
DOCTORAL THESIS

Michal Opler

Structural and Algorithmic Properties
of Permutation Classes

Computer Science Institute of Charles University

Supervisor of the doctoral thesis: doc. RNDr. Vı́t Jeĺınek, Ph.D.
Study programme: Computer Science

Study branch: Theory of Computing, Discrete
Models and Optimization

Prague 2022

I declare that I carried out this doctoral thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

ii

I would like to thank my supervisor Vı́t Jeĺınek for guiding me throughout my
whole doctoral studies. His patience and invaluable keen eye for detail have
significantly improved the quality of my writing. I would also like to thank my
coauthors, collaborators and fellow doctoral students for all the inspiration and
stimulating discussions. I was lucky to meet many interesting people and even
more so that I can call some of them my friends. I especially enjoyed discussing
anything and everything with Miloš Chromý.

Finally, I would like to thank my family for their endless support and love.
My grandfather, in particular, has been my staunchest supporter. Most of all, I
thank my beloved wife Kristýnka for inspiring me and for always believing in me,
even when I don’t believe in myself.

iii

iv

Title: Structural and Algorithmic Properties of Permutation Classes

Author: Michal Opler

Institute: Computer Science Institute of Charles University

Supervisor: doc. RNDr. V́ıt Jeĺınek, Ph.D., Computer Science Institute of Charles
University

Abstract: In this thesis, we study the relationship between the structure of per-
mutation classes and the computational complexity of different decision problems.
First, we explore the structure of permutation classes through the lens of various
parameters, with a particular interest in tree-width. We define novel structural
properties of a general permutation class C, the most notable being the long
path property. Using these properties, we infer lower bounds on the maximum
tree-width attained by a permutation of length n in C. For example, we prove
that any class with the long path property has unbounded tree-width.

The main decision problem we consider is known as Permutation Pattern
Matching (PPM). The input of PPM consists of a pair of permutations τ
(the ‘text’) and π (the ‘pattern’), and the goal is to decide whether τ contains
π as a subpermutation. After briefly considering general PPM, we focus on its
pattern-restricted variant known as C-Pattern PPM where we additionally
require that the pattern π comes from a fixed class C. We derive both classical
and parameterized hardness results assuming different structural properties of C.
For example, we show that C-Pattern PPM is NP-complete whenever C has
the long path property.

Furthermore, we focus on an even more restricted variant of PPM where the text
is also assumed to come from a fixed class C; this restriction is known as C-PPM.
We present a new hardness reduction which allows us to show, in a uniform
way, that Av(σ)-PPM, where Av(σ) is the class of σ-avoiding permutations, is
NP-complete for any σ of length at least four that is not symmetric to one of 3412,
3142, 4213, 4123 or 41352.

Permutations can also be viewed as models over a signature consisting of two
binary relation symbols. We investigate the expressive power of monadic second-
order (MSO) logic and the complexity of MSO model checking in this setting.
Among other results, we show that MSO model checking is hard not just for
general permutations, but also within any class with the long path property.

Finally, we consider, for fixed permutation classes C and D, the complexity of
determining whether a given permutation π can be colored red and blue so that
the red elements induce a permutation from C and the blue ones a permutation
from D; this problem is known as generalized coloring. As a consequence of
more general results, we can provide nontrivial instances of both tractable and
intractable generalized coloring involving commonly studied permutation classes.

Keywords: permutations, pattern matching, monadic second-order logic, grid
classes, generalized coloring

v

vi

Contents

Introduction 5

1 Preliminaries 11
1.1 Permutations . 11

1.1.1 Symmetries of permutations 12
1.1.2 Basic operations acting on permutations 13
1.1.3 Classical permutation classes 14

1.2 Generalized permutation patterns 15
1.2.1 Vincular patterns . 15
1.2.2 Bivincular patterns . 16
1.2.3 Mesh patterns . 17
1.2.4 Partially ordered patterns. 18
1.2.5 Other notions of patterns 18

1.3 Grid classes . 19
1.3.1 Building gridded permutations 20
1.3.2 Geometric grid classes . 22

2 Structural properties 23
2.1 Width parameters . 23

2.1.1 Twin-width . 23
2.1.2 Tree-width . 25
2.1.3 Grid-width . 28
2.1.4 Clique-width . 31
2.1.5 Horizontal and vertical grid-width 38
2.1.6 Modular-width . 39

2.2 Containment of grid subclasses 42
2.2.1 Long path property . 43
2.2.2 Cycle property . 45
2.2.3 Deep tree property . 48
2.2.4 Bicycle property . 51

2.3 Principal classes . 59
2.3.1 Classes without the deep tree property 59
2.3.2 Classes with the bicycle property 63

3 Logic of permutations 67
3.1 First-order logic . 67

3.1.1 Expressibility of first-order logic 68
3.1.2 First-order model checking 69

3.2 Monadic second-order logic . 71
3.2.1 Properties expressible in MSO 72
3.2.2 Properties inexpressible in MSO 78
3.2.3 Monadic second-order model checking 79

1

4 Permutation pattern matching 89
4.1 Classical complexity . 89
4.2 Parameterized complexity . 94

4.2.1 Left-aligned patterns . 96
4.2.2 Pattern parameters . 99
4.2.3 Counting patterns . 100
4.2.4 Generalized patterns . 100
4.2.5 Patterns as CSPs . 101

4.3 Pattern from a given permutation class 103
4.3.1 Classical complexity . 103
4.3.2 Parameterized complexity 111

5 Pattern matching inside a fixed permutation class 123
5.1 Current state of the art . 123
5.2 Monotone-griddable classes . 124
5.3 Hardness results . 125

5.3.1 Overview of the proof of Theorem 5.6 126
5.3.2 Details of the hardness reduction 130
5.3.3 Principal classes . 142

6 Grid classes 145
6.1 Monotone grid classes . 145

6.1.1 Tree-width . 145
6.1.2 Pattern matching . 151

6.2 General grid classes . 152
6.2.1 Classes with bumper-ended paths 152
6.2.2 Classes without bumper-ended paths 153

7 Generalized coloring 161
7.1 Previous results . 161
7.2 Different recognition frameworks 162

7.2.1 NLOL-recognizable classes 162
7.2.2 BD-recognizable classes . 165
7.2.3 GT-recognizable classes . 168

7.3 Combining BD- with GT-recognizability 171
7.4 Hardness results . 175

Conclusion 183

Bibliography 185

List of publications 195

2

Funding. This research was supported by the GAUK project 1766318, by project
Impuls of the Neuron Fund for Support of Science, and by projects 18-19158S and
21-32817S of the Czech Science Foundation.

3

4

Introduction
Permutations can be represented as combinatorial objects in many ways. The
most common one is to define permutation as a sequence π = π1, . . . , πn in which
each number of the set {1, . . . , n} appears exactly once. The origins of the study
of permutation classes can be traced to the famous book The Art of Computer
Programming, Volume 1 by Knuth [93]. Among a plethora of other topics, Knuth
studied sorting with stacks, which lead him naturally to the notion of permutation
patterns. He showed that a permutation π can be sorted by a stack if and only if
it does not contain a subsequence πi1 , πi2 , πi3 such that πi3 < πi1 < πi2 . Nowadays,
we would say that these are exactly the 231-avoiding permutations since such
a sequence πi1 , πi2 , πi3 is in the same relative order as the permutation 231. In
general, a permutation π = π1, . . . , πn contains a permutation σ = σ1, . . . , σk if
there is a subsequence of π of length k in the same relative order as σ. Otherwise,
we say that π avoids σ.

The study of pattern-avoiding permutations is today an active field that spans
over many different areas, such as enumeration (“How many permutations of
length n avoid σ?”), structural questions (“Which permutation classes are well-
quasi-ordered?”), probability (“What does the typical σ-avoiding permutation
look like?”) or computational complexity (”How hard it is to decide if π contains
σ?”). In this thesis, we focus on computational problems and related structural
questions.

Permutation pattern matching. The most fundamental decision problem
involving permutations is undisputedly the Permutation Pattern Matching
problem (PPM). In PPM, the input consists of two permutations: τ , referred to
as the ‘text’, and π, referred to as the ‘pattern’. The goal is to determine whether
the text τ contains the pattern π.

Bose, Buss and Lubiw [39] have shown that the PPM problem is NP-complete.
Thus, most recent research into the complexity of PPM focuses either on
parametrized or superpolynomial algorithms, or on restricted instances of the
problem.

For a pattern π of size k and a text τ of size n, several fast algorithms exist,
each suitable for different relative difference between k and n. Berendsohn, Kozma
and Marx [23] designed an algorithm running in time O(nk/4+o(k)). The current
fastest exponential algorithm with running time O(1.415n) is due to Gawrychowski
and Rzepecki [73]. And last but not least, Guillemot and Marx [77] have shown,
perhaps surprisingly, that PPM can be solved in time n ·2O(k2 log k), later improved
to n · 2O(k2) by Fox [68].

The other line of research is to consider restrictions on the input permutations
that would allow for an efficient pattern matching algorithm. These restrictions
usually take the form of specifying that the pattern must belong to a prescribed
class C of permutations (the C-Pattern PPM problem), or that both the pattern
and the text must belong to C (the C-PPM problem). The most commonly
considered choices for C are the principal classes consisting of all the permutations
that avoid a fixed pattern σ, denoted by Av(σ).

The complexity of Av(σ)-Pattern PPM was completely resolved by Jeĺınek

5

and Kynčl [86] who showed that it is polynomial-time solvable for σ ∈ {1, 12,
21, 132, 231, 213, 312} and NP-complete otherwise. However, not much is known
beyond the principal classes and we explore this uncharted territory in Chapter 4.
The situation is far less clear in the case of the text-restricted variant C-PPM,
even for the principal classes. Clearly, Av(σ)-PPM is polynomial-time solvable
whenever Av(σ)-Pattern PPM is. Moreover, Guillemot and Vialette [78] proved
that Av(321)-PPM is polynomial-time solvable as well. On the other hand, Jeĺınek
and Kynčl [86] showed that Av(4321)-PPM is already NP-complete and that, in
fact, Av(σ)-PPM is NP-complete for any σ of length at least 10. We narrow the
existing gap in Chapter 5.

Structural parameters. It is natural to ask how the structure of permutation
influences the complexity of pattern matching. Ahal and Rabinovich [2] discovered
a connection between the complexity of PPM and a structural parameter called
tree-width. Later, Berendsohn, Kozma and Marx [23] noticed that PPM can
be phrased as the so-called constraint satisfaction problem, which leads to an
algorithm running in time O(ntw(π)+1) where tw(π) is the tree-width of the pat-
tern π and n is the length of the text. This motivates the study of the maximum
tree-width attained by permutations of length n inside a given class C, called the
tree-width growth of C. If the tree-width growth of C is bounded by a constant, then
C-Pattern PPM is polynomial-time solvable, and if it is sublinear, e.g., of order
nc for some c < 1, then we obtain a subexponential algorithm for C-Pattern
PPM. Describing the asymptotic tree-width growth of (not only) principal classes
forms a large part of Chapter 2.

Grid classes. The grid classes played a prominent role in recent developments
of the permutation pattern research [115, 44, 25, 113]. Indeed they also form the
backbone of many results presented in this thesis. When dealing with grid classes,
it is useful to represent a permutation π = π1π2 · · · πn by its diagram, which is the
set of points {(i, πi) | i = 1, . . . , n}. A grid class is defined in terms of a gridding
matrix M, whose entries are (possibly empty) permutation classes. We say that a
permutation π has an M-gridding, if its diagram can be partitioned, by horizontal
and vertical cuts, into an array of rectangles, where each rectangle induces in π a
subpermutation from the permutation class in the corresponding cell of M. The
permutation class Grid(M) then consists of all the permutations that have an
M-gridding.

Griddings have been previously used, sometimes implicitly, in the analysis of
special cases of PPM, where they were applied both in the design of polynomial
algorithms [10, 78], and in NP-hardness proofs [86]. In fact, all the known NP-
hardness arguments for special cases of both C-Pattern PPM and C-PPM are
based on the existence of suitable grid subclasses of the class C. Our reductions
in Chapters 4 and 5 are no exceptions to this rule.

Generalized coloring. The second decision problem that we consider is that
of generalized coloring. A permutation π is a merge of a permutation σ and a
permutation τ , if we can color the elements of π red and blue so that the red
elements have the same relative order as σ and the blue ones as τ . The problem
of generalized coloring is to determine, for fixed permutation classes C and D,

6

whether a given permutation π can be obtained as a merge of an element of C
with an element of D.

Previously, only very little has been known about the complexity of generalized
coloring of permutations. The only existing algorithms have been stated in the
language of permutation graphs [46, 62] and no NP-hard instances have been
known. We initiate an exploration of this area in Chapter 7.

Outline
Structural properties. In Chapter 2, we focus on various permutation param-
eters such as tree-width or twin-width which can be interpreted as measures of
structural complexity. We consider several different parameters, some of them
used often in previous works and some introduced by us. We unravel all the
mutual relationships between them.

In the second part of Chapter 2, we focus our attention solely on tree-width.
We define several structural properties of a general permutation class C, called
the long path property, the cycle property, the deep tree property and the bicycle
property. All these properties can be viewed as stating that C contains monotone
grid subclasses (whose all entries are either increasing, decreasing or empty) of a
particular type. We show that these properties impose different lower bounds on
the tree-width growth of C. Finally, we relate these properties to the principal
classes providing us with lower bounds on their tree-width growth. In particular,
it follows that the class Av(σ) contains permutations with tree-width linear in
their length for any σ of length at least four that is not symmetric to one of 3412,
3142, 4213, 4123 or 41352.

Logic of permutations. Chapter 3 explores permutations as structures of a
logical theory called Theory of Two Orders (TOTO). We build on previous results
of Albert et al. [9] on first-order logic of permutations. Our attention is, however,
fixed on monadic second-order logic. We uncover natural properties inexpressible
in first-order logic but expressible in monadic second-order logic. As a specific
example, there is no first-order sentence expressing that a permutation can be
obtained as a merge of two 3142-avoiding patterns. Furthermore, we focus on the
computational complexity of monadic second-order model checking. We show its
tractability for permutations of bounded tree-width but on the other hand, we
prove that it remains hard in any class with the long path property.

Permutation pattern matching. In Chapters 4 and 5, we focus on the PPM
problem. We start Chapter 4 by considering the general unrestricted PPM
problem through the lenses of both classical and parameterized complexity. This
part contains both alternative proofs of previously known facts as well as a few
new results. Afterwards, we focus on the pattern-restricted variant C-Pattern
PPM. We prove its NP-hardness and impose different conditional lower bounds
on the running time of C-Pattern PPM under the assumption that C has either
the long path or the deep tree property. Note that most of the previous results
only concerned the principal classes of permutations and thus, this can be seen as
a major step towards understanding the connection between the structure of a

7

class C and the complexity of C-Pattern PPM. As a noteworthy byproduct, we
prove that the tree-width-based algorithm solving PPM in time O(ntw(π)+1) is
asymptotically optimal under the exponential time hypothesis (ETH).

In Chapter 5, we go on to study the more restricted variant C-PPM where we
also require that the text τ belongs to the class C. We show that C-PPM can
be solved in polynomial time for any monotone grid class C. On the other hand,
we develop a general type of hardness reduction, applicable to any permutation
class containing a suitable family of grid subclasses. We then verify that for most
choices of σ large enough, the principal class Av(σ) indeed satisfies this condition.
Specifically, we can prove that Av(σ)-PPM is NP-complete for any pattern σ of
length at least four that is not symmetric to one of 3412, 3142, 4213, 4123 or
41352.

Grid classes. In Chapter 6, we restrict our attention solely to grid classes. We
extend the results of previous chapters to show that monotone grid classes exhibit
a sharp trichotomy in their tree-width growth and the complexity of C-Pattern
PPM. Specifically for a monotone gridding matrix M, there are three distinct
regimes depending on the properties of the associated cell graph. In each of them,
we know the exact asymptotic behavior of the tree-width growth of Grid(M)
and the complexity of Grid(M)-Pattern PPM together with almost sharp
conditional lower bounds, if applicable.

We are able to extend this to a weaker dichotomy for general grid classes. In
particular, we can precisely characterize the grid classes of unbounded tree-width
and also when the Grid(M)-Pattern PPM problem is NP-hard, albeit the latter
applies only for the gridding matrices whose every entry has bounded tree-width.

Generalized coloring. Finally, Chapter 7 deals with the problem of generalized
coloring of permutations. We design three novel general frameworks for recognizing
permutation classes. One is based on the concept of non-deterministic online
computations with logarithmic memory, while the other two are based on tree
automata. Combining them, we obtain polynomial time algorithms recognizing
permutations that are merges of permutations π ∈ C and τ ∈ D for various
interesting pairs of permutation classes C and D. For example, we can decide in
polynomial time whether a given permutation can be obtained as a merge of a 213-
avoiding pattern with a 321-avoiding pattern. We also provide a complementary
NP-hardness result which implies, among other examples, that the recognition of
merges of two 3142-avoiding permutations is NP-hard.

This work is based on the following papers whose contents have been modified,
extended and interleaved to achieve an easier and more logical presentation1:

• Vı́t Jeĺınek, Michal Opler, and Jakub Pekárek. Long paths make pattern-
counting hard, and deep trees make it harder. [P6] – Section 2.2, part of
Section 2.3, Subsection 4.3.2 and Subsection 6.1.1.

• Vı́t Jeĺınek, Michal Opler, and Jakub Pekárek. Griddings of Permutations
and Hardness of Pattern Matching. [P5] – Chapter 5.

1the citation references are into List of Publications

8

• Vı́t Jeĺınek, Michal Opler, and Jakub Pekárek. A complexity dichotomy for
permutation pattern matching on grid classes. [P7] – the rest of Chapter 6,
parts of Section 2.2 and Subsection 4.3.1.

• Vı́t Jeĺınek, Michal Opler, and Pavel Valtr. Generalized coloring of permu-
tations. [P9] – Chapter 7.

Moreover, Chapter 3 is based on (yet) unpublished work with Vı́t Jeĺınek.

9

10

1. Preliminaries

1.1 Permutations

A permutation of length n is a sequence π = π1, . . . , πn in which each element
of the set [n] = {1, 2, . . . , n} appears exactly once. When writing out short
permutations explicitly, we shall omit all punctuation and write, e.g., 15342 for
the permutation 1, 5, 3, 4, 2. However, it is much more beneficial for our purposes
to view permutations as geometric objects. To that end, the permutation diagram
of π is the set of points Sπ = {(i, πi); i ∈ [n]} in the plane. Observe that no two
points from Sπ share the same x- or y-coordinate. We say that such a set is in
general position.

For a point p in the plane, we let p.x denote its horizontal coordinate, and
p.y its vertical coordinate. Two finite sets S,R ⊆ R2 in general position are
isomorphic if there is a bijection f : S → R such that for any pair of points p ̸= q
of S we have f(p).x < f(q).x if and only if p.x < q.x, and f(p).y < f(p).y if and
only if p.y < q.y. The reduction of a finite set S ⊆ R2 in general position is the
unique permutation π such that S is isomorphic to Sπ. We write π = red(S).

We say that a permutation τ contains a permutation π if the diagram of τ
contains a subset that is isomorphic to the diagram of π. See Figure 1.1. The
witnessing bijection f : Sπ → Sτ is called an embedding of π into τ . If τ does not
contain π, we say that it avoids π. In this context, we call π the pattern. Observe
that this definition of containment is equivalent to the definition via subsequences
in the same relative order used in Introduction. A permutation class is a set C
of permutations which is hereditary, i.e., for every σ ∈ C and every permutation
π contained in σ, we have π ∈ C. For a permutation π, we let Av(π) denote the
set of all the permutations that avoid π; this is clearly a permutation class. More
generally, for a set B of permutations, called basis, we let Av(B) be the set of
permutations that avoid all the elements of B.

1

2

4

3

6

5

2

1

3

Figure 1.1: A permutation diagram of the permutation 421365 on the left, an
occurrence of the pattern 213 in the same permutation on the right.

11

For a permutation σ, we define four neighbors of a point (i, j) ∈ Sσ as

NR((i, j)) = (i+ 1, σi+1),
NL((i, j)) = (i− 1, σi−1),
NU((i, j)) = (σ−1

j+1, j + 1),
ND((i, j)) = (σ−1

j−1, j − 1).

Note that the superscripts R, L, U and D signify the direction in which we reach
the corresponding neighbor by sweeping with axis-parallel line. We additionally
define the values when some index is out of bounds as one of two ‘virtual neighbors’
as follows: NR((n, i)) = NU ((i, n)) = (∞,∞) and NL((1, i)) = ND((i, 1)) = (0, 0)
for all i ∈ [n]. Note that we can define these neighbors for arbitrary point set S
in general position, simply by looking at the reduction of S.

This notion allows for a different, albeit equivalent, definition of permutation τ
containing a permutation π. Instead of verifying the correct relative positions of
images for every pair of points p, q ∈ Sπ, it is sufficient to verify just the correct
relative positions for every pairs of neighbors. The correctness of the relative
positions of other pairs is then implied via transitivity. This fact has been observed
by Berendsohn et al. [23].

Observation 1.1. A function f : Sπ → Sτ is an embedding of π into τ if for
every point p ∈ Sπ

• f(NL(p)).x < f(p).x < f(NR(p)).x, and
• f(ND(p)).y < f(p).y < f(NU(p)).y,

whenever the corresponding neighbor Nα(p) exists, i.e., it is not a virtual point.

1.1.1 Symmetries of permutations
We will frequently refer to symmetries that transform permutations into other
permutations. For our purposes, it is convenient to describe these symmetries
geometrically, as transformations of the plane acting on permutation diagrams.
We define the m-box to be the set (1

2 ,m+ 1
2) × (1

2 ,m+ 1
2). Observe that for every

permutation π of length at most m, the permutation diagram Sπ is a subset of
the m-box. We view permutation symmetries as bijections acting on the whole
m-box. There are eight such symmetries, generated by:

reversal which reflects the m-box horizontally, i.e. the image of point p is
(m+ 1 − p.x, p.y),

complement which reflects the m-box vertically, i.e. the image of point p is
(p.x,m+ 1 − p.y),

inverse which reflects the m-box through its main diagonal, i.e. the image of
point p is (p.y, p.x).

In particular, the reversal of a permutation π = π1, . . . , πn is the permutation
πr = πnπn−1, . . . , π1, the complement of π is the permutation πc = n+ 1 − π1, n+
1 − π2, . . . , n+ 1 − πn, and the inverse π−1 is the permutation σ = σ1, . . . , σn such

12

Figure 1.2: From left to right: the permutation 21534, its reverse, complement
and inverse. We added a red arrow to help visualize the transformations at play.

Figure 1.3: The direct sum 213 ⊕ 321 (left), the skew sum 213 ⊖ 321 (center) and
the inflation 2413[12, 1, 213, 21] (right).

that σi = j ⇐⇒ πj = i. See Figure 1.2. We also apply these symmetries to sets
of permutations, in an obvious way: if Ψ is one of the eight symmetries defined
above and C is a permutation class, we define Ψ(C) as {Ψ(π) | π ∈ C}. Specifically,
we denote by Cα for α ∈ {r, c,−1} the class {πα | π ∈ C}.

1.1.2 Basic operations acting on permutations
We shall now introduce several standard operations acting on permutations.

Direct sum σ ⊕ τ , skew sum σ ⊖ π. Consider a pair of permutations σ of
length k and τ of length ℓ. The direct sum of σ and τ , denoted σ ⊕ τ , is the
reduction of a point set obtained as a union of the diagram of σ with the diagram
of τ translated by the vector (k, k), i.e.

σ ⊕ τ = red (Sσ ∪ (Sτ + (k, k))) .

Similarly, their skew sum, denoted σ ⊖ τ , is the reduction of a point set obtained
as a union of the diagram of σ translated by the vector (0, ℓ) with the diagram of
τ translated by the vector (k, 0), i.e.

σ ⊖ τ = red ((Sσ + (0, ℓ)) ∪ (Sτ + (k, 0))) .

See Figure 1.3. A permutation π is called sum-decomposable if it can be
obtained as a direct sum of two shorter permutations, otherwise we say that π
is sum-indecomposable. Similarly, a permutation π is called skew-decomposable
if it can be obtained as a skew sum of two shorter permutations and skew-
indecomposable otherwise.

13

Figure 1.4: Permutation 624531 can be obtained as a merge of 321 (red squares)
and 132 (blue disks).

C ⊕ D, C ⊖ D, sum-closure C⊕, skew-closure C⊖. For a pair of permutation
classes C and D, we let C ⊕ D be the set {σ ⊕ τ | σ ∈ C, τ ∈ D}; note that
this is again a permutation class. The class C ⊖ D is defined analogously. The
sum-closure of a class C, denoted C⊕, is the class of all the permutations that can
be obtained as a direct sum of finitely many members of C; the skew-closure C⊖ is
again defined analogously.

Inflation, simple permutation. Given a permutation σ of length n and non-
empty permutations τ1, . . . , τn, where τi is of length mi, the inflation of σ by
τ1, . . . , τn, denoted σ[τ1, . . . , τn], is the permutation obtained by replacing each
point (i, σi) of the diagram of σ with a scaled-down copy of the diagram of τi

σ[τ1, . . . , τn] = red
(︄

n⋃︂
i=1

1
mi

· Sτi
+ (i, σi)

)︄
.

See again Figure 1.3. A permutation is simple, if it cannot be obtained from
strictly smaller permutations by an inflation. For instance, the permutation 25314
is simple, while 25341 is not, since it can be obtained, e.g., as 231[1, 312, 1].

Merge, C ⊙ D. A permutation π is a merge of permutations σ and τ if we
can color the points of Sπ with colors red and blue so that the red points are
isomorphic to Sσ and the blue ones to Sτ . See Figure 1.4. The merge of a class C
and a class D is the class C ⊙ D of permutations that can be obtained by merging
an element of C with an element of D.

1.1.3 Classical permutation classes
We will meet many different permutation classes, several of whom have standard
names in the literature. The class Av(21) of all the increasing permutations and the
class Av(12) of all the decreasing permutations will emerge by far the most often
and therefore, we use the symbols and , respectively, as shorthands. Another
frequently encountered class are the layered permutations, which is the class
obtained as a sum-closure of decreasing permutations. Layered permutations can
also be characterized by finite basis as the class Av(231, 312). The complements
of layered permutations are known as the co-layered permutations; they can be
obtained as a skew-closure of the increasing permutations, or alternatively they
form the class Av(132, 213).

14

Figure 1.5: A layered permutation (left), a co-layered permutation (center), and a
separable permutation (right).

Finally, the separable permutations are the permutations that can be created
from the singleton permutation of size 1 by direct sums and skew sums.; it
is known [39] that these are precisely the permutations avoiding the patterns
2413, 3142. It follows that the separable permutations are the smallest infinite
class which is both sum-closed and skew-closed. See Figure 1.5.

1.2 Generalized permutation patterns
In this section, we introduce several generalizations of the notion of patterns that
appear in the literature.

1.2.1 Vincular patterns
Recall that a permutation τ contains a pattern π if there is a subset of the diagram
of τ that is isomorphic to the diagram of π. In particular, we care only about the
relative positions of the points in the pattern without considering the rest of the
permutation τ . It, however, might make sense to require that certain elements in
the occurrence of π are consecutive in the left-to-right order. That is exactly the
additional constraint carried by vincular patterns.

Formally, a vincular pattern is a pair (π,C) where π is a permutation of length
k and C is an arbitrary subset of {0, . . . k}. A permutation τ is said to contain
the vincular pattern (π,C) if there is an embedding f of π into τ such that
additionally for every i ∈ C

• if 1 ≤ i < k then NR(f((i, πi))) = f((i+ 1, πi+1)),
• if i = 0 then NL(f((1, π1))) = (0, 0), and
• if i = k then NR(f((k, πk))) = (∞,∞).

To represent a vincular pattern (π,C) visually, we simply take the permutation
diagram of π and shade the strip (i, i+1)×R (the set of points whose x-coordinates
are between i and i+ 1) for every i ∈ C. See Figure 1.6.

Vincular patterns first appeared under the name of generalized patterns in
the work of Babson and Steingŕımsson [18] where the authors showed that many
permutation statistics can be expressed as linear combinations of vincular patterns.
Let us remark that vincular patterns are usually denoted in the literature either
by underlining the consecutive entries or separating the non-consecutive entries
with dashes. For example, the vincular pattern (132, {1}) would be written as

15

0

1

2

3

0 1 2 3

Figure 1.6: The vincular pattern (132, {1}) (left) and its occurrence in the
permutation 631542 (right).

either 132 or 13 − 2. We, however, chose this more technical description in order
to ease the upcoming more complicated notions of patterns.

Moreover, a special case of vincular patterns are so-called consecutive patterns.
As the name suggests, we require that any embedding of a consecutive pattern must
have all its entries consecutive in the left-to-right order. Formally, a consecutive
pattern π of length k is simply the vincular pattern (π,C) where C is exactly the
set {1, . . . , k − 1}.

Covincular patterns.

Let us note that a symmetric notion to that of vincular patterns has appeared in
the literature under the name of covincular patterns [21]. Informally, a covincular
pattern is obtained by taking a vincular pattern together with its restrictions
and rotating it by 90°. Formally, a covincular pattern is a pair (π,R) where π is
again a permutation of length k and R is an arbitrary subset of {0, . . . k}. Now
a permutation τ is said to contain the covincular pattern (π,R) if there is an
embedding f of π into τ such that for every i ∈ R

• if 1 ≤ i < k then NU(f((π−1
i , i))) = f((π−1

i+1, i+ 1)),
• if i = 0 then ND(f((π−1

1 , 1))) = (0, 0), and
• if i = k then NU(f((π−1

k , k))) = (∞,∞).

We would naturally represent a covincular pattern (π,R) in the same way
as vincular patterns, only this time we shade horizontal strips between elements
required to be adjacent. However, from the perspective of pattern matching
complexity it is sufficient to consider only vincular patterns as covincular patterns
are their mere symmetry.

1.2.2 Bivincular patterns
It is only natural to further generalize the notion of patterns by combining the
restrictions of vincular and covincular patterns. Indeed, a bivincular pattern is a
triple (π,C,R) where π is a permutation of length k and C,R are arbitrary subsets
of {0, . . . , k}. A permutation τ then contains the bivincular pattern (π,C,R) if
there is an embedding f of π into τ defining simultaneously an occurrence of the
vincular pattern (π,C) and the covincular pattern (π,R). See Figure 1.7.

Bivincular patterns were first introduced by Bousquet-Mélou et al. [41]. The
particular advantage of bivincular patterns over vincular patterns is that bivincular

16

0

1

2

3

0 1 2 3

Figure 1.7: The bivincular pattern (132, {1}, {0, 2}) (left) and its occurrence in
the permutation 631542 (right).

0

1

2

3

0 1 2 3

Figure 1.8: The mesh pattern (132, {(0, 1), (0, 2), (2, 2)}) (left) and its occurrence
in the permutation 631542 (right).

patterns are closed under all the symmetries generated by reverse, complement
and inverse whereas vincular patterns are not closed under taking inverses.

1.2.3 Mesh patterns
Going one step further, one might impose restrictions not only on the strips
between two (horizontally or vertically) adjacent points in the occurrence but
rather on individual boxes defined by quadruples of points. These so-called
mesh patterns were introduced by Brändén and Claesson [42] who showed their
capability to encode a plethora of permutation statistics.

A mesh pattern is a pair (π,B) where π is again a permutation of length k but
B is now an arbitrary subset of {0, . . . , k} × {0, . . . , k}. A permutation τ contains
the mesh pattern (π,B) if there is an embedding f : Sπ → Sτ of π into τ such
that for every (i, j) ∈ B there is no point of Sτ in the interior of the box

[f((i, πi)).x, f((i+ 1, πi+1)).x] × [f((π−1
j , j)).y, f((π−1

j+1, j + 1)).y]

In order to simplify the definition, we additionally assume here that both Sπ and Sτ

contain the points (0, 0), (∞,∞) and that f(p) = p for both p ∈ {(0, 0), (∞,∞)}.
It is, however, again much clearer when represented visually. In a mesh pattern
(π,B), the points of Sπ separate the plane into (k + 1) × (k + 1) grid and we
simply shade the unit square with bottom left corner (i, j) for every (i, j) ∈ B.
An occurrence of (π,B) in τ is then any occurrence of π such that all the shaded
squares are empty. See Figure 1.8.

There is also a special type of mesh patterns that have been introduced by
Avgustinovich, Kitaev and Valyuzhenich [17]. The boxed mesh pattern is a mesh

17

pattern (π,B) where π is classical permutation of length k and B = [k−1]× [k−1].
In other words, all but the boundary boxes are shaded.

1.2.4 Partially ordered patterns.
A different generalization of classical patterns was introduced by Kitaev [92] and
have since been subject of a decent amount of research [72, 91, 119]. Informally,
we relax the condition that values of the occurrence must have a prescribed linear
order and replace it with an arbitrary partial order. Formally, a partially ordered
pattern p of length k is a pair (<P , k) where <P is a partial order on the set [k].
An embedding of p = (<P , k) into a permutation τ is a mapping f : [k] → Sτ

such that f(i).x < f(j).x for every i < j, and f(i).y < f(j).y whenever i <P j.

Example. The partially ordered pattern p =
3 2
1 (defined by the Hasse diagram

of <P) requires that the first element in the left-to-right order is larger than the
last one. The permutation 41253 therefore contains four occurrences of p, namely,
as the subsequences 412, 413, 423, and 453.

We can furthermore generalize this concept to the so-called doubly partially
ordered patterns that replace the linear order on x-coordinates with a second
partial order [52].

1.2.5 Other notions of patterns
We conclude this section with a brief overview of various other types of patterns
that have made their appearances in the literature. Note that as we shall see in
Chapter 3, all these different notions of patterns can be expressed in the powerful
framework of first-order logic.

Barred patterns. A quite different generalization of classical patterns was
introduced by West [118] as part of the effort to understand sets of permutations
that can be sorted by two passes through a stack. Formally, a barred pattern is a
classical pattern π of length k with bars over some of its entries. A permutation
τ avoids a barred pattern π if every occurrence of the unbarred subpattern of π is
actually a part of an occurrence of the underlying classical pattern of π.

Marked mesh and decorated patterns. Mesh patterns prescribe that certain
regions defined by the embedding of the underlying classical pattern must be
empty. Marked mesh patterns generalize mesh patterns by specifying how many
elements may be contained in certain regions. Decorated patterns go even further
by prescribing that certain regions must avoid given patterns (which themselves
might be decorated). We refer an interested reader to their full and formal
introduction by Úlfarsson [110].

2-avoidance. Very recently, a generalization of barred patterns was introduced
by Elder and Goh [63]. For two sets of permutations F and G, we say that a
permutation τ 2-avoids (F,G) if any occurrence of π ∈ F in τ is actually a part
of an occurrence of some σ ∈ G. In other words, we allow the patterns of F but

18

M =

⎛⎝Av(231) Av(21)

Av(132) Av(12)

⎞⎠
Figure 1.9: A gridding matrix M on the left and a permutation equipped with an
M-gridding on the right. Empty entries of M are omitted and the edges of GM
are displayed inside M.

only under the condition that each occurrence is “saved” by being contained in
some pattern from G.

1.3 Grid classes

An important type of permutation classes are the so-called grid-classes, which we
we introduce in this section. A gridding matrix of size k × ℓ is a matrix M with
k columns and ℓ rows, whose every entry is a permutation class. A monotone
gridding matrix is a gridding matrix whose every entry is one of the three classes
∅, or . Note that to be consistent with the Cartesian coordinates that we
use to describe permutation diagrams, we will number the rows of a matrix from
bottom to top, and we give the column coordinate as the first one. In particular,
Mi,j denotes the entry in column i and row j of the matrix M, with i ∈ [k] and
j ∈ [ℓ].

Let π be a permutation of length n. A (k× ℓ)-gridding of π is a pair of weakly
increasing sequences 1 = c1 ≤ c2 ≤ · · · ≤ ck+1 = n + 1 and 1 = r1 ≤ r2 ≤ · · · ≤
rℓ+1 = n+ 1. For i ∈ [k] and j ∈ [ℓ], the (i, j)-cell of the gridding of π is the set
of points p ∈ Sπ satisfying ci ≤ p.x < ci+1 and rj ≤ p.y < rj+1. Note that each
point of the diagram Sπ belongs to a unique cell of the gridding. A permutation
π together with a gridding (c, r) forms a gridded permutation.

Let M be a gridding matrix of size k × ℓ. We say that the gridding of π is an
M-gridding if for every i ∈ [k] and j ∈ [ℓ], the subpermutation of π induced by
the points in the (i, j)-cell of the gridding of π belongs to the class Mi,j.

We let Grid(M) denote the set of permutations that admit an M-gridding.
This is clearly a permutation class. A monotone grid class is any permutation
class Grid(M) for a monotone gridding matrix M.

As we shall later see, many important properties of the grid class Grid(M)
can be characterized using properties of certain graph associated to M. The cell
graph of a gridding matrix M, denoted GM, is the graph whose vertices are all
the pairs (i, j) for which Mi,j is an infinite permutation class. Two vertices are
adjacent if they appear in the same row or the same column of M, and there
is no other cell containing an infinite class between them. See Figure 1.9. We
shall sometime prescribe the properties of a cell graph to the matrix itself, e.g.,
we might say that a gridding matrix M is acyclic meaning that, in fact, its cell
graph GM is acyclic.

19

1.3.1 Building gridded permutations
Let π be a permutation of length n with a (k × ℓ)-gridding (c, r), where c =
(c1, . . . , ck+1) and r = (r1, . . . , rℓ+1). The reversal of the i-th column of π is the
operation that transforms π into a new permutation π′ by taking the rectangle
[ci, ci+1 − 1] × [1, n] and flipping it along its vertical axis, thus producing the
diagram of a new permutation π′. Equivalently, π′ is created from π by reversing
the order of the entries of π at positions ci, ci + 1, . . . , ci+1 − 1. We view π′ as a
gridded permutation, with the same gridding (c, r) as π.

Similarly, the complementation of the j-th row transforms the diagram of π by
flipping the rectangle [1, n] × [rj, rj+1 − 1] along its horizontal axis, producing the
diagram of a new gridded permutation π′.

We may similarly apply reversals to the columns of a gridding matrix M
and complements to its rows. Reversing the i-th column of M produces a new
gridding matrix, in which all the classes in the i-th column of M are replaced by
their reversals. Row complementation of a gridding matrix is defined analogously.
Note that a column reversal or a row complementation in a gridded permutation
or in a gridding matrix is an involution, i.e., repeating the same operation twice
restores the original permutation or matrix. Note also that when we perform a
sequence of column reversals and row complementations, then the end result does
not depend on the order in which the operations were performed.

To describe succinctly a sequence of row and column operations, we introduce
the notion of (k × ℓ)-orientation, which is a pair of functions F = (fc, fr) with
fc : [k] → {−1, 1} and fr : [ℓ] → {−1, 1}. Applying the orientation F to a (k × ℓ)-
gridded permutation π produces a new gridded permutation F(π) with the same
gridding as π, obtained by reversing each column i such that fc(i) = −1 and
complementing each row j such that fr(j) = −1. The application of F to
a gridding matrix M is defined analogously, and produces a gridding matrix
denoted F(M). Note that (c, r) is an M-gridding of π if and only if it is an
F(M)-gridding of F(π).

We are especially interested in orientation whose application turns every
non-empty entry of M into the class of increasing permutations. Formally, an
orientation F is a consistent orientation of a monotone gridding matrix M, if
every nonempty entry of F(M) is equal to .

Example. The matrix
(︂)︂

has a consistent orientation F = (fc, fr) acting by
reversing the first column and complementing the first row. Formally,

fc(1) = −1
fc(2) = 1

and
fr(1) = −1
fr(2) = 1.

On the other hand, the matrix
(︂)︂

has no consistent orientation, since applying
any orientation to this matrix yields a matrix with an odd number of -entries.

It is quite crucial that any acyclic monotone gridding matrix has a consistent
orientation as shown by Vatter and Waton [116].

Lemma 1.2 ([116, Proposition 2.1]). Every monotone gridding matrix whose cell
graph is acyclic has a consistent orientation.

20

T1,2 = T2,2 =

T1,1 = T2,1 =

−→

1 −1

1

−1

Figure 1.10: A 2 × 2 family of tiles T on the left and its F -assembly on the right
for a 2 × 2 orientation F given next to each row and column on the right. General
position is attained by rotating the resulting point set clockwise. The dashed lines
indicate relative positions of two particular points.

Tile assembly

Throughout the thesis, we frequently need to construct permutations whose
diagrams have a natural k × ℓ grid-like structure. We describe such a diagram
by taking each cell individually and describing the points inside it. For such a
description, it is often convenient to assume that each cell has its own coordinate
system whose origin is near the bottom-left corner of the cell. This allows us
to describe the coordinates of the points inside the cell without referring to the
position of the cell within the whole permutation diagram. In effect, we describe
the diagram of the gridded permutation by first constructing a set of independent
‘tiles’ Ti,j for i ∈ [k] and j ∈ [ℓ] of the same size, and then translating each tile Ti,j

to column i and row j of the diagram. On top of that, we often need to apply an
orientation to the gridded permutation whose diagram we constructed.

We now describe the whole procedure more formally. Fix an integer m and
recall that an m-box is a square of the form (1

2 ,m+ 1
2) × (1

2 ,m+ 1
2). An m-tile is

an arbitrary finite set of points inside the m-box. Note that the coordinates of the
points in the tile may not be integers. A (k × ℓ)-family of m-tiles is a collection
(Ti,j | i ∈ [k], j ∈ [ℓ]) where each Ti,j is an m-tile. For a (k × ℓ)-orientation F ,
the F-assembly of the family (Ti,j | i ∈ [k], j ∈ [ℓ]) is the gridded permutation
obtained as follows.

First, we translate each tile Ti,j by adding m(i−1) to each horizontal coordinate
and m(j − 1) to each vertical coordinate. Thus, the m-tiles will be disjoint and
occupying their respective cells of the final gridding. If the union of the translated
tiles is not in general position, we rotate it slightly clockwise to reach general
position. Notice that we can do so without changing the relative position of
any pair of points that were already in general position. This yields a point set
isomorphic to a unique permutation π. Additionally, π has a natural gridding
whose cells correspond to the translated tiles. To finish the construction, we apply
the orientation F to π, obtaining the gridded permutation F(π), which is the
F -assembly of the family of tiles (Ti,j | i ∈ [k], j ∈ [ℓ]). See Figure 1.10.

Observation 1.3. Let (Ti,j; i ∈ [k], j ∈ [ℓ]) be a family of tiles, let F be an
orientation, and let M be a gridding matrix such that Ti,j is isomorphic to a
permutation from the class Mi,j. Then the F-assembly of the family of tiles
(Ti,j; i ∈ [k], j ∈ [ℓ]) is a permutation from the class Grid(F(M)).

21

1

5

3

4

2

6

Figure 1.11: The permutation 153426 can be obtained as a subset of the standard
figure ΛM of the monotone gridding matrix M =

(︂)︂
and thus, it belongs to

the geometric grid class Geom(M).

1.3.2 Geometric grid classes
There also exists a stricter geometrical analogue to the monotone grid classes,
called geometric grid classes, which we now introduce. Let M be a monotone
gridding matrix. The standard figure of M, denoted by ΛM, is the point set in
the plane consisting of:

• the open segment from (i− 1, j − 1) to (i, j) whenever Mi,j = , and
• the open segment from (i− 1, j) to (i, j − 1) whenever Mi,j = .

The geometric grid class of M, denoted by Geom(M), is the set of all permutations
isomorphic to finite subsets of ΛM in general position. See Figure 1.11.

Clearly, Geom(M) ⊆ Grid(M) for any monotone gridding matrix M. More-
over, it is not hard to convince oneself that equality holds for acyclic gridding
matrices. This fact was first proved by Albert et al. [7].

Proposition 1.4 ([7, Theorem 3.2]). If M is an acyclic monotone gridding matrix
then Geom(M) = Grid(M). In fact, given any M-gridding of a permutation
π we can find a subset of ΛM that is isomorphic to Sπ and respects the given
M-gridding.

Note that Albert et al. [7] additionally show that this holds only for the acyclic
matrices. For every monotone gridding matrix M with a cycle in its cell graph,
we have Geom(M) ⊊ Grid(M).

22

2. Structural properties
In this chapter, we investigate different ways how to describe the structural
complexity of a permutation class. We start by considering various “width”
parameters that can be defined for permutations in Section 2.1. Some of these,
like tree-width, have been previously studied for permutations. Others, like
modular-width, have been studied for graphs and were considered only briefly
and implicitly in the case of permutations. And finally, we introduce a new
parameter called grid-width which turns out to be very suitable for designing
dynamic programming algorithms. Moreover, we unravel all relationships between
these parameters. See Figure 2.1.

In Section 2.2, we define structural properties of permutation classes using the
containment of monotone grid subclasses of a particular type. These properties
then allow us to impose lower bounds on the maximal tree-width attained by a
permutation of a given class. As an example, we are able to show that any class
with the so-called bicycle property contains permutations whose tree-width is
linear in their length.

Finally in Section 2.3, we focus our attention on the principal permutation
classes, i.e. the classes defined by avoiding a single pattern. We are able to almost
fully characterize which properties are attained by which classes. In particular, we
show that almost all principal classes have the aforementioned bicycle property
and therefore, contain permutations of linear tree-width.

2.1 Width parameters

2.1.1 Twin-width
Twin-width was introduced as a graph parameter by Bonnet et al. [36], who
generalized previous decomposition of permutations designed by Guillemot and
Marx [77] in their ground-breaking fpt-algorithm for PPM. It turned out to
unify many previous structural and algorithmic results and is subject to a fruitful
ongoing research, e.g. [19, 32, 33, 34, 35]. Note that we shall only introduce
twin-width as a parameter of permutations but it should be clear how to define
it for graphs, or even more generally for arbitrary binary relational structures.
We refer an interested reader, e.g., to [37]. In fact, together with twin-width, we
also define its two variants introduced in [34], that we will later link to other
permutation parameters.

A partition sequence of a permutation π of length n is a sequence S = Pn, . . . ,P1
of partitions of the permutation diagram Sπ where Pn = {{p} | p ∈ Sπ} is the
partition of Sπ into singletons, P1 = {Sπ} contains a single part equal to the
whole diagram Sπ, and each Pi is obtained by merging two parts of Pi+1. Notice
that each Pi consists of exactly i disjoint parts.

We say that two disjoint subsets X, Y of the permutation diagram Sπ are
horizontally separated if the whole set X lies to the left of Y , i.e. we have p.x < q.x
for every p ∈ X and q ∈ Y , or vice versa. Similarly, X and Y are vertically
separated if the whole set X lies below Y , i.e. we have p.y < q.y for every p ∈ X
and q ∈ Y , or vice versa. Finally, we say that X, Y are homogeneous if they are

23

Horizontal
grid-width

Vertical
grid-width Modular-width

Path-widthLinear
grid-width

2.22 2.22

2.12Linear
clique-width

2.15Total
twin-width

2.19

Tree-widthGrid-width 2.12Clique-width 2.15Component
twin-width

2.19

Twin-width

2.27

Figure 2.1: The hierarchy of permutation parameters considered in Section 2.1.
Solid edges connect pairs of parameters where the lower is bounded from above by
a function of the upper, double edges connect pairs for which this holds in both
ways. We omitted edges implied by transitivity, all remaining pairs of parameters
are incomparable.

separated both horizontally and vertically.
Additionally, we define that a set X is homogeneous to itself if and only if X

is a singleton. It is perhaps easier to think about the notion of homogeneous sets
visually. For a set of points X, let R(X) be the smallest axis-parallel rectangle
that contains the whole set X. Disjoint sets X and Y are homogeneous if and
only if the projections of the rectangles R(X) and R(Y) onto both x- and y-axis
are disjoint.

Given a permutation π and a partition Pi of Sπ, we consider an auxiliary
graph Ri, called red graph, with vertices the parts of Pi and (red) edges all pairs of
parts X, Y that are not homogeneous. Note that by our definition of homogeneity,
the red graph contains a loop (X,X) for every part X that is not a singleton. See
Figure 2.2 for an example.

We can define different width measures based on partition sequences. An
arbitrary function w from a partition P of a permutation diagram into the non-
negative integers is called a width. The partition-width associated to w of a
permutation π is the minimum integer t such that there exists a partition sequence
Pn, . . . ,P1 of π such that w(Pi) ≤ t for every i ∈ [n].

We consider three natural width parameters defined using the red graph Ri:
wd is the maximum degree of Ri, wc is the maximum number of vertices in a
connected component of Ri, and wt is the total number of vertices adjacent to red
edge in Ri. Observe that wd ≤ wc ≤ wt. These widths define associated width
parameters:

• The twin-width of π as the partition-width tww(π) associated to wd.
• The component twin-width of π as the partition-width ctww(π) associated

to wc.
• The total twin-width of π as the partition-width ttww(π) associated to wt.

We must add that Bonnet et. al. [34] define the total twin-width via the total

24

Figure 2.2: A partition sequence of the permutation 13564728 with each part X
visually represented by the rectangle R(X). The edges of the red graph are drawn
in each partition including the loops at every non-singleton part.

number of red edges. We chose to alter this definition as it is more suitable for our
needs while measuring almost the same thing. Denoting by w′

t the total number
of red edges in the red graph, it is easy to see that wt(P)/2 ≤ w′

t(P) ≤ (wt(P))2

for any partition P .
Let us focus just on twin-width for now. It turns out that many permutations

have small twin-width. For example, the separable permutations are exactly
the permutations of twin-width 1 (see [77, Proposition 3.5]). Bonnet et al.[36]
showed that, in fact, every permutation class has bounded twin-width as long as
it is not the class of all permutations. This stems from the same observation by
Guillemot and Marx [77] about their permutation decomposition even before the
term twin-width was coined.

Theorem 2.1 ([36]). A permutation class C has bounded twin-width if and only
if it does not contain all permutations.

Another useful property of twin-width is that it can be approximately com-
puted in polynomial time. The following algorithm was designed by Marx and
Guillemot [77], with later improvement in the upper bound on twin-width due to
Fox [68].

Theorem 2.2 ([77, Theorem 4.1]). There exists an algorithm that, given a
permutation π of length n and an integer k, runs in time O(n) and either outputs
that the twin-width of π is larger than k, or returns a partition sequence of π
witnessing that tww(π) ≤ 2O(k).

2.1.2 Tree-width
In recent years, a parameter called tree-width has proven to be very useful in
investigating the hardness of permutation pattern matching.

Let us first define tree-width as a standard graph parameter. A tree decompo-
sition of a graph G is a pair (T, β), where β : V (T) → 2V (G) assigns a bag β(p) to
each vertex of T, such that

25

Figure 2.3: The permutation 1634275 and its incidence graph. The blue solid
edges connect horizontal neighbors and the red dashed edges connect vertical
neighbors. Note that the incidence graph is a simple graph and in particular,
there is only one edge between the points (3, 3) and (4, 4).

• for every vertex v of G, there exists p ∈ V (T) such that v ∈ β(p),
• for every edge uv in G, there exists p ∈ V (T) such that u, v ∈ β(p), and
• for every vertex v of G, the set Tv = {p ∈ V (T) : v ∈ β(p)} induces a

connected subtree of T .

The width of the tree decomposition is the maximum of β(p) − 1 over all p ∈ V (T).
The tree-width tw(G) of a graph G is the minimum width of a tree decomposition
of G.

The tree-width of a permutation π is then defined by taking a tree-width
of a certain graph encoding the structure of π. The incidence graph Gπ of a
permutation π of length n is the graph whose vertices are the n points of Sπ,
and each point p is connected to its (at most four) neighbors, i.e. a point p is
connected to Nα(p) for each α ∈ {R,L, U,D} as long as the given neighbor exists.
In particular, the graph Gπ is a union of two paths, one of them visiting the points
of π in left-to-right order, and the other in top-to-bottom order. See Figure 2.3.
The tree-width of π, denoted by tw(π), is simply the tree-width of Gπ.

There is also a standard and well-known parameter related to tree-width called
path-width. There are several different ways how to define path-width. One
of them is to define the path-width pw(G) of a graph G as the minimum width
of a tree decomposition (T, β) of G such that T is a path. Similar to before,
the path-width of a permutation π, denoted by pw(π), is the path-width of its
incidence graph Gπ.

The incidence graph and the importance of its tree-width was first observed
by Ahal and Rabinovich [2]. They defined their own width parameter called
tree-complexity and showed that it is up to multiplication by a constant factor
equivalent to the tree-width of Gπ. Therefore, we shall omit the definition of tree
complexity.

We state without a proof that separable permutations have bounded tree-
width. This fact was observed also by Ahal and Rabinovich [2, p. 643] but we
will later obtain it as a simple corollary of the fact that separable permutations
have grid-width at most 1.

Since tree-width is perhaps the most famous and the most studied graph
parameter, we can make use of many available power tools. In particular, there
exist fpt-algorithms for approximating the tree-width of a graph G up to a
multiplicative constant. The best approximation to date is due to a recent
2-approximation algorithm of Korhonen [95] that superseded the previous 5-

26

πh−1

πh−1

r
p

q

Figure 2.4: The inductive construction of πh in the proof of Proposition 2.5. The
blue solid edges correspond to neighbors in the vertical direction and the red
dashed edge corresponds to a pair of horizontal neighbors.

approximation algorithm of Bodlaender et al. [28].

Theorem 2.3 ([95, Theorem 1.1]). There exists an algorithm that, given a graph
G on n vertices and an integer k, in time 2O(k) ·n either outputs that the treewidth
of G is larger than k, or constructs a tree decomposition of G of width at most
2k + 1.

Later, when we have more tools available, we will show that bounded tree-
width implies bounded twin-width but not the other way round. Instead, we
conclude this section by showing that there are permutation classes that have
bounded tree-width but unbounded path-width.

Proposition 2.4 (folklore). The complete rooted binary tree of height h has
path-width exactly ⌈h

2 ⌉.

Proposition 2.5. The class Av(132) has bounded tree-width and unbounded path-
width.

Proof. Observe that Av(132) has bounded tree-width since the pattern 132 is
contained in both 2413 and 3142 and thus, every 132-avoiding permutation is
separable.

In order to show that there are 132-avoiding permutations of arbitrarily large
path-width, we first examine two closure properties of the class Av(132). Firstly,
the class Av(132) is closed under taking skew sums. And secondly, the direct sum
π ⊕ 1 of an arbitrary 132-avoiding permutation π with the singleton 1 also avoids
132. With this knowledge, we inductively define for each h ∈ N a permutation πh

such that its incidence graph Gπh
contains the complete rooted binary tree of

height h as a minor. We set π1 = 1 and for every h > 1 we define πh as follows

πh = (πh−1 ⊕ 1) ⊖ 1 ⊖ πh−1.

