

⟨⟨Πj, X̄j, ψ̄js ⇒ θ̄js⟩s⟩j ⟨⟨Γi, Ȳi, ϕ̄ir ⇒ ∆i⟩r⟩i

Π,Γ, X̄, Ȳ , ϕ ⇒ ∆

where ⋃
j

Πj = Π, ⋃
i

Γi = Γ, ⋃
j
X̄j = X̄, ⋃

i
Ȳi = Ȳ and ⋃

i
∆i = ∆. Consider

Tjs = (Πj ⇒) and Sir = (Γi ⇒). Since Tjs’s do not depend on the suffix
s, we have Tj1 = · · · = Tjs and we denote it by Tj. And, since Sir’s do not
depend on r, we have Si1 = · · · = Sir and we denote it by Si. Therefore,
T1, · · · , Tm, S1, · · · , Sn is a partition of V . First, consider the case that it
is a non-trivial partition. Then the order of all of them are less than the
order of V and since the rule is semi-analytic and ϕ is p-free then ψ̄js, θ̄js

and ϕ̄ir are also p-free. Hence, we can use the induction hypothesis to get:

∃pTj, ψ̄js, X̄j ⇒ θ̄js , ∃pSi, ϕ̄ir, Ȳi ⇒ ∆i

If we let {∃pTj, X̄j} and {∃pSi, Ȳi} be the contexts in the original left semi-
analytic rule, we have the following

⟨⟨∃pTj, ψ̄js, X̄j ⇒ θ̄js⟩s⟩j ⟨⟨∃pSi, ϕ̄ir, Ȳi ⇒ ∆i⟩r⟩i

∃pT1, · · · , ∃pTm,∃pS1, · · · ,∃pSn, X̄, Ȳ , ϕ ⇒ ∆

Using the rule (L⊗) we have

(
⨂

j

∃pTj) ⊗ (
⨂

i

∃pSi), X̄, Ȳ , ϕ ⇒ ∆.

Therefore using the rule (L∧), we have (∃pV, C̄ ⇒ D̄).

If T1, · · · , Tm, S1, · · · , Sn is a trivial partition of V , it means that one of
them equals V and all the others are empty sequents. W.l.o.g. suppose
T1 = V = (Σ ⇒) and the others are empty. Then we must have had the
following instance of the rule:

⟨⟨Σ, ψ̄js, X̄j ⇒ θ̄js⟩s⟩j ⟨⟨ϕ̄ir, Ȳi ⇒ ∆i⟩r⟩i

Σ, X̄, Ȳ , ϕ ⇒ ∆

Therefore, V ·(ψ̄js, X̄j ⇒ θ̄js) for every j and s are premises of V ·(C̄ ⇒ D̄),
and hence the length of their trees are smaller than the length of the proof
tree of V · (C̄ ⇒ D̄), and since the rule is semi-analytic and ϕ is p-free
then ψ̄js and θ̄js are also p-free. Hence, for all of them we can use the
induction hypothesis (induction on the length of the proof), and we have
∃pV, ψ̄js, X̄j ⇒ θ̄js. Substituting {∃pV, X̄j}, {X̄j}, {Ȳi} and {∆} as the
contexts of the premises in the original left rule we have
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⟨⟨∃pV, ψ̄js, X̄j ⇒ θ̄js⟩s⟩j ⟨⟨ϕ̄ir, Ȳi ⇒ ∆i⟩r⟩i

∃pV, X̄, Ȳ , ϕ ⇒ ∆

which is (∃pV, C̄ ⇒ D̄).

◦ Consider the case where the last rule used in the proof of V · (C̄ ⇒ D̄) is a
left semi-analytic rule and ϕ /∈ C̄. Therefore,

V · (C̄ ⇒ D̄) = (Π,Γ, X̄, Ȳ , ϕ ⇒ ∆)

is the conclusion of a left semi-analytic rule and V is of the form (Π,Γ, ϕ ⇒)
and C̄ = (X̄, Ȳ ) and we want to prove (∃pV, X̄, Ȳ ⇒ ∆). Hence, we must
have had the following instance of the rule, which we denote by (†)

⟨⟨Πj, X̄j, ψ̄js ⇒ θ̄js⟩s⟩j ⟨⟨Γi, Ȳi, ϕ̄ir ⇒⟩r⟩i ̸=1 ⟨Γ1, Ȳ1, ϕ̄1r ⇒ ∆⟩r

Π,Γ, X̄, Ȳ , ϕ ⇒ ∆

where ⋃
j

Πj = Π, ⋃
i

Γi = Γ, ⋃
j
X̄j = X̄ and ⋃

i
Ȳi = Ȳ .

Since, X̄j’s and Ȳi’s are in the context positions in the original rule, we can
consider the same substition of meta-sequents and meta-formulas as above
in the original rule, except that we do not take X̄j’s and Ȳi’s as contexts.
More precisely, we reach the following instance of the original rule:

⟨⟨Πj, ψ̄js ⇒ θ̄js⟩s⟩j ⟨⟨Γi, ϕ̄ir ⇒⟩r⟩i ̸=1 ⟨Γ1, ϕ̄1r ⇒ ∆⟩r

Π,Γ, ϕ ⇒ ∆

If we let Tjs = (Πj, ψ̄js ⇒ θ̄js) and Sir = (Γi, ϕ̄ir ⇒) for i ̸= 1 and S1r =
(Γ1, ϕ̄1r ⇒ ∆), we can claim that this rule is back ward applicable to V
and Tjs’s and Sir’s are the premises of the rule. Hence, their orders are
less than the order of V and we can use the induction hypothesis for them.
Note that we have V · (C̄ ⇒ D̄) is provable in H and from (†) we have that
Tjs · (X̄j ⇒) and for i ̸= 1, Sir · (Ȳi ⇒) and S1r · (Ȳ1 ⇒ ∆) are also provable
in H. Using the induction hypothesis we get

(X̄j ⇒ ∀pTjs) , (Ȳi ⇒ ∀pSir)i ̸=1 , (Ȳ1,∃pS1r ⇒ ∆)

Note that we were allowed to use the induction hypothesis because for i ̸= 1
we have ∆i = ∅ and ∆ is p-free and Tjs’s and Sir’s meet the conditions of
(iii) and (iv) in the induction step. Now, using the rules (R∧) and (L∨)
we have

(X̄j ⇒ ⋀
s

∀pTjs) , (Ȳi ⇒ ⋀
r

∀pSir)i ̸=1 , (Ȳ1,
⋁
r

∃pS1r ⇒ ∆)

Denote (⋀
s

∀pTjs) as Aj and (⋀
r

∀pSir) as Bi (for i ̸= 1) and (⋁
r

∃pS1r) as C.
We have
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⟨X̄j ⇒ Aj⟩j
R⊗

X̄ ⇒ ⨂
j
Aj

⟨Ȳi ⇒ Bi⟩i ̸=1
R⊗

Y2, · · · , Yn ⇒ ⨂
i ̸=1

Bi

R⊗

X̄, Y2, · · · , Yn ⇒ (⨂
j
Aj) ⊗ (⨂

i ̸=1
Bi) Ȳ1, C ⇒ ∆

L →

X̄, Ȳ , (⨂
j
Aj) ⊗ (⨂

i ̸=1
Bi) → C ⇒ ∆

Note that (⨂
j
Aj) ⊗ (⨂

i ̸=1
Bi) → C is defined as the second conjunct in the

definition of ∃pV and hence using the rule (L∧) we have (∃pV, C̄ ⇒ ∆).

◦ Consider the case when the last rule used in the proof of V · (C̄ ⇒ D̄) is
a right semi-analytic rule. Therefore, V · (C̄ ⇒ D̄) = (Γ, C̄ ⇒ ϕ) is the
conclusion of a right semi-analytic rule and V is of the form (Γ ⇒) and
D̄ = ϕ and we want to prove (∃pV, C̄ ⇒ ϕ). Hence, we must have had the
following instance of the rule

⟨⟨Γi, C̄i, ϕ̄ir ⇒ ψ̄ir⟩r⟩i

Γ, C̄ ⇒ ϕ

where ⋃
i

Γi = Γ and ⋃
i
C̄i = C̄. Denote (Γi ⇒) as Si. Then we have that

S1, · · · , Sn is a partition of V . First consider the case where it is a non-
trivial partition of V . Therefore, the order of any Si is less than the order
of V and since the rule is semi-analytic and ϕ is p-free then ψ̄ir and ϕ̄ir are
also p-free, we can use the induction hypothesis on the order, and get

∃pSi, C̄i, ϕ̄ir ⇒ ψ̄ir

Now, substituting {∃pSi, C̄i} as the context in the original rule, we get

∃pS1, · · · ,∃pSn, C̄1, · · · , C̄n ⇒ ϕ

then using the rule (L⊗) we have⨂
i

∃pSi, C̄ ⇒ ϕ

and since ⨂
i

∃pSi appears as the first conjunct in the definition of ∃pV ,

using the rule (L∧) we have (∃pV, C̄ ⇒ ϕ).
It remains to investigate the case where S1, · · · , Sn is a trivial partition of
V . W.l.o.g. suppose S1 = V and all the others are the empty sequents.
Hence, we must have had the following instance of the rule

⟨Γ, C̄1, ϕ̄1r ⇒ ψ̄1r⟩r ⟨⟨ C̄i, ϕ̄ir ⇒ ψ̄ir⟩r⟩i ̸=1

Γ, C̄ ⇒ ϕ

We have, for all r, V · (C̄1, ϕ̄1r ⇒ ψ̄1r) are the premises of V · (C̄ ⇒ ϕ).
Hence the length of tree proofs of all of them are less than the length of
proof of V · (C̄ ⇒ ϕ) and since the rule is semi-analytic and ϕ is p-free then
ψ̄1r and ϕ̄1r are also p-free, we can use the induction hypothesis (induction
on the length of proof) and get ∃pV, C̄1, ϕ̄1r ⇒ ψ̄1r. Substituting {∃pV, C̄1}
as the context in the original semi-analytic rule we get
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⟨∃pV, C̄1, ϕ̄1r ⇒ ψ̄1r⟩r ⟨⟨ C̄i, ϕ̄ir ⇒ ψ̄ir⟩r⟩i ̸=1

∃pV, C̄ ⇒ ϕ

which is what we wanted.

◦ And the final case is when the last rule used in the proof of V · (C̄ ⇒ D̄) is
a semi-analytic modal rule. Therefore, V · (C̄ ⇒ D̄) = (□Γ,□C ′ ⇒ □∆) is
the conclusion of a semi-analytic modal rule and V is of the form (□Γ ⇒)
and C̄ = □C ′ and D̄ = □∆), where ||□∆|| ≤ 1 and V ′ = (Γ ⇒). We want
to prove (∃pV, C̄ ⇒ D̄). We must have had the following instance of the
rule

Γ, C̄ ′ ⇒ ∆̄
□Γ,□C ′ ⇒ □∆

Since the order of V ′ is less than the order of V , and C ′ and ∆ are p-free,
we can use the induction hypothesis and get

∃pV ′, C̄ ′ ⇒ ∆̄

Using the rule K or D (depending on the cardinality of □∆) we have
□∃pV ′,□C ′ ⇒ □∆ and since we have □∃pV ′ as one of the conjuncts in
the definition of ∃pV , we conclude ∃pV, C̄ ⇒ D̄ using the rule (L∧).

Now, we have to prove (iv). Similar to the proof of part (iii), there are several
cases to consider.

◦ Consider the case where the last rule in the proof of U · (C̄ ⇒) is a left
semi-analytic rule and ϕ ∈ C̄. Therefore, U · (C̄ ⇒) = (Π,Γ, X̄, Ȳ , ϕ ⇒ ∆)
is the conclusion of a left semi-analytic rule and U is of the form Π,Γ ⇒ ∆
and C̄ = X̄, Ȳ , ϕ and we want to prove X̄, Ȳ , ϕ ⇒ ∀pU . Hence, we must
have had the following instance of the rule:

⟨⟨Πj, X̄j, ψ̄js ⇒ θ̄js⟩s⟩j ⟨⟨Γi, Ȳi, ϕ̄ir ⇒ ∆i⟩r⟩i

Π,Γ, X̄, Ȳ , ϕ ⇒ ∆

where ⋃
j

Πj = Π, ⋃
i

Γi = Γ, ⋃
j
X̄j = X̄, ⋃

i
Ȳi = Ȳ and ⋃

i
∆i = ∆. Consider

Tjs = (Πj ⇒), S1r = Γ1 ⇒ ∆1, and for i ̸= 1 let Sir = (Γi ⇒). Since Tjs’s
do not depend on the suffix s, we have Tj1 = · · · = Tjs and we denote it by
Tj. And, since Sir’s do not depend on r for i ̸= 1, we have S21 = · · · = Sir

and we denote it by Si and with the same line of reasoning we denote S1r

by S1. Therefore, T1, · · · , Tm, S1, · · · , Sn is a partition of U . First, consider
the case that S1 does not equal U . Then the order of all of them are less
than the order of U (or in some cases that the others can be equal to U ,
the length of their proof in the premises is lower) and since the rule is semi-
analytic and ϕ is p-free then ψ̄js, θ̄js and ϕ̄ir are also p-free, we can use the
induction hypothesis to get (for i ̸= 1):

∃pTj, ψ̄js, X̄j ⇒ θ̄js , ∃pSi, ϕ̄ir, Ȳi ⇒ , ϕ̄1r, Ȳ1 ⇒ ∀pS1r
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If we let {∃pTj, X̄j} and {∃pSi, Ȳi} and {Ȳ1} and {∀pS1r} be the contexts
in the original left semi-analytic rule, we have the following

⟨⟨∃pTj, ψ̄js, X̄j ⇒ θ̄js⟩s⟩j ⟨⟨∃pSi, ϕ̄ir, Ȳi ⇒⟩r⟩i ̸=1 ⟨ϕ̄1r, Ȳ1 ⇒ ∀pS1r⟩r

∃pT1, · · · ,∃pTm,∃pS2, · · · ,∃pSn, X̄, Ȳ , ϕ ⇒ ∀pS1

Using the rule (L⊗) we have

(
⨂

j

∃pTj) ⊗ (
⨂
i ̸=1

∃pSi), X̄, Ȳ , ϕ ⇒ ∀pS1.

Therefore using the rule (R →), we have

X̄, Ȳ , ϕ ⇒ (
⨂

j

∃pTj) ⊗ (
⨂
i ̸=1

∃pSi) → ∀pS1.

Since the right side of the sequent is a disjunct in the definition of ∀pU ,
using the rule (R∨) we have C̄, ϕ ⇒ ∀pU .
In the case that T1, · · · , Tm, S1, · · · , Sn is a trivial partition of U , it means
that either S1 = U or U s = ∅ and one of the others is equal to U . The latter
case is investigated in the previous case, so it only remains to consider the
first one.
If S1 = U = Γ ⇒ ∆, then all the others are the empty sequents. Then we
must have had the following instance of the rule:

⟨⟨ψ̄js, X̄j ⇒ θ̄js⟩s⟩j ⟨⟨ϕ̄ir, Ȳi ⇒⟩r⟩i ̸=1 ⟨Γ, ϕ1r, Ȳ1 ⇒ ∆⟩r

Γ, X̄, Ȳ , ϕ ⇒ ∆

Therefore, U · (ϕ1r, Ȳ1 ⇒) for every r are premises of U · (C̄ ⇒), and hence
the length of their trees are smaller than the length of the proof tree of
U · (C̄ ⇒) and since the rule is semi-analytic and ϕ is p-free then ϕ̄1r are
also p-free, which means that for all of them we can use the induction
hypothesis (induction on the length of the proof), and we have (ϕ1r, Ȳ1 ⇒
∀pU). Substituting {∀pU}, {X̄i} and {Ȳi} as the contexts of the premises
in the original left rule and letting all the other contexts in the original left
rule to be empty we have

⟨⟨ψ̄js, X̄j ⇒ θ̄js⟩s⟩j ⟨⟨ϕ̄ir, Ȳi ⇒⟩r⟩i ̸=1 ⟨ϕ1r, Ȳ1 ⇒ ∀pU⟩r

X̄, Ȳ , ϕ ⇒ ∀pU

which is what we wanted.

◦ Consider the case where the last rule in the proof of U ·(C̄ ⇒) is a left semi-
analytic rule and ϕ /∈ C̄. Therefore, U · (C̄ ⇒) = (Π,Γ, X̄, Ȳ , ϕ ⇒ ∆) is
the conclusion of a left semi-analytic rule and U is of the form Π,Γ, ϕ ⇒ ∆
and C̄ = X̄, Ȳ and we want to prove X̄, Ȳ ⇒ ∀pU . Hence, we must have
had the following instance of the rule:

⟨⟨Πj, X̄j, ψ̄js ⇒ θ̄js⟩s⟩j ⟨⟨Γi, Ȳi, ϕ̄ir ⇒ ∆i⟩r⟩i (‡)
Π,Γ, X̄, Ȳ , ϕ ⇒ ∆
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where ⋃
j

Πj = Π, ⋃
i

Γi = Γ, ⋃
j
X̄j = X̄, ⋃

i
Ȳi = Ȳ and ⋃

i
∆i = ∆.

Since, X̄j’s and Ȳi’s are in the context positions in the original rule, we
can consider the same substitution of meta-sequents and meta-formulas as
above in the original rule, except that we do not take X̄j’s and Ȳi’s in the
contexts. More precisely, we reach the following instance of the original
rule:

⟨⟨Πj, ψ̄js ⇒ θ̄js⟩s⟩j ⟨⟨Γi, ϕ̄ir ⇒ ∆i⟩r⟩i

Π,Γ, ϕ ⇒ ∆

If we let Tjs = (Πj, ψ̄js ⇒ θ̄js) and Sir = (Γi, ϕ̄ir ⇒ ∆i), we can claim that
this rule is backward applicable to U and Tjs’s and Sir’s are the premises of
the rule. Hence, their orders are less than the order of U and we can use the
induction hypothesis for them. Note that we have U · (C̄ ⇒) is provable in
H and from (‡) we have that Tjs · (X̄j ⇒) and Sir · (Ȳi ⇒) are also provable
in H. Using the induction hypothesis we get

X̄j ⇒ ∀pTjs , Ȳi ⇒ ∀pSir

Using the rule (R∧) we get

X̄j ⇒ ⋀
s

∀pTjs , Ȳi ⇒ ⋀
r

∀pSir

and using the rule (R⊗) we get

X̄, Ȳ ⇒ (
⨂

j

⋀
s

∀pTjs) ⊗ (
⨂

r

⋀
r

∀pSir).

Since the right side of the sequent is appeared as the second disjunct in the
definition of ∀pU , using the rule (R∨) we have C̄ ⇒ ∀pU .

◦ Consider the case where the last rule in the proof of U · (C̄ ⇒) is a right
semi-analytic rule. Therefore, U · (C̄ ⇒) = (Γ, C̄ ⇒ ϕ) is the conclusion of
a right semi-analytic rule and U is of the form Γ ⇒ ϕ and we want to prove
C̄ ⇒ ∀pU . Hence, we must have had the following instance of the rule:

⟨⟨Γi, C̄i, ϕ̄ir ⇒ ψ̄ir⟩r⟩i (⋆)
Γ, C̄ ⇒ ϕ

where ⋃
i

Γi = Γ and ⋃
i
C̄i = C̄.

With the similar reasoning as in the previous case, since C̄i’s are in the
context positions in the original rule, we can consider the same substitution
of meta-sequents and meta-formulas as above in the original rule, except
that we do not take C̄i’s in the contexts. More precisely, we reach the
following instance of the original rule:

⟨⟨Γi, ϕ̄ir ⇒ ψ̄ir⟩r⟩i

Γ ⇒ ϕ
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If we let Sir = (Γi, ϕ̄ir ⇒ ψ̄ir) we can claim that this rule is backward
applicable to U and Sir’s are the premises of the rule. Hence, their orders
are less than the order of U and hence we can use the induction hypothesis
for them. Using the induction hypothesis we get for every i and r,

C̄i ⇒ ∀pSir.

Using the rule (R∧) we get C̄i ⇒ ⋀
r

∀pSir and then using the rule (R⊗) we
get C̄i ⇒ ⨂

i

⋀
r

∀pSir. And since the right side of the sequent is appeared as
one of the disjuncts in the definition of ∀pU , using the rule (R∨) we have
C̄ ⇒ ∀pU .

◦ And the final case is when the last rule used in the proof of U · (C̄ ⇒) is a
semi-analytic modal rule. Therefore, U · (C̄ ⇒) = (□Γ,□C ′ ⇒ □∆) is the
conclusion of a semi-analytic modal rule and U is of the form (□Γ ⇒ □∆)
and C̄ = □C ′, where ||□∆|| ≤ 1 and U ′ = (Γ ⇒ ∆). We want to prove
(C̄ ⇒ ∀pU). We must have had the following instance of the rule

Γ, C̄ ′ ⇒ ∆̄
□Γ,□C ′ ⇒ □∆

Since the order of U ′ is less than the order of U and C ′ is p-free, we can use
the induction hypothesis and get

C̄ ′ ⇒ ∀pU ′

Using the rule K or D (depending on the cardinality of □∆) we have
□C ′ ⇒ □∀pU ′ and since we have □∀pU ′ as one of the disjuncts in the
definition of ∀pU , we conclude C̄ ⇒ ∀pU using the rule (R∨).

Theorem 2.5.39. Any terminating single-conclusion sequent calculus H that
extends FLe and consists of focused axioms and single-conclusion semi-analytic
rules, has H-uniform interpolation.
Proof. The proof is a result of the combination of the Theorem 2.5.37 and The-
orem 2.5.38.
Corollary 2.5.40. If FLe ⊆ L and L has a terminating single-conclusion sequent
calculus consisting of focused axioms and single-conclusion semi-analytic rules,
then L has uniform interpolation.
Proof. The proof is a result of the combination of the Theorem 2.5.39 and The-
orem 2.5.36.

In the following application, we will use the Corollary 2.5.40 to generalize the
result of [2] to also cover the modal cases:
Corollary 2.5.41. The logics FLe, FLew and their K and KD versions have
uniform interpolation.
Proof. Since all the rules of the usual calculi of these logics are semi-analytic
and their axioms are focused and since in the absence of the contraction rule the
calculi are clearly terminating, by Corollary 2.5.40, we can prove the claim.
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Context-Sharing Semi-analytic Case

In this subsection we will modify the investigations of the last subsection to also
cover the context-sharing semi-analytic rules.

Theorem 2.5.42. Let G and H be two single-conclusion sequent calculi with the
property that the right and left weakening rules and the context-sharing (L →)
rule are admissible in H and H extends FLe. Then if H is a terminating sequent
calculus axiomatically extending G with single-conclusion semi-analytic rules and
context-sharing semi-analytic rules and G has weak H-uniform interpolation prop-
erty, so does H.

Proof. The proof is similar to the proof of Theorem 2.5.38. For any sequent U
and V where V s = ∅ and any atom p, we define two p-free formulas, denoted by
∀pU and ∃pV and we will prove that they meet the conditions in the definition
of weak H-uniform interpolation. We define them simultaneously and the defini-
tion uses recursion on the rank of sequents which is specified by the terminating
condition of the sequent calculus H.

If V is the empty sequent we define ∃pV as 1 and otherwise, we define ∃pV
as the following:⋀

LRcs

[
⨂
i ̸=1

((
⋀
r

(∃pS̃ir → ∀pSir)) ∧ (
⋀
s

(∃pT̃is → ∀pTis)))

⊗((
⋀
s

∃pT̃1s → ∀pT1s) →
⋁
r

∃pS1r)]

∧
⋀

LRcs

(
⨂

i

⋀
r

(∃pS̃ir → ∀pSir) ⊗ (
⨂

j

⋀
s

(∃pT̃js → ∀pTjs) →
⋁
r

∃pS1r)

∧(
⋀
par

⨂
i

∃pSi) ∧ (□∃pV ′) ∧ (∃GpV ).

where for any sequent R, by R̃ we mean Ra ⇒. In the first conjunct (the first
line), the first big conjunction is over all context-sharing semi-analytic rules that
are backward applicable to V in H. Since H is terminating, there are finitely
many of such rules. The premises of the rule are ⟨⟨Tis⟩s⟩i, ⟨⟨Sir⟩r⟩i ̸=1 and ⟨S1r⟩
and the conclusion is V , where Tis = (Γi, ψ̄is ⇒ θ̄is) and Sir = (Γi, ϕ̄ir ⇒ ∆i)
which means that Sir’s are those who have context in the right side of the se-
quents (∆i) in the premises of the context-sharing semi-analytic rule. (Note that
picking the block ⟨S1r⟩ between the Sir blocks is arbitrary and for any choice of
⟨S1r⟩, we add one conjuct to the definition.)

In the second conjunct (the second line), the first big conjunction is over all left
semi-analytic rules that are backward applicable to V in H. Since H is terminat-
ing, there are finitely many of such rules. The premises of the rule are ⟨⟨Tjs⟩s⟩j,
⟨⟨Sir⟩r⟩i ̸=1 and ⟨S1r⟩ and the conclusion is V , where Tjs = (Πj, ψ̄js ⇒ θ̄js) and
Sir = (Γi, ϕ̄ir ⇒ ∆i) which means that Sir’s are those who have context in the
right side of the sequents (∆i) in the premises of the left semi-analytic rule.
(Again note that picking the block ⟨S1r⟩ between the Sir blocks is arbitrary and
for any choice of ⟨S1r⟩, we add one conjuct to the definition.)
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In the third conjunct (first one in the third line), the conjunction is over all
non-trivial partitions of V = S1 · · · · · Sn and i ranges over the number of Si’s,
in this case 1 ≤ i ≤ n.

The conjunct □∃pV ′ appears in the definition whenever V is of the form
(□Γ ⇒) and we consider V ′ to be (Γ ⇒). And finally, since G has weak H-
uniform interpolation property, by definition there exist J(V ) as weak right p-
interpolant of V . We choose one such J(V ) and denote it as ∃GpV and include
it in the definition.

If U is the empty sequent define ∀pU as 0. Otherwise, define ∀pU as the
following: ⋁

LRcs

(
⨂

i

[
⋀
r

(∃pS̃ir → ∀pSir) ∧
⋀
s

(∃pT̃is → ∀pTis)])

∨
⋁

LRcs

([
⨂

i

⋀
r

(∃pS̃ir → ∀pSir)] ⊗ [
⨂

j

⋀
s

(∃pT̃js → ∀pTjs)])

∨(
⋁
RR

(
⨂

i

⋀
r

(∃pS̃ir → ∀pSir)))

∨
⋁
par

(
⨂
i ̸=1

(∃pSi) → ∀pS1) ∨ (□(∃pŨ ′ → ∀pU ′)) ∨ (∀GpU).

In the first conjunct (the first line), the first big conjunction is over all context
sharing semi-analytic rules that are backward applicable to V in H. Since H
is terminating, there are finitely many of such rules. The premises of the rule
are ⟨⟨Tis⟩s⟩i, ⟨⟨Sir⟩r⟩i and the conclusion is V , where Tis = (Γi, ψ̄is ⇒ θ̄is) and
Sir = (Γi, ϕ̄ir ⇒ ∆i).

In the second conjunct (the second line), the first big conjunction is over
all left semi-analytic rules that are backward applicable to V in H. Since H
is terminating, there are finitely many of such rules. The premises of the rule
are ⟨⟨Tjs⟩s⟩j, ⟨⟨Sir⟩r⟩i and the conclusion is V , where Tjs = (Πj, ψ̄js ⇒ θ̄js) and
Sir = (Γi, ϕ̄ir ⇒ ∆i).

In the third disjunct (the third line), the big disjunction is over all right semi-
analytic rules backward applicable to U in H. The premise of the rule is ⟨⟨Sir⟩r⟩i

and the conclusion is U .

In the fourth disjunct, the big disjunction is over all partitions of U =
S1 · · · · · Sn such that for each i ̸= 1 we have Ss

i = ∅ and S1 ̸= U . (Note
that in this case, if Ss = ∅ it may be possible that for one i ̸= 1 we have Si = U .
Then the first disjunct of the definition must be ∃pU → ∀pS1 where ∀pS1 = 0.
But this does not make any problem, since the definition of ∃pU is prior to the
definition of ∀pU .)

The fifth disjunct is on all semi-analytic modal rules with the result U and
the premise U ′. And finally, since G has weak H-uniform interpolation property,
by definition there exist I(U) as left weak p-interpolant of U . We choose one such
I(U) and denote it as ∀GpU and include it in the definition.

56



To prove the theorem we use induction on the order of the sequents to prove
both cases ∀pU and ∃pV simultaneously. First note that both ∀pU and ∃pV are
p-free by construction and since in all the rules the variables in the premises also
occurs in the consequence, we have V (∀pU) ⊆ V (Ua) ∪ V (U s) and V (∃pV ) ⊆
V (V a). Secondly, we have to show that:

(i) V · (⇒ ∃pV ) is derivable in H.

(ii) U · (∀pU ⇒) is derivable in H.

The proof is similar to the proof of the Theorem 2.5.38. Therefore, we will prove
two cases, one for (i) and one for (ii), where there is a notable difference.

◦ In proving (i), we have to show that V · (⇒ X) is derivable in H for any X
that is one of the conjuncts in the definition of ∃pV . Then, using the rule
(R∧) it follows that V · (⇒ ∃pV ). Since V is of the form Γ ⇒, we have to
show that Γ ⇒ X is derivable in H.
Consider the case where X is the first conjunct in the definition of ∃pV .
In this case, we have to prove that for any context-sharing semi-analytic
rules that is backward applicable to V in H, we have V · (⇒ Y ) in H,
where X = ⋀

LRcs
Y . Therefore, V is the conclusion of a context-sharing

semi-analytic rule and is of the form (Γ, ϕ ⇒) such that the premises are
⟨⟨Tis⟩s⟩i and ⟨⟨Sir⟩r⟩i, where Tis is of the form (Γi, ψ̄is ⇒ θ̄is) and Sir is
of the form (Γi, ϕ̄ir ⇒) and we have {Γ1, · · · ,Γn} = Γ. Therefore, their
orders are less than the order of V . Moreover, since T̃is = (T a

is ⇒) and
S̃ir = (T a

ir ⇒) and they are subsequents of Tis and Sir, their orders are less
than or equal to the orders of Tis and Sir. Hence, we can use the induction
hypothesis for all of them.

Using the induction hypothesis for Tis, T̃is, Sir and S̃ir, for i ̸= 1, we have
the following

Γi, ψ̄is,∀pTis ⇒ θ̄is , Γi, ψ̄is ⇒ ∃pT̃is,

Γi, ϕ̄ir, ∀pSir ⇒ , Γi, ϕ̄ir ⇒ ∃pS̃ir.

And using the induction hypothesis for S1r, T1s and T̃1s we have

Γ1, ϕ̄1r ⇒ ∃pS1r , Γ1, ψ̄1s,∀pT1s ⇒ θ̄1s , Γ1, ψ̄1s ⇒ ∃pT̃1s.

Now, using the left context-sharing implication rule, we have

Γi, ψ̄is, ∃pT̃is → ∀pTis ⇒ θ̄is

Γi, ϕ̄ir,∃pS̃ir → ∀pSir ⇒

Γ1, ψ̄1s,∃pT̃1s → ∀pT1s ⇒ θ̄1s

Now, first using the rules (L∧) and (R∨), we have
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Γi, ψ̄is,
⋀
s
(∃pT̃is → ∀pTis) ⇒ θ̄is , Γi, ϕ̄ir,

⋀
r
(∃pS̃ir → ∀pSir) ⇒

Γ1, ψ̄1s,
⋀
s
(∃pT̃1s → ∀pT1s) ⇒ θ̄1s , Γ1, ϕ̄1r ⇒ ⋁

r
∃pS1r.

For simplicity, denote (∃pT̃is → ∀pTis) as Ais and (∃pS̃ir → ∀pSir) as Bir.
If we use the rule (L∧) again, and the rule left weakening only for S1r, and
not changing the rule for T1r, we have

Γi, ψ̄is, (
⋀
s
Ais ∧ ⋀

r
Bir) ⇒ θ̄is , Γi, ϕ̄ir, (

⋀
s
Ais ∧ ⋀

r
Bir) ⇒

Γ1, ψ̄1s,
⋀
s
A1s ⇒ θ̄1s , Γ1, ϕ̄1r,

⋀
s
A1s ⇒ ⋁

r
∃pS1r.

Now, it is easy to see that the contexts are sharing and we can substitute the
above sequents in the original rule. More precisely, in the original context-
sharing semi-analytic rule consider (Γi, (

⋀
s
Ais ∧⋀

r
Bir)) as the context of the

premises (as Γi’s in definition of a context-sharing semi-analytic rule 2.3.14)
for i ̸= 1 and consider (Γ1,

⋀
s
A1s) as the context of the premises for i = 1 (as

Γ1’s in definition of a context-sharing semi-analytic rule 2.3.14). Therefore,
after substituting the above sequents in the original context-sharing semi-
analytic rule, we conclude

Γ1,
⋀
s

A1s,Γ2, · · · ,Γn, (
⋀
s

Ais ∧
⋀
r

Bir)i ̸=1, ϕ ⇒
⋁
r

∃pS1r

And finally, using the rule L⊗ and R → we get

Γ, ϕ ⇒ (
⨂
i ̸=1

(
⋀
s

Ais ∧
⋀
r

Bir) ⊗ (
⋀
s

A1s) →
⋁
r

∃pS1r)

and this is what we wanted.

◦ To prove (ii), we have to show that U · (X ⇒) is derivable in H for any X
that is one of the disjuncts in the definition of ∀pU . Then, using the rule
(L∨) it follows that U · (∀pU ⇒). Since U is of the form (Γ ⇒ ∆), we have
to show that (Γ, X ⇒ ∆) is derivable in H.
In the case that the disjunt is:⋁

LRcs

(
⨂

i

[
⋀
r

(∃pS̃ir → ∀pSir) ∧
⋀
s

(∃pT̃is → ∀pTis)]),

we have to prove that for any context-sharing semi-analytic rule that is
backward applicable to U in H we have

U · (
⨂

i

[
⋀
r

(∃pS̃ir → ∀pSir) ∧
⋀
s

(∃pT̃is → ∀pTis)] ⇒).

The proof goes exactly as in the previous case (in proof of (i) for context-
sharing semi-analytic rules), except that this time the succedents of Sir’s
and U are not empty and ∆i’s and ∆ appear in their positions everywhere.
And, we do not separate the cases T1s and S1r and we proceed with the proof
considering the induction hypothesis for every i, in a uniform manner.
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Note that these two cases were the cases for the only rule that is not consid-
ered in the proof of 2.5.38. For the proof of (i) for the other conjuncts and (ii)
for the other disjuncts, we proceed with the proof of the corresponding cases
as in the proof of 2.5.38, this time substituting (∃pT̃js → ∀pTjs) for ∀pTjs and
(∃pS̃ir → ∀pSir) for ∀pSir wherever it is needed. One can easily see that the proof
essentially goes as before, considering this minor change.

Secondly, we have to prove the following, as well.

(iii) For any p-free multisets Γ and ∆, if T · (Γ ⇒ ∆) is derivable in G then
J(T ),Γ ⇒ ∆ is derivable in H.

(iv) For any p-free multiset Γ, if S · (Γ ⇒) is derivable in G then J(S̃),Γ ⇒ I(S)
is derivable in H.

Again, since the spirit of the proof is the same as the proof of Theorem 2.5.38,
we will prove two cases for the context-sharing semi-analytic rule, which were not
present in the Theorem 2.5.38. We will prove (iii) and (iv) simultaneously using
induction on the length of the proof and induction on the order of U and V as in
the Theorem 2.5.38.

◦ To prove (iii), consider the case where the last rule used in the proof of
V · (C̄ ⇒ D̄) is a context-sharing semi-analytic rule and ϕ /∈ C̄. Therefore,
V · (C̄ ⇒ D̄) = (Γ, C̄, ϕ ⇒ ∆) is the conclusion of a context-sharing semi-
analytic rule and V is of the form (Γ, ϕ ⇒) and we want to prove (∃pV, C̄ ⇒
∆). Hence, we must have had the following instance of the rule

⟨⟨Γi, C̄i, ψ̄is ⇒ θ̄is⟩s⟩i ⟨⟨Γi, C̄i, ϕ̄ir ⇒⟩r⟩i ̸=1 ⟨Γ1, C̄1, ϕ̄1r ⇒ ∆⟩r

Γ, C̄, ϕ ⇒ ∆

where ⋃
j

Πj = Π, ⋃
i

Γi = Γ and ⋃
i
C̄i = C̄.

Since, C̄i’s are in the context positions in the original rule, we can consider
the same substition of meta-sequents and meta-formulas as above in the
original rule, except that we do not take C̄i’s as contexts. More precisely,
we reach the following instance of the original rule:

⟨⟨Γi, ψ̄is ⇒ θ̄is⟩s⟩i ⟨⟨Γi, ϕ̄ir ⇒⟩r⟩i ̸=1 ⟨Γ1, ϕ̄1r ⇒ ∆⟩r

Γ, ϕ ⇒ ∆

If we let Tis = (Γi, ψ̄is ⇒ θ̄is) and Sir = (Γi, ϕ̄ir ⇒) for i ̸= 1 and S1r =
(Γ1, ϕ̄1r ⇒ ∆), we can claim that this rule is backward applicable to V
and Tis’s and Sir’s are the premises of the rule. Hence, their orders are
less than the order of V and we can use the induction hypothesis for them.
Furthermore, since T̃is = (T a

is ⇒) and S̃ir = (Sa
ir ⇒), their orders are smaller

than or equal to the orders of Tis and Sir and we can use the induction
hypothesis for them, as well. Using the induction hypothesis (informally
speaking, for the first two premises, use the induction hypothesis of ∀, and
for the last premise use the induction hypothesis of ∃) we get
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(C̄i,∃pT̃is ⇒ ∀pTis) , (C̄i,∃pS̃ir ⇒ ∀pSir)i ̸=1 , (C̄1,∃pS1r ⇒ ∆)

Now, first using the rules (R →) and then using the rule (R∧) and (L∨)
we have

(C̄i ⇒
⋀
s

(∃pT̃is → ∀pTis))

(C̄i ⇒
⋀
r

(∃pS̃ir → ∀pSir))i ̸=1

(C̄1,
⋁
r

∃pS1r ⇒ ∆)

Denote (⋀
s

∀pTjs) as Aj and (⋀
r

∀pSir) as Bi (for i ̸= 1) and (⋁
r

∃pS1r) as D.
We have for i ̸= 1

C̄i ⇒ Ai , C̄i ⇒ Bi

and for i = 1 we have

C̄1 ⇒ A1 , C̄1, D ⇒ ∆.

Now, and using the rule (R∧) for i ̸= 1 we get C̄i ⇒ Ai ∧Bi. Together with
C̄1 ⇒ A1 and using the rule (R⊗) we get

C̄1, C̄2, · · · , C̄n ⇒
⨂

i

(Ai ∧Bi) ⊗ A1.

Consider the sequent C̄1, D ⇒ ∆ and use the left weakening rule to get

C̄1, C̄2, · · · , C̄n, D ⇒ ∆.

Now, use the rule left context-sharing implication to reach

C̄, (
⨂

i

(Ai ∧Bi) ⊗ A1) → D ⇒ ∆.

And, we are done.

◦ For the proof of (iv), consider the case where the last rule in the proof of
U · (C̄ ⇒) is a context-sharing semi-analytic rule and ϕ ∈ C̄. Therefore,

U · (C̄ ⇒) = Γ, X̄, ϕ ⇒ ∆

is the conclusion of a context-sharing semi-analytic rule and U is of the form
Γ ⇒ ∆ and C̄ = X̄, ϕ and we want to prove ∃pŨ , X̄, ϕ ⇒ ∀pU . Hence, we
must have had the following instance of the rule:

⟨⟨Γi, X̄i, ψ̄is ⇒ θ̄is⟩s⟩i ⟨⟨Γi, X̄i, ϕ̄ir ⇒ ∆i⟩r⟩i

Γ, X̄, ϕ ⇒ ∆

60



where ⋃
i

Γi = Γ, ⋃
j
X̄j = X̄, and ⋃

i
∆i = ∆. Consider Tis = (Γi ⇒),

S1r = (Γ1 ⇒ ∆1), and for i ̸= 1 let Sir = (Γi ⇒). Since Tis’s do not depend
on the suffix s, we have Ti1 = · · · = Tis and we denote it by Ti. And, since
Sir’s do not depend on r for i ̸= 1, we have S21 = · · · = Sir and we denote it
by Si and with the same line of reasoning we denote S1r by S1. Therefore,
S1, · · · , Sn is a partition of U . First, consider the case that S1 ̸= U . Then
the order of all of them are less than the order of U (or in some cases that
one of the others equals to U , the length of the proof is shorter) and since
the rule is context sharing semi-analytic and ϕ is p-free then ψ̄is and ϕ̄ir are
also p-free, we can use the induction hypothesis to get (for i ̸= 1):

∃pTi, ψ̄is, X̄i ⇒ θ̄is , ∃pSi, ϕ̄ir, X̄i ⇒ , ∃pS̃1, ϕ̄1r, X̄1 ⇒ ∀pS1

Note that for every i ̸= 1 we have Ti = Si and for i = 1 we have T1 = S̃1
and we can rewrite the above sequents according to this new information.
Hence, if we let {∃pTi, X̄i} and {∀pS1} be the contexts in the original left
semi-analytic rule, we have the following

⟨⟨∃pTi, ψ̄is, X̄i ⇒ θ̄is⟩s⟩i ⟨⟨∃pTi, ϕ̄ir, X̄i ⇒⟩r⟩i ̸=1 ⟨∃pT1, ϕ̄1r, X̄1 ⇒ ∀pS1⟩r

∃pT1, · · · , ∃pTn, X̄, ϕ ⇒ ∀pS1

Using first the rule (L⊗) and second the rule R → we get

∃pT1, X̄, ϕ ⇒
⨂
i ̸=1

∃pTi → ∀pS1

Since T2, · · · , Tn, S1 is a partition of U , the right hand side of the above
sequent is appeared as one of the disjuncts in the definition of ∀pU . And
since T1 = Ũ , we have

∃pŨ , C̄ ⇒ ∀pU

and we are done.

We have to investigate the case when S1 = U , as well. However, the line of
reasoning is as above and as in the case of ∀pU , and ϕ ∈ C̄ in the proof of
the Theorem 2.5.38. The important thing is that in the case where S1 = U ,
with similar reasoning as above, at the end we get ∃pS̃1, C̄ ⇒ ∀pS1 which
solves the problem. Note that this case is one of the main reasons that we
have changed uniform interpolation to weak uniform interpolation.

And finally, to prove (iii) and (iv) for the other cases, use similar reasoning as in
the proof of Theorem 2.5.38, this time substituting (∃pT̃js → ∀pTjs) for ∀pTjs and
(∃pS̃ir → ∀pSir) for ∀pSir wherever it is needed, then the proof easily follows.

Theorem 2.5.43. Any terminating single-conclusion sequent calculus H that
extends IPC and consists of focused axioms, single-conclusion semi-analytic and
context-sharing semi-analytic rules, has weak H-uniform interpolation.

Proof. The proof is a result of the combination of the Theorem 2.5.37 and the
Theorem 2.5.42.
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Corollary 2.5.44. If IPC ⊆ L and L has a terminating single-conclusion se-
quent calculus consisting of focused axioms, single-conclusion semi-analytic rules
and context-sharing semi-analytic rules, then L has uniform interpolation.

Proof. The proof is a result of the combination of the Theorem 2.5.43 and the
Theorem 2.5.36.

Corollary 2.5.45. [35] The logic IPC has uniform interpolation.

Proof. Use G4i, the Dyckhoff terminating calculus for IPC, introduced in the
Preliminaries section. Using the Theorem 2.5.36, it is enough to show that this
system has weak G4i-uniform interpolation. For this matter, note that all the
rules in this calculus, except the rules (L4 →) and (L1 →) are semi-analytic,
while (L4 →) is context-sharing semi-analytic and all the axioms are focused.
Therefore, the system has only one rule beyond our context-sharing semi-analytic
machinery, namely (L1 →). However, note that the proof for the Theorem 2.5.42
is pretty modular which addresses any rule separately by adding its correspond-
ing disjunct or conjunct in the recursive definition of ∀pS and ∃pS, respectively.
Therefore, to prove the claim it is enough to add other disjunct and conjunct
terms to also address the rule (L1 →). This is what we will implement in the
following:

For ∀pS add the following terms as disjuncts to the definition of ∀pS as defined
in the proof of the Theorem 2.5.42:

∀1
atpS For any atom q ̸= p if q ∈ Sa add q → (∃pS̃ ′ → ∀pS ′) where S ′ is S after

eliminating one occurrence of q in Sa.

∀2
atpS For any atom q ̸= p if q → ψ ∈ Sa for some formula ψ add (∃pS̃ ′ →

∀pS ′) ∧ q where S ′ is S after replacing one occurrence of q → ψ by ψ in Sa.

And for ∃pS add the following terms as conjuncts:

∃1
atpS For any atom q ̸= p if q ∈ Sa add q ∧ ∃pS ′ where S ′ is S after eliminating

one occurrence of q in Sa.

∃2
atpS For any atom q ̸= p if q → ψ ∈ Sa for some formula ψ add q → ∃pS ′ where

S ′ is S after replacing one occurrence of q → ψ by ψ in Sa.

The first thing to check is that based on the well-founded order on the sequents
used for the system G4i, the sequent S ′ in all cases is below the sequent S and
hence the recursive step is well-defined. This is clear because in two cases S ′ is
a proper subsequent of S and in two other cases, we are replacing a formula of
the form q → ψ by ψ which has lower rank according to the rank function we
introduced in the Preliminaries. Secondly, note that the number of disjuncts or
conjuncts that we are adding are clearly finite and hence ∀pS and ∃pS are well-
defined as formulas. Finally, note that we are only using q ̸= p in the terms and
hence ∀pS and ∃pS remain p-free. Moreover, since in all cases V (S ′) ⊆ V (S),
by induction on the Dyckhoff’s order we have V (∀pS) ⊆ V (Sa) ∪ V (Ss) and
V (∃pS) ⊆ V (Sa).
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Now we have to check that adding these terms respects the properties that
we have discussed in the proof of the Theorem 2.5.42. First, let us check that
adding the disjuncts ∀1

atpS and ∀2
atpS to ∀pS respects the property (ii) namely

G4i ⊢ S · (∀pS ⇒). We have two cases to check:

For ∀1
atpS, let us assume that S = (Γ, q ⇒ ∆). Then it is enough to prove

that Γ, q, q → (∃pS̃ ′ → ∀pS ′) ⇒ ∆ where S ′ = (Γ ⇒ ∆). Using the rule (L1 →),
it is enough to prove the sequent Γ, q, (∃pS̃ ′ → ∀pS ′) ⇒ ∆. But note that by
the IH, we have Γ ⇒ ∃pS̃ ′ and Γ,∀pS ′ ⇒ ∆. Therefore, by applying (L →) and
weakening by q (both admissible in G4i) we have Γ, q, (∃pS̃ ′ → ∀pS ′) ⇒ ∆.

For ∀2
atpS, let us assume that S = (Γ, q → ψ ⇒ ∆). Then S ′ = (Γ, ψ ⇒ ∆)

and we want to prove that Γ, q → ψ, (∃pS̃ ′ → ∀pS ′) ∧ q ⇒ ∆. Again using the
rule (L1 →) itself, it is enough to prove Γ, q, ψ, (∃pS̃ ′ → ∀pS ′) ⇒ ∆. By IH we
have Γ, ψ ⇒ ∃pS̃ ′ and Γ, ψ, ∀pS ′ ⇒ ∆. By (L →) and weakening by q (both
admissible in G4i), we can prove Γ, q, ψ, (∃pS̃ ′ → ∀pS ′) ⇒ ∆.

Now we will show that adding the conjuncts ∃1
atpS and ∃2

atpS to ∃pS respects
the property (i) namely G4i ⊢ S · (⇒ ∃pS) for any S such that Ss = ∅.

For ∃1
atpS, let us assume that S = (Γ, q ⇒). Then it is enough to prove that

Γ, q ⇒ q ∧ ∃pS ′ where S ′ = (Γ ⇒). By the IH, we have Γ ⇒ ∃pS ′ and hence we
have what we wanted by (∧R) and weakening by q.

For ∃2
atpS let us assume that S = (Γ, q → ψ ⇒). Then S ′ = (Γ, ψ ⇒) and we

want to prove that Γ, q → ψ ⇒ q → ∃pS ′. Using the rule (→ R), it is enough to
prove Γ, q, q → ψ ⇒ ∃pS ′. By (L1 →) itself, it is enough to prove Γ, q, ψ ⇒ ∃pS ′.
But by IH we have Γ, ψ ⇒ ∃pS ′ which implies what we wanted.

Now we are ready to check the other conditions, meaning:

(iii) For any p-free multisets C̄ and D̄, if S · (C̄ ⇒ D̄) is derivable in G4i then
∃pS, C̄ ⇒ D̄ is derivable in G4i for any S that Ss = ∅.