By the discussion of the previous paragraph, we see that πh avoids 132 for
every h. We shall prove by induction that the incidence graph Gπh

contains a
subdivision of the complete rooted binary tree of depth h rooted in the topmost
point of πh. The path-width of πh is then at least ⌈h/2⌉ due to Proposition 2.39
and the result follows.

The claim holds trivially for π1. Suppose that h > 1, let r be the topmost
point in πh and let p, q be the topmost points in the two copies of πh−1 contained

27

in πh where p belongs to the left copy and q to the right copy. Observe that the
bottom neighbor of r is precisely the point p, i.e. ND(r) = p. Furthermore, the
point q is the bottom neighbor of the right neighbor of r, i.e. ND(NR(r)) = q.
Thus, Gπh

contains a subdivision of the complete binary tree of height h rooted in
r since r is connected to the subdivided tree in p by an edge and to the subdivided
tree rooted in q by a path of length two. See Figure 2.4.

2.1.3 Grid-width

An interval family I is a set of pairwise disjoint integer intervals. The intervalicity
of a set A ⊆ [n], denoted by int(A), is the size of the smallest interval family
whose union is equal to A. For a point set S in the plane, let Πx(S) denote its
projection on the x-axis and similarly Πy(S) its projection on the y-axis. For a
subset S of the integer grid Z × Z, the grid-complexity of S is the maximum of
int(Πx(S)) and int(Πy(S)).

A grid tree of a permutation π of length n is a rooted binary tree T with n
leaves, each leaf being labeled by a distinct point of the permutation diagram. Let
πT

v denote the point set of the labels on the leaves in the subtree of T rooted in v.
The grid-width of a vertex v in T is the grid-complexity of πT

v , and the grid-width
of T , denoted by gwT (π), is the maximum grid-width of a vertex of T . Finally,
the grid-width of a permutation π, denoted by gw(π), is the minimum of gwT (π)
over all grid trees T of π. See Figure 2.5.

Observation 2.6. For a permutation π and any permutation σ contained in π,
we have gw(σ) ≤ gw(π).

One useful property of grid-width is that it is not increased by inflations.

Lemma 2.7. Suppose a permutation π is an inflation σ[α1, . . . , αm]. Then

gw(π) = max(gw(σ), gw(α1), . . . , gw(αm)).

Proof. Clearly the left-hand side of the inequality must be at least as big as the
right one since grid-width is monotone, i.e., it cannot be increased by removing
points. For the other direction, let Tσ be the optimal grid tree of σ and Tαi

be
the optimal grid tree of αi for each i. We can obtain a grid tree T of π by taking
the grid tree Tσ, replacing its i-th leaf with the grid tree Tαi

and then relabeling
the leaves of Tαi

with the corresponding points of the copy of αi in π. It is easy
to see that the grid-complexity of any vertex in Tαi

is at most gw(αi) while the
grid-complexity of any vertex in the upper part of the tree is at most gw(σ).

It follows that any separable permutation has grid-width equal to 1 as it can
be obtained by repeated direct and skew sums from single points. However, it is
easy to see that conversely any permutation of grid-width 1 must be separable.

Observation 2.8. A permutation π has grid-width exactly 1 if and only if π is
separable.

28

Figure 2.5: A grid tree of the permutation 35172846 with grid-width 2. To
illustrate the grid-complexity at each vertex, the red segments along the borders
of the diagrams show the intervalicity of each projection. We omit these in the
leaves as the grid-complexity of every singleton is trivially equal to 1.

Linear grid-width

It is natural to consider a linear version of grid-width. To that end, we say that a
rooted binary tree T is a caterpillar if each vertex is either a leaf or has at least
one leaf as a child. The linear grid-width of a permutation π, denoted by lgw(π),
is the minimum of gwT (π) over all caterpillar grid trees T of π.

It is often convenient to use an alternative equivalent definition of linear
grid-width. For permutations π and σ of length n, the linear grid-width of π in
σ-ordering, denoted by lgwσ(π) is the maximum grid-complexity attained by a
set {(σ1, πσ1), . . . , (σi, πσi

)} for some i ∈ [n].

Lemma 2.9. The linear grid-width of a permutation π of length n is equal to the
minimum value of lgwσ(π) over all permutations σ of length n.

Proof. Suppose that lgw(π) = k as witnessed by a caterpillar grid tree T . Observe
that all leaves of T except for the deepest pair lie in different depths. Define σ to
simply order the labels by the depths of their leaves, defining arbitrarily the order
of the two deepest leaves. Then every set {(σ1, πσ1), . . . , (σi, πσi

)} corresponds
exactly to the set πT

v for some vertex v of T .
In order to prove the other direction, we define a sequence of caterpillar trees

T1, . . . , Tn in the following way. Let T1 be a single vertex labeled by (σ1, πσ1). For
i > 1, let Ti be the binary rooted tree with left child a leaf labeled by (σi, πσi

)

29

and right child the tree Ti−1. The tree Tn is a caterpillar grid tree of π and for
every inner vertex v the set πT

v is equal to {(σ1, πσ1), . . . , (σi, πσi
)} for some i. The

claim follows.

Comparison with tree-width and path-width

It turns out that grid-width is bounded by a linear function of tree-width and vice
versa. Moreover, we can efficiently switch between grid trees of a permutation π
and tree decompositions of Gπ both ways. This allows us, in particular, to use the
powerful tree-width approximation algorithms to obtain a good approximation
of optimal grid trees. On top of that, the same arguments show that the same
relationship holds between linear grid-width and path-width.

Proposition 2.10. For any permutation π and a tree decomposition (T, β) of
width k for Gπ, we can compute in linear time a grid tree T ⋆ of π such that
gwT ⋆(π) ≤ k + 2. Moreover, if T is a path then T ⋆ is a caterpillar.

Proof. We start by rooting the tree T . If T is a path, then we root it in one of its
endpoints. Otherwise, we pick an arbitrary node r of T as its root. We perform
a few local modifications that do not increase the width of this decomposition
with the goal to obtain a tree decomposition (T ′, β′) such that every internal node
of T ′ has at most two children, and for every vertex p ∈ V (Gπ), there is a leaf
v of T ′ with β(v) = {p}. To achieve this, we choose for each vertex p of Gπ an
arbitrary node w of T whose bag contains p, and add a new child vp to w with
bag {p}. We call vp the representing leaf of p. Next, we replace any node v with
more than two children with a sufficiently long path whose every node has its
bag equal to β(v) and hang its children along this path. We let (T ′, β′) be the
resulting tree-decomposition.

As the next step, we repeatedly remove from T ′ any leaf that does not belong
to the set {vp; p ∈ V (Gπ)} of representing leaves. We repeat these deletions until
we are left with a tree whose only leaves are the n representing leaves. In other
words, we remove every node w of T ′ such that the subtree of T ′ rooted at w does
not contain any representing leaf. Let T ′′ be the resulting tree, and β′′ be the
restriction of β′ to V (T ′′).

Note that (T ′′, β′′) remains a valid tree decomposition of Gπ; indeed, if p and
q are adjacent vertices of Gπ, the tree T ′ contains a unique path from vp to vq,
and at least one node of this path contains both p and q in its bag. Since the path
also belongs to T ′′, it follows that T ′′ contains a node with both p and q in its bag,
and (T ′′, β′′) satisfies the second property of the definition of tree-decomposition.
The other two properties are obvious.

We now transform the tree decomposition (T ′′, β′′) into a grid tree T ⋆ for π as
follows: each leaf vp of T ′′ will be labeled by p, and for every internal node w of
T ′′ that has only one child, we contract one of the edges incident to w, to obtain
a binary tree T ⋆. We view the nodes of T ⋆ as a subset of the nodes of T ′′.

Let us estimate the grid-width of T ⋆. Fix a node v of T ⋆ and consider Πx(πT ∗
v)

with a minimal decomposition I into intervals. For each interval I ∈ I except
the rightmost one, let i be the largest element of I, and consider the two vertices
pI = (i, πi) and qI = (i+ 1, πi+1) of Gπ. Note that pIqI is an edge of Gπ, and that
pI is in πT ⋆

v while qI is not. We claim that at least one of pI and qI must belong

30

to β′′(v). Suppose for a contradiction that neither pI nor qI is in β′′(v). But then
v separates all the nodes of T ′′ that contain pI in their bags from the nodes of T ′′

containing qI in their bags, and thus the edge pIqI cannot be contained in any
bag.

Moreover, all the vertices pI and qI are distinct for different choices of I ∈ I.
Therefore, int(Πx(πT ∗

v)) ≤ |β′′(v)| + 1 and using the same argument for Πy(πT ⋆

v),
we see that gwT ⋆(π) ≤ k + 2. It is easy to check that if we started with a path T ,
we ended up with a caterpillar T ⋆ as claimed.

We need one additional definition before showing the reduction of grid tree
to a tree decomposition. For a set A of vertices in the incidence graph Gπ, the
boundary of A in Gπ, denoted by ∂A, is the set of all elements in A that have a
neighbor in Gπ outside of A.
Proposition 2.11. For any permutation π and its grid tree T , we can compute in
linear time a tree decomposition (T ′, β) of Gπ of width at most 8 gwT (π). Moreover,
if T is a caterpillar then T ′ is a path.
Proof. Let T ′ be the tree obtained from T by removing all leaves. Observe that
T ′ is indeed a path whenever T was a caterpillar. We define a tree decomposition
(T ′, β) in the following way: for a vertex u of T ′ that originally had children v
and w in T , we set β(v) = ∂πT

v ∪ ∂πT
w.

Let us verify that (T ′, β) is indeed a tree decomposition. We denote by vp the
leaf in T that is labeled by a vertex p of Gπ, and we denote by up the parent of vp.
A vertex p of Gπ is clearly in the boundary of πT

vp
= {p} and thus, it is contained

in the bag of up. Moreover, every p lies precisely in the bags of the vertices on a
path from up to the first vertex v where p ̸∈ ∂πT

v . And for p and q neighbors in
Gπ, let u be the least common ancestor of the leaves labeled by p and q, and let v
and w be its children. Trivially, p must lie in ∂πT

v and q in ∂πT
w or vice versa, and

thus both p and q are contained in β(u).
It remains to upper-bound the width of (T ′, β). The only vertices in the

boundary ∂πT
v can be the vertices corresponding to the endpoints of intervals in

the interval decomposition of Πx(πT
v) and Πy(πT

v). Therefore, we can bound the
size of the boundary as |∂πT

v | ≤ 2 int(Πx(πT
v)) + 2 int(Πy(πt

v)) ≤ 4 gwT (π). Now
for a vertex u with children v and w, we have a bound on the size of its bag
|β(u)| ≤ |∂πT

v | + |∂πT
w| ≤ 8 gwT (π).

Corollary 2.12. For any permutation π, we have
1
8 · tw(π) ≤ gw(π) ≤ tw(π) + 2, and
1
8 · pw(π) ≤ lgw(π) ≤ pw(π) + 2.

One consequence of these equivalences is that Proposition 2.5 provides a
separation between permutation classes of bounded grid-width and bounded linear
grid-width.

2.1.4 Clique-width
Perhaps the second most famous graph parameter following tree-width is clique-
width. Permutation graphs1 have played their part in the research of clique-
width, see [16, 97]. However, we refrain from introducing clique-width as a

1graphs obtained from permutations by adding an edge for each copy of 21.

31

graph parameter and instead we define it in terms of permutations as relational
structures.

A permutation π of length n can be viewed as a structure consisting of a set
together with two total orders. We shall see a more in-depth analysis of this
approach in Chapter 3. For now, it is sufficient to accept that we can view a
permutation of length n as a triple (A,≺x,≺y) where |A| = n and both ≺x and ≺y

are linear orders on A. In one way it is clear since we can take as a representation
of a permutation π a triple (Sπ,≺x,≺y) where p ≺x q if and only if p.x < q.x and
p ≺y q if and only if p.y < q.y.

Taking this idea one step further, we can interpret the triple (A,≺x,≺y) as a
graph with vertex set A and two sets of directed edges (that happen to encode
total orders). We say that such graph (V,Ex, Ey) (not restricting Ex and Ey to
total orders anymore) is an xy-digraph and we call the directed edges in Ex and
Ey the x-arcs and y-arcs respectively.

The clique-width of an xy-digraph G = (V,Ex, Ey), denoted by cw(G), is
the minimum number of labels needed to construct G using the following five
operations:

1. Creation of a single vertex with label i (denoted i).
2. Disjoint union of two labeled xy-digraphs G and H (denoted G⊕H2).
3. Renaming label i to j (denoted ρi→j).
4. Adding an x-arc from every i-labeled vertex to every j-labeled vertex (de-

noted ηx
i,j), where i ̸= j.

5. Adding an y-arc from every i-labeled vertex to every j-labeled vertex (de-
noted ηy

i,j), where i ̸= j.

A construction of an xy-digraph G using the above operations with at most k
distinct labels can be thought of as an algebraic term composed of i, ⊕, ρi→j, ηx

i,j

and ηy
i,j. Such a term is a called a k-expression of G. We define the clique-width

of a permutation π, denoted by cw(π), as the clique-width of the xy-digraph
(Sπ,≺x,≺y). Note that we shall also refer to a k-expression Φ of the xy-digraph
(Sπ,≺x,≺y) as the k-expression of π.

As with most parameters, we can also define its “linear” version. The definition
is almost the same, except we allow disjoint unions only with singletons. Formally,
we replace the operation 2. with the following operation

2⋆. Disjoint union of a labeled xy-digraph G with i (denoted G⊕ i).

Any k-expression that uses the operation 2⋆ instead of the operation 2 is called
a linear k-expression. The linear clique-width of an xy-digraph G, denoted by
lcw(G), is then the smallest interger k such that G can be defined by a linear
k-expression. As before, we define the linear clique-width of a permutation π,
denoted by lcw(π), as the linear clique-width of the xy-digraph (Sπ,≺x,≺y).
Example. Suppose a permutation G is an xy-digraph defined by a k-expression Φ
and H is an xy-digraph defined by a k-expression Ψ. Moreover, assume that all
vertices in G have label 1 and all vertices in H have label 2. We can define the
xy-digraph corresponding to the operation of direct sum by the expression

ηy
1,2(ηx

1,2(Φ ⊕ Ψ)).
2not to be confused with the direct sum of permutations.

32

Figure 2.6: A box partition of a subset (in black) of a permutation diagram.

The skew sum is obtained only by replacing the operation ηy
1,2 with ηy

2,1. In
this way, we can easily obtain a 2-expression defining any separable permutation π.
For example, the following linear 2-expression defines the xy-digraph associated
to the permutation 213 = (1 ⊖ 1) ⊕ 1

ηy
1,2(ηx

1,2(ρ2→1(ηy
2,1(ηx

1,2(1 ⊕ 2))) ⊕ 2)).

Comparison with grid-width

We shall show that clique-width is again describing similar structural properties
as it can be bounded from both sides by a function of grid-width (and thus
of tree-width). Note that the equivalence between bounded clique-width and
bounded tree-width can be obtained (with worse bounds) as a consequence of
more general results by Courcelle and Engelfriet [56].

Proposition 2.13. For any permutation π and its grid tree T , we can compute a
(2 · gwT (π)2)-expression of π. Furthermore, if T is a caterpillar then it is in fact
a linear (2 · gwT (π)2)-expression.

Proof. Set k to be (2 · gwT (π)2). We show how to transform the grid tree T into
an k-expression whose recursive structure is almost identical to T . We do it by
inductively defining a k-expression Φv for every vertex v of T . We interpret labels
as pairs (α, i) where α ∈ [2] and i ∈ [k

2] for more clarity.
But first, we define a canonical partition of a subset S of the permutation

diagram Sπ that does not interfere with the remaining points. Let I be the
smallest interval family whose union is equal to the Πx(S) and similarly, let J
be the smallest interval family with union equal to Πy(S). The box partition of
S is the partition of S into sets S ∩ (I × J) for every I ∈ I and J ∈ J . See
Figure 2.6. Observe that the size of the box partition of S is at most the square
of the grid-complexity of S.

We construct an expression Φv, which defines an xy-digraph Gv with the
following properties. The x-arcs and the y-arcs both form total orders and in
particular, Gv with omitted labels represents precisely the permutation πT

v . And
moreover, the labels of Gv induce exactly the box partition of πT

v and they belong
to the set {1} × [k

2].
For a leaf v, we set Φv = (1,1), i.e., the graph Gv is a singleton with the label

(1, 1). Otherwise, v is an internal vertex of T and let u and w denote its children.

33

We would like to start by taking the disjoint union of Φu and Φw. However, that
might cause trouble by conflating the same labels in Gu and Gw. Therefore, we
first create a k-expression Φ′

w by changing every label (1, i) to (2, i) in Gw and
only then we take the disjoint union Φu ⊕ Φ′

w.
Afterwards, we add x-arcs and y-arcs between every pair of (existing) labels

(1, i) and (2, j). Observe that this is always possible with the operations ηx
i,j and

ηy
i,j since the relative positions of all points with the label (1, i) are the same with

respect to all points with the label (2, j). Or put in different terms, these pairs of
sets are homogeneous.

As the next step, we need to merge some labels together as the box-partition
of πT

v is not necessarily equal to the union of box partitions of πT
u and πT

w. Thus,
we add relabeling operations that unify the respective labels (1, i) and (2, j). And
to conclude the construction of Φv, we rename the labels such that they all belong
to the set {1} × [k

2]. This is possible since the box partition of πT
v contains at

most gwT (π)2 = k
2 parts.

It remains to inspect what happens when T is a caterpillar. For an internal
vertex v, it is sufficient to choose w in the construction above to be the non-leaf
child. One of the expressions participating in the disjoint union is then Φu = (1,1)
since u is a leaf and thus, Φv is a linear k-expression for every vertex v of T .

Proposition 2.14. For any permutation π and a k-expression Φ of π, we can
compute a grid tree T such that gwT (π) ≤ k. Moreover, if Φ is a linear k-expression
then T is a caterpillar.

Proof. We define the grid tree T in a straightforward manner using Φ. For any
sub-expression Ψ of Φ, we define a rooted tree TΨ in the following way. For an
expression Ψ = i, we set TΨ to be the single vertex (leaf) labeled by the point of
π obtained by tracking this vertex throughout the k-expression Φ. If Ψ = γ(Ψ′)
where γ is one of ρi→j, ηx

i,j and ηy
i,j then we set TΨ = TΨ′ . And finally, for any

expression Ψ = Ψ1 ⊕ Ψ2, we set TΨ to be the tree obtained by joining TΨ1 and
TΨ2 with a common root. Observe that TΦ is a grid tree and moreover, it is a
caterpillar whenever Φ is a linear k-expression. We set T = TΦ.

Let v be a vertex of T . There exits a sub-expression Ψ of Φ such that the
subtree of T rooted in v is precisely TΨ. Let GΨ be the xy-digraph defined by Ψ.
Let I be the smallest interval family whose union is equal to the projection Πx(πT

v)
and assume for contradiction that |I| > k. Then there exist two vertices in GΨ
with the same label such that the x-coordinates of their associated points of the
permutation diagram Sπ lie in two different intervals of I. Let us denote these
two vertices of Sπ as p, q and we assume without loss of generality that p ≺x q.
But since we chose I to be the smallest possible, there must be a point r in Sπ

that separates p and q, i.e we have p ≺x r ≺x q. Moreover, r is defined outside of
the expression Ψ and therefore, the x-arcs (p, r) and (r, q) must be realized later
in the expression Φ. That is clearly not possible as p and q already share the
same label.

The very same argument works for the projection Πy(πT
v) and we conclude

that the grid-complexity of the set πT
v is at most k for every vertex v of T .

34

Corollary 2.15. For every permutation π, we have

gw(π) ≤ cw(π) ≤ 2 · (gw(π))2, and
lgw(π) ≤ lcw(π) ≤ 2 · (lgw(π))2.

Comparison with twin-width

Next, we bring the component and total twin-width into the picture. Bonnet et
al. [34] showed that component twin-width of a graph is bounded from both sides
by a function of its clique-width and the same for total twin-width and linear
clique-width. We include the proof of this fact tailored to the permutation setting.
As a byproduct, we obtain significantly tighter bounds.

Recall that wc denotes the maximum size of a connected component in the
red graph associated with a given partition and wt denotes the total number of
vertices in the red graph that are incident to a red edge.

Proposition 2.16. For any permutation π and its k-expression Φ, we can compute
a partition sequence Pn, . . . ,P1 of π such that wc(Pi) ≤ k for each i. Furthermore,
if Φ is a linear k-expression then wt(Pi) ≤ k.

Proof. Observe that labels in any k-expression behave similarly to parts in a
partition sequence in that they only merge to create larger sets. The main
idea of this proof is to utilize this observation and track evolution of the labels
throughout Φ in a partition sequence.

For a sub-expression Ψ of Φ, we let AΨ denote the set of points in Sπ that
originate in Ψ when constructing π using Φ. We start by constructing sets
S1, . . . ,Sm of sub-expressions of Φ such that for each i the set {AΨ | Ψ ∈ Si}
forms a partition of π. We define the initial set S1 as the set of all singletons i in
Φ and we stop the construction once Sm contains only Φ. To obtain Si+1 from Si,
we pick arbitrary sub-expression Ψ = γ(Ψ′) of Φ such that Ψ′ ∈ Si, and we set

Si+1 = Si \ {Ψ′} ∪ {Ψ}.

If there is no such sub-expression then we can find a sub-expression Ψ = Ψ1 ⊕ Ψ2
where Ψ1,Ψ2 ∈ Si and we set

Si+1 = Si \ {Ψ1,Ψ2} ∪ {Ψ}.

For a sub-expression Ψ of Φ, let PΨ be the partition of AΨ induced by the
labels of the labeled xy-digraph GΨ defined by Ψ. Using the sequence S1, . . . ,Sm,
we define a sequence of partitions P ′

1, . . .P ′
m where

P ′
i =

⋃︂
Ψ∈Si

PΨ.

We claim that for every i, the partition P ′
i+1 is either equal to P ′

i or it is
obtained by merging two parts of P ′

i together. Let us examine the possible options
depending on Ψ ∈ Si \ Si−1. If Ψ = ηα

i,j(Ψ′) for α equal to x or y then the labels
remain the same and P ′

i = P ′
i+1. If Ψ = ρi→j(Ψ′) then either two non-empty parts

corresponding to labels i and j merge or the partition remains unchanged when
at most one of these labels is present in GΨ′ . Otherwise we have Ψ = Ψ1 ⊕ Ψ2.

35

If there were a label i used in both GΨ1 and GΨ2 then there would be no way
to define an x-arc between such vertices in future, which is impossible. Thus,
P ′

i+1 = P ′
i. This allows us to define a valid partition sequence Pn, . . . ,P1 simply

by reversing the sequence P ′
1, . . . ,P ′

m and removing any duplicate entries.
Let Ψ and X be a pair of sub-expressions of Φ such that the sets AΨ and AX

are disjoint. We claim that any pair of sets P ∈ PΨ and Q ∈ PX is homogeneous.
Recall that by definition, all the points of P share the same label in GΨ, and
the same holds for Q in GX . The x- and y-arcs between points of P and Q
can be defined only later in Φ and that would not be possible if they were not
homogeneous.

As a consequence, if we take two different sub-expressions Ψ,X ∈ Si the
subgraphs of the red graph of the partition P ′

i induced by PΨ and PX must
be disjoint. The upper bound on wc(P ′

i) follows since the partition PΨ for any
sub-expression Ψ contains at most k parts. Moreover, if Φ is a linear k-expression
then any set Si contains at most one sub-expression Ψ that is not a singleton.
Therefore, all the parts of the partition P ′

i adjacent to red edges belong to PΨ
and the upper bound on wt(P ′

i) follows.

Proposition 2.17. For any permutation π and its partition sequence Pn, . . . ,P1,
we can compute a k-expression of π where k = maxi(wc(Pi)) + 1.

Proof. For each i ∈ [n] and for each connected component C of the red graph Ri

associated to the partition Pi, we define a k-expression Φi
C with the following prop-

erties. The xy-digraph defined by Φi
C describes exactly the permutation induced

by the points contained in ⋃︁C and labels are in one-to-one correspondence with
the partition of ⋃︁C induced by C. It should be obvious that the k-expression Φ1

C

for the only connected component C in the red graph R1 gives the desired result.
At the beginning, every connected component C in the red graph Rn is a

singleton and we set Φn
C = 1. For i ∈ [n− 1], let C be a connected component in

the red graph Ri. We start by defining an intermediate expression Ψi
C . If C has

already existed as a connected component in Ri+1, we set Ψi
C = Φi+1

C . Otherwise,
C emerged as a union of connected components C1, . . . , Ct of the red graph Ri+1
and a merge of two parts of C1 ∪ · · · ∪Ct into a single part. We would like to take
a disjoint union of the expressions Φi+1

C1 , . . . ,Φ
i+1
Ct

. However, there the same label
might be used across different expressions so we first make the labels distinct.
We select pairwise disjoint sets A1, . . . , At such that |Aj| = |Cj|. For each j ∈ [t],
we define a k-expression Xj by relabeling the xy-digraph defined by Φi+1

Cj
using

the set Aj. And only then we take their disjoint union Ψi
C = ⊕t

j=1Xj. The total
number of labels used by Ψi

C is

t∑︂
j=1

|Aj| =
t∑︂

j=1
|Cj| ≤ |C| + 1 ≤ k

where the first inequality is due to the fact that C is obtained by merging two
parts from some components Cj and Cj′ and therefore, the sum of the sizes of all
components is bounded by the size of C plus one.

Finally, we turn the k-expression Ψi
C into the final desired k-expression Φi

C . We
first add all x- and y-arcs between points originating from different components in
Ri+1. That is always possible since each such part has distinct label and any pair

36

of parts from different components is by definition homogeneous. To conclude
the proof, if the newly merged part in Pi belongs to the component C we add a
relabel operation that merges the corresponding pair of labels.

Proposition 2.18. For any permutation π and its partition sequence Pn, . . . ,P1,
we can compute a linear k-expression of π where k = maxi(wt(Pi)) + 1.

Proof. We reuse most of the ideas from the proof of Proposition 2.17. We say that
a connected component C of the red graph Ri is non-trivial if ⋃︁C contains more
than one point. In other words, the trivial components are exactly the singleton
parts of the partition not incident to a red edge. In the case of linear clique-width,
we shall for each i ∈ [n] define a single linear k-expression Φi with the following
properties. The xy-digraph defined by Φi describes exactly the permutation
induced by all the points contained in non-trivial components and labels are in
one-to-one correspondence with the parts of all non-trivial components. Observe
that in any partition Pi there are at most wt(Pi) parts contained in non-trivial
components. Again, the linear k-expression Φ1 is exactly the result we are after.

Naturally, we set Φn to be empty as there are no non-trivial connected compo-
nents in Rn. For i ∈ [n−1], two scenarios can happen when going from Pi+1 to Pi.
If the permutation induced by the non-trivial components remains the same, we
obtain Φi from Φi+1 simply by using the relabel operation to unify the two merged
parts. Otherwise, there are singleton parts {p1}, . . . , {pt} that become part of a
non-trivial component for the first time. We let j1, . . . , jt be labels that are not
used in the xy-digraph GΦi+1 defined by Φi+1. We first define an intermediate
linear expression Ψi as

Ψi = (((Φi+1 ⊕ j1) ⊕ j2) · · ·) ⊕ jt.

Afterwards, we add all the x-arcs between the newly added vertices and every
other point contained in a non-trivial component. That is again possible since
every {pi} is homogeneous to any other part. And finally, we define Φi by using
the relabel operation to unify the two parts that were merged in Pi. The number
of labels in Φi is bounded by wt(Pi) + 1 using the same argument as in the proof
of Proposition 2.17.

Corollary 2.19. For every permutation π, we have

ctww(π) ≤ cw(π) ≤ ctww(π) + 1, and
ttww(π) ≤ lcw(π) ≤ ttww(π) + 1.

Finally, we get two large groups of functionally equivalent parameters by
combining Corollaries 2.12, 2.15 and 2.19.

Corollary 2.20. For both of the following groups of parameters, a permutation
class C either has all of them bounded by a constant, or all of them unbounded

1. tree-width, clique-width, grid-width and component twin-width;
2. path-width, linear clique-width, linear grid-width and total twin-width.

Moreover, we can efficiently translate between decompositions of any two parame-
ters from the same group.

37

2.1.5 Horizontal and vertical grid-width
One natural way to introduce a more restricted parameter than the previous ones
is to consider linear grid-width in a fixed prescribed ordering.

For permutation π, the horizontal grid-width of π denoted by hgw(π) is lgwσ(π)
where σi = i, and the vertical grid-width of π, denoted by vgw(π) is lgwσ(π) where
σi = π−1

i . The horizontal grid-width was introduced independently by Ahal
and Rabinovich [2] and Albert et al. [6] in the context of designing permutation
pattern matching algorithms. Moreover, there is a connection to the so-called
insertion-encodable classes which appear often in the area of permutation classes
enumeration, see e.g. [11, 20, 112].
Example. As an example, consider the class of layered permutations. Clearly,
any prefix of a layered permutation has grid-complexity at most 2. To be more
precise, it has grid-complexity equal to 1 if every layer is either fully contained
in the prefix or it is completely disjoint from the prefix. In the other case when
the prefix intersects some layer, its grid-complexity is exactly 2. Therefore, the
horizontal grid-width of any layered permutation is at most 2. And so is, in fact,
its vertical grid-width as layer permutations are closed under taking inversions.

It turns out that the obstructions to small horizontal (vertical) grid-width
are fairly straight-forward and easy to determine. However, we first need to
introduce a couple of new definitions. A permutation π of length n is a horizontal
alternation if all the even entries of π precede all the odd entries of π, i.e., there are
no indices i < j such that πi is odd and πj is even. A permutation π is a vertical
alternation if π−1 is a horizontal alternation. A horizontal monotone juxtaposition
is a monotone grid class Grid(C D) where both C and D are non-empty. Similarly,
a vertical monotone juxtaposition is a monotone grid class Grid (C

D).
We are now ready to characterize the obstructions to small horizontal grid-

width (and via symmetry for its vertical counterpart). Note that this behavior
was first observed, albeit in a different form, by Albert et al. [11] in the context of
regular insertion encodings.

Lemma 2.21. For a permutation class C the following are equivalent:

(a) C has unbounded horizontal grid-width,
(b) C contains arbitrarily large horizontal alternations, and
(c) C contains a horizontal monotone juxtaposition as a subclass.

Proof. Suppose (a) holds and for every integer k there is a permutation πk ∈ C
such that the horizontal grid-width of πk is at least k. Then there is i such that
the set S = {πk

1 , . . . , π
k
i } has grid-complexity at least k. Each pair of neighboring

intervals if S is separated by πk
j for some j > i. Therefore, πk contains a horizontal

alternation of length at least 2k − 1 which proves (b). On the other hand, a
horizontal alternation of length 2k must have a horizontal grid-width at least k
and thus (b) implies (a).

Now suppose that (b) holds. A monotone horizontal alternation is a horizontal
alternation whose set of odd entries and set of even entries both form monotone
sequences. We claim that every horizontal alternation π of length 2k4 contains a
monotone horizontal alternation of length 2k. By applying the Erdős–Szekeres
theorem [65] on the odd entries of π, we obtain a horizontal alternation π′ of

38

length at least 2k2 whose odd entries form a monotone sequence. Applying
the Erdős–Szekeres theorem again on the even entries of π′ yields a monotone
horizontal alternation π′′ of length at least 2k. Therefore, C contains arbitrarily
large monotone horizontal alternations. There are only four possible types of
such alternations depending on the type of the monotone sequences. Therefore, C
also contains arbitrarily large alternations belonging to a horizontal monotone
juxtaposition Grid(D1 D2) for some choice of D1,D2 ∈ { , }. Since every
σ ∈ Grid(D1 D2) is contained in a sufficiently large monotone alternation, the
class C must in fact contain the whole class Grid(D1 D2) as a subclass.

On the other hand, if (c) holds then C contains arbitrarily large monotone
horizontal alternations which trivially implies (b).

Comparison with other parameters

It follows directly from definitions and Lemma 2.9 that linear grid-width is upper-
bounded by both horizontal and vertical grid-width.

Observation 2.22. For every permutation π, we have

lgw(π) ≤ min(hgw(π), vgw(π)).

It remains to relate horizontal and vertical grid-widths to each other. Unsur-
prisingly, they are incomparable in the sense that one of them can be arbitrarily
large while the other is equal to 1.

Proposition 2.23. For every k, there are permutations π, σ such that vgw(π) =
hgw(σ) = 1 and simultaneously hgw(π), vgw(σ) ≥ k.

Proof. It is sufficient to prove the existence of π such that vgw(π) = 1 and
hgw(π) ≥ k, the existence of σ follows from symmetry. Consider the horizontal
monotone juxtaposition Grid(). It follows from Lemma 2.21 that we can find
π ∈ Grid() with horizontal grid-width greater than k. On the other hand,
any subset of form {(π−1

1 , 1), . . . , (π−1
i , i)} clearly has grid-complexity 1 and thus,

vgw(π) = 1.

2.1.6 Modular-width
We continue with introducing a graph parameter that has been previously con-
sidered for permutations only implicitly. On the other hand, the corresponding
decomposition, called substitution decomposition, has appeared many times in
the study of permutations, both structural and enumerative.

An interval in the permutation π is a set of points of the permutation diagram
Sπ whose horizontal and vertical projection both form an integer interval. In
other words, intervals are exactly the subsets of the permutation diagram with
grid-complexity at most 1. Recall that a simple permutation is one that cannot
be obtained as an inflation from strictly smaller permutations. Equivalently, a
permutation of length n is simple if it has only the trivial intervals of sizes 0, 1
and n. It is easy to observe that every non-trivial permutation π is an inflation of
a unique simple permutation.

39

3142

⊕

11

⊖

111

⊕

1⊖

11

1

Figure 2.7: The permutation diagram of the permutation 621398745 and its
substitution decomposition tree.

Proposition 2.24 ([8, Proposition 2]). Every permutation may be written as
the inflation of a unique simple permutation. Moreover, if π can be written as
σ[α1, . . . , αm] where σ is simple and not equal to 12 or 21, then each αi is unique.
Otherwise, either π is sum-decomposable and there is a unique sequence of sum-
indecomposable permutations α1, . . . , αm such that π = α1 ⊕ · · · ⊕ αm, or π is
skew-decomposable and the same holds with sum replaced by skew sum.

Naturally, we can use Proposition 2.24 to define a permutation decomposition.
A substitution decomposition tree of a permutation π is a labelled rooted plane
tree where every leaf is labelled with the singleton permutation 1, and the inner
nodes are of two different kinds. There are vertices, called linear nodes, that are
labelled by ⊕ or ⊖ and can have arbitrary many children but at least 2. The
other vertices are called prime nodes, they are labelled by a simple permutation
of length k ≥ 4 and they have exactly k children. Furthermore, we require that a
linear node cannot have another linear node of the same type as its child. See
Figure 2.7.

There is an obvious way of recursively translating a substitution decomposition
tree into a permutation. A leaf represents the singleton permutation, a linear node
get translated as a direct or as a skew sum of the permutations corresponding to
its children and a prime node labeled with a simple permutation σ is translated
as an inflation of σ by its children. Conversely, there is a unique substitution
decomposition tree for every permutation π due to Proposition 2.24. The modular-
width of π, denoted by mw(π), is the size of the largest prime node, measured in
the length of its label, in the substitution decomposition tree of π. Additionally,
we define the modular-width of any separable permutation (that does not contain
any prime nodes in their substitution decomposition trees) to be 1.

Observation 2.25. For a permutation π, mw(π) = 1 if and only if π is separable.

Observation 2.26. For every non-separable permutation π, the modular-width
of π is equal to the length of the largest simple permutation contained in π.

Therefore, a permutation class C has bounded modular-width if and only if it
contains finitely many simple permutations. This serves as a major motivation for
considering modular-width, since classes with finitely many simple permutations
have played an important role in many structural and enumerative results. We
refer an interested reader to [114, Section 3.2] for a survey on the topic.

Finally, let us discuss the complexity of obtaining substitution decomposition
trees. It is not hard to see that the substitution decomposition tree (and, thus, the

40

modular-width) of π can be computed in polynomial time. In fact, it is possible
to compute the substitution decomposition tree without labels in linear time by
an algorithm by Xuan, Habib and Paul [51]. We can then label each prime node
with d children in time O(d log d) by sorting its children.

Comparison with other parameters

We first show that the modular-width of a permutation is always lower-bounded
by its grid-width.

Proposition 2.27. For every permutation π, we have mw(π) ≥ gw(π).

Proof. The substitution decomposition tree of π describes how is π obtained via
inflations. The linear nodes correspond to inflations of increasing or decreasing
sequences while the prime nodes correspond to inflation of simple permutations.
For a node v of the tree, let πv be the permutation obtained by performing the
inflations in the subtree rooted in v. Let us prove that mw(π) ≥ gw(πv) by
induction on the depth of v.

The grid-width of πv for a leaf v is 1 which is clearly a lower bound for mw(π).
For an inner node v, we have πv = σ[πw1 , . . . , πwm] where w1, . . . , wm are the
children of v. Therefore due to Lemma 2.7, the grid-width of πv is equal to
max(gw(σ), gw(πw1), . . . , gw(πwm)). We have the bound mw(π) ≥ gw(πwi) due to
induction. If v is a linear node then σ is a monotone permutation and gw(σ) = 1.
Otherwise v is a prime node and it follows from the definition of modular-width
that mw(π) ≥ |σ|. And finally, |σ| is a trivial upper bound for gw(σ).

Observe that the same reasoning guarantees that we can almost use the
substitution decomposition tree of π directly as a grid tree for π. It suffices to
replace every inner node v that has more than two children with a sufficiently
large binary tree and attach the original children of v to its leaves.

On the other hand, modular-width is incomparable with all the introduced
parameters larger than grid-width. Proposition 2.5 shows that permutations of
bounded modular-width can have arbitrarily large path-width since every separable
permutation has modular-width 1.

Observation 2.28. For every k, there is a permutation π such that mw(π) = 1
and pw(π) = k.

On the other hand, we can exhibit permutations that have bounded both
horizontal and vertical grid-width while having arbitrarily large modular-width.

We define the increasing oscillating point set as {(n, an) | n ∈ N} where

an =
⎧⎨⎩n+ 3 if n is odd
n− 1 if n is even.

See Figure 2.8. The increasing oscillation of length m for m ≥ 4 is the permutation
obtained as the reduction of

• the leftmost m points of the increasing oscillating point set if m is even, or
• the bottommost m points of the increasing oscillating point set if m is odd.

41

Figure 2.8: The beginning of the increasing oscillating point set. The increasing
oscillation of length m is formed by the first m points along the dashed line.

Proposition 2.29. For every k, there exists a permutation π such that hgw(π) =
vgw(π) = 3 and mw(π) ≥ k.

Proof. Consider the increasing oscillation π of length k. Observe that π is a simple
permutation as long as k ≥ 4. It follows that mw(π) = k.

On the other hand, let us show that π has small both horizontal and vertical
grid-width. Observe that for every i < k, the set Si = {(j, πj) | j ≤ i} is the
reduction of {(j, aj) | j ≤ i}, regardless of whether k is even or odd. If i is
odd, then the y-coordinates of Si induce 3 contiguous intervals – the interval
{1, . . . , i− 2} and two singletons {i} and {i+ 2}. Otherwise if i is even, then the
y coordinates of Si induce only 2 contiguous intervals – the interval {1, . . . , i− 1}
and the singleton {i + 1}. The grid-complexity of Si is thus at most 3 and the
horizontal grid-width of π must be exactly 3. We omit a proof of the bound on
vertical grid-width as it is a symmetric argument to that above.

2.2 Containment of grid subclasses
In the following section, our goal is to investigate how the structure of a given
permutation class C affects how large tree-width can be achieved by a permutation
of a given length. We have found that lower bounds as these are achieved by
showing that C contains a certain kind of monotone grid subclasses. We have
already caught a glimpse of such result in Lemma 2.21.

First, let us formalize what we mean by saying that a permutation class C has
a large tree-width. The tree-width growth function of a class C is defined as

twC(n) = max{tw(π); π ∈ C ∧ |π| = n}.

We could similarly define the growth functions for any other parameter intro-
duced in Section 2.1 using the same notation. However, we choose to investigate
tree-width as it carries implications towards algorithms for permutation pattern
matching. Let us just briefly remark that gwC(n) behaves asymptotically identi-
cally to twC(n) by Corollary 2.12 and the same asymptotic lower bounds holds
for cwC(n) and ctwwC(n) due to Corollaries 2.15 and 2.19.

The study of fine-grained tree-width bounds was initiated by Berendsohn et
al. [23] who have shown that twC(k) = O(

√
n) when C is the class of 2-monotone

permutations (i.e., the permutations merged from two monotone sequences),

42

and that consequently these classes allow sub-exponential algorithms for pattern
matching. They show, however, that for the class Av(4321), the tree-width growth
is of order Ω(n/ log n). Later, Berendsohn [22] formally introduced the tree-width
growth function and proved that most classes defined by avoiding a single pattern
contain permutations with tree-width almost linear in their length.

Theorem 2.30 ([22, Theorem 3.3]). We have twAv(σ)(n) = Ω(n/ log n) for all
permutations σ such that |σ| ≥ 4 and σ is not symmetric to any of 3412, 3142,
4213, 4123, 42153, 41352 and 42513.

Unfortunately, the theorem is proved by showing twC ∈ O(n/ log n) separately
for six different choices of C and therefore, it does not provide much insight into
the structural reasons for large tree-width. Our aim is to provide tools that
describe structural properties forcing large tree-width; as a result, we will be able
to unify and strengthen all the aforementioned lower bounds.

2.2.1 Long path property
The first property of interest is defined by the containment of monotone grid
subclasses with arbitrary long paths in their cell graph. We say that a permutation
class C has the long path property if for every k the class C contains a monotone
grid subclass whose cell graph is a path of length k. Additionally, we say that C
has the computable long path property if there exists an algorithm that given a
positive integer k outputs a monotone gridding matrix M such that Grid(M) ⊆ C
and the cell graph of M is a path of length k. Finally, C has the poly-time
computable long path property if the algorithm runs in time polynomial in k.
Example. Let us show that the class Av(321) has the long path property. In order
to do that, we introduce a general way how to build staircase-like grid classes. The
k-step increasing (C,D)-staircase, denoted by Stk(C,D) is a grid class Grid(M)
of a k × (k + 1) gridding matrix M such that the only non-empty entries in M
are Mi,i = C and Mi,i+1 = D for every i ∈ [k]. In other words, the entries on
the main diagonal are equal to C and the entries of the adjacent lower diagonal
are equal to D. The increasing (C,D)-staircase, denoted by St(C,D), is the union
of Stk(C,D) over all k ∈ N. See Figure 2.9. Observe that any class St(C,D) for
infinite classes C and D has the long path property. It remains to notice that
the increasing staircase St(,) avoids 321 and thus, Av(321) has the long path
property. In fact, Waton [117, Lemma 3.2.7] noticed that Av(321) is equal to
St(,).

The reason of our particular interest in the long path property is that it is
the minimal condition we found to enforce unbounded tree-width. In fact, we
conjecture that a permutation class C has unbounded tree-width if and only if it
has the long path property.

Conjecture 2.31. A permutation class C has unbounded tree-width if and only
if it has the long path property.

The lower bound builds upon the ideas of Berendsohn et al. [23], who proved
a similar result for the class Av(321) using the fact that this class contains a
staircase-shaped grid path of arbitrary length. As we shall see later, this lower

43

. . .

C

C

C

D

D

D

Figure 2.9: The increasing (C,D)-staircase.

bound is tight in general as there exist classes with the long path property and
tree-width O(

√
n).

Before proving the lower bound of interest, we need to introduce the most
prominent example of graphs with unbounded tree-width. For a positive interger
k, the k × k grid graph is the graph with vertex set [k] × [k] such that vertices
(i, j) and (i′, j′) are joined with an edge if and only if |i− i′| + |j − j′| = 1.

Proposition 2.32 (folklore). The k × k grid graph has tree-width exactly k.

Proposition 2.33. If a permutation class C has the long path property then

twC(n) ∈ Ω(
√
n).

Proof. First, we show that C contains for every k a grid subclass whose cell graph
is a proper-turning path of length k, i.e. a path in which no three consecutive
vertices are in the same row or column of the gridding. For contradiction, assume
that there is ℓ such that C does not contain such path of length ℓ. The long path
property then implies that C contains for every t a class Grid(M) where M is
either a 1 × t or t× 1 matrix without empty entries. However, any such matrix of
dimensions 1 × n or n× 1 contains all permutations of length n and thus, C must
actually be the class of all permutations that contains all possible proper turning
paths.

So we can suppose that there is a monotone gridding matrix M such that M
is a proper-turning path v1, . . . , v2m−1 of length 2m− 1 and Grid(M) is contained
in C. We explicitly construct a permutation π ∈ Grid(M) such that Gπ contains
the m×m grid graph as a subgraph. See Figure 2.10. The claim then follows by
Proposition 2.32.

For i ∈ [m] and j ∈ [i], let

pi,j = (m+ 2j − i− 1,m+ 2j − i− 1), p2m−i,j = pi,j.

Less formally, the individual tiles along the path contain monotone sequences of
lengths 1, 2, . . . ,m− 1,m,m− 1,m− 2, . . . , 1 and for two consecutive tiles, their
points sets alternate when ordered by either coordinate. We define a family of
2m-tiles P by setting Pvi

to be the set of points pi,j for all possible choices of j.
Let F be a consistent orientation of M guaranteed by Lemma 1.2 and let π

be the F -assembly of P. The sets Pvi
were defined in such a way that for every

i the points in Pv2i
have both coordinates odd whereas the points in Pv2i+1 have

both coordinates even. Since M is a proper turning path, there are always at

44

Figure 2.10: Illustration of the proof of Proposition 2.33. Embedding a 3 × 3 grid
graph (left) into a permutation from a monotone grid class whose cell graph is a
path of length 5 (right).

most two non-empty tiles sharing the same row or column in π and in such case
they correspond to neighboring vertices of the path. Moreover, if they share a
common row, then the y-coordinates of their points are interleaved, and if they
share a common column, the same holds for the x-coordinates.

It remains to show that Gπ contains the m × m grid graph as a subgraph.
Let si,j be the image of pi,j under the F-assembly. We claim that we can map
consecutive diagonals of the grid to the tiles Pvi

. More precisely, for x, y ∈ [m] set

gx,y =
⎧⎨⎩sx+y−1,x if x+ y ≤ m+ 1,
sx+y−1,m−y+1 otherwise.

We start by showing that for any i ∈ [m − 1], there is an edge between si,j

and si+1,j, and also between si,j and si+1,j+1. This follows since the points of Pvi

and Pvi+1 have their x- or y-coordinates interleaved and there is no other tile
occupying their shared row or column. Due to symmetry, it holds that for i > m,
there is an edge between si,j and si−1,j and also between si,j and si−1,j+1.

If we take x, y ∈ [m] such that x+ y ≤ m (i.e. gx,y lies below the anti-diagonal
of the grid), the fact proved in the previous paragraph directly translates to the
existence of edges between gx,y and gx+1,y and between gx,y and gx,y+1. On the
other hand for x, y ∈ [m] such that x + y ≥ m + 2, the points gx,y, gx−1,y and
gx,y−1 translate to sx+y−1,x, sx+y−2,x−1 and sx+y−2,x. Therefore, in this case there
are edges between gx,y and gx−1,y and between gx,y and gx,y−1. This concludes
the proof as any edge in the m×m grid graph is of one of the two types whose
existence we proved.

2.2.2 Cycle property
We shall often show that a permutation class C has the long path property
indirectly through a different property defined by containment of grid classes.
Namely, a permutation class C has the cycle property if the class C contains a
monotone grid subclass whose cell graph is a cycle. Notice that there is no reason
in defining a computable version of the cycle property.

45

Example. We put forth as the most prominent example the class of the so-called
skew-merged permutations defined as the merge of an increasing and a decreasing
sequence. It is easy to see that the class of skew-merged permutations is in fact
equal to the grid class Grid

(︂)︂
whose cell graph is a cycle on four vertices.

Proposition 2.34. If C has the cycle property then it also has the poly-time
computable long path property.

Before we prove the proposition, we need to introduce some more terminology.
We say that a monotone gridding matrix M is increasing if Grid(M) = , it
is decreasing if Grid(M) = , and it is empty if Grid(M) = ∅. For instance,(︂

· ·
· ·

)︂
or
(︂

·
· ·

)︂
are both increasing gridding matrices, while

(︂
·

·

)︂
is neither

increasing nor decreasing.
We shall now introduce a variant of the F -assembly acting on matrices. Suppose

that M is a k × ℓ monotone gridding matrix, and let Λ be a k × ℓ family of
monotone gridding matrices {Li,j | i ∈ [k], j ∈ [ℓ]} such that for each i ∈ [k] and
j ∈ [ℓ], Li,j is an m×m monotone gridding matrix. We say that Λ is consistent
with M if Li,j is empty whenever Mi,j = ∅, Li,j is increasing whenever Mi,j = ,
and Li,j is decreasing whenever Mi,j = . We then define the assembly of Λ,
denoted by [Λ], as the km× ℓm gridding matrix N with

N(i−1)·m+a,(j−1)·m+b = (Li,j)a,b

for every i ∈ [k], j ∈ [ℓ] and a, b ∈ [m]. Informally, we replace each cell (i, j) of
M by the matrix Li,j. Observe that if Λ is consistent with M, then Grid([Λ]) is
a subclass of Grid(M).

If F = (fc, fr) is a k × ℓ orientation, then applying F to a matrix family Λ as
above yields a matrix family

F(Λ) = {Φi(Ψj(Li,j)); i ∈ [k], j ∈ ℓ},

where Φi is an identity if fc(i) = 1 and reversal otherwise, while Ψj is an identity
if fr(j) = 1 and complement otherwise. The F-assembly of Λ is defined as the
assembly of F(Λ). Observe that Λ is consistent with M if and only if F(Λ) is
consistent with F(M) and moreover, the cell graph of [Λ] is isomorphic to the
cell graph of [F(Λ)].

Furthermore, we shall use the fact that while a monotone gridding matrix M
might not have a consistent orientation we can always find a monotone gridding
matrix N such that Grid(N) is a subclass of Grid(M) and they have similar
properties. To that end, the refinement M×2 of a gridding matrix M is the matrix
obtained from M by replacing every -entry with the 2 × 2 increasing matrix(︂

·
·

)︂
, every -entry with the decreasing matrix

(︂
·

·

)︂
and every empty entry

with the empty 2 × 2 matrix. One can also view the refinement as a special case of
assembly. Clearly, Grid(M×2) is contained in Grid(M). And as it was observed
by Albert et al. [7], M×2 always admits a consistent orientation. We include the
very brief proof for the sake of completeness.

Lemma 2.35 ([7, Proposition 4.1]). For every monotone gridding matrix M, the
refinement M×2 admits a consistent orientation.

46

Proof. Consider the orientation F = (fc, fr) defined as fc(i) = (−1)i and fr(j) =
(−1)j. The consistency of F follows since the entries of every inflated -entry
occupy cells (i, j) such that the sum i + j is even, while it is odd for the cells
occupied by the entries of every inflated -entry.

Proof of Proposition 2.34. Let M be a gridding matrix with the following prop-
erties:

(i) Grid(M) ⊆ C,
(ii) the cell graph of M contains a cycle,
(iii) M has a consistent orientation F ,
(iv) M is minimal with respect to these conditions, i.e., changing any non-empty

entry of M to ∅ yields a gridding matrix whose cell graph is acyclic.

Let us first show that such M exists. The cycle property guarantees an
existence of a gridding matrix M′ with the properties (i), (ii) and (iv). Note that
the property (iv) implies that every vertex of GM′ corresponds to a corner, i.e. it
has one neighbor in the same row and the other in the same column.

Consider the refinement M′×2 which possesses a consistent orientation by
Lemma 2.35. We claim that while the cell graph GM′×2 might not be connected,
its every connected component must be a cycle. This follows since both of the new
vertices created by replacing a single non-empty entry with a 2 × 2 matrix inherit
the degree of the original vertex in GM′ . Furthermore, there are no vertices of
degree one due to property (iv) and therefore, all vertices have degree exactly two
and every connected component is a cycle. It suffices to take as M any connected
component of GM′×2 .

Let F be a consistent orientation of M and let x be any vertex on the cycle
in GM. For a natural number k, we show how to define a family of matrices Λ
that will create upon its F -assembly a gridding matrix whose cell graph is a path
of length at least k. We define Lx as the increasing k × k matrix with non-empty
entries of the form (i, i+ 1) for i ∈ [k− 1]. And for every other vertex v of GM, we
simply take as Lv the increasing matrix with k non-empty entries on its diagonal.

Let N be the F-assembly of Λ. It follows that Grid(N) is a subclass of
Grid(M) (and thus of C). Therefore, it suffices to check that GN is a path. With
that in mind, let y be the neighbor of x in GM sharing a common row with x and
let z be the other neighbor of x. We call the path from y to z along the cycle that
avoids x the arc. Observe that the vertex originating from the (i, i) cell in Ly is
connected by path to the vertex originating from the (i, i) cell in Lw for every
vertex w on the arc, in particular for z. The vertex originating from the (i, i)
cell in Lz is then neighbor of the vertex originating from the (i, i+ 1) cell in Lx.
Finally, this vertex is connected to the vertex originating from the (i+ 1, i+ 1) cell
in Ly and we see that all vertices in N form a single long path. See Figure 2.11.
Notice that we actually described how to construct N in time polynomial in k
which proves that N has the poly-time computable long path property.

Finally, we exhibit an example of a permutation class that has the long path
property but lacks the cycle property.

Proposition 2.36. The class Av(321) does not have the cycle property.

47

1

−1

1

1−1

1

x

y

z

x

3

2

1

3

2

1

1

2

3

1 2 3 3 2 1 1 2 3

y

z

Figure 2.11: Left: a gridding matrix M whose cell graph is a cycle together with a
consistent orientation F given by the numbers along the edges. Right: a gridding
matrix N whose grid class is contained in Grid(M) and whose cell graph forms
one long path. The numbers along the edges are the coordinates of the original
cells under matrix F -assembly and we highlighted the endpoints of the path.

Proof. Assume for a contradiction that there is a monotone gridding matrix M
such that GM is a cycle and Grid(M) is contained in Av(321). We first notice
that any non-empty entry in M must be increasing as the class itself contains
the forbidden pattern 321.