(iv) For any p-free multiset C̄, if S·(C̄ ⇒) is derivable in G4i then ∃pS̃, C̄ ⇒ ∀pS
is derivable in G4i.

First let us prove (iv). It is enough to address the case that the last rule in
the proof of S · (C̄ ⇒) is the rule (L1 →). There are four cases to consider:

• Both q and q → ψ are in C̄. This case is similar to the left semi-analytic
case in the proof of the Theorem 2.5.42 where the main formula is in C̄.

• Both q and q → ψ are not in C̄. This case is similar to the left semi-analytic
case in the proof of the Theorem 2.5.42 where the main formula is not in
C̄.

• q → ψ ∈ C̄ and q /∈ C̄. Since q → ψ is in C̄, it is p-free and hence q ̸= p
and ψ is p-free. We have
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Γ, q, ψ ⇒ ∆
Γ, q, q → ψ ⇒ ∆

Define Γ′ = Γ − C̄ and C̄ ′ = C̄ − {q → ψ}. Therefore, S = (Γ′, q ⇒ ∆).
Define S ′ = (Γ′ ⇒ ∆). Since both q and ψ are p-free and S ′ is a proper
subsequent of S and hence lower than S in the Dyckhoff’s order, by IH,
∃pS̃ ′, C̄ ′, q, ψ ⇒ ∀pS ′. By (L1 →) we have ∃pS̃ ′, C̄ ′, q, q → ψ ⇒ ∀pS ′ Hence,
C̄ ′, q → ψ ⇒ q → (∃pS̃ ′ → ∀pS ′). Since the right hand-side is a disjunct in
∀pS, we have q → ψ, C̄ ′ ⇒ ∀pS and by weakening ∃pS̃, q → ψ, C̄ ′ ⇒ ∀pS.

• q → ψ /∈ C̄ and q ∈ C̄. Since q ∈ C̄, it is not p itself. Again, we have
Γ, q, ψ ⇒ ∆

Γ, q, q → ψ ⇒ ∆

Define Γ′ = Γ − C̄ and C̄ ′ = C̄ − {q}. Therefore, S = (Γ′, q → ψ ⇒ ∆).
Define S ′ = (Γ′, ψ ⇒ ∆). Since q is p-free and S ′ is lower than S in
the Dyckhoff’s order, by IH, ∃pS̃ ′, C̄ ′, q ⇒ ∀pS ′. Hence, C̄ ′, q ⇒ (∃pS̃ ′ →
∀pS ′)∧q. Since the right hand-side is a disjunct in ∀pS, we have C̄ ′, q ⇒ ∀pS
and by weakening ∃pS̃, q, C̄ ′ ⇒ ∀pS. .

For (iii), again there are four cases:
• Both q and q → ψ are in C̄. This case is similar to the left semi-analytic

case in the proof of the Theorem 2.5.42 where the main formula is in C̄.

• Both q and q → ψ are not in C̄. This case is similar to the left semi-analytic
case in the proof of the Theorem 2.5.42 where the main formula is not in
C̄.

• q → ψ ∈ C̄ and q /∈ C̄. Since q → ψ is in C̄, it is p-free and hence q ̸= p
and ψ is p-free. We have

Γ, q, ψ ⇒ D̄

Γ, q, q → ψ ⇒ D̄

Define Γ′ = Γ − C̄ and C̄ ′ = C̄ − {q → ψ}. Therefore, S = (Γ′, q ⇒).
Define S ′ = (Γ′ ⇒). Since both q and ψ are p-free and S ′ is a proper
subsequent of S and hence lower than S in the Dyckhoff’s order, by IH,
∃pS ′, C̄ ′, q, ψ ⇒ D̄. By (L1 →) we have ∃pS ′, C̄ ′, q, q → ψ ⇒ D̄ Hence,
(∃pS ′ ∧ q), C̄ ′, q → ψ ⇒ D̄. Since (∃pS ′ ∧ q) is a conjuct in ∃pS, we have
∃pS, q → ψ, C̄ ′ ⇒ D̄.

• q → ψ /∈ C̄ and q ∈ C̄. Since q ∈ C̄, it is not p itself. again, we have

Γ, q, ψ ⇒ D̄

Γ, q, q → ψ ⇒ D̄

Define Γ′ = Γ − C̄ and C̄ ′ = C̄ − {q}. Therefore, S = (Γ′, q → ψ ⇒).
Define S ′ = (Γ′, ψ ⇒). Since q is p-free and S ′ is lower than S in the
Dyckhoff’s order, by IH, ∃pS ′, C̄ ′, q ⇒ D̄. Hence by (L1 →), we have
C̄ ′, q → ∃pS ′, q ⇒ D̄. Since q → ∃pS ′ is a conjunct in ∃pS, we have
∃pS, C̄ ′, q ⇒ D̄.
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2.5.2 The Multi-conclusion Case
Finally we will move to the multi-conclusion case to handle the more general form
of semi-analytic rules.

Theorem 2.5.46. Let G and H be two multi-conclusion sequent calculi and H
extends CFLe. Then if H is a terminating sequent calculus axiomatically ex-
tending G with multi-conclusion semi-analytic rules and G has strong H-uniform
interpolation property, so does H.

Proof. For a given sequent S = (Γ ⇒ ∆) and an atom p, we define a p-free
formula, denoted by ∀pS and we will prove that it meets the conditions for the
strong left and right p-interpolants of S, respectively.

If S is the empty sequent define ∀pS as 0. Otherwise, define ∀pS as⋁
R

(
⨂

i

⋀
r

∀pSir) ∨
⋁
par

(
⨁

i

∀pSi) ∨ (□∀pS ′) ∨ (¬□¬∀pS ′′) ∨ (∀GpS)

where the first disjunction is over all multi-conclusion semi-analytic rules back-
ward applicable to S in H, which means the result is S and the premises are
Sir. Since H is terminating, there are finitely many of such rules. The second
disjunction is over all non-trivial partitions of S. The third disjunction is over all
semi-analytic modal rules with the result S and the premise S ′. Moreover, If S
is of the form □Γ ⇒, then we consider S ′′ to be Γ ⇒ and ¬□¬∀pS ′′ must be ap-
peared in the definition of ∀pS. And finally ∀GpS is the strong left p-interpolant
of a sequent S in G relative to H.

We define the strong right p-interpolant of S as ¬∀pS and we denote it by
∃pS. Note that if we prove ∀pS is the strong left p-interpolant, it is easy to show
that ∃pS meets the conditions for the strong right p-interpolant. The reason is
the following: First we have to show that Γ ⇒ ∆,∃pS is provable in H. But we
have Γ,∀pS ⇒ ∆ is provable in H and using the rule (0w), we have Γ,∀pS ⇒ ∆, 0
which means Γ ⇒ ∆,¬∀pS is provable in H.
Secondly, we have to show that if for p-free multisets Σ and Λ, if Γ,Σ ⇒ Λ,∆ is
derivable in G, then ∃pS,Σ ⇒ Λ is derivable in H. However, we have Σ ⇒ Λ,∀pS
is derivable in H and using the axiom 0 ⇒ we can use the rule (L →) to get
Σ,¬∀pS ⇒ Λ in H.

Now, let us prove that ∀pS meets all of the conditions of a strong left p-
interpolant. The proof is similar to the proofs of the Theorems 2.5.38 and 2.5.42.
To prove the theorem we use induction on the order of the sequents. First note
that ∀pS is p-free by construction and since in all the rules the variables in the
premises also occurs in the consequence, we have V (∀pS) ⊆ V (Sa) ∪ V (Ss).
Secondly, we have to show that:

(i) S · (∀pS ⇒) is provable in H.

We have to show that Γ, X ⇒ ∆ is derivable in H for every disjunct X in the
definition of ∀pS.
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◦ In the case that the disjunct is ⋁
R

(⨂
i

⋀
r

∀pSir), we have to show that for any
multi-conclusion semi-analytic rule R with the premises Sir we have

S · (
⨂

i

⋀
r

∀pSir ⇒)

where S is of the form (Γ1, · · · ,Γn, ϕ ⇒ ∆1, · · · ,∆n) and Sir is of the form
(Γi, ϕ̄ir ⇒ ψ̄ir,∆i). Note that since S ′

irs are the premises of the rule, the
order of all of them are less than the order of S and we can use the induction
hypothesis for them. We have for every i and r

Γi, ϕ̄ir,∀pSir ⇒ ψ̄ir,∆i

Using the rule (L∧) we have for every i

Γi, ϕ̄ir,
⋀
r

∀pSir ⇒ ψ̄ir,∆i

Using Γi,
⋀
r

∀pSir as the left context in the original rule (we can do this,
since ⋀

r
∀pSir does not depend on r and it only ranges over i), we have

Γ1, · · · ,Γn, ⟨
⋀
r

∀pSir⟩i, ϕ ⇒ ∆1, · · · ,∆n

and then using the rule (L⊗), we have

Γ1, · · · ,Γn, (
⨂

i

⋀
r

∀pSir), ϕ ⇒ ∆1, · · · ,∆n.

◦ In the case that the disjunct is ⋁
par

⨁
i

∀pSi, we have to show that for any
non-trivial partition S1, · · · , Sn of S we haveS · (⨁

i
∀pSi ⇒) is derivable

in H. Since the order of each Si is less than the order of S, we can use
the induction hypothesis for them and get (Γi, ∀pSi ⇒ ∆i). Using the rule
(L⊕) we get Γ1, · · · ,Γn, (

⨁
i

∀pSi) ⇒ ∆1, · · · ,∆n.

◦ The proof of case that the disjunct is □∀pS ′ is exactly the same as the
similar case in the proof of the Theorem 2.5.38.

◦ In the case that the disjunct is ¬□¬∀pS ′′, the sequent S must have been
of the form (□Γ ⇒) and S ′′ is of the form (Γ ⇒). Since the order of
S ′′ is less than the order of S, we can use the induction hypothesis and get
(Γ,∀pS ′′ ⇒) is derivable in H. Using the rule (0w) and then the rule (R →)
we have (Γ ⇒ ¬∀pS ′′). Using the rule (K) we have (□Γ ⇒ □¬∀pS ′′) and
together with the axiom (0 ⇒) we can use the rule (L →) and we have
(□Γ,¬□¬∀pS ′′ ⇒) is derivable in H.

◦ The case for ∀GpS, holds trivially by definition.

Second, we have to show that

(ii) For any p-free multisets C̄ and D̄, if S · (C̄ ⇒ D̄) is derivable in G then
C̄ ⇒ ∀pS, D̄ is derivable in H.
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We will prove it using induction on the length of the proof and induction on the
order of S. More precisely, first by induction on the order of S and then inside
it, by induction on n, we will show:

• For any p-free multisets C̄ and D̄, if S · (C̄ ⇒ D̄) has a proof in G with
length less than or equal to n, then C̄ ⇒ ∀pS, D̄ is derivable in H.

First note that for the empty sequent, we have to show that if C̄ ⇒ D̄ is valid in
G, then C̄ ⇒ 0, D̄ is valid in H, which is trivial by the rule (0w).

For the base of the other induction, note that if n = 0, it means that
Γ, C̄ ⇒ D̄,∆ is valid in G. Therefore, by Definition 2.5.35, C̄ ⇒ ∀GpS, D̄ and
hence C̄ ⇒ ∀pS, D̄ is valid in H.

For n ̸= 0 we have to consider the following cases:

◦ Consider the case that the last rule used in the proof of S · (C̄ ⇒ D̄) is a
left multi-conclusion semi-analytic rule and ϕ ∈ C̄ (which means that the
main formula of the rule, ϕ, is one of Ci’s). Therefore, S · (C̄ ⇒ D̄) =
(Γ, X̄, ϕ ⇒ D̄,∆) is the conclusion of the rule and S is of the form (Γ ⇒ ∆)
and C̄ = (X̄, ϕ) and we want to prove (X̄, ϕ ⇒ ∀pS, D̄). Hence, we must
have had the following instance of the rule:

⟨⟨Γi, X̄i, ϕ̄ir ⇒ ψ̄ir, D̄i,∆i⟩r⟩i

Γ, X̄, ϕ ⇒ D̄,∆

where ⋃
i

Γi = Γ, ⋃
i
X̄i = X̄, ⋃

i
D̄i = D̄ and ⋃

i
∆i = ∆. Consider Sir = (Γi ⇒

∆i). Since Sir’s do not depend on the suffix r, all of them are equal and we
denote it by Si. Therefore, S1, · · · , Sn is a partition of S. First, consider
that it is a non-trivial partition of S. Then the order of all of them are less
than the order of S and since the rule is semi-analytic and ϕ is p-free then
ϕ̄ir and ψ̄ir are also p-free, we can use the induction hypothesis to get for
every i and r:

X̄i, ϕ̄ir ⇒ ψ̄ir, D̄i, ∀pSi

If we let X̄i and D̄i,∀pSi be the contexts in the left side and right side in
the original rule, respectively, we have the following

X̄, ϕ ⇒ D̄, ∀pS1, · · · ,∀pSn

Using the rule (R⊕) we have

X̄, ϕ ⇒ D̄,
⨁

i

∀pSi

Since the right side of the sequent is a disjunct in the definition of ∀pU ,
using the rule (R∨) we have C̄, ϕ ⇒ ∀pS, D̄.

In the case that S1, · · · , Sn is a trivial partition of S, it means that one of
them equals S. W.l.o.g. suppose S1 = S and all of the others are the empty
sequents. Then we must have had the following instance of the rule:
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⟨⟨ϕ̄ir, X̄i ⇒ ψ̄ir, D̄i⟩r⟩i ̸=1 ⟨Γ, ϕ̄1r, X̄1 ⇒ ψ̄1r, D̄1,∆⟩r

Γ, ϕ, X̄ ⇒ D̄,∆

Therefore, S · (ϕ1r, X̄1 ⇒ ψ̄1r, D̄1) for every r are premises of S · (C̄ ⇒ D̄),
and hence the length of their trees are smaller than the length of the proof
tree of S · (C̄ ⇒ D̄) and since the rule is semi-analytic and ϕ is p-free then
ϕ̄1r and ψ̄1r are also p-free, which means that for all of them we can use the
induction hypothesis (induction on the length of the proof), and we have
(ϕ1r, X̄1 ⇒ ∀pS, ψ̄1r, D̄1). Substituting {X̄j} and {∀pS, D̄1} as the contexts
of the premises in the original rule we have

⟨⟨ϕ̄ir, X̄i ⇒ ψ̄ir, D̄i⟩r⟩i ̸=1 ⟨ϕ̄1r, X̄1 ⇒ ∀pS, ψ̄1r, D̄1⟩r

X̄, ϕ ⇒ ∀pS, D̄

which is what we wanted.

◦ Consider the case where the last rule in the proof of S · (C̄ ⇒ D̄) is a left
multi-conclusion semi-analytic rule and ϕ /∈ C̄. Therefore, S · (C̄ ⇒ D̄) =
(Γ, C̄, ϕ ⇒ D̄,∆) is the conclusion of the rule and S is of the form Γ, ϕ ⇒ ∆
and we want to prove C̄ ⇒ ∀pS, D̄. Hence, we must have had the following
instance of the rule:

⟨⟨Γi, C̄i, ϕ̄ir ⇒ ψ̄ir, D̄i,∆i⟩r⟩i

Γ, C̄, ϕ ⇒ D̄,∆

where ⋃
i

Γi = Γ, ⋃
i
C̄i = C̄, ⋃

i
D̄i = D̄ and ⋃

i
∆i = ∆.

Since, C̄i’s and D̄i’s are in the context positions in the original rule, we
can consider the same substitution of meta-sequents and meta-formulas as
above in the original rule, except that we do not take C̄i’s and D̄i’s in the
contexts. More precisely, we reach the following instance of the original
rule:

⟨⟨Γi, ϕ̄ir ⇒ ψ̄ir,∆i⟩r⟩i

Γ, ϕ ⇒ ∆

If we let Sir = (Γi, ϕ̄ir ⇒ ψ̄ir,∆i), we can claim that this rule is backward
applicable to S and Sir’s are the premises of the rule. Hence, their orders
are less than the order of S and we can use the induction hypothesis for
them. Using the induction hypothesis we get for every i and r

C̄i ⇒ ∀pSir, D̄i

Using the rule (R∧) we get for every i

C̄i ⇒
⋀
r

∀pSir, D̄i

and using the rule (R⊗) we get

C̄ ⇒
⨂

i

⋀
r

∀pSir, D̄.

Since the right side of the sequent is appeared as one of the disjuncts in the
definition of ∀pS, using the rule (R∨) we have C̄ ⇒ ∀pS, D̄.
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◦ Consider the case when the last rule used in the proof of S · (C̄ ⇒ D̄) is a
semi-analytic modal rule. Therefore, S · (C̄ ⇒ D̄) = (□Γ,□C ′ ⇒ □D′) is
the conclusion of a semi-analytic modal rule. Hence, there are two cases to
consider.
The first one is the case where S is of the form (□Γ ⇒) and C̄ = □C ′

and D̄ = □D′, where ||□D′|| ≤ 1 and S ′′ = (Γ ⇒). We want to prove
(C̄ ⇒ ∀pS, D̄). We must have had the following instance of the rule

Γ, C̄ ′ ⇒ D̄′

□Γ,□C ′ ⇒ □D′

Since the order of S ′′ is less than the order of S and C ′ and D′ are p-free,
we can use the induction hypothesis and get

C̄ ′ ⇒ ∀pS ′′, D̄′

Using the axiom (0 ⇒) and the rule (L →) we have

C̄ ′,¬∀pS ′′ ⇒ D̄′

Now, using the rule K or D (depending on the cardinality of D̄′) we have

□C ′,□¬∀pS ′′ ⇒ □D′

and using the rule (0w) and (R →) we get

□C ′ ⇒ ¬□¬∀pS ′′,□D′

since we have ¬□¬∀pS ′′ as one of the disjuncts in the definition of ∀pS, we
conclude C̄ ⇒ ∀pS, D̄ using the rule (R∨).

The second case is when S is of the form □Γ ⇒ □D′, where D′ is a p-free
formula and S ′ is of the form Γ ⇒ D. We want to prove C̄ ⇒ ∀pS. Then
we must have had the following instance of the rule

Γ, C̄ ′ ⇒ D̄′

□Γ,□C ′ ⇒ □D′

Since C̄ ′ is in the context position of the original rule, we can consider the
same substitution of meta-sequents as above in the original rule, except that
we do not take C̄ ′ in the context. More precisely, we reach the following
instance of the original rule:

Γ ⇒ D̄′

□Γ ⇒ □D′

Therefore, this rule is backward applicable to S and the order of the premise,
S ′, is less than the order of S and we can use the induction hypothesis
for that to reach C ′ ⇒ ∀pS ′. Then we can use the rule K and we get
□C ′ ⇒ □∀pS ′, which is a disjunct in the definition of ∀pS and we have
C̄ ⇒ ∀pS.
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◦ The case for the right multi-conclusion semi-analytic rules is similar to the
cases for the left ones disccused in this proof, and the proof of other two
cases are similar to the proof of the same cases in the Theorem 2.5.38.

Theorem 2.5.47. Any terminating multi-conclusion sequent calculus H that ex-
tends CFLe and consists of focused axioms and multi-conclusion semi-analytic
rules, has strong H-uniform interpolation.

Proof. The proof is a result of the combination of the Theorem 2.5.37 and The-
orem 2.5.46.

Corollary 2.5.48. If CFLe ⊆ L and L has a terminating multi-conclusion se-
quent calculus consisting of focused axioms and multi-conclusion semi-analytic
rules, then L has uniform interpolation.

Proof. The proof is a result of the combination of the Theorem 2.5.47 and The-
orem 2.5.36.

Using the Theorem 2.5.48, we can extend the results of [2] and [7] to:

Corollary 2.5.49. The logics CFLe, CFLew and CPC and their K and KD
modal versions have uniform interpolation property.

Proof. For CFLe, CFLew, since all the rules of the usual calculus of these logics
are semi-analytic and their axioms are focused and since in the absence of the
contraction rule the calculus is clearly terminating, by Theorem 2.5.48, we can
prove the claim. For CPC use the contraction-free calculus for which the proof
goes as the other cases.

In the negative side we use the negative results in [7], [16] and [17] to ensure
that the following logics do not have uniform interpolation. Then we will use the
Theorems 2.5.40, 2.5.44 and 2.5.48 to the non-existence of terminating calculus
consisting only of semi-analytic and context-sharing semi-analytic rules together
with focused axioms.

Corollary 2.5.50. The logic K4 does not have a terminating single-conclusion
(multi-conclusion) sequent calculus consisting only of single conclusion (multi-
conclusion) semi-analytic and context-sharing semi-analytic rules plus some fo-
cused axioms.

Corollary 2.5.51. Except the logics IPC, LC, KC, Bd2, Sm, GSc and CPC,
none of the super-intutionistic logics have a terminating single-conclusion se-
quent calculus consisting only of single conclusion semi-analytic rules and context-
sharing semi-analytic rules plus some focused axioms.

Corollary 2.5.52. Except at most six logics, none of the extensions of S4 have a
terminating single-conclusion (multi-conclusion) sequent calculus consisting only
of single conclusion (multi-conclusion) semi-analytic rules and context-sharing
semi-analytic rules plus some focused axioms.
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3. Proof Complexity of Focussed
Calculi

3.1 Introduction
In the field of proof theory, proof systems, as the main players of the game, deserve
to be considered as the objects of the study themselves. Regarding this matter,
there are various problems to attack. One of them is investigating whether some
special kinds of proof systems exist and if they do, what properties they or their
corresponding logics posses, including the Craig or uniform interpolation of the
corresponding logic, or the complexity of proofs in the given proof system.

These problems have been studied by many researchers (for instance [10], [22]
and [23]). In [22] and [23], Iemhoff inspected the relationship between a specific
kind of proof system and the uniform interpolation property of the logic that the
proof system captures. She introduced the so-called focused rules and axioms,
and studied the sequent calculi only consisting of these rules and axioms, which
she named focused calculi. Roughly speaking, a focused axiom is just a modest
generalization of the axioms of the classical sequent-style proof system, LK. A
focused rule is a rule where only one side of its sequents, either left or right, is
active in all the premises and in the conclusion and also all the variables in its
premises occur in its conclusion. For instance, the usual conjunction and disjunc-
tion rules in LK, are focused, while the cut rule is not. After her formalization
of the focused rules and focused axioms, she provided a method to prove that
a super-intuitionistic logic enjoys the uniform interpolation property if it has a
terminating focused proof system. Since there are only seven super-intuitionistic
logics with the uniform interpolation property, she finally excluded almost all the
super-intuitionistic logics (except at most seven of them) from having a focused
proof system.

Inspired by Iemhoff’s work, [1] proposed a generalization of focused rules,
called semi-analytic rules, to cover a wider range of proof systems for a wider
range of logics. Stated informally, in a semi-analytic rule, the side condition is
relaxed and the formulas can appear freely in any side of the sequents in the
premises and the conclusion. Iemhoff’s results in [22] and [23] are then strength-
ened to also hold for these rules. It implies that many substructural logics and
almost all super-intuitionistic logics (except at most seven of them) do not have
a sequent style proof system only consisting of semi-analytic rules and focused
axioms.

This paper is a sequel of [1] in its extension of the negative results of [22] and
[23] to the remaining cases in which the interpolation property exists. For this
purpose, we change our focus from the existence of a proof system of some kind
to its efficiency to show an exponential lower bound for the focused proof systems
of a certain sort. Beside the clear impacts in the study of focused rules, these
lower bounds can also be considered as the basic steps in a universal approach
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to the proof complexity of the propositional proof systems. In such an approach,
we are interested in investigating the proof lengths of a given sequence of tau-
tologies in a generically given proof system with a certain form of axioms and
rules. The method we use here is the well-known technique in proof complexity
called the feasible interpolation. It reduces a problem in proof complexity to a
problem in circuit complexity by extracting a Boolean circuit for an interpolant
from a given proof for an implication, where the size of the circuit is polynomi-
ally bounded by the size of the proof. The feasible interpolation property for
various classical calculi has been studied by Kraj́ıček[27], Pudlák[36], and Pudlák
and Sgall[40]. For the intuitionistic calculus, the feasible interpolation theorem
was proved by Pudlák in [39] based on the feasible witnessing of the disjunc-
tion property developed in [8]. Buss and Pudlák in [9] and Buss and Mints
in [8] studied the connection between intuitionistic propositional proof lengths
and Boolean circuits. In [21], Hrubeš showed the connection is tighter in the
sense that the circuit in question in [9] and [8] is monotone. Here we will use
the technique of [21] as we will explain in a moment. For more information on
feasible interpolation and its role in proof complexity, the reader is refered to [38].

In this paper, we will prove two lower bounds, one for the classical logic and
the other for super-intuitionistic logics. For the first one, we will define a nat-
ural subclass of the focused rules, which we will call polarity preserving focused,
PPF, rules. Then, we show that there are CPC-tautologies with exponential
proof lengths in any proof system only consisting of PPF rules and focused ax-
ioms, which we call PPF calculi, while they have polynomial proof lengths in LK.
This shows an exponential speed-up of the Frege-style proof system for classical
logic with respect to any PPF calculus. To prove the similar exponential lower
bound for intuitionistically valid formulas, we first define monotonicity preserving
focused, MPF, rules and subsequently MPF calculi. Then, we will use the men-
tioned lower bound technique developed by Hrubeš in [20] and [21] to obtain an
exponential lower bound for the lengths of proofs of particular IPC-tautologies
in MPF calculi, while they have polynomial length proofs in LK.

3.2 Preliminaries
In this section, we will present some definitions and notions that will be needed
in the rest of the paper.

Note that any finite object O that we use here, such as a formula or a proof,
can be represented by a fixed suitable binary string and by |O| we mean the
length of the string representing the object.

In this paper, we work with the usual propositional language {∧,∨,¬,→
,⊥,⊤}. By IPC and CPC we mean intuitionistic and classical propositional
logics, respectively. By meta-language, we mean the language in which we define
the sequent calculi. A meta-formula is defined inductively; an atom and a for-
mula symbol are meta-formulas and we can construct new meta formulas using
the existing ones and the connectives of the language. A meta-multiset is a set
of meta-formulas and meta-multiset variables. By V (A), we mean the atoms and
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meta-formula variables of the meta-formula A.

By a sequent Γ ⇒ ∆, we mean an expression where Γ and ∆ are multisets and
it is interpreted as ⋀ Γ → ⋁ ∆. A meta-sequent is essentially a sequent defined
by meta-multisets. A rule is an expression of the form:

T1, · · · , Tn

T

where Ti’s and T are meta-sequents. A sequent calculus is a set of rules.

By monotone LK, mLK, we mean the sequent calculus consisting of the ax-
ioms of LK, the structural rules (exchange, weakening, contraction), and its usual
conjunction and disjunction rules.

A calculus G is sound for logic L, if G ⊢ Γ ⇒ ∆ implies L ⊢ ⋀ Γ → ⋁ ∆. It is
called complete if L ⊢ ⋀ Γ → ⋁ ∆ implies G ⊢ Γ ⇒ ∆ and feasibly complete if the
length of the tree-like proof is polynomially bounded by the sequent, i.e., there
exists a tree-like proof π of Γ ⇒ ∆ in G such that |π| ≤ |Γ ⇒ ∆|O(1). We say that
logic M is an extension of logic L, if L ⊢ A implies M ⊢ A. We say a calculus
H is an extension of a calculus G, if for any rule of G, if all the premises are
provable in H, then the consequence is also provable in H. Moreover, H is called
an axiomatic extension of G, when all the provable sequents of G are considered
as axioms of H, and H can add some rules to them.

A logic L is called sub-classical if CPC extends L. In the same way, a calculus
G is called sub-classical if LK extends G.

A logic L (calculus G) has the Craig interpolation property when for any
formula ϕ → ψ (sequent Γ ⇒ ∆), if L ⊢ ϕ → ψ (G ⊢ Γ ⇒ ∆) then there exists a
formula θ such that V (θ) ⊆ V (ϕ) ∩ V (ψ) (V (θ) ⊆ V (Γ) ∩ V (∆)) and L ⊢ ϕ → θ
and L ⊢ θ → ψ (G ⊢ Γ ⇒ θ and G ⊢ θ ⇒ ∆). The calculus G has feasible
interpolation if for any tree-like proof π of Γ ⇒ ∆, there exists an interpolant θ
such that |θ| ≤ |π|O(1).

3.3 Focused Calculi
In this section we will give the definitions of the focused axioms, rules and calculi,
which are the building blocks of the rest of the paper.

Definition 3.3.1. A rule is called focused (a left focused rule, L, or a right
focused rule, R) if it has one of the following forms:

⟨⟨Γi, ϕ̄ir ⇒ ∆i⟩mi
r=1⟩n

i=1
LΓ1, · · · ,Γn, ϕ ⇒ ∆1, · · · ,∆n

⟨⟨Γi ⇒ ϕ̄ir,∆i⟩mi
r=1⟩n

i=1
RΓ1, · · · ,Γn ⇒ ϕ,∆1, · · · ,∆n

where Γi’s and ∆i’s are meta-multiset variables, ϕ̄ir is a multi-set of formulas,
and ⋃

i,r V (ϕir) ⊆ V (ϕ). By the notation ⟨⟨·⟩r⟩i, we mean the sequents first range
over 1 ≤ r ≤ mi and then over 1 ≤ i ≤ n.
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Example 3.3.2. The usual conjunction and disjunction rules in LK are focused.
On the other hand, the implication rules:

Γ ⇒ ϕ,∆ Σ, ψ ⇒ Λ
Γ,Σ, ϕ → ψ ⇒ ∆,Λ

Γ, ϕ ⇒ ψ,∆
Γ ⇒ ϕ → ψ,∆

are not focused, simply because both sides of the sequents are active.

Definition 3.3.3. A sequent is called a focused axiom if it is of the following
form:

(1) Identity axiom: (ϕ ⇒ ϕ)

(2) Context-free right axiom: (⇒ ᾱ)

(3) Context-free left axiom: (β̄ ⇒)

(4) Contextual left axiom: (Γ, ϕ̄ ⇒ ∆)

(5) Contextual right axiom: (Γ ⇒ ϕ̄,∆)

where Γ and ∆ are meta-multiset variables and in 2 − 5, the set of the variables
of any two elements of ᾱ, β̄ and ϕ̄ must be the same.

Example 3.3.4. It is easy to see that the axioms of LK, (ϕ ⇒ ϕ), (Γ ⇒ ⊤,∆)
and (Γ,⊥ ⇒ ∆) are focused. Here are some more examples which are not in LK:

ϕ,¬ϕ ⇒ , ⇒ ϕ,¬ϕ

Γ,¬⊤ ⇒ ∆ , Γ ⇒ ∆,¬⊥

First let us investigate the power of focused rules and focused axioms. The
natural question to ask is whether it is possible to have a calculus consisting only
of these rules and axioms, that is complete for some given logic. For CPC the
answer is yes, and the following theorem can be considered as a witness of the
power and naturalness of focused axioms and rules.

Theorem 3.3.5. CPC has a sequent calculus consisting only of focused rules
and focused axioms.

Proof. Consider a sequent calculus containing the usual axioms of CPC and the
following axioms:

Axioms:

ϕ ⇒ ϕ ϕ,¬ϕ ⇒ ⇒ ϕ,¬ϕ

Γ ⇒ ¬⊥,∆ Γ,¬⊤ ⇒ ∆
The usual left and right rules for disjunction and conjunction and the following

rules for implication:
Γ ⇒ ¬ϕ, ψ,∆
Γ ⇒ ϕ → ψ,∆

Γ1,¬ϕ ⇒ ∆1 Γ2, ψ ⇒ ∆2
Γ1,Γ2, ϕ → ψ ⇒ ∆1,∆2
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And finally, for any combination ¬∨, ¬∧, and ¬¬ we have the corresponding
right and left rules, using De Morgan’s laws. For instance, we have

Γ ⇒ ¬ϕ,∆
R¬∧Γ ⇒ ¬(ϕ ∧ ψ),∆

It is easy to check that all the rules of this sequent calculus are focused and the
system is sound and complete for CPC. The proof of the completeness part is
based on the observation that if Γ,Γ′ ⇒ ∆,∆′ is provable in the usual calculus
for classical logic, then Γ,¬∆ ⇒ ¬Γ′,∆′ is provable in the new calculus. The
proof is an easy application of induction on the length of the usual LK proof of
Γ,Γ′ ⇒ ∆,∆′.

So far, we have seen some definitions and a sequent calculus consisting only
of focused axioms and rules. Now, it is time to examine how effective such a
characterization can be. For this purpose, from now on we will restrict our inves-
tigations to two natural sub-classes of focused rules, polarity preserving focused,
PPF rules, and monotonicity preserving focused, MPF rules.

Definition 3.3.6. Let P be a set of meta-formula variables or atomic constants.
A meta-formula ψ is called P-monotone if for any ϕ ∈ P, all occurrences of ϕ
in ψ are positive, i.e., ϕ does not occur in the scope of negations or in the an-
tecedents of implications. A multiset Γ of meta-formulas is called P-monotone if
all of its elements are P-monotone.
A meta-formula is called monotone if it is constructed by conjunctions and dis-
junctions on meta-formula variables, atomic constants and variable-free formulas.

Remark 3.3.7. Note that since any variable-free formula is classically equivalent
to ⊤ or ⊥, then any monotone formula in our sense is classically equivalent to the
usual monotone formulas i.e., the formulas constructed from atomic formulas by
applying conjunctions and disjunctions. Therefore, from now on, in the classical
settings, we always assume that a monotone formula has the mentioned simpler
form.

Definition 3.3.8. A focused rule is called polarity preserving, PPF, if it preserves
P-monotonicity backwardly for any P, i.e., if the antecedent of the consequence
is P-monotone, then the antecedents of all the premises are also P-monotone.
It is monotonicity preserving, MPF, if it is focused and preserves monotonicity
backwardly, in the same way.

Example 3.3.9. All analytic focused rules in the language of CPC, the focused
rules in which any formula in the premises is a subformula of a formula in the
consequence, are both PPF and MPF.

3.3.1 The Classical Case
Let us first see a relationship between focused calculi and the Craig interpolation
property.

Theorem 3.3.10. Let G be a sequent calculus extending mLK and only con-
sisting of focused rules and focused axioms. Then, G has feasible interpolation
property. Moreover, if the rules are also PPF and Γ is P-monotone, then Γ ⇒ ∆
has a feasible P-monotone interpolant.
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Proof. We need to prove that to any provable sequent Γ ⇒ ∆, we can assign a
formula C such that G ⊢ Γ ⇒ C and G ⊢ C ⇒ ∆ and V (C) ⊆ V (Γ)∩V (∆). Use
induction on the length of the proof π of the sequent Γ ⇒ ∆ in G. If Γ ⇒ ∆ is a
focused axiom, it is easy to see that in different cases of the focused axioms, the
interpolant C is either ϕ or ⊥ or ⊤. We check the case 4 of the focused axioms.
The rest are similar. In this case, we have to find C such that Γ, ϕ̄ ⇒ C and
C ⇒ ∆. We claim that C = ⊥ works here. Note that in the focused axioms,
since Γ and ∆ are meta-multiset variables, we can substitute anything for them.
Hence, we have Γ, ϕ̄ ⇒ ⊥, since it is an instance of the axiom 4 when ∆ is substi-
tuted by ⊥. And ⊥ ⇒ ∆ is an instance of the axiom ⊥ in mLK which is weaker
than the system G by assumption.

For the rules, suppose the last rule used in the proof π is the following left
focused rule:

⟨⟨Γi, ϕ̄ir ⇒ ∆i⟩r⟩i

Γ1, · · · ,Γn, ϕ ⇒ ∆1, · · · ,∆n

Then, by induction, there are formulas Cir such that Γi, ϕ̄ir ⇒ Cir and Cir ⇒ ∆i.
Using the right and left disjunction rules we have Γi, ϕ̄ir ⇒ ⋁

r Cir and ⋁
r Cir ⇒

∆i. By the left disjunction rule we have ⋁
i

⋁
r Cir ⇒ ∆1, · · · ,∆n. And if we

substitute the sequents Γi, ϕ̄ir ⇒ ⋁
r Cir in the original left focused rule we get

Γ1, · · · ,Γn, ϕ ⇒ ⋁
r C1r, · · · ,⋁r Cnr and then using the right disjunction rule we

get Γ1, · · · ,Γn, ϕ ⇒ ⋁
i

⋁
r Cir.

Note that for any i and r, by induction we have V (Cir) ⊆ V (Γi∪{ϕir})∩V (∆i).
Using this and the fact that for focused rules ⋃

ir V (ϕir) ⊆ V (ϕ), we can eas-
ily show that V (⋁

i

⋁
r Cir) ⊆ V (Γ ∪ {ϕ}) ∩ V (∆), where Γ = Γ1, · · · ,Γn and

∆ = ∆1, · · · ,∆n. Therefore, we have shown that ⋁
i

⋁
r Cir is the interpolant.

The case for a right focused rule is dual to the previous case.

The proof for the upper bound for the length of the interpolant goes as fol-
lows. We claim that our previously constructed interpolant C has the property
|C| ≤ |π|2 and we will prove it by induction on π.

For the axioms, as we have seen, the interpolant is either ϕ (in the case that
the sequent is of the form of the first axiom (ϕ ⇒ ϕ)) or ⊥ or ⊤ (in other cases).
In these cases, we have |C| ≤ |π|.

For the left focused rules, we have shown that C = ⋁
i

⋁
r Cir. Let NR be the

number of the premises of the rule R, which is the last rule used in the proof. We
have that the number of the formulas which appear in C , i.e. Cir, is equal to NR.
The rest of the symbols appeared in C are connectives, and the number of them
is again equal to NR. Since the sequent Γ ⇒ ∆ is the conclusion of a rule in G,
the lengths of the proofs of its premises are less than the length of π and we can
use the induction hypothesis for them. Then |C| ≤ Σi,r|Cir| +NR. By induction
hypothesis we have |Cir| ≤ |πir|2, where πir is the proof of the sequent whose
interpolant is Cir. But since the proof is tree-like, we have Σir|πir| ≤ |π|. It is
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easy to see that |C| ≤ Σi,r|πi,r|2 +NR ≤ Σi,r|πi,r|2 +Σi,r|πi,r| ≤ (Σi,r|πi,r|)2 ≤ |π|2,
and the claim follows. We have usesd the fact that NR ≤ Σi,r|πi,r|. The latter is
an easy consequence of the fact that the number of πi,r in total is NR.

Finally, for P-monotonicity note that since Γ is P-monotone and all the rules
are PPF, all the antecedents in the proof must be P-monotone, as well. Therefore,
the interpolants of the axioms are P-monotone. Because, for the axioms, except
for the axiom ϕ ⇒ ϕ, the interpolants are variable-free and hence P-monotone.
And for the identity axiom ϕ ⇒ ϕ, the interpolant is ϕ itself which is also P-
monotone. Finally, since the interpolants are constructed by the interpolants of
the axioms via disjunctions and conjunctions, the interpolant for Γ ⇒ ∆ is also
P-monotone.

The following theorem is our first example of the mentioned ineffectiveness
of the combination of focused axioms and PPF rules. It shows that none of the
combinations of focused axioms and PPF rules can simulate the cut rule in a
feasible way.

Corollary 3.3.11. There is no calculus G consisting of only focused axioms and
PPF rules, sound and feasibly complete for CPC. More precisely, if G is a
complete calculus for CPC, then there exists a sequence of CPC-valid sequents
ϕn ⇒ ψn, with polynomially short tree-like proofs in the Hilbert-style system or
equivalently in LK + Cut such that ||ϕn ⇒ ψn||G, the length of the shortest tree-
like G-proof of ϕn ⇒ ψn, is exponential in n. Therefore, the PPF rules together
with focused axioms are either incomplete or feasibly incomplete for CPC.

Proof. Assume that G is a calculus for CPC consisting of PPF rules and focused
axioms. In the following, we bring the definitions for clique and coloring formulas
from [28]. Note that we use [n] to denote {1, 2, · · · , n}. Let Cliquek

n(p̄, q̄) be the
proposition asserting that q̄ is a clique of size at least k on a graph with vertices
[n]. There are

(
n
2

)
atoms pij where pij = 1 if and only if there is an edge between

nodes {i, j} ∈
(

n
2

)
. There are also k.n atoms qui where their intended meaning

is to describe a mapping from [k] to [n]. Cliquek
n(p̄, q̄) is the conjunction of the

following clauses:

• ⋁
i∈[n] qui, all u ≤ k,

• ¬qui ∨ ¬quj, all u ∈ [k] and i ̸= j ∈ [n],

• ¬qui ∨ ¬qvi, all u ̸= v ∈ [k] and i ∈ [n],

• ¬qui ∨ ¬qvj ∨ pij, all u ̸= v ∈ [k] and {i, j} ∈
(

n
2

)
.

The proposition Colorm
n (p̄, r̄) asserts that r̄ is an m-coloring of the same graph

represented by p̄ and also uses n.m atoms ria where i ∈ [n] and a ∈ [m].
Colorm

n (p̄, r̄) is the conjunction of the following clauses:

• ⋁
a∈[m] ria, all i ∈ [n],

• ¬ria ∨ ¬rib, all a ̸= b ∈ [m] and i ∈ [n],

• ¬ria ∨ ¬rja ∨ ¬pij, all a ∈ [m] and {i, j} ∈
(

n
2

)
.
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Note that by the formalization of the Clique formula, every occurrence of p̄ in
Cliquek

n(p̄, q̄) is positive (which means it is monotone in p̄). We know that for
m < k, the formula ¬Cliquek

n(p̄, q̄)∨¬Colorm
n (p̄, r̄) is a tautology in classical logic

which implies that
Cliquek

n(p̄, q̄) ⇒ ¬Colorm
n (p̄, r̄)

is CPC-valid.

First observe that by the Craig interpolation theorem for CPC and the fact
that the antecedent is monotone in p̄, there exists a monotone interpolant I(p̄)
such that

Cliquek
n(p̄, q̄) ⇒ I(p̄) ⇒ ¬Colorm

n (p̄, r̄)
which means that if the graph H represented by p̄ has a k-clique then I(p̄) = 1
and if H has an m-coloring then I(p̄) = 0. In other words, if I(p̄) ̸= 0 then H
does not have an m-coloring and if I(p̄) ̸= 1 then H does not have a k-clique. By
the result in [3], every such monotone interpolant I must have exponential length
in n for suitable polynomially bounded choices for k and m.

Secondly, define ϕn(p̄, q̄) = Cliquek
n(p̄, q̄) and ψn(p̄, r̄) = ¬Colorm

n (p̄, r̄). We
will show that this family of sequents, ϕn(p̄, q̄) ⇒ ψn(p̄, r̄), serve as the CPC-
valid sequents mentioned in the theorem. The idea is simple. First note that the
fact that the sequent

Cliquek
n(p̄, q̄) ⇒ ¬Colorm

n (p̄, r̄)
has a tree-like proof of the size nO(1) in the classical Hilbert-style proof system
or equivalently LK + Cut is a folklore well-known fact in the proof complexity
community. Now pick πn as the shortest tree-like proof of the sequent in G.
Note that the antecedent of our sequent, Cliquek

n(p̄, q̄), is p̄-monotone. Hence,
by Lemma 3.3.10, the interpolant for the sequent ϕn(p̄, q̄) ⇒ ψn(p̄, r̄) will be p̄-
monotone, as well. And since p̄ are the only common variables and hence the only
variables in the interpolant, the interpolant is monotone. However, G captures
CPC. Therefore, the whole process provides a classical monotone interpolant for
the sequent

Cliquek
n(p̄, q̄) ⇒ ¬Colorm

n (p̄, r̄)
which we will call Cn. By Lemma 3.3.10, we have |Cn| ≤ |πn|2. However, any
such Cn should be exponentially long in n as we explained before. Therefore, the
shortest proof πn for our sequent is exponentially long.

3.3.2 The Intuitionistic Case
It is also possible to lower down the previous exponential lower bound to the level
of the IPC-valid sequents. For that purpose we need a new form of interpolation
and its preservation theorem.

Definition 3.3.12. A sequent is called a strongly focused axiom if it has one of
the following forms:

(1) ϕ ⇒ ϕ
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(2) ⇒ ᾱ

(3) β̄ ⇒

(4) Γ, ϕ̄ ⇒ ∆

(5) Γ ⇒ ϕ̄,∆

where in (2) and (5), ᾱ and ϕ̄ have no variable and Γ and ∆ are meta-multiset
variables.

Example 3.3.13. For the strongly focused axioms, note that all the axioms of
LK are strongly focused. An example of a focused axiom which is not strongly
focused is (⇒ ϕ,¬ϕ). Since otherwise it would have been an instance of either 2
or 5, which is not possible. The reason is that ϕ can have a variable which must
not appear in the right side of the sequent.

Definition 3.3.14. Let G and H be two sequent calculi. G has H-monotone
feasible interpolation with the exponent m ≥ 1 if for any k and any sequent
S = (Σ ⇒ Λ1, · · · ,Λk) if S is provable in G by a tree-like proof π and for any
1 ≤ j ≤ k, Λj ̸= ∅, then there exist formulas |Cj| ≤ |π|m for 1 ≤ j ≤ k such that
(Σ ⇒ C1, · · · , Ck) and (Cj ⇒ Λj) are provable in H and V (Cj) ⊆ V (Σ) ∩V (Λj),
where V (A) is the set of the atoms of A. Moreover, if Σ is monotone, then
Cj is also monotone for all 1 ≤ j ≤ k. We call Cj’s, the interpolants of the
partition Λ1, · · · ,Λk of the succedent of the sequent S. The system G has H-
monotone feasible interpolation if it has H-monotone feasible interpolation with
some exponent m ≥ 1.

Theorem 3.3.15. Let G and H be two sequent calculi such that G is a set of
strongly focused axioms, H extends mLK and any sequent in G is provable in H.
Then G has H-monotone feasible interpolation with the exponent one.

Proof. We will consider the strongly focused axioms one by one:

(1) In this case the sequent S is of the form (ϕ ⇒ ϕ). Therefore, Λ1 = ϕ. Pick
C1 = ϕ. It is easy to see that this C1 works and since ϕ is monotone, C1 is
also monotone.

(2) For the case (⇒ ᾱ), consider Cj to be ⋁ Λj. We can easily see that these
Cj’s work, using the left and right disjunction rules. For the variables, since
V (ᾱ) = ∅, we have V (Cj) ⊆ V (∅) ∩V (Λj). And for the monotonicity, since
V (Cj) = ∅, then Cj is monotone.

(3) The case (β̄ ⇒) does not happen.

(4) If S is of the form Γ, ϕ̄ ⇒ ∆ define Cj = ⊥. First note that we have
Γ, ϕ̄ ⇒ ⊥,⊥, · · · ,⊥ where in the right hand-side we have k many ⊥’s. The
reason is that this sequent is an instance of the axiom (4) itself. Moreover,
for every j we have ⊥ ⇒ Λj since it is an instance of the axiom ⊥. And
again V (Cj) = ∅.
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(5) If S is of the form (Γ ⇒ ϕ̄,∆) define Cj = ⋁(Λj ∩ ϕ̄). It is easy to see that
this Cj works. Because, Cj ⇒ Λj is an instance of an axiom. We also have
Γ ⇒ C1, · · · , Ck, since in the right hand-side we will have the formula ϕ̄
(together with some other formulas which we will treat as the context) and
it will become an instance of the same axiom. Note that since V (ϕ̄) = ∅,
there is nothing to check for the variables. For the monotonicity, note that
V (Cj) = ∅, therefore Cj is monotone.

Note that in all cases and for all 1 ≤ j ≤ k, |Cj| ≤ |π|.

The next theorem shows that MPF rules preserve the monotone feasible in-
terpolation property. We will use this theorem later in the lower bound result
that we have promised before.

Theorem 3.3.16. (monotone feasible interpolation) Let G and H be two sequent
calculi such that H extends mLK and axiomatically extends G by MPF rules.
Then if G has H-monotone feasible interpolation property, so does H.

Proof. To prove the theorem, we will prove the following claim:

Claim. Let G and H be two sequent calculi such that H extends mLK and
axiomatically extends G by MPF rules and G has H-monotone feasible interpo-
lation with the exponent m. Then for any H-provable sequent Γ ⇒ ∆ and any
non-trivial partition of ∆ as Λ1, · · · , Λk (non-trivial means that none of the Λj’s
are empty), there exist the required interpolants Cj as in the Definition 3.3.14
such that Σj|Cj| ≤ |π|M where M = m+ 1.

The proof uses induction on the H-length of π (the number of the rules of H
in the proof π). First we will explain how to construct Cj’s. Then we will prove
the bound for the given construction.

If the H-length of π is zero, it means that the proof is in G. Hence the claim
is clear by the assumption. There are two cases to consider based on the last rule
of the proof.