Let i be the index of the rightmost non-empty column in M and let j be the
largest integer such that the entry Mi,j is non-empty. Since (i, j) is participating
in the cycle it must have degree 2 and therefore, there must be i′ < i and j′ < j
such that both entries Mi′,j and Mi,j′ are non-empty. However, these three entries
alone form the class Grid

(︂
·

)︂
which contains 321.

2.2.3 Deep tree property
We continue with a strengthening of the long path property. For integer constants
c and d, a c-subdivided binary tree of depth d is a graph obtained from a binary
tree of depth d by replacing every edge by a path of length at most c. We say
that a permutation class C has the deep tree property if there is a constant c such
that for every d, the class C contains a monotone grid subclass whose cell graph
is a c-subdivided binary tree of depth d. Similar to before, we say that C has the
(poly-time) computable deep tree property if there is a (poly-time) algorithm that
outputs monotone grid subclass of C whose cell graph is a c-subdivided tree of
depth d.

Observation 2.37. If a permutation class C has the deep tree property then it
also has the long path property.

Example. We claim that the class Av(4321) has the deep tree property. First,
observe that the increasing (,Grid(,))-staircase avoids 4321 and thus, is
a subclass of Av(4321). The deep tree property follows since we can embed
arbitrarily deep 3-subdivided tree by using the lower diagonal cells of the staircase
to branch. See Figure 2.12.

48

. . .

→

. . .

Figure 2.12: Construction of a grid subclass of the class St(,Grid(,)) whose
cell graph is a 3-subdivided tree with four leaves.

The main motivation for the introduction of the deep tree property is that it
enforces linear tree-width up to a logarithmic factor. Inspired by the approach
of Berendsohn [22], we want to show that for every graph G , we can find a
permutation π ∈ C such that Gπ contains G as a minor while the length of π
exceeds the size of G by at most a logarithmic factor. The desired bound follows
since there are sparse graphs with linear tree-width.

Lemma 2.38. Let C be a permutation class with the deep tree property. For every
connected graph G with n vertices and m edges, there exists a permutation π ∈ C
of length O(m logm) such that G is a minor of Gπ.

Proof. Suppose that the vertex set of G is VG = [n] and we arbitrarily number its
edges as {e1, . . . , em} where ei = {ai, bi}. Let M be a monotone gridding matrix
such that Grid(M) ⊆ C and the cell graph of M is a c-subdivided binary tree
with exactly m leaves. Let r denote the root of this tree. It follows that the tree
has maximal depth at most c(logm + 1). We turn GM into an oriented graph
by orienting all edges consistently away from r. For any vertex v of the tree, the
descendants of v, denoted by D(v), are all the out-neighbors of v.

We assign a set Aw ⊆ VG to each vertex w of the tree. First, we arbitrarily
order the m leaves of GM as v1, . . . , vm. Then we inductively define

Aw =
⎧⎨⎩{ai, bi} if w = vi for i ∈ [m] where ei = {ai, bi},⋃︁

v∈D(w) Av otherwise.
(2.1)

We remark that ∑︁v |Av| ∈ O(m logm) since each vertex i ∈ VG is present in
exactly deg(i) leaves and in the paths of length O(logm) that connect those leaves
to r. We proceed to define a family of m-tiles P by setting Pv = {(i, i) | i ∈ Av}
for every vertex v of the tree, and keeping all the other tiles empty.

Let F be a consistent orientation obtained from the application of Lemma 1.2
on M and let π be the F -assembly of P. See Figure 2.13. Since every tile is an
increasing point set, it follows that π belongs to Grid(M).

In order to simplify the rest of the proof, we color π with n colors. We assign
a color i ∈ VG to a point p ∈ π with preimage (i, i) in Px,y. We claim that π
satisfies the following conditions:

(a) The subgraph of Gπ induced by a single color is connected;
(b) For each edge ei = {ai, bi} of G, there is an edge in Gπ between a vertex of

color ai and a vertex of color bi.

49

r

e1

e2

e3

e4

e4

e3

e2

e1
G :

Figure 2.13: Illustration of the proof of Proposition 2.39. Embedding a graph G
with four edges (top left) into a permutation from a monotone grid class whose
cell graph is a tree with four leaves rooted in vertex r (right).

Fix a color i ∈ VG. Let Qi be the set of all vertices v of GM such that i ∈ Av.
Clearly, Qi induces a connected subtree of GM. Recall that every point of color i
has always the coordinates (i, i) inside any tile. It follows that for points (i, i) in
two neighboring tiles, the F -assembly of P transforms them first to points that
share one coordinate and then by rotating slightly clockwise makes them either
horizontal or vertical neighbors. Therefore, the subgraph of Gπ induced by color i
is connected, which proves (a).

Every leaf vi must be the only non-empty vertex in its row or column. Let us
assume the latter case as the other one is symmetric. Therefore, the two points
contained in the image of Pvi

form an edge in Gπ since no other point lies in the
vertical strip between them. In particular, the leaf vi satisfies the condition (b)
for the edge ei.

The conditions (a) and (b) together imply that we can obtain a supergraph
of G by contracting every monochromatic subgraph of Gπ to a single vertex and
thus, G is a minor of Gπ. Observe that the total length of π is equal to ∑︁v |Av|
which we showed to be O(m logm).

Proposition 2.39. If a permutation class C has the deep tree property, then

twC(n) ∈ Ω(n/ log n).

Proof. It is well known that tw(H) ≤ tw(G) for any minor H of a graph G (see,
e.g., [104]). Suppose we have an infinite family of graphs G such that any G ∈ G
on n vertices has O(n) edges and moreover, the tree-width of G is Θ(n). It
follows by application of Lemma 2.38 on G and C that twC(n) ∈ Ω(n/ log n). We
conclude the proof by stating that these properties are attained by any family of
the so-called expander graphs (see [76]). Note that we shall introduce expanders
more properly in the upcoming subsection.

We remark that the deep tree property is not the only cause of near linear
tree-width growth. Recall the definition of increasing (C,D)-staircase St(C,D) and
let L denote the class of layered permutations. It can be shown that the tree-width
growth of the class St(,L) is at least Ω(n/ log2 n) even though St(,L) does not
have the deep tree property.

50

And to conclude our investigation of deep tree property, we note that it is
incomparable with the cycle property. We shall see later that there are classes
with the cycle property that cannot have the deep tree property as their tree-width
growth is Θ(

√
n) (Theorem 6.1). For now, we exhibit an example of the opposite

case, i.e. a class C that has the deep tree property but lacks the cycle property.

Lemma 2.40. The increasing (,Grid(,))-staircase has the deep tree property
but lacks the cycle property.

Proof. We had already shown that the class St(,Grid(,)) has the deep tree
property at the beginning of this subsection. On the other hand, if we assume
that St(,Grid(,)) has the cycle property then it has to contain the grid class
Grid

(︂
·

)︂
via the same argument as in the proof of Proposition 2.36. It suffices

to mechanically check that the permutation 463152 belongs to Grid
(︂

·

)︂
but

not to the staircase class.

2.2.4 Bicycle property
As a next step, we introduce an even stronger property than the deep tree property
which is often easier to exhibit for a specific class C. A permutation class C has
the bicycle property if it contains a monotone grid subclass whose cell graph is
connected and contains at least two cycles.

It is perhaps quite unsurprising that the bicycle property implies the deep tree
property. However, the proof is quite long and technical since it has to deal with
all kinds of possible configurations of two cycles in a cell graph of a monotone
grid class.

Proposition 2.41. If a permutation class C has the bicycle property, then it also
has the poly-time computable deep tree property.

Before the actual proof, let us show that we can assume additional properties
of the grid subclass of C with two cycles in its cell graph. Namely, there are two
possible configurations of two cycles in a graph – either two cycles connected by
a path, or one cycle with a (possibly subdivided) chord. We show that, in fact,
we can without loss of generality assume that the former holds. Note that we
consider the degenerate case of two cycles joined via a vertex of degree four as
two cycles connected by a path of zero length.

Lemma 2.42. For every permutation class C with the bicycle property, there
exists a monotone gridding matrix M with a consistent orientation F such that
Grid(M) is a subclass of C and the cell graph GM consists of two edge-disjoint
cycles connected by a path (possibly of zero length).

Proof. Let M be a monotone gridding matrix with the following properties:

(i) Grid(M) ⊆ C,
(ii) the cell graph of M contains two connected cycles,

(iii) M has a consistent orientation F ,
(iv) M is minimal with respect to these conditions, i.e., changing any non-empty

entry of M to ∅ yields a gridding matrix violating (ii).

51

The bicycle property guarantees an existence of a monotone gridding matrix
M′ with properties (i), (ii) and (iv). Recall that a corner is any vertex of GM′ of
degree two which has one neighbor in the same row and the other in the same
column, and observe that every vertex of degree two in GM′ must in fact be a
corner as a result of property (iv).

Consider the refinement M′×2 of M′ which admits a consistent orientation by
Lemma 2.35. We claim that while the cell graph GM′×2 might not be connected,
its every connected component in fact contains at least two cycles. This follows
since both of the new vertices created by replacing a single non-empty entry with
a 2 × 2 matrix inherit the degree of the original vertex in GM′ . There are no
vertices of degree one due to our choice of M′ as a minimal matrix with the
property and moreover, there is at least one vertex of degree at least 3. Thus, we
can find two connected cycles by walking from a single vertex in three different
directions. We take as M any connected component of GM′×2 .

We are done if GM consists of two cycles joined by a path. So let us assume
that GM forms a cycle with a chord and let u and v be the two vertices with
degree three. We call the shortest of the three paths between u and v the chord
of GM and the other two parts the arcs of GM. We orient the arcs such that they
together form an oriented cycle. Since the chord is the shortest of the three parts,
there exists at least one corner on each arc – let us choose arbitrarily one corner
from each arc, and denote them by x and y.

We define a family of matrices Λ where each Li,j is an increasing 3 × 3 matrix
that is a symmetry of one of the four following types

P =
(︃ · · ·

· ·
· ·

)︃
, Q =

(︃
· ·
· ·
· · ·

)︃
, R =

(︃
· ·

· ·
· · ·

)︃
, S =

(︃ · · ·
· ·
· · ·

)︃
,

where the dots denote the empty entries. In particular, for every vertex z on the
oriented path from x to y (excluding the endpoints), we set Lz = P . For every
vertex z on the oriented path from y to x (again excluding the endpoints), we
set Lz = Q. For every vertex z on the chord (again excluding x and y), we set
Lz = S. We set Lx = R if x and its predecessor on the cycle share a common row,
otherwise we set Lx = R−1. And finally, Ly = R−1 if y and its predecessor on the
cycle share a common row, otherwise Ly = R. Let N be the matrix F -assembly
of Λ.

Observe that when we limit our view only to the arcs in N , the non-empty
entries actually form two disjoint cycles. One cycle contains what was originally
the (1, 1) cell of Lz for every z on the path from x to y and the (2, 2) cell of Lz

for every z on the path from y to x. The other cycle contains the (2, 2) cells on
the path from x and y and the (3, 3) cells on the path from y to x. The matrices
Lx and Ly act as switches. Most importantly, every Lz for z in the chord has a
single non-empty entry in the (2, 2) cell which establishes the connection between
the two cycles. See Figure 2.14.

Proof of Proposition 2.41. By Lemma 2.42, there is a gridding matrix M with a
consistent orientation F such that Grid(M) is a subclass of C and GM contains
two cycles joined with a path. Let u and v be the vertices of GM with degree 3
and let us orient each cycle arbitrarily. If the cell graph consists of two cycles
sharing a vertex, we simply set u, v to both be this vertex of degree 4. We pick
one corner on each cycle, let x be a corner on the cycle incident with u and y a

52

1

1

1

−1 −1−1

−1

u

v

x

y

u

v

x

y

1

2

3

3

2

1

3

2

1

1 2 3 3 2 1 3 2 1 3 2 1

Figure 2.14: Left: a gridding matrix M whose cell graph is a cycle with a chord
together with a consistent orientation F given by the numbers along the edges.
Right: a gridding matrix N whose grid class is contained in Grid(M) and whose
cell graph consists of two cycles joined by a path. The numbers along the edges
are the coordinates of the original cells under matrix F -assembly.

corner on the cycle incident with v. These corners shall play the role of some sort
of switches.

Let T be a complete binary rooted tree of depth d and let m = 2d − 1 denote
the number of vertices in T . We identify the vertices of T with the set [m] using
a breadth-first search numbering. Formally, the root is the integer 1 and the
remaining vertices are numbered by layers and in each layer from left to right.
Let L(i) and R(i) denote the left and the right child of a vertex i in T . Observe
that we have L(i) = 2i and R(i) = 2i+ 1.

We now define a family of matrices Λ that will create a subdivided T upon its
F -assembly (see Figure 2.15). Each Li,j is the following 2m× 2m matrix.

• For any vertex z on the path from v to x including u and v but excluding x,
we define Lz as the whole identity matrix with 2m non-empty entries on its
diagonal.

• For z on the path from v to y excluding v and y, we define Lz as the matrix
with non-empty entries of the form (2i− 1, 2i− 1) for i ∈ [m].

• For z on the path from y to v (again without its endpoints), we define Lz

as the matrix with non-empty entries of the form (2i, 2i) for i ∈ [m].

• For the corner y, we set Ly to contain the non-empty entries (2i − 1, 2i)
if y and its predecessor on the cycle share a common row, otherwise its
non-empty entries are of the form (2i, 2i− 1) for i ∈ [m].

• For z on the path from x to u (excluding x and u), we define Lz as the
matrix with non-empty entries of the form (2i− 1, 2i− 1) for i ∈ [m].

• Finally for the corner x, we set Lx to contain the non-empty entries (2 ·
L(i) − 1, 2i− 1) and (2 ·R(i) − 1, 2i) for every i that is not a leaf in T if x
and its predecessor on the cycle share a common row, otherwise we swap
the x- and y-coordinates.

First, we need to verify that every matrix is increasing. Luckily, that is obvious
in all cases except for Lx and in that case it follows from the chosen labeling of

53

1

2

4 5

3

v2 v4
v5v3

x

y

vu

v1

Figure 2.15: Embedding a subdivision of the tree T on the left in a grid class whose
cell graph consists of two cycles joined by a path, on the right. The grey cells in
the submatrix obtained by replacing u denote precisely the vertices corresponding
to vertices of T , the subdivided edges are highlighted using matching colors. The
cells not participating in the subdivision of T are omitted.

the vertices in T . Let N be the F-assembly of Λ and let vi for i ∈ [m] be the
vertex of GN originating from the (2i − 1, 2i − 1) cell in Lu. We claim that for
every i that is not a leaf in T , there are paths of constant length from vi to both
vL(i) and vR(i) and moreover, all these paths are disjoint. It then follows that GN
contains the desired subdivision of T .

Let us start with the vertex vi for an inner vertex i of T . Following the
path from u to x in GM, we inductively see that vi is connected to the vertices
originating from the (2i − 1, 2i − 1) cells. The submatrix corresponding to the
original vertex x then acts as a switch using the (2 · L(i) − 1, 2i− 1) cell and we
can extend the path to all the vertices originating from the (2 ·L(i)−1, 2 ·L(i)−1)
cells on the path from x back to u. Therefore, we found a path of constant length
that connects vi to vL(i).

In the case of the right child, we first follow the path from u to v and
subsequently to y using in every step the vertex arising from the (2i− 1, 2i− 1)
cell. The corner y again acts as a switch via the (2i− 1, 2i) cell and we extend
the path all the way back through v to u using the (2i, 2i) cells. From there, we
follow the path to x and then back to u. Using the same arguments as for the left
child, we see that we end up in the vertex vR(i). It is easy to see that the paths
corresponding to different edges are indeed pairwise disjoint and thus, we verified
the deep tree property.

Improved lower bound on tree-width

We will now show that the bicycle property in fact implies an existence of
permutations with linear tree-width. In order to do that, we shall introduce
the notion of expanders, connect them to large tree-width and then exhibit that
there are expanders that can be embedded in any class with the bicycle property.

Let G be a graph. For a subset of its vertices X, we let the sphere around X,
denoted by SG(X), be the set of all vertices outside of X that are adjacent to a

54

vertex in X. We drop the subscript when it is clear which graph we consider. We
define the vertex expansion of G as

vx(G) = min
X⊆V (G),

0<|X|≤ 1
2 ·|V (G)|

|SG(X)|
|X|

if |V (G)| ≥ 2 and vx(G) = 0 otherwise. We say that an infinite set of graphs G is
a family of (ϵ-)expanders if there is a constant ϵ > 0 such that for every graph
G ∈ G we have vx(G) ≥ ϵ.

Expanders exhibit many interesting properties and have found numerous
applications in both mathematics and computer science. We refer an interested
reader, e.g., to [82] for a survey on this topic. An important property from our
point of view is that expanders have large tree-width.

Proposition 2.43 ([76, Proposition 1]). For every n-vertex graph G, we have

tw(G) ≥
⌊︂

1
4 · vx(G) · n

⌋︂
.

Our aim is to take previously discovered expanders of very limited structure
and transform them into expanding incidence graphs of permutations from a
given class with the bicycle property. First, let us introduce the restricted class
of graphs which contains expanders. A partial monotone function on [n] is a
function f : [n] → [n] ∪ {⊥} (we interpret f(x) = ⊥ as f being undefined at x)
such that whenever f is defined at two distinct values x, y ∈ [n] and x < y, we
have f(x) < f(y). A bipartite graph G with the vertex set [2] × [n] is d-monotone
if there exist partial monotone functions f1, . . . , fd such that the edges of G are
exactly all the pairs (1, x), (2, fi(x)) for i ∈ [d] and x ∈ [n] whenever fi(x) is
defined.

Bourgain and Yehudayoff [40] provided a (perhaps surprising) construction
of a family of O(1)-monotone expanders. This was later reduced by Dujmović et
al. [60] to a family of 3-monotone expanders. Note that this is the best possible
since it is well known that 2-monotone graphs are planar [24], but planar graphs
have O(

√
n) separators [96] and thus, too small tree-width to be expanders. We

have to first define a slightly different notion of expansion for bipartite graphs in
order to be compatible with these results.

A bipartite graph G with bipartition A,B is a two-sided bipartite ϵ-expander if
|A| = |B|, and for every X ⊂ A with |X| ≤ 1

2 · |A| we have |S(X)| > (1 + ϵ) · |X|,
and symmetrically for every Y ⊂ B with |Y | ≤ 1

2 · |B| we have |S(Y)| > (1+ϵ) · |Y |.
We are now ready to state the exact result proved by Dujmović et al. [60].

Theorem 2.44 ([60, Theorem 2]). There is an infinite family of two-sided 3-
monotone bipartite expanders.

Unsurprisingly, any two-sided bipartite expander has large vertex expansion.
And therefore, Theorem 2.44 provides us an infinite family of expanders even in
the sense of vertex expansion.

Lemma 2.45. For any two-sided bipartite ϵ-expander G we have vx(G) ≥ 1
2 · ϵ.

55

Proof. Let us check that vx(G) ≥ 1
2 · ϵ. Suppose that A,B is the bipartition of

G and let X ⊂ V (G) be a set of vertices such that 0 < |X| ≤ 1
2 · V (G). We

may assume without loss of generality that |A ∩ X| ≥ |B ∩ X|. Observe that
|A ∩X| ≥ 1

2 · |X| while |B ∩X| ≤ 1
2 · |X|

First, suppose that |A∩X| ≤ 1
2 · |A|. In this case, we can apply the expansion

property of G on X ∩ A to obtain a large set of its neighbors in B. We then just
need to subtract all the vertices of B ∩X to get a lower bound on the sphere of X.
Putting it all together, we get

|S(X)| ≥ |S(X) ∩B| ≥ (1 + ϵ) · |A ∩X| − |B ∩X|
≥ (1 + ϵ) · 1

2 · |X| − 1
2 · |X| ≥ 1

2 · ϵ · |X|.

Otherwise, we must have |A∩X| > 1
2 · |A|. Notice that now |B∩X| ≤ 1

2 · |B| =
1
2 · |A|. Let X ′ be an arbitrary subset of X ∩ A of size 1

2 · |A|. We can now use
the expansion property of G on X ′ and see that

|S(X)| ≥ |S(X) ∩B| ≥ (1 + ϵ) · |X ′| − |B ∩X|
≥ (1 + ϵ) · 1

2 · |A| − 1
2 · |A| ≥ 1

2 · ϵ · |A| ≥ 1
2 · ϵ · |X|.

Theorem 2.46. Let C be a permutation class with the bicycle property. Then
there exists an infinite set of permutations {πi}i∈N ⊂ C such that their incident
graphs {Gπi

}i∈N form an infinite family of expanders.

Proof. Due to Lemma 2.42, there exists a monotone gridding matrix M with a
consistent orientation F such that Grid(M) ⊆ C and the cell graph GM consists
of two cycles joined with a path. Let u, v be the two vertices that connect each
cycle to the path, or both equal to the one vertex shared by the two cycles. By
taking the minimal M we are guaranteed that every vertex of degree two is a
corner. Moreover, any cycle in a cell graph has even length and therefore, there is
a vertex x on the cycle with u such that both paths from x to u are of the same
length. Similarly, let y be the vertex on the cycle with v such that both paths
from y to v are of the same length. Let s1, s2 be arbitrary corners, one on each
path from x to u, and let t1, t2 be arbitrary corners, one on each path from y to
v. Finally, we define an orientation of GM by orienting both paths from x to u
towards u, orienting the path between u and v towards v and finally orienting
both paths from v to y towards y. Observe that any oriented path from x to y
contains the same number of vertices — let us denote this quantity by m.

Before we delve into the construction of expanders, we need to describe a
representation of the partial monotone functions as permutations. Let f be
a partial monotone function on [n]. An order encoding of f is a bijection g :
[2]× [n] → [2n] with two additional properties. First, the image of each copy of [n]
is in the correct order, i.e. for every α ∈ [2] and two distinct i, j ∈ [n] such that
i < j, we have g(α, i) < g(α, j). And moreover, we have g(2, f(i)) = g(1, i) + 1 for
every i ∈ [n] where f(i) is defined. In other words, the images of (1, i) and (2, f(i))
form a pair of successive numbers. Observe that every partial monotone function
has at least one order encoding due to the monotonicity. For example, the partial
monotone function f on [3] defined by 1 ↦→ 2, 3 ↦→ 3 has an order encoding g
which induces the following linear order of [2] × [n] (the pairs corresponding to
defined values of f are underlined)

(2, 1), (1, 1), (2, 2), (1, 2), (1, 3), (2, 3).

56

xs1

s2u
vt1

t2
y

G :

Figure 2.16: Illustration of the proof of Theorem 2.44. Embedding a 3-monotone
bipartite graph G (top left) into a permutation from a monotone grid class whose
cell graph contains two cycles joined with a path (right).

Let G be a two-sided 3-monotone bipartite ϵ-expander on 2n vertices. We
describe how to transform it into a permutation π ∈ Grid(M) with large vertex
expansion. Let f1, f2 and f3 be the partial monotone functions encoding the edges
of G and let g1, g2 and g3 be their respective order encodings.

Let P [w1, w2] be the set of inner vertices of the shortest path from w1 to w2
in the cell graph GM. We proceed to define a family of 2n-tiles P as

• Px = {(g1(α, i), g1(α, i)) | i ∈ [n], α ∈ [2]},

• Py = {(g3(α, i), g3(α, i)) | i ∈ [n], α ∈ [2]},

• Pw = {(g2(α, i), g2(α, i)) | i ∈ [n], α ∈ [2]} for w ∈ P [u, v] ∪ {u, v},

• Pw = {(g1(α, i), g1(α, i)) | i ∈ [n]} for w ∈ P [x, sα] and α ∈ [2],

• Pw = {(g2(α, i), g2(α, i)) | i ∈ [n]} for w ∈ P [sα, u] ∪ P [v, tα] and α ∈ [2],

• Pw = {(g3(α, i), g3(α, i)) | i ∈ [n]} for w ∈ P [tα, y] and α ∈ [2],

• Psα = {(g1(α, i), g2(α, i)) | i ∈ [n]} for each α ∈ [2] if sα and its prede-
cessor share the same column, otherwise its inverse (we swap the x- and
y-coordinates), and

• Ptα = {(g2(α, i), g3(α, i)) | i ∈ [n]} for each α ∈ [2] if tα and its predecessor
share the same column, otherwise its inverse.

The definition might seem a bit perplexing at first, however there is a fairly
simple logic behind it. In order to make more sense of it, notice that every point
in every tile is of the form (gk(α, i), gℓ(α, i)) for some choice of possibly different
k, ℓ but the same arguments α and i. For every i ∈ [n] and α ∈ [2], let Aα,i denote
precisely the points of this form.

Observe that every tile is an increasing point set – this is trivial for every
tile except for s1, s2, t1, t2 and for them it follows from the properties of order

57

encodings. Let π be the F-assembly of P and let Bα,i denote the image of Aα,i

under the F-assembly. See Figure 2.16. Note that we shall slightly abuse the
notation and index the sets Aw and Bw directly by a vertex w of the graph G. We
first show that Gπ contains G as a minor by verifying the following conditions:

(a) The subgraph of Gπ induced by Bw is connected for every vertex w of G;
(b) For each edge e = {w1, w2} of G, there is an edge in Gπ between a vertex of

Bw1 and a vertex of Bw2 .

Observe that for any i ∈ [n] and α ∈ [2], the set Aα,i contains exactly one
point in each tile on the path going from x through sα, u, v and then continuing
through tα to y. It follows that Aα,i contains exactly m points and |π| = 2 ·m · n.
Moreover, both coordinates of this point are equal to g1(α, i) on the path from x
to sα where they change in Psα and continue equal to g2(α, i) on the path from sα

through u and v to tα. In Ptα they change again and then they continue equal to
g3(α, i) on the path from tα to y. Therefore, every set Bα,i induces a connected
subgraph by the same argument as in the proof of Proposition 2.41 and hence, (a)
is proved.

In order to prove (b), consider an edge e of G. It must be of the form
e = {(1, i), (2, fk(i))} for some k ∈ [3] and i ∈ [n]. First, assume that k = 1. Let
us focus on the column of the M-gridding of π that contains the image of the tile
Px. When reading points in this column from left to right, we will meet the sets
Bα,i in the order given by g1 or its reverse. And the properties of g1 guarantee
that there will be neighboring pair of points from B1,i and B2,f1(i) which enforces
the desired edge. If k = 3 then we apply the same argument to the column that
contains the image of the tile Py and obtain a neighboring pair of points from B1,i

and B2,f3(i). And finally for k = 2, we use the same argument for the image of
any tile Pw on the path between u and v and obtain a neighboring pair of points
from B1,i and B2,f2(i), which concludes the proof of (b).

Our only remaining task is to provide a lower bound for the vertex expansion
of Gπ. Let X be a non-empty subset of its vertices such that |X| ≤ 1

2 · |V (Gπ)|.
We say that a vertex w of G is heavy if X contains the whole set Bw and we say
that w is light if w is not heavy but X ∩Bw is non-empty. Let H denote the set of
all heavy vertices and L the set of all light vertices. We have either |H| ≥ 1

2m
· |X|

or |L| ≥ 1
2m

· |X| since {Bw | w ∈ V (Gπ)} forms a partition of V (Gπ) and its
every part Bw contains exactly m points.

First suppose that there are at least 1
2m

· |X| light vertices. For a light vertex
w, the set Bw induces a connected subset of Gπ and contains both a point that
lies in X and a point outside of X. Thus, every such Bw contains at least one
point of the sphere SGπ(X) and

|SGπ(X)| ≥ |L| ≥ 1
2m · |X|.

Otherwise, there are at least 1
2m

· |X| heavy vertices. Observe that |H| ≤ n as
otherwise X would have to contain more than m ·n = 1

2 · |V (Gπ)| points. Since H
contains at most half of all vertices in G, we can use the expanding property of G
to see that it has a large sphere SG(H). For each vertex w ∈ SG(H), there exist
points p, q in the graph Gπ sharing an edge such that p ∈ Bw′ for some w′ ∈ H
and q ∈ Bw. We know that p ∈ X since w′ is heavy. And now either q ̸∈ X

58

and thus, q belongs to the sphere SGπ(X). Or q ∈ X but there must be some
r ∈ Bw \X as w is not heavy and therefore, Bw must contain some point of the
sphere SGπ(X) nevertheless. Either way, we have

|SGπ(X)| ≥ |SG(H)| ≥ vx(G) · |H| ≥ 1
2m · vx(G) · |X|.

Therefore, the vertex expansion of Gπ is at least 1
2m

· vx(G). The desired result
follows since m is a constant depending only on the class C.

Finally by combining together Theorem 2.46 together with Proposition 2.43,
we obtain a linear lower bound on the tree-width growth of any permutation
class with the bicycle property. This bound is clearly asymptotically tight as the
tree-width of any permutation cannot exceed its length.

Corollary 2.47. If a permutation class C has the bicycle property, then

twC(n) ∈ Θ(n).

2.3 Principal classes
In this section, we investigate the principal permutation classes, i.e. classes defined
by a single avoidance pattern, through the lens of their structural properties and
(un)boundedness of the previously defined parameters. Since most properties
and parameters of interest are invariant under the symmetries generated by
reverse, complement and inverse, we always investigate a single pattern from each
equivalence class. We call these equivalence classes symmetry types.

Recall that by a result of Berendsohn [22], which we stated as Theorem 2.30,
the class Av(π) has tree-width growth of order Ω(n/ log n) for any π of length at
least four that is not symmetric to one of {3412, 3142, 4213, 4123, 42153, 41352,
42513}. We are able to reproduce and extend this result in a concise way with
the tools that we have built up. See Table 2.1 for a summary.

2.3.1 Classes without the deep tree property
Patterns of length at most three

Let us start with the simplest of cases. We can skip the classes defined by forbidden
patterns of length one and two as Av(1) is empty and both classes Av(12) and
Av(21) contain single permutation of each length n. There are 6 permutations of
length three in total but only 2 symmetry types. We pick 132 and 321 as their
representatives.

First, we note that the class Av(132) is quite structured and well-behaved. By
Proposition 2.5, it has bounded tree-width and unbounded path-width. Moreover,
every 132-avoiding permutation is separable and thus, Av(132) has also bounded
modular-width.

The situation is fairly different with Av(321). As we previously mentioned,
Waton [117, Lemma 5.7.2] first observed that the class Av(321) is identical to
the staircase St(,). Therefore, Av(321) has the (poly-time computable) long
path property and the tree-width growth of Av(321) is at least Ω(

√
n) due to

59

σ LPP CP DTP/BP twAv(σ) Comment
1, 21, 132 ✗ ✗ ✗ Θ(1) All separable permutations.

321 ✓ ✗ ✗ Θ(
√

n)
LPP: Av(321) = St(,); CP:
Proposition 2.36; DTP: small tree-
width contradicts Proposition 2.39.

3142, 4213 ✓ ? ✗ Ω(
√

n)
LPP: first contains the clockwise spi-
ral, second contains Av(321); DTP:
both contained in 41352.

3412, 4123,
41352 ✓ ✓ ✗ Ω(

√
n)

CP: all contain specific cyclic grid
subclasses; DTP: Observation 2.48,
Propositions 2.49 and 2.52.

All other ✓ ✓ ✓ Θ(n) Corollary 2.57.

Table 2.1: We list the properties and the implied tree-width growth of all principal
classes, i.e. classes of form Av(σ). The abbreviations LPP, CP, DTP and BP
stand for the long path property, cycle property, deep tree property and bicycle
property, respectively. Only one pattern σ of each symmetry type is listed.

Proposition 2.33. On the other hand, we have shown in Proposition 2.36 that
Av(321) lacks the cycle property. Berendsohn et al. [23, Theorem 5] observed that
the incidence graph of any 321-avoiding permutation is planar which implies that
twAv(321)(n) = O(

√
n) and that Av(321) cannot have the deep tree property. In

summary, we have an exact asymptotic behavior of the tree-width growth

twAv(321)(n) = Θ(
√
n).

Patterns of length four

There are 24 permutations of length four in total but only 7 symmetry types (see
sequence A000903 of [107]) represented by 3412, 4123, 3142, 4213, 4321, 4231 and
4312. We will later show that 4321, 4231 and 4312 all have the bicycle property
so for now we focus on the first 4 patterns.

The class of 3412-avoiding permutations contains the class of skew-merged
permutations since a permutation is skew-merged if and only if it avoids both 3412
and 2143 [108, Theorem 2.9]. Therefore, it contains as a subclass the monotone
grid class Grid

(︂)︂
and it has the cycle property.

The class Av(4123) clearly has the long path property since it contains as a
subclass the class Av(123), which is symmetric to Av(321). However, it also has
the cycle property as we verified computationally that it contains the following
monotone cyclic grid class

Grid
(︄

·
·

·

)︄
⊆ Av(4123).

Next, we focus on the class Av(3142). It turns out that Av(3142) contains a
certain spiral-shaped monotone grid subclass which has the long path property.
For k > 0, a clockwise spiral of k turns is the monotone grid class Grid(M) of a

60

..
.

Figure 2.17: The clockwise spiral.

(2k + 1) × 2k gridding matrix M defined as

Mi,j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
if i ≤ k and j = i,
if i ≥ k + 2 and j = i− 1,
if i ≥ 2 and i = 2k + 2 − i, and

∅ otherwise.

The clockwise spiral is defined as the union of clockwise spirals of k turns over
all k ∈ N. See Figure 2.17. Jeĺınek and Kynčl [86, Lemma 4.2] proved that the
clockwise spiral avoids the pattern 3142. Trivially the clockwise spiral has the
(poly-time computable) long path property and thus, so does the class Av(3142).
We leave as an open question whether Av(3142) also has the cycle property.

Finally, we are left with the pattern 4213. Notice that the class Av(4213) has
the long path property as it contains Av(321). As with the pattern 3142, we leave
as an open question whether it also has the cycle property.

Patterns of length five

In total, there are 23 symmetry types of permutations of length 5 (again, see
sequence A000903 of [107]). Out of these 23, there is only a single symmetry type
defining classes without the deep tree property represented by 41352. As before,
the class Av(41352) clearly has the long path property since it contains Av(321)
as a subclass. However, it is easy to check that it also contains the grid class
Grid

(︂)︂
as a subclass and thus, it also has the cycle property.

Proving the absence of the deep tree property

We now prove that all classes Av(σ) for σ ∈ {3412, 3142, 4213, 4123, 41352} lack
the deep tree property. Hereby, we know that our current tools cannot improve
the lower bounds on the tree-width growth of these classes any further. Note that
Av(3142) and Av(4213) are, up to symmetry, subclasses of Av(41352), so we only
need to focus on the patterns 3412, 4123 and 41352.

Let us say that a graph G is representable in a class C if C contains a monotone
grid subclass whose cell graph is G.

Observation 2.48. A graph with a vertex of degree three is not representable in
Av(3412). In particular, Av(3412) does not have the deep tree property.

61

Proposition 2.49. If G is a graph with a vertex of degree 3 whose every neighbor
has degree at least 2, then G is not representable in Av(4123).

Proof. Suppose G is a graph with a vertex v of degree 3, and let x, y and z be
the three neighbors of v. Suppose each of the three neighbors has degree at least
2. For contradiction, suppose that Av(4123) contains a monotone grid subclass
C = Grid(M) whose cell graph is G.

Abusing notation slightly, we will identify the vertices of G with the corre-
sponding cells of the matrix M. Since the pattern 4123 is symmetric with respect
to diagonal reflection, we may assume without loss of generality that x and y
are in the same column of M as v, and that z is in the same row as v. Assume
further that x is above v and y is below v.

By assumption, x has degree at least 2. In particular, there is a vertex w
adjacent to x and different from v. The vertex w is either in the same row as x or
in the same column and above x. However, for any possible placement of w, the
four cells v, w, x, y will embed the forbidden pattern 4123, a contradiction.

Corollary 2.50. Av(4123) does not have the deep tree property.

Finally, we turn to the pattern 41352. Here the proof is slightly more involved
and we begin with a lemma. Note that we assume that the rows in a gridding
matrix are numbered bottom to top. A cell in row r and column c of a gridding
matrix is referred to as the cell (c, r).

Lemma 2.51. Let C = Grid(M) be a monotone grid class not containing the
pattern 41352. Suppose that there are two row indices r1 < r2 and two column
indices c1 < c2, such that the three cells (c2, r1), (c1, r2) and (c2, r2) are all
nonempty, and moreover the cell (c2, r2) is a -cell. Then the following holds:

1. The cell (c2, r1) is a -cell.

2. Any cell (c, r) satisfying r1 ≤ r ≤ r2 and c ≥ c2 is empty, except the cells
(c2, r1) and (c2, r2).

3. Any cell (c, r) satisfying r ≤ r1 and c1 ≤ c ≤ c2 is empty, except the cell
(c2, r1).

Proof. See Figure 2.18. If (c2, r1) were a -cell, we could embed 41352 by mapping
the values 1, 2 into cell (c2, r1), values 3, 5 into (c2, r2) and value 4 into (c1, r2).
This proves the first claim.

If there were a nonempty cell (c, r) with r1 ≤ r ≤ r2 and c ≥ c2, and with
(c, r) ̸∈ {(c2, r1), (c2, r2)}, we could embed 2 into this cell, 1 into cell (c2, r1), 3 and
5 into cell (c2, r2), and 4 into (c1, r2). This proves the second claim. The third
claim is analogous.

Note that the pattern 41352 is preserved under rotations by a multiple of 90◦.
Thus, the previous lemma remains valid when the entire gridding matrix M is
rotated in such a way; note that a 90◦-rotation transforms a -cell into a -cell
and vice versa.

62

c1 c2

r1

r2 D

Figure 2.18: The situation of Lemma 2.51. The class D can be either or , the
shaded regions cannot contain any non-empty cell.

Proposition 2.52. Let G be a graph containing a vertex v of degree 3, whose
three neighbors all have degree 3. Then no subdivision of G is representable in
Av(41352).

Proof. For contradiction, suppose we have a monotone grid class C = Grid(M) ⊆
Av(41352) whose cell graph G′ is a subdivision of G. Let the vertex v correspond
to a cell (c, r) of M. By rotational symmetry, we may assume that the three
neighbors of v in M are to the left, to the top and below v. Let x1 be the neighbor
of v situated below v,let y be the neighbor of v situated to its left, and let z be
the neighbor of v situated above it.

Note that v must be a -cell, else we could embed values 2, 3 into v, and the
remaining three values into the three neighbors of v.

We will show that the connected component of G′ − v containing the vertex x1
does not contain any vertex of degree greater than 2, contradicting the structure
of G′. Applying Lemma 2.51 to the three vertices y, v and x1, we conclude that
x1 is a -cell, and that is has no neighbor to its bottom or to its right. If x1
has degree two, then its neighbor different from v is a cell x2 situated to its
left. We may then again apply Lemma 2.51 (rotated 90◦ clockwise) to the three
vertices v, x1 and x2, concluding that x2 is a -cell, and any potential neighbor
of x2 different from x1 is located above x2. Denoting such a neighbor x3, and
applying Lemma 2.51 to the vertices x1, x2 and x3, we again conclude that x3 is
a -cell. Continuing in this fashion, we may inductively show that the connected
component of G′ − v containing the vertex x1 is a path x1, x2, x3, . . . arranged
into a clockwise spiral and consisting of an alternation of -cells and -cells. See
Figure 2.19. In particular, the component does not contain any vertex of degree
3, contradicting the structure of G′.

Corollary 2.53. None of the three classes Av(41352), Av(3142) and Av(4213)
has the deep tree property.

2.3.2 Classes with the bicycle property
We will see that the classes defined using the remaining patterns of lengths 4 and 5
all have the bicycle property. It is a consequence of similar structural properties.
The remaining patterns of length 4 all allow embedding of the staircase class

63

v

x2 x1

x3 x4

y

z

Figure 2.19: Situation in the proof of Proposition 2.52. The shaded regions cannot
contain any non-empty cell.

St(,Av(σ)) where σ is some permutation of length three. In fact, we prove such
claim for any pattern with a suitable structure.

Lemma 2.54. For any sum-indecomposable permutation σ, St(,Av(σ)) is a
subclass of Av(1 ⊖ σ).

Proof. Suppose for a contradiction that σ′ = 1 ⊖ σ belongs to St(,Av(σ)). In
particular it belongs to Stk(,Av(σ)) for some k and there is a witnessing gridding.
If the first element is not mapped to one of the -entries on the upper diagonal,
then the whole σ′ must lie in a single Av(σ)-entry on the lower diagonal, which is
clearly not possible. Therefore, the first element must be mapped to one of the

-entries. Notice that the rest of σ′ cannot be mapped to any of the -entries
as it lies below and to the right of the first element. However, it cannot lie in
more than one Av(σ)-entry; otherwise, we could express σ as a direct sum of two
shorter permutations. Hence, there must be an occurrence of σ in an Av(σ)-entry
which is clearly a contradiction.

A direct consequence of Lemma 2.54 is that taking σ to be 321, 312 or 231,
we see that

St(,Av(321)) ⊆ Av(4321),
St(,Av(231)) ⊆ Av(4231), and
St(,Av(312)) ⊆ Av(4312).

Note that the first inclusion is rather trivial and the latter two have been previously
observed by Berendsohn [22].

We verified by computer that there are only five symmetry types of patterns
of length 5 that do not contain any of 4321, 4213, 4312 or their symmetries —
represented by 14523, 24513, 32154, 42513 and 41352. We have already shown
that Av(41352) cannot even have the deep tree property, but the remaining four
classes contain a specific type of cyclic grid classes, as we now show.

64

Av(321)

Av(321)

Av(321)

Grid

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Grid

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⊆ ⊆ Av(4321)

Av(132)

Grid

⎛⎜⎜⎜⎜⎜⎜⎝ Grid

⎛⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠ ⊆ ⊆ Av(14523)

Figure 2.20: Establishing the bicycle property in the proof of Proposition 2.56
with the help of Lemmas 2.54 (top) and 2.55 (bottom). The red lines highlight
the two connected cycles in the cell graphs.

Lemma 2.55. The class Av(σ) contains the class Grid(M) for the gridding
matrix M =

(︃
Av(π)

)︃
whenever

• π = 132 and σ = 14523, or
• π = 231 and σ = 24513, or
• π = 321 and σ ∈ {32154, 42513}.

Proof. Suppose that σ and π are one of the listed cases. Observe that Grid(M)
is a subclass of Av(σ) if and only if σ is not in Grid(M). For contradiction,
suppose that the class Grid(M) contains σ. Therefore, there exists a witnessing
M-gridding 1 = c1 ≤ c2 ≤ c3 = 6 and 1 = r1 ≤ r2 ≤ r3 = 6 of σ.

Let us consider the four choices of σ separately, starting with σ = 14523: if
c2 ≤ 3 and r2 ≤ 3, the cell (2, 2) of the gridding contains the pattern 21, if c2 ≤ 4
and r2 ≥ 4, the cell (2, 1) contains 12, if c2 ≥ 4 and r2 ≤ 4, the cell (1, 2) contains
12, and if c2 ≥ 5 and r2 ≥ 5, the cell (1, 1) contains 132. In all cases we get a
contradiction with the properties of the M-gridding. The same argument applies
to σ = 14513, except in the last case we use the pattern 231 instead of 132.

For σ = 32154, the four cases to consider are c2 ≤ 4 ∧ r2 ≤ 4, c2 ≥ 5 ∧ r2 ≤ 3,
c2 ≤ 3 ∧ r2 ≥ 5, and c2 ≥ 4 ∧ r2 ≥ 4, in each case getting contradiction in a
different cell of the gridding. For σ = 42513, the analogous argument distinguishes
the cases c2 ≤ 3∧ r2 ≤ 3, c2 ≥ 4∧ r2 ≤ 4, c2 ≤ 4∧ r2 ≥ 4, and c2 ≥ 5∧ r2 ≥ 5.

Finally, we show that the structural properties we just proved translate easily
into the bicycle property.
Proposition 2.56. If σ is any of 4321, 4231, 4312, 4123, 14523, 24513, 32154,
42513, then Av(σ) has the bicycle property.
Proof. We start by proving that every class defined by forbidding a pattern of
length 3 must contain a special type of monotone grid subclass. For arbitrary π
of length 3, the class Av(π) contains a grid class Grid(M) such that M is a 2 × 2
monotone gridding matrix with three non-empty entries. Since there are only two
different symmetry types of permutations of length 3, it is enough to check that

Grid
(︂

·

)︂
⊆ Av(321) and Grid

(︂
·

)︂
⊆ Av(132).

65

First, we prove the claim for the patterns that appear in Lemma 2.54. Let
σ ∈ {4321, 4231, 4312} and take a 3-step increasing staircase St3(,Av(π)) for
π of length 3 that is contained in Av(σ). Let M′ be a 6 × 8 monotone gridding
matrix obtained from St3(,Av(π)) by replacing every -entry by the identity
matrix

(︂
·

·

)︂
and every Av(π)-entry with its 2 × 2 monotone grid subclass which

has three non-empty entries. Clearly, Grid(M′) is a subclass of Av(σ), and it is
easy to check that for any π, the cell graph of M′ is connected and contains two
cycles. Refer to the top part of Figure 2.20.

We prove the claim for the patterns that appear in Lemma 2.55 in a similar
fashion. Let σ ∈ {14523, 24513, 32154, 42513} and take M to be the grid class
Grid

(︃
Av(π)

)︃
for π of length 3 that is contained in Av(σ). Similar to the previous

argument, let M′ be the gridding matrix obtained from M by replacing the -
entry with the matrix

(︂
·

·

)︂
, both -entries with the matrix

(︂
·

·

)︂
, and Av(π)

with its 2 × 2 monotone grid subclass which has three non-empty entries. Again,
Grid(M′) is a subclass of Av(σ), and it is easy to check that for any π, the cell
graph of M′ is connected and contains two cycles. Refer to the bottom part of
Figure 2.20.

It is easy to see that every σ of length at least 6 contains a pattern of length 5
which is not symmetric to 41352. Therefore, we can deduce from Proposition 2.56
that most principal classes have the bicycle property and thus, they contain
permutations with linear tree-width due to Corollary 2.47.

Corollary 2.57. If σ is a permutation of length at least 4 that is not symmetric
to any of 3412, 3142, 4213, 4123 or 41352, then Av(σ) has the bicycle property.

The results obtained in this section completely resolve the asymptotic tree-
width growth of all principal classes except for these five cases (and their sym-
metries). It is natural to ask whether the remaining classes can also contain
permutations of linear tree-width or if their tree-width growth is bounded by
O(nc) for some c < 1.

Open problem 2.58. What is the tree-width growth of Av(σ)-PPM, when σ is
a permutation from the set {3412, 3142, 4213, 4123, 41352}?

To conclude this section, we remark that the suitable grid subclasses were dis-
covered via computer experiments facilitated by the Permuta [13] and Tilings [98]
libraries.

66

3. Logic of permutations
In this chapter, we interpret permutations from the viewpoint of logic. In particular,
we look at permutations as sets equipped with two linear orders, each describing
the ordering of points among one of the two axes. This so-called Theory of Two
Orders (TOTO) was formally introduced by Albert et al. [9] who were interested
in the expressive power of first-order logic formulas. We extend this to monadic
second-order logic and moreover, we investigate the complexity of testing whether
a given permutation satisfies a given formula.

A signature is a set of relation and function symbols, each associated with a
non-negative integer, called arity. We restrict our attention to signatures consisting
purely of relation symbols. The signature STO, corresponding to TOTO, contains
two binary relation symbols <x and <y. These symbols intend to convey the
ordering of points along the x- and y-axes. A structure of a signature S is a
pair M = (A, I) where A is arbitrary set, called domain, and I describes an
interpretation of the symbols in S on A. To be precise, the interpretation I(R) of
a relation symbol R with arity k is a subset of Ak. For succinctness, we shall also
denote the structures of STO simply as triples M = (A,≺A

x ,≺A
y) where ≺A

x and
≺A

y are interpretations of the symbols <x and <y. Recall that we have already
met these structures when defining the clique-width in Subsection 2.1.4 under the
name xy-digraphs.

Observe that any permutation σ can be seen as a structure (Aσ,≺σ
x,≺σ

y) of
STO. It suffices to take as the domain Aσ the permutation diagram of σ, and set
≺σ

x and ≺σ
y to be the natural orders given by the x- and y-coordinates of points.

From now on, whenever we talk about a permutation σ as a structure of STO (or
later as a model of TOTO), we actually mean the structure (Aσ,≺σ

x,≺σ
y).

3.1 First-order logic
In this section, we consider the first-order logic fragment of TOTO. As a matter
of fact, we only survey previous knowledge without providing any substantial new
results. We refer an interested reader to [9].

We start by defining first-order formulas over an arbitrary signature S. An
atomic formula is either an equality predicate (x = y), or a predicate R(a1, . . . , ak)
for arbitrary relation symbol R of S with arity k. First-order (FO) formulas,
usually denoted by Greek letters, are formed inductively from atomic formulas
and logical symbols. In particular, a first-order formula is either (i) an atomic
formula, (ii) a negation of a first-order formula (¬φ), (iii) a conjuction (φ1 ∧ φ2),
disjunction (φ1 ∨ φ2), implication (φ1 → φ2) or equivalence (φ1 ↔ φ2) of two
first-order formulas, or (iv) an existential (∃xφ) or universal (∀xφ) quantification
of a first-order formula. A first-order (FO) sentence is then any FO formula
that has no free variables, or put differently, a formula whose variables are all
quantified.

A structure M = (A, I) satisfies the sentence φ if φ evaluates to “True” when
we interpret the variables as elements of the domain A and the symbols of S
according to I. We denote this by M |= φ. In the case of TOTO, we additionally
allow ourselves to write σ |= φ where σ is the permutation associated to M.

67

Example. The existence of a classical pattern 132 is expressed by the FO sentence

∃x, y, z [(x <x y) ∧ (y <x z) ∧ (x <y z) ∧ (z <y y)] .

Finally, we can formally define the notion of a theory. A theory is just a set of
(FO) sentences, which are called the axioms of the theory. A model of a theory
is any structure that satisfies all axioms of the theory. The axioms of TOTO
simply state that both <x and <y are linear orders. It should be obvious that
these axioms can be straight-forwardly stated as FO sentences.

Let us remark that an arbitrary finite model of TOTO can be seen as a
permutation. For any linear order ≺ on a set A, we define the rank of a ∈ A as
rank≺(a) = |{b | b ∈ A, b < a}| + 1, and we set as the permutation associated to
the model (A,≺A

x ,≺A
y) of TOTO the permutation isomorphic to the point set

{(rank≺A
x

(a), rank≺A
y

(a)) | a ∈ A}.

We say that two structures (A, I) and (B, J) of the same signature S are
isomorphic if there is a bijection f : A → B such that for any relation symbol R of
S with arity k and every k-tuple of elements a1, . . . , ak ∈ A we have (a1, . . . , ak) ∈
I(R) if and only if (f(a1), . . . , f(bk)) ∈ J(R). Albert et al. [9] observed that
TOTO models permutations as intended since two models are isomorphic if and
only if the permutations associated with them are equal.

Proposition 3.1 ([9, Proposition 4]). Two models of TOTO are isomorphic if
and only if the permutations associated with them are equal.

3.1.1 Expressibility of first-order logic
The expressive power of the first-order fragment of TOTO was investigated thor-
oughly by Albert et al.[9]. First, they showed that virtually every notion of
(generalized) pattern containment that has ever appeared in the literature is
expressible by a first-order sentence. Therefore, first-order sentences provide in
some sense a common generalization of all the different pattern flavors. Fur-
thermore, they obtained first-order sentences capturing whether a permutation
is ⊕-decomposable, simple or belongs to a fixed grid class. And finally, they
showed that first-order sentences can describe permutations that can be sorted by
k iterations of arbitrary sorting operator as long as the sorting operator itself can
be suitably described in TOTO. We collect all these results in a single proposition.

Proposition 3.2 ([9]). Each of the following properties is expressible by an FO
sentence φ. In other words, there exists an FO sentence φ for each property such
that σ |= φ if and only if the property holds for a permutation σ.

(a) σ contains a fixed pattern π,
(b) σ contains a fixed mesh pattern (π,B),
(c) σ contains a fixed barred pattern π,
(d) σ belongs to the class Grid(M) for a fixed gridding matrix M,
(e) σ is ⊕-decomposable (and symmetrically for ⊖-decomposability),
(f) σ is simple, and
(g) σ is k-stack-sortable for a fixed k.

68

Let us add that the notion of 2-avoidance and partially ordered patterns is
also easily captured by FO sentences even though they were not considered by
Albert et al [9]. In the case of a fixed partially ordered pattern, the corresponding
sentence is obtained in similar way as for a classical pattern, just omitting the
missing requirements in the y-axis. And in the case of 2-avoidance, the reasoning
follows similar line to that of barred patterns.

Albert et al. [9] also provide an example of a property that is inexpressible by
a first-order sentence in TOTO. A fixed point of a permutation π is any point p of
the permutation diagram Sπ such that p.x = p.y.

Proposition 3.3 ([9, Corollary 27]). The property of having a fixed point is not
expressible by an FO sentence in TOTO. In other words, there does not exist an
FO sentence φ such that σ |= φ if and only if σ has a fixed point.

As we shall see later, the property of having a fixed point is in fact not
expressible even by a monadic second-order sentence.

3.1.2 First-order model checking
Bonnet et al. [36] proved that an fpt-algorithm for permutation pattern matching
designed by Guillemot and Marx [77] can actually be extended to first-order model
checking (and transferred to general graphs).

Theorem 3.4 ([36]). Given a permutation π of length n and a first-order sen-
tence φ in TOTO, we can decide whether π |= φ in time f(|φ|, tww(π)) · n for
some computable, yet non-elementary, function f .

Observe that together with Theorem 2.2 this yields a linear time algorithm
for deciding whether a given permutation π belongs to a fixed class C defined by
an FO sentence. This is quite obvious for properties like whether a permutation
is k-stack-sortable since we can simply simulate the sorting. However, it far
less obvious that one can test in linear time whether a permutation is simple
even though it alternatively follows from the linear algorithm for substitution
decomposition [51]. And we even find it surprising that permutations of any fixed
grid class can be recognized in linear time.

Corollary 3.5. For every permutation class C defined by an FO sentence, we can
decide in linear time whether a given permutation π belongs to C. In particular,
we can decide in linear time whether π belongs to the grid class Grid(M) for any
fixed gridding matrix M.

To end this section, we complement Theorem 3.4 by showing that FO model
checking on permutations in general is as hard as deciding FO sentences on
undirected graphs. But first, we need to formalize the logic of undirected graphs.
To that end, we define the signature SG which consists of a single binary relation
symbol E intended to describe the edges. Our only requirement is that E is a
symmetric relation, which can be easily described by a FO sentence. Therefore,
we get a valid theory called Theory of Graphs (TOG).