◦ If the last rule used in the proof is a right focused one, then it is of the
following form:

⟨⟨Γi ⇒ ϕ̄ir,∆i⟩r⟩i

Γ ⇒ ϕ,∆

where Γ = Γ1, · · · ,Γn and ∆ = ∆1, · · · ,∆n. And, again Λ1, · · · ,Λk are
given such that they are non-empty and ⋃k

j=1 Λj = ∆ ∪ {ϕ}. W.l.o.g.
suppose ϕ ∈ Λ1 and we denote Λ1 − {ϕ} by Λ′

1. Consider the case that all
of the Λij = ∆i ∩ Λj and ϕ̄ir ∪ Λ′

i1 are non-empty where Λ′
i1 = ∆i ∩ Λ′

1. By
induction hypothesis for the premises, there exist formulas Dir1, · · · , Dirk

such that for every i, r and j ̸= 1

Dir1 ⇒ ϕ̄ir,Λ′
i1 , Dirj ⇒ Λij , Γi ⇒ Dir1, · · · , Dirk
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Again, note that if some of Λij’s or ϕ̄ir,Λ′
i1 are empty, we can eliminate

them from the partition to have a non-trivial partition and hence to apply
the IH. Then in these cases, we can simply pick Dirj as ⊥. Now using the
rules (R∨), (L∨), (R∧) and (L∧), we get for every i and j ̸= 1

⋀
r
Dir1 ⇒ ϕ̄ir,Λ′

i1 , ⋁
r
Dirj ⇒ Λij , Γi ⇒ ⋀

r
Dir1,

⋁
r
Dir2, · · · ,⋁

r
Dirk

Note that in the right sequent, we first use (R∨) to get
Γi ⇒ Dir1,

⋁
r
Dir2, · · · ,⋁

r
Dirk, and then we can use the rule (R∧). Now, we

can substitute the left sequents in the original rule to get

⋀
r
Dir1 ⇒ ϕ,Λ′

1

and using the rule (L∧) we have

⋀
i

⋀
r
Dir1 ⇒ ϕ,Λ′

1

We denote ⋀
i

⋀
r
Dir1 by C1. Using the rule (L∨) for the sequents ⋁

r
Dirj ⇒

Λij we get

⋁
i

⋁
r
Dirj ⇒ Λj

and we denote ⋁
i

⋁
r
Dirj by Cj for j ̸= 1. We can see that first using the

rule (R∨) and after that using the rule (R∧) we get

Γ ⇒ ⋀
i

⋀
r
Dir1,

⋁
i

⋁
r
Dir2, · · · ,⋁

i

⋁
r
Dirk

which is

Γ ⇒ C1, · · · , Ck

It only remains to check the variables. If a variable is in Cj, then it is
in one of Dirj’s. By induction hypothesis we have V (Dir1) ⊆ V (Γ1) ∩
V ({{ϕ̄ir}∪Λ′

i1}) ⊆ V (Γ)∩V ({{ϕ}∪Λ′
1}) and V (Dirj) ⊆ V ({Γi})∩V (Λij) ⊆

V (Γ) ∩ V (Λj), since the rule is occurrence preserving, and this is what we
wanted.

◦ The case of the left focused rule is similar to the case for right.

For the monotonicity part, since the extending rules are MPF, it is easy to
prove that if the antecedent of the consequence is monotone, then all the an-
tecedents, everywhere in the proof up to the sequents in G, are also monotone.
Since G has H-monotone feasible interpolation property, the interpolants in the
base case are monotone. Finally, since the conjunctions and disjunctions do not
change monotonicity, our constructed interpolants are also monotone.
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For the upper bound part, use a similar proof to the corresponding part in
Lemma 3.3.10, this time using the induction on π to show that Σj|Cj| ≤ |π|M .
For the axioms note |Cj| ≤ |π|m for 1 ≤ j ≤ k by the assumption that G has
H-monotone feasible interpolation with the exponent m. Since the partition is
non-trivial k ≤ |S| ≤ |π|, hence Σk

j=1|Cj| ≤ k|π|m ≤ |π|m+1 = |π|M .
For the rules, define X as the set of all (i, r, j)’s where Dirj is ⊥ coming from
handling the empty cases. It is clear that X has at most NR elements, the num-
ber of the premises of the rule R. We have Σj|Cj| ≤ Σ(i,r,j)/∈X |Dirj|+ |X|+NR ≤
Σir|πir|M + 2NR ≤ (Σir|πir| + 1)M ≤ |π|M . The second inequality holds using the
induction hypothesis and the third inequality holds because NR ≤ Σir|πir| and
M ≥ 2.

Finally, the theorem is a clear consequence of the Claim. It is enough to apply
the Claim to provide the formulas Cj such that Σj|Cj| ≤ |π|M which implies
|Cj| ≤ |π|M .

Lemma 3.3.17. [21] Let A(p̄, r̄1) and B(q̄, r̄2) be propositional formulas and p̄,
q̄, r̄1 and r̄2 be mutually disjoint. Let p̄ = p1, · · · , pn and q̄ = q1, · · · , qn. Assume
that A is monotone in p̄ or B is monotone in q̄ and A(p̄, r̄1) ∨ B(¬p̄, r̄2) is a
classical tautology. Then⋀n

i=1(pi ∨ qi) ⇒ ¬¬A(p̄, r̄1),¬¬B(q̄, r̄2)

is IPC-valid.

Proof. For the details, the reader is referred to [21].

Theorem 3.3.18. Let G and H be two sequent calculi such that H is sub-
classical, extends mLK, axiomatically extends G by MPF rules and G has H-
monotone feasible interpolation property. Then there exists a family of IPC-valid
sequents ϕn ⇒ ψn with the length of ϕn ⇒ ψn bounded by a polynomial in n such
that either there exists some n such that H ⊬ ϕn ⇒ ψn or ||ϕn ⇒ ψn||H , the short-
est tree-like H-proof of ϕn ⇒ ψn, is exponential in n. Therefore, the MPF rules
together with strongly focused axioms are either incomplete or feasibly incomplete
for IPC.

Proof. The proof is similar and also inspired by the lower bound proof given in
[21]. Similar to the proof of Theorem 3.3.11, consider the CPC-valid sequent

Cliquek
n(p̄, r̄2) ⇒ ¬Colorm

n (p̄, r̄1)
which is equivalent to

⇒ ¬Cliquek
n(p̄, r̄2),¬Colorm

n (p̄, r̄1)
Then, using the Lemma 3.3.17, if we rewrite ¬Cliquek

n(p̄, r̄2) as B(¬p̄, r̄2) and
¬Colorm

n (p̄, r̄1) as A(p̄, r̄1), we can easily see that A is monotone in p̄ and the
formula A(p̄, r̄1) ∨ B(¬p̄, r̄2) is a classical tautology. Hence, we can transfer the
CPC-valid sequent

⇒ ¬Cliquek
n(p̄, r̄2),¬Colorm

n (p̄, r̄1)
to a sequent of the form⋀

i(pi ∨ qi) ⇒ ¬¬A(p̄, r̄1),¬¬B(q̄, r̄2)

82



valid in IPC. Now, let
ϕn(p̄, q̄) ⇒ ψn(p̄, r̄1), θn(q̄, r̄2)

be this sequent. We will show that this family of sequents

ϕn(p̄, q̄) ⇒ ψn(p̄, r̄1), θn(q̄, r̄2)

serve as the IPC-valid sequents mentioned in the theorem.

If for some n we have H ⊬ ϕn ⇒ ψn, θn, then the claim follows. Therefore,
suppose that for every n we have H ⊢ ϕn ⇒ ψn, θn. Let πn be the shortest
tree-like proof of the sequent ϕn ⇒ ψn, θn in H. By Theorem 3.3.16, for every
n, there exist monotone formulas Cn(p̄) and Dn(q̄) such that |Cn| ≤ |πn|O(1) and
|Dn| ≤ |πn|O(1) and the followings are provable in H: (ϕn ⇒ Cn, Dn), (Cn ⇒ ψn),
(Dn ⇒ θn). Since H captures a sub-classical logic we have (ϕn ⇒ Cn, Dn),
(Cn ⇒ ψn), (Dn ⇒ θn) in CPC. Since (ϕn ⇒ Cn, Dn) is valid in classical
logic, we have Cn(p̄) ∨ Dn(¬p̄) = 1. On the other hand, since An is classically
equivalent to ψn we know that Cn(p̄) = 1 implies A(p̄, r̄1) = 1. Similarly, we
have that Dn(q̄) = 1 implies B(q̄, r̄2) = 1. We Claim that Cn(p̄) interpolates
¬B(¬p̄, r̄2) ⇒ A(p̄, r̄1). One direction is proved. For the other direction, note
that if B(¬p̄, r̄2) = 0 then Dn(¬p̄) = 0 and since Cn(p̄) ∨ Dn(¬p̄) = 1 we have
Cn(p̄) = 1. Hence the monotone formula Cn interpolates ¬B(¬p̄, r̄2) ⇒ A(p̄, r̄1)
or equivalently the sequent

Cliquek
n(p̄, r̄2) ⇒ ¬Colorm

n (p̄, r̄1)
However, in the proof of the Theorem 3.3.11, we mentioned that any such mono-
tone interpolant must have exponential length. Together with the fact that
|Cn(p̄)| ≤ |πn|O(1), we can conclude that ||ϕn ⇒ ψn, θn||H is exponential in n
which implies the claim.

Corollary 3.3.19. There is no calculus consisting only of strongly focused axioms
and MPF rules, sound and feasibly complete for super-intuitionistic logics.

Proof. This is an obvious consequence of Theorem 3.3.16, Theorem 3.3.15 and
Theorem 3.3.18 . The only point that we have to explain is that if a calculus G
consisting only of strongly focused axioms and MPF rules is sound and complete
for a super-intuitionistic logic, then G extends mLK. The reason is that G is
complete for a super-intuitionistic logic and any calculus complete even for IPC
extends mLK.
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4. Proof Complexity of
Substructural Calculi

4.1 Introduction
Propositional proof complexity, as a new independent field, was established pre-
dominantly to address the fundamental unsolved problems in computational com-
plexity. Starting steps in this systematic study were taken by Cook and Reckhow.
In their seminal paper [11], they defined a propositional proof system, PPS, as a
polynomial-time computable function whose range is the set of all classical propo-
sitional tautologies. Then, they defined a polynomially bounded proof system as
a PPS having a short proof for any tautology, i.e., a proof whose length is poly-
nomially bounded by the length of the tautology itself. They proved that the
existence of a polynomially-bounded proof system for the classical logic is equiv-
alent to NP = coNP. Accordingly, if for any PPS there are super-polynomial
lower bounds on the lengths of proofs, as a result NP will be different from coNP
and consequently, P will be different from NP. Since these are considered to be
major open problems in computational complexity, providing super-polynomial
lower bounds for all PPS’s gained momentum in the field of proof complexity
of classical proof systems. Thus far, exponential lower bounds on proof lengths
have been established in many different propositional proof systems, including
resolution [18], cutting planes [37], and bounded-depth Frege systems [34]. For
more on the lengths of proofs, see [28].

Aside from the extensive study of some well-known classical proof systems,
recently there have been some investigations into the complexity of proofs in non-
classical logics on account of their various applications, their power in express-
ibility and their essential role in computer science. Therefore, it is important to
fully understand the inherent complexity of proofs in non-classical logics, consid-
ering specially the impact that lower bounds on lengths of proofs will have on the
performance of the proof search algorithms. Moreover, from the computational
complexity perspective, the study of complexity of proofs in non-classical logics
is associated with another major computational complexity problem, namely the
NP vs. PSPACE problem. Various results have been acheived in this area, for
instance exponential lower bounds for the intuitionistic and modal logics [21],
and for modal and intuitionistic Frege and extended Frege systems [25]. A com-
prehensive overview of results concerning proof complexity of non-classical logics
can be found in [6].

In the realm of non-classical logics, substructural ones are logics originally
defined by the systems where some or all of the usual structural rules are absent.
These logics include relevant logics, linear logic, fuzzy logics, and many-valued
logics. However, the field is more ambitious than any limited investigation of
possible effects of the structural rules. The purpose of the study of substruc-
tural logics is to uniformly investigate the non-classical logics that originated
from different motivations. Complexity-theoretically, several substructural logics
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are PSPACE-complete, for instance the multiplicative-additive fragment of linear
logic, MALL [30], and full Lambek calculus, FL [26]. Check also the PSPACE-
hardness for a wide range of substructural logics and PSPACE-completeness for
a class of extensions of FL in [19]. Some complexity results about the decision
problem of some fragments of Visser’s basic propositional logic, BPC, and formal
propositional logic, FPL are also studied in [42].

In this paper, we will study the proof complexity of proof systems for sub-
structural logics and basic logic, and hence a wide-range class of proof systems.
More precisely, we will start with an arbitrary proof system P at least as strong
as FL (or BPC) and polynomially simulated by an extended Frege system for
some super-intuitionistic infinite branching logic L, denoted by L − EF. For such
a P, we will provide a sequence of hard P-tautologies, namely a sequence of P-
provable formulas {An}∞

n=1 with length polynomial in n such that their shortest
P-proofs are exponentially long in n. Our method is using a sequence of intu-
itionistic tautologies for which we know there exists an exponential lower bound
on the length of their proofs in any L − EF, where L is infinite branching. Since
these formulas are not necessarily provable in P, the essential step is their modifi-
cation so that they become provable in FL (or BPC) and hence in P, while they
remain hard for L − EF. Finally, since L − EF is shown to be polynomially as
strong as P, the length of any P-proofs of the P-tautologies must be exponential
in n. Furthermore, using the same FL-tautologies, one can infer an exponential
lower bound also for proof systems polynomially simulated by CFL−

ew, where the
superscript “−” means the sequent calculus does not have the cut rule.

4.2 Preliminaries
In this section we provide some background and also some new notions needed
in the future sections. Throughout the paper we mainly work with substructural
logics and we follow [14] as the canonical source for the study of the theory of
such logics. Nevertheless, to make the paper as self-contained as possible, we
include all necessary background information.

4.2.1 Substructural logics
Consider the propositional language {∧,∨,⊗,⊤,⊥, 1, 0, /, \,→}. The logical con-
nective ⊗ is called fusion and the connectives / and \ are called left and right
residuals, respectively. Throughout the paper, small Roman letters, p, q, . . ., are
reserved for propositional variables, Greek small letters ϕ, ψ, . . ., and Roman
capital letters A, B, . . ., are meta-variables for formulas and Greek capital letters
Γ, Σ, . . ., are meta-variables for (possibly empty) finite sequences of formulas,
separated by commas (unless specified otherwise).

Consider the following set of rules over sequents of the form Γ ⇒ ∆. The
meta-variable Γ is called the antecedent of the sequent and ∆ its succedent. All
the rules are presented in the form of schemes. Therefore, an instance of a rule
is obtained by substituting formulas for lower case letters and finite (possibly
empty) sequences of formulas for upper case letters.
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Initial sequents:

ϕ ⇒ ϕ Γ ⇒ ∆,⊤,Λ Γ,⊥,Σ ⇒ ∆ ⇒ 1 0 ⇒

Structural rules:

Weakening rules:

Γ,Σ ⇒ ∆ (Lw)Γ, ϕ,Σ ⇒ ∆
Γ ⇒ ∆,Λ (Rw)Γ ⇒ ∆, ϕ,Λ

Contraction rules:

Γ, ϕ, ϕ,Σ ⇒ ∆ (Lc)Γ, ϕ,Σ ⇒ ∆
Γ ⇒ ∆, ϕ, ϕ,Λ (Rc)Γ ⇒ ∆, ϕ,Λ

Exchange rules:

Γ, ϕ, ψ,Σ ⇒ ∆ (Le)Γ, ψ, ϕ,Σ ⇒ ∆
Γ ⇒ ∆, ϕ, ψ,Λ (Re)Γ ⇒ ∆, ψ, ϕ,Λ

The cut rule:

Γ ⇒ ϕ,Λ Σ, ϕ,Π ⇒ ∆ (cut)Σ,Γ,Π ⇒ ∆,Λ

The logical rules:

Γ,Σ ⇒ ∆ (1w)Γ, 1,Σ ⇒ ∆
Γ ⇒ ∆,Λ (0w)Γ ⇒ ∆, 0,Λ

Γ, ϕ,Σ ⇒ ∆ (L∧1)Γ, ϕ ∧ ψ,Σ ⇒ ∆
Γ, ψ,Σ ⇒ ∆ (L∧2)Γ, ϕ ∧ ψ,Σ ⇒ ∆

Γ ⇒ ∆, ϕ,Λ Γ ⇒ ∆, ψ,Λ (R∧)Γ ⇒ ∆, ϕ ∧ ψ,Λ

Γ, ϕ,Σ ⇒ ∆ Γ, ψ,Σ ⇒ ∆ (L∨)Γ, ϕ ∨ ψ,Σ ⇒ ∆

Γ ⇒ ∆, ϕ,Λ (R∨1)Γ ⇒ ∆, ϕ ∨ ψ,Λ
Γ ⇒ ∆, ψ,Λ (R∨2)Γ ⇒ ∆, ϕ ∨ ψ,Λ

Γ, ϕ, ψ,Σ ⇒ ∆ (L⊗)Γ, ϕ⊗ ψ,Σ ⇒ ∆
Γ ⇒ ∆, ϕ,Λ Σ ⇒ ∆, ψ,Λ (R⊗)Γ,Σ ⇒ ∆, ϕ⊗ ψ,Λ

The non-commutative implications rules:

Γ ⇒ ϕ Π, ψ,Σ ⇒ ∆ (L/)Π, ψ/ϕ,Γ,Σ ⇒ ∆
Γ, ϕ ⇒ ψ (R/)Γ ⇒ ψ/ϕ

Γ ⇒ ϕ Π, ψ,Σ ⇒ ∆ (L\)Π,Γ, ϕ \ ψ,Σ ⇒ ∆
ϕ,Γ ⇒ ψ (R\)Γ ⇒ ϕ \ ψ
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The commutative implication rules:

Γ ⇒ ϕ,Λ Π, ψ,Σ ⇒ ∆ (L →)Π, ϕ → ψ,Γ,Σ ⇒ ∆,Λ
Γ, ϕ ⇒ ψ,∆ (R →)Γ ⇒ ϕ → ψ,∆

Using these rules, we define two families of sequent-style systems in the fol-
lowing. By a single-conclusion sequent we mean the succedent of the sequent is
empty or there is at most one formula. Otherwise, we call it multi-conclusion. Let
(e), (c), (i), (o), and (w) = (i+o) stand for exchange, contraction, left-weakening,
right-weakening and weakening, respectively:

Single-conclusion. By a single-conclusion version of any of the the aforemen-
tioned rules, we mean one of its instances where both the premisses and the
conclusion sequents are single-conclusion. Notice that the rules (Rc) and (Re) do
not have a single-conclusion instance. The meta-variables ∆ and Λ are schematic
variables to be replaced by the empty set or a single formula so that all the
sequents remain single-conclusion. For instance, in the rule (Rw) both ∆ and
Λ must be empty. We will use the convention that ⊗ more strongly than \
and /. The interpretation of any single-conclusion sequent Γ ⇒ ϕ is defined as
I(Γ ⇒ ϕ) = ⨂ Γ \ ϕ and for the sequent (Γ ⇒) as I(Γ ⇒) = ⨂ Γ \ 0, where by⨂ Γ for Γ = γ1, . . . , γn we mean γ1 ⊗ . . .⊗ γn, and for Γ = ∅, we have ⨂ Γ = 1.
Set L⊗ = {∧,∨,⊗, \, /, 1, 0}. For any S ⊆ {e, i, o, c}, define FLS over the lan-
guage L⊗ as the system consisting of the single-conclusion version of the previous
rules except for: the commutative implication rules, the structural rules out of
the set S, and the initial sequents for ⊥ and ⊤. Define FL⊥ over the language
L⊗ ∪ {⊥} as FL with the initial sequent for ⊥. Figure 4.2.1, which is adapted
from [14], shows the relationship between these sequent calculi. Moreover, define
the system weak Lambek, denoted by WL, over the language {1,⊥,∧,∨,⊗, \}
similar to FL⊥, excluding the following rules: (L/), (R/), and (L\). Some other
useful calculi are introduced in Table 4.1. For a sequent calculus S and a set of
sequents Γ by the notation S + Γ we mean the sequent calculus obtained from
adding the elements of Γ as initial sequents to S. By the notation ϕ ⇔ ψ we
mean both ϕ ⇒ ψ and ψ ⇒ ϕ. The formula ϕn is defined inductively. ϕ1 is ϕ
and by ϕn+1, we mean ϕ⊗ ϕn.

Table 4.1: Some sequent calculi with their definitions.
Logic Definition
RL FL + (0 ⇔ 1)

CyFL FL + (ϕ \ 0 ⇔ 0/ϕ)
DFL FL + (ϕ ∧ (ψ ∨ θ) ⇒ (ϕ ∧ ψ) ∨ (ϕ ∧ θ))
PnFL FL + (ϕn ⇔ ϕn+1)
psBL FLw + {(ϕ ∧ ψ ⇔ ϕ⊗ (ϕ \ ψ)), (ϕ ∧ ψ ⇔ (ψ/ϕ) ⊗ ϕ)}
DRL RL + (ϕ ∧ (ψ ∨ θ) ⇒ (ϕ ∧ ψ) ∨ (ϕ ∧ θ))
IRL RL + (ϕ ⇒ 1)
CRL RL + (ϕ⊗ ψ ⇔ ψ ⊗ ϕ)
GBH RL + {(ϕ ∧ ψ ⇔ ϕ⊗ (ϕ \ ψ)), (ϕ ∧ ψ ⇔ (ψ/ϕ) ⊗ ϕ)}

Br RL + (ϕ ∧ ψ ⇔ ϕ⊗ ψ)

87



Multi-conclusion. In the absence of the exchange rules, there are many pos-
sible ways to define the multi-conclusion rules for fusion and implications and
the systems are in some respects more difficult than the commutative case. In
this paper, we only consider the commutative case and hence we will use the
language {∧,∨,⊗,→, 0, 1}, assuming only one implication. The interpretation of
any sequent Γ ⇒ ∆ is defined as I(Γ ⇒ ∆) = ⨂ Γ → ¬(⨂ ¬∆), where ¬ϕ is an
abbreviation for ϕ → 0.
Let S ⊆ {e, i, o, c} such that e ∈ S. By CFLS, we mean the system consisting of
the multi-conclusion version of the previous rules except for: the structural rules
out of the set S, the non-commutative implication rules, and the initial sequent
for ⊥. By CFLS

−, we mean CFLS without the cut rule.
For a sequent calculus S, proofs and provability of formulas are defined in the
usual way, and by its logic, S, we mean the set of provable formulas in it, i.e., all
formulas ϕ such that (⇒ ϕ) is provable in S.

Remark 4.2.1. Note that if e ∈ S, it is easy to show that in the system FLS the
two connectives ψ/ϕ and ϕ\ψ are provably equivalent and we can denote them by
the usual connective ϕ → ψ. Moreover, it is also possible to axiomatize the system
FLS over the language L⊗ − {/, \} ∪ {→}, using all the rules in FLS, replacing
the non-commutative implication rules with the commutative ones. Similarly, in
the sequent calculus FLecw, the formulas ϕ ⊗ ψ and ϕ ∧ ψ become equivalent
and 0 and 1 will be equivalent to ⊥ and ⊤, respectively. Hence, it is possible to
axiomatize FLecw over the language L = {∧,∨,→,⊤,⊥}, using all the initial
sequents and rules for the corresponding connectives. This is nothing but the
usual system LJ, for the intuitionistic logic, IPC. A similar type of argument
also applies on CFLS when e ∈ S and for CFLecw = LK, where LK is the
sequent calculus for the classical logic, CPC. Finally, it is worth mentioning that
the logic CFLe is essentially equivalent to the multiplicative additive linear logic,
MALL, introduced by Girard [15] and the logic FLe is known as its intuitionistic
version, called IMALL. CFLew is sometimes called the monoidal logic and CFLec
is essentially equivalent to the relevant logic R without the distributive law. For
more details, see [14].

The sequent calculi FLS and CFLS enjoy cut elimination. This fact has been
shown independently by several authors. For instance, see [15], [29], and [33].

Definition 4.2.2. We say a formula ϕ is provable from a set of formulas Γ in
the logic FL and we write it as Γ ⊢FL ϕ when the sequent ⇒ ϕ is provable in
the sequent calculus FL by adding all ⇒ γ for γ ∈ Γ as initial sequents, i.e.,
{⇒ γ}γ∈Γ ⊢FL⇒ ϕ. When Γ is the empty set we sometimes write FL ⊢ ϕ for
⊢FL ϕ.

We will use a similar convention that for S a logic or a proof system or a
sequent calculus, ⊢S ϕ and S ⊢ ϕ are used interchangeably.
If the sequent ϕ1, . . . , ϕn ⇒ ψ is provable in the sequent calculus FL, then we
have {ϕ1, . . . , ϕn} ⊢FL ψ. However, the converse, which is the deduction theorem,
does not hold. In fact, unlike the classical and intuitionistic logics, most other
substructural logics, including FL, do not have a deduction theorem. We will see
in Theorem 4.2.5 that only a restricted version of the deduction theorem (called
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FL

FLcFLeFLoFLi

FLw FLei FLeo FLco FLec

FLew FLci = FLeci FLeco

FLcw = FLecw = LJ

Figure 4.1: Basic substructural calculi

parametrized local deduction theorem) holds for ⊢FL. However, note that by def-
inition for a formula ϕ we have ⊢FL ϕ if and only if ⇒ ϕ is provable in the sequent
calculus FL.

So far, we have defined some basic substructural logics with their sequent
calculi. Now, it is a good point to introduce a substructural logic in a general
sense. From now on, when no confusion occurs, we will write the fusion ϕ⊗ψ as
ϕψ.

Definition 4.2.3. Let L be a set of L⊗-formulas. L is a substructural logic (over
FL) if it is closed under substitution and satisfies the following conditions:

(i) L includes all formulas in FL,

(ii) if ϕ, ψ ∈ L, then ϕ ∧ ψ ∈ L,

(iii) if ϕ, ϕ \ ψ ∈ L, then ϕ ∈ L,

(iv) if ϕ ∈ L and ψ is an arbitrary formula, then ψ \ ϕψ, ψϕ/ψ ∈ L.

For a set of formulas Γ ∪ {ϕ}, define Γ ⊢L ϕ as Γ ∪ L ⊢FL ϕ. We have ⊢L ϕ is
equivalent to ϕ ∈ L.

When L is the logic FL, then ⊢FL defined above will be the same as the one
defined in Definition 4.2.2. Therefore, there will be no ambiguity. As a corollary
of Theorem [14, 2.16], it is shown that the above definition can be replaced by
the following: a substructural logic over FL is a set of formulas closed under both
substitution and ⊢FL.
It is easy to see that for any subset S of {e, i, o, c}, the logic FLS is a substructural
logic. We can see that if ⊢FLS Γ ⇒ ϕ, then Γ ⊢FLS ϕ. This can be easily shown
since we can simulate each rule in {e, i, o, c} by the corresponding axiom below
and using the cut rule:

(e) : (ϕ⊗ ψ) \ (ψ ⊗ ϕ) , (c) : ϕ \ (ϕ⊗ ϕ) , (i) : ϕ \ 1 , (o) : 0 \ ϕ
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Moreover, note that for all the sequent calculi in Table 4.1, the sequent calcu-
lus FL is present and hence all their corresponding logics are closed under the
conditions in Definition 4.2.3. Therefore, they are substructural logics.

Definition 4.2.4. Let ϕ and α be formulas. Define

λα(ϕ) = (α \ (ϕα)) ∧ 1 and ρα(ϕ) = ((αϕ)/α) ∧ 1.

We call λα(ϕ) and ρα(ϕ) the left and right conjugate of ϕ with respect to α,
respectively. An iterated conjugate of ϕ is a composition γα1(γα2(. . . γαn(ϕ))), for
formulas α1, . . . , αn where n ≥ 0 and γαi

∈ {λαi
, ραi

}.

It can be easily shown ([14, Lemma 2.13.]) that if a sequent Γ, α, β,Σ ⇒ ϕ is
provable in FL, then the following sequents are also provable in FL:

Γ, β, λβ(α),Σ ⇒ ϕ and Γ, ρα(β), α,Σ ⇒ ϕ.

The following theorem states the parametrized local deduction theorem for FL.

Theorem 4.2.5. [14, Theorem 2.14.] Let L be a substructural logic and Φ ∪ Ψ ∪
{ϕ} be a set of formulas. Then,

Φ,Ψ ⊢L ϕ iff Φ ⊢L (
n⨂

i=1
γi(ψi)) \ ϕ

for some n, where each γi(ψi) is an iterated conjugate of a formula ψi ∈ Ψ.

Remark 4.2.6. Note that the definition of ⊢L in Definition 4.2.3 depends on the
sequent calculus FL and not the mere logic FL. The reason is that ⊢FL, which
is defined in Definition 4.2.2, uses the sequent calculus FL. It is possible to use
Theorem 4.2.5 to provide the following proof system-independent definition of ⊢L:

Γ ⊢L ϕ iff (
n⨂

i=1
γi(Ai)) \ ϕ ∈ L iff (

m⨂
i=1

γi(Bi)) \ ϕ ∈ FL

for some n and m and some Ai ∈ Γ and Bi ∈ Γ ∪ {L}.

4.2.2 Super-basic logics
In [44], Visser introduced basic propositional logic, BPC, and formal proposi-
tional logic, FPL, to interpret implication as formal provability. In [41], Ruiten-
berg reintroduced BPC via philosophical reasons and produced its predicate ver-
sion, BQC. In the following, we present the sequent calculus introduced in [4]
for the logic BPC, denoted by BPC. It was shown that this proof system is
complete with respect to transitive persistent Kripke models. Since formulas
(A → (A → B)) → (A → B) and (A → (B → C)) → (B → (A → C))
are not always true in transitive models (the former formula corresponds to the
contraction rule and the latter to the exchange rule), one may view BPC as a
substructural logic. In this logic modus ponens is weakened and hence BPC is
weaker than the intuitionistic logic. BPC is also connected with the modal logic
K4 via Gödel’s translation T , as shown in [44].
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The language of BPC is L = {∧,∨,⊤,⊥,→} and negation is defined as the
abbreviation for ¬ϕ = ϕ → ⊥. In this subsection capital Greek letters denote
(possibly empty) multisets of L-formulas. By Γ, ϕ or ϕ,Γ, we mean the multiset
Γ ∪ {ϕ}. Sequents of BPC are of the same form of the sequents of LK and they
are interpreted in the same way, i.e., I(Γ ⇒ ∆) = ⋀ Γ → ⋁ ∆ where ⋀ ∅ = ⊤ and⋁ ∅ = ⊥. The initial sequent and rules of BPC are as follows:

Γ, ϕ ⇒ ϕ,∆ Γ ⇒ ⊤,∆ Γ,⊥ ⇒ ∆

ϕ, ψ,Γ ⇒ ∆ (L∧)
ϕ ∧ ψ,Γ ⇒ ∆

Γ ⇒ ∆, ϕ Γ ⇒ ∆, ψ (R∧)Γ ⇒ ∆, ϕ ∧ ψ

ϕ,Γ ⇒ ∆ ψ,Γ ⇒ ∆ (L∨)
ϕ ∨ ψ,Γ ⇒ ∆

Γ ⇒ ∆, ϕ, ψ (R∨)Γ ⇒ ∆, ϕ ∨ ψ

ϕ,Γ ⇒ ψ (R →)Γ ⇒ ∆, ϕ → ψ

ϕ ∧ ψ,Γ ⇒ ∆ ϕ ∧ θ,Γ ⇒ ∆ (D)
ϕ ∧ (ψ ∨ θ),Γ ⇒ ∆

Γ ⇒ ϕ → ψ Γ ⇒ ψ → θ (Tr)Γ ⇒ ∆, ϕ → θ

Γ ⇒ ϕ → ψ Γ ⇒ ϕ → θ (F∧)Γ ⇒ ∆, ϕ → (ψ ∧ θ)
Γ ⇒ ϕ → θ Γ ⇒ ψ → θ (F∨)Γ ⇒ ∆, (ϕ ∨ ψ) → θ

Γ ⇒ ϕ,∆ Σ, ϕ ⇒ Λ (cut)Γ,Σ ⇒ ∆,Λ

Note that since we are assuming multisets of formulas, in this proof system the
exchange rules are built in. Moreover, the left and right weakening and contrac-
tion rules are admissible in this proof system and it enjoys the cut elimination
(see [4] Lemma 2.2, Lemma 2.12, Lemma 2.14, and Theorem 2.17, respectively).
It can be easily seen that if BPC ⊢⇒ ϕ and BPC ⊢⇒ ϕ → ψ then since BPC
enjoys cut elimination we also have BPC ⊢ ϕ ⇒ ψ. Then using the cut rule
we have BPC ⊢⇒ ψ, which means that the modus ponens rule is admissible in
BPC.
An extension of BPC augmented by the axiom ⊤ → ⊥ ⇒ ⊥ is given in [5],
denoted by EBPC. It is shown that this proof system is complete with respect
to transitive persistent Kripke models that are serial [5]. Logic of the sequent
calculus BPC is defined as the set of all formulas ϕ such that BPC ⊢ (⇒ ϕ),
and is denoted by BPC. In a similar way, we can define the logic of the sequent
calculus EBPC which we denote by EBPC. It is shown that BPC ⫋ EBPC ⫋ IPC
[5].

Definition 4.2.7. We say a formula ϕ is provable from a set of formulas Γ in
the logic BPC and we write it as Γ ⊢BPC ϕ when the sequent ⇒ ϕ is provable in
the sequent calculus BPC by adding all ⇒ γ for γ ∈ Γ as initial sequents.

Remark 4.2.8. Note that although the modus ponens rule in the form

Γ ⇒ ϕ Γ ⇒ ϕ → ψ

Γ ⇒ ψ
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is neither present nor admissible in the sequent calculus BPC, a simplified version
of it, when Γ is the empty sequence, is admissible (but not provable) in BPC,
namely

⇒ ϕ ⇒ ϕ → ψ

⇒ ψ

Therefore, the logic BPC admits the modus ponens rule, i.e., if ϕ ∈ BPC and
ϕ → ψ ∈ BPC, then ψ ∈ BPC. The reason is that if ϕ → ψ ∈ BPC then BPC ⊢
(⇒ ϕ → ψ). By cut elimination, there exists a cut-free proof of (⇒ ϕ → ψ)
in BPC. Then by induction on the structure of this cut-free proof we can show
that BPC ⊢ ϕ ⇒ ψ. Finally, since ϕ ∈ BPC, we have BPC ⊢ (⇒ ϕ), and
then using the cut rule we get BPC ⊢ (⇒ ψ) which means ψ ∈ BPC. However,
we have ⇒ ϕ,⇒ ϕ → ψ ⊬BPC⇒ ψ, which means modus ponens is not provable
in BPC. The same property also holds for the logic EBPC. The proof is an
easy consequence of the completeness of EBPC with respect to serial transitive
persistent Kripke models.

Definition 4.2.9. Let L be a set of L-formulas. L is a super-basic logic (over
BPC) if it is closed under substitution and satisfies the following conditions:

(i) L includes all formulas in BPC,

(ii) if ϕ, ϕ → ψ ∈ L, then ϕ ∈ L.

For a set of formulas Γ ∪ {ϕ}, define Γ ⊢L ϕ as Γ ∪ L ⊢BPC ϕ.

Note that ⊢L ϕ is equivalent to ϕ ∈ L. One direction is obvious; if ϕ ∈ L then
⊢L ϕ. For the other direction, we will prove a stronger result that if Γ ⊢L ϕ then⋀ Γ → ϕ ∈ L. This can be proved using induction on the structure of the proof.
For this matter, we transform every rule of BPC into a BPC-provable formula.
To complete the proof of the other direction, since ⋀ Γ = ⊤ for Γ = ∅, we have
⊤ → ϕ ∈ L, which by modus ponens implies ϕ ∈ L.

As an example, using Remark 4.2.8, both BPC and EBPC are super-basic
logics. Moreover, super-intuitionistic logics (changing the first condition by in-
cluding all formulas in IPC) are also super-basic, since BPC ⊂ IPC and they are
closed under modus ponens.

For a logic L and a set of formulas Γ, by L + Γ we mean the smallest logic
containing L and all the substitutions of formulas in Γ. We can define Jankov’s
logic, KC, as follows: it is the smallest logic containing IPC and the weak excluded
middle formula, i.e., KC = IPC + ¬p∨ ¬¬p. The condition on the Kripke models
for this logic is being directed. The axioms BDn are defined in the following way:

BD0 := ⊥ , BDn+1 := pn ∨ (pn → BDn).

The logic of bounded depth BDn is then defined as IPC+BDn. Define logic Tk as

IPC +
k⋀

i=0
((pi →

⋁
j ̸=i

pj) →
⋁
j

pj) →
⋁
i

pi.
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A super-intuitionistic logic L has branching k if Tk ⊆ L. We say a super-
intuitionistic logic L has finite branching if there exists a number k such that L has
branching less than or equal to k, otherwise we call it infinite branching. We will
not use the following theorem by Jeřábek in our future discussions. However, it is
worth mentioning since it presents a nice characterization of super-intuitionistic
infinite branching logics.

Theorem 4.2.10. [25, Theorem 6.9] Let L be a super-intuitionistic logic. Then,
L has infinite branching if and only if L ⊆ BD2 or L ⊆ KC + BD3.

4.3 Frege and extended Frege systems
The purpose of this section is to introduce Frege and extended Frege systems for
substructural and super-basic logics. For that matter, we will recall or generalize
some basic concepts in proof complexity. For more background the reader may
consult [28].

Definition 4.3.11. Let L be a set of finite strings over a finite alphabet. A
(propositional) proof system for L is a polynomial-time function P with the range
L. Any string π such that P(π) = ϕ is a P-proof of the string ϕ, sometimes
written as P ⊢π ϕ. We denote proof systems by bold-face capital Roman letters.

By length of a formula ϕ, or a proof π, we mean the number of symbols it
contains and we denote it by |ϕ| and |π|, respectively. We usually consider proof
systems for a logic L. The usual Hilbert-style systems with finitely many axiom
schemes and Gentzen’s sequent calculi are instances of propositional proof sys-
tems, because they are complete and in polynomial time one can decide whether
a finite string is a proof in the system or not.

Definition 4.3.12. Let P and Q be two proof systems with the languages LP
and LQ, respectively. Let tr be a polynomial-time translation function from the
strings in the language LP to the strings in the language LQ. We will denote it
by tr : LP → LQ.
We say that the proof system Q simulates the proof system P (or P is simulated
by Q, or Q is at least as strong as P) with respect to tr, if there is a function
f such that Q(f(π)) = tr(P(π)) and we denote it by P ≤tr Q. We say that
the proof system Q polynomially simulates (p-simulates) the proof system P (or
P is polynomially simulated by Q) with respect to tr, if the function f is also
polynomially bounded in length, i.e., there exists a polynomial q(n) such that
|f(π)| ≤ q(|π|). We denote this reduction by P ≤tr

p Q.
In the simpler case that LP ⊆ LQ and the translation function is the inclusion
function, we say Q simulates (p-simulates) P and denote it by P ≤ Q (P ≤p Q).
If LP = LQ and the translation function is the identity function, we say that
the proof system P and Q are polynomially equivalent when they p-simulate each
other.
Finally, in a similar manner, for two logics L and M and a translation function
tr : LL → LM, by L ⊆tr M, we mean that for any ϕ ∈ LL, if ϕ ∈ L then tr(ϕ) ∈ M.

Note that if we take L = CPC to be the range of both proof systems P and
Q, and let the translation function tr to be the identity function, we reach Cook
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and Reckhow’s original definition of p-simulation in [11].

In the following we present a translation function t that enables us to carry
out results in systems with the language L to systems with the language L⊗.
This translation function is nothing but bringing back the structural rules:

Definition 4.3.13. Define the function t : L⊗ → L as follows:

• pt = p, where p is a propositional variable;

• 0t = ⊥, 1t = ⊤;

• (ϕ ◦ ψ)t = ϕt ◦ ψt, where ◦ ∈ {∧,∨};

• (ϕ⊗ ψ)t = ϕt ∧ ψt;

• (ψ/ϕ)t = (ϕ \ ψ)t = ϕt → ψt.

For Γ, a finite sequence of formulas γ1, γ2, . . . , γn, by Γt we mean the sequence of
formulas γt

1, γ
t
2 . . . , γ

t
n. It is easy to see that |ϕt| = |ϕ|.

The following lemma, which will be used in the future sections, is an example
of how the translation t works. It expresses the relation between sequents provable
in the sequent calculus WL and the translated version of the sequents in the
system BPC.

Lemma 4.3.14. Let Γ be a sequence of formulas and A be a formula. Then

WL ⊢ Γ ⇒ A implies BPC ⊢ Γt ⇒ At.

Proof. It can be shown by an easy induction on the structure of the proof. Note
that as mentioned earlier, the left contraction rule and both right and left weak-
ening rules are derivable in BPC and exchange rules are built in. As an example,
suppose the last rule in the proof of Γ ⇒ A is (R⊗):

Σ ⇒ ϕ Π ⇒ ψ

Σ,Π ⇒ ϕ⊗ ψ

By induction hypothesis we have BPC ⊢ Σt ⇒ ϕt and BPC ⊢ Πt ⇒ ψt. Since
the left weakening rule is admissible in BPC, we can have both BPC ⊢ Σt,Πt ⇒
ϕt and BPC ⊢ Σt,Πt ⇒ ψt. Using the rule (R∧) we obtain BPC ⊢ Σt,Πt ⇒
ϕt ∧ ψt, which is what we wanted.

Remark 4.3.15. For any substructural logic L and any super-intuitionistic logic
M, it is easy to see that L ⊆t M implies the stronger form:

ϕ1, . . . , ϕn ⊢L ϕ implies ϕt
1, . . . , ϕ

t
n ⊢M ϕt.

The reason lies in the definition of ⊢L and ⊢M. The proof is similar to the proof
of Lemma 4.3.14.

In the following we will define Frege and extended Frege systems for substruc-
tural and super-basic logics.

Definition 4.3.16. An inference system P is defined by a set of rules of the form
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ϕ1 . . . ϕm

ϕ

where ϕi and ϕ are formulas. ϕi’s are called the premises and ϕ the conclusion.
A rule with no premise is called an axiom. A P-proof, π, of a formula ϕ from
a set of formulas X is defined as a sequence of formulas ϕ1, . . . , ϕn = ϕ, where
ϕi ∈ X or ϕi is obtained by substituting some ϕj’s, j < i, in a rule of the system
P. If the set X is empty, then we say that the formula ϕ is provable in P. Each
ϕi is called a step or a line in the proof π. The number of lines of a proof π
is denoted by λ(π) and it is clear that it is less than or equal to the length of
the proof (the number of symbols in the proof). The set of all provable formulas
in P is called its logic. If there is a P-proof for ϕ from assumptions ϕ1, . . . , ϕn,
we write ϕ1, . . . , ϕn ⊢P ϕ. Specially, for every rule of the above form we have
ϕ1, . . . , ϕm ⊢P ϕ. Finally, the number of lines of the proof π is defined as the
number of formulas in the proof π.

Definition 4.3.17. In a sequent calculus a line in a proof is a sequent of the form
Γ ⇒ ∆. We denote the number of proof-lines in a proof π in a sequent calculus
by λ(π), as in an inference systems. It is obvious that the number of proof-lines
of a sequent is less than or equal to the length of the proof.

There are two measures for the complexity of proofs in proof systems. The
first one is the length of the proof and the other is the number of proof steps (also
called proof-lines). This only makes sense for proof systems in which the proofs
consist of lines containing formulas or sequents. Hilbert-style proof systems,
Gentzen’s sequent calculi, and Frege systems are examples of such proof systems.

Definition 4.3.18. Let L and M be two substructural or two super-basic logics
such that L ⊆ M. The inference system P is called a Frege system for L with
respect to M, for short an L − F system wrt M, if it satisfies the following condi-
tions:

(1) P has finitely many rules,

(2) P is sound: if ⊢P ϕ, then ϕ ∈ L,

(3) P is strongly complete: if ϕ1, . . . , ϕn ⊢L ϕ, then ϕ1, . . . , ϕn ⊢P ϕ.

(4) every rule in P is M-standard: if ϕ1 . . . ϕm

ϕ
is a rule in P, then

ϕ1, . . . , ϕm ⊢M ϕ.

In the case that L = M, we simply call this system a Frege system for L.

Here are some remarks. It is easy to see that any Frege system P for L wrt
M has the property that if ϕ1, . . . , ϕn ⊢P ϕ, then ϕ1, . . . , ϕn ⊢M ϕ. This can be
shown using induction on the structure of the proof and the condition 4. For a
substructural logic L, we will only consider Frege systems for L wrt L, i.e., M = L.
For S a subset of {e, i, o, c}, the Hilbert-style proof system HFLS is an example
of a Frege system for the basic substructural logic FLS (see [14, Section 2.5]). The
usual Hilbert-style systems for classical and intuitionistic logics, HK and HJ, are
also examples of Frege systems for CPC and IPC, respectively; see [14, Sections
1.3.1 and 1.3.3].
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Usually, a Frege system for a logic L is defined by some L-standard rules in the
sense of the condition (4) in Definition 4.3.18. This condition is useful to establish
the uniqueness of these systems up to p-equivalence (see 4.3.21). However, in this
paper we generalize the usual definition to add another and possibly stronger
logic M as a parameter to control the derivability of the rules. The logic M is
not necessarily equal to L. The reason for this choice is the somehow strange
behaviour of some Hilbert-style proof systems for some super-basic logics. For
instance, any natural Hilbert-style system for BPC includes the modus pones rule.
(See for instance Theorem 4.3.19 below). While this rule is admissible in BPC and
hence harmless to the soundness of the system, it can not be derivable inside the
logic BPC itself, i.e, ϕ, ϕ → ψ ⊬BPC ψ. Therefore, the modus ponens rule violates
the BPC-standradness condition. To address such systems, it may be reasonable
to relax the BPC-standardness condition a bit to also include the modus ponense
rule. The smallest logic containing BPC and modus ponens is IPC and hence we
have to pick M = IPC as our controlling parameter. Although this choice of
definition may seem a bit artificial, it actually serves our goal better than the
usual systems. The aim of the present paper is establishing a lower bound for
any possible Frege system for some classes of logics and addressing a larger class
of Frege systems with a possibly stronger parameters M is admittedly a stronger
result. Moreover, later in the last section we will even use the mentioned strange
system for BPC to provide a lower bound for the usual natural sequent-style
proof system for BPC. Therefore, investigating this larger class of systems is
both strengthening and useful.

Theorem 4.3.19. There exists a Frege system P for BPC wrt IPC such that for
Γ and ∆ sequences of formulas γ1, . . . , γm, and δ1, . . . , δn, if BPC ⊢π Γ ⇒ ∆
then

P ⊢π′
m⋀

i=1
γi →

n⋁
j=1

δj

and λ(π′) = λ(π).

Proof. Consider the sequent calculus BPC. Recall that for any sequent S = Γ ⇒
∆, the formula I(S) is defined as ⋀ Γ → ⋁ ∆, and if Γ = ∅ then ⊤ → ⋁ ∆ and
if ∆ = ∅ then ⋀ Γ → ⊥. Define a system P for BPC as the following. For any
initial sequent T of BPC add I(T ) to P, and for any rule of the form

T1 . . . Tm

T

in BPC add the following rule to P
I(T1) . . . I(Tm)

I(T )
Moreover, add the following two rules to P:

ϕ ϕ → ψ (mp)
ψ

ϕ ψ (adj)
ϕ ∧ ψ

We will prove that P is a Frege system for BPC wrt IPC. We have to check all the
conditions of Definition 4.3.18. First, it is an inference system with finitely many
rules. Second, we have to show that P is sound, i.e., if P ⊢ ϕ then ϕ ∈ BPC.
This can be proved using induction on the structure of the proof. As an example,
suppose the last rule used in the proof is
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γ → (ϕ → ψ) γ → (ψ → θ)
γ → (δ ∨ (ϕ → θ))

By IH, γ → (ϕ → ψ) ∈ BPC and γ → (ψ → θ) ∈ BPC. Therefore, BPC ⊢⇒ γ →
(ϕ → ψ) and BPC ⊢⇒ γ → (ψ → θ). Since the cut elimination theorem holds
in BPC, we obtain BPC ⊢ γ ⇒ (ϕ → ψ) and BPC ⊢ γ ⇒ (ψ → θ). Using the
rule (Tr) in BPC we get BPC ⊢ (γ ⇒ δ, ϕ → θ) which implies BPC ⊢⇒ γ →
(δ ∨ (ϕ → θ)) by the rules (R∨) and (R →), hence γ → (δ ∨ (ϕ → θ)) ∈ BPC.
The cases for the other rules are similar.
Third, we have to show that P is strongly complete, i.e., if ϕ1, . . . , ϕn ⊢BPC ϕ,
then ϕ1, . . . , ϕn ⊢P ϕ. It can be derived by showing the following:

• If Γ ⊢BPC A then BPC ⊢ Γ ⇒ A;

• if BPC ⊢ Γ ⇒ ∆ then P ⊢ ⋀ Γ → ⋁ ∆;

• ϕ1, . . . , ϕn ⊢P
⋀n

i=1 ϕi.