Let us remark that the signature SG is usually denoted in the literature by τ1.
However, we chose a different notation to avoid confusion since we typically use
small Greek letters (and τ in particular) to denote permutations.

69

v1

v2

v3

A =

⎛⎝0 1 0
1 0 1
0 1 0

⎞⎠ g1

g2
B1

B2

B3

A1

A2

A3

C1

C2

C3

Figure 3.1: Illustration of the proof of Theorem 3.6. Encoding a path on 3 vertices
with an adjacency matrix A (left) into a point set P (right).

Theorem 3.6. There is an algorithm that given a graph G with n vertices and
m edges and an FO sentence φ in TOG, computes in linear time a permutation π
of length O(n + m) and an FO sentence ψ in TOTO of length O(|φ|) such that
G |= φ if and only if π |= ψ.

Proof. From the given graph G, we first construct a point set P that is not
necessarily in general position. Let us number the vertices of G arbitrarily as
V = {v1, . . . , vn}. Our goal is to construct a permutation that would essentially
represent the adjacency matrix of G. The set P contains two important points
g1, g2, called guards, defined as

g1 = (1, 2n+ 2), g2 = (2n+ 2, 1).

For each i ∈ [n], we associate three pairs of points to the vertex vi defined as

Ai = {(2i, 4i+ 2n+ 2), (2i+ 1, 4i+ 2n− 1)},
Bi = {(4i+ 2n− 1, 2i+ 1), (4i+ 2n+ 2, 2i)},
Ci = {(4i+ 2n, 4i+ 2n), (4i+ 2n+ 1, 4i+ 2n+ 1)}.

Observe that every pair Ai lies horizontally between g1 and g2, every pair Bi

lies vertically between g2 and g1 and moreover, the pair Ci lies in the intersection of
the horizontal strip enclosed by Ai and the vertical strip enclosed by Bi. Moreover,
all the pairs Ai form together a layered permutation with each layer of size 2 and
therefore, any occurrence of pattern 21 that lies horizontally between g1 and g2
must be equal to Ai for some i. The same holds for the pairs Bi.

We interpret the strips defined by sets Ai and Bi as ‘columns’ and ‘rows’ of
the adjacency matrix, respectively. For each edge {i, j} of G, we simply add two
points to the corresponding two ‘cells’, i.e. we add to P the points

(4i+ 2n, 4j + 2n), (4j + 2n, 4i+ 2n).

See Figure 3.1. Finally, we rotate P slightly to guarantee that it is in general
position and take the permutation π as its reduction. Clearly, the length of π is
bounded by O(n+m) as promised.

70

Now given the FO sentence φ, we replace each variable x with four variables
xA

1 , x
A
2 , x

B
1 , x

B
2 which are intended to represent the pairs Ai and Bi for some i ∈ [n].

It is sufficient to check that (i) both pairs form an occurrence of 21, (ii) the pair
xA

1 , x
A
2 lies to the left of g2, (iii) the pair xB

1 , x
B
2 lies below g1, and (iv) there is an

occurrence of 12 in the intersection of the horizontal strip defined by xA
1 , x

A
2 and

the vertical strip defined by xB
1 , x

B
2 . Observe that g1 is the leftmost point of π

while g2 is the bottommost one. Therefore, it is easy to force two variables xg
1 and

xg
2 to be set precisely to g1 and g2 throughout the whole sentence Ψ. Using this,

we can write the desired conditions as a predicate

vertex(xA
1 , x

A
2 , x

B
1 , x

B
2) = 21(xA

1 , x
A
2) ∧ 21(xB

1 , x
B
2) ∧ (xA

2 <x x
g
2) ∧ (xB

1 <y x
g
1)

∧ ∃xC
1 , x

C
2

(︂
4123(xA

1 , x
A
2 , x

C
1 , x

C
2) ∧ 2341(xB

1 , x
C
1 , x

C
2 , x

B
2)
)︂

where σ(x1, . . . , xk) denotes the FO sentence checking that x1, . . . , xk form an
occurrence of a permutation σ of length k. Technically, we perform the following
replacements

∃x ρ −→ ∃xA
1 , x

A
2 , x

B
1 , x

B
2

(︂
vertex(xA

1 , x
A
2 , x

B
1 , x

B
2) ∧ ρ

)︂
∀x ρ −→ ∀xA

1 , x
A
2 , x

B
1 , x

B
2

(︂
vertex(xA

1 , x
A
2 , x

B
1 , x

B
2) → ρ

)︂
.

Finally, checking the existence of an edge is equivalent to testing whether there
is a point in the intersection of a given horizontal and vertical strip. Formally, it
is sufficient to replace each predicate E(x, y) with

∃z
(︂
312(xA

1 , x
A
2 , z) ∧ 231(yB

1 , z, y
B
2) ∧ ¬vertex(xA

1 , x
A
2 , y

B
1 , y

B
2)
)︂
.

Note that the encoding of graph G into a permutation is similar to previous
reductions by Marx and Guillemot [77], or Berendsohn et al. [23].

3.2 Monadic second-order logic
Now, we shift our attention to the monadic second-order fragment of TOTO. Our
goal is to identify properties of permutations that are inexpressible in first-order
logic but expressible in monadic second-order logic. Furthermore, we show that the
natural property of having a fixed point is inexpressible even in monadic-second
logic. And finally, we investigate the complexity of monadic second-order model
checking.

Informally, monadic second-order (MSO) formulas differ from FO formulas by
allowing set variables (denoted by capital letters) and quantification over them.
Formally, MSO formula over a signature S is formed inductively using the same
operations as FO formulas with the addition of existential (∃X φ) and universal
(∀X φ) set quantifications, and set membership predicates (x ∈ X). As before,
a monadic second-order sentence is any MSO formula that has all its variables
(representing both elements and sets) quantified. The satisfiability of an MSO
formula φ by a permutation σ is defined accordingly.
Example. We can define a predicate partition(X, Y) enforcing that X and Y
form a partition of the domain, and predicates increasing(X) and decreasing(X)

71

enforcing that X is an increasing, respectively decreasing point set as follows

partition(X, Y) = ∀x [(x ∈ X ∨ x ∈ Y) ∧ ¬(x ∈ X ∧ x ∈ Y)] ,
increasing(X) = ∀x, y [(x ∈ X ∧ y ∈ X) → (x <x y ↔ x <y y)] ,
decreasing(X) = ∀x, y [(x ∈ X ∧ y ∈ X) → (x <x y ↔ y <y x)] .

It is easy to see that using these predicates, we can define skew-merged permuta-
tions by the MSO sentence

∃X∃Y (partition(X, Y) ∧ increasing(X) ∧ decreasing(Y)) .

3.2.1 Properties expressible in MSO
Next, we turn our attention to the expressive power of monadic second-order
logic. We have already seen that we can define the skew-merged permutations
that can be obtained as a merge of an increasing and a decreasing sequence. It is
straightforward to extend this to permutations that can be obtained as a merge
of k permutations each coming from an arbitrary set defined by a fixed MSO
sentence.

Proposition 3.7. For arbitrary MSO sentences φ1, . . . , φk in TOTO, we can
construct an MSO sentence ρ such that π |= ρ if and only if π can be obtained as
a merge of permutations π1, . . . , πk such that πi |= φi for every i ∈ [k].

Proof. For an MSO sentence φ, we let φ(X) denote the predicate that limits the
domain of all variables to the set X. Technically, this is done by replacing

∃xψ −→ ∃x (x ∈ X ∧ ψ)
∀xψ −→ ∀x (x ∈ X → ψ)
∃Y ψ −→ ∃Y (∀x (x ∈ Y → x ∈ X) ∧ ψ)
∀Y ψ −→ ∀Y (∀x (x ∈ Y → x ∈ X) → ψ).

The desired sentence is then obtained easily using the predicate for testing whether
a k-tuple of sets X1, . . . , Xk forms a partition of the domain as

ρ = ∃X1∃X2 · · · ∃Xk

(︄
partition(X1, . . . , Xk) ∧

k⋀︂
i=1

φi(Xi)
)︄

Furthermore, we can show that monadic second-order logic has greater ex-
pressive power than first-order logic. In particular, we show that for any simple
permutation α there exists no FO sentence expressing that a permutation is a
merge of two α-avoiding permutations. But first we need to introduce a standard
tool for proving inexpressibility in logic – the Ehrenfeucht-Fräıssé games.

Let (A, I) and (B, J) be two models of the same theory, and let k be a positive
integer. The k-move Ehrenfeucht - Fräıssé (EF) game is a game between two
players, called Spoiler and Duplicator, on the models (A, I) and (B, J) with the
following rules. Spoiler begins and the players alternate in moves until they both
had exactly k turns. In the i-th turn, Spoiler chooses either an element ai ∈ A or
bi ∈ B and Duplicator replies by choosing an element of the other model. More
precisely, either Spoiler chooses an element ai ∈ A and Duplicator responds by

72

choosing bi ∈ B, or Spoiler chooses an element bi ∈ B and Duplicator responds by
choosing ai ∈ A. At the end of the game, Duplicator wins if the map ai ↦→ bi is an
isomorphism between the submodels induced by {ai | i ∈ [k]} and {bi | i ∈ [k]}.
Otherwise, Spoiler wins.

We assume that both players play optimally and we say that Duplicator wins
a given EF game, if he has a winning strategy. We denote by (A, I) ∼k (B, J)
that Duplicator wins in the k-move EF game on (A, I) and (B, J). It is easily
checked that ∼k is an equivalence for a fixed k.

Before establishing the connection of EF games to FO logic, we need one more
definition. The quantifier depth of an FO formula φ, denoted by qd(φ), is defined
recursively as follows. For any atomic formula φ, we set qd(φ) = 0. Otherwise:

qd(¬φ) = qd(φ),
qd(φ ∧ ψ) = qd(φ ∨ ψ) = qd(φ → ψ) = qd(φ ↔ ψ) = max(qd(φ), qd(ψ)),

qd(∃xφ) = qd(∀xφ) = qd(φ) + 1.

Theorem 3.8 ([69, 61]). For two models (A, I) and (B, J) of the same theory,
we have (A, I) ∼k (B, J) if and only if (A, I) and (B, J) satisfy the same set of
sentences of quantifier depth at most k.

Let us first provide a simple example of EF games on linear orders. Formally,
the Theory of Linear Orders (TOLO) is defined on the signature with a single
binary relation symbol < where the axioms enforce that < is a linear order. For
simplicity, we write models of TOLO as pairs (A,≺) such that ≺ is a linear order
on the domain A. It is well-known that we cannot distinguish two sufficiently
large linear orders with FO sentences of a fixed quantifier depth. We include the
proof since we later use the described strategy for EF games as a building block.

Proposition 3.9 ([75, Theorem 2.3.20]). Let k be a positive integer. If (A,≺A)
and (B,≺B) are finite models of TOLO such that |A|, |B| ≥ 2k −1, then Duplicator
wins the k-move EF game played on (A,≺A) and (B,≺B) and thus, (A,≺A) and
(B,≺B) satisfy the same set of sentences of quantifier depth at most k.

Proof. Notice that after r rounds of the EF game on (A,≺A) and (B,≺B), precisely
r elements have been chosen in A and they split the linear order (A,≺A) into r+ 1
(possibly empty) intervals Ir

0 , . . . , I
r
r where the interval Ir

s contains all elements
larger than exactly s elements of the set {a1, . . . , ar}. Similarly, the linear order
(B,≺B) is split into r + 1 intervals Jr

0 , . . . , J
r
r .

The goal of Duplicator is to guarantee that after each round, the intervals
Is and Js are somehow similar for every s. We say that an interval I of a finite
linear order (X,≺X) is a-long for a given non-negative integer a if it contains at
least 2a − 1 elements. We describe a strategy for Duplicator which will guarantee
that after r steps, the intervals Ir

s and Jr
s for every s ∈ {0, . . . , r} are either both

(k − r)-long, or have exactly the same length.
This clearly holds before the game starts by assumption (formally after 0

rounds). Assume that Spoiler picks in the r-th round an element ar from the
interval Ir−1

s . The case when he plays in B is symmetrical. The interval Ir−1
s gets

split into the intervals Ir
s and Ir

s+1. Let us assume without loss of generality that
Ir

s is at most as long as Ir
s+1, the other case being symmetrical. If the interval Ir−1

s

is not (k − r + 1)-long then it has the same length as Jr−1
s and Duplicator can

73

exactly replicate the move of Spoiler inside Jr−1
s . Otherwise, the larger interval

Ir
s+1 must be (k − r)-long. If the interval Ir

s is also (k − r)-long, then the job of
Duplicator is to simply split Jr−1

s into two (k − r)-long intervals. Duplicator can
achieve this by picking as br the median of Jr−1

s . Finally, we are left with the case
when Ir

s is not (k − r)-long. But in that case, Duplicator selects br in a way such
that the interval Jr

s is of the exact same length as Ir
s . It follows automatically

that Jr
s+1 is (k − r)-long.

By playing the described strategy, Duplicator guarantees that the suborders
induced by the chosen elements are isomorphic and thus, (A,≺A) ∼k (B,≺B).

Now we posses all the tools necessary to prove that FO sentences in TOTO are
not powerful enough to express the property that a permutation can be merged
from two smaller permutations avoiding a fixed simple pattern.

Proposition 3.10. Let α be a simple permutation of length at least 4. The class
Av(α) ⊙ Av(α) is not definable by an FO sentence in TOTO. In other words, there
does not exist an FO sentence φ such that σ |= φ if and only if σ can be obtained
as a merge of two α-avoiding permutations.

Proof. Let us start with some observations and assumptions. First, let m be the
length of α and observe α must contain either 2413 or 3142, because otherwise it
would be separable and there are no separable simple permutations of length larger
than 3. Furthermore, we can assume without loss of generality that α contains
3142, as otherwise its reverse αr would contain 3142 and clearly Av(α) ⊙ Av(α) is
definable by an FO sentence if and only if Av(αr) ⊙ Av(αr) is.

Recalling the definition of the clockwise spiral from Subsection 2.3.1 (Fig-
ure 2.17), we have previously remarked that Av(3142) contains the clockwise
spiral and thus, so does also the class Av(α). Furthermore, the class Av(α) is
closed under inflations, i.e. for any τ ∈ Av(α) of length k and any k permutations
σ1, . . . , σk ∈ Av(α) the inflation τ [σ1, . . . , σk] is also α-avoiding.

We define α▷, α◁, α△ and α▽ to be the permutations obtained from α by
removing the rightmost, leftmost, topmost and bottommost element, respectively.
We say that a point set P forms a right arrow if it is isomorphic to α▷. Furthermore,
we say that a point p is in the range of the right arrow P , if p lies to the right of
P and the point set P ∪ {p} is isomorphic to α. Similarly, we define top, left and
down arrows as point sets isomorphic to α△, α◁ and α▽, respectively. Their ranges
are defined analogously.

An admissible coloring of a permutation π is any 2-coloring ψ : π → {red, blue}
such that π does not contain a monochromatic copy of α. Assume we have
a permutation π with an admissible coloring. Observe that if π contains a
monochromatic arrow of any orientation, say red, then all the points in the range
of the arrow must be colored by the other color, i.e. blue.

Our goal is to construct, for each positive k, two permutations that are
indistinguishable by FO sentences of quantifier depth k and simultaneously, only
one of them belongs to the class Av(α) ⊙ Av(α). To that end, we define a
permutation πℓ for each positive integer ℓ. We build πℓ from 4ℓ + 2 blocks
B1, B2, . . . , B4ℓ+2 forming the clockwise spiral starting with B1. Note that we
could define πℓ using a tile assembly but there would be little advantage since we
use the same basic structure independent of the simple permutation α.

74

B1

◁

◁
◁

◁

◁
◁

◁
◁

◁

◁

B2

B6B5

B4 B3

α

◁

◁

◁

◁
◁ α

0

+

−

0

−

+

Figure 3.2: Construction of the permutation πℓ for ℓ = 1 in the proof of Propo-
sition 3.10 that contains three tracks of arrows – ground (0), positive (+) and
negative (−).

The first block B1 consists of the permutation α with the topmost point
inflated by α▷ ⊕ α▷, the bottommost point inflated by α▷, and every other point
inflated with α. We will call the inflated topmost and bottommost elements of
α the top chunk and bottom chunk, respectively. Observe that in any admissible
coloring of B1, both the top chunk and the bottom chunk must be monochromatic
and moreover, they must use different colors. This is because all the other inflated
points of α necessarily contain elements of both colors. Therefore, a pair of
elements in the top and bottom chunks sharing the same color would create a
monochromatic copy of α. The last block B4ℓ+2 contains only the permutation α.

Let us now describe the intermediate blocks B2, . . . , B4ℓ+1. Recall that the first
block B1 contains two right arrows in its chunk and one right arrow in its bottom
chunk. The block B2 will contain 3 down arrows, each down arrow placed fully in
the range of one of the 3 right arrows in B1. Similarly, the block B3 will contain 3
left arrows, each in the range of a distinct down arrow from B2. Generally, the
block Bi for any i ∈ {2, . . . , 4ℓ+ 2} will consist of 3 disjoint arrows, all oriented
towards Bi+1, and each of them inside the range of a distinct arrow in Bi−1.

We continue by specifying the relative position of the arrows inside each
block Bi. For every even i, the arrows inside the block Bi form an increasing
sequence. In other words, Bi is isomorphic to a direct sum of three arrows. For
odd i, we distinguish two cases. If i = 4t+ 1 for some t, the right arrows inside
the block Bi form a decreasing sequence. Finally if i = 4t + 3 for some t, the
block Bi is isomorphic to 231 inflated with three left arrows, i.e. 231[α◁, α◁, α◁].
We say that Bi is a monotone block whenever the arrows in Bi form a monotone
sequence. Moreover, we distinguish the arrows in monotone blocks based on the
distance form the center of the spiral as inner, middle and outer. In the case
when i = 4t+ 3, it makes no sense to define inner and middle arrows. However,
we say that the arrow inflating the element ‘1’ of 231 is also an outer arrow.

Notice that the arrows form three disjoint sequences such that each sequence
contains exactly one arrow in each of the blocks B1, . . . , B4ℓ+1 and moreover, the

75

arrow in the block Bi for i ≥ 2 lies in the range of the arrow in the block Bi−1.
We call these sequences of arrows tracks. In particular, one track contains all
the outer arrows and the remaining two switch between middle and inner arrows
whenever they pass through a block B4t+3 for some t. The track containing all
the outer arrows is called the ground, the other track containing an arrow from
the top chunk of B1 is called positive and the track starting with the arrow in the
bottom chunk of B1 is called negative.

Finally, it remains to describe the relative positions between the points in the
blocks B4ℓ+1 and B4ℓ+2. We place the topmost point in B4ℓ+2 in the range of the
outer right arrow in B4ℓ+1 and we place the remaining points in the range of the
middle right arrow in B4ℓ+1. See Figure 3.2.

Claim 3.11. The permutation πℓ belongs to Av(α) ⊙ Av(α) if and only if ℓ is odd.

Assume that there is an admissible coloring of πℓ. We have already noticed
that the top and bottom chunk in the block B1 are both monochromatic and
colored by opposite colors. Without loss of generality, we assume that the top
chunk receives the color red. As we also observed, the colors of arrows on a single
track must alternate and therefore, the rest of the admissible coloring of πℓ is
uniquely determined. In particular, the outer arrow in the block Bi is colored red
if and only if i is odd. The same holds for the arrows contained in the positive
track while the arrow in Bi contained in the negative track is red if and only if i
is even.

Observe that the middle arrow of a monotone block Bi belongs to the positive
track if and only if ⌊i/4⌋ is even. This follows since for every t, the block B4t+3
flips the positive and negative track, and the middle arrow of the block B2 belongs
to the positive track. In particular, the middle arrow of the block B4ℓ+1 belongs
to the positive track if and only if ⌊(4ℓ+ 1)/4⌋ = ℓ is even.

Let us inspect the case when ℓ is even. The outer arrow of B4ℓ+1 is red since it
belongs to the ground and so is the middle arrow since it belongs to the positive
track. But then all the elements in the block B4ℓ+2 must be colored blue since
they all lie in the range of one of these two arrows and in particular, we found a
blue copy of α.

It remains to show that for odd ℓ, we have an admissible coloring. To see this,
let πR

ℓ and πB
ℓ be the subpermutations of πℓ formed by the red elements and the

blue elements, respectively. We claim that both these permutations avoid α. Let
us look at πR

ℓ , the case of πB
ℓ being analogous. To check that πR

ℓ avoids α, we will
repeatedly apply the following observation.

Observation 3.12. Suppose that γ is a permutation which contains an interval I,
and suppose that I has no copy of the simple pattern α. Let γ− be a permutation
obtained from γ by ‘deflating’ the interval I, i.e., by replacing I by a single element.
Then γ contains α if and only if γ− contains α.

Our goal is to show that by repeatedly deflating α-avoiding intervals, we can
transform πR

ℓ into a permutation from the clockwise spiral.
Consider first the block B1. The red subset of each inflated point of the copy

of α is an interval. This holds vacuously for all points other than the topmost
and the bottommost. As we already observed, the whole top chunk is red and the
bottom chunk is blue or vice versa. Let us assume that the top chunk is colored

76

red as the other case is symmetric. Since all the elements in B2 in the range of
the two arrows in the top chunk are blue, the top chunk indeed forms an interval
in πR

ℓ . Thus, the red part of B1 forms in fact a single interval isomorphic to α▷,
which can be deflated to a single point.

Consider now a block Bi for i ∈ {2, . . . , 4ℓ + 1}. Notice that it contains at
most two arrows colored red. The elements in the range of any red arrow are
colored blue and therefore, each such arrow can be deflated to a single point.
These points form either a monotone pair of the right kind with respect to the
clockwise spiral except possibly when i = 4t+ 3 for some t and the arrows were
obtained as inflations of the elements ‘2’ and ‘3’ of 231. However, since these
arrows were consecutive and their track contain only blue arrows in both Bi−1
and Bi+1, the two red points again form an interval that can be deflated to a
single point.

It remains to deal with the last block B4ℓ+2. Since ℓ is odd, the outer and
middle arrow in the block B4ℓ+1 are colored differently. If the outer arrow in B4ℓ+1
is colored blue then there is only a single red point in B4ℓ+2. Otherwise, the red
points in B4ℓ+2 are exactly the ones lying in the range of the middle arrow in
B4ℓ+1 and thus, they form a copy of α△ and they can be again safely deflated to a
single point. This concludes the proof of Claim 3.11.

Claim 3.13. Let k be a positive integer. For every n,m ≥ 2k+1 − 2, we have
πn ∼k πm and thus, πn and πm satisfy the same set of FO sentences of quantifier
depth at most k in TOTO.

We shall define a strategy for the k-move EF game on πn and πm using as a
building block the strategy for linear orders. In particular, let A = {0, . . . , n} and
B = {0, . . . ,m} be sets of numbers equipped with the natural linear order. There
exists a winning strategy for Duplicator in the (k+ 1)-move EF game on A and B
due to Proposition 3.9. Let us observe a few of its properties. If any two elements
ai and aj picked in A during the first k rounds are successive, i.e., aj = ai + 1,
then necessarily, so are bi and bj. Otherwise, Spoiler could win in the last round
by selecting bk+1 such that bi < bk+1 < bj. For the same reason, an element ai for
i ∈ [k] is the minimum element of A if and only if bi is the minimum element of
B; the same holds when we replace minimum with maximum.

We are now ready to define the strategy for Duplicator. At the same time
while playing on πn and πm, we simulate a virtual (k+1)-move EF game on A and
B. Suppose Spoiler picks in the i-th round an element pi from the block Bci

in
the permutation πn (the other case being symmetric). We set its i-th move in the
virtual game as picking the element ai = ⌊ ci

4 ⌋. Let bi be the response of Duplicator
in the virtual game and set di = 4bi + (ci mod 4). Duplicator picks a point qi in
the permutation πm from the block Bdi

. As we discussed, we have ai = 1 if and
only if bi = 1 and ai = n+ 1 if and only if bi = m+ 1. Since moreover ci and di

share the same remainder modulo 4, the blocks Bci
and Bdi

are isomorphic as
point sets and Duplicator can pick qi inside Bdi

mimicking the choice of pi in Bci
.

We claim that the map pi ↦→ qi is an isomorphism between the respective
subpermutations of πn and πm. It is sufficient to show that the pair pi, pj is
isomorphic to qi, qj for all choices of i, j ∈ [k]. That is trivial if pi and pj belong
to the same block inside πn since then ai = aj and thus, also bi = bj in the virtual
game. Otherwise if pi and pj lie in different non-successive blocks, it is sufficient

77

that ai ≤ aj implies bi ≤ bj and the blocks Bci
and Bdi

are isomorphic. Finally,
suppose that pi and pj occupy two successive blocks Bt and Bt+1, respectively.
Then qi and qj must also occupy two successive blocks Bs and Bs+1, and qi, qj is
isomorphic to pi, pj since Bs ∪Bs+1 is isomorphic to Bt ∪Bt+1.

For any positive k, Claims 3.11 and 3.13 together imply that the class Av(α) ⊙
Av(α) cannot be defined by an FO sentence of quantifier depth at most k in
TOTO. To see this, consider the permutations π2k+1−1 and π2k+1 . Only one of
them belongs to the class Av(α) ⊙ Av(α) while they are indistinguishable by FO
sentences of quantifier depth at most k.

We remark that this fits well into the bigger picture. We shall see later
that deciding whether π belongs to the class Av(α) ⊙ Av(α) is NP-complete by
Theorem 7.11. On the other hand, the definition of the class Av(α) ⊙ Av(α) by
an FO sentence would imply a linear time algorithm by Corollary 3.5 and thus, it
would actually mean that P = NP.

3.2.2 Properties inexpressible in MSO
As our next contribution, we prove that MSO is still not expressive enough to
define the property of having a fixed point. We use known results connecting
words and languages with monadic second-order logic instead of MSO variant of
Ehrenfeucht-Fräıssé games.

Let us start with formal definitions of words and languages. An alphabet Σ is
an arbitrary finite set and a word over Σ is a finite sequence of elements from Σ.
We denote by Σ∗ the set of all words over Σ. A language L is simply arbitrary
subset of Σ∗. Finally, a language L is regular if it is the language accepted by
some finite automaton.

There exists a standard way of defining words as models of a logic theory. For
an alphabet Σ, the signature SΣ consists of one binary relation symbol < and an
unary relation symbol Pa for every a ∈ Σ. The symbol < is intended to describe
the linear order of positions in a word, while the symbols Pa form a partition of its
domain and Pa describes the positions occupied by the letter a. These conditions
are again easily described by FO sentences and thus, form a valid theory that we
call Theory of Words over Σ (TOWΣ).

It turns out that the languages definable by MSO sentences in TOWΣ are
easily characterized as they are precisely the regular languages. This result is
known as the Büchi-Elgot-Trakhtenbrot theorem.

Theorem 3.14 ([50, 64, 109]). A language L ⊆ Σ∗ is regular if and only if it is
definable by an MSO sentence in TOWΣ.

Having these tools, we can at last prove that the property of having a fixed
point is inexpressible by an MSO sentence in TOTO. In particular, we show that
existence of such sentence would allow us to define an non-regular language by an
MSO sentence in TOWΣ. Note that the proof closely follows a similar argument
by Albert et al. [9, Proposition 30].

Proposition 3.15. The property of having a fixed point is not expressible by an
MSO sentence in TOTO. In other words, there does not exist an MSO sentence φ
such that σ |= φ if and only if σ has a fixed point.

78

Proof. Let us assume for contradiction that there exists an MSO sentence φ in
TOTO expressing the property that a permutation has a fixed point. We will show
how to transform φ into an MSO sentence ρ in TOWΣ for the alphabet Σ = {a, b}
such that ρ defines the language L = {an b an | n ∈ N}. This proves the intended
claim since L is clearly not regular by a standard use of the pumping lemma.

The main idea is that the evaluation of ρ on a word of the form w = ak b aℓ

simulates the evaluation of φ on the permutation

πk,ℓ = (⊕k1) ⊖ 1 ⊖ (⊕ℓ1).

It is easy to see that πk,ℓ has a fixed point if and only if k = ℓ.
In order to transform φ into an MSO sentence in TOWΣ, we need to replace

all atomic formulas of type x <x y and x <y z. We assume that the variable xb is
set to the position of the only letter b in the word w. We replace x <x y simply
by x < y, effectively mapping the word domain to the permutation from left to
right. The situation is more complicated with <y since we need to decide the
truth value based on the positions relative to xb. We replace x <y y by

[x < y ∧ ((x < xb ∧ y < xb) ∨ (xb < x ∧ xb < y))] ∨
[y < x ∧ ((x < xb ∧ xb < y) ∨ (x < xb ∧ y = xb) ∨ (x = xb ∧ xb < y))] .

The first line takes care of the case when x < y, since then both x and y must
either lie before or after the letter b. The second line concerns the case when
y < x, in which case either x and y are separated by the letter b or at most
one of them is equal to it. Let ρ′ be the MSO formula in TOWΣ obtained by
these replacements. We need to additionally check that w contains exactly one
occurrence of the letter b and assign its position to the variable xb.

ρ = ∃xb (Pb(xb) ∧ ∀x (Pb(x) → x = xb) ∧ ρ′).

3.2.3 Monadic second-order model checking
We shift our attention to the complexity of deciding MSO formulas of TOTO. On
one hand, we show that there exists an fpt-algorithm for this problem parameter-
ized by the clique-width and the length of the formula. The algorithm reduces the
problem to model checking on labeled graphs. On the other hand, we complement
this with a negative result showing that checking MSO sentences on permutations
from any class with the computable long path property is in some sense as hard
as checking MSO sentences on graphs.

Let us start by extending the theory TOG to labeled graphs. For a positive
integer p, the signature Sp

G consists of one binary relation symbol E and p unary
relation symbols U1, . . . , Up. The symbol E is intended to describe the edges of
the graph, while the symbols U1, . . . , Up partition the domain and Ui describes the
vertices with label i. We require that E is symmetric relation and that U1, . . . , Up

form a partition of the domain. These conditions are easily described by FO
sentences and therefore, form a valid theory that we call Theory of p-labeled
Graphs (TOGp). A p-labeled graph is for us any finite model (V,E, U1, . . . , Up) of
the theory TOGp.

The clique-width of a p-labeled graph G = (V,E, U1, . . . , Up), denoted by
cw(G), is defined similarly to the clique-width of xy-digraphs as introduced in

79

Subsection 2.1.4. In particular, it is the minimum number of labels needed to
construct G using the following five operations:

1. Creation of a single vertex with label i (denoted i).
2. Disjoint union of two labeled graphs G and H (denoted G⊕H).
3. Renaming label i to j (denoted ρi→j).
4. Adding an edge between every i-labeled vertex and every j-labeled vertex

(denoted ηi,j), where i ̸= j.

Note that we treat the final labels {1, . . . , p} as part of the set of labels used
during the construction. Again, an algebraic term using the above operations
with at most k distinct labels is called a k-expression of G.

Courcelle, Makowsky and Rotics [57] constructed an fpt-algorithm for deciding
whether a p-labeled graph satisfies a given formula. Note that the algorithm
required a k-expression together with the graph. Later, this requirement was
removed due to a series of polynomial-time approximation algorithms for clique-
width (see [103, 80, 102]). Luckily, we do not have to concern ourselves with
this issue since the clique-width of permutations can be approximated in linear
time. It suffices to obtain an approximate tree decomposition of a given permuta-
tion by Theorem 2.3 and then transform it to an approximate k-expression by
Propositions 2.10 and 2.13.

Theorem 3.16 ([57, Theorem 4]). Given a p-labeled graph G on n vertices together
with its k-expression and an MSO sentence φ in TOGp, we can decide G |= φ in
time f(|φ|, k) · n for some computable, yet non-elementary, function f .

We reduce the problem of deciding MSO sentences in TOTO over permutations
to deciding MSO sentences in TOG4 over 4-labeled graphs. Note that the main
idea of the proof closely follows a similar reduction for directed graphs given by
Ganian et al. [71, Theorem 4.2].

Theorem 3.17. Given a permutation π of length n and a monadic second-order
sentence φ in TOTO, we can decide π |= φ in time f(|φ|, cw(π)) · n for some
computable, yet non-elementary, function f .

Proof. Given the input permutation π, we construct a 4-labeled graph G such
that cw(G) ≤ 4 · cw(π) in the following way. For more clarity, we use as labels the
set L = {headx, heady, tail, center} instead of the set {1, 2, 3, 4}. For each point p
of the permutation diagram Sπ, we create a set of 4 vertices Ap = {hx

p , h
y
p, tp, cp}

forming a star with the vertex cp in its center. Moreover, we set the labels of hx
p ,

hy
p, tp, cp to headx, heady, tail and center, respectively. Finally for every pair of

different points p and q such that p.x < q.x, we add an edge tphx
q and similarly

for every p and q such that p.y < q.y, we add an edge tphy
p. See Figure 3.3.

Let us verify that the clique-width of G is bounded as promised. In fact,
we show that from a k-expression of π we can construct in linear time a (4 · k)-
expression of G. We interpret the set of labels as the set [k] ×L. We replace every
creation of a single point bearing label i (operation i) with the expression defining
the creation of the labeled graph on 4 vertices that is isomorphic to Ap where each
vertex receives the respective label from the set {i} × L. Every operation ηα

i,j for
α ∈ {x, y} is then replaced with the operation η(i,tail),(j,headα). And finally, every
renaming operation ρi→j is replaced with the composition of ρ(i,ℓ)→(j,ℓ) over all

80

hy
1hx

1

c1

t1

hy
3hx

3

c3

t3 hy
2hx

2

c2

t2

1

3

2

A1

A2

A3

Figure 3.3: Encoding permutation 132 (left) into a 4-labeled graph G (right). We
draw the edges (p, q) such that p.y < q.y using blue solid curves while red dashed
curves represent the edges (p, q) such that p.x < q.x.

ℓ ∈ L. At the end, we simply interpret the labels {1} × L as the set L. It is easy
to see that the obtained (4 · k)-expression defines exactly the 4-labeled graph G.

Let φ be an MSO sentence in TOTO. We describe construction of an MSO
sentence ψ in TOG4 such that π |= φ if and only if G |= ψ. Every element variable
x is replaced with a set variable Zx that is intended to describe the set Ax in G. To
that end, we define a predicate single(X) that tests whether a given set variable
X is actually equal to Ap for some point p as

single(X) = ∃x1, x2, x3, x4 ∈ X
[︂
headx(x1) ∧ heady(x2) ∧ center(x3) ∧ tail(x4)

∧ E(x1, x3) ∧ E(x2, x3) ∧ E(x3, x4)
∧ ∀x ∈ X (x = x1 ∨ x = x2 ∨ x = x3 ∨ x = x4)

]︂
.

We replace every occurrence of ∃x ρ in φ with ∃Zx(single(Zx) ∧ ρ), and
similarly every ∀x ρ is replaced with ∀Zx(single(Zx) → ρ). Any occurrence of
x ∈ X is replaced simply with Zx ⊆ X. We additionally enforce that we only
consider sets obtained as unions of the sets Ap by replacing ∃X ρ and ∀X ρ,
respectively, with

∃X
[︂
∀x ∈ X ∃Zx(single(Zx) ∧ Zx ⊆ X ∧ x ∈ Zx)

]︂
∧ ρ,

∀X
[︂
∀x ∈ X ∃Zx(single(Zx) ∧ Zx ⊆ X ∧ x ∈ Zx)

]︂
→ ρ.

Finally, we translate predicates x <x y and x <y y with predicates x-arc(Zx, Zy)
and y-arc(Zx, Zy), respectively, defined as follows

x-arc(Zx, Zy) = ∃x′ ∈ Zx ∃y′ ∈ Zy (tail(x′) ∧ headx(y′) ∧ E(x′, y′)) ,
y-arc(Zx, Zy) = ∃x′ ∈ Zx ∃y′ ∈ Zy (tail(x′) ∧ heady(y′) ∧ E(x′, y′)) .

It is straightforward to check that indeed G |= ψ if and only if π |= φ.
To conclude the proof, we describe the whole algorithm. Given the permuta-

tion π and MSO sentence φ, we construct the 4-labeled graph G in time O(n)
and the MSO sentence ψ in time O(|φ|). Observe that the tree-width of π is

81

at most 8 · cw(π) by combination of Corollaries 2.12 and 2.15. Therefore, the
approximation algorithm of Theorem 2.3 provides us with a tree decomposition of
π of width at most 16 · cw(π) + 1 in time f1(cw(π)) ·n. We continue by translating
this tree decomposition into a grid tree with grid-width at most 16 · cw(π) + 3
by Proposition 2.10 and subsequently, to a (2 · (16 · cw(π) + 3)2)-expression of π
by Proposition 2.13. As we described, we can translate this expression into a
(8 · (16 · cw(π) + 3)2)-expression of G in linear time. Finally, it remains to invoke
Theorem 3.16 and check whether G |= ψ in time f2(|ψ|, cw(G)) · n for some
computable function f2.

It has been pointed to us that, alternatively, Theorem 3.17 can be proved
by replacing permutations with their incidence graphs considered as directed,
edge-labeled graphs. It suffices to show that the expressive power of MSO in
TOTO is equivalent to the expressive power of MSO over incidence graphs of
permutations when we allow variables to represent not only vertices but also edges.
A variant of Theorem 3.17 parameterized by tree-width then follows directly from
the celebrated Courcelle’s theorem [55].

We wrap up this section with an accompanying negative result. We have
already remarked in Chapter 2 that all known classes of unbounded tree-width
(and thus, also unbounded clique-width) share the long path property. We show
that with the mild additional assumption of computability, deciding MSO sentences
in any permutation class with the long path property is as hard as deciding MSO
sentences on all graphs.

Modified F-assembly. We construct a family of tiles using pairs of points
called atomic pairs that form the pattern 12. We shall always consider both
points of a single atomic pair at once which justifies their name. When creating a
permutation from tiles consisting of atomic pairs, we slightly change each atomic
pair as to force a specific relative order of two atomic pairs in neighboring tiles
that share the same coordinates. Suppose we are given a monotone gridding
matrix M whose cell graph is a tree. Assume that the tree is rooted and oriented
all the edges consistently outwards from the root. For a vertex v of the tree, its
parent is the only in-neighbor of v. Suppose we are given a consistent orientation
F of GM and a family of tiles Q that contain atomic pairs. We define a modified
F-assembly of Q as follows.

Let v be a vertex in GM with parent w. Let X = {p, q} be an atomic pair in
Qv such that p lies to the left and below of q. If w and v share the same row,
then we move p up by a tiny distance (increasing its y-coordinate) and we move q
down by a tiny distance (decreasing its y-coordinate) without changing relative
position of any points in tiles Tv and Tw. On the other hand, if w and v share the
same column, we do the same modification with the x-coordinate, i.e., we increase
the x-coordinate of p and decrease the x-coordinate of q. Then we perform the
usual F -assembly on this modified family of tiles.

We say that a pair (a, b) of numbers sandwiches the pair (c, d) if a < c < d < b.
Notice that by this modification, if there was an atomic pair X in Qv and Y in
Qw then after the modification the x-coordinates of Y sandwich the x-coordinates
of X if v and w share the same column. Otherwise the same holds with respect
to the y-coordinates of X and Y . In both cases, we say that the atomic pair X

82

sandwiches the atomic pair Y . In this context, a track is a sequence of atomic
pairs X1, . . . , Xm such that Xi sandwiches Xi+1.

Theorem 3.18. Let C be a permutation class with the poly-time computable long
path property. There is a polynomial time algorithm that given a graph G on n
vertices and an MSO sentence φ in TOG, computes a permutation π ∈ C of length
O(n2) and an MSO sentence ψ in TOTO of length O(|φ|) such that G |= φ if and
only if π |= ψ.

Proof. We assume that the vertex set of G is precisely the set [n]. The basic
idea is that we can represent the adjacency matrix of G by a permutation π ∈ C
similarly to the proof of Theorem 3.6. However, this time we split the adjacency
matrix into individual rows and we represent each row using a single cell along a
path in the cell graph.

Construction of π. We first describe the construction of the permutation π as
it is more straightforward. We start by obtaining in polynomial time a monotone
gridding matrix M such that (i) Grid(M) is a subclass of C, (ii) the cell graph
GM is a path on n+ 3 vertices and moreover, (iii) one endpoint of this path is
the single non-empty cell in the leftmost column of M. The properties (i) and (ii)
are directly implied by the poly-time computable long path property. In order to
guarantee (iii), we can generate a monotone gridding matrix M′ that satisfies (i)
and whose cell graph is a path on 2n + 6 vertices. We can then split the path
in GM′ by removing either of the (at most two) non-empty cells in the leftmost
column. One choice leads to a path of length at least n+ 3 with an endpoint in
its leftmost column.

We orient the path in the cell graph outwards from the leftmost cell in M and
denote the vertices in the order on the path as v1, . . . , vn+3. We now describe a
family of (6n+ 18)-tiles P such that every non-empty tile contains only points
from its exact diagonal, i.e. the x- and y-coordinate of any point are equal. The
tile Pv1 contains only a single atomic pair called the anchor defined as

S = {(3, 3), (6n+ 16, 6n+ 16)}.

All remaining tiles share most of the same points. To start with, they contain 2
points below and to the left of everything else and 2 points above and to the right
of everything else, called barricades, and defined as

(1, 1), (2, 2), (6n+ 17, 6n+ 17), (6n+ 18, 6n+ 18).

Other than these extremal points, the tile contains an atomic pair C1 in its lower
left corner and two atomic pairs C2 and C3 in its upper right corner. Formally,

C1 = {(4, 4), (5, 5)},
C2 = {(6n+ 12, 6n+ 12), (6n+ 13, 6n+ 13)},
C3 = {(6n+ 14, 6n+ 14), (6n+ 15, 6n+ 15)}.

The atomic pairs C1 and C3 mark the ends of each tile when we omit the barricades
while the pair C2 marks the “inside” of each tile.

83

A2

B1

B2

C2

C3

C1

A1

Figure 3.4: Encoding the complete graph on 2 vertices into a path consisting of
5 monotone tiles in the proof of Theorem 3.18. Atomic pairs are displayed as
small ellipses that are connected into tracks via dotted lines. The pairs Ai and Bi

are colored with the same color (red and blue, respectively), while the pairs C1,
C2 and C3 are gray.

For each vertex i ∈ [n] of G, we add two atomic pairs Ai and Bi defined as

Ai = {(6i, 6i), (6i+ 1, 6i+ 1)}
Bi = {(6i+ 4, 6i+ 4), (6i+ 5, 6i+ 5)}.

The rest of the points differ between the tiles Pv2 , . . . , Pvn+3 . The tile Pv2

does not contain any other points. The tile Pv3 contains additionally the point
(6i + 3, 6i + 3) for every i ∈ [n]. Each remaining tile represents one row of the
adjacency matrix. For i ∈ [n], the tile Pvi+3 contains a pair of points (6i+ 3, 6i+ 3)
and (6i+ 4, 6i+ 4). Moreover, it contains the point (6j + 3, 6j + 3) for any j ∈ [n]
such that ij is an edge in G. See Figure 3.4.

The matrix M has a consistent orientation F by Lemma 1.2. Moreover,
we can choose F such that the row containing the cells v1 and v2 does not get
complemented. We set π as the modified F -assembly of P .

Observe that π contains 2n+3 disjoint tracks starting in the cell v2 and ending
in vn+3. Three of them are formed by the atomic pairs C1, C2 and C3, respectively.
The rest is formed by the atomic pairs Ai and Bi for each i ∈ [n]. We call the
track formed by an atomic pair X the X-track. So, for instance, we have the
C1-track, A2-track, B3-track etc.

Construction of ψ. Now we describe how to translate the MSO sentence φ
in TOG to the MSO sentence ψ in TOTO. Note that we shall define ψ using an

84

expanded language that is however easily translated to MSO sentences. For two
points p, q in π and α ∈ {x, y}, we denote by (p, q)α all the points in π whose
α-coordinates lie in the interval (p.α, q.α). Similarly, we denote by [p, q]α all the
points in π whose α-coordinates lie in the interval [p.α, q.α]. It is easy to see
that predicates like ‘(p, q)x = ∅’ or ‘|(p, q)x| = 2’ are easily expressed via MSO
sentences.

First let us describe how we can test whether a set variable S in ψ is equal to
a track. If we are given an atomic pair D = (p1, p2) in the tile Pv2 then we claim
that its corresponding track can be inductively generated by the following rules

(i) p1, p2 belong to T ,
(ii) for every q1, q2 ∈ T such that (q1, q2)x = ∅ and (q1, q2)y = {r1, r2} for

pairwise different r1, r2, the points r1, r2 also belong to T , and
(iii) for every q1, q2 ∈ T such that (q1, q2)y = ∅ and (q1, q2)x = {r1, r2} for

pairwise different r1, r2, the points r1, r2 also belong to T .

Claim 3.19. Let D = {p1, p2} be an atomic pair in the tile Pv2. A subset T of π
is a D-track if and only if (i), (ii), (iii) hold for T and moreover, T is minimal
such set with respect to inclusion.

Suppose that T is a D-track. The condition (i) holds vacuously and thus, the
only way T could violate these conditions is if there was a pair of points q1, q2 ∈ T
from different tiles for which the condition (ii) or (iii) fails. In that case, both
sets (q1, q2)x and (q1, q2)y would contain at most 2 points. That is, however, not
possible for q1 and q2 from different tiles since at least one of these sets must
contain four points of the barricades. For any proper subset T ′ of T , let i ≥ 2 be
the index such that the tile Pvi

is the first where T ′ and T differ. If i = 2 then T ′

violates (i), otherwise T ′ violates (ii) or (iii) for the atomic pair in the tile Pvi−1 .
For the other direction, assume that T is an inclusion-wise minimal set satis-

fying the conditions (i), (ii) and (iii). The atomic pair D in the tile Pv2 belongs
to T by condition (i). It then suffices to alternate using conditions (ii) and (iii)
to show that T must contain the whole track D-track. Since the D-track itself
satisfies (i), (ii) and (iii), T cannot contain any other points as it would not be
inclusion-wise minimal.

The conditions (i), (ii) and (iii) can easily be encoded as an MSO predicate
suptrack(p1, p2, T). The power of MSO allows us to further enforce that T is a
minimal set satisfying these conditions (and thus, equal to the desired track by
Claim 3.19) by an MSO predicate track(p1, p2, T) defined as

track(p1, p2, T) = suptrack(p1, p2, T) ∧ ∀S [(S ⊊ T) → ¬ suptrack(p1, p2, S)] .

At the very beginning of ψ, we can fix two variables a1 and a2 to the anchors
of π since they are the two leftmost points of π as follows

∃a1a2 [a1 <y a2 ∧ ∀x (x = a1 ∨ x = a2 ∨ a2 <x x)] .

We additionally introduce three set variables TC1 , TC2 and TC3 , set to the
C1-track, C2-track and C3-track, respectively. For α ∈ {x, y}, let p ⋖α q be the
FO predicate that evaluates true if and only if p <α q and there is no point r such
that p <α r <α q. It is sufficient to find the atomic pairs C1, C2 and C3 inside
Pv2 and then apply the predicate track. We can find the atomic pairs since C1

85

contains the first two points just above the anchor a1 while C2 and C3 consist of
the last four points just below the anchor a2. Here we use the fact that the row
containing the cells v1 and v2 is not complemented when applying the F -assembly.
Formally, we write

∃TC1 , TC2 , TC3 [∃p1, q1, p2, q2, p3, q3 (a1 ⋖y p1 ⋖y q1 ∧ p2 ⋖y q2 ⋖y p3 ⋖y q3 ⋖y a2

∧ track(p1, q1, TC1) ∧ track(p2, q2, TC2) ∧ track(p3, q3, TC3))].

We replace every vertex variable x in φ with two set variables TAx and TBx

intended to describe the Ax-track and Bx-track. With that in mind, we define
predicate vertex(TAx , TBx) that tests this requirement. It is sufficient to find two
consecutive atomic pairs {p1, q1} and {p2, q2} inside Pv2 such that moreover, there
are two points in the sets (p1, q1)x, (p2, q2)x (the atomic pairs Ax and Bx inside
Pv3) and only one in the set (q1, p2)x (the additional point separating Ax and Bx

inside Pv3). Formally, we have

vertex(TAx , TBx) = ∃p1, q1, p2, q2 (a1 <y p1 ∧ q2 <y a2 ∧ p1 ⋖y q1 ⋖y p2 ⋖y q2

∧ track(p1, q1, TAx) ∧ track(p2, q2, TBx)).

We replace every occurrence of ∃x ρ in φ with ∃TAx , TBx(vertex(TAx , TBx) ∧
ρ), and similarly every ∀x ρ is replaced with ∀TAx , TBx(vertex(TAx , TBx) → ρ).
Furthermore, any occurrence of x ∈ X is replaced simply with TAx ⊆ X∧TBx ⊆ X
and we again change quantifications over sets to capture only sets that are formed
as union of tracks TAx , TBx for some set of vertices. Formally, we replace ∃X ρ
and ∀X ρ, respectively, with

∃X
[︂
∀x ∈ X ∃TA, TB (vertex(TA, TB) ∧ TA ∪ TB ⊆ X ∧ x ∈ TA ∪ TB)

]︂
∧ ρ,

∀X
[︂
∀x ∈ X ∃TA, TB (vertex(TA, TB) ∧ TA ∪ TB ⊆ X ∧ x ∈ TA ∪ TB)

]︂
→ ρ.

Finally, we need to replace every predicate E(x, y) inside φ. In order to do
that, we first show that it is possible to define a predicate identifying a single tile
inside π. More specifically, we define a predicate tile(r,c)(S) for every r, c ∈ {−1, 1}
that evaluates true if and only if S is the point set of a tile with row orientation r
and column orientation c in F . Instead of writing the full technical definition, we
list individual properties that are sufficient and each of them is easily seen to be
expressible by an MSO sentence. Moreover, we only list the properties defining
tile(1,1)(S) as the other three possibilities are symmetric. The following must hold
for a set S satisfying tile(1,1)(S):

(i) S is equal to [p, q]x ∩ [r, s]y for some points p, q, r and s,
(ii) S is an increasing point set,
(iii) |S ∩ TC1| = |S ∩ TC2| = |S ∩ TC3 | = 2, and
(iv) the bottommost two points of S belong to TC1 while the topmost two points

belong to TC3 .

When we have a set variable S representing a single tile, we can test whether
there is an edge between vertices x and y (represented by variables TAx , TBx , TAy

and TBy) represented inside the tile S by verifying that

86

(i) there are exactly two points lying between TAx ∩ S and TBx ∩ S both
horizontally and vertically, and

(ii) there is exactly one point lying between TAy ∩S and TBy ∩S both horizontally
and vertically.

We can clearly encode this as an MSO predicate tile edge(TAx , TBx , TAy , TBy , S).
Finally, we replace every predicate E(x, y) inside φ with the predicate edge(TAx ,
TBx , TAy , TBy) defined as

edge(TAx , TBx , TAy , TBy) = ∃S
⋁︂

r,c∈{−1,1}
tile(r,c)(S) ∧ tile edge(TAx , TBx , TAy , TBy , S).

To wrap up, observe that π is a permutation of length O(n2) and the length
of ψ is O(|φ|) as promised. Moreover, it is clear from the construction of π and ψ
that G |= φ if and only if π |= ψ.

87

88

4. Permutation pattern matching
In this chapter, we explore how hard is it to find a given pattern π in a given per-
mutation τ . This problem, called Permutation Pattern Matching (PPM),
is the most natural decision problem that involves permutations and as such it
has received plenty attention in the literature [6, 23, 39, 49, 48, 78, 77, 86].

First in Section 4.1, we look at the problem through the lens of classical
complexity theory. We start by introducing standard notions and known results.
Additionally, we include our own original proof of the fact that PPM is NP-
complete.

In Section 4.2, we employ the framework of parameterized complexity. We
impose conditional lower bounds on the running time of algorithms counting
patterns or finding vincular patterns. Moreover, we rule out fpt-algorithms for
PPM parameterized by any reasonable parameter of the pattern π under standard
complexity-theory assumptions. On the positive side, we devise efficient algorithms
for counting bivincular and partially ordered patterns of small tree-width.

Finally in Section 4.3, we investigate the behavior of PPM with the additional
restriction of the pattern π to a fixed class C. Assuming that C has the computable
long path property, we can reproduce most of the hardness results that hold for
general patterns. The only caveat is that the obtained conditional lower bounds
are weaker approximately by order of square root in the exponent. As an example,
we rule out algorithm counting patterns from C in time f(k)·no(

√
k) whereas general

patterns cannot be counted in time f(k) · no(k/ log k) (both under the so-called
Exponential Time Hypothesis). However, assuming that C has the computable
deep tree property, we derive stronger conditional lower bounds that differ from
the general case only by a logarithmic term in the exponent, e.g., we rule out
algorithm counting patterns from C in time f(k) · no(k/ log2 k).

4.1 Classical complexity

Let us first briefly recall the basic notions of classical complexity theory. For a
detailed introduction, we refer, e.g., to the monograph by Arora and Barak [14].
Formally, a decision problem is a language over a finite alphabet Σ which encodes
the positive instances. The two most fundamental classes of problems are P and
NP. The class P contains all problems solvable in polynomial time (in the size of
the input) by a deterministic Turing machine, while NP consists of all problems
solvable in polynomial time by a non-deterministic Turing machine.

A polynomial time reduction from a problem A to a problem B is a mapping
f : Σ∗ → Σ∗ computable in polynomial time by a deterministic Turing machine
such that for every x ∈ Σ∗, x is a positive instance of A if and only if f(x) is a
positive instance of B. For a class of problems C, we say that a problem A is
C-hard if every problem in C can be reduced to A by a polynomial time reduction.
Moreover, we say that a problem A is C-complete if A is C-hard and simultaneously,
A is contained in C. In particular, the NP-complete problems can be seen as the
hardest problems in NP. The most prominent example of such problem is surely
SAT, or its more restricted variant 3-SAT.

89

3-SAT
Input: A 3-CNF formula φ with n variables and m clauses.

Output: Does φ have a satisfying assignment?

Showing that a decision problem is NP-hard implies that it cannot be solved
deterministically in polynomial time under the (widely believed) assumption
P ̸= NP. In many cases, we are able to obtain more fine-grained lower bounds
under stronger assumptions. Namely, we base some of our result on the famous
Exponential Time Hypothesis (ETH) by Impagliazzo, Paturi and Zane [84, 85].

Hypothesis 1 (Exponential Time Hypothesis [84, 85]). There exists δ > 0 such
that 3-SAT cannot be solved in time O(2δn) where n is the number of variables.

However, it is more suitable for our purposes to use an equivalent variant of
ETH that bounds the running time in the number of clauses rather than in the
number of variables. The equivalence follows from the Sparsification lemma of
Impagliazzo, Paturi and Zane [85].