The sketch of the proof for each follows.

• Observe that each rule in BPC has a context on the antecedent of the
premises and the conclusion. Therefore, for every rule of the form

Γ1 ⇒ ∆1 . . . Γn ⇒ ∆n

Γ ⇒ ∆

the following is also a rule in BPC

Σ,Γ1 ⇒ ∆1 . . . Σ,Γn ⇒ ∆n

Σ,Γ ⇒ ∆

It means that if we add a context Σ to the antecedents of all sequents in
a proof, the result is also a proof in BPC. Now, suppose Γ ⊢BPC A where
Γ = γ1, . . . , γn. Therefore, there exists a proof for ⇒ A with ⇒ γ1, . . . ,⇒ γn

as initial sequents in BPC. Based on the observation, we can add Γ to the
antecedent of each sequent in the proof and get a proof for Γ ⇒ A in
BPC from the initial sequents Γ ⇒ γ1, . . . ,Γ ⇒ γn. However, these initial
sequents are instances of the initial sequent in BPC and hence we get
⊢BPC Γ ⇒ A.

• It can be easily derived using induction on the structure of the proof. Sup-
pose the premises of a rule are of the form Γ1 ⇒ ∆1 and Γ2 ⇒ ∆2 and the
conclusion Γ ⇒ ∆. Then by IH we get P ⊢ ⋀ Γ1 → ⋁ ∆1 and P ⊢ ⋀ Γ2 →⋁ ∆2. Using the corresponding rule in P we get P ⊢ ⋀ Γ → ⋁ ∆.

• This can be derived using the rule (adj) in P for n− 1 times.

Then, using these facts, we get ϕ1, . . . , ϕn ⊢P
⋀n

i=1 ϕi and ⊢P
⋀n

i=1 ϕi → ϕ. Using
the modus ponens rule we get ϕ1, . . . , ϕn ⊢P ϕ. Note that if ⊢BPC⇒ ϕ we obtain
⊢P ⊤ → ϕ and by modus ponens we get ⊢P ϕ.
Finally, we have to show that each rule in P is IPC-standard. Let us investigate
the following rule of P, which corresponds to the rule (F∨) in BPC, as an
example.
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γ → (ϕ → θ) γ → (ψ → θ)
γ → (δ ∨ (ϕ ∨ ψ → θ))

We have to show γ → (ϕ → θ), γ → (ψ → θ) ⊢IPC γ → (δ ∨ (ϕ ∨ ψ → θ)). By
definition, we have to show

⇒ γ → (ϕ → θ),⇒ γ → (ψ → θ) ⊢LJ⇒ γ → (δ ∨ (ϕ ∨ ψ → θ)).

However, for any formulas A and B we have ⊢LJ A,A → B ⇒ B. Using this
fact, the premises will become γ, ϕ ⇒ θ and γ, ψ ⇒ θ. And then, we easily get
the conclusion in LJ. In a similar manner, all the other rules of P, and especially
the rule (mp), are IPC-standard.
So far, we proved P is a Frege system for BPC wrt IPC. Let π = T1, . . . , Tn =
(Γ ⇒ ∆) be a proof in BPC written in a linear fashion. Then it is enough to
take π′ as I(T1), . . . , I(Tn) = I(Γ ⇒ ∆). The new proof π′ is a proof in P, since
P is defined by imitating the rules of BPC.

Definition 4.3.20. An extended Frege system for a substructural logic L is a
Frege system for L together with the extension axiom which allows formulas of
the form p ≡ ϕ := (p \ ϕ ∧ ϕ \ p) to be added to a derivation with the following
conditions: p is a new variable not occurring in ϕ, in any lines before p ≡ ϕ, or in
any hypotheses to the derivation. It can however appear in later lines, but not in
the last line. An extended Frege system for a super-basic logic L wrt M is defined
similarly, where L ⊆ M, with the extension axiom being p ≡ ϕ := (p → ϕ∧ϕ → p).

It is easy to check that the definition of equivalence introduced in Definition
4.3.20 is closed under substitution, i.e., if A ≡ B then for any formula ϕ(p, q̄) we
have ϕ(A, q̄) ≡ ϕ(B, q̄).

Lemma 4.3.21. For any two Frege system P and Q for a substructural logic L,
there exists a number c such that for any formula ϕ and any proof π, there exists
a proof π′ such that

P ⊢π ϕ implies Q ⊢π′
ϕ

and λ(π′) ≤ cλ(π). In the case that P and Q are extended Frege systems, they
are polynomially equivalent.

Proof. The proof is easy and originally shown in [11]. The reason is that any
instance of a rule in P can be replaced by its proof in Q, which has a fixed
number of lines. Take c as the largest number of proof-lines of these proofs. Since
there are finite many rules in P, finding c is possible. Therefore, λ(π′) ≤ cλ(π).
A similar argument also works for the lengths of the proofs when P and Q are
extended Frege systems.

As a result of Lemma 4.3.21, since we are concerned with the number of
proof-lines and lengths of proofs, we can talk about “the” Frege (extended Frege)
system for the substructural logic L and denote it by L − F (L − EF). Note
that Lemma 4.3.21 cannot be proved for any two Frege systems for L wrt M for
super-basic logics L ⊆ M. For this to hold, we need an L − F system wrt M to be
strongly sound, i.e., if ϕ1, . . . , ϕn ⊢P ϕ then ϕ1, . . . , ϕn ⊢L ϕ, which does not hold
because of the condition 4 in Definition 4.3.18.
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Definition 4.3.22. A proof in a Frege (extended Frege, Hilbert-style, Gentzen-
style) system is called tree-like if every step of the proof is used at most once
as a hypothesis of a rule in the proof. It is called a general (or dag-like) proof,
otherwise.

In this paper we will not use this distinction, because throughout the paper
all the proofs are considered to be dag-like, which is the more general notion.

4.4 A descent into the substructural world
In this section, we will present a sequence of tautologies and then we show they
are exponentially hard for any system L − EF for any substructural and super-
basic logics. In order to do so, we first provide some sentences provable in the
weak system WL. This uniformly provides two sequence of formulas provable in
FL⊥ and BPC. In the case of FL⊥, since the system FL⊥ is conservative over
FL and the formulas we are interested in do not contain ⊥, we will automatically
have a proof in FL.

To provide tautologies in WL, we pursue the following strategy: First, using
the representations {⊥, 1} for true and false, we encode every binary evaluation
of an LK-formula by a suitable WL-proof. Then, using this encoding, we map a
certain fragment of LK into the system WL, without any essential change into
the original sequent. Finally, applying this map on a certain hard intuitionistic
tautology provides the intended hard WL-tautology that we are looking for.

Definition 4.4.23. Let v be a Boolean valuation assigning truth values {t, f} to
the propositional variables. For a formula A in the language L, by v(A) we mean
the Boolean valuation of A by v, defined in the usual way. The substitution σv

for a formula A is defined in the following way: if an atom is assigned “t” in the
valuation v, substitute 1 for this atom in A and if an atom is assigned “f” in v
then substitute ⊥ for this atom in A. We write Aσv for the formula obtained from
this substitution.

Lemma 4.4.24. For any formula A constructed from atoms and {∧,∨} and for
any valuation v we have

if v(A) = t, then WL ⊢ Aσv ⇔ 1,

if v(A) = f, then WL ⊢ Aσv ⇔ ⊥.

Proof. The proof is simple and uses induction on the structure of the formula A.
If it is an atom, then the claim is clear by the definition of Aσv . If A = B ∧ C
then if v(A) = t we have V (B) = v(C) = t. Therefore, by induction hypothesis
we have

WL ⊢ Bσv ⇔ 1 and WL ⊢ Cσv ⇔ 1

Using the following proof-trees in WL

1 ⇒ Bσv 1 ⇒ Cσv

R∧1 ⇒ Bσv ∧ Cσv

Bσv ⇒ 1 L∧1Bσv ∧ Cσv ⇒ 1
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we obtain WL ⊢ Bσv ∧ Cσv ⇔ 1, which is WL ⊢ Aσv ⇔ 1.
If A = B ∧ C and v(A) = f , then one of the following happens

v(B) = t, v(C) = f or v(B) = f, v(C) = t or v(B) = v(C) = f

We investigate the first case, the other cases are similar. If v(B) = t and v(C) =
f , by induction hypothesis we get

WL ⊢ Bσv ⇔ 1 and WL ⊢ Cσv ⇔ ⊥

Therefore, the following are provable in WL
Cσv ⇒ ⊥ (L∧2)

Bσv ∧ Cσv ⇒ ⊥ ⊥ ⇒ Bσv ∧ Cσv

where the right sequent is an instance of the axiom for ⊥. Hence, we get WL ⊢
Aσv ⇔ ⊥.
Finally, if A = B ∨ C, based on whether v(A) = t or v(A) = f we proceed as
before. All the cases are simple, therefore here we only investigate the case where
v(A) = v(B ∨ C) = t and v(B) = f and v(C) = t, as an example. Using the
induction hypothesis for B and C, consider the following proof-trees in WL:

1 ⇒ Cσv

(R∨2)1 ⇒ Bσv ∨ Cσv

Bσv ⇒ ⊥ ⊥ ⇒ 1 (cut)
Bσv ⇒ 1 Cσv ⇒ 1 (L∨)

Bσv ∨ Cσv ⇒ 1

The following theorem is our main tool in proving the lower bound and it
provides a method to convert classical tautologies to tautologies in WL.

Theorem 4.4.25. If ⋀
ij∈I pij

→ A(p̄) is a classical tautology, then we have

WL ⊢
k⨂

j=1
(pij

∧ 1) ⇒ A(p̄)

where A(p̄) is a formula only consisting of p̄ = p1, . . . , pn and connectives {∧,∨}
and I = {i1, . . . , ik} ⊆ {1, . . . , n}.

Proof. The theorem states that due to the commutativity of conjunction in clas-
sical logic, any order on the elements of I, i.e. the sequence i1, . . . , ik, can be used
and ⨂k

j=1(pij
∧ 1) ⇒ A(p̄) is provable in WL. However, the order must be fixed

throughout the proof.
Since ⋀

ij∈I pij
→ A(p̄) is a classical tautology, it will be true under any assignment

of truth values to the propositional variables, especially the valuation v assigning
truth to every pi, for i ∈ I, and falsity to the rest. It is easy to see that under this
valuation we have v(⋀

ij∈I pij
) = t and since we also have v(⋀

ij∈I pij
→ A(p̄)) = t

(because the formula is a classical tautology), we get as a result v(A) = t. There-
fore, using Lemma 4.4.24 we obtain WL ⊢ Aσv ⇔ 1 and since WL ⊢⇒ 1, using
the cut rule we get

WL ⊢⇒ Aσv (⋆)
On the other hand if we show

WL ⊢
k⨂

j=1
(pij

∧ 1), Aσv ⇒ A (†)
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then using the cut rule on the sequents in (⋆) and (†) we get

WL ⊢
k⨂

j=1
(pij

∧ 1) ⇒ A.

We will prove (†) by induction on the structure of the formula A. If A is equal
to pij

, for some j where ij ∈ I, then since v(pij
) = t, we have Aσv = pσv

ij
= 1.

Therefore, the following proof-tree represents a proof in WL:
pij

⇒ pij (L∧1)
pij

∧ 1 ⇒ pij (1w)
pij

∧ 1, 1 ⇒ pij (1w)1, pij
∧ 1, 1 ⇒ pij (L∧2)

pij−1 ∧ 1, pij
∧ 1, 1 ⇒ pij

...
pi1 ∧ 1, . . . , pij−1 ∧ 1, pij

∧ 1, . . . , pik
∧ 1, 1 ⇒ pij (L⊗)

pi1 ∧ 1 ⊗ pi2 ∧ 1, . . . , pij−1 ∧ 1, pij
∧ 1, . . . , pik

∧ 1, 1 ⇒ pij

...
(L⊗)⨂k

j=1(pij
∧ 1), 1 ⇒ pij

where the first vertical dots means using the rules (1w) and (L∧2) consecutively.
Note that based on the rule (1w), we can add 1 in any position on the left hand-
side of the sequents. Using this fact together with the rule (L∧2) we obtain all
formulas in the appropriate order. The second vertical dots represents applica-
tions of the rule (L⊗) consecutively until one reaches the conclusion. Therefore,
we have proved

WL ⊢
k⨂

j=1
(pij

∧ 1), Aσv ⇒ A.

The case where A = pij
where ij /∈ I is easier. Since for such j we have v(pij

) = f ,
using Lemma 4.4.24 we get WL ⊢ Aσv ⇔ ⊥. Using the initial sequent for ⊥ we
have WL ⊢ ⨂k

j=1(pij
∧ 1),⊥ ⇒ A and using the cut rule we get (†).

If A(p̄) = B(p̄) ∧C(p̄), and the induction hypothesis holds for B(p̄) and C(p̄),
i.e.,

WL ⊢
k⨂

j=1
(pij

∧ 1), Bσv ⇒ B , WL ⊢
k⨂

j=1
(pij

∧ 1), Cσv ⇒ C (‡)

then first using the rule (L∧1) for the left sequent and rule (L∧2) for the right
sequent, and then using the rule (R∧) we get

WL ⊢
k⨂

j=1
(pij

∧ 1), Bσv ∧ Cσv ⇒ B ∧ C.

If A(p̄) = B(p̄) ∨ C(p̄) then first using the rule (R∨1) for the left sequent in (‡)
and rule (R∨2) for the right sequent in (‡), and then using (L∨) we get

WL ⊢
k⨂

j=1
(pij

∧ 1), Bσv ∨ Cσv ⇒ B ∨ C.
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4.4.1 A brief digression into hard tautologies
The formulas we are going to introduce as our hard tautologies for the system
FL−EF and BPC−EF are inspired by the hard formulas for IPC−F introduced
by Hrubeš [21] and their negation-free version introduced by Jeřábek [25]. In this
subsection, we briefly explain these formulas and what combinatorial facts they
represent.

Let us first define formulas Cliquen,k and Colorn,m which will be used in
Hrubeš’s formulas.

Definition 4.4.26. [28, Section 13.5] Let n, k,m ≥ 1. By an undirected simple
graph on [n] we mean the set of strings of length

(
n
2

)
. We say a graph has a clique

when there exists a complete subgraph, which is a subgraph with all possible edges
among its vertices. Define Cliquen,k to be the set of undirected simple graphs on
[n] that have a clique of size at least k, and define Colorn,m to be the set of garphs
on [n] that are m-colorable, and they are defined by the following two sets.
The set of clauses denoted by Cliquek

n(p̄, q̄) uses
(

n
2

)
atoms pij, {i, j} ∈

(
n
2

)
, one

for each potential edge in a graph on [n], and k.n atoms qui intended to describe
a mapping from [k] to [n]. It consists of the following clauses:

• ⋁
i∈[n] qui, all u ≤ k,

• ¬qui ∨ ¬quj, all u ∈ [k] and i ̸= j ∈ [n],

• ¬qui ∨ ¬qvi, all u ̸= v ∈ [k] and i ∈ [n],

• ¬qui ∨ ¬qvj ∨ pij, all u ̸= v ∈ [k] and {i, j} ∈
(

n
2

)
.

The set of clauses Colorm
n (p̄, r̄) uses atoms p̄ and n.m more atoms ria where

i ∈ [n] and a ∈ [m], intended to describe an m-coloring of the graph. It consists
of the following clauses:

• ⋁
a∈[m] ria, all i ∈ [n],

• ¬ria ∨ ¬rib, all a ̸= b ∈ [m] and i ∈ [n],

• ¬ria ∨ ¬rja ∨ ¬pij, all a ∈ [m] and {i, j} ∈
(

n
2

)
.

Note that every occurrence of atoms pij in Cliquek
n(p̄, q̄) is positive, or in other

words it is monotone in p̄.

The exponential lower bound for intuitionistic logic is demonstrated in the
following theorem due to P. Hrubeš. The main idea is that any short proof for
the hard tautology provides a small monotone circuit to decide whether a given
graph is a clique or colorable, which we know is a hard problem to decide [3].

Theorem 4.4.27. [21] Let p̄ = p1, · · · , pn and q̄ = q1, · · · , qn and p̄, q̄, r̄, s̄ be
disjoint variables, v̄ = {p̄, q̄, r̄, s̄}, and k = ⌊

√
n⌋. Then the formulas

Θ⊥
n :=

⋀
i=1,··· ,n

(pi ∨ qi) → ¬Colork
n(p̄, s̄) ∨ ¬Cliquek+1

n (¬q̄, r̄)

are intuitionistic tautologies. Moreover, every IPC − F-proof of Θ⊥
n contains at

least 2Ω(n1/4) proof-lines.
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We refer to the formulas Θ⊥
n as Hrubeš’s formulas. The superscript ⊥ in Θ⊥

n

stresses that the formulas contain negations. For our purposes, we need to use a
negation-free version of Hrubeš’s formulas.

Definition 4.4.28. [25, Definition 6.28] For k ≤ n define:

αk
n(p̄, s̄, s̄′) :=

⋁
i<n

⋀
l<k

s′
i,l ∨

⋁
i,j<n

⋁
l<k

(si,l ∧ sj,l ∧ pi,j),

βk
n(q̄, r̄, r̄′) :=

⋁
l<k

⋀
i<n

r′
i,l ∨

⋁
i,j<n

⋁
l<m<k

(ri,l ∧ rj,m ∧ qi,j).

Define the negation-free Hrubeš formulas for k = ⌊
√
n⌋ as follows:

Θn :=
⋀
i,j

(pi,j∨qi,j) → [(
⋀
i,l

(si,l∨s′
i,l) → αk

n(p̄, s̄, s̄′))∨(
⋀
i,l

(ri,l∨r′
i,l) → βk+1

n (q̄, r̄, r̄′))].

Notice that Colork
n(p̄, s̄) = ¬αk

n(p̄, s̄,¬s̄) and Cliquek
n(p̄, r̄) = ¬βk

n(¬p̄, r̄,¬r̄). The
lower bound of Theorem 4.4.27 also applies to Θn [25].

To make Hrubeš’s formulas negation-free, Jeřábek introduced new proposi-
tional variables s′

i,l and r′
i,l to play the role of ¬si,l and ¬ri,l, respectively. This

trick provides some implication-free formulas αk
n and βk

n in the definition 4.4.28
to make the formulas Θn more amenable to the technique that we provided in
Section 4.4.

Theorem 4.4.29. ([25, Theorem 6.37]) Let L be a super-intuitionistic logic with
infinite branching. Then the formulas Θn are intuitionistic tautologies and they
require L − EF-proofs of length 2nΩ(1), and L − F-proofs with at least 2nΩ(1) lines.

4.4.2 Weak hard tautologies
The following lemmas are easy observations. The first one states that fusion
distributes over disjunction in substructural logics. The second one presents a
property of the sequent calculus LK.

Lemma 4.4.30. In the sequent calculus WL we have the following:

WL ⊢
n⨂

i=1
(Ai ∨Bi) ⇔

⋁
I

(
n⨂

i=1
DI

i )

where I ⊆ {1, 2, · · · , n} and DI
i =

{
Ai , i ∈ I
Bi , i /∈ I

.

Proof. The proof is easy and uses induction on n. Note that in each disjunct in
the right hand-side, DI

i is either Ai or Bi, according to the subset I. However,
the order of the subscripts must be increasing. For instance, for the case n = 2
we have

WL ⊢ (A1 ∨B1) ⊗ (A2 ∨B2) ⇔ (A1 ⊗B2) ∨ (A1 ⊗A2) ∨ (B1 ⊗A2) ∨ (B1 ⊗B2).
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Lemma 4.4.31. Suppose α1 → α2 and β1 → β2 have no propositional variables
in common. If the formula α1 ∧ α2 → β1 ∨ β2 is provable in LK, then either
α1 → α2 or β1 → β2 is provable in LK.

Proof. It is an easy corollary of Craig’s interpolation theorem.

We are now ready to formulate hard tautologies in WL and prove the lower
bound. By ⨂n−1

i=1
⨂n−1

j=1 Ai,j, we mean that the indices first range over j and then
over i, which will result in the lexicographic order, i.e., it has the following form

A1,1 ⊗ A1,2 ⊗ · · · ⊗ A1,n−1 ⊗ A2,1 ⊗ · · · ⊗ An−1,n−1.

For a set (sequence of formulas) Γ, by ∥ Γ ∥ we mean the number of elements of
the set (the number of formulas the sequence contains).

Theorem 4.4.32.

Θ⊗
n := [

n−1⨂
i=1

n−1⨂
j=1

((pi,j ∧ 1) ∨ (qi,j ∧ 1))] \

[
n−1⨂
i=1

k−1⨂
l=1

((si,l∧1)∨(s′
i,l∧1))\αk

n(p̄, s̄, s̄′)] ∨ [
n−1⨂
i=1

k−1⨂
l=1

((ri,l∧1)∨(r′
i,l∧1))\βk+1

n (q̄, r̄, r̄′)]

are provable in WL, where k = ⌊
√
n⌋.

Proof. Let us denote the following formula by A:

[
n−1⨂
i=1

k−1⨂
l=1

((si,l∧1)∨(s′
i,l∧1))\αk

n(p̄, s̄, s̄′)] ∨ [
n−1⨂
i=1

k−1⨂
l=1

((ri,l∧1)∨(r′
i,l∧1))\βk+1

n (q̄, r̄, r̄′)].

First, we show for any I ⊆ {(i, j) | i, j ∈ {1, · · · , n− 1}}

WL ⊢
n−1⨂
i=1

n−1⨂
j=1

QI
i,j ⇒ A (†)

such that Qi,j =
{
pi,j ∧ 1 , (i, j) ∈ I
qi,j ∧ 1 , (i, j) /∈ I

.

For simplicity from now on, unless specified otherwise, we will delete the ranges
of i, j and l, which are indicated in Θ⊗

n .
It is easy to see how proving (†) will result in proving the theorem. The reason
is the following. Since (†) is provable for any I ⊆ {(i, j) | i, j ∈ {1, · · · , n − 1}},
using the left disjunction rule for 2(n−1)2 − 1 many times on (†), we get

WL ⊢
⋁
I

⨂
i

⨂
j

QI
i,j ⇒ A.

Furthermore, Lemma 4.4.30 allows us to obtain

WL ⊢
⨂

i

⨂
j

((pi,j ∧ 1) ∨ (qi,j ∧ 1)) ⇒
⋁
I

⨂
i

⨂
j

QI
i,j,

and using the cut rule and the rule (R\), we conclude

WL ⊢⇒ Θ⊗
n .

104



On the other hand, Θn presented in Definition 4.4.28, is provable in LJ, and there-
fore also provable in LK. Using the distributivity of conjunction over disjunction
we obtain the following sequent⋀
(i,j)∈M

pi,j ∧
⋀

(i,j)∈N

qi,j ⇒ [
⋀
i,l

(si,l ∨s′
i,l) → αk

n(p̄, s̄, s̄′)]∨[
⋀
i,l

(ri,l ∨r′
i,l) → βk+1

n (q̄, r̄, r̄′)]

is provable in LK for any M and N such that M ∪N = {(i, j) | i, j ∈ {1, · · · , n−
1}}. For such M and N , using Lemma 4.4.31 we have either

LK ⊢
⋀

(i,j)∈M

pi,j ⇒ (
⋀
i,l

(si,l ∨ s′
i,l) → αk

n(p̄, s̄, s̄′)),

or
LK ⊢

⋀
(i,j)∈N

qi,j ⇒ (
⋀
i,l

(ri,l ∨ r′
i,l) → βk+1

n (q̄, r̄, r̄′)).

We consider the first case, the second one being similar. Therefore, suppose the
first case holds. Using the cut rule, we have

LK ⊢
⋀

(i,j)∈M

pi,j ,
⋀
i,l

(si,l ∨ s′
i,l) ⇒ αk

n(p̄, s̄, s̄′),

and using the left exchange rule we obtain

LK ⊢
⋀
i,l

(si,l ∨ s′
i,l) ,

⋀
(i,j)∈M

pi,j ⇒ αk
n(p̄, s̄, s̄′).

Now, using the distributivity of conjunction over disjunction in LK we have for
any U and V such that U ∪ V = {(i, l) | i < n, l < k}

LK ⊢ (
⋀

(i,l)∈U

si,l ∧
⋀

(i,l)∈V

s′
i,l) ,

⋀
(i,j)∈M

pi,j ⇒ αk
n(p̄, s̄, s̄′),

or equivalently (using the rules (L∧1), (L∧2), and left contraction),

LK ⊢
⋀

(i,l)∈U

si,l ∧
⋀

(i,l)∈V

s′
i,l ∧

⋀
(i,j)∈M

pi,j ⇒ αk
n(p̄, s̄, s̄′).

Now, using Theorem 4.4.25

WL ⊢ (
n−1⨂
i=1

k−1⨂
l=1

SU,V
i,l ) ⊗ (

⨂
(i,j)∈M

(pi,j ∧ 1)) ⇒ αk
n(p̄, s̄, s̄′),

where SU,V
i,l =

{
si,l ∧ 1 , (i, j) ∈ U
s′

i,l ∧ 1 , (i, j) ∈ V
.

Note that by Theorem 4.4.25, we can choose any order on ⨂
(i,j)∈M(pi,j ∧ 1)

provided we do not change it throughout the proof. Since the order is arbitrary,
for simplicity we do not explicitly write it down.
Equivalently (using the fact that for any formulas A and B, we have WL ⊢
A,B ⇒ A⊗B and then using the cut rule), we have

WL ⊢ (
n−1⨂
i=1

k−1⨂
l=1

SU,V
i,l ) , (

⨂
(i,j)∈M

(pi,j ∧ 1)) ⇒ αk
n(p̄, s̄, s̄′).
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Since this sequent is provable for any U and V such that U ∪ V = {(i, l) | i <
n, l < k}, using the left disjunction rule for 2(n−1)(k−1) − 1 many times we get

WL ⊢
⋁
U,V

(
n−1⨂
i=1

k−1⨂
l=1

SU,V
i,l ) , (

⨂
(i,j)∈M

(pi,j ∧ 1)) ⇒ αk
n(p̄, s̄, s̄′).

Using Theorem 4.4.30 and the cut rule we have

WL ⊢ [
⨂

i

⨂
l

((si,l ∧ 1) ∨ (s′
i,l ∧ 1))] , (

⨂
(i,j)∈M

(pi,j ∧ 1)) ⇒ αk
n(p̄, s̄, s̄′),

and using the rule (R\) we get

WL ⊢
⨂

(i,j)∈M

(pi,j ∧ 1) ⇒ [
⨂

i

⨂
l

((si,l ∧ 1) ∨ (s′
i,l ∧ 1))] \ αk

n(p̄, s̄, s̄′).

Now, using the rules (L1) and (L∧2) consecutively for ∥ N ∥-many times (each
time we produce qi,j ∧1 for each element of N , in the same manner as in the proof
of Theorem 4.4.25) and then using the rule (L⊗) for ∥ N ∥-many times and in
the end using the rule (R∨1) we prove (†).

Note that the formulas Θ⊗
n are provable for any choice of 1 ≤ k ≤ n, as well.

The reason for the restriction to k = ⌊
√
n⌋ is that we are only concerned with

this case, when it comes to the proof of the lower bound.

Remark 4.4.33. It is worth noting that the system WL could have been defined
in an alternative way by deleting / instead of \ from the language, and having the
same initial sequents and rules as FL and leaving the rules (R/), (L/), and (L\)
out. Then, in a similar manner, the following formulas would be provable in this
alternative calculus:

[αk
n/

n−1⨂
i=1

k−1⨂
l=1

((si,l ∧ 1) ∨ (s′
i,l ∧ 1))] ∨ [βk+1

n /
n−1⨂
i=1

k−1⨂
l=1

((ri,l ∧ 1) ∨ (r′
i,l ∧ 1))] /

[
n−1⨂
i=1

n−1⨂
j=1

((pi,j ∧ 1) ∨ (qi,j ∧ 1)].

where αk
n = αk

n(p̄, s̄, s̄′) and βk+1
n = βk+1

n (q̄, r̄, r̄′).

Now, we are ready to present tautologies in FL and BPC. It is easy to see that
the tautologies introduced in Theorem 4.4.32 are provable in basic substructural
logics.

Corollary 4.4.34. The formulas Θ⊗
n are provable in the logic FL.

Proof. Clearly, WL is a subsystem of the sequent calculus FL⊥. Then, using the
cut elimination theorem [14, Theorem 7.8] for FL⊥, and the fact that Θ⊗

n do not
contain ⊥, we obtain the result.

To provide tautologies in BPC, we need the translation function, t, defined in
Section 4.3.

Corollary 4.4.35. The formulas (Θ⊗
n )t are provable in BPC.

Proof. The provability of (Θ⊗
n )t is a consequence of Theorem 4.4.25 and Lemma

4.3.14.
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4.5 The main theorem
In this section we will present the main result of the paper. We will prove that
there exists an exponential lower bound on the lengths of proofs in proof systems
for a wide range of logics. Furthermore, we will obtain an exponential lower
bound on the number of proof-lines in a broad range of Frege systems.

Theorem 4.5.36. Let L be a super-intitionistic logic with infinite branching.

(i) Let P be a proof system for a logic with the language L⊗ such that FL ≤
P ≤t

p L−EF. Then P ⊢ Θ⊗
n and the length of any such proof is exponential

in n.

(ii) Let P be a proof system for a logic with the language L such that BPC ≤
P ≤p L − EF. Then P ⊢ (Θ⊗

n )t and the length of any such proof is expo-
nential in n.

Proof. (i) Since FL ⊢ Θ⊗
n by 4.4.32, and FL ≤ P, the formulas Θ⊗

n are also
provable in P. Take such a proof π, i.e., P ⊢π Θ⊗

n . Since P ≤t
p L − EF, there

exists a proof π1 and a polynomial p, such that L−EF ⊢π1 (Θ⊗
n )t and |π1| = p(|π|).

We want to prove L − EF ⊢ (Θ⊗
n )t → Θn by a proof whose length is polynomial

in n. First, since L is a super-intuitionistic logic, we have L − EF ⊢ u ∧ ⊤ ↔ u,
where u is any of the atoms present in the formulas Θn. This proof has a fix
number of proof-lines in L − EF. The claim then easily follows from the fact that
the length of the formula Θn is also polynomial in n. Therefore, Θn is provable in
L − EF with a proof polynomially long in n and π1. By 4.4.29, any L − EF-proof
of Θn has length at least 2Ω(n1/4). Therefore, the length of π must be exponential
in n.
(ii) The proof for this part is similar to that of (i). Here, the formulas (Θ⊗

n )t are
provable in BPC and hence in P. Since L − EF polynomially simulates P, we
obtain the exponential lower bound using the fact that L−EF ⊢ (Θ⊗

n )t → Θn.

The following theorem states an exponential lower bound on the number of
proof-lines in a wide range of Frege systems.

Theorem 4.5.37. Let M be a super-intitionistic logic with infinite branching.

(i) Let L be a logic with the language L⊗ such that FL ⊆ L ⊆t M. Then, the
number of lines of every proof of Θ⊗

n in L − F is exponential in n and every
proof of Θ⊗

n in L − EF has length exponential in n.

(ii) Let L be a logic with the language L such that BPC ⊆ L ⊆ M. Then,
the number of lines of every proof of (Θ⊗

n )t in any L − F system wrt M is
exponential in n and every proof of (Θ⊗

n )t in any L − EF system wrt M has
length exponential in n.

Proof. To prove (i), note that since FL ⊢ Θ⊗
n by 4.4.34, and FL ⊆ L, we have

L ⊢ Θ⊗
n . Let π be a proof of Θ⊗

n in L − EF. Using the assumption we will provide
a proof π′ of (Θ⊗

n )t in M − EF such that λ(π′) ≤ cλ(π). Fix an extended Frege
system Q for the logic M. Define the system P as the system consisting of all the
rules in Q plus the rules:
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At
1 . . . At

l

At

for any rule of L − EF of the form:
A1 . . . Al

A

We have to show that P is an extended Frege system for the logic M. To be
more precise, we have to show that P is strongly sound and strongly complete
with respect to M, because the other conditions (1 and 2 in Definition 4.3.18)
are obvious. P is strongly complete wrt M, since it contains Q and Q is strongly
complete wrt M. For strongly soundness, note that for any rule in L − EF of the
form:

A1 . . . Al

A

since all the rules in L − EF are standard, we have A1, . . . Al ⊢L A. By Remark
4.3.15, At

1, . . . A
t
l ⊢M At. Hence, all the new rules in P are standard with respect

to M.
To bound the number of proof-lines, let π = ϕ1, . . . , ϕm be a proof for Θ⊗

n in L −
EF. Then, each ϕi is either an extension axiom, or it is derived from {ϕj1 , . . . , ϕjl

}
such that all jr’s are less than i. It is clear that π′ = πt = ϕt

1, . . . , ϕ
t
m is a proof in

P, since the translation t of the extension axiom of L − EF will be the extension
axiom of M − EF and moreover,

ϕt
j1 . . . ϕt

jl

ϕt
i

is an instance of a rule in P. Note that the number of proof-lines stay the same,
i.e., λ(π) = λ(π′).
Therefore, the formula (Θ⊗

n )t has a proof in P whose number of lines is the same
as the number of lines of the proof of Θ⊗

n in L − EF. Since for any formula ϕ in
the language L⊗ we have |ϕ| = |ϕt|, therefore the length of π is the same as the
length of π′. On the other hand, as we observed in the proof of Theorem 4.5.36,
we can show that (Θ⊗

n )t → Θn has a proof in P with polynomial number of lines.
Gluing these proofs together, we will obtain a proof for Θn in P. Since any proof
for Θn in P has exponential length (Theorem 4.4.29), any proof for Θ⊗

n in L−EF
will also have exponential length.
Note that the above construction also works for the case of considering Frege
systems. It is easy to see that the translation of every proof in L − F will be
a proof in M − F, and the number of proof-lines stay the same. Therefore, the
bound on the number of proof-lines follows.

For part (ii), using Corollary 4.4.35, (Θ⊗
n )t is provable in BPC and hence in

L. Fix an extended Frege system Q for the logic M. Add the rules of the L − EF
system wrt to M to Q. The resulting system, which we denote by P, is an
extended Frege system for the logic M. The reason is similar to the argument in
the part (i), using the facts that L ⊆ M and all the rules of L − EF system wrt M
are M-standard. Let π be a proof for (Θ⊗

n )t in L − EF system wrt M, therefore, it
will also be a proof in P with the same number of lines and same length. Again
by gluing the short proof of P ⊢ (Θ⊗

n )t → Θn to π, we reach the result as in the
proof for part (i).
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Corollary 4.5.38. • Let S be any subset of {e, c, i, o}, and L be FLS, or any
of the logics of the sequent calculi in Table 4.1. Then, the number of lines
of every proof of Θ⊗

n in L − F is exponential in n and every proof of Θ⊗
n in

L − EF has length exponential in n.

• Let L be BPC or EBPC and M a super-intuitionistic infinite branching logic.
Then, the number of lines of every proof of (Θ⊗

n )t in any L − F system wrt
M is exponential in n and every proof of Θ⊗

n in any L − EF system wrt M
has length exponential in n.

4.6 The lower bound for sequent calculi
So far, we have provided a lower bound for proof systems for logics as least as
strong as FL and polynomially simulated by an extended Frege system for an
infinite branching super-intuitionistic logic. It is very desirable to see if the lower
bound also applies to proof systems for logics outside this range, for instance their
classical counterparts. The result in this section is an attempt in this direction
and we reach a positive answer for any proof system polynomially weaker than
CFL−

ew, which is the system CFLew without the cut rule. For that matter, we
first transfer the lower bound from the previous section to the sequent-style proof
system FLS for any S ⊆ {e, c, i, o}. Then we use the observation that any cut-free
proof of a single-conclusion sequent in the 0-free fragment of CFLew is also an
FLew-proof.

Theorem 4.6.39. Let Γ be a sequence of formulas γ1, . . . , γm, A a formula and
S any subset of {e, c, i, o}. If FLS ⊢π Γ ⇒ A then there exists a Frege system P
for FLS such that

P ⊢π′
m⨂

i=1
γi \ A

such that λ(π′) = λ(π).

Proof. The proof is similar to the proof of Theorem 4.5.37. As noted in the dis-
cussion after Definition 4.2.3, since FLS ⊢ Γ ⇒ A, we have Γ ⊢FLS A. Therefore,
for any Frege system Q for the logic FLS, by strong completeness in Definition
4.3.18, we have Γ ⊢Q A. Fix such Q. The method is developing a Frege system
P for FLS by transforming all the axioms and rules of the sequent calculus FLS
to Frege rules in the new system. For the sake of completeness, we also add Q to
the resulting system.
Recall that for Γ = ∅, the formula ⨂ Γ is defined as 1 and for any single-conclusion
sequent T = (Γ ⇒ ∆) by I(T ), the interpretation of the sequent T , we meant⨂ Γ \ ∆, if ∆ is non-empty, and ⨂ Γ \ 0 for ∆ = ∅. Now, define P as the sys-
tem consisting of the rules of Q plus the following rules: for the axiom T in the
sequent calculus FLS add

I(T )
and for any rule in the sequent calculus FLS of the form

T1 . . . Tm

T
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add the following rule
I(T1) . . . I(Tm)

I(T )
where m = 1 or m = 2. We have to show that P is a Frege system for the logic
FLS, i.e., P is strongly sound and strongly complete wrt the logic FLS. First,
since Q is strongly complete wrt FLS, then so is P. Now for strongly soundness,
we have to show that the new rules are standard wrt FLS. I.e., for any rule of the
form

I(T1) . . . I(Tm)
I(T )

in P we have to show I(T1), . . . , I(Tm) ⊢FLS I(T ). However, it is not hard to show
that, since in the sequent calculus FLS the cut rule exists, we have ⇒ I(Ti) ⊢FLS

Ti using
⇒

⨂
Γ \ ϕ ⊢FLS Γ ⇒ ϕ

and the fact that for any two formulas ϕ and ψ, we have FLS ⊢ ϕ, ϕ \ ψ ⇒ ψ.
Using the corresponding rule, T1, . . . , Tm ⊢FLS T , the fact that T ⊢FLS⇒ I(T ),
and the cut rule we have ⇒ I(T1), . . . ,⇒ I(Tm) ⊢FLS⇒ I(T ). Therefore, by
definition, I(T1), . . . , I(Tm) ⊢FLS I(T ). Therefore, P is a Frege system for FLS.
For the number of proof-lines, note that if π = T1, . . . , Tn is a proof for Tn =
(Γ ⇒ A) in FLS, then it is easy to see that I(T1), . . . , I(Tn) will be a proof for⨂m

i=1 γi \ A in P. Therefore, λ(π′) = λ(π).

Corollary 4.6.40. For any S ⊆ {e, i, o, c} we have FLS ⊢⇒ Θ⊗
n and the number

of lines of any proof of this sequent is exponential in n.

By a 0-free formula in CFLew, we mean a formula only consisting of proposi-
tional variables, the constant 1, and the connectives {∧,∨,→,⊗}.

Lemma 4.6.41. If Γ is a sequence of 0-free formulas, then CFL−
ew ⊬ Γ ⇒.

Proof. Suppose (Γ ⇒) has a proof in CFL−
ew. Since the proof is cut-free and

Γ is 0-free, by the subformula property of CFL−
ew, the whole proof is also 0-

free. Therefore, there is no axiom in the proof with an empty succedent, because
such an axiom must be in the form (0 ⇒), which is not 0-free. Moreover, if the
succedent of the conclusion of any rule is empty, then the succedent of at least
one of its premises must be empty, as well. The reason is the following. First,
note that the last rule is not an axiom, as stated. It cannot be a right rule either,
because they always have at least one formula in the succedent of their conclusion.
And for the left rules, the claim is evident by a simple case checking. The only
non-trivial case to check is (L →) which also has such a premise:

Υ ⇒ ϕ Π, ψ,Σ ⇒ (L →)Π, ϕ → ψ,Υ,Σ ⇒
Therefore, any sequent in the proof with an empty succedent has also a premise
with an empty succedent. This is clearly a contradiction.

The following theorem, which is of independent interest, states that for posi-
tive formulas, a cut-free proof for a single-conclusion sequent in CFLew is also a
proof for the same sequent in FLew.
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Theorem 4.6.42. Suppose Γ is a sequence of 0-free formulas and A is a 0-free
formula. Then any proof π for Γ ⇒ A in CFL−

ew is also a proof in FLew.

Proof. The sketch of the proof is the following: suppose π is a cut-free proof
in CFLew such that all the formulas in the proof are 0-free. Then, along the
proof, the number of formulas in the succedent of the sequents does not decrease.
The reason lies in the fact that neither the cut rule nor the contraction rules are
present. Hence, in the special case that the sequent is also single-conclusion, the
succedents of all the sequents in the whole proof will contain exactly one formula.
Therefore, the proof is in FLew.
Let π be a proof for Γ ⇒ A in CFL−

ew. By induction on the structure of π we
will show it is also a proof for the same sequent in FLew. As stated in the proof
of Lemma 4.6.41, every formula in the proof must be 0-free.
If Γ ⇒ A is an instance of an axiom in CFL−

ew, then it is either ⇒ 1 or an
instance of the axiom ϕ ⇒ ϕ, which are both also axioms in the sequent calculus
FLe. For the induction step, note that the last rule in the proof cannot be (0w).
For all the other rules (except for the rule (L →)), it is easy to see that since
the conclusion of the rule is single-conclusion, then every premise must also be
single-conclusion. It remains to investigate the case where the last rule used in
the proof is (L →):

π1
Υ ⇒ ϕ,Λ

π2
Π, ψ,Σ ⇒ ∆ (L →)Π, ϕ → ψ,Υ,Σ ⇒ ∆,Λ

There are two possibilities; either Λ is empty and ∆ is equal to A
π1

Υ ⇒ ϕ

π2
Π, ψ,Σ ⇒ A (L →)Π, ϕ → ψ,Υ,Σ ⇒ A

or ∆ is empty and Λ is equal to A
π1

Υ ⇒ ϕ,A

π2
Π, ψ,Σ ⇒ (L →)Π, ϕ → ψ,Υ,Σ ⇒ A

In the former since both premises are single-conclusion, by induction hypothesis,
π1 and π2 are proofs in FLew and by applying the rule (L →) we obtain a proof
for Γ ⇒ A. On the other hand, the latter cannot happen since the right premise
is of the form Π, ψ,Σ ⇒ and the antecedent of this sequent is 0-free. Therefore,
Lemma 4.6.41 implies that it is not provable in CFL−

ew.

Theorem 4.6.43. The formulas

Θ̃⊗
n := [

⨂
i,j

((pi,j ∧ 1) ∨ (qi,j ∧ 1))] →

[
⨂
i,l

((si,l ∧1)∨(s′
i,l ∧1)) → αk

n(p̄, s̄, s̄′)] ∨ [
⨂
i,l

((ri,l ∧1)∨(r′
i,l ∧1)) → βk+1

n (q̄, r̄, r̄′)].

are provable in CFL−
e , where k = ⌊

√
n⌋. Moreover, every CFL−

e -proof of Θ̃⊗
n

contains at least 2Ω(n1/4) proof-lines and hence has length exponential in terms of
the length of Θ̃⊗

n .
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Proof. Since formulas Θ⊗
n are provable in FL 4.4.32 and therefore in FLew, they

are provable in CFLew. However, since in FLew and CFLew the exchange rules
are present, as stated in the preliminaries the connectives \ and / are substituted
by →. Therefore, the tautologies Θ⊗

n will have the more recognizable form Θ̃⊗
n .

Using the cut elimination theorem for CFLew, formulas Θ̃⊗
n are also provable

in CFL−
ew. By Theorem 4.6.42, since Θ̃⊗

n are 0-free any cut-free proof for these
formulas in CFL−

ew is also a proof in FLew. However, Theorem 4.6.39 guaranties
these proofs contain at least 2Ω(n1/4) proof-lines and hence the lengths of these
proofs are exponential in terms of the length of Θ̃⊗

n .

Remark 4.6.44. So far, we do not have any method to extend the lower bound
to the calculus CFLe, where the cut rule is present. Note that since there are no
non-trivial lower bounds for the sequent calculus LK, we can not use a similar
argument as that in the proof of Theorem 4.4.32.

Corollary 4.6.45. For any proof system P such that CFL−
e ≤ P ≤p CFL−

ew,
there is an exponential lower bound on the length of proofs in P. As a result, there
are exponential lower bounds on the length of proofs in sequent calculi CFL−

e ,
CFL−

ei, and CFL−
eo.

Proof. It follows from Theorem 4.6.43.

In the end, we will provide a result similar to Theorem 4.6.39 for the sequent
calculus BPC.

Corollary 4.6.46. We have BPC ⊢⇒ (Θ⊗
n )t and the number of lines of any

proof of this sequent is exponential in n.

Proof. Take the Frege system P for BPC wrt IPC. Using Theorem 4.3.19, since
BPC ⊢⇒ (Θ⊗

n )t then P⊤ → (Θ⊗
n )t. By the modus ponens rule we get P(Θ⊗

n )t.
Using the second part of Theorem 4.5.37, we get the lower bound.
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[20] Pavel Hrubeš. A lower bound for intuitionistic logic. Annals of Pure and
Applied Logic, 146(1):72–90, 2007.
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[28] Jan Kraj́ıček. Proof complexity, volume 170. Cambridge University Press,
2019.

[29] Joachim Lambek. The mathematics of sentence structure. The American
Mathematical Monthly, 65(3):154–170, 1958.

[30] Patrick Lincoln, John Mitchell, Andre Scedrov, and Natarajan Shankar. De-
cision problems for propositional linear logic. Annals of pure and Applied
Logic, 56(1-3):239–311, 1992.

[31] Larisa L Maksimova. Craig’s theorem in superintuitionistic logics and amal-
gamable varieties of pseudo-boolean algebras. Algebra and Logic, 16(6):427–
455, 1977.

[32] Enrico Marchioni and George Metcalfe. Craig interpolation for semilinear
substructural logics. Mathematical logic quarterly, 58(6):468–481, 2012.

114



[33] Hiroakira Ono. Structural rules and a logical hierarchy. In Mathematical
logic, pages 95–104. Springer, 1990.

[34] Toniann Pitassi, Paul Beame, and Russell Impagliazzo. Exponential lower
bounds for the pigeonhole principle. Computational complexity, 3(2):97–140,
1993.

[35] Andrew M Pitts. On an interpretation of second order quantification in
first order intuitionistic propositional logic. The Journal of Symbolic Logic,
57(1):33–52, 1992.

[36] Pavel Pudlák. Lower bounds for resolution and cutting plane proofs and
monotone computations. The Journal of Symbolic Logic, 62(3):981–998,
1997.

[37] Pavel Pudlák. Lower bounds for resolution and cutting plane proofs and
monotone computations. The Journal of Symbolic Logic, 62(3):981–998,
1997.

[38] Pavel Pudlák. The lengths of proofs, handbook of proof theory (samuel r.
buss, editor). Studies in Logic and the Foundations of Mathematics, 137:547–
637, 1998.

[39] Pavel Pudlák. On the complexity of propositional calculus, sets and proofs,
invited papers from logic colloquium’97, 1999.

[40] Pavel Pudlák and Jiri Sgall. Algebraic models of computation and interpo-
lation for algebraic proof systems. Proof complexity and feasible arithmetics,
39:279–296, 1996.

[41] Wim Ruitenburg et al. Basic predicate calculus. Notre Dame Journal of
Formal Logic, 39(1):18–46, 1998.

[42] Mikhail N Rybakov. Complexity of intuitionistic and visser’s basic and for-
mal logics in finitely many variables. Advances in Modal Logic, 6:393–411,
2006.

[43] Alasdair Urquhart. Failure of interpolation in relevant logics. Journal of
Philosophical Logic, 22(5):449–479, 1993.

[44] Albert Visser. A propositional logic with explicit fixed points. Studia Logica,
pages 155–175, 1981.

115


	Introduction
	Semi-analytic Rules and Interpolation
	Introduction
	Preliminaries
	Sequent Calculi
	Logical Systems

	Semi-analytic Rules
	Craig Interpolation
	The Single-conclusion Case
	The Multi-conclusion Case

	Uniform Interpolation
	The Single-conclusion Case
	The Multi-conclusion Case


	Proof Complexity of Focussed Calculi
	Introduction
	Preliminaries
	Focused Calculi
	The Classical Case
	The Intuitionistic Case


	Proof Complexity of Substructural Calculi
	Introduction
	Preliminaries
	Substructural logics
	Super-basic logics

	Frege and extended Frege systems
	A descent into the substructural world
	A brief digression into hard tautologies
	Weak hard tautologies

	The main theorem
	The lower bound for sequent calculi

	Bibliography