Hypothesis 2 (ETH, alternative version [85]). There exists δ′ > 0 such that
3-SAT cannot be solved in time O(2δ′m), where m is the number of clauses. In
particular, no 2o(m) algorithm exists.

Let us formally introduce Permutation Pattern Matching (PPM) as a
decision problem. Additionally, we define its counting variant known as #PPM.

Permutation Pattern Matching (PPM)
Input: Permutations π of length k and τ of length n.

Output: Is π contained in τ?

#Permutation Pattern Matching (#PPM)
Input: Permutations π of length k and τ of length n.

Output: The number of occurrences of π in τ .

Permutation Pattern Matching was shown to be NP-complete by Bose,
Buss and Lubiw [39]. Moreover, if we inspect their proof properly, we see that
their reduction from 3-SAT implies that PPM cannot be solved in time 2o(n)

unless ETH fails. We include an alternative proof of this fact. The reason for
this is twofold, we wanted to include a proof of this seminal result for the sake of
completeness and simultaneously, it introduces ideas that will be utilized in later
reductions.

Theorem 4.1. PPM is NP-complete and moreover, it cannot be solved in time
2o(|τ |) where τ is the text permutation unless ETH fails.

Before we start proving Theorem 4.1, let us introduce a handy way of enforc-
ing satisfying assignments via the means of embedding words. This particular
observation will prove itself useful in several of the upcoming reductions.

Observation 4.2. Let Σ = ⋃︁3
i=1{Ti, Fi} and suppose w = x1x2x3 is a word over

the alphabet Σ such that xi ∈ {Ti, Fi} for each i ∈ [3]. Then w is contained as a
subsequence in the word T1F2F1T2F3F2T3 if and only if w ̸= F1F2F3.

90

Proof of Theorem 4.1. We describe an efficient reduction from 3-SAT. Let φ be
a given 3-CNF formula. Suppose that φ has n variables x1, . . . , xn and m clauses
K1, . . . , Km. We will assume, without loss of generality, that each clause contains
exactly three literals, and no variable appears in a single clause more than once.
We will construct permutations π and τ such that φ is satisfiable if and only if τ
contains π. However, we shall first reduce to a slightly more restricted problem
called Left PPM.

Left-aligned Permutation Pattern Matching (Left PPM)
Input: Permutations π of length k and τ of length n.

Output: Is there an embedding of π into τ that maps the leftmost point of π
to the leftmost point of τ?

Any embedding of π into τ that maps the leftmost point of π to the leftmost
point of τ is a left-aligned embedding (of π into τ). Observe that it is equivalent
to only require that the leftmost point of τ is used by the embedding. It follows
automatically that the only point that could map to the leftmost point in τ is the
leftmost point in π.

Before delving into the formal construction, let us describe the global structure
of π and τ . The permutations π and τ shall both have a matrix-like structure. In
particular, the pattern π will represent a matrix with m rows (one per each clause)
and n columns (one per each variable of φ) while the text τ will represent a matrix
also with m rows but with 2n columns (two per each variable, representing the
two possible assignments).

Constructing the pattern π. Let us first define the pattern as a point set P
not necessarily in general position. We start by defining two points, called anchors,
in π as

aP
1 = (1, 2n+ 2), aP

2 = (2m+ 2, 1).
For each i ∈ [n], we define a pair of points Xi associated to the variable xi as

Xi = {(2m+ 3i, 2i), (2m+ 3i+ 2, 2i+ 1)}.

For each t ∈ [m], we associate to the clause Kt of φ a pair of points At defined as

At = {(2t, 2n+ 5t− 2), (2t+ 1, 2n+ 5t+ 2)}.

Observe that the pairs X1, . . . , Xn lie horizontally between aP
1 and aP

2 while the
pairs A1, . . . , Am lie vertically between aP

1 and aP
2 . Moreover, the pairs X1, . . . , Xn

form an increasing permutation of length 2n while the pairs A1, . . . , Am form
an increasing permutation of length 2m. The pairs naturally define a grid-like
structure. We call the vertical strip bounded by a pair Xi the Xi-column and
similarly, we call the horizontal strip bounded by a pair At the At-row. Moreover,
the (Xi, At)-cell is the intersection of the Xi-column and the At-row.

Suppose the clause Kt contains variables xi, xj and xk, for some i < j < k.
We add to the At-row three points, lying in the (Xi, At)-cell, (Xj, At)-cell and
(Xk, At)-cell respectively. Moreover, these three points form the increasing pattern
123. Formally, these points are defined as

(2m+ 3i+ 1, 2m+ 5t− 1), (2m+ 3j+ 1, 2m+ 5t), (2m+ 3k+ 1, 2m+ 5t+ 1).

91

aP1

X1

X2

X3

A1

A2

aP2

aT1

aT2

B1

B2

Y T
1

Y F
1

Y T
2

Y F
2

Y T
3

Y F
3

Figure 4.1: Permutations π (left) and τ (right) produced by the proof of The-
orem 4.1 for the formula (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3). The red lines help
visualize the vertical order of points inside each row. The B1-row does not contain
a pattern 123 in the columns Y F

1 , Y
F

2 , Y
F

3 and the same holds for the B2-row and
columns Y F

1 , Y
T

2 , Y
T

3 .

Finally, we rotate P slightly to guarantee that it is in general position and
take the permutation π as its reduction. See the left part of Figure 4.1. Observe
that the length of π is bounded by O(n+m).

Constructing the text τ . As before, we start with defining the text as a point
set T not necessarily in general position. We again first define two anchors as

aT
1 = (1, 4n+ 2), aT

2 = (2m+ 2, 1).

For each i ∈ [n], we define two increasing pairs of points Y T
i and Y F

i associated
to the variable xi as

Y T
i = {(2m+ 6i− 1, 4i− 2), (2m+ 6i+ 1, 4i− 1)},
Y F

i = {(2m+ 6i+ 2, 4i), (2m+ 6i+ 4, 4i+ 1)}.

For each t ∈ [m], we associate to the clause Kt of φ a pair of points Bt defined as

Bt = {(2t, 2n+ 9t− 7), (2t+ 1, 2n+ 9t+ 1)}.

This completes the definition of the ‘boundaries’ of the matrix. Observe that
all pairs Y T

i and Y F
i lie horizontally between aT

1 and aT
2 while every pair Bt lies

vertically between aP
1 and aP

2 . The pairs Bt form again an increasing permutation
of length 2m. However, the pairs Y T

i and Y F
i for a fixed i ∈ [n] form the pattern

3412 and together they are arranged into an increasing sequence of n such blocks.
We define the notions of Y α

i -columns, Bt-rows and (Y α
i , Bt)-cells where α ∈ {T, F}

exactly as in the case of the pattern.
Suppose Kt is of the form Li ∨ Lj ∨ Lk, with Li ∈ {xi,¬xi}, Lj ∈ {xj,¬xj}

and Lk ∈ {xk,¬xk}, for some i < j < k. For every α ∈ {i, j, k}, we define two
values tα and fα such that tα = 2m + 6α and fα = 2m + 6α + 3 if Lα = xα,

92

otherwise we swap the values, i.e., we set tα = 2m+ 6α + 3 and fα = 2m+ 6α.
Observe that if Lα = xα then any point p such that p.x = tα lies in the Y T

α -column
and any point p such that p.x = fα lies in the Y F

α -column. The opposite holds
when Lα = ¬xα. We add the following 7 points to the Bt-row

(ti, 2m+ 9t− 6), (fj, 2m+ 9t− 5), (fi, 2m+ 9t− 4), (tj, 2m+ 9t− 3),
(fk, 2m+ 9t− 2), (fj, 2m+ 9t− 1), (tk, 2m+ 9t).

Observe that the y-coordinates of these points impose on them a linear order, while
the x-coordinates are arranged to form the word appearing in Observation 4.2.

We obtain the permutation τ by slightly rotating T to guarantee general
position and subsequently, taking its reduction. See the right part of Figure 4.1.
The length of τ is easily seen to be bounded by O(n+m).
Claim 4.3. The formula φ is satisfiable if and only if there is a left-aligned
embedding of π into τ .

Correctness (“only if”). Suppose that φ is satisfiable. Fix any satisfying
assignment represented by a function ρ : [n] → {T, F}, where ρ(i) = T if and only
if xi is set to true. We describe how to find the desired left-aligned embedding of
π into τ .

We start by mapping the anchors of π to the anchors of τ . Notice that by
this we guarantee the ‘left-alignment’ of the embedding. Furthermore, we map
the pair At to the pair Bt for every t ∈ [m] and we map the pair Xi to the pair
Y

ρ(i)
i for every i ∈ [n]. It remains to map for each t ∈ [m] the three points in the
At-row. This is where Observation 4.2 comes to play.

Suppose Kt is of the form Li ∨ Lj ∨ Lk, with Li ∈ {xi,¬xi}, Lj ∈ {xj,¬xj}
and Lk ∈ {xk,¬xk}, for some i < j < k. For α ∈ {i, j, k}, let Tα ∈ {T, F} be the
assignment of the variable xi such that the literal Lα evaluates to true and let Fα

be the opposite assignment. If we order the points in the Bt-row in τ according to
their y-coordinates, they appear in the intersections with the following columns

Y Ti
i , Y

Fj

j , Y Fi
i , Y

Fj

j , Y Fk
k , Y

Fj

j , Y Tk
k .

We consider this sequence as a word wt over the alphabet ⋃︁α∈{i,j,k}{Y T
α , Y

F
α }.

Since ρ is a satisfying assignment of φ, at least one of the the literals Li, Lj,
Lk must evaluate to true. But then we can find the word Y

ρ(i)
i Y

ρ(j)
j Y

ρ(k)
k as a

subsequence in wt by Observation 4.2 and we map the three points in π to the
corresponding three points in τ .

It is trivial to see that the anchors and the pairs A1, . . . , Am and X1, . . . , Xn

retain the correct relative positions under the defined mapping. For the remaining
points, the same is guaranteed by Observation 4.2.

Correctness (“if”). Suppose there is a left-aligned embedding ψ of π into τ .
By definition, the anchor aP

1 in π is mapped to the anchor aT
1 in τ . We claim that

moreover, the anchor aP
2 must be mapped to the anchor aT

2 . This holds since the
points of π below aP

1 form an increasing sequence of length exactly 2n+ 1 starting
with the point aP

2 while any longest increasing sequence in τ below aT
1 is also of

length exactly 2n+ 1 and starts with the point aT
2 .

93

Since the pairs A1, . . . , Am are the only points enclosed in the vertical strip
between anchors in π and the same holds for the pairs B1, . . . , Bm in τ , the pair At

must be mapped to the pair Bt for each t ∈ [m]. Similarly, the only points enclosed
in the horizontal strip between anchors in π are pairs X1, . . . , Xn and the only
points occupying the same region in τ are the pairs Y T

1 , . . . , Y
T

n and Y F
1 , . . . , Y

F
n .

Recall that the pairs X1, . . . , Xn form together an increasing sequence of length
2n while the pairs Y T

1 , . . . , Y
T

n and Y F
1 , . . . , Y

F
n together form the permutation

⊕n3412. It follows that for each i ∈ [n], the pair Xi must be mapped either to
Y T

i or Y F
i . We use this fact to define an assignment ρ : [n] → {T, F} such that

Xi maps precisely to Y ρ(i)
i .

In order to show that ρ represents a satisfying assignment of φ, it suffices to
reuse the observations present in the proof of the other implication. Fix t ∈ [m].
Recall that the word wt is obtained by listing the columns occupied by the points
in the Bt-row in τ in the order of their y-coordinates. Since the three points in
the At-row in π are mapped by ψ to the Bt-row in τ , the word Y ρ(i)

i Y
ρ(j)

j Y
ρ(k)

k can
be found as a subsequence in wt. Therefore, we cannot have ρ(α) = Fα for every
α ∈ {i, j, k} due to Observation 4.2 and ρ satisfies the clause Kt.

Inflating the leftmost points. Finally, we need to remove the assumption
that we only care about left-aligned embeddings of π into τ . This is done via a
trick that we shall see over and over again. Namely, let π′ be the permutation
obtained from π by inflating its leftmost point aP

1 with the decreasing sequence of
length |τ | and let τ ′ be the permutation obtained from τ by inflating its leftmost
point aT

1 with the decreasing sequence of length |τ |. Note that we still have
|τ ′| ∈ O(n+m).
Claim 4.4. There is a left-aligned embedding of π into τ if and only if there is
an embedding of π′ into τ ′.

It is clear that any left-aligned mapping of π into τ can easily be remade into
an embedding of π′ into τ ′. For the other direction, assume there is a mapping
ψ of π′ into τ ′. Observe that the inflated decreasing sequence in π′ contains
|τ | points while τ ′ contains only |τ | − 1 points outside of its inflated decresing
sequence. Hence, there must be at least one point of the inflated sequence in π′

that maps to the inflated sequence in τ ′ by a simple counting argument.
Moreover, we claim that all points of π′ outside of its inflated part cannot

be mapped to the inflated part of τ ′. The only points that could even map to
the inflated part due to their relative positions with respect to aP

1 are the pairs
X1, . . . , Xn and the point aP

2 . If any point of Xi maps to the inflated anchor aT
1

then we have no place where we can map aP
2 . Conversely, if the point aP

2 maps
to the inflated aT

1 then we cannot map the pairs X1, . . . , Xn. Therefore, if we
restrict ψ to the points outside the inflated sequences, we get the description of a
left-aligned embedding of π into τ minus the leftmost points.

4.2 Parameterized complexity
In this section, we investigate PPM through the paradigm of parameterized
complexity. We have already met some examples of parameterized algorithms
(see, e.g., Theorems 2.3, 3.4, 3.17). Now, we formally (albeit briefly) introduce

94

the paradigm of parameterized algorithms and complexity. For more details, we
refer an interested reader, e.g., to the monograph by Cygan et al. [58].

Formally, a parameterized problem is a language L ⊆ Σ∗ × N , where Σ is
the input alphabet. We say that a parameterized problem L is fixed-parameter
tractable (FPT) if there is an algorithm A and a computable function f : N → N
such that, given (x, k) ∈ Σ∗ × N, the algorithm A correctly decides whether
(x, k) ∈ L in time f(k) · |(x, k)|O(1). The algorithm A is called an fpt-algorithm.

We can also define a corresponding notion of reduction. An fpt-reduction from
a parameterized problem A to a parameterized problem B is an algorithm that,
given an instance (x, k) ∈ Σ∗ × N, outputs an instance (x′, k′) ∈ Σ∗ × N such that

(i) (x, k) ∈ A if and only if (x′, k′) ∈ B,
(ii) there exists a computable function g such that k′ ≤ g(k), and
(iii) the algorithm runs in time f(k) · |x|O(1) for some computable function f .

We define the class FPT to consist of all the fixed-parameter tractable problems.
It is not hard to see that whenever we have a problem B in FPT and an fpt-
reduction from a parameterized problem A to B, then A is also in FPT. As before,
we can define the notion of hard and complete problems for a given class of
parameterized problems. For a class C of parameterized problems, we say that a
parameterized problem A is C-hard if every problem in C can be reduced to A by
an fpt-reduction. Moreover, A is C-complete if A is C-hard and simultaneously A
is contained in C.

The other important classes in the study of parameterized complexity are
the classes W[1] ⊆ W[2] · · · forming the so-called W-hierarchy. We refrain from
introducing the whole hierarchy as only the class W[1] is relevant for us because it
is conjectured that W[1] ̸= FPT. Therefore, showing that a parameterized problem
is W[1]-hard can be seen as evidence that it is not fixed-parameter tractable. We
omit the original definition of W[1] and instead we define it as the class of all
parameterized problems that are fpt-reducible to the natural and well-known
problem Clique.

Clique
Input: Graph G = (V,E) and k ∈ N.

Parameter: k
Output: Is there a clique of size k in G?

We have already alluded to the fact that PPM is in FPT when parameterized
by the length of the pattern. It follows for instance from Corollary 3.5 since
we can define the property of containing a pattern π as a FO sentence with
length O(|π|). However, the original algorithm of Guillemot and Marx [77] was
tailored specifically for the PPM problem and thus, it achieves better running
time dependence on the parameter k. Moreover, its running time was later slightly
improved via a purely combinatorial result by Fox [68].

Theorem 4.5 ([77, 68]). PPM can be solved in time 2O(k2) · n where k is the
length of the pattern and n is the length of the text.

Notice that the previous theorem speaks only about the decision version of
the problem. That is no coincidence since Berendsohn et al. [23] showed that an

95

fpt-algorithm for the counting version #PPM cannot exist unless ETH fails. We
later show how this theorem follows from our own reductions.

Theorem 4.6 ([23]). #PPM cannot be solved in time f(k) · no(k/ log k) where k
is the length of the pattern and n is the length of the text, unless ETH fails.

4.2.1 Left-aligned patterns
As a basis of all further reductions, let us show that similar conditional lower
bound under ETH holds also for Left PPM. Notice that while the difference
between PPM and Left PPM seems minuscule, they exhibit very different
behavior with respect to parameterized complexity.

Proposition 4.7. Left PPM is W[1]-complete with respect to k and unless
ETH fails, it cannot be solved in time f(k) · no(k/ log k) for any function f , where k
is the length of the pattern and n is the length of the text.

Before the actual reduction, let us define the problem that we will eventually
reduce to Left PPM. In particular, we will reduce from the well-known problem
Partitioned Subgraph Isomorphism (PSI). Informally, we aim to find a
given graph G as a subgraph of another graph H, but it is prescribed in advance
where each vertex of G can be mapped.

Partitioned Subgraph Isomorphism (PSI)
Input: Graphs G = (VG, EG) and H = (VH , EH) together with a coloring

χ : VH → VG of vertices of H, using the vertices of G as colors.
Output: Is there a mapping ϕ : VG → VH such that whenever {u, v} ∈ EG then

also {ϕ(u), ϕ(v)} ∈ EH and moreover, χ(ϕ(v)) = v for every v ∈ VG?

The problem PSI is W[1]-complete with respect to k = |EG| and moreover,
Marx [99] showed that it cannot be solved in time f(k) · no(k/ log k) unless ETH
fails. Bringmann et al. [45] later observed that this holds even if we require G to
have the same number of vertices and edges.

Theorem 4.8 ([99, 45]). PSI is W[1]-complete and unless ETH fails, PSI cannot
be solved in time f(k) ·no(k/ log k) for any function f , where n = |VH | and k = |EG|.
This is true even when we require G to have exactly as many vertices as edges.

Proof of Proposition 4.7. The basic idea of the reduction is very similar both to a
reduction from PSI to a different variant of PPM by Berendsohn et al. [23], and
to the representation of graphs by permutations used in the proof of Theorem 3.6.

Let (G,H, χ) be an instance of PSI and set n = |VH |, k = |VG|. We assume
that the vertex set VG is in fact equal to [k] and we define for each i ∈ [k] the set
Vi ⊆ VH as the set of vertices of H colored by i, i.e., Vi = χ−1(i). Notice that
V1, . . . , Vk form a partition of the set VH .

We shall construct two point sets P and T not necessarily in general position
such that P will represent the adjacency matrix of G while T will represent the
adjacency matrix of H.

96

aP1

aP2 B1

B2

B3

A1

A2

A3

G : H :

1

2

3

v11
v12

v21

v31

v32

aT1

aT2

D1
1

D1
2

D2
1

D3
1

D3
2

C1
1

C1
2

C2
1

C3
1

C3
2

Figure 4.2: Permutations π (bottom left) and τ (right) produced by the proof of
Proposition 4.7 for an instance (G,H, χ) of PSI (top left).

Constructing the pattern π. We start describing first the set P . It will
be almost identical to the representation of adjacency matrix in the proof of
Theorem 3.6. It contains two anchors aP

1 and aP
2 defined as

aP
1 = (1, 2k + 2), aP

2 = (2k + 2, 1).

For each i ∈ [k], we associate two pairs of points to the vertex i defined as

Ai = {(2i, 3i+ 2k), (2i+ 1, 3i+ 2k + 2)},
Bi = {(3i+ 2k, 2i+ 1), (3i+ 2k + 2, 2i)}.

As before, every pair Ai lies horizontally between the anchors and every pair Bi

lies vertically between the anchors. However, this time the pairs A1, . . . , Ak form
together an increasing permutation of length 2k and the same holds for the pairs
B1, . . . , Bk. The pairs naturally impose a grid-like structure. We define the Ai-row
as the horizontal strip bounded by the pair Ai, the Bj-column as the vertical strip
bounded by Bj and the (Ai, Bj)-cell as their intersection.

For each edge {i, j} ∈ EG, we simply add points to the (Bj, Ai)-cell and the
(Bi, Aj)-cell, i.e., we add to P the points

(3i+ 2k + 1, 3j + 2k + 1), (3j + 2k + 1, 3i+ 2k + 1).

Additionally, we also add a point to each cell on the diagonal, i.e., we add the
point (3i+ 2k + 1, 3i+ 2k + 1) for every i.

That wraps up the definition of P . We rotate P slightly to guarantee that it
is in general position and take the permutation π as its reduction. See the bottom
left part of Figure 4.2. The length of π is O(|VG| + |EG|) which is bounded by
O(k) since we assumed that |VG| = |EG|.

97

Constructing the text τ . Now, we shift our attention to the point set T . It
contains two anchors aT

1 and aT
2 defined as

aT
1 = (1, 2n+ 2), aT

2 = (2n+ 2, 1).

For each i ∈ [k], set ni = |Vi| and we choose an arbitrary order of vertices in
Vi denoting them vi

j for j ∈ [ni]. To every vertex vi
j , we associate two values – the

rank of vi
j denoted by αi

j and the reverse rank of vi
j denoted by βi

j where

αi
j =

∑︂
i′<i

ni′ + j − 1 and βi
j =

∑︂
i′<i

ni′ + ni − j. (4.1)

Observe that the rank corresponds to the lexicographic order of vi
j by (i, j) and

the reverse rank corresponds to the lexicographic order by (i, ni − j).
For every i ∈ [k] and j ∈ [ni], we add to T two pairs of points associated to

the vertex vi
j

Ci
j = {(2βi

j, 3αi
j + 2k), (2βi

j + 1, 3αi
j + 2k + 2)},

Di
j = {(3αi

j + 2k, 2βi
j + 1), (3αi

j + 2k + 2, 2βi
j)}.

Every pair Ci
j again lies horizontally between the anchors while every pair Di

j

lies vertically between the anchors. For a fixed i, the pairs Ci
1, . . . , C

i
ni

form a
co-layered permutation with each layer consisting of a single pair, and the same
holds for the pairs Di

1, . . . , D
i
ni

. Moreover for different i < j, the pairs Ci
1, . . . , C

i
ni

lie all to the left and below the pairs Cj
1 , . . . , C

j
nj

. The same holds for pairs Di
j.

Finally, we add to T a point to the (Di
j, C

i′
j′)-cell for i, i′ ∈ [k] and j ∈ [ni], j′ ∈

[ni′] whenever either i = i′ and j = j′, or i ≠ i′ and {vi
j, v

i′
j′} ∈ EH . Formally,

such a point is defined as (3αi
j + 2k + 1, 3αi′

j′ + 2k + 1). In other words, every
non-empty cell either lies on the diagonal or corresponds to an edge between two
vertices that do not share the same color.

As usual, we rotate T to guarantee general position and take τ as its reduction.
See the right part of Figure 4.2. The length of τ is O(|VH | + |EH |) which is clearly
bounded by O(n2).

Correctness (“only if”). Suppose that (G,H, χ) is a positive instance of PSI.
There is a witnessing mapping ϕ : [k] → N such that ϕ(i) ∈ [ni] for every i ∈ [k]
and {vi

ϕ(i), v
j
ϕ(j)} ∈ EH for every different i, j ∈ [k].

We define a left-aligned embedding ψ of π into τ in a straightforward manner.
First, we take care of the left-aligned property by mapping the anchors in π to
the anchors in τ . We map the pair Ai to Ci

ϕ(i) and Bi to Di
ϕ(i) for each i ∈ [k]. It

is sufficient to argue that every nonempty (Bj, Ai)-cell in π maps to a non-empty
cell in τ . This follows immediately for the cells in π on the diagonal. Otherwise if
i ̸= j, we have {i, j} ∈ EG so there must be an edge {vi

ϕ(i), v
j
ϕ(j)} in H and thus,

the (Dj
ϕ(j), C

i
ϕ(i))-cell is non-empty.

Correctness (“if”). Suppose there exists a left-aligned embedding of π into τ .
As in the proof of Theorem 4.1, we claim that any embedding of π into τ that
maps the anchor aP

1 to the anchor aT
1 must also map aP

2 to the anchor aT
2 .. This

holds since the points of π below aP
1 form an increasing sequence of length exactly

98

2k+ 1 starting with the point aP
2 while any longest increasing sequence in τ below

aT
1 is also of length exactly 2k + 1 and starts with the point aT

2 .
The pairs A1, . . . , Ak form an increasing sequence of length 2k sandwiched

horizontally between the anchors of π. Therefore, they must all be mapped to
the union of all the pairs Ci

j since these are the only points in the horizontal strip
between the anchors in τ . However, the only increasing subsequences of length
2k in this strip are of the form C1

i1 , C
2
i2 , . . . , C

k
ik

and in particular, the pair Ai is
mapped to the pair Ci

j for some j. Let ϕ : [k] → N be the mapping such that Ai

is mapped precisely to Ci
ϕ(i) for every i ∈ [k].

The same argument can be applied to the pairs B1, . . . , Bk and we define a
mapping ϕ′ : [k] → N such that Bi is mapped precisely to Di

ϕ′(i) for every i ∈ [k].
Recall that there is a point in π in the (Bi, Ai)-cell for every i ∈ [k]. The only

non-empty cells in τ between vertices of the same color in H are on the diagonal
and thus, we have that ϕ(i) = ϕ′(i) for every i ∈ [k]. It remains to verify that
{vi

ϕ(i), v
j
ϕ(j)} ∈ EH whenever {i, j} is an edge in G. This is enforced since the

non-empty cells in τ outside of the diagonal correspond to edges of H.

W[1]-completeness. The reduction shows that Left PPM is W[1]-hard with
respect to k. It remains to show that Left PPM belongs to W[1]. We show how
to encode an instance of Left PPM as a model checking problem of an existential
first-order formula over a suitably chosen signature. The W[1]-membership of
Left PPM follows since Flum and Grohe [67] showed that the following problem
is W[1]-complete.

Existential first-order model checking
Input: A structure A and an existential FO formula φ.

Parameter: |φ|
Output: Does A |= φ?

Let (π, τ) be an Left PPM instance. We compute a structure A = (Sτ ,≺x

,≺y, L) where (Sτ ,≺x,≺y) is the usual representation of τ as a model of TOTO
(see Chapter 3) and L is interpreted as a unary relation containing only the
leftmost point in τ . The existential formula φ then tests whether (Sτ ,≺x,≺y)
contains π and additionally, it enforces that the leftmost point in τ is used by the
embedding. We omit further details.

4.2.2 Pattern parameters
Using the hardness of Left PPM, we can rule out fpt-algorithms for PPM
parameterized by almost any imaginable parameter of the pattern other than
its length. In order to make this statement formal, we say that a permutation
parameter w is invariant under monotone inflations if (i) w(π) is at most |π| for
every permutation π, and (ii) whenever π′ is obtained by inflating a single element
of π with a monotone permutation, we have w(π′) ∈ O(w(π)). Observe that every
parameter defined in Chapter 2 is, in fact, invariant under monotone inflations.
Corollary 4.9. Suppose that w is a permutation parameter invariant under
monotone inflations. PPM is W[1]-hard with respect to w(π) and unless ETH
fails, it cannot be solved in time f(w(π)) ·no(w(π)/ log w(π)) for any function f , where
π is the pattern and n is the length of the text.

99

Proof. The proof goes by reduction from Left PPM. Let (π, τ) be an instance
of Left PPM produced by the proof of Proposition 4.7.

We define permutations π′ and τ ′ by inflating the leftmost points with decreas-
ing permutations of length |τ |. Arguing as in the proof of Theorem 4.1, we see that
there is a left-aligned embedding of π into τ if and only if there is an (ordinary)
embedding of π′ into τ ′. Moreover, we have w(π′) ∈ O(w(π)) ⊆ O(k) since w is
invariant under monotone inflations and therefore, an algorithm solving PPM in
time f(w(π′)) · no(w(π′)/ log w(π′)) would refute ETH through Proposition 4.7.

4.2.3 Counting patterns
Next, we show that Proposition 4.7 provides us with an alternative easy proof of
Theorem 4.6.

Alternative proof of Theorem 4.6. We show that an algorithm solving #PPM in
time f(k) · no(k/ log k) could be used to design an algorithm solving the counting
version of Left PPM in time g(k) · no(k/ log k). And since counting the number of
left-aligned embeddings is at least as hard as deciding if there is one, we conclude
that algorithm with such running time would refute ETH via Proposition 4.7.

Suppose (π, τ) is an instance of Left PPM. Let occ(π, τ) denote the number
of occurrences of π in τ and let τ ′ be the permutation obtained from τ by deleting
its leftmost point. Every occurrence of π is either left-aligned or not and therefore,
the number of left-aligned occurrences of π can be computed as

occ(π, τ) − occ(π, τ ′).

In other words, we can compute the number of left-aligned occurrences by
invoking twice the algorithm for #PPM. Therefore, we would obtain an algorithm
solving Left PPM in time 2 · f(k) · no(k/ log k).

4.2.4 Generalized patterns
It is natural to ask how the complexity changes if we start searching for generalized
patterns. With that in mind, we define the problems Vincular PPM, Covin-
cular PPM, Bivincular PPM, Mesh PPM and POP PPM similarly to
PPM, only replacing the classical pattern π with vincular, covincular, bivincular,
mesh and partially ordered patterns, respectively. We keep the convention of
using k to denote the length of the pattern and n to denote the length of the
text. Additionally, we also define the counting version of all these problems, e.g.,
Bivincular #PPM is the problem of counting the number of occurrences of a
given bivincular pattern.

First, observe that avoidance of partially ordered patterns is a hereditary
property, i.e., whenever τ avoids a partially ordered pattern p then any subper-
mutation of τ also avoids p. In other words, the permutations avoiding a fixed
partially ordered pattern form a permutation class. Therefore, we can obtain an
fpt-algorithm for POP PPM using the algorithm for FO model checking.

Proposition 4.10. POP PPM can be solved in time f(k)·n for some computable
function f , where k is the length of the pattern and n is the length of the text.

100

Proof. Let (p, τ) be an instance of POP PPM. We can construct a FO sentence φ
of length O(k) in TOTO that expresses whether a permutation contains the
partially ordered pattern p. Since the permutations avoiding p form a permutation
class, we can test whether τ avoids p in the desired time by Corollary 3.5.

On the other hand, we can straightforwardly use Proposition 4.7 to get a
conditional lower bound for Vincular PPM. Moreover, the lower bound for
Vincular PPM automatically applies for Covincular PPM by symmetry,
and also for both Bivincular PPM and Mesh PPM since any vincular pattern
can be expressed as a bivincular or mesh pattern. We remark that these problems
were already shown to be W[1]-complete with respect to the pattern length by
Bruner and Lackner [49].

Corollary 4.11. Vincular PPM is W[1]-complete with respect to k and unless
ETH fails, it cannot be solved in time f(k) · no(k/ log k) for any function f , where k
is the length of the pattern and n is the length of the text.

Proof. Let (π, τ) be an instance of Left PPM. By taking ((π, {0}), τ) as the in-
stance of Vincular PPM, we are looking precisely for the left-aligned occurrences
of π in τ .

4.2.5 Patterns as CSPs
Berendsohn et al. [23] noticed that PPM can be phrased as the so-called constraint
satisfaction problem (CSP). As a consequence, they showed that permutation
patterns can be counted in polynomial time whenever their tree-width is bounded
using well-known algorithms for CSP.

Theorem 4.12 ([23]). #PPM can be solved in time O(ntw(π)+1) where π is the
pattern and n is the length of the text.

We will extend this approach to bivincular and partially ordered patterns. But
first, we need to formally introduce CSPs. A binary CSP instance is a triplet
(V,D,C) consisting of the set of variables V , the set of admissible values (also
called domain) D and a set of constraints C where each constraint is a tuple
((x, y), R) such that x, y ∈ V is a pair of variables and R ⊆ D2 is an arbitrary
binary relation over the domain D.

A solution of the binary CSP instance (V,D,C) is a function f : V → D such
that for each constraint ((x, y), R) ∈ C, we have (f(x), f(y)) ∈ R. Informally, a
solution is an assignment of values from the domain to the variables that satisfies
every constraint.

Finally, the constraint graph of the binary CSP instance (V,D,C) is the
graph whose vertex set is the set of variables V with edges between any two
variables x, y that share a common constraint. It is well-known that the number
of solutions to a binary CSP instance can be computed efficiently whenever its
constraint graph has small tree-width. We remark that even though the following
algorithm of Freuder [70] was originally stated only in the decision form, it can be
straightforwardly modified to count the number of solutions and it is regularly
referenced as such in the literature.

101

Theorem 4.13 ([70]). A number of solutions of a binary CSP instance (V,D,C)
can be computed in time O(|D|t+1) where t is the tree-width of the constraint graph.

Before we can apply CSPs to solve Bivincular #PPM and POP #PPM,
we first generalize the notion of incidence graphs to their setting. We define the
incidence graph of a bivincular pattern (π,C,R) simply as the incidence graph Gπ

of the underlying classical pattern π.
The situation is a bit more complicated in the case of partially ordered patterns.

We say that an element j covers an element i in a partial order <P if i <P j and
there is no element i′ such that i <P i′ <P j. Note that an element j covers an
element i in <P exactly when we would draw an edge between i and j in the
Hasse diagram of <P . Given a partially ordered pattern p = (<P , k), we define
its incidence graph Gp as the graph on the vertex set [k] with edges (i) between i
and i+ 1 for every i ∈ [k], and (ii) between every i and j such that j covers i in
<P . In other words, the incidence graph is the union of the Hasse diagram of <P

with the Hamiltonian path connecting [k] in the increasing order.

Theorem 4.14. #PPM, Bivincular #PPM and POP #PPM can all be
solved in time O(ntw(G)+1) where n is the length of the text and G is the incidence
graph of the pattern.

Proof. We start by solving #PPM as shown by Berendsohn et al. [23]. The basic
idea is to enforce that each solution of a certain CSP instance corresponds to a
unique embedding. We could, in general, enforce that every pair of points in π
maps to an isomorphic pair of points in τ . However, it is sufficient to guarantee
this for the neighboring pairs.

Given permutations π and τ , we define a binary CSP instance (V,D,C) where

• the variable set V is defined as {xp | p ∈ Sπ},
• the domain is the permutation diagram Sτ , and
• for each α ∈ {R,L, U,D} and points p,Nα(p) ∈ Sπ, we add a constraint

((xp, xNα(p)), R) where R consists of all the pairs (a, b) ∈ S2
π that are in the

same relative position as p and Nα(p).

Solutions of this CSP instance are in one-to-one correspondence with embeddings
of π into τ by Observation 1.1. Therefore, we can employ Theorem 4.13 to count
the occurrences of π in τ . The desired running time follows since the constraint
graph of the obtained CSP instance is exactly the incidence graph of π.

The generalization to bivincular patterns is straightforward. Given a permu-
tation τ and a bivincular pattern (π,C,R), we construct a binary CSP instance
(V,D,C) where V and D are defined exactly as before and the only difference in
the constraints is that whenever p,Nα(p) ∈ Sπ should be mapped to a neighboring
pair in τ , we simply restrict the relation R to contain only neighboring pairs in
the correct relative position. The constraint graph remains the same and thus, we
can again use Theorem 4.13 to count the occurrences of (π,C,R) in τ .

Finally, let us handle partially ordered patterns. Given a permutation τ and
a partially ordered pattern (<P , k), we define a binary CSP instance (V,D,C)
where

• the variable set V is the set [k],
• the domain is the permutation diagram Sτ , and

102

• the set C contains a constraint
– ((i, i+1), R) for each i ∈ [k−1] where R contains all the pairs (p, q) ∈ S2

τ

such that p.x < q.x, and
– ((i, j), R) for each i, j ∈ [k] such that j covers i in <P where R contains

all the pairs (p, q) ∈ S2
τ such that p.y < q.y.

Similar to Observation 1.1, any solution of this CSP instance encodes a particular
embedding of (<P , k) into τ . Moreover, the constraint graph is again the incidence
graph of the pattern and we invoke Theorem 4.13 to count the occurrences of
(<P , k) in τ .

Note that we could easily generalize this further for doubly partially ordered
patterns. The incidence graph of these patterns is defined in the natural way as
the union of Hasse diagrams of the two partial orders. Going even further, we
could require certain pairs in the doubly partially ordered patterns to be formed
by consecutive points.

4.3 Pattern from a given permutation class
In this section, we focus our attention to restricting the pattern to a specific
permutation class. We will be able to recover results similar to the general case
assuming the classes have the long path or the deep tree properties. To that end,
we formally introduce the permutation pattern matching with patterns restricted
to a fixed permutation class.

C-Pattern Permutation Pattern Matching (C-Pattern PPM)
Input: Permutations π ∈ C of length k and τ of length n.

Output: Is π contained in τ?

Similarly, we can define the C-Pattern variant of virtually any other PPM-
flavored problem. So for instance, we consider the C-Pattern #PPM, C-
Pattern Bivincular PPM , etc.

4.3.1 Classical complexity
Jeĺınek and Kynčl [86] showed that Av(321)-Pattern PPM and S-Pattern
PPM, where S is the clockwise spiral, are both NP-complete. Remarkably, their
reduction relies only on the long path property and we show how to modify it for
any class C with the poly-time computable long path property. Note that in [88],
we used the same ideas to show that Grid(M)-Pattern PPM is NP-complete
for any cyclic monotone gridding matrix M.

Theorem 4.15. Let C be a permutation class with the poly-time computable long
path property. Then C-Pattern PPM is NP-complete and unless ETH fails, it
cannot be solved in time 2o(

√
|τ |) where τ is the text.

Proof. We use a similar top level idea as in the proof of Theorem 3.18. We want
to take the reduction of Theorem 4.1 with its matrix-like structure and then map
individual rows of the matrix to cells along a path in a gridded permutation.

103

..
.

..
.

Figure 4.3: An overview of the general structure of permutations π (left) and τ
(right) produced by the proof of Theorem 4.15. Anchors are represented as usual
by crosses, guards by squares.

We reduce from 3-SAT. Let φ be a given 3-CNF formula with n variables
x1, . . . , xn and m clauses K1, . . . , Km. We will assume, as before, that each clause
contains exactly three literals, and no variable appears in a single clause more
than once. Our goal is to construct permutations π ∈ C and τ such that τ contains
π if and only if φ is satisfiable.

Before describing the actual construction of π and τ , we obtain in a polynomial
time a monotone gridding matrix M such that

(i) Grid(M) is a subclass of C,
(ii) the cell graph of M is a proper-turning path on 2m+ 2 vertices, and
(iii) the first two cells on this path share a common row.

We denote the vertices in the order along the path as v1, . . . , v2m+2. Let F be a
consistent orientation of M guaranteed by Lemma 1.2. We shall construct both π
and τ via the modified F-assembly that was introduced before Theorem 3.18.
Refer to Figure 4.3.

Constructing the pattern π. The pattern π will be constructed from a family
of (2n + 4)-tiles P. The tile Pv1 contains only a single atomic pair of points,
forming the anchor, defined as

(1, 1), (2n+ 4, 2n+ 4).

Every other tile Pvj
contains two special atomic pairs, called guards, defined as

GP
1 = {(1, 1), (2, 2)},

GP
2 = {(2n+ 3, 2n+ 3), (2n+ 4, 2n+ 4)}.

Furthermore, it contains n additional atomic pairs, one per each variable. For
each i ∈ [n], there is an atomic pair Xi defined as

Xi = {(2i+ 1, 2i+ 1), (2i+ 2, 2i+ 2)}.

Let π be the modified F -assembly of P . Notice that apart from the anchors,
π consists of n+ 2 disjoint tracks starting in the cell v2 and ending in v2m+2. Two

104

of them are formed by the guards and we call them the GP
1 -track and GP

2 -track
respectively. Every other track is formed by the atomic pairs Xi for some i ∈ [n]
and we call such a track the Xi-track.

Constructing the text τ . We construct the text τ from a family of (12n+ 4)-
tiles T . The first tile Tv1 again contains only a single atomic pair of anchors
defined as

(1, 1), (12n+ 4, 12n+ 4).
Every other tile on the path contains two guards defined as

GT
1 = {(1, 1), (2, 2)},

GT
2 = {(12n+ 3, 12n+ 3), (12n+ 4, 12n+ 4)}.

The tile Tv2 is meant to simulate the assignment of variables in φ. We add for
each i ∈ [n], two atomic pairs Y T

i and Y F
i defined as

Y T
i = {(12i− 9, 12i− 3), (12i− 4, 12i+ 2)},
Y F

i = {(12i− 3, 12i− 9), (12i+ 2, 12i− 4)}.

Observe that the pairs Y T
i and Y F

i for a fixed i form together the pattern 3412
and the whole tile Tv2 is a direct sum of n copies of 3412, one for each i ∈ [n]. We
view these atomic pairs as the beginnings of 2n disjoint tracks.

For odd j > 2, the tile Tvj
is obtained by taking a specific subset of 6n atomic

pairs, a pair Zα
ℓ,a for each ℓ ∈ [n], a ∈ [3], and a choice of α ∈ {T, F}. The pairs

ZT
i,1, Z

T
i,2 and ZT

i,3 are defined as

ZT
i,1 = {(12i− 5, 4i− 1), (12i− 4, 4i)},

ZT
i,2 = {(12i− 7, 4n+ 4i− 1), (12i− 6, 4n+ 4i)},

ZT
i,3 = {(12i− 9, 8n+ 4i− 1), (12i− 8, 8n+ 4i)}.

Whereas the pairs ZF
i,1, Z

F
i,2 and ZF

i,3 are defined as

ZF
i,1 = {(12i+ 1, 4i+ 1), (12i+ 2, 4i+ 2)},

ZF
i,2 = {(12i− 1, 4n+ 4i+ 1), (12i, 4n+ 4i+ 2)},

ZF
i,3 = {(12i− 3, 8n+ 4i+ 1), (12i− 2, 8n+ 4i+ 2)}.

The pairs ZT
i,1, Z

T
i,2 and ZT

i,3 form together the co-layered pattern 563412 and the
same holds for the pairs ZF

i,1, Z
F
i,2 and ZF

i,3. Moreover, we can split the pairs into
three horizontal layers – each containing an increasing sequence formed by the
pairs Zα

ℓ,a for a fixed a ∈ [3] and arbitrary α ∈ {T, F} and ℓ ∈ [n]. See the left
part of Figure 4.4.

For even j > 2, the tile Tvj
is also obtained by taking a specific subset of

different 6n atomic pairs, a pair ˜︁Zα
ℓ,a for each ℓ ∈ [n], a ∈ [3], and a choice of

α ∈ {T, F}. The pairs ˜︁ZT
i,1,

˜︁ZT
i,2 and ˜︁ZT

i,3 are defined as

˜︁ZT
i,1 = {(12i− 9, 4i− 1), (12i− 4, 4i)},˜︁ZT
i,2 = {(12i− 9, 4n+ 4i− 1), (12i− 4, 4n+ 4i)},˜︁ZT
i,3 = {(12i− 9, 8n+ 4i− 1), (12i− 4, 8n+ 4i)}.

105

ZT
i,1

ZT
i,2

ZT
i,3

ZF
i,3

ZF
i,2

ZF
i,1

˜︁ZT
i,3

˜︁ZT
i,2

˜︁ZT
i,1

˜︁ZF
i,3

˜︁ZF
i,2

˜︁ZF
i,1

˜︁ZF
i,2

. . .

. . .

. . .

. . .

. . .

.

. . .

. . .

. . .

. . .

. . .

Figure 4.4: The relative position of atomic pairs Zα
i,a,

˜︁Zα
i,a for a fixed i and all

α ∈ {T, F}, a ∈ [3] inside two consecutive tiles in the proof of Theorem 4.15.

Whereas the pairs ˜︁ZF
i,1,

˜︁ZF
i,2 and ˜︁ZF

i,3 are defined as

˜︁ZF
i,1 = {(12i− 3, 4i+ 1), (12i+ 2, 4i+ 2)},˜︁ZF
i,2 = {(12i− 3, 4n+ 4i+ 1), (12i+ 2, 4n+ 4i+ 2)},˜︁ZF
i,3 = {(12i− 3, 8n+ 4i+ 1), (12i+ 2, 8n+ 4i+ 2)}.

For a fixed i ∈ [n], the pairs ˜︁ZT
i,1,

˜︁ZT
i,2 and ˜︁ZT

i,3 all share the same x-coordinates,
and the same holds for the pairs ˜︁ZF

i,1,
˜︁ZF

i,2 and ˜︁ZF
i,3. And as before, we can split

the pairs into three horizontal layers – each containing an increasing sequence
formed by the pairs ˜︁Zα

ℓ,a for a fixed a ∈ [3] and arbitrary α ∈ {T, F} and ℓ ∈ [n].
See the right part of Figure 4.4.

Assume for now that every tile Tvj
for j > 2 contains all of the defined atomic

pairs. For every i ∈ [n] and α ∈ {T, F}, the pair Y α
i in the tile Tv2 sandwiches

precisely the pairs Zα
i,1, Z

α
i,2 and Zα

i,3 in Tv3 . For every ℓ ∈ [3], the pair Zα
i,ℓ from

Tv3 then sandwiches only the pair ˜︁Zα
i,ℓ in Tv4 . Going further, the pair ˜︁Zα

i,ℓ in Tv4

sandwiches all the pairs Zα
i,1, Z

α
i,2 and Zα

i,3 in Tv5 and so on. On more conceptual
level, the text (apart from the guards) is formed by 2n tracks that fork in the
tile Tv2t+1 to several different atomic pairs, each of which sandwiches precisely one
atomic pair in the tile Tv2t+2 and they again merge to a single track going into the
tile Tv2t+3 . However in reality, every tile Tvj

will contain possibly different subset
of these pairs encoding some clause of φ as we now proceed to define.

Fix t ∈ [m] and suppose the clause Kt is of the form Li ∨ Lj ∨ Lk, with
Li ∈ {xi,¬xi}, Lj ∈ {xj,¬xj} and Lk ∈ {xk,¬xk}, for some i < j < k. The tile
Tv2t+1 consists of

• the pairs ZT
ℓ,1, Z

F
ℓ,1 for ℓ < i,

• the pairs ZT
ℓ,1, Z

F
ℓ,1, Z

T
ℓ,2, Z

F
ℓ,2 for i < ℓ < j,

• the pairs ZT
ℓ,2, Z

F
ℓ,2, Z

T
ℓ,3, Z

F
ℓ,3 for j < ℓ < k,

• the pairs ZT
ℓ,3, Z

F
ℓ,3 for ℓ > k, and

106

ZT
i,1

ZF
i,2

ZT
j,3

ZT
j,1

ZF
j,2

ZF
k,2

ZT
k,3

˜︁ZT
i,1

˜︁ZT
j,1

˜︁ZF
i,2

˜︁ZF
j,2

˜︁ZF
k,2

˜︁ZT
j,3

˜︁ZT
k,3

Figure 4.5: Enforcing satisfiability in the proof of Theorem 4.15. The per-
mutation τ zoomed in to cells v2t+1 (left) and v2t+2 (right) for the clause
Kt = (xi ∨ ¬xj ∨ xk). Atomic pairs are represented by circles. Observe that
there is no choice of a, b, c ∈ [3] such that pairs ZF

i,a, Z
T
j,b, Z

F
k,c form an increasing

sequence in the cell v2t+1.

• the pairs Z+
i,1, Z

−
j,1, Z

−
i,2, Z

+
j,2, Z

−
k,2, Z

−
j,3, Z

+
k,3 where Z+

ℓ,a = ZT
ℓ,a if Lℓ is the

positive literal xℓ, otherwise Z+
ℓ,a = ZF

ℓ,a, and Z−
ℓ,a = {ZT

ℓ,a, Z
F
ℓ,a} \ Z+

ℓ,a.

Notice that the included pairs associated to the variables xi, xj and xk are listed
in increasing order of their y-coordinates and they are ordered exactly as in
Observation 4.2. In particular, there is no increasing sequence formed by pairs
Z−

i,a, Z
−
j,b, Z

−
k,c for any choice of a, b, c ∈ [3]. Finally, we set the tile Tv2t+2 to contain

an atomic pair ˜︁Zα
ℓ,a if and only if Tv2t+1 contains the pair Zα

ℓ,a. See Figure 4.5.
Let τ be the modified F-assembly of T . Observe that the length of τ is

bounded by O(nm). We say that an embedding of π into τ is anchored, if it maps
the anchors in π to the anchors in τ .

Claim 4.16. The formula φ is satisfiable if and only if there is an anchored
embedding of π into τ .

Correctness (“only if”). Suppose that φ is satisfiable. Fix any satisfying
assignment represented by a function ρ : [n] → {T, F}, where ρ(i) = T if and only
if xi is set to true. We describe how to construct an anchored embedding of π
into τ .

We map the anchors in π to the anchors in τ and moreover, we map the guards
in the tile Pvj

for j ≥ 2 to the guards in the tile Tvj
. For each i ∈ [n], we map the

atomic pair Xi to the pair Y ρ(i)
i in the tile Tv2 .

Fix t ∈ [m] and let us describe the mapping inside the tiles Tv2t+1 and Tv2t+2 .
We assume again that the clause Kt is of the form Li ∨Lj ∨Lk for some i < j < k.

107

We map every atomic pair in Pv2t+1 except for Xi, Xj and Xk to the following
atomic pairs in Tv2t+1 :

• for ℓ < i, we map the pair Xℓ to the pair Zρ(ℓ)
ℓ,1 ,

• for i < ℓ < j, we map the pair Xℓ to the pair Zρ(ℓ)
ℓ,1 if the literal Li is satisfied,

otherwise we map it to Zρ(ℓ)
ℓ,2 ,

• for j < ℓ < k, we map the pair Xℓ to the pair Zρ(ℓ)
ℓ,3 if the literal Lk is

satisfied, otherwise we map it to Zρ(ℓ)
ℓ,2 , and

• for ℓ > k, we map the pair Xℓ to the pair Zρ(ℓ)
ℓ,3 .

For ℓ ∈ {i, k}, we map Xℓ to the only pair of the form Z
ρ(ℓ)
ℓ,a that is contained in

Tv2t+1 . We carefully defined the mapping of pairs Xℓ for ℓ ∈ {i, i+ 1, . . . , k} \ {j}
in order to guarantee that their images form an increasing sequence. If at least
one of the literals Li, Lk is satisfied then we can find a pair of the form Z

ρ(j)
j,p

that fits into this increasing sequence regardless of the value ρ(j). Otherwise, the
literal Lj must be satisfied and we can map Xj to the pair Z+

j,2.
Finally, we define the mapping in the tile Tv2t+2 in the exact same way. More

precisely, if the pair Xℓ in Pv2t+1 is mapped to the pair Zρ(ℓ)
ℓ,a in Tv2t+1 , we map

the pair Xℓ in Pv2t+2 to the pair ˜︁Zρ(ℓ)
ℓ,a in Tv2t+2 . It is easy to check that we have

indeed produced a valid anchored embedding of π into τ .

Correctness (“if”). Suppose there is an anchored embedding ψ of π into τ .
We immediately see that the tile Pv2 must be mapped to the tile Tv2 . Observe that
Pv2 is an increasing sequence of length 2n+ 4 and every increasing subsequence of
Tv2 consists of the pairs GT

1 , G
T
2 and Y α

i for every i ∈ [n] and some α ∈ {T, F}.
Therefore, the guards GP

1 , G
P
2 are mapped to the guards GT

1 , G
T
2 and every pair

Xi is mapped to a pair Y α
i for some α. We define an assignment ρ : [n] → {T, F}

by setting ρ(i) such that ψ maps the pair Xi to the pair Y ρ(i)
i .

Since the guards in the tile Pv2 are mapped to the guards in Tv2 , the tracks
enforce that the guards in any tile Pvj

for j > 2 are mapped to the guards in the
tile Tvj

. As a consequence, the whole tile Pvj
must be mapped to the tile Tvj

. The
structure of τ also enforces that for every t ∈ [m], the pair Xi in the tile Pv2t+1

maps to the pair Zρ(i)
i,p in Tv2t+1 and the pair Xi in the tile Pv2t+2 maps to the pair˜︁Zρ(i)

i,p in Tv2t+2 for some p ∈ [3].
For t ∈ [m], let us show that ρ satisfies the clause Kt. The pairs Xi, Xj and

Xk in the tile Pv2t+1 are mapped to pairs Zρ(i)
i,a , Z

ρ(j)
j,b and Zρ(k)

k,c for some a, b, c ∈ [3]
in Tv2t+1 . We included the pairs associated to variables xi, xj and xk in Tv2t+1 such
that there is no increasing subsequence formed by pairs Z−

i,a, Z
−
j,b and Z−

k,c for any
choice of a, b, c. In other words, there must be at least one ℓ ∈ {i, j, k} such that
Xℓ is mapped to a pair Z+

ℓ,a for some a ∈ [3] and thus, the literal Lℓ (and by
extension the whole clause Kt) is satisfied by ρ.

Inflating the anchors. Finally, we transfer from anchored embeddings to
regular embeddings using inflations. Observe that we can inflate the anchors in π
with either increasing or decreasing sequences (depending on F) while keeping
the pattern in the class C. Therefore, let π′ be the permutation obtained from π

108

by inflating both anchors with monotone sequences of length |τ | and let τ ′ be the
permutation obtained from τ by inflating its both anchors with the decreasing
sequence of length |τ |. Note that we still have |τ ′| ∈ O(nm).
Claim 4.17. There is an anchored embedding of π into τ if and only if there is
an embedding of π′ into τ ′.

It is clear that any anchored mapping of π into τ can easily be remade into a
mapping of π′ into τ ′. For the other direction, assume there is a mapping ψ of
π′ into τ ′. Observe that the inflated anchors in π′ contain 2 · |τ | points while τ ′

contains only |τ | − 2 points outside of its inflated anchors. Hence, there must be
at least |τ | + 2 points of the anchors in π′ that map to the anchors in τ ′ by simple
counting argument. In particular each inflated anchor in π′ contains a point that
maps to the respective inflated anchor in τ ′. It follows from the structure of π
and τ that the image of the tile Pv2 maps to the image of the tile Tv2 and the
guards then enforce that the image of every Pvi

in fact maps to the image of Tvi
.

Therefore, if we restrict ψ to the points outside the anchors, we get the description
of an anchored mapping of π into τ minus the anchors.

It follows that C-Pattern PPM is NP-complete and it remains to show the
conditional lower bound. Assume that there is an algorithm solving C-Pattern
PPM in time 2o(

√
|τ |). By plugging in the instance produced by our reduction,

we obtain an algorithm solving 3-SAT in time 2o(
√

nm) where n is the number
of variables and m is the number of clauses. Such an algorithm would, however,
refute ETH in its clause form (Hypothesis 2) since n ≤ 3m.

Assuming the deep tree property, the reduction of Theorem 4.15 can be made
more efficient implying significantly better conditional lower bound under ETH.

Theorem 4.18. Let C be a permutation class with the poly-time computable deep
tree property. Then C-Pattern PPM is NP-complete and unless ETH fails, it
cannot be solved in time 2o(|τ |/ log |τ |) where τ is the text.

Proof. The reduction of Theorem 4.15 used the same idea as the reduction of
Theorem 4.1 by mapping the rows of the matrix-like structure along the path of
cells. We show that the deep tree property allows us to deal with each row (each
clause of the formula) in one leaf of the ‘deep tree’ which leads to a more efficient
reduction.

We again reduce from 3-SAT and let φ be a 3-CNF formula with n variables
x1, . . . , xn and m clauses K1, . . . , Km. We again assume that each clause contains
exactly three literals and no variable appears more than once in a single clause.
We start by obtaining in polynomial time a monotone gridding matrix M with
the following properties:

(i) Grid(M) is a subclass of C,
(ii) the cell graph of M is a rooted c-subdivided tree with m leaves,
(iii) the root r of the tree has a single child r′, and
(iv) every leaf shares a common column with its parent.

The first two properties are directly guaranteed by the poly-time computable deep
tree property, the second two are easily achieved by starting with a slightly larger

109

tree and subsequently cutting off some of its branches. Let F be a consistent
orientation of M guaranteed by Lemma 1.2.

We now want to associate each leaf with a single clause. In order to do that,
we shall take plenty of inspiration from the proof of Lemma 2.38. We orient the
edges of GM consistently away from the root r and we arbitrarily order the leaves
as v1, . . . , vm. We say that the descendants of a vertex v, denoted by D(v), are
the out-neighbors of v.

We inductively assign a set Aw ⊆ [n] to each vertex w of the tree:

Aw =
⎧⎨⎩{i, j, k} if w = vt for t ∈ [m] and Kt = Li ∨ Lj ∨ Lk,⋃︁

v∈D(w) Av otherwise.

Observe that ∑︁v |Av| ∈ O(m logm) since φ contains exactly 3m literals and
each contributes at most O(logm) due to the path connecting it to the root r.

We use as a starting point the reduction of Theorem 4.15 with its two families
of tiles P , T and we define two families of tiles P ′, T ′ using the same atomic pairs
but distributing them more sparsely.

The root r plays the role of the anchors by setting P ′
r = Pv1 and T ′

r = Tv1 . Its
child r′ simulates the assignment, i.e. we set P ′

r′ = Pv2 and T ′
r′ = Tv2 . Let v be

any other vertex of the tree. We let the tile P ′
v contain the guards GP

1 , GP
2 and

then all the atomic pairs Xi for i ∈ Av. This completes the definition of the tile
family P ′ and we take the pattern π as its modified F -assembly.

The tiles T ′
v for any non-leaf vertex v will be formed by guards and a subset

of atomic pairs ˜︁Y α
i for i ∈ [n] and α ∈ {T, F} defined as

˜︁Y T
i = {(12i− 9, 12i− 9), (12i− 4, 12i− 4)},˜︁Y F
i = {(12i− 3, 12i− 3), (12i+ 2, 12i+ 2)}.

Observe that all these pairs together form an increasing sequence in the order ˜︁Y T
1 ,˜︁Y F

1 ,
˜︁Y T

2 ,
˜︁Y F

2 , . . . ,
˜︁Y T

n ,
˜︁Y F

n . We set the tile T ′
v to contain only the guards GT

1 and
GT

2 and the pairs ˜︁Y T
i and ˜︁Y F

i for every i ∈ Av.
Finally, we need to define the tile T ′

vt
for each leaf vt. We again assume that

the clause Kt is of the form Li ∨Lj ∨Lk for some i < j < k. The tile T ′
vt

contains
the guards GT

1 and GT
2 and the pairs Z+

i,1, Z
−
j,1, Z

−
i,2, Z

+
j,2, Z

−
k,2, Z

−
j,3, Z

+
k,3. Recall that

we defined Z+
ℓ,a = ZT

ℓ,a if Lℓ is the positive literal xℓ, otherwise Z+
ℓ,a = ZF

ℓ,a, and
Z−

ℓ,a = {ZT
ℓ,a, Z

F
ℓ,a} \ Z+

ℓ,a.
We take τ as the modified F-assembly of T ′. Observe that we have |T ′

v| ∈
O(|Av|) for each vertex v of the tree. Subsequently, the length of τ is bounded by
O(m logm).
Claim 4.19. The formula φ is satisfiable if and only if there is an anchored
embedding of π into τ .

Correctness (“only if”). Let ρ : [n] → {T, F} represent a satisfying assign-
ment for φ. We define an anchored mapping of π into τ . We map the anchors in π
to the anchors in τ and the guards in every tile P ′

v to the guards in the tile T ′
v. For

each i ∈ [n], the pair Xi in the tile P ′
r′ is mapped to the pair Y ρ(i)

i , simulating the
assignment ρ. Moreover for every non-leaf vertex v, the pair Xi in P ′

v is mapped
to the pair ˜︁Y ρ(i)

i in the tile T ′
v.

110

Finally for every leaf vt, we define the mapping as for the vertex v2t+1 in the
proof of Theorem 4.15. The only difference is that P ′

vt
and T ′

vt
contain only the

atomic pairs associated to the three variables present in the clause Kt. To be
more precise, it follows using the same arguments that we can find an increasing
sequence Z

ρ(i)
i,a , Z

ρ(j)
j,b , Z

ρ(k)
k,c inside T ′

vt
for some a, b, c ∈ [3]. We map the pairs

Xi, Xj, Xk in P ′
v precisely to this sequence. The correctness of the anchored

embedding follows almost exactly as before.

Correctness (“if”). Suppose there is an anchored embedding ψ of π into τ . It
is basically a mechanical replay of the arguments in the proof of Theorem 4.15 to
show that φ is satisfiable.

We again define ρ : [n] → {T, F} such that Xi of the tile P ′
r′ maps to Y ρ(i)

i

in the tile T ′
r′ . The only purpose of the other non-leaf vertices in the tree is

to transport information about the assignment ρ all the way to the leaves. In
particular for a non-leaf vertex v, the pair Xi in P ′

v must be mapped to the pair˜︁Y ρ(i)
i . For every t ∈ [m], the leaf vt then enforces that the clause Kt is satisfiable

exactly in the same way as the vertex v2t+1 in the proof of Theorem 4.15.

Finally, we construct permutations π′ and τ ′ by inflating the anchors in π and
τ with a monotone sequences of length |τ |. By now, we feel comfortable with
omitting the details of this argument. Note that we still have |τ ′| ∈ O(m logm)
and therefore, we rule out algorithm solving C-Pattern PPM in time 2o(n/ log n)

under ETH where n is the length of τ . Otherwise, we could solve 3-SAT in time
2o(m) and thus, refute ETH (Hypothesis 2).

4.3.2 Parameterized complexity
As our next step, we focus on the hardness of C-Pattern PPM through the lens
of parameterized complexity. It turns out that we can replicate most results from
Section 4.2 as long as we assume that C has either the computable long path or
the computable deep tree property.

2-left-aligned patterns

Instead of using a pattern-restricted version of Left PPM, we need to strengthen
our requirements and consider embeddings that map the two leftmost points in
the pattern to the two leftmost points in the text.

2-left-aligned Pattern Matching (2-Left PPM)
Input: Permutations π of length k and τ of length n.

Output: Is there an embedding of π into τ that maps the two leftmost points
of π to the two leftmost points of τ?

Any embedding of π into τ with the desired property is a 2-left-aligned
embedding (of π into τ). Note that 2-Left PPM is W[1]-complete and the same
lower bounds as for Left PPM apply by a straightforward reduction. In an
instance (π, τ) of Left PPM, it is sufficient to inflate the leftmost points in
both π and τ with the pattern 12. The W[1]-completeness of 2-Left PPM
then follows since we can encode it as a model checking problem of an existential

111

first-order formula similarly to Left PPM. The problem C-Pattern 2-Left
PPM is defined naturally by restricting the pattern π to the class C.

Our main technical contribution is the following pattern-restricted counterpart
to Proposition 4.7 from which we deduce all subsequent hardness results.

Proposition 4.20. Unless ETH fails, C-Pattern 2-Left PPM cannot be solved
for any function f

• in time f(k) · no(√
k) if C has the computable long path property, and

• in time f(k) · no(k/ log2 k) if C has the computable deep tree property,

where k is the length of the pattern and n is the length of the text. Moreover,
C-Pattern 2-Left PPM is W[1]-complete with respect to k in both these cases.

We shall prove each claim via a different reduction stated as a standalone
lemma. In the big picture, we use once again the same idea of modifying the
reduction of Proposition 4.7 with its matrix-like structure. For a class C with
the computable long path property, we simulate each row of the matrix inside
constantly many consecutive cells along a path. Whereas for a class C with the
computable deep tree property, we simulate each row in a cell occupying a unique
leaf of the subdivided binary tree.

Before diving into either of the two reductions, we set up some tools used
by both of them. In particular, we define several types of tiles constructed from
atomic pairs.

Fix an instance (G,H, χ) of PSI and set n = |VH |, k = |VG|. We mostly stick
to the same notation as in the proof of Proposition 4.7. Namely, we identify the
vertices of VG with the set [k] and we let Va ⊆ VH be the set of all vertices colored
by a ∈ [k]. Moreover, we set na = |Va| and we choose an arbitrary order of vertices
in Va denoting them va

i for i ∈ [na]. The (reverse) rank of a vertex va
i is defined

exactly as in (4.1).
Set m = 3n. Let Ea be the set of all pairs (va

i , v
b
j) such that either the edge

{a, b} ̸∈ EG or {va
i , v

b
j} ∈ EH . We shall build our reductions from only a handful

different types of tiles that we now proceed to describe.
Except for the anchor tile, all atomic pairs inside the tiles are associated either

to a vertex of the graph G or to a vertex of H. In particular, every atomic pair in
a pattern tile is associated to a vertex a in G and atomic pairs of all the other
tiles are associated to vertices of H. We will guarantee, that upon a modified
F-assembly of the constructed tile families, any embedding of the pattern into
the text must map an atomic pair associated to a vertex a ∈ V (G) to an atomic
pair associated to a vertex va

i ∈ V (H) for some i ∈ [na].

Anchor tile. An anchor tile, denoted by Anchor, contains a single atomic
pair

T = {(0, 0), ((n+ 1) ·m, (n+ 1) ·m)} .

Pattern tile. For every W ⊆ [k], a pattern tile of W , denoted by Pattern(W),
contains for each a ∈ W an atomic pair

Xa = {(2a+ 1, 2a+ 1), (2a+ 2, 2a+ 2)}

112

· · ·

· · ·

· · ·

· · ·

Y a
1,1 Y a

1,2

Y a
1,ni

Y a
k,1

Y a
k,nk

· · ·

Y b
a,na

Y b
a,na−1

Y b
a,1

Zb
a,na−1,b,j

αb
j ·m

(αb
j + 1) ·m

Zb
a,na,b,j

Zb
a,1,b,j

··
·

Zb
a,na−1,b,j′

··
·

Figure 4.6: An assignment tile Assign on the left and a branch tile Branch(a,W)
on the right. Note that the branch tile is zoomed to the vertical strip between
αa

i ·m and (αa
na

+ 1) ·m as the rest of the matrix is empty.

The pair Xa is associated to the vertex a in G. Observe that any pattern tile is
simply an increasing sequence of length 2|W |.

The pattern defined by our reductions will consist of a single anchor tile
followed by a sequence of pattern tiles. Observe that upon a modified F -assembly,
the atomic pair Xa in any tile sandwiches the atomic pair Xa in the following tile.

Assignment tile. An assignment tile, denoted by Assign, contains for each
a ∈ [k] and i ∈ [na] an atomic pair Y a

a,i consisting of points

Y a
a,i = {(αa

i ·m+ 3, βa
i ·m+ 3) , ((αa

i + 1) ·m+ 2, (βa
i + 1) ·m+ 2)} .

Observe that each pair Y a
a,i forms an occurrence of 12 and the atomic pairs

corresponding to the vertices of Va form a skew sum of na copies of 12. On the
other hand for any a < b, the atomic pairs of Va lie all in a block to the left and
below of all the atomic pairs of Vb. See the left part of Figure 4.6. Observe that
the assignment tile contains exactly 2 · |VH | points.

We associate the atomic pair Y a
a,i to the vertex va

i in H. Observe that in any
mapping of the tile Pattern([k]) into the tile Assign, each atomic pair Xa in the
pattern tile must be mapped to an atomic pair Y a

a,i for some i ∈ [na].

Identity tile. For a subset W ⊆ VG = [k], an identity tile of W , denoted by
Id(W), contains for every a ∈ W and j ∈ [na] an atomic pair

Y id
a,i = {(αa

i ·m+ 3, αa
i ·m+ 3) , ((αa

i + 1) ·m+ 2, (αa
i + 1) ·m+ 2)} .

Once again, we associate the pair Y id
a,i to the vertex va

i in H. Observe that Id(W)
forms an increasing sequence of length 2 ·∑︁a∈W |Va|.

If we place the tile Id([k]) in the same column as the tile Assign with an edge
between them oriented towards the assign tile, then upon a modified F -assembly,
the atomic pair Y a

a,i sandwiches the atomic pair Y id
a,i for every a ∈ [k] and i ∈ [na].

Branch tile. Let a ∈ [k] and W ⊆ [k] such that a < b for every b ∈ W . A
branch tile of a and W , denoted by Branch(a, W), contains for every i ∈ [na] an

113

···

· · ·

Y t
a,na

Y t
a,na−1

Y t
a,1

Zt
a,na,b,j

Zt
a,na−1,b,j

Zt
a,1,b,j

Y m
a,na

· ·
·

Y m
a,2

Y m
a,1

· · ·· · ·

Zm
a,na,b,j

Zm
a,2,b,j

Zm
a,1,b,j

{
{

{

Figure 4.7: A test tile Test(a,W) on the left and a merge tile Merge(a,W) on the
right. Note that the test tile is zoomed to the box between αa

i ·m and (αa
na

+ 1) ·m
in both axes as the rest of the matrix is empty. In the merge tile we focus just
on the vertical strip between between αa

i ·m and (αa
na

+ 1) ·m and on the strip
between αb

j ·m− n and (αb
j + 1) ·m+ n.

atomic pair

Y b
a,i = {(βa

i ·m+ 3, αa
i ·m+ 3) , (βa

i ·m+ 4, αa
i ·m+ 4)} .

Moreover it contains for every b ∈ W and (va
i , v

b
j) ∈ Ea an atomic pair

Zb
a,i,b,j =

⎧⎪⎨⎪⎩
(︂
βa

i ·m+ 2αb
j + 5, αb

j ·m+ 2αa
i + 3

)︂
,(︂

βa
i ·m+ 2αb

j + 6, αb
j ·m+ 2αa

i + 4
)︂
⎫⎪⎬⎪⎭ .

We associate the pair Y b
a,i to the vertex va

i in H whereas all the pairs Zb
a,i,b,j

are associated to the vertex vb
j . Observe that Zb

a,i,b,j lies in the horizontal strip
between y = αb

j · m + 3 and y = (αb
j + 1) · m + 2. If we look at all the atomic

pairs in this strip, they are all of the form Zb
a,i′,b,j where (va

i′ , vb
j) ∈ Ea and they

form a skew sum of several copies of 12. Vertically, Zb
a,i,b,j lies in the strip between

x = βa
i ·m+ 5 and x = (βa

i + 1) ·m+ 2. And if we look at all the atomic pairs
in this strip, they are all of the form Zb

a,i,b′,j′ where (va
i , v

b′
j′) ∈ Ea for some b′ > a.

Moreover, all the atomic pairs in this strip form an increasing sequence. See the
right part of Figure 4.6.

In our construction of the text permutation, a branch tile will always follow
an identity tile and moreover, they will share the same row. Observe that then
upon a modified F -assembly, the atomic pair Y id

a,i sandwiches the atomic pair Y b
a,i

and the atomic pair Y id
b,j sandwiches every existing pair of the form Zb

a,i,b,j.

Test tile. A test tile of a ∈ [k] and W ⊆ [k] such that a < b for every b ∈ W ,
denoted by Test(a, W), contains for every i ∈ [na] an atomic pair

Y t
a,i = {(βa

i ·m+ 3, αa
i ·m+ 3) , (βa

i ·m+ 4, αa
i ·m+ 4)} .

Furthermore for every b ∈ W and (va
i , v

b
j) ∈ Ea, it contains an atomic pair

Zt
a,i,b,j =

⎧⎪⎨⎪⎩
(︂
βa

i ·m+ 2αb
j + 5, αa

i ·m+ 2αb
j + 5

)︂
,(︂

βa
i ·m+ 2αb

j + 6, αa
i ·m+ 2αb

j + 6
)︂
⎫⎪⎬⎪⎭ .

114

Similar to the branch tile, we associate the pair Y t
a,i to the vertex va

i in H
whereas all the pairs Zt

a,i,b,j are associated to the vertex vb
j . The test tile can be

obtained as a skew sum of increasing blocks. For every i ∈ [na], there is a block
Bi that contains the pair Y t

a,i in its bottom left corner followed by pairs Zt
a,i,b,j

ordered lexicographically by (b, j). See the left part of Figure 4.7.
In our construction, a test tile will always follow an identity tile and moreover,

they will share the same column. Observe that then upon a modified F -assembly,
the atomic pair Y b

a,i sandwiches the atomic pair Y t
a,i and every existing atomic pair

Zb
a,i,b,j in the branch tile sandwiches the pair Zt

a,i,b,j in the test tile.

Merge tile. Finally, we define a merge tile of a and W ⊆ [k] such that a < b
for every b ∈ W , denoted by Merge(a, W). For every i ∈ [na], it contains an
atomic pair

Y m
a,i = {(αa

i ·m+ 3, αa
i ·m+ 3) , ((αa

i + 1) ·m+ 2, αa
i ·m+ 4)} .

And for every b ∈ W and (va
i , v

b
j) ∈ Ea, it contains an atomic pair

Zm
a,i,b,j =

⎧⎪⎨⎪⎩
(︂
αb

j ·m− αa
i + 3, αa

i ·m+ 2αb
j + 5

)︂
,(︂

(αb
j + 1) ·m+ αa

i + 2, αa
i ·m+ 2αb

j + 6
)︂
⎫⎪⎬⎪⎭ .

As before, we associate the pair Y m
a,i to the vertex va

i in H and all the pairs
Zm

a,i,b,j to the vertex vb
j . The merge tile is split into n vertical strips, the first

na of them contains the atomic pairs Y m
a,i and every following strip contains the

pairs Zm
a,i,b,j for fixed b, j and all possible pairs of a and i. See the right part of

Figure 4.7.
In our construction, a merge tile will always follow an identity tile and moreover,

they will share the same row. Observe that then upon a modified F -assembly, the
atomic pair Y t

a,i sandwiches the atomic pair Y m
a,i and every existing atomic pair

Zt
a,i,b,j in the test tile sandwiches the pair Zm

a,i,b,j in the merge tile.
Moreover in our construction, a merge tile will always be followed only by an

identity tile and they shall occupy the same column. Observe that then upon a
modified F-assembly, the atomic pair Y m

a,i sandwiches the atomic pair Y id
a,i (if it

exists in the identity tile) and every existing atomic pair Zm
a,i,b,j in the merge tile

sandwiches the pair Y id
b,j in the merge tile.

Every tile other than Anchor contains additionally two other atomic pairs called
guards defined as

G1 = {(1, 1), (2, 2)} , and G2 = {(nm+ 3, nm+ 3), (nm+ 4, nm+ 4)} .

Observe that in any type of tile, G1 lies to the left and below everything else while
G2 lies to the right and above everything else.

We are now almost ready to describe the reductions. There is only one additional
detail to take care of. In order to obtain tighter lower bounds for the classes with
the long path property, we actually do not reduce from PSI but rather from its
specific variant where we fix G to be a complete graph.

115

Partitioned Clique
Input: A positive integer k and a graph H = (VH , EH) together with a

coloring χ : VH → [k] of its vertices.
Output: Is there a mapping ϕ : [k] → VH such that ϕ([k]) induces a clique in

H and moreover, χ(ϕ(i)) = i for every i ∈ [k]?

By now it is a folklore result that Partitioned Clique is W[1]-complete
and ETH implies an asymptotically tight lower bound on the running time of any
algorithm parameterized by k.

Theorem 4.21 ([58]). Partitioned Clique is W[1]-complete with respect to k
and unless ETH fails, it cannot be solved in time f(k) · no(k) for any function f ,
where n = |VH | and k is the size of the desired clique.

Finally, we can present both reductions using the tools we have built up.

Lemma 4.22. Let C be a class with the computable long path property. An
instance (k,H, χ) of Partitioned Clique can be reduced to an instance (π, τ)
of C-Pattern 2-Left PPM where |π| ∈ O(k2) and |τ | ∈ O(|VH |2) in time
f(k) · |VH |O(1) for some function f . Moreover, tw(π) ∈ O(k).

Proof. As usual, we let n = |VH |. Due to the computable long path property, we
can obtain in time f(k) for some computable function f a monotone gridding
matrix M such that

(i) Grid(M) is a subclass of C,
(ii) the cell graph GM is a proper-turning path v1, . . . , v4k−2, and
(iii) the cell v1 is the single non-empty cell in the leftmost column of M.

At this point, we think it is not necessary to argue how an existence of such M
follows from the computable long path property. By Lemma 1.2, there is a
consistent orientation F of M. We define two families of tiles P and T which are
then used for constructing π and τ via a modified F -assembly.

Given the input instance (k,H, χ) of Partitioned Clique, we define the tiles
using the equivalent PSI instance (G,H, χ) where G is the clique on the vertex set
[k]. We set Pv1 and Tv1 to be the anchor tiles. The tile Pv2 is taken to be Pattern([k])
and Tv2 is taken to be Assign. The rest of the tiles are defined in k consecutive
groups. Let Ia = {a, . . . , k}. For a ∈ [k − 1], we set Pvi

= Pattern(Ia) for every
4a−1 ≤ i ≤ 4a+2. On the text side, we set Tv4a−1 = Id(Ia), Tv4a = Branch(a, Ia+1),
Tv4a+1 = Test(a, Ia+1) and Tv4a+2 = Merge(a, Ia+1).

Then we take π as the modified F -assembly of P , τ as the modified F -assembly
of T . Clearly, π ∈ C and thus, we constructed a valid instance (π, τ) of C-Pattern
2-Left PPM in time f(k) · |VH |O(1). Now we check that we achieved the desired
upper bounds on size. The total size of the pattern tiles is clearly O(k2). The
tiles Tv4a−1 , . . . , Tv4a+2 each contain at most 2na · n points and therefore, the size
of the text tiles sums to O(n2).

Correctness (“only if”). Suppose that (k,H, χ) is a positive instance of Par-
titioned Clique and thus, (G,H, χ) is a positive instance of PSI. There
is a witnessing mapping ϕ : [k] → N such that ϕ(a) ∈ [na] for every a and
{va

ϕ(a), v
b
ϕ(b)} ∈ EH for every different a, b ∈ [k].

116

Let us define a 2-left-aligned embedding ψ of π into τ . The embedding shall
be grid-preserving, meaning that the image of Pvi

is mapped to the image of Tvi
.

That way, we automatically guarantee that ψ is 2-left-aligned since the leftmost
two points in τ are formed by the image of Tv1 while the leftmost two points in π
are formed by the image of Pv1 . First, we map the guards in Pvi

to the guards of
Tvi

for every i ≥ 2. Then we define the mapping of points in Pv2 to mimic the
mapping ϕ. For each a ∈ [k], we set the image of the atomic pair Xa in Pv2 to be
the atomic pair Y a

a,ϕ(a) in Tv2 . If Pvi
= Pattern(W) and Tvi

= Id(W), we map the
atomic pair Xa in Pvi

to the atomic pair Y id
a,ϕ(a) in Tvi

. If Pvi
= Pattern(W) and

Tvi
is one of Branch(a,W), Test(a,W) or Merge(a,W) then we map Xa in Pvi

to
the atomic pair Y δ

a,ϕ(a) in Tvi
and for b ∈ W , we map Xb to Zδ

a,ϕ(a),b,ϕ(b) for the
appropriate choice of δ ∈ {b, t,m}.

First, we need to make sure that the atomic pair Zδ
a,ϕ(a),b,ϕ(b) for the appropriate

choice of δ ∈ {b, t,m} is well-defined in all of Branch(a,W), Test(a,W) and
Merge(a,W). Equivalently, we need to verify that (va

ϕ(a), v
b
ϕ(b)) ∈ Ea which is

guaranteed by ϕ.
In order to check the validity of the embedding, it is sufficient to verify that

the image of Pvi
is an increasing sequence in Tvi

and that furthermore, the images
of Pvi

and Pvi+1 have the right relative order according to their x-coordinates if Pvi

and Pvi+1 share a common column (i is even), and according to their y-coordinates
if they share a common row (i is odd).

The increasing property is checked straightforwardly. Observe that for every
δ ∈ {id, a, b, t,m} and a, b ∈ [k] such that a < b, whenever the atomic pairs Y δ

a,i

and Y δ
b,j in a single tile Tvi

are defined, then Y δ
a,i lies to the left and below of Y δ

b,j

regardless of the choices of i ∈ [na] and j ∈ [nb]. Moreover for a fixed a and b < b′,
the atomic pair Zδ

a,ϕ(a),b,i lies to the left and below Zδ
a,ϕ(a),b′,j again regardless of

the choices of i and j. Finally, every defined atomic pair Zδ
a,ϕ(a),b,j lies to the right

and above the pair Y δ
a,ϕ(a).

In regards to the relative positions of points in different tiles, it is sufficient to
verify that the image of Xa in the tile Pvi

under ψ sandwiches the image of Xa in
the tile Pvi+1 . It is a mechanical task to check that from the definition of ψ and
the definitions of the respective tile types.

Correctness (“if”). Suppose there is a 2-left-aligned embedding ψ of π into
τ . In particular, ψ maps the image of Pv1 to the image of Tv1 . The horizontal
strip in τ between the anchors in Tv1 contains only the tile Tv2 and the horizontal
strip between the anchors in Pv1 in π contains only the tile Pv2 . This implies that
the guards in Pv2 must map to the guards in Tv2 . And inductively, the guards in
Pvi

sandwich the guards in Pvi+1 and thus, the guards in Pvi+1 map to the only
atomic pairs sandwiched in Tvi+1 by the guards in Tvi

which are the guards in Tvi+1 .
These guards then force that the whole embedding is necessarily grid-preserving.

Moreover, the atomic pair Xa in Pv2 for every a ∈ [k] is mapped by ψ to
the atomic pair Y a

a,i for some i. Let ϕ : [k] → N be the mapping such that Xa is
mapped precisely to Y a

a,ϕ(a) for every a ∈ [k]. Clearly, ϕ can be used to define
a map that satisfies the coloring property – χ(va

ϕ(a)) = a for every a ∈ [k]. It
remains to show that {va

ϕ(a), v
b
ϕ(b)} ∈ EH for every pair of distinct a, b ∈ [k].

117

Claim 4.23. Let w = vi for i ≥ 2 and let a ∈ [k]. The atomic pair Xa in Pw (if
defined) is mapped by ψ to the atomic pair Y δ

a,ϕ(a) for appropriate δ if Tw is one
of Id(U), Branch(a,W), Test(a,W) or Merge(a,W) where a ∈ U and a ̸∈ W . For
b < a, Xa in Pw is mapped to the pair Zδ

b,ϕ(b),a,ϕ(a) if Tw is one of Branch(b, U),
Test(b, U) or Merge(b, U).

Proof. For w = v2 the claim holds by the definition of ϕ. We prove it inductively
by the lexicographic order on (a, i).

Suppose that Tvi
= Id(W) and recall that in fact W = Ib for some b ∈ [k]. In

such case the tile Tvi−1 is either the tile Assign or Merge(b − 1, Ib). In the first
case, we already know that Xa in Pvi−1 is mapped to Y a

a,ϕ(a) in Tvi−1 . Given the
structure of these tiles, the atomic pair Xa in Pvi

is forced to map to the atomic
pair Y id

a,ϕ(a) in Tvi
as it is the only pair contained in the horizontal or vertical strip

bounded by Y a
a,ϕ(a). In the second case, the same holds since Y id

a,ϕ(a) is the only
pair in Tvi

sandwiched by Zm
b,ϕ(b),a,ϕ(a) from Tvi−1 .

Suppose that Tvi
is one of Branch(a,W), Test(a,W) or Merge(a,W) where

a ̸∈ W . In these cases, we know that Xa in Pvi−1 maps to Y δ
a,ϕ(a) in Tvi−1 for

appropriate δ. And again, this leaves only a single option where Xa from Pvi
can

be mapped to – the pair Y η
a,ϕ(a) in Tvi

for appropriate η.
Suppose that Tvi

= Branch(b,W) for b < a and notice that then Tvi+1 =
Test(b,W). Using induction on Xa in Pvi−1 and the structure of Branch(b,W), we
see that Xa in Pvi

can be mapped to Zb
b,j,a,ϕ(a) for any j ∈ [nb]. However, this also

forces the mapping of Xa in Pvi+1 to Zt
b,j,a,ϕ(a) in Tvi+1 . Since b < a, we already

know that Xb in Pvi+1 is mapped to Y t
b,ϕ(b) in Tvi+1 by the induction. And for

j ̸= ϕ(b), the pairs Y t
b,ϕ(b) and Zt

b,j,a,ϕ(a) form an occurrence of 3412 in Tvi+1 which
cannot happen as Pvi+1 itself is an increasing sequence. Therefore, Xa is mapped
to Zδ

b,ϕ(b),a,ϕ(a) in both Tvi
and Tvi+1 for appropriate δ. In fact, this forces also the

pair Xa in Pvi+2 to match to the pair Zm
b,ϕ(b),a,ϕ(a) in Pvi+2 = Merge(a,W) which

concludes the proof of the claim.

Now let a, b ∈ [k] such that a < b. As we showed above, the atomic pair Xb

is mapped to the atomic pair Zt
a,ϕ(a),b,ϕ(b) in the tile Test(a, Ia). That means that

Zt
a,ϕ(a),b,ϕ(b) is well-defined and thus, we have {va

ϕ(a), v
b
ϕ(b)} ∈ Ea. Recall that we

defined G to be the clique on vertex set [k]. Therefore {a, b} ∈ EG, and this
necessarily implies that {va

ϕ(a), v
b
ϕ(b)} ∈ EH . Therefore, we see that (G,H, χ) is a

positive instance of PSI as witnessed by the map ρ : VG → VH obtained by setting
ρ(a) = va

ϕ(a) and thus also (H,χ) is a positive instance of Partitioned Clique.

Tree-width of π. Finally, let us show that tw(π) ∈ O(k). Let us say that an
edge of Gπ is exceptional if its endpoints share neither the same row nor the
same column of the gridding. Only the lowest and highest point of each tile can
participate in an exceptional edge. Therefore, there are at most 4k− 2 exceptional
edges. Let G′ be the graph obtained from Gπ by removing all the exceptional
edges. It is sufficient to show that tw(G′) ∈ O(k) as adding the 4k − 2 edges back
increases the tree-width at most by 4k − 2.

We define a tree decomposition (T, γ) such that T is a path on 4k − 1 vertices
p1, . . . , p4k−1 and γ(pi) is the image of tiles Pvi

and Pvi+1 . Clearly, every point of π
lies in a set of bags that induces a connected subtree. Moreover, every edge runs
either inside a single cell or between points in two neighboring cells on the path

118

since any other pair of points would occupy different row and different column.
Therefore, we defined a valid tree decomposition of width O(k) and tw(G′) ∈ O(k).
This completes the proof of Lemma 4.22.

Lemma 4.24. Let C be a class with the computable deep tree property. An
instance (G,H, χ) of PSI can be reduced to an instance (π, τ) of C-Pattern
2-Left PPM where |π| ∈ O(|EG| · log |EG|) and |τ | ∈ O(|EH | + |VH | · |EG|) in
time f(|EG|) · |VH |O(1) for some function f .

Proof. We shall modify the previous reduction of Lemma 4.22 similarly to the
way we modified the reduction of Theorem 4.15 to prove Theorem 4.18. Once
again, we borrow some ideas from the proof of Lemma 2.38.

As before, we set n = |VH | and k = |VG|. We can furthermore assume that
|EG| = |VG| = k by Theorem 4.8. Due to the computable deep tree property, we
can compute in time f(k) for some computable function f a monotone gridding
matrix M such that

(i) Grid(M) ⊆ C,
(ii) the cell graph GM is a rooted tree T with k leaves,
(iii) the distance of any two vertices in T is O(log k),
(iv) the root r of the tree T is the single non-empty cell in the leftmost column

of M and it has a single child r′,
(v) every non-root vertex with a single child is a corner (its two neighbors in GM

occupy both different rows and different columns),
(vi) every leaf shares a common column with its neighbor, and

(vii) every leaf is at distance at least two from the nearest vertex with degree
larger than 1.

The properties (i)–(iii) are guaranteed directly by the computable deep tree
property. For (iii)–(vii), it suffices to start with a larger tree and then cut off
some branches to achieve the desired shape.

Following along the proof of Lemma 2.38, we orient the edges ofGM consistently
away from r and for any vertex v, the descendants of v, denoted by D(v), are all
the out-neighbors of v. We arbitrarily order the edges EG = {e1, . . . , ek} and also
the k leaves of GM as v1, . . . , vk, and we define the sets Aw exactly as in (2.1) on
page 49. We additionally assume that Ar = [k] which corresponds to G having no
isolated vertices. We have ∑︁v Av ∈ O(k log k).

We call the only neighbor of the leaf vi a petiole, denoted ui, and we call the
set of all vertices that are neither one of r, r′ nor the leaves or petioles the stem.
We proceed to define two families of tiles P and T . Both Pr and Tr are set to
the anchor tile Anchor. The tile Tr′ is set to be the assignment tile Assign. We
set the tile Pv for every vertex v of the tree other than r to the tile Pattern(Av).
For every v that is part of the stem, we set Tv to be the identity tile Id(Av). For
i ∈ [k] such that ei = {a, b} with a < b, we set Tui

to be the branch tile Branch(a,
{b}) and we set Tvi

to be the test tile Test(a, {b}).
By Lemma 1.2, there is a consistent orientation F of M. We set π to be the

modified F -assembly of P and τ to be the modified F -assembly of T . The total
size of P is clearly O(k log k). The size of all tiles in T corresponding to leaves
and petioles is O(|EH |) and each one of the remaining O(k) tiles contains at most
O(n) points which gives the desired bounds on the sizes of π and τ .

119

Correctness (“only if”). The correctness essentially follows the same argu-
ments as in the case of the long path property. Suppose that there is a mapping
ϕ : [k] → N witnessing that (G,H, χ) is a positive instance of PSI. We define a
grid-preserving mapping ψ of π into τ . In the Assign tile, we map Xa to Y a

a,ϕ(a)
and in each identity tile Id(W) where a ∈ W , we map Xa to Y id

a,ϕ(a) . In the petiole
ui and the leaf vi such that ei = {a, b} with a < b, the mapping ψ sends Xa to
Y δ

a,ϕ(a) and Xb to Zδ
a,ϕ(a)b,ϕ(b) for suitable δ. Observe that Zδ

a,ϕ(a)b,ϕ(b) is well-defined
since {va

ϕ(a), v
b
ϕ(b)} ∈ EH . The same arguments as before show that ψ is indeed a

2-left-aligned embedding of π into τ .

Correctness (“if”). Suppose there is a 2-left-aligned embedding ψ of π into
τ . Again, ψ maps the tile Pv1 to the tile Tv1 . Following the guards from the
root, we see that ψ must be grid-preserving and as before, we define the mapping
ϕ : [k] → N such that the pair Xa in Pr′ maps to Y a

a,ϕ(a) in Tr′ . It inductively
follows that in any vertex of the stem, Xa must be mapped to Y id

a,ϕ(a) (assuming
a ∈ W). This holds in particular for the parent of each petiole ui. Consequently,
the petiole ui and leaf vi can be seen as applying the reduction from Lemma 4.22
to check the subgraph property for the single edge {a, b} in the subgraph of H
induced by Va ∪ Vb. Thus, the same arguments show that {va

ϕ(a), v
b
ϕ(b)} ∈ EH and

(G,H, χ) is a positive instance of PSI.

Proof of Proposition 4.20. Lemmas 4.22 and 4.24 imply the W[1]-hardness and
conditional lower bounds. The W[1]-membership of C-Pattern 2-Left PPM
follows trivially from the W[1]-membership of 2-Left PPM.

Pattern parameters

As a first consequence of our results involving C-Pattern 2-Left PPM, we
can show conditional lower bounds for C-Pattern PPM with respect to various
parameters of the pattern. In particular, we can exhibit lower bounds with respect
to any parameter that is invariant under monotone inflations.

Corollary 4.25. Suppose that w is a permutation parameter invariant under
monotone inflations. Unless ETH fails, C-Pattern PPM cannot be solved for
any function f

• in time f(w(π)) · no(√
w(π)) if C has the computable long path property, and

• in time f(w(π)) · no(w(π)/ log2 w(π)) if C has the computable deep tree property,

where π is the pattern and n is the length of the text. Moreover, C-Pattern
PPM is W[1]-hard with respect to w(π) in both these cases.

Proof. Let (π, τ) be the instance of C-Pattern 2-Left PPM produced by
Lemma 4.22 or 4.24. We define π′ as the permutation obtained from π by
inflating both of its anchors (the two leftmost points) with either two increasing
or decreasing sequences of length |τ | such that π′ is still contained in C. Recall
that our reductions guarantee that one of these inflations is always possible. And
similarly, we let τ ′ be the permutation obtained from τ by inflating both of its
anchors (the two leftmost points) with the same type of monotone sequences of
length |τ | as in π′.

120

At this point, we have used this ‘inflation trick’ many times in our reductions.
Therefore, we consider it obvious that π′ is contained in τ ′ if and only if there is a
2-left-aligned embedding of π into τ . It remains to observe that w(π′) ∈ O(|π|)
since w is invariant under monotone inflations. The respective lower bounds
follow.

However, Lemma 4.22 produces instances with patterns whose tree-width
is bounded by O(k) instead of the trivial O(k2) guaranteed for any parameter
bounded by the length of permutation. Therefore, it follows using the very same
argument that C-Pattern PPM cannot be solved in time f(tw(π)) · no(tw(π)) for
any class C with the computable long path property. Consequently, the algorithm
of Theorem 4.12 is asymptotically the best possible, even when we restrict the
patterns to a permutation class with the computable long path property.

Theorem 4.26. If C has the computable long path property then C-Pattern
PPM cannot be solved in time f(tw(π)) · no(tw(π)) where π is the pattern and n is
the length of the text for any function f , unless ETH fails.

Counting patterns

Having the conditional lower bounds for C-Pattern 2-Left PPM, we can obtain
lower bounds for C-Pattern #PPM simply by mimicking our proof showing
the hardness of #PPM in general.

Theorem 4.27. Unless ETH fails, C-Pattern #PPM cannot be solved for any
function f

• in time f(k) · no(√
k) if C has the computable long path property, and

• in time f(k) · no(k/ log2 k) if C has the computable deep tree property,

where k is the length of the pattern and n is the length of the text.

Proof. Similar to the proof of Theorem 4.6, we show that an algorithm solving C-
Pattern #PPM in time f(k) ·nh(k) for some functions f and h could be used to
design an algorithm solving the counting version of C-Pattern 2-Left PPM in
time g(k) ·nh(k). The desired conditional lower bounds follow from Proposition 4.7.

Suppose (π, τ) is an instance of Left PPM. Recall that occ(π, τ) denotes
the number of occurrences of π in τ . In order to count the number of 2-left-
aligned embeddings, it is sufficient to count the number of embeddings of π into τ
that hit the two leftmost points in τ . We can do this easily by the inclusion-
exclusion principle. For a set S ⊆ [n], let τ−S be the permutation obtained from τ
by removing every point (i, τi) for i ∈ S. The total number of 2-left-aligned
embeddings can be expressed as

occ(π, τ) − occ(π, τ−{1}) − occ(π, τ−{2}) + occ(π, τ−{1,2}).

In other words, we can compute the number of 2-left-aligned occurrences by
invoking the algorithm for C-Pattern #PPM four times. Therefore, we would
obtain an algorithm solving C-Pattern 2-Left PPM in time 4 · f(k) ·nh(k).

121

Generalized patterns

As our last application, we can lift the hardness of C-Pattern 2-Left PPM to
show that similar conditional lower bounds hold when we replace 2-left-aligned
patterns with vincular, covincular, bivincular or mesh patterns. Note that it is
sufficient to prove the hardness of C-Pattern Vincular PPM. The equivalent
result for C-Pattern Covincular PPM follows since the long path and deep
tree properties are preserved under rotations by 90°, and C-Pattern Bivincular
PPM and C-Pattern Mesh PPM can be seen as mere generalizations of
C-Pattern Vincular PPM.

Corollary 4.28. Unless ETH fails, C-Pattern Vincular PPM cannot be
solved for any function f

• in time f(k) · no(√
k) if C has the computable long path property, and

• in time f(k) · no(k/ log2 k) if C has the computable deep tree property,

where k is the length of the pattern and n is the length of the text. Moreover, in
both cases these problems are W[1]-complete with respect to k.

Proof. We reduce a C-Pattern 2-Left PPM instance (π, τ) to an equivalent
instance ((π, {0, 1}), τ) of C-Pattern Vincular PPM. The rest follows from
Proposition 4.20.

122

5. Pattern matching inside a
fixed permutation class
In this chapter, we examine how the hardness of PPM changes when we restrict
both pattern and text to a fixed permutation class. For a class C, we formally
introduce the problem C-Permutation Pattern Matching.

C-Permutation Pattern Matching (C-PPM)
Input: Permutations π ∈ C of length k and τ ∈ C of length n.

Output: Is π contained in τ?

After summarizing the previous knowledge in Section 5.1, we show that C-
PPM is polynomial-time solvable for any subclass of a monotone grid class in
Section 5.2. Then we provide an accompanying intractability results in Section 5.3.
First, we show that C-PPM is NP-complete under a suitable technical assumption
on C and subsequently, we prove that most principal classes satisfy this assumption
and thus, the corresponding Av(σ)-PPM problem is NP-complete.

5.1 Current state of the art
We now summarize all the previous knowledge on the complexity of C-PPM.
Unsurprisingly, most previous results concern Av(σ)-PPM for various principal
classes Av(σ). First, we focus on the cases that were previously known to be
polynomial-time solvable.
Proposition 5.1 ([10, 101]). Av(σ)-PPM is polynomial-time solvable for any σ
of length at most 3.

For σ symmetric to 21 or 132, it follows from the fact that Av(σ) is a subclass of
separable permutations and thus, even Av(σ)-Pattern PPM is polynomial-time
solvable by Theorem 4.12. Moreover, Neou et al. [101] designed a more efficient
algorithm deciding S-PPM where S is the class of separable permutations in time
O(n2k). The only remaining case (up to symmetry) is when σ is equal to 321. The
first polynomial algorithm deciding Av(321)-PPM was designed by Guillemot and
Vialette [78]. Later, Albert et al. [10] showed that Av(321)-PPM can be solved
in time O(nk) and the same holds for the class of skew-merged permutations.
Notably, this case highlights the difference between C-Pattern PPM and C-PPM
since Av(321)-Pattern PPM is NP-complete due to Theorem 4.15.

On the other hand, Jeĺınek and Kynčl [86] proved that Av(4321)-PPM is
NP-complete and the same is true for the class of permutations obtained as a
union of one decreasing and two increasing sequences.
Theorem 5.2 ([86]). Av(4321)-PPM and (Av(12) ⊙ Av(321))-PPM are both
NP-complete.

Combining Theorem 5.2 with the Erdős–Szekeres theorem [65], it follows that
Av(σ)-PPM is NP-complete for any σ of length at least 10. However, this still
leaves a sizable gap in our knowledge of the polynomial cases of Av(σ)-PPM. Our
main contribution is that in Section 5.3, we narrow this gap to only 5 unresolved
cases up to symmetry.

123

5.2 Monotone-griddable classes
A vital role in the rest of this chapter is played by the concept of monotone
griddability. We say that a class C is monotone-griddable if there exists a mono-
tone gridding matrix M such that C is contained in Grid(M). Huczynska and
Vatter [83] provided a neat and useful characterization of monotone-griddable
classes.

We define the sum completion of a permutation π to be the permutation class

⊕π = {σ1 ⊕ σ2 ⊕ · · · ⊕ σk | σi ⪯ π for all i ≤ k ∈ N}.

Analogously, we define the skew completion ⊖π of π. The class ⊕21 is known as
the Fibonacci class.

Theorem 5.3 ([83]). A permutation class C is monotone-griddable if and only if
it contains neither the Fibonacci class ⊕21 nor its symmetry ⊖12.

We say that a permutation π is t-monotone if there is a partition Π=(S1, . . . , St)
of Sπ such that Si is a monotone point set for each i ∈ [t]. The partition Π is
called a t-monotone partition.

Given a t-monotone partition Π = (S1, . . . , St) of a permutation π and a
t-monotone partition Σ = (S ′

1, . . . , S
′
t) of τ , an embedding ϕ of π into τ is a (Π,Σ)-

embedding if ϕ(Si) ⊆ S ′
i for every i ∈ [t]. Less formally, it is an embedding that

respects the partitions Π and Σ. Guillemot and Marx [77] showed that if we fix
t-monotone partitions of both π and τ , the problem of finding a (Π,Σ)-embedding
is polynomial-time solvable.

Proposition 5.4 ([77]). Given a permutation π of length m with a t-monotone
partition Π and a permutation τ of length n with a t-monotone partition Σ, we
can decide if there is a (Π,Σ)-embedding of π into τ in time O(m2n2).

We can combine this result with the fact that there is only a bounded number
of ways how to grid a permutation, and obtain a polynomial algorithm for C-PPM.

Theorem 5.5. C-PPM is polynomial-time solvable for any monotone-griddable
class C.

Proof. Let M be a k×ℓ monotone gridding matrix such that Grid(M) contains the
class C. We have to decide whether π is contained in τ for two given permutations
π of length m and τ of length n, both belonging to the class C.

First, we find an M-gridding of τ . We enumerate all possible k × ℓ griddings
and for each, we test if it is a valid M-gridding. Observe that there are in total
O(nk+ℓ−2) such griddings since they are determined by two sequences of values
from the set [n], one of length k − 1 and the other of length ℓ− 1. Moreover, it is
straightforward to test in time O(n2) whether a given k × ℓ gridding is in fact an
M-gridding. Note that we are guaranteed to find an M-gridding as τ belongs
to C ⊆ Grid(M). We set Σ to be the (k · ℓ)-monotone partition of τ into the
monotone sequences given by the individual cells of the gridding.

In the second step, we enumerate all possible M-griddings of π. As with τ , we
enumerate all possible O(mk+ℓ−2) k× ℓ griddings of π and check for each gridding
whether it is actually an M-gridding in time O(m2). For each M-gridding found,

124

we let Π be the (k · ℓ)-monotone partition of π given by the gridding, and we apply
Proposition 5.4 to test whether there is a (Π,Σ)-embedding in time O(m2n2).

If there is an embedding ϕ of π into τ , there is a (k · ℓ)-monotone partition Σ′

of π such that ϕ is a (Π,Σ′)-embedding. Therefore, the algorithm correctly solves
C-PPM in time O(nk+ℓ +mk+ℓn2) — polynomial in n,m.

Notice that if M is a gridding matrix whose every entry is monotone-griddable,
or equivalently no entry contains the Fibonacci class or its reverse as a subclass,
then the class Grid(M) is monotone-griddable as well. It follows that for such M,
the Grid(M)-PPM problem is in P. In Chapter 6 (Theorem 6.8), we will see
that if a gridding matrix M has an acyclic cell graph, and if every nonempty cell
is either monotone or symmetric to a Fibonacci class, then Grid(M)-Pattern
PPM, and therefore also Grid(M)-PPM, is polynomial-time solvable as well.
These two tractability results contrast with Proposition 5.14, which implies that
for any gridding matrix M whose cell graph is a cycle, and whose nonempty
cells are all monotone except for one Fibonacci cell, Grid(M)-PPM is already
NP-hard.

5.3 Hardness results
In this section, we present the main technical hardness result and then derive its
several corollaries. Similar to the case of the pattern-restricted variant of PPM,
we first exhibit in Subsection 5.3.2 the hardness of C-PPM assuming that C
satisfies a certain technical property and then we show in Subsection 5.3.3 that
this property, in fact, holds for all principal classes Av(σ) for σ of length at least 4
and not symmetric to any of 3412, 3142, 4213, 4123 or 41352.

We say that a permutation class C has the D-rich path property for a class D
if there is a positive constant ϵ such that for every k, the class C contains a grid
subclass whose cell graph is a proper-turning path of length k with at least ϵ · k
entries equal to D. Moreover, we say that C has the computable D-rich path
property, if C has the D-rich path property and there is an algorithm that, for a
given k, outputs a witnessing proper-turning path of length k with at least ϵ · k
copies of D in time polynomial in k.

Theorem 5.6. Let C be a permutation class with the computable D-rich path
property for a non-monotone-griddable class D. Then C-PPM is NP-complete,
and unless ETH fails, there can be no algorithm that solves C-PPM

• in time 2o(n/ log n) if D moreover contains any monotone juxtaposition,
• in time 2o(

√
n) otherwise.

Let us remark that the two lower bounds we obtained under ETH are close to
optimal. It is clear that the bound of 2o(n/ log n) matches, up to the log n term in
the exponent, the trivial 2O(n) brute-force algorithm for PPM. Moreover, the lower
bound of 2o(

√
n) for C-PPM also cannot be substantially improved without adding

assumptions about the class C. Consider for instance the class C = Grid
(︃

⊕21

)︃
.

As we shall see in Proposition 5.14, this class has the computable ⊕21-rich
path property, and therefore the 2o(

√
n) conditional lower bound applies to it.

However, we can show that twC(n) ∈ O(
√
n) using similar ideas as in the proof of

125

P1 P2

P3 P4

P5

PL

T1 T2

T3 T4

T5

TL

π τ

D
D

M

Figure 5.1: The gridding matrix M, the gridded permutation π (the pattern) and
the gridded permutation τ (the text), used in the simplified overview of the proof
of Theorem 5.6.

Proposition 6.5 and thus, we can solve C-PPM (even C-Pattern PPM) in time
nO(

√
n) using the algorithm of Theorem 4.12. We omit the details of the argument

here.

5.3.1 Overview of the proof of Theorem 5.6
The proof of Theorem 5.6 is based on a reduction from 3-SAT. The individual
steps of the construction are rather technical, and we therefore begin with a general
overview of the reduction. In Subsection 5.3.2, we then present the reduction in
full detail, together with the proof of correctness.

Suppose that C is a class with the computable D-rich path property, where D
is not monotone-griddable. Theorem 5.3 implies that D contains the Fibonacci
class ⊕21 or its reversal ⊖12 as subclass. Suppose then, without loss of generality,
that D contains ⊕21.

To reduce 3-SAT to C-PPM, consider a 3-CNF formula φ, with n variables
x1, . . . , xn and m clauses K1, . . . , Km. Once again we assume, without loss of
generality, that each clause contains exactly three literals, and no variable appears
in a single clause more than once.

Let L = L(m,n) be an integer whose value will be specified later. By the
D-rich path property, C contains a grid subclass Grid(M) where the cell graph
of M is a proper-turning path of length L, in which a constant fraction of cells is
equal to D.

To simplify our notation in this high-level overview, we will assume that the cell
graph of M corresponds to an increasing staircase. More precisely, the cells of M
representing infinite classes can be arranged into a sequence C1, C2, . . . , CL, where
C1 is the bottom-left cell M1,1 of M, each odd-numbered cell C2i−1 corresponds
to the diagonal cell Mi,i, and each even numbered cell C2i corresponds to Mi+1,i.
All the remaining cells of M are empty. To simplify the exposition even further,
we will assume that each odd-numbered cell of the path is equal to and each
even-numbered cell is equal to D. See Figure 5.1.

With the gridding matrix M specified above, we will construct two M-gridded
permutations, the pattern π and the text τ both equipped with a pair of anchors,
such that there is an anchored embedding o π into τ if and only if the formula φ is
satisfiable. Afterwards, we remove the assumption of anchored embeddings via the
usual trick of inflating the anchors with sufficiently long monotone sequences. We
will describe π and τ geometrically, as permutation diagrams, which are partitioned

126

A B

The copy gadget

A B1

B2

The choose gadget

A B

The pick gadget

A B1
B2

The multiply gadget

B

A2

A1

The merge gadget

A B

The follow gadget

Figure 5.2: The constructions of simple gadgets. The tile Qi is always on the left
and the tile Qi+1 is on the right. The dotted lines show the relative vertical order
of points.

into blocks by the M-gridding. We let Pi denote the part of π corresponding to
the cell Ci of M, and similarly we let Ti be the part of τ corresponding to Ci.

To get an intuitive understanding of the reduction, it is convenient to first
restrict our attention to grid-preserving embeddings of π into τ , that is, to embed-
dings which map the elements of Pi to elements of Ti for each i. Note that this
assumption can later be easily handled by adding two tracks of guarding atomic
pairs to both pattern and text as in the proof of Theorem 4.15.

The basic building blocks in the description of π and τ are again atomic pairs.
It is a feature of the construction that in any grid-preserving embedding of π into
τ , an atomic pair inside a pattern block Pi is mapped to an atomic pair inside the
corresponding text block Ti. Moreover, each atomic pair in π or τ is associated
with one of the variables x1, . . . , xn of φ, and any grid-preserving embedding will
maintain the association, that is, atomic pairs associated to a variable xj inside π
will map to atomic pairs associated to xj in τ .

To describe π and τ , we need to specify the relative positions of the atomic
pairs in two adjacent blocks Pi and Pi+1 (or Ti and Ti+1). These relative positions
are given by several typical configurations, which we call gadgets. Several examples
of gadgets are depicted in Figure 5.2. In the figure, the pairs of points enclosed by
an ellipse are atomic pairs. The choose, multiply and merge gadgets are used in
the construction of τ , while the pick and follow gadgets are used in π. The copy
gadget will be used in both. We also need more complicated gadgets, namely the
flip gadgets of Figure 5.3, which span more than two consecutive blocks. In all
cases, the atomic pairs participating in a single gadget are all associated to the
same variable of φ.

The sequence of pattern blocks P1, P2, . . . , PL, as well as their corresponding
text blocks T1, . . . , TL, is divided into several contiguous parts, which we call
phases. We now describe the individual phases in the order in which they appear.

The initial phase and the assignment phase. The initial phase involves
two pattern blocks P1, P2 and the corresponding text blocks T1, T2. Both P1 and
T1 consist of single atomic pair forming the anchors. The blocks P2 and T2 consist
of an increasing sequence of 2n points, sandwiched by the anchor of the respective
first block and divided into n consecutive atomic pairs X0

1 , X
0
2 , . . . , X

0
n ⊆ P1 and

127

A1

A2 si+1
2

si+1
1

Bi+2
1

Bi+2
2

Bj
1

Bj
2

A si+1

Bi+2

Bj

Figure 5.3: A flip text gadget on the left and a flip pattern gadget on the right.
The first tile pictured is Qi and the last tile is Qj where j = i+ 3. As before, the
dotted lines show the relative order of points.

Y 0
1 , Y

0
2 , . . . , Y

0
n ⊆ T1, numbered in increasing order. The pairs X0

j and Y 0
j are

both associated to the variable xj . Clearly, any embedding of P1 into T1 will map
the pair X0

j to the pair Y 0
j , for each j ∈ [n].

The initial phase is followed by the assignment phase, which also involves
only one pattern block P3 and the corresponding text block T3. P3 will consist
of an increasing sequence of n atomic pairs X1

1 , X
1
2 , . . . , X

1
n, where each X1

j is a
decreasing pair, i.e., a copy of 21. Moreover, X0

j ∪X1
j forms the pick gadget, so

the first two pattern blocks can be viewed as a sequence of n pick gadgets stacked
on top of each other.

The block T3 then consists of 2n atomic pairs {Y 1
j , Z

1
j ; j ∈ [n]}, positioned in

such a way that Y 0
j ∪ Y 1

j ∪ Z1
j is a choose gadget. Thus, T2 ∪ T3 is a sequence of

n choose gadgets stacked on top of each other, each associated with one of the
variables of φ.

In a grid-preserving embedding of π into τ , each pick gadget X0
j ∪X1

j must
be mapped to the corresponding choose gadget Y 0

j ∪ Y 1
j ∪ Z1

j , with X0
j mapped

to Y 0
j , and X1

j mapped either to Y 1
j or to Z1

j . There are thus 2n grid-preserving
embeddings of P2 ∪ P3 into T2 ∪ T3, and these embeddings encode in a natural
way the 2n assignments of truth values to the variables of φ. Specifically, if X1

j is
mapped to Y 1

j , we will say that xj is false, while if X1
j maps to Z1

j , we say that
xj is true. The aim is to ensure that an embedding of P2 ∪ P3 into T2 ∪ T3 can be
extended to an embedding of π into τ if and only if the assignment encoded by
the embedding satisfies φ.

Each atomic pair that appears in one of the text blocks T3, T4, . . . , TL is not
only associated with a variable of φ, but also with its truth value; that is, there are
‘true’ and ‘false’ atomic pairs associated with each variable xj. The construction
of π and τ ensures that in an embedding of π into τ in which X1

j is mapped to
Y 1

j (corresponding to setting xj to false), all the atomic pairs associated to xj in
the subsequent stages of π will map to false atomic pairs associated to xj in τ ,
and conversely, if X1

j is mapped to Z1
j , then the atomic pairs of π associated to

xj will only map to the true atomic pairs associated to xj in τ .

The multiplication phase. The purpose of the multiplication phase is to
‘duplicate’ the information encoded in the assignment phase. Without delving
into the technical details, we describe the end result of the multiplication phase

128

and its intended behaviour with respect to embeddings. Let dj be the number
of occurrences (positive or negative) of the variable xj in φ. Note that d1 + d2 +
· · · + dn = 3m, since φ has m clauses, each of them with three literals. Let Pk and
Tk be the final pattern block and text block of the multiplication phase. Then
Pk is an increasing sequence of 3m increasing atomic pairs, among which there
are dj atomic pairs associated to xj. Moreover, the pairs are ordered in such a
way that the d1 pairs associated to x1 are at the bottom, followed by the d2 pairs
associated to x2 and so on. The structure of Tk is similar to Pk, except that Tk

has 6m atomic pairs. In fact, we may obtain Tk from Pk by replacing each atomic
pair Xk

i ⊆ Pk associated to a variable xj by two adjacent atomic pairs Y k
i , Z

k
i ,

associated to the same variable, where Y k
i is false and Zk

i is true.
It is useful to identify each pair Xk

i ⊆ Pk as well as the corresponding two
pairs Y k

i , Z
k
i ⊆ Tk with a specific occurrence of xj in φ. Thus, each literal in φ is

represented by one atomic pair in Pk and two adjacent atomic pairs of opposite
truth values in Tk.

The blocks P4, . . . , Pk and T4, . . . , Tk are constructed in such a way that any
embedding of π into τ that encodes an assignment in which xj is false has the
property that all the atomic pairs in Pk associated to xj are mapped to the false
atomic pairs of Tk associated to xj, and similarly, when xj is encoded as true in
the assignment phase, the pairs of Pk associated to xj are only mapped to the
true atomic pairs of Tk. Thus, the mapping of any atomic pair of Pk encodes the
information on the truth assignment of the associated variable.

The multiplication phase is implemented by a combination of multiply gadgets
and flip text gadgets in τ , and copy gadgets and flip pattern gadgets in π. It
requires no more than O(logm) blocks in π and τ , i.e., k = O(logm).

The sorting phase. The purpose of the sorting phase is to rearrange the
relative positions of the atomic pairs. While at the end of the multiplication phase,
the pairs representing occurrences of the same variable appear consecutively, after
the sorting phase, the pairs representing literals belonging to the same clause will
appear consecutively. More precisely, letting Pℓ and Tℓ denote the last pattern
block and the last text block of the sorting phase, Pℓ has the same number of
atomic pairs associated to a given variable xj as Pk, and similarly for Tℓ and Tk.
For each clause Kj, Pℓ contains three consecutive atomic pairs corresponding to
the three literals in Kj , and Tℓ contains the corresponding six atomic pairs, again
appearing consecutively. Similarly as in Pk and Tk, each atomic pair in Pℓ must
map to an atomic pair in Tℓ representing the same literal and having the correct
truth value encoded in the assignment phase.

To prove Theorem 5.6, we need two different ways of implementing the sorting
phase, depending on whether the class D contains a monotone juxtaposition or
not. The first construction, which we call sorting by gadgets, does not put any
extra assumptions on D. However, it may require up to Θ(m) blocks to perform
the sorting, that is ℓ = Θ(m).

The other implementation of the sorting phase, which we call sorting by
juxtapositions is only applicable when D contains a monotone juxtaposition, and it
can be performed with only O(logm) blocks. The difference between the lengths
of the two versions of sorting is the reason for the two different lower bounds in
Theorem 5.6.

129

The evaluation phase. The final phase of the construction is the evaluation
phase. The purpose of this phase is to ensure that for any embedding of π into τ ,
the truth assignment encoded by the embedding satisfies all the clauses of φ.
For each clause Kj, we attach suitable gadgets to the atomic pairs in Pℓ and
Tℓ representing the literals of Kj. These gadgets force that Kj is satisfied via
Observation 4.2. Using the fact that the atomic pairs representing the literals of
a given clause are consecutive in Pj and Tj, this can be done for all the clauses
simultaneously, with only O(1) blocks in π and τ . This completes an overview of
the hardness reduction proving Theorem 5.6.

When the reduction is performed with sorting by gadgets, it produces permuta-
tions π and τ of size O(m2), since we have L = O(m) blocks and each block has
size O(m). When sorting is done by juxtapositions, the number of blocks drops
to L = O(logm), hence π and τ have size O(m logm). The lower bounds from
Theorem 5.6 follow by the clause form of ETH (Hypothesis 2).

The details of the reduction, as well as the full correctness proof, are presented
in the following subsections.

5.3.2 Details of the hardness reduction
Our job is to construct a pair of permutations π and τ , both having a gridding
corresponding to a D-rich path, with the property that the anchored embeddings
of π into τ will simulate satisfying assignments of a given 3-SAT formula. Once
again, we shall construct both π and τ via an F -assembly of tile families.

We describe a reduction from 3-SAT to C-PPM. Let φ be a given 3-CNF
formula with n variables x1, x2, . . . , xn and m clauses K1, K2, . . . , Km. As already
mentioned, we again assume, without loss of generality, that each clause contains
exactly three literals, and no variable appears in a single clause more than once.
We will construct permutations π, τ ∈ C each containing an anchoring pair of
points such that φ is satisfiable if and only if there is an anchored embedding of
π into τ .

Let M be a g × h gridding matrix such that Grid(M) is a subclass of C, the
cell graph GM is a proper-turning path of length L = L(m,n) to be determined
later, a constant fraction of its entries is equal to D, and the remaining entries of
the path are monotone. We aim to construct π and τ such that they both belong
to Grid(M).

First, we label the vertices of the path as v1, v2, . . . , vL choosing the direction
such that at least half of the D-entries share a row with their predecessor. We
replace all other D-entries with their monotone subclasses. Note that at least
half of the D-entries survived this modification and thus, the path still contains a
constant fraction of D-entries. We claim that there is a g × h orientation F such
that the class F(M)i,j is equal to for every monotone entry Mi,j and the class
F(M)i,j contains ⊕21 for every D-entry Mi,j. To see this, consider a gridding
matrix M′ obtained by replacing every D-entry in M with if D contains ⊕21
or with if D contains ⊖12. It then suffices to apply Lemma 1.2 on M′.

Our plan is to simultaneously construct two g × h families of (2n + 2)-tiles
P and T and then set π and τ to be the F -assemblies of P and T , respectively.
We abuse the notation and for any g × h family of tiles Q (in particular for P

130

and T), we use Qi instead of Qvi
to denote the tile corresponding to the i-th cell

of the path.
For now, we will only consider restricted embeddings that respect the partition

into tiles and deal with arbitrary embeddings later. Let π be an F-assembly
of P and τ an F-assembly of T ; we then say that an embedding of π into τ is
grid-preserving if the image of tile Pi,j is mapped to the image of Ti,j for every i
and j. We slightly abuse the terminology in the case of grid-preserving embeddings
and say that a point q in the tile Pi,j is mapped to a point r in the tile Ti,j instead
of saying that the image of q under the F -assembly is mapped to the image of r
under the F -assembly.

Many of the definitions to follow are stated for a general g×h family of tiles Q
as we later apply them on both P and T . Recall that a pair of points r, q in the
tile Qi sandwiches a set of points A in the tile Qi+1 if for every point t ∈ A

• r.y < t.y < q.y in case pi and pi+1 occupy a common row, or
• r.x < t.x < q.x in case pi and pi+1 occupy a common column.

Moreover, we say that a pair of points r, q strictly sandwiches a set of points
A if the pair r, q sandwiches A and there exists no other point t ∈ (Qi+1 \ A)
sandwiched by r, q.

Simple gadgets

Before constructing the actual tile families, we describe several simple gadgets that
we will utilize later. All these gadgets include either one atomic pair A = (r, q)
or two atomic pairs Aα = (rα, qα) for α ∈ {1, 2} in the tile Qi and one atomic
pair B = (s, t) or two atomic pairs Bα = (sα, tα) for α ∈ {1, 2} in the tile Qi+1.
Moreover, the coordinates of the points in Qi+1 are fully determined from the
coordinates of the points in Qi. We assume that each tile is formed as direct sum
of the corresponding pieces of individual gadgets; in other words, if A,B ⊆ Qi

are point sets of two different gadgets, then either A lies entirely to the right and
above B or vice versa.

We describe the gadgets in the case when pi and pi+1 share a common row
and pi is left from pi+1, as the other cases are symmetric. Moreover, we assume
that r.y < q.y in the case of a single atomic pair in Qi, and that r1.y < q1.y <
r2.y < q2.y in the case of two atomic pairs in Qi. See Figure 5.2.

The copy gadget. The copy gadget consists of one atomic pair A in Qi and
one atomic pair B in Qi+1 defined as

s = (r.y, r.y + ϵ) t = (q.y, q.y − ϵ)

where ϵ is small positive value such that s, t form an occurrence of 12. We say
that the copy gadget connects A to B. Since A sandwiches B, we can use the
copy gadget to extend the construction to additional tiles along the path while
preserving the embedding properties. Notice that many of our previous reductions
consisted of sequences of copy gadgets that we called tracks.

Observation 5.7. Suppose there is a copy gadget in T that connects an atomic
pair AT in the tile Ti to an atomic pair BT in the tile Ti+1, and a copy gadget

131

in P that connects an atomic pair AP in the tile Pi to an atomic pair BP in the
tile Pi+1. In any grid-preserving embedding of π into τ , if AP is mapped to AT ,
then BP is mapped to BT .

The multiply gadget. The multiply gadget is only slightly more involved than
the previous one, and it consists of one atomic pair A in Qi and two atomic pairs
B1, B2 in the tile Qi+1 defined as

s1 = (r.y, r.y + ϵ)

t1 =
(︃2 · r.y + q.y

3 ,
2 · r.y + q.y

3

)︃ s2 =
(︃
r.y + 2 · q.y

3 ,
r.y + 2 · q.y

3

)︃
t2 = (q.y, q.y − ϵ)

where ϵ is small positive value such that s1, t1, s2, t2 form an occurrence of 1234.
We say that the multiply gadget multiplies A to B1 and B2. A property analogous
to Observation 5.7 holds when both text and pattern contain a multiply gadget.

The choose gadget. The choose gadget consists of one atomic pair A in Qi

and two atomic pairs B1, B2 in the tile Qi+1 defined as

s1 =
(︃
r.y,

2 · r.y + q.y

3

)︃
t1 =

(︃2 · r.y + q.y

3 , r.y + ϵ
)︃ s2 =

(︃
r.y + 2 · q.y

3 , q.y − ϵ
)︃

t2 =
(︃
q.y,

r.y + 2 · q.y
3

)︃
.

where ϵ is small positive value such that s1, t1, s2, t2 form an occurrence of 2143.
We say that the choose gadget branches A to B1 and B2.

The pick gadget. The pick gadget is essentially identical to the copy gadget
except that the pair B forms an occurrence of 21 instead of 12. Formally, the pick
gadget consists of one atomic pair A in Qi and one atomic pair B in Qi+1 defined
as

s = (r.y, q.y − ϵ) t = (q.y, r.y + ϵ)
where ϵ is chosen such that s, t form an occurrence of 21. We say that the pick
gadget connects A to B.

The name of the choose and pick gadgets becomes clear with the following ob-
servation that follows from the fact that 2143 admits only two possible embeddings
of the pattern 21.
Observation 5.8. Suppose there is a choose gadget in T that branches an atomic
pair AT in the tile Ti to two atomic pairs BT

1 and BT
2 in the tile Ti+1, and a pick

gadget in P that connects an atomic pair AP in the tile Pi to an atomic pair BP

in the tile Pi+1. In any grid-preserving embedding of π into τ , if AP is mapped to
AT then BP is mapped either to BT

1 or to BT
2 .

The merge gadget. The merge gadget consists of two atomic pairs A1, A2 in
Qi and one atomic pair B in Qi+1 defined as

s = (r1.y, q2.y + ϵ) t = (q2.y, r1.y − ϵ)
where ϵ is chosen small such that the relative order of the points of merge gadget
and the points outside is not changed. Notice that now B sandwiches the set
A1 ∪ A2. We say that the merge gadget merges A1 and A2 into B.

132

The follow gadget. This gadget is almost identical to the pick gadget
except that here B sandwiches A. Formally, the follow gadget contains one atomic
pair A in Qi and one atomic pair B in Qi+1 defined as

s = (r.y, q.y + ϵ) t = (q.y, r.y − ϵ)

where ϵ is chosen small such that the relative order of follow gadget with points
outside is not changed. We say that the follow gadget connects A to B.

We can observe that merge and follow gadgets act in a way as an inverse to
choose and pick gadgets.

Observation 5.9. Suppose there is a merge gadget in T that merges atomic pairs
AT

1 and AT
2 in the tile Ti into an atomic pair BT in the tile Ti+1, and a follow

gadget in P that connects an atomic pair AP in the tile Pi to an atomic pair BP

in the tile Pi+1. In any grid-preserving embedding of π into τ , if AP is mapped to
AT

α for some α ∈ {1, 2} then BP is mapped to BT .

To see this, notice that BP forms an occurrence of 21 and the only occurrence
of 21 in Ti+1 that sandwiches AT

1 or AT
2 is BT . Here it is important that Ti+1 is

formed as a direct sum of the individual gadgets and in particular, every other
occurrence of 21 in Ti+1 lies either above or below BT .

The flip gadget

We proceed to define two gadgets – a flip text gadget and a flip pattern gadget.
The construction of this final pair of gadgets is a bit more involved. It is insufficient
to consider just two neighboring tiles as we need two D-entries for the construction.
To that end, let i and j be indices such that both vi+1 and vj are D-entries and
every entry vk for k between i+ 1 and j is a monotone entry. Recall that every
D-entry shares a row with its predecessor. In particular, vi occupies the same row
as vi+1 and vj−1 occupies the same row as vj.

As before, suppose that A1 = (r1, q1) and A2 = (r2, q2) are two atomic pairs
in Qi such that r1.y < q1.y < r2.y < q2.y. The flip text gadget attached to the
atomic pairs A1 and A2 consists of two points si+1

1 , si+1
2 in the tile Qi+1 and two

atomic pairs Bk
1 = (sk

1, t
k
1), Bk

2 = (sk
2, t

k
2) in each tile Qk for every k ∈ [i+ 2, j] =

{i+ 2, i+ 3, . . . , j}. The points si+1
1 , si+1

2 are defined as

si+1
1 =

(︃
r1.y + q1.y

2 ,
r2.y + q2.y

2

)︃
si+1

2 =
(︃
r2.y + q2.y

2 ,
r1.y + q1.y

2

)︃
.

Observe that si+1
1 , si+1

2 form an occurrence of 21 such that si+1
α is sandwiched by

the pair Aα for each α ∈ {1, 2}. The points sk
1, t

k
1, s

k
2, t

k
2 for k ∈ [i+ 2, j − 1] are

defined as

sk
1 = (r2.y + ϵ, r2.y)
tk1 = (q2.y − ϵ, q2.y)

sk
2 = (r1.y + ϵ, r1.y)
tk2 = (q1.y − ϵ, q1.y) .

if vk and vk+1 share the same column, otherwise we just apply the adjustments
by ϵ in the y-coordinates. The positive constant ϵ is chosen such that the points
sk

2, t
k
2, s

k
1, t

k
1 (in this precise left-to-right order) form an occurrence of 1234 for every

k between i+ 1 and j.

133

Finally, the points sj
1, t

j
1, s

j
2, t

j
2 are defined as

sj
1 = (r2.y, q2.y)
tj1 = (q2.y, r2.y)

sj
2 = (r1.y, q1.y)
tj2 = (q1.y, r1.y) .

Observe that they form an occurrence of 2143. We say that the flip text gadget
flips the pairs A1, A2 in Qi to the pairs Bj

2, B
j
1 in Qj . See the left part of Figure 5.3.

We defined the points such that for every k between i+ 1 and j and α ∈ {1, 2},
the pair Bk+1

α sandwiches the pair Bk
α. Alternatively, this can be seen as Bk+1

α

and Bk
α forming a copy gadget alas in the opposite direction. Moreover, the pair

Bi+2
α sandwiches the point si+1

α .
Observe that independently of the actual orientation F , the images of all points

sk
1, t

k
1 for all k and the images of all points sk

2, t
k
2 for all k under the F-assembly

will be isomorphic. We define the flip pattern gadget as a set of points isomorphic
to this particular set of points.

Given an atomic pair A = (r, q) in Qi, the flip pattern gadget attached to the
atomic pair A consists of a single point si+1 in the tile Qi+1 and an atomic pair
Bk = (sk, tk) in the tile Qk for every k ∈ [i+ 2, j], where

si+1 =
(︃
r.y + q.y

2 ,
r.y + q.y

2

)︃
,

the atomic pair Bk is defined for every k ∈ [i+ 2, j − 1] as

sk = (r.y + ϵ, q.y) tk = (q.y − ϵ, r.y)

if vk and vk+1 share a common column, otherwise we just apply the adjustments
by ϵ in the y-coordinate, and finally, the atomic pair Bj is defined as

sj = (r.y, q.y) tj = (q.y, r.y) .

We say that the flip pattern gadget connects the pair A to the pair Bj. See the
right part of Figure 5.3.

Lemma 5.10. Suppose there is a flip pattern gadget in P that connects an atomic
pair A in Pi with an atomic pair B in Pj. Furthermore, suppose that there is a
flip text gadget in T that flips atomic pairs A1 and A2 in Ti to atomic pairs B2
and B1 in Tj. In any grid-preserving embedding of π into τ , if A is mapped to Aα

for some α ∈ {1, 2} then B is mapped to Bα.

Proof. We denote the points of both gadgets as in their respective definitions.
Additionally, we use overlined letters to denote points of the flip pattern gadget
in P to distinguish them from the points of the flip text gadget in T .

Observe that si+1 must be mapped to si+1
α . This implies that the point si+2

must be mapped to the point si+2
α or below and the point ti+2 must be mapped

to the point ti+2
α or above. By repeating this argument, we see that sk must be

mapped to the point sk
α or below and the point tk must be mapped to the point

tkα or above for every k ∈ [i + 2, j]. But the only occurrence of 21 in Tj with
this property is precisely the pair Bα which concludes the proof. We remark that
here we again use the property that Tj can be expressed as a direct sum of the
individual gadgets. Otherwise, we could find a suitable occurrence of 21 in Tj as
part of a different gadget.

134

Flip gadgets will see two slightly different applications. First, as the name
suggests, a flip gadget allows us to shuffle the order of atomic pairs. Second and
perhaps more cunning use of the flip gadget is that it allows us to test if only one
of its initial atomic pairs is used in the embedding.

Lemma 5.11. Suppose that there are two flip pattern gadgets in P each connecting
an atomic pair AP

α in Pi to an atomic pair BP
α in Pj for α ∈ {1, 2}. Suppose that

there is a flip text gadget in T that flips atomic pairs AT
1 and AT

2 in Ti to atomic
pairs BT

2 and BT
1 in Tj. There cannot exist a grid-preserving embedding ϕ of π

into τ that maps AP
α to AT

α for each α ∈ {1, 2}.

Proof. Using Lemma 5.10, we see that ϕ would map also BP
α to BT

α for each
α ∈ {1, 2}. But that is a contradiction since BT

1 lies to right and above BT
2 in Tj

while BP
1 lies to the left and below BP

2 in Pj.

We conclude the introduction of gadgets with one more definition. All the
gadgets except for the copy and multiply ones need the entry vi+1 to be non-
monotone, more precisely the image of Mvi+1 under F has to contain the Fibonacci
class ⊕21. Suppose there is an atomic pair A in the tile Qi and that j is the
smallest index larger than i such that pj is a D-entry. By attaching a gadget other
than copy or multiply to the pair A, we mean the following procedure. We add an
atomic pair Ak to each tile Qk for k ∈ [i+ 1, j − 1] such that Ak and Ak+1 form a
copy gadget for each k ∈ [i, j − 2] when we additionally define Ai = A. Finally,
we attach the desired gadget to the atomic pair Aj−1. Similarly, when attaching
a gadget that contains two atomic pairs A1 and A2 in its first tile, we just copy
both of these pairs all the way to the tile Qj−1 and then attach the desired gadget.
It follows from Observation 5.7 that the embedding properties are preserved via
this construction.

Constructing the C-PPM instance

We define the initial tiles P1 and T1 to both contain a single atomic pair, the
anchor, defined as

(1, 1), (2n+ 2, 2n+ 2).

The tile P2 consists of the atomic pairs X0
k = (qk, rk) for k ∈ [n] and the tile T2

consists of the atomic pairs Y 0
k = (sk, tk) for k ∈ [n] where

qk = sk = (2k, 2k) rk = tk = (2k + 1, 2k + 1).

Any grid-preserving embedding of π into τ must obviously map the anchors to
each other and X0

k to Y 0
k for every k ∈ [n].

Assignment phase. In the first phase, we simulate the assignment of truth
values to the variables. To that end, we attach to each pair Y 0

k for k ∈ [n] a choose
gadget that branches Y 0

k to two atomic pairs Y 1
k,1 and Z1

k,1. On the pattern side,
we attach to each pair X0

k for k ∈ [n] a pick gadget that connects X0
k to an atomic

pair X1
k,1. The properties of choose and pick gadgets (Observation 5.8) imply that

in any grid-preserving embedding, X1
k,1 is either mapped to Y 1

k,1 or to Z1
k,1.

135

Multiplication phase. Our next goal is to multiply the atomic pairs corre-
sponding to a single variable into as many pairs as there are occurrences of
this variable in the clauses. We describe the gadgets dealing with each variable
individually.

Fix k ∈ [n] and let dk for k ∈ [n] denote the total number of occurrences
of xk and ¬xk in φ. We are going to describe the construction inductively in
ℓk = ⌈log dk⌉ steps. In i-th step, we define atomic pairs X i+1

k,j , Y
i+1

k,j , Z
i+1
k,j for

j ∈ [2i+1] such that in any grid-preserving embedding, X i+1
k,j maps either to

Y i+1
k,j or to Zi+1

k,j . Moreover, the order of the atomic pairs in the pattern tile is
X i+1

k,1 , X
i+1
k,2 , . . . , X

i+1
k,2i+1 and the order of the atomic pairs in the text tile is

Y i+1
k,1 , Z

i+1
k,1 , Y

i+1
k,2 , Z

i+1
k,2 , . . . , Y

i+1
k,2i+1 , Z

i+1
k,2i+1 .

First, notice that the properties hold for i = 0 at the end of the assignment
phase. Fix i ≥ 1. We add for each j ∈ [2i] three multiply gadgets, one that multi-
plies the atomic pair X i

k,j to atomic pairs ˜︂X i+1
k,2j−1 and ˜︂X i+1

k,2j, one that multiplies
the pair Y i

k,j to ˜︁Y i+1
k,2j−1 and ˜︁Y i+1

k,2j , and finally one that multiplies Zi
k,j to ˜︁Zi+1

k,2j−1
and ˜︁Zi+1

k,2j. Observe that the properties of gadgets together with induction imply
that for arbitrary j ∈ [2i+1], ˜︂X i+1

k,j maps either to ˜︁Y i+1
k,j or to ˜︁Zi+1

k,j . Moreover, the
atomic pairs ˜︂X i+1

k,j are already ordered in the pattern by j as desired. However,
the order of the atomic pairs in text is incorrect as for each j ∈ [2i] we have the
quadruple ˜︁Y i+1

k,2j−1,
˜︁Y i+1

k,2j ,
˜︁Zi+1

k,2j−1,
˜︁Zi+1

k,2j

in this specific order.
To solve this, we add for each j ∈ [2i] a flip text gadget that flips ˜︁Y i+1

k,2j , ˜︁Zi+1
k,2j−1

to atomic pairs Zi+1
k,2j−1, Y

i+1
k,2j . Furthermore, we attach a flip pattern gadget to

every other atomic pair in both pattern and text. In particular, we add one that
connects the pair ˜︁Y i+1

k,2j−1 to a pair Y i+1
k,2j−1, one that connects ˜︁Zi+1

k,2j to a pair Zi+1
k,2j

and finally two that connect ˜︂X i+1
k,α to X i+1

k,α for α ∈ {2j − 1, 2j}. The properties of
flip gadgets guarantee that for every j ∈ [2i+1], the pair X i+1

k,j is mapped either to
Y i+1

k,j or to Zi+1
k,j . Moreover, the order of atomic pairs in the text now alternates

between Y and Z as desired.
We described the gadget constructions independently for each variable. The

unfortunate effect is that we might have used up a different total number of tiles
for each variable. We describe a way to fix this. Let k be such that dk is the
largest value and let j be the largest index such that the tiles Tj and Pj have been
used in the multiplication phase for the k-th variable. For every other variable,
we simply attach a chain of copy gadgets connecting every pair at the end of its
multiplication phase all the way to the tiles Pj and Tj. Observe that we need in
total O(logm) entries equal to D for the multiplication phase as dk is at most 3m.

Sorting phase via gadgets. The multiplication phase ended with atomic pairs
X i

k,j in the pattern and Y i
k,j and Zi

k,j in the text for some i, every k ∈ [n] and
j ∈ [dk].1 These pairs are ordered lexicographically by (k, j), i.e., they are bundled
in blocks by the variables. The goal of the sorting phase, as the name suggests, is

1In fact for every j ∈ [2⌈log dk⌉] but we simply ignore the pairs for j > dk.

136

to rearrange them such that they become bundled by clauses while retaining the
embedding properties.

We show how to use gadgets to swap two neighboring atomic pairs in the
pattern. Suppose that X1 and X2 are two atomic pairs in some tile Pi such that
X1 is to the left and below X2 and all the remaining atomic pairs are either to the
right and top of both X1, X2 or to the left and below both X1, X2. Suppose that
Y1, Y2, Z1, Z2 are atomic pairs in the tile Ti such that they are ordered in Ti as
Y1, Z1, Y2, Z2, and every other atomic pair lies either to the right and top or to the
left and below of all of them. Furthermore, suppose that in any grid-preserving
embedding ϕ, the pair Xα is always mapped either to Yα or to Zα for each
α ∈ {1, 2}. Notice that this is precisely the case at the end of the multiplication
phase.

We attach choose gadgets to each of the pairs Y1, Z1, Y2, Z2 and a pick gadget
to both X1, X2. In particular, we add for every α ∈ {1, 2}

• a choose gadget that branches Yα to pairs Y α and ˜︁Yα,
• a choose gadget that branches Zα to pairs Zα and ˜︁Zα, and
• a pick gadget that connects Xα to Xα.

We will now abuse our notation slightly and use the same letters to denote
atomic pairs in different tiles so that the names are carried through with the flip
gadgets. In other words, a flip text gadget shall flip atomic pairs A1, A2 to pairs
A2, A1 and a flip pattern gadget connects atomic pair A to an atomic pair A.
Using three layers of flip gadgets in T , we change the order of the pairs in the
following way. Note that the blue color is used to highlight pairs to which X1 can
be mapped, and red color for the pairs to which X2 can be mapped and arrows
show which pairs are flipped in each step.

Y 1
˜︁Y1Z1

↶↷˜︁Z1Y 2

↶↷˜︁Y2Z2
˜︁Z2 → Y 1

˜︁Y1

↶↷
Z1Y 2

↶↷˜︁Z1Z2
˜︁Y2
˜︁Z2 → Y 1

↶↷˜︁Y1Y 2

↶↷
Z1Z2

↶↷˜︁Z1
˜︁Y2
˜︁Z2

→ Y 1Y 2
˜︁Y1Z2Z1

˜︁Y2
˜︁Z1
˜︁Z2

On the pattern side, we attach three consecutive copies of flip pattern gadget to
both X1 and X2.

Now we perform the actual swap by attaching a flip text gadget that flips X1
and X2 and attaching flip text gadget between each of the four neighboring pairs
in the text, i.e.

↶↷
Y 1Y 2

↶↷˜︁Y1Z2

↶↷
Z1
˜︁Y2

↶↷˜︁Z1
˜︁Z2 → Y 2Y 1Z2

˜︁Y1
˜︁Y2Z1

˜︁Z2
˜︁Z1.

As a next step, we unshuffle the pairs to which X1 and X2 can be mapped,
again by three layers of flip gadgets

Y 2

↶↷
Y 1Z2

↶↷˜︁Y1
˜︁Y2

↶↷
Z1

˜︁Z2
˜︁Z1 → Y 2Z2

↶↷
Y 1

˜︁Y2

↶↷˜︁Y1
˜︁Z2Z1

˜︁Z1 → Y 2

↶↷
Z2
˜︁Y2

↶↷
Y 1

˜︁Z2
˜︁Y1Z1

˜︁Z1

→ Y 2
˜︁Y2Z2

˜︁Z2Y 1
˜︁Y1Z1

˜︁Z1

As before, we attach three consecutive copies of flip pattern gadget to both X1
and X2.

Finally, we add for every α ∈ {1, 2}

137

• a merge gadget that merges Y α and ˜︁Yα to a pair Y ′
α,

• a merge gadget that merges Zα and ˜︁Zα to a pair Z ′
α, and

• a follow gadget that connects Xα to X ′
α.

It follows from the properties of the individual gadgets that in any grid-
preserving embedding, the pair X ′

α is mapped either to Y ′
α or Z ′

α for each α ∈ {1, 2}.
On the other hand, any grid-preserving embedding of the first i tiles can be
extended to the points added in the construction. The crucial observation is that
in the step when the order of X1 and X2 is reversed, four neighboring pairs of
atomic pairs are flipped in T which form all possible combinations of Y1, Z1 and
Y2, Z2. Therefore, we can always choose where to map the pairs X1 and X2 at
the first step to arrive at one of these pairs that get flipped.

Notice that we can use the described construction to swap arbitrary subset
of disjoint neighboring atomic pairs in the pattern in parallel. In general, any
sequence of length ℓ can be sorted using at most ℓ rounds of such parallel swaps.
One possible way to do so is to use the so-called odd-even sort introduced by
Habermann [79]. Since the total number of atomic pairs in the pattern after the
multiplication phase is exactly 3m, the number of rounds needed is at most 3m.
Individually, each of the 3m steps uses only a constant number of layers of gadgets
and thus only a constant amount of D-entries. Therefore, the sorting phase takes
in total O(m) D-entries.

Sorting phase via juxtapositions. We claim that the sorting phase can
be done using significantly fewer D-entries if the class D contains a monotone
juxtaposition.

Suppose that at the beginning of the sorting phase there are atomic pairs
X1, X2, . . . , X3m in the pattern and atomic pairs Y1, Z1, Y2, Z2, . . . , Y3m, Z3m in
the text (both in this precise order) such that in any grid-preserving map-
ping, Xi is mapped either to Yi or to Zi. Our goal is to rearrange the pairs
so that there are atomic pairs Xσ1 , Xσ2 , . . . , Xσ3m in the pattern and atomic pairs
Y σ1 , Zσ1 , Y σ2 , Zσ2 , . . . , Y σ3m , Zσ3m in the text in this order given by permutation
σ of length 3m. Moreover, in any grid-preserving embedding X i is mapped to Y i

if Xi is mapped to Yi, and it is mapped to Zi if Xi is mapped to Zi.
Suppose that the proper-turning path v1, v2, . . . contains D entries equal to D.

Since there are in total only 4 possible images of D given by the orientation F ,
there exists a monotone juxtaposition B and at least D/4 indices j such that
Mvj

= D and the class F(M)vj
contains B. We are going to use only these entries

for the sorting phase.
First, suppose that B = Grid(). Let vi be an entry such that F(M)ci

contains B and recall that we consider only those non-monotone entries that share
a common row with their predecessor, i.e., vi shares a common row with vi−1. We
can construct a tile Qi from two tiles Q1

i and Q2
i where both Q1

i and Q2
i contain an

increasing point set and Q1
i and Q2

i are placed next to each other. In particular,
we can then attach to any atomic pair A in Qi−1 a copy gadget connecting A to
an atomic pair B and choose arbitrarily whether B lies in Q1

i or Q2
i .

Let J1 and J2 be a partition of the set [3m]. We attach a copy gadget ending
in Qα

i to each Xj, Yj and Zj with j ∈ Jα for each α ∈ {1, 2}. In this way, we
rearranged the atomic pairs in P such that first we have all pairs Xj such that
j ∈ J1 (sorted by the indices) followed by all pairs Xj for j ∈ J2 (again themselves

138

X1

X2

X3

X1

X3

X2

P 1
i P 2

i

Pi−1

Pi+1

T 1
i T 2

i
Y1

Z1

Y2

Z2

Y3

Z3

Y1

Z1

Y3

Z3

Y2

Z2

Ti−1

Ti+1

Figure 5.4: Example of one sorting step using the juxtaposition B = Grid()
and partition of the set {1, 2, 3} into J1 = {1, 3} and J2 = {2}. The pattern tiles
are on the left, the text tiles are on the right.

sorted by the indices). Similarly in T , we first have Yj, Zj for j ∈ J1 followed by
Yj, Zj for j ∈ J2. See Figure 5.4.

Notice that the described operation simulates a stable bucket sort with two
buckets. Therefore, we can simulate radix sort and rearrange the atomic pairs
into arbitrary order given by σ by iterating this operation O(logm) times. In this
way, the whole sorting phase uses only O(logm) entries equal to D.

Now suppose that B = Grid(A1 A2) where A1, A2 are two arbitrary monotone
classes. We can use the same construction as before. However, we need to be
careful that some of Q1

i and Q2
i should actually contain a decreasing sequence

instead of increasing. Following the procedure as before, we still have in P first
all the pairs Xj for j ∈ J1 followed by the pairs Xj for j ∈ J2. However, the
order of pairs Xj for j ∈ Jα is now reversed if Aα = . This can be fixed by using
one extra entry whose image under F is B. We partition [3m] into J ′

1 = J1 and
J ′

2 = J2 and attach the same construction once again. The property that every Xj

for j ∈ J1 precedes every Xj for j ∈ J2 is preserved and moreover, any of the
two parts that were reversed in the first step is now ordered again in the correct
increasing order by the indices. Thus, we again implemented a stable bucket sort
with two buckets and we can rearrange the atomic pairs into arbitrary order using
O(logm) such steps.

Now, suppose that B = Grid
(︂

A2
A1

)︂
for two monotone classes A1, A2. In this

case, we can again construct the tile Qi from two tiles Q1
i and Q2

i where both Q1
i

and Q2
i contain a monotone point set determined by the classes A1, A2 but Q1

i and
Q2

i are this time placed on top of each other. First, suppose that A1 = A2 = .
This time we can choose how to split the set [3m] into two sets of consecutive

numbers J1 and J2 such that every element of J1 is smaller than every element of J2
and again connect a copy gadget ending in Qα

i to each Xi, Yj , and Zj with j ∈ Jα

for each α ∈ {1, 2}. However, this time, we also choose the relative order of gadgets
between Q1

i and Q2
i , which enables us to arbitrarily interleave the sequences of

atomic pairs indexed by J1 and J2, respectively. Effectively, we implemented an
inverse operation to the stable bucket sort with two buckets – we split the sequence
of atomic pairs into two (uneven) halves and then interleave them arbitrarily
while keeping each of the two parts in the original order. Therefore, we can again
rearrange the atomic pairs into an arbitrary order iterating this operation O(logm)

139

times and thus using only O(logm) entries equal to D.
Finally, it remains to deal with the case when B = Grid

(︂
A2
A1

)︂
and A1, A2

are arbitrary monotone classes. Observe that the construction described in the
previous paragraph results in interleaving the two sequences and simultaneously
reversing the order of pairs in Jα if Aα = . We can easily resolve this by
prepending an extra step of the same construction. We first split [3m] into the
same halves J ′

1 = J1 and J ′
2 = J2 and use the described construction. However,

we do not interleave the two sets and keep them in the same order. Therefore, we
have only reversed the order of pairs in the half Jα if Aα = . If we then perform
the actual sorting step, each of the sequences will end up in the correct original
order.

Evaluation phase. After the sorting phase, the atomic pairs in the pattern are
bundled into consecutive triples determined by clauses of Φ. We show how to
test whether a clause Kj = (La ∨ Lb ∨ Lc) is satisfied where Lα ∈ {xα,¬xα} for
α ∈ {a, b, c} and a < b < c.

Suppose Xa, Xb and Xc are the three neighboring atomic pairs in P that
correspond to the three literals in Kj. In T , there are six neighboring atomic
pairs Ya, Za, Yb, Zb, Yc, Zc in this precise order such that in any grid-preserving
embedding, the pair Xα is mapped to either Yα or Zα for every α ∈ {a, b, c}.

First, we claim that we can without loss of generality assume that in fact
Kj = (xa ∨xb ∨xc). If that was not the case, we could use one layer of flip gadgets
to reverse the order of Yα, Zα for each α such that Lα = ¬xα.

As in the sorting phase, we slightly abuse the notation and use the same letters
to denote atomic pairs in different tiles so that any gadget with the same number
of input and output atomic pairs carries the names through. We add one layer of
gadgets, in particular

• a choose gadget that branches Zb to Zb and ˜︁Zb, and
• pick gadgets to Ya, Za, Yb, Yc, Zc, Xa, Xb and Xc.

We continue with adding two layers of flip gadgets, modifying the order of
atomic pairs in the text as follows

YaZa

↶↷
YbZb

˜︁Zb

↶↷
YcZc → Ya

↶↷
ZaZbYb

↶↷˜︁ZbZcYc → YaZbZaYbZc
˜︁ZbYc,

and two consecutive copies of flip pattern gadget to all Xa, Xb and Xc. Notice
that the order of the atomic pairs in the text has exactly the same structure as
the word in Observation 4.2. This construction is done for each clause in parallel.
Therefore, it uses only constantly many layers of gadgets and in particular, it uses
only O(1) D-entries of the path.

That concludes the construction of P and T . Observe that each tile in both
P and T contains O(m) points. If the construction uses D entries equal to D,
then we need to start with a proper-turning path of length L = 8/ϵ ·D where ϵ is
the constant given by the D-rich property of C. The constant 8 appears since we
first throw away at most half D-entries that do not share the same row with their
predecessor, and subsequently, we use only the most frequent symmetry (out of 4)
of D under F when sorting by juxtapositions.

140

The total amount of D-entries used by the construction depends on how many
steps are needed for the sorting phase. If D contains a monotone juxtaposition,
then the total amount of D-entries used is O(logm) and thus, the length of both
π and τ is bounded by O(m logm). Otherwise, if we sort using only gadgets, the
total amount of D-entries used by the reduction is O(m) and thus the length of
both π and τ is bounded by O(m2). This gives rise to the two different lower
bounds for the runtime of an algorithm solving C-PPM under ETH.

Beyond grid-preserving embeddings. Now, we modify both π and τ so that
any anchored embedding must already be grid-preserving. To that end, take P ′

to be the family of tiles obtained from P by adding atomic pairs A1, A2 to the
initial tile P2 so that A1 is to the left and below everything else in P2 and A2
is to the right and above everything else in P2. However, both A1 and A2 are
sandwiched by the anchor in P1. We then attach to both A1, A2 a chain of copy
gadgets spreading all the way to the last tile used by P . We obtain T ′ from T in
the same way by adding atomic pairs B1, B2 sandwiched by the anchor to T1 and
a chain of copy gadgets attached to each. We let π′ and τ ′ be the F -assemblies of
P ′ and T ′.

Observe that in any anchored embedding of π′ into τ ′, the image of Aα is
mapped to the image of Bα for each α ∈ {1, 2}. The chain of copy gadgets
attached to Aα then must map to the chain of gadgets attached to Bα and these
chains force that the image of P ′

i maps to the image of T ′
i for every i. Observe

that |π′| = O(|π|) and |τ ′| = O(|τ |).

Claim 5.12. The formula φ is satisfiable if and only if there is an anchored
embedding of π′ into τ ′.

The “only if” part Let φ be a satisfiable formula and fix arbitrary satisfying
assignment represented by a function ρ : [n] → {T, F}, where ρ(k) = T if and
only if the variable xk is set to true in the chosen assignment.

We map the image of P ′
1 ∪ P ′

2 to the image of T ′
1 ∪ T ′

2. In the assignment
phase, we map the pair X1

k,1 to Y 1
k,1 if ρ(k) = T , otherwise we map it to Z1

k,1.
The embedding of the multiplication phase is then uniquely determined by the
properties of the gadgets. In particular at the end of the multiplication phase,
the pair Xℓ

k,j for every j is mapped to Y ℓ
k,j if ρ(k) = T and to Zℓ

k,j otherwise.
The mapping is then straightforwardly extended through the sorting phase.

We just have to be careful when swapping two neighboring pairs to pick correctly
between Y α and ˜︁Yα (or Zα and ˜︁Zα) such that the swap itself is possible.

Recall that at the end of the sorting phase, we have for each clause Kj =
(La ∨ Lb ∨ Lc) a consecutive block of three pairs Xa, Xb, Xc in a pattern tile and
a consecutive block of six pairs Ya, Za, Yb, Zb, Yc, Zc in a text tile such that
Xα is mapped to Yα if ρ(α) = T for every α = {a, b, c}. The fact that we can
extend the embedding through the evaluation phase is a direct consequence of
Observation 4.2 since the clause Kj is satisfied by ρ.

The “if” part Let ϕ be an anchored embedding of π′ into τ ′. As we argued,
this implies that there is a grid-preserving embedding of π into τ . Using this
grid-preserving embedding, we define a satisfying assignment ρ : [n] → {T, F}.

141

We set ρ(k) = T if the pair X1
k,1 is mapped to Y 1

k,1 and we set ρ(k) = F if it is
mapped to Z1

k,1. This property is clearly maintained throughout the multiplication
and sorting phases due to the properties of gadgets.

At the beginning of the evaluation phase, we thus have for each clause Kj =
(La ∨ Lb ∨ Lc) a consecutive block of three pairs Xa, Xb, Xc in a pattern tile and
a consecutive block of six pairs Ya, Za, Yb, Zb, Yc, Zc in a text tile such that Xα

is mapped to Yα if and only if ρ(α) = T for every α = {a, b, c}. As before, we
assume that Kj = (xa ∨ xb ∨ xc). It remains to argue that it cannot happen that
the pair Xα is mapped to Zα for every α ∈ {a, b, c}. But that is not possible due
to Observation 4.2 and thus, every clause of φ is satisfied with the assignment
given by ρ.

Finally, we drop the assumption about anchored embeddings via the usual trick
of inflating the anchors in π′ and τ ′ with monotone sequences of length |τ ′|. This
concludes the proof of Theorem 5.6.

5.3.3 Principal classes
We aim to use the properties of principal classes derived in Section 2.3. As a result,
we will be able to show that Av(σ)-PPM is NP-complete for every principal class
with the bicycle property.

First of all, Lemma 2.54 immediately shows that Av(1⊖π) has the computable
Av(π)-rich path property. In particular, it proves that Av(σ)-PPM is NP-complete
for σ equal to 4321, 4312, 4231 or any of their symmetries. Moreover, the stronger
conditional lower bound on the runtime of any algorithm holds due to the following
observation.

Observation 5.13. The class Av(π) for any π of length 3 is non-monotone-
griddable and moreover, it contains a monotone juxtaposition as a subclass.

The bicycle property of all the other principal classes followed from Lemma 2.55.
Let us show that the same lemma implies that each of these classes has the
computable Av(σ)-rich path property for some σ of length 3. The proof of the
following proposition follows closely the proof of Proposition 2.34.

Proposition 5.14. Let D be a non-monotone-griddable class that is sum-closed
or skew-closed. If M is a gridding matrix whose cell graph GM contains a proper-
turning cycle with at least one entry equal to D, then Grid(M) has the computable
D-rich path property.

Proof. Before the actual proof, we need to extend the notion of consistent orien-
tations to gridding matrices whose every entry is either sum-closed or skew-closed.
We say that F = (fc, fr) is a consistent orientation of such a gridding matrix M if
the entry Mi,j is sum-closed if fc(i) · fr(j) = 1 and otherwise, Mi,j is skew-closed.

We claim that it is possible to obtain in polynomial time a gridding matrix
M with the following properties:

(i) Grid(M) ⊆ C,
(ii) the cell graph of M consists of a single proper-turning cycle,

142

1

−1

1

1−1

1

D

3

2

1

3

2

1

1

2

3

1 2 3 3 2 1 1 2 3

D
D

Figure 5.5: Left: a gridding matrix M whose cell graph is a cycle with a single
D-entry together with a consistent orientation F given by the numbers along the
edges. Right: a gridding matrix N whose grid class is contained in Grid(M) and
whose cell graph forms one long path with constant fraction of D-entries. The
numbers along the edges are the coordinates of the original cells under matrix
F -assembly and we highlighted the endpoints of the path.

(iii) M contains a unique entry equal to D and all other non-empty entries are
equal to or to , and

(iv) M has a consistent orientation F .

Establishing (i), (ii) and (iii) is straightforward because each infinite permu-
tation class contains either or as a subclass, and replacing an entry of M
by its subclass can only change Grid(M) into its subclass. Let M′ be a gridding
matrix that satisfies (i), (ii) and (iii). In order to guarantee (iv), we use the
usual trick of replacing each entry of M′ by a suitable 2 × 2 matrix. Let M′×2

be a gridding matrix obtained from M by replacing every entry Mi,j with the
matrix

(︂ · Mi,j

Mi,j ·

)︂
if Mi,j is sum-closed and with the matrix

(︂Mi,j ·
· Mi,j

)︂
otherwise.

Clearly, Grid(M′×2) is a subclass of Grid(M′) and a consistent orientation F
of M′×2 can be obtained using exactly the same argument as for the monotone
matrices in Lemma 2.35. We take as M any connected component of GM′×2 .

Let us assume for the rest of the proof that D is sum-closed, since the skew-
closed case is symmetric and let Mi⋆,j⋆ be the D-entry in M. Without loss of
generality, we assume that fc(i⋆) = fr(j⋆) = 1 or in other words, the orientation F
does not transform the (i⋆, j⋆)-cell at all. This is possible since we assume that D
is sum-closed.

For a natural number k, we show how to define a family of matrices Λ that
will create upon its F-assembly a gridding matrix whose cell graph is a path of
length at least k. We define Li⋆,j⋆ as the k × k matrix S with non-empty entries
of the form Si,i+1 = D for i ∈ [k − 1]. And for every other vertex v of GM, we
simply take as Lv the increasing matrix with k non-empty entries on its diagonal.

Let N be the F -assembly of Λ. See Figure 5.5. It is easy to see that Grid(N) is
a subclass of Grid(M) since F is a consistent orientation. Moreover, N contains a
constant fraction of D-entries. Therefore, it remains only to show that GN is a path.
This fact follows using an identical argument as in the proof of Proposition 2.34

143

and we omit further details here.

Corollary 5.15. If σ is a permutation of length at least 4 that is not symmetric
to any of 3412, 3142, 4213, 4123 or 41352, then Av(σ)-PPM is NP-complete, and
unless ETH fails, it cannot be solved in time 2o(n/ log n).

Proof. We showed in Section 2.3 that all the classes of interest are covered
by Lemmas 2.54 and 2.55. It follows immediately that every class covered by
Lemma 2.54 has the computable Av(π)-property for some π of length 3. For the
remaining classes covered by Lemma 2.55, the computable Av(π)-rich path property
follows from Proposition 5.14. Finally, it suffices to apply Observation 5.13 and
Theorem 5.6.

This result leaves the hardness of Av(σ)-PPM open only for 5 choices of σ up
to symmetry. We collect all the remaining unresolved cases as an open problem.

Open problem 5.16. What is the complexity of Av(σ)-PPM, when σ is a
permutation from the set {3412, 3142, 4213, 4123, 41352}?

144

6. Grid classes
In this chapter, we focus our attention solely on grid classes. On one hand, we see
how the results obtained in previous chapters apply in this specific case. However,
we also derive new results tailored specifically for grid classes.

The organization of this chapter is as follows. In Section 6.1, we consider
only monotone grid classes. We show that there exists a sharp trichotomy for
the tree-width growth and hardness of Grid(M)-Pattern PPM determined by
simple properties of the cell graph. Namely, there are three distinct regimes –
(i) the cell graph is acyclic, (ii) it contains at most one cycle in each connected
component, or (iii) it contains two connected cycles.

In Section 6.2, we extend this characterization to general grid classes. We fully
characterize the grid classes of unbounded tree-width and moreover, we show that
they coincide with the classes for which the problem Grid(M)-Pattern PPM is
NP-complete.

6.1 Monotone grid classes
Depending on the properties of the cell graph GM, we distinguish between three
main types of monotone gridding matrices. We say that a monotone gridding
matrix M is

• acyclic if GM is acyclic,
• unicyclic if GM is not acyclic but it contains at most one cycle in each

connected component, and
• polycyclic if GM contains two connected cycles.

It has been previously observed that there is a sharp increase in structural
complexity when going from acyclic to unicyclic classes. This is mostly captured
by the fact that acyclic grid classes can be expressed as geometric grid classes
(Proposition 1.4) which are well-behaved in many ways. For instance, geometric
grid classes (and thus also acyclic grid classes) are well-quasi-ordered while unicyclic
(and polycyclic) grid classes are not [7].

In this section, we confirm this behavior and moreover, we show that a second
jump in complexity occurs when going from unicyclic to polycyclic classes. In
particular, we exhibit a complete classification of the tree-width growth function as
well as the complexity of pattern-restricted PPM for monotone gridding matrices.
See Table 6.1 for summary.

6.1.1 Tree-width
Theorem 6.1. For a monotone gridding matrix M one of the following holds:

• Either M is acyclic and pwGrid(M) ∈ Θ(1), or
• M is unicyclic and twGrid(M)(n) ∈ Θ(

√
n), or

• M is polycyclic and twGrid(M)(n) ∈ Θ(n).

145

Property acyclic unicyclic polycyclic
twGrid(M)(n) Θ(1) Θ(

√
n) Θ(n)

Grid(M)-Pattern PPM in P NP-complete NP-complete
– best known algorithm nO(1) nO(

√
n) 2n

– lower bound under ETH — 2o(
√

n) 2o(n)

Grid(M)-PPM in P in P in P

Table 6.1: Tree-width growths and complexity of PPM for monotone grid classes.

<L <L <L <L <L <L <L

Figure 6.1: Two non-overlapping sets of edges (drawn by red solid and blue dashed
lines, respectively) with respect to a linear order <L of the vertices.

Recall that the lower bounds of all three cases were proved in Section 2.2.
Moreover, the upper bound twGrid(M)(n) ∈ O(n) for a polycyclic gridding ma-
trix M is trivial. Therefore, it remains to prove the upper bounds for acyclic and
unicyclic classes.

Geometric classes

First, we focus our attention on geometric grid classes. This will allow us on one
hand to infer the constant upper bound for any acyclic monotone grid class. On
the other hand, we will obtain along the way tools necessary for proving the upper
bound on the tree-width of unicyclic grid classes later.

As the main standalone result regarding geometric grid classes, we show that
any geometric grid class has bounded path-width. Note that the constant bound
for acyclic monotone grid classes follows immediately from Proposition 1.4.

Proposition 6.2. If M is a k × ℓ monotone gridding matrix then

pwGeom(M)(n) ≤ 4k + 4ℓ− 4.

Before proving Proposition 6.2, we need to first expand our set of tools. Let
G = (V,E) be a graph together with a linear ordering <L of its vertices. We say
that a set of edges F ⊆ E is non-overlapping with respect to <L if for every two
edges {u1, u2}, {v1, v2} ∈ F it holds that either uα ≤L vβ for all possible choices
of α, β ∈ {1, 2} or vβ ≤L uα for all possible choices of α, β ∈ {1, 2}. In other
words, we forbid two edges whose endpoints are ordered as u1 ≤L v1 <L u2 ≤L v2
or u1 ≤L v1 <L v2 ≤L u2. See Figure 6.1.

Let M be a k × ℓ gridding matrix and let π be an M-gridded permutation.
An edge {(i, πi), (j, πj)} of the incidence graph Gπ is horizontal if |i− j| = 1, and
it is vertical if |πi − πj| = 1. Thus, the horizontal edges form a left-to-right path,
and the vertical ones form a bottom-to-top path. A horizontal edge is said to be
exceptional (with respect to the given gridding) if its vertices belong to different
columns of the gridding, and a vertical edge is exceptional if its vertices belong to
different rows. There are therefore k − 1 exceptional horizontal edges and ℓ− 1
exceptional vertical edges, hence at most k + ℓ− 2 exceptional edges overall.

146

Assuming that a monotone gridding matrix M is consistently oriented, we
show that there is a vertex ordering of any permutation π ∈ Geom(M) such
that the edges of the incidence graph Gπ can be partitioned into at most O(1)
non-overlapping sets. Later, this ordering is used for drawing incidence graphs on
a surface with a small genus.

Lemma 6.3. Let M be a monotone k×ℓ gridding matrix equipped with a consistent
k × ℓ orientation F , and let π be a permutation from Geom(M) equipped with an
M-gridding. There exists a linear order <L on the points of π such that

(a) the points of the i-th column of the M-gridding induce a suborder given by
the increasing order of their x-coordinates if fc(i) = 1 and the decreasing
order otherwise,

(b) the points of the j-th row of the M-gridding induce a suborder given by the
increasing order of their y-coordinates if fr(j) = 1 and the decreasing order
otherwise, and

(c) the edges of the graph Gπ can be partitioned into at most 2k + 2ℓ − 2
non-overlapping sets with respect to <L.

Proof. We partition the exceptional edges into at most k + ℓ− 2 singleton sets
which are trivially non-overlapping with respect to arbitrary linear order.

Let S be the subset of the standard figure ΛM isomorphic to Sπ and let
g : Sπ → S be the corresponding bijection. For a point p ∈ Sπ such that p belongs
to the (i, j)-cell of the M-gridding, we define the rank of p as the distance of the
point g(p) from the point(︄

i− 1
2 − fc(i)

2 , j − 1
2 − fr(j)

2

)︄
.

Less formally, we define the rank to be the distance to a specific corner of the
rectangle [i−1, i]×[j−1, j], depending on the orientation of the (i, j)-cell. Observe
that we can always choose S in a way such that the ranks are pairwise different.
That allows us to define <L as the linear order given by the ranks.

The conditions (a) and (b) follow straightforwardly from the consistency of the
orientation F and our choices of suitable corners used for computing the ranks.
Moreover, all the non-exceptional horizontal edges of Gπ can be partitioned into
k sets, each connecting points in a single column. And since we already know
that points of a single column are ordered accordingly in L, each such set is
non-overlapping. Using the same argument, we split the vertical non-exceptional
edges of Gπ into ℓ non-overlapping sets, one for each row of the M-gridding.
Together with the exceptional edges, we obtain the partition of all edges into at
most 2k + 2ℓ− 2 non-overlapping sets as promised.

Now we show how Lemma 6.3 (c) implies that every geometric grid class has
bounded path-width. In fact, we show that every geometric grid class has bounded
a different parameter, called cut-width, and we use the fact that path-width of
any graph is upper-bounded by its cut-width.

Informally, small cut-width captures that the vertices of a graph can be ordered
in a way such that every cut between a prefix and suffix with respect to this order

147

contains only small number of edges. Given a graph G and a linear order <L of
its vertices, the cut-width of G with respect to <L is

cutw<L(G) = max
u∈V (G)

|{{v, w} ∈ E(G) | v ≤L u <L w}|.

The cut-width of a graph G, denoted by cutw(G), is defined as the minimum
cutw<L(G) over all possible vertex orderings <L. The following connection of
cut-width to path-width is due to Korach and Solel [94] and based on an earlier
proof of Bodlaender [27].

Lemma 6.4 ([27, 94]). For any graph G, we have pw(G) ≤ cutw(G).

Proof of Proposition 6.2. Observe that the refinement M×2 defines the same
geometric grid class as M. Therefore, we can assume without loss of generality
that M possesses a consistent orientation F due to Lemma 2.35. The only caveat
is that any bound we obtain assuming an existence of a consistent orientation
must be adjusted by a factor of two due to the size increase occurring when we
replace M with M×2.

Let π be a permutation from the class Geom(M) with the corresponding
M-gridding. We can apply Lemma 6.3 to obtain a linear order <L on the points
of π. We claim that Gπ has small cut-width with respect to the order <L. To
see that, observe that any cut respecting the order <L contains at most one edge
from each non-overlapping set and therefore, cutw<L(Gπ) is at most 2k + 2ℓ− 2.
The desired upper bound on the path-width of π follows from Lemma 6.4.

Unicyclic grid classes

We state and prove the upper bound on the tree-width growth of unicyclic grid
classes as a standalone proposition.

Proposition 6.5. If M is a unicyclic monotone gridding matrix then

twGrid(M)(n) ∈ O(
√
n).

The last piece missing before before we can prove Proposition 6.5 is the
following lemma about graphs drawn on surfaces with few crossings, which is
proved using standard methods [59].

Lemma 6.6. If G is a graph on n vertices that can be drawn on a surface with
Euler genus g with O(n) crossings, then tw(G) ∈ O(√gn).

Proof. Let G = (V,E) be a graph on n vertices together with a drawing on a
surface with Euler genus g. We assume that no three edges cross in a single point.
We define a graph G′ in the following way. We replace each crossing with a new
vertex of degree 4, and we split each e ∈ E into its consecutive segments between
endpoints and crossings. It follows from the assumptions that G′ has O(n) vertices
and moreover, it can be drawn on the surface with Euler genus g without any
crossings. It follows from the work of Gilbert, Hutchinson and Tarjan [74], that
tw(G′) ∈ O(√gn).

Using a tree decomposition (T, β) of G′ with width t, we define a tree decom-
position (T, β′) of G with width 4t+ 3 by replacing every vertex corresponding to

148

a crossing with the four endpoints of the two edges participating in this particular
crossing. Clearly, every vertex belongs to some bag β(v), the same holds for every
edge, and the size of each bag is at most 4t+ 4. It is also not hard to check that
each vertex induces a connected subtree in T .

Proof of Proposition 6.5. Let π be a permutation of Grid(M) with a given M-
gridding. We start by removing all exceptional edges. As we observed, there are at
most k+ ℓ−2 exceptional edges. Let G′ = (V ′, E ′) be the graph obtained from Gπ

by removing them from Gπ. It is sufficient to show that tw(G′) ∈ O(
√
n), as

adding back the exceptional edges increases the tree-width at most by a constant.
We aim to show that G′ can be drawn on a surface of Euler genus 1 with O(n)

total crossings. Suppose that c1, c2, . . . , cm are the entries of M that lie on its only
cycle in this order. We choose the starting entry c1 to be a corner of the cycle, i.e.,
it shares a common row with its one neighbor on the cycle and a common column
with the other. Let ai, bi be the coordinates of the entry ci, i.e., ci lies in the ai-th
column and bi-th row. The cell graph GM consists of the cycle and trees that are
attached to it. If we remove all the edges that participate in the cycle, we end up
with m trees T1, . . . , Tm called tendrils such that the tree Ti contains the entry ci.

We now define two functions f ⋆
c , f

⋆
r : [m] → {−1, 1} that will capture an almost

consistent orientation of the entries c1, . . . , cm. Let M′ be the gridding matrix
obtained from M by removing everything except for the entries on the cycle
and then additionally removing c1. It follows from our assumption about c1 that
M′ is acyclic and thus, it has a consistent orientation F ′ = (f ′

c, f
′
r). For every

i ≥ 2, we set f ⋆
c (i), f ⋆

r (i) to be the values f ′
c(ai), f ′

r(bi). Additionally, we define
f ⋆

c (1) = f ′
c(a1) and then we set f ⋆

r (1) such that f ⋆
c (1) · f ⋆

r (1) = 1 if and only if c1
is an increasing entry. In this way, it holds for every i ∈ [m] that f ⋆

c (i) · f ⋆
r (i) = 1

if and only if ci is increasing. Moreover, if ci and cj share a common column then
f ⋆

c (i) = f ⋆
c (j). And finally, if ci and cj share a common row then also f ⋆

r (i) = f ⋆
r (j)

as long as i and j are different from 1.
Now for i ∈ [m], let Mi be the gridding matrix obtained from M by removing

everything except the tendril Ti and let πi be the subpermutation of π induced by
the non-empty entries of Mi. Since Mi is acyclic, it has a consistent orientation
F i = (f i

c , f
i
r). Moreover, we can assume that f i

c(ai) = f ⋆
c (i) and f i

r(bi) = f ⋆
r (i) as

otherwise we could just flip all the signs in F i. By Proposition 1.4, the induced
Mi-gridding of πi shows that πi belongs to the geometric grid class Geom(Mi)
since Mi is acyclic. Applying Lemma 6.3 on Mi, F i and πi, we obtain a linear
order <Li

on the points of πi.
We are ready to describe the drawing of G′. In order to simplify our arguments,

we draw G′ on an infinite cylinder [0,m− 1] × R where we implicitly work with
the x-coordinates in arithmetic modulo m. Such a drawing can then easily be
transformed into a drawing on the plane with the same number of crossings via a
suitable projection. We call the vertical line x = i the i-th meridian. First, let us
describe the position of the vertices. For every i ∈ [m], the vertices corresponding
to points of πi are placed on i-th meridian in the order <Li

from bottom to top.
The actual distances in between them do not matter.

We split the edges of E ′ into two groups. We call any edge that connects two
points of πi an inner edge, and every edge that connects a point in πi with a point
in πj for i ̸= j an outer edge. We start by drawing the inner edges. We first draw
every inner edge as a circular arc connecting its two endpoints and, afterwards,

149

we horizontally shrink all these edges so that they occupy only a narrow band
around the i-th meridian.

Let us count the number of crossings between two inner edges. Due to the
shrinking step, two inner edges can intersect only if they both connect two points
of πi for some i. We fix i ∈ [m]. Notice that the edges of E ′ induced by πi

form a subset of the edges of Gπi . By part (c) of Lemma 6.3, these edges can
be partitioned into at most 2k + 2ℓ − 2 sets Ei

1, E
i
2, . . . , E

i
2k+2ℓ−2 that are all

non-overlapping with respect to <Li
. The non-overlapping property implies that

any edge e ∈ Ei
j cannot intersect any other edge from Ei

j, and it can intersect at
most two edges from every Ei

j′ for j′ ̸= j. Therefore, each edge participates in at
most 4k + 4ℓ − 6 = O(1) crossings. Summing over all choices of i, there are at
most O(n) crossings between two inner edges.

Now, we describe the drawing of the outer edges. Observe that the outer
edges can be partitioned into at most m sets depending on the column or row
that is shared by both their endpoints. If an outer edge connects points of πi and
πj such that |i − j| = 1, then we draw it as the straight-line segment between
the two vertices that does not cross any meridian. We need to be more careful
with the remaining edges. We draw an edge that connects points of πi and πj for
|i− j| > 1 as a polyline consisting of straight-line segments between the h-th and
(h+ 1)-th meridian for every h ∈ {i, . . . , j − 1}. Suitably choosing the points on
each meridian, we can guarantee that the segments between h-th and (h+ 1)-th
meridian do not intersect as long as <Lh

and <Lh+1 order the points in ch and
ch+1 consistently.

If the whole matrix M possesses a consistent orientation, then Lemma 6.3
parts (a) and (b) imply that no two outer edges intersect as the orders of cells
in a given row or a column all agree. Otherwise, this is true for every column
and every row except for the row b1. Assuming without loss of generality that
c1 shares a common row with c2, the order of points of π1 and π2 on the 1st and
2nd meridian are reversed. In such case, the opposite happens and every two
segments of outer edges in the band between 1st and 2nd meridian intersect. This
is, however, easily fixed by adding a cross-cap in between these two meridians
such that every segment of an outer edge lying in this band crosses through it.
Thus, we obtained a drawing of G′ either on a plane or on a projective plane. See
Figure 6.2.

It remains to count the number of intersections formed between pairs consisting
of an inner and an outer edge. Fix an outer edge e and recall that e is a polyline
formed by at most m segments. A segment between the i-th and (i + 1)-th
meridian can intersect only with inner edges of πi in the near vicinity of the i-th
meridian and with inner edges of πi+1 in the near vicinity of the (i+1)-th meridian.
Moreover, it can intersect at most one edge from any non-overlapping set with
respect to <Li

or <Li+1 . Thus, it follows from Lemma 6.3 (c) that each segment
intersects at most 4k+4ℓ−4 edges and e intersects at most m ·(4k+4ℓ−4) = O(1)
inner edges in total. Putting it all together, there are O(n) crossings in total and
by Lemma 6.6 we get that tw(G′) ∈ O

(︂√
n
)︂
.

This concludes the proof of Theorem 6.1.

150

Figure 6.2: A schematic drawing of Gπ for π from a unicyclic grid class on the
projective plane. Instead of drawing the specific points of π, we place arrows to
indicate the orientation of each cell. Different color is used for each set of edges
that share a single row or column, and the exceptional edges are omitted. Note
that edges connecting points in the same row (column) can be both inner and
outer as is the case of the yellow edges.

6.1.2 Pattern matching

We complement Theorem 6.1 by showing that a similar classification exists for
the complexity of Grid(M)-Pattern PPM. Note that previously not much was
known about complexity of this problem. Neou, Rizzi and Vialette [101] designed
a polynomial-time algorithm solving Grid

(︂)︂
-Pattern PPM for the class of

the so-called wedge permutations. All other cases were wide open and Neou [100]
asked about the hardness of Grid(M)-Pattern PPM for a monotone gridding
matrix M in his thesis. We completely resolve this question.

Theorem 6.7. For a monotone gridding matrix M one of the following holds:

• Either M is acyclic and Grid(M)-Pattern PPM is in P, or
• M is unicyclic, Grid(M)-Pattern PPM is NP-complete and it cannot be

solved in 2o(
√

n) under ETH, or
• M is polycyclic, Grid(M)-Pattern PPM is NP-complete and it cannot be

solved in 2o(n/ log n) under ETH.

Proof. The first case follows using the O(ntw(π)+1) algorithm of Theorem 4.12
since the tree-width of any acyclic monotone grid class is bounded by constant due
to Theorem 6.1. As for the second case, any unicyclic monotone grid class has the
poly-time computable long path property by Proposition 2.34 and thus, we can
apply the hardness reduction of Theorem 4.15. Similarly, any polycyclic monotone
grid class has the poly-time computable deep tree property by Proposition 2.41
and we can apply the hardness reduction of Theorem 4.18.

We conclude this section with a remark that the situation is different and
much easier in the case of the text-restricted variant of PPM. It follows directly
from Theorem 5.5 that the problem Grid(M)-PPM is polynomial-time solvable
for any monotone gridding matrix M.

151

6.2 General grid classes
In this section, we generalize the results of Theorems 6.1 and 6.7 to any gridding
matrix whose every entry has bounded tree-width. We shall see that in addition
to cycles, there is only one other obstacle to bounded tree-width.

Let M be a gridding matrix whose every entry has bounded tree-width. We
say that an ordered pair (p, q) of vertices in GM is a bumper if either Mq has
unbounded horizontal grid-width and shares the same column with Mp, or if
Mq has unbounded vertical grid-width and shares the same row with Mp. A
bumper-ended path is a path P = p1, . . . , pk in GM such that both (p2, p1) and
(pk−1, pk) are bumpers. An example is a path with endpoints Av(σ1) and Av(σ2)
where σ1 and σ2 are arbitrary permutations of length at least 3.

We show that an existence of a bumper-ended path implies in a fairly straight-
forward way that Grid(M) has the cycle property and thus, unbounded tree-width.
It is perhaps more surprising (and certainly harder to prove) that conversely, any
acyclic class with no bumper-ended path has tree-width bounded by constant.
Again, the same dividing line holds for the hardness of Grid(M)-Pattern PPM.

Theorem 6.8. Let M be a gridding matrix such that every entry of M has
bounded tree-width. Then one of the following holds:

• Either GM is a forest that avoids a bumper-ended path, twGrid(M) ∈ Θ(1)
and Grid(M)-Pattern PPM can be decided in polynomial time, or

• GM contains a bumper-ended path or a cycle, twGrid(M) ∈ Ω(
√
n) and

Grid(M)-Pattern PPM is NP-complete.

Unlike monotone grid classes, the gridding matrices of general grid classes may
contain finite non-empty classes. However, we can ignore these entries without
affecting the properties we are interested in. To see this, let M′ be the gridding
matrix obtained by removing all finite entries from a gridding matrix M. Note
that the cell graph of M is equal to the cell graph of M′. Moreover, the NP-
completeness of Grid(M′)-Pattern PPM trivially implies the NP-completeness
of Grid(M)-Pattern PPM. Finally, Grid(M′) has bounded tree-width if and
only if Grid(M) has bounded tree-width since inserting a constant number of
points into a permutation increases its tree-width at most by a constant. Thus, if
M′ satisfies one of the two options in Theorem 6.8, then M satisfies this option
as well. From now on, we will assume that M contains only infinite (or empty)
entries.

6.2.1 Classes with bumper-ended paths
We show that any grid class Grid(M) containing a bumper-ended path in its
cell graph GM has the cycle property. The second part of Theorem 6.8 then
follows since Grid(M) has the poly-time computable long path property by
Proposition 2.34 and we can apply the relevant results for classes with the long
path property(Proposition 2.33 and Theorem 4.15).

Lemma 6.9. Let M be a gridding matrix such that every entry of M has bounded
tree-width. If GM contains a bumper-ended path then Grid(M) has the cycle
property.

152

Mp1 Mp2

Mp3Mp4

Mp5

→ →

Figure 6.3: Transforming a bumper-ended path to cycle in the proof of Lemma 6.9.

Proof. Consider the bumper-ended path p1, p2, . . . , pk. Let us assume that p1
shares a column with p2 and pk shares a column with pk−1, and therefore both
Mp1 and Mpk

have unbounded horizontal grid-width; the other cases can be
proved analogously. Each of the infinite classes Mpi

contains a monotone subclass
Ci due to the Erdős–Szekeres theorem [65]. Moreover, the classes Mp1 and Mpk

contain a horizontal monotone juxtaposition by Lemma 2.21. Let Grid(C1 D1) be
the juxtaposition contained in Mp1 and Grid(Ck Dk) the juxtaposition contained
in Mpk

. We define the monotone gridding matrix M′ by replacing every entry of
M with the following 2 × 2 matrix:

• entry Mpi
for i between 2 and k − 1 is replaced with C×2

i

• entry Mpt for t ∈ {1, k} is replaced with
(︂

∅ ∅
Ct Dt

)︂
, and

• every other entry is replaced with an empty 2 × 2 matrix.

See Figure 6.3.
Clearly, Grid(M′) is a subclass of Grid(M). The (i, j)-block of M′ is the 2×2

submatrix obtained from the (i, j)-cell in M. If we forget about the blocks of p1
and pk we are left with two disjoint copies of the original path. Adding back the
blocks connects the endpoints of both paths together and creates a cycle since p2
shares the same column with p1 and pk−1 shares the same column with pk. Thus,
Grid(M′) is a monotone grid subclass of Grid(M) whose cell graph contains a
cycle.

6.2.2 Classes without bumper-ended paths
For the rest of this section, we choose to work with grid-width rather than
tree-width as it is more convenient. This does not affect any of the results
since grid-width and tree-width are equal up to a multiplicative constant by
Corollary 2.12. We show that any acyclic grid class avoiding a bumper-ended
path has bounded grid-width. The first part of Theorem 6.8 then follows since
PPM can be solved in time O(ntw(π)+1) due to Theorem 4.12.

Recall that the intervalicity of a set A ⊂ N, denoted int(A), is the size of
the smallest interval family I such that ⋃︁ I = A. For a point set S ⊂ N2, we
let Πx(S) be the projection of S onto the x-axis and Πy(S) the projection of S
onto the y-axis. The grid-complexity of S is then defined as the maximum of
int(Πx(S)) and int(Πy(S)). In the rest of this section, we use intx(S) and inty(S)
as shorthands for int(Πx(S)) and int(Πy(S)), respectively.

153

Figure 6.4: Illustration of Lemma 6.11. For any subset S of a permutation
π ∈ Grid

(︂)︂
, we have inty(S) ≤ 2 · intx(S). The red segments along the borders

of the diagram show the intervalicity of each projection.

Proposition 6.10. Let M be a gridding matrix such that every entry of M
has bounded grid-width. If GM is a forest that avoids a bumper-ended path then
Grid(M) has bounded grid-width.

Due to the technical nature of the proof, we first briefly describe the main
idea. Let M be an acyclic gridding matrix avoiding a bumper ended-path and let
π ∈ Grid(M). First, we show that we can find a ‘central’ entry r in M such that
no path starting in r ends with a bumper.

Let πr be the subpermutation of π contained in the cell r. We take an optimal
grid tree Tr of πr with grid-width g. Using Tr as a guide, we construct a grid
tree T of the whole permutation π. When reading Tr from the root, we can
interpret every vertex as splitting a set of grid-complexity at most g into two sets
of grid-complexity at most g. Suppose that r occupies the (i, j)-cell. Instead of
cutting up only the points in the cell r, we split in T both the i-th column and
j-th row into two sets of at most g strips such that on πr, this splitting coincides
with Tr.

If we can show that there is a function f such that this splitting has grid-
complexity at most f(g) inside any cell v in the i-th column, we can use the
same procedure to split the row occupied by v into two unions of at most f(g)
horizontal strips (and symmetrically for the cells in the j-th row). Applying this
idea recursively, we can ‘spread’ the partition of πr into a partition of the whole
permutation π whose grid-complexity remains bounded even though it quickly
increases with the distance from r. Luckily, the grid-complexity remains bounded
at each step of this process as a result of the fact that no path starting in r ends
with a bumper.

The final missing piece before the proof of Proposition 6.10 is the following
lemma. We prove that whenever we select k horizontal strips in a permutation π
of bounded horizontal grid-width, the resulting subset of π has grid-complexity at
most α · k for some constant α. Naturally, a symmetric version holds for vertical
grid-width. See Figure 6.4.

Lemma 6.11. Let π be a permutation from a class C with bounded horizontal
grid-width and let S be a subset of π such that intx(S) = k. Then inty(S) ≤ α · k
where the constant α depends only on C.

154

Proof. By Lemma 2.21, there exists an l such that C does not contain any horizontal
alternation of size l. Let I be the interval family of size k such that ⋃︁ I = Πx(S)
and let I be an interval of I. Let SI be the subset of S such that Πx(SI) = I and
let J be the smallest interval family such that Πy(SI) = ⋃︁J . We claim that J
contains at most 2l − 1 intervals. For contradiction, suppose that the size of J is
at least 2l. Then each pair of consecutive intervals in J is separated by a value j
such that π−1

j lies outside the interval I. There is at least 2l − 1 gaps between
intervals of J and therefore by the pigeon-hole principle either l of them contain
a point to the right of I or at least l of the gaps contain a point to the left of I.
Either way, we obtain a horizontal alternation of size l, which is a contradiction.

For each interval I ∈ I, we showed that the intervalicity of Πy(SI) is at most
2l − 1 and thus, the intervalicity of Πy(S) is at most k · (2l − 1).

Proof of Proposition 6.10. First, suppose that GM contains more than one com-
ponent. In that case, choose a component of GM, and let M1 be the submatrix
of M spanned by the rows and columns containing the vertices of the chosen
component, while M2 is the submatrix spanned by the remaining rows and colums
of M. An M-gridded permutation π can be partitioned into two subpermutations
π1 and π2 where πi is the Mi-gridded subpermutation of π consisting of the rows
and columns of Mi. Let Ti be the optimal grid tree of πi. We define a grid
tree T of π by taking a root vertex with children T1 and T2. The grid-width of
any vertex in T1 or T2 has increased at most by max(k, ℓ) where k and ℓ are the
dimensions of M. Therefore gw(π) ≤ max(gw(π1), gw(π2)) + max(k, ℓ). Applying
this argument inductively shows that Grid(M) has bounded grid-width if and
only if the grid-width of Grid(M′) is bounded for every submatrix M′ of M
spanned by a connected component GM. In the rest of the proof, we assume that
GM is a tree. The proof is based on a sequence of claims that will be stated and
proven independently.

Claim 6.12. The tree GM contains a vertex r such that for any other vertex
q ̸= r, the path from r to q does not end in a bumper.

Assume for contradiction that the claim fails. Let r be any vertex of GM.
By assumption, there is a vertex q ̸= r such that the path from r to q ends in a
bumper (p, q). Choose such a vertex q as far as possible from r. Applying our
assumption for q in the role of r, there is a vertex q′ ̸= q such that the path from q
to q′ ends in a bumper (p′, q′). If the path from q to q′ contains the vertex p, then
it is a bumper-ended path, which is impossible. If the path from q to q′ avoids
p, it means that the path from r to q′ ends in the bumper (p′, q′) and is strictly
longer than the path from r to q, which contradicts the choice of q. This proves
Claim 6.12.

Let r be the vertex of GM whose existence is guaranteed by Claim 6.12. We now
define a rooted tree TM on the same vertex set as GM as follows (see Figure 6.5).
The vertex r is the root TM. For a vertex v ≠ r in GM, we set the parent of v
in TM to be the furthest vertex on the vr-path in GM that shares the same row
or column with v. Observe that whenever a vertex v shares the same column
with its parent w in TM then the entry Mv has bounded horizontal grid-width,
and whenever v shares the same row with w, the entry Mv has bounded vertical
grid-width. The dominant cell of a row, or a column, is the cell v such that all
the other cells in the row, or column, are its children in TM.

155

r

a

b

c d e

f g

h

i j k

a d f

r

g i

c e b h j k

Figure 6.5: Example of a gridding matrix M with the tree GM (left) and the
corresponding rooted tree TM (right).

Let π be an M-gridded permutation, and let πv denote the subset of points
contained in a cell v. Assume that πv is non-empty whenever Mv is a non-empty
cell of M. We define an auxiliary directed graph H on the points of π whose
every connected component is a tree rooted in some point of πr. Suppose that the
vertex v of TM shares the same column with its parent w. The parent of a point
p in πv is the nearest point in πw to the right of p, and if there is no such point (p
lies to the right of all the points of πw) then the rightmost point in πw. If v and
w share the same row, then the parent of p is the nearest point in πw above p,
or if there is no such point (p lies above all the points of πw) then the topmost
point in πw. Let P be a subset of the permutation diagram of π. The point set P
contains P and every point that lies in H in a subtree of some point p ∈ P .

Let v be a non-empty cell such that πv contains m points. Recall that red(πv)
is the reduction of πv, i.e. the point set inside [m] × [m] that is isomorphic to the
point set πv. The construction of the graph H guarantees the following property
and its symmetric version.

Observation 6.13. Let v be the dominant cell of its row. Let S be a subset
of πv, let ˜︁S be the corresponding subset of the reduction red(πv) and let S ′ be
the set containing S and all its children in H that lie in the same row. Then
inty(˜︁S) = inty(S ′). Symmetrically, if v is dominant in its column, S and ˜︁S are
as above, and S ′ contains S and all its children in H in the same column, then
intx(˜︁S) = intx(S ′).

We inductively define a function h on the vertex set of TM, which will later
serve us as an upper bound for the grid-width of any π ∈ Grid(M). For any leaf
u of TM we set h(u) = 1. For any other vertex v, we let W be the set of children
of v and define h(v) = 1 +∑︁

w∈W αwh(w) where αw is the constant obtained as
follows. If v shares a column with w, then αw is the constant from Lemma 6.11
applied on the class Mw, otherwise it is the constant from the ‘vertical’ version of
Lemma 6.11 applied on the class Mw. We state only one of the symmetric versions
of the following two claims. However, we are proving both of them simultaneously
by induction.

Claim 6.14. Let S be a subset of the i-th column of the M-gridding of π such
that intx(S) = 1. Let v be the dominant cell of the i-th column and let Sv = S∩πv.
Then intx((S \ Sv) ∪ Sv) ≤ h(v) and inty(S \ Sv) ≤ h(v) − 1.

We remark that if v is not equal to the root r, then the set (S \ Sv) ∪ Sv from
the claim above is actually equal to S.

156

To prove Claim 6.14, suppose first that v is the only non-empty cell in its
column, and therefore v is a leaf of TM. Then S = Sv, and hence intx((S \ Sv) ∪
Sv) = intx(S) = 1 = h(v) and inty(S \ Sv) = inty(∅) = 0 = h(v) − 1, as claimed.

Now suppose that v is not the only non-empty cell in its column, and let C
be the set of nonempty cells different from v in the same column as v. Note that
each cell in C is a child of v in TM, and if v ̸= r, then C is precisely the set
of children of v. Observe that S \ Sv is a disjoint union of the sets Sw over all
w ∈ C. For a cell w ∈ C, let Sw be the set S ∩ πw and let ˜︂Sw be the subset of
red(πw) that corresponds to Sw. From Lemma 6.11 we get inty(˜︂Sw) ≤ αw, and
in particular, ˜︂Sw can be partitioned into sets ˜︂S1

w,
˜︂S2

w, . . . ,
˜︃Sℓw

w for some ℓw ≤ αw,
where inty(˜︂Si

w) = 1 for each i. Let Si
w be the subset of πw that corresponds to ˜︂Si

w

in the reduction red(πw). Let Ri
w be the set Si

w together with all its children in H
that lie in the same row. By Observation 6.13, for each i we have inty(Ri

w) = 1.
Using the symmetric version of Claim 6.14 with each Ri

w in the role of S shows
that

inty(S \ Sv) ≤
∑︂
w∈C

inty(Sw)

≤
∑︂
w∈C

ℓw∑︂
i=1

inty(Si
w)

=
∑︂
w∈C

ℓw∑︂
i=1

inty

(︂
(Ri

w \ Si
w) ∪ Si

w

)︂
≤
∑︂
w∈C

αwh(w)

≤ h(v) − 1,

and similarly,

intx((S \ Sv) ∪ Sv) = intx

(︄
S ∪

⋃︂
w∈C

Sw

)︄

= intx

⎛⎝S ∪
⋃︂

w∈C

ℓw⋃︂
i=1

Ri
w \ Si

w

⎞⎠
≤ 1 +

∑︂
w∈C

ℓw∑︂
i=1

intx(Ri
w \ Si

w)

≤ 1 +
∑︂
w∈C

αw(h(w) − 1)

≤ h(v),

proving Claim 6.14.
We will now define, for every p ∈ π, a grid tree Tp whose leaves are exactly

the points in {p}. The definition proceeds inductively on the size of {p}. If p
has no children in H, that is if {p} = {p}, then Tp consists of the single vertex p.
Suppose now that p has at least one child in H. Recall that each child of p belongs
to a cell in the gridding of π which is in the same row or in the same column as
the cell of p. Let C and R denote, respectively, the set of children of p in the
same column and the set of children of p in the same row. Note that C and R are
disjoint, and if p does not belong to the root cell πr then one of C and R is empty.

157

Recall that a caterpillar is a binary tree whose every internal node has at
least one leaf child. The leaves of a caterpillar can be ordered top to bottom by
their distance from the root, where the order of the bottommost pair of leaves is
irrelevant.

If C is nonempty, we construct a tree TC
p in the following two steps:

• Construct a caterpillar whose leaves are the points from C ∪ {p}, and
the top-to-bottom order of the leaves in the caterpillar coincides with the
left-to-right order of the points in π.

• In the caterpillar constructed above, for each q ∈ C replace the leaf q with
a copy of the tree Tq. Call the resulting tree TC

p .

Symmetrically, if R is nonempty, construct a tree TR
p by first taking the

caterpillar whose leaves in top-to-bottom order are the points of R ∪ {p} in
top-to-bottom order, and then for each q ∈ R replace the leaf q with a copy of Tq.

If the set R is empty, we define Tp = TC
p , and if C is empty, we define Tp = TR

p .
If both C and R are non-empty (which may only happen when p is in πr), we let
Tp be the tree obtained by replacing the leaf p in TC

p by a copy of TR
p . Note that

in all the cases, the leaves of Tp form precisely the set {p}.
Claim 6.15. Let v be a nonempty cell of M. If v ̸= r, then for every p ∈ πv, the
tree Tp has grid-width at most h(v). For every p ∈ r, the tree Tp has grid-width at
most 2h(r).

We prove the claim by induction on the size of Tp. The claim clearly holds
when Tp is the single vertex p. Suppose now that Tp has more vertices, and that
v ̸= r. In such case Tp is equal to TC

p or to TR
p . Suppose that Tp = TC

p , the other
case being symmetric. Let C be again the set of children of p in H (necessarily,
they are all in the same column of the gridding as the point p, since v is not
the root vertex). Let u be a node of Tp, and let Lu be the set of leaves of the
subtree of Tp rooted at u. Our goal is to show that the grid complexity of Lu is at
most h(v). If u is the leaf p or u is inside a copy of Tq for some q ∈ C, the claim
follows by induction. Suppose that u is a node of the caterpillar from which Tp

was constructed. Let S be the set of points in Lu that are in the same gridding
column as p. By the construction of Tp, the set S satisfies intx(S) = 1, and Lu is
equal to S. Note that the set Sv = S ∩ πv is either empty or contains the single
point p. By Claim 6.14,

intx(Lu) = intx(S) = intx((S \ Sv) ∪ Sv) ≤ h(v)

and

inty(Lu) ≤ inty(Sv) + inty(S \ Sv) ≤ inty({p}) + inty(S \ Sv)
≤ 1 + (h(v) − 1) = h(v).

This shows that Lu has grid complexity at most h(v), and therefore Tp has
grid-width at most h(v).

It remains to deal with the case when p belongs to the root cell r. Using the
same argument as in the first part of the proof, we again see that both TC

p and
TR

p have grid-width at most h(r). Moreover, for each node u of Tp the subtree of
Tp rooted at u is either equal to a subtree of TC

p , or it is equal to a subtree of TR
p ,

158

or it contains the entire tree TR
p together with a subtree of TC

p . In the former two
cases, the set of leaves of the subtree has grid complexity at most h(r), in the last
case it has grid complexity at most 2h(r). This proves Claim 6.15.

We are ready to construct a grid tree T of the permutation π and provide
a bound on its grid-width. By assumption, the entries of M have bounded
grid-width, and we let g be the grid-width of the root entry Mr. Let Tr be the
optimum grid tree of red(πr); in particular, Tr has grid-width at most g. A grid
tree T of the whole permutation π is obtained by taking Tr and replacing the leaf
corresponding to a point p ∈ πr with the tree Tp. We claim that T has grid-width
at most 4gh(r). The tree T contains every point of π, and we showed in Claim 6.15
that the grid-width of any node contained in a copy of some Tp is at most 2h(r).

Let now u be a node of T that is not contained in any copy of the tree Tp, in
other words, u is an internal node of Tr. Let L∗ ⊆ red(πr) be the set of leaves
of Tr in the subtree rooted at u, and let L be the subset of πr that is mapped
to L∗ by the bijection that maps πr to red(πr). Then the subset of π contained in
the subtree of T rooted at u is precisely L.

Applying Observation 6.13, we see that L together with its neighbors in H
spans at most g consecutive intervals in the row and column of the r-cell. By
applying Claim 6.14 individually on each of these 2g intervals, we get that the
grid-complexity of L is at most 4gh(r). It follows that Grid(M) has bounded
grid-width.

159

160

7. Generalized coloring
In this chapter, we focus on a different algorithmic problem involving permuta-
tions. Namely, we study the algorithmic complexity of determining whether a
permutation π can be obtained as a merge of two permutations σ ∈ C and τ ∈ D
for fixed permutation classes C and D. Formally, we define it as a problem of
recognizing permutations from the class C ⊙ D, which we view as a specific variant
of the more general problem called C-recognition.

C-recognition
Input: A permutation π of length n.

Output: Does π belong to C?

The organization of this chapter is as follows. We start by summarizing
previous knowledge of this problem in Section 7.1.

In Section 7.2, we develop several general frameworks of recognizing per-
mutation classes. Our first approach, which we present in Subsection 7.2.1, is
based on the concept of non-deterministically logspace on-line recognizable (or
NLOL-recognizable) permutation classes. We will show that an arbitrary merge
of NLOL-recognizable classes is polynomially recognizable. While this approach
is conceptually quite simple, it generalizes all the previously known examples of
tractable merges. As a second approach, we introduce a tree automata-based
recognition scheme, called BD, in Subsection 7.2.2. Finally, we introduce in
Subsection 7.2.3 the GT-recognizable classes, whose membership can be decided
by evaluation of a tree automaton over grid trees.

In Section 7.3, we combine the GT- and BD-recognizability to prove that the
merge of a BD-recognizable class with a GT-recognizable class of bounded grid-
width can be recognized in polynomial time. This approach allows us to handle
further cases of natural permutation classes that are not NLOL-recognizable, such
as the class Av(213), or the class of separable permutations. For a summary of
the known and new tractability results, see Table 7.1.

To complement our tractability results, we also provide, in Section 7.4, an
NP-hardness result. In particular, we show that Av(α) ⊙ Av(α)-recognition is
NP-complete for any simple pattern α of length at least 4.

7.1 Previous results
The notion of merge has been originally introduced as an approach for the
enumeration of pattern-avoiding permutations [5, 4]. For instance, Claesson et
al. [53] have shown that every 1324-avoiding permutation can be obtained by
merging a 132-avoiding permutation with a 213-avoiding one, and this result, and
its subsequent strengthenings by Bóna [30, 29] and Bevan et al. [26], are the basis
of the best known upper bounds for the number of 1324-avoiding permutations.

Apart from enumeration questions, the research on permutation merges has
also addressed structural issues, such as whether a given permutation class can
be obtained by merging two of its proper subclasses [89, 87], or which classes
can be obtained by merging a bounded number of permutations from a given

161

class [3, 90, 111]. This is, however, the first effort to address algorithmic aspects
of permutation merges.

The decision problem of recognizing permutations from C ⊙ D can be viewed
as a permutation analogue of the generalized graph coloring problem from graph
theory. For a fixed k-tuple G1, . . . ,Gk of graph classes, a generalized coloring of
a graph is an assignment of colors 1, 2, . . . , k to its vertices so that the vertices
of color i induce a subgraph from Gi. In particular, if all the Gi are equal to the
class of edgeless graphs, this notion reduces to the classical notion of k-coloring.
The research into the complexity of generalized graph coloring was initiated
by Rutenburg [105], who considered graph properties defined by a finite set of
forbidden subgraphs. Later, Farrugia [66] showed that if all the Gi are hereditary
and additive (i.e., closed under taking induced subgraphs and forming disjoint
unions) then the problem is NP-hard, except the trivially polynomial case when
k = 2 and both G1 and G2 are equal to the class of edgeless graphs. Further results
in this area were obtained, e.g., by Brown [47], Alexeev et al. [12], Achlioptas et
al. [1], or Borowiecki [38].

As with generalized graph coloring, the recognition of permutation merges
admits several cases which are trivially polynomial. For instance, let Ik be the
class of permutations that can be merged from at most k increasing subsequences,
or equivalently, of permutations that avoid the pattern k + 1, k, . . . , 1. Similarly,
let Dk be the permutations merged from at most k decreasing subsequences, which
are exactly the avoiders of 1, 2, . . . , k + 1. One may easily see that Ik ⊙ Iℓ = Ik+ℓ

and Dk ⊙ Dℓ = Dk+ℓ, and in particular, these merges are trivially polynomially
recognizable. Moreover, Kézdy et al. [90] have shown that for any k, ℓ ≥ 1, the
class Ik ⊙ Dℓ has only finitely many minimal excluded patterns, and therefore
these classes are polynomially recognizable as well.

There are only two other non-trivial results concerning C ⊙ D-recognition
that we are aware of. Ekim et al. [62] studied the complexity of generalized 2-
colorings when the input graph is restricted to the class of the so-called permutation
graphs. Their results, in our terminology, imply the polynomial recognition of
L ⊙ and of L ⊙ L, where L and L denote the classes of layered and co-layered
permutations. Broersma et al. [46] studied the complexity of partitioning graphs
so that each part is a union of disjoint cliques. Their results for permutation
graphs translate into a polynomial-time algorithm for L ⊙ L-recognition and
by symmetry also for L ⊙ L-recognition. See Table 7.1 for a summary of both
previous results and our contributions.

7.2 Different recognition frameworks

7.2.1 NLOL-recognizable classes
Our first nontrivial example of classes whose merges can be efficiently recognized
are the so-called NLOL-recognizable permutation classes. Informally speaking, a
permutation class is NLOL-recognizable if its members can be recognized by a
single-pass nondeterministic streaming algorithm with logarithmic memory.

More formally, we say that a permutation class C is nondeterministically
logspace on-line recognizable, or NLOL-recognizable for short, if there is a non-
deterministic algorithm A that recognizes C in the following setting: as the first

162

D \ C Av(21) Av(k · · · 1) layered Av(213) sep. Av(3142)
Av(21) Av(321) Av((k + 1) · · · 1) P [62] P† P† ?
Av(12) Av

(︂
2143,
3412

)︂
P [90] P⋆ P† P† ?

Av(k · · · 1) Av((2k − 1) · · · 1) P⋆ P† P† ?
Av(1 · · · k) P [90] P⋆ P† P† ?

layered P [46] P† P† ?
co-layered P [62] P† P† ?
Av(213) ? ? ?

separable ? ?
Av(3142) NP-c

Table 7.1: The table shows known and new complexity results for C ⊙ D-
recognition. The boldface entries are the new results of this chapter, in
particular entries P⋆and P† follow from Corollary 7.2 and Corollary 7.8, respec-
tively. Note that some columns are omitted due to symmetries.

part of the input, the algorithm A receives a number n, which is an upper bound
on the length and also on the largest value in the input sequence. The algorithm
is then given access to O(log n) bits of memory, and it receives a sequence of
distinct values π1, π2, . . . , πk from the set [n], terminated by a special symbol EOF.
Upon receiving the EOF symbol, A answers whether the input sequence is order-
isomorphic to a permutation in C. The algorithm can store arbitrary data of size
O(log n) in its memory, but as soon as it reads the input value πi, it can no longer
access the previous values of the input. A is nondeterministically recognizing C
in the sense that the input sequence is order-isomorphic to a permutation in C
if and only if at least one computation of A accepts it. The algorithm A is then
called an NLOL-recognizer of C. Note that the input sequence is guaranteed to
consist of distinct values, so the NLOL-recognizer itself does not need to verify
this property. This also implies that the input sequence has length at most n.

We let NLOL denote the set of the NLOL-recognizable permutation classes.
Clearly, for any permutation class C ∈ NLOL, the C-recognition problem
is tractable, since nondeterministic logspace computations can be simulated in
polynomial time.

One may easily observe that NLOL contains any finite permutation class, as
well as the classes Av(12) and Av(21). The key feature of NLOL is that it is closed
under many important operations with permutation classes, including the merge
operation.
Lemma 7.1. If C and D are NLOL-recognizable classes, then the following classes
are NLOL-recognizable as well:

(a) The classes C ∩ D and C ∪ D.
(b) The classes Cr and Cc, which contain the reverses and the complements of

the permutations of C.
(c) The classes C⊕ and C⊖, i.e., the sum-closure and skew-closure of C.
(d) The classes C ⊕ D and C ⊖ D, and more generally, any grid class Grid(M),

where M is a gridding matrix whose entries all belong to NLOL.
(e) The class C ⊙ D.

Proof. Part (a) of the lemma is an easy observation which follows directly from
the definition of NLOL.

163

In part (b), it is obvious that Cc is in NLOL. For Cr, the argument is less trivial:
suppose A is an NLOL-recognizer of C. Let us describe an NLOL-recognizer Ar of Cr.
On an input π, Ar will simulate in reverse the computation of A on input sequence
πr as follows: once Ar knows the length n, it guesses nondeterministically a possible
state s0 of A, which should correspond to the final state of the algorithm A after
A processed the whole input sequence πr. Then, in step i of the computation
of Ar, if the simulation of A has reached a state si−1 and the input contains a
value πi, Ar will again guess a state si of A, and verify that A can reach the state
si−1 from si on input value πi. Finally after receiving EOF, the algorithm checks
that the last state si is actually the initial state of A. We easily see that Ar is an
NLOL-recognizer of Cr.

To see that C⊕ is in NLOL, suppose again that A is an NLOL-recognizer for C,
and let us describe an NLOL-recognizer A⊕ for C⊕. A permutation π ∈ C⊕ can
be expressed as a concatenation of blocks, where each block is isomorphic to a
permutation of C, and the values in the i-th block are larger than any value in the
preceding blocks. Thus, A⊕ will guess the boundaries between blocks, verify that
all the values appearing in the current block are larger than the largest value in
the previous blocks, and simulate the computation of A on each block separately
to verify that it is order-isomorphic to a permutation from C. Note that A⊕ does
not have enough memory to guess in advance all the boundaries between blocks.
However, that is not a problem as A⊕ can simply non-deterministically decide to
end the current block and start a new simulated computation of A at any point.
The argument in case of C⊖ is similar, the NLOL-recognizer A⊖ just makes sure
that all values in the current block are smaller than the smallest value in the
previous block. This concludes the proof of part (c).

To prove part (d), suppose that C is a grid class defined by a gridding matrix
composed of NLOL-recognizable class. An NLOL-recognizer for C will guess the
positions of grid lines for the input sequence, and then verify that each cell of the
gridded input sequence is order-isomorphic to the member of the corresponding
class.

Finally, to prove part (e), note that a recognizer for C ⊙ D can guess a way to
split the input sequence π into two disjoint subsequences π′ and π′′, and simulate a
recognizer for C on π′ and a recognizer for D on π′′. Note that in order to comply
with the memory restriction, the recognizer for C ⊙ D guesses whether πi belongs
to π′ or π′′ only upon receiving the value πi.

Corollary 7.2. For any sequence of classes C1, C2, . . . , Ck ∈ NLOL, the class
C1 ⊙ C2 ⊙ · · · ⊙ Ck is in NLOL, and therefore polynomially recognizable.

Lemma 7.1 shows that NLOL contains many important permutation classes,
including the classes of layered and co-layered permutations, as well as any class
of the form Av(12 · · · k) or Av(k(k − 1) · · · 1).

On the negative side, it can be shown that NLOL does not contain some other
important classes, such as the class Av(2413, 3142) of separable permutations, or
its subclasses Av(231), Av(213), Av(312) and Av(132). These five classes share a
common feature: their grid-width is at most 1, i.e. their elements have a simple
recursive tree-like structure involving only direct sums and skew sums. Before
focusing on these classes, we first introduce a restricted form of NLOL that will
play an important part in conjunction with bounded grid-width.

164

7.2.2 BD-recognizable classes
From a different angle, one can view the crucial property of NLOL-recognizable
classes in the following way. For an NLOL-recognizable class C, a small amount of
information about permutations π1, π2 is sufficient to decide whether concatenating
them results in a permutation π ∈ C. However, we have no such guarantee for the
symmetrical operation of putting π1 on top of π2. We now proceed to introduce
the so-called BD-recognizable classes that add this symmetry. This will be used
later in conjunction with the concept of bounded grid-width to derive some further
tractable cases of recognition.

Tree automata

First, let us define the notion of tree automata. We refer an interested reader to
the book [54] for a more extensive introduction. A signature F is a set of symbols,
with each symbol of F having a non-negative integer, called arity, associated to
it. The set of symbols of arity p is denoted by Fp. The set T (F) of ground terms
over F is the smallest set that contains the set of constant symbols F0, and if
p ≥ 1, f ∈ Fp and t1, . . . , tp ∈ T (F) then f(t1, . . . , tp) ∈ T (F). Ground terms
can be straightforwardly visualized as trees.

A tree automaton is a quadruple A = (F , Q,∆, Qf), where F is a signature,
Q is a finite set of states, Qf ⊆ Q is a set of accepting states, and ∆ is a set of
transition rules. Every transition is of the form f(q1, . . . , qn) → q, where f is a
symbol of arity n, and q1, . . . qn, q are states from Q. Note that the automata
we consider here are non-deterministic, in the sense that ∆ may contain several
transition rules with the same left-hand side.

Tree automata over F run on ground terms over F , represented as trees.
An automaton starts at the leaves and moves upward, labeling inductively each
vertex with a state from Q. If the children u1, . . . , un of v = f(u1, . . . , un) are
labeled with states q1, . . . , qn then u will receive a state q such that ∆ contains the
rule f(q1, . . . , qn) → q. Notice that the automaton has no explicit initial states.
However, a transition rule for a constant symbol f ∈ F0 reads as f → q, which
can be interpreted as assigning to the leaf an initial state q.

A ground term t ∈ T (F) is accepted by a tree automaton A = (F , Q,∆, Qf) if
there exists a run of A on t which assigns to the root of t a state from the set Qf .

BD-recognition

Let T be a binary tree with leaves precisely the set [n] × [n]. We say that T is
a box decomposition tree of size n if the leaves of any rooted subtree constitute
a box, i.e. a product of two integer intervals. This implies that each inner node
corresponds to splitting the parent box into two boxes via either horizontal or
vertical cut. We can thus represent any subset P of [n] × [n] using T by simply
labeling the leaves whose boxes contain a point from P . Therefore, we can actually
represent P by a ground term over the signature FBD = { , , , } where ,
are constant symbols and , are binary symbols. We call this ground term a
box decomposition tree of P , or BD-tree for short; see Figure 7.1.

We say that the tree automaton A = (FBD, Q,∆, Qf) recognizes permutations
from C of size up to n over BD-trees when the following holds. Whenever A is given

165

1 2 3 4

1

2

4

3
1,4

1,3 1,2

1,1

2,4 2,3

3,4 3,3 4,4 4,3

2,2 2,1

3,2 3,1 4,2 4,1

Figure 7.1: The diagram of the permutation 2413 (left) and a BD-tree representing
it (right). For added clarity, the leaves are labeled with the coordinates of the
corresponding boxes of the diagram. Note however, that these labels are not part
of the BD-tree, which represents the permutation uniquely even without them.

a BD-tree T of a point set P in general position inside [n] × [n], it accepts if and
only if the permutation isomorphic to P belongs to C. Moreover, the set of states
Q′ ⊆ Q that can be assigned by some run of A to the root of T is independent
of the choice of BD-tree. This allows the following definition. Whenever a state
q ∈ Q can be assigned to the root of an arbitrary BD-tree of P we say that q is
reachable on P .

Notice that we do not require A to reject point sets that are not in general
position. In this paper, we will always have the guarantee that P is a subset of a
permutation diagram, i.e. P satisfies this condition automatically. Moreover, we
remark that P does not have to consist of n points, it can be arbitrarily small.

A permutation class C is box decomposition recognizable, or BD-recognizable for
short, if there exists an algorithm that receives n and outputs in time polynomial
in n a tree automaton (FBD, Q,∆, Qf) that recognizes permutations from C of
size up to n over BD-trees. Notice that this implies that the total number of
possible states, i.e. the size of Q, is polynomial in n.

Similar to NLOL, it is easy to see that many simple permutation classes are
BD-recognizable. The property is also preserved under many important operations
as witnessed by the following lemma.

Lemma 7.3. If C and D are BD-recognizable classes, then the following classes
are BD-recognizable as well:

(a) The classes C ∩ D and C ∪ D.
(b) The classes C−1, Cr and Cc.
(c) The classes C ⊕ D and C ⊖ D, and more generally, the class Grid(M) where

M is a gridding matrix whose entries all belong to BD.
(d) The classes C⊕ and C⊖, i.e., the sum-closure and skew-closure of C.
(e) The class C ⊙ D.

Proof. For each of the individual claims, we will describe a tree automaton that
recognizes the desired class. However, we will leave out the details of how to
construct the automaton in polynomial time from the tree automata for C and
D as they are fairly straightforward and uninteresting. Suppose that the tree
automata for recognizing permutations of C, respectively D, up to size n are
(FBD, QC,∆C, RC), respectively (FBD, QD,∆D, RD).

166

Part (a) follows easily by simulating both automatons simultaneously, i.e.
we set the set of states to be the cartesian product QC × QD and the rules to
be all possible combinations of rules of the individual automata, e.g. for every
rule (p1, p2) → p ∈ ∆C and every rule (q1, q2) → q ∈ ∆D there is a rule

((p1, q1), (p2, q2)) → (p, q). The only difference is the set of accepting states, we
set them to be RC × RD in the case of intersection and QC × RD ∪ RC × QD in
the case of union.

In order to prove part (b), let us start with the observation that a BD-tree
of permutation πr can be obtained from a BD-tree of permutation π simply by
changing the order of operands of . Therefore, the automaton for Cr can be
obtained by simply replacing every rule of the form (q1, q2) → q with the rule

(q2, q1) → q. The construction for Cc is identical, only with respect to . And
in order to obtain a BD-tree of permutation π−1 from the BD-tree of π, it suffices
to swap with while also changing the order of their operands. Therefore,
the automaton for C−1 can be obtained by simply replacing every rule of form

(q1, q2) → q with the rule (q2, q1) → q and vice versa.
Before we tackle the remaining parts, let us make a general observation.

Without loss of generality, we can assume that each state contains the coordinates
of the box represented by the node. This assumption is possible since the number
of possible coordinates is polynomial in n and we can simply guess the coordinates
in the transition rules for leaves and then check consistency in the inner nodes
and enter a failure state whenever the coordinates do not match. Notice that this
also does not violate the independence of the reachable set of states on the shape
of the particular BD-tree. Regardless of the tree shape, precisely any coordinates
coherent with the size of box B will be reachable on the ground term corresponding
to B.

We construct the tree automaton recognizing Grid(M) in the following way.
The automaton simulates the individual automata of all the classes inM . Moreover,
each state contains the positions of all the grid lines for the input permutation.
This is again achieved via guessing the grid lines in the transition rules for leaves
and ensuring consistency. In particular, the transition rules for the symbol
simulate the rules for all but the one automaton given by the position of the
grid lines. This information together with the coordinates of each box is sufficient
to simulate all the automata and accept only if all of them end in an accepting
state. And again, note that this information does not depend on the particular
BD-tree.

In showing part (d), we will only describe the automaton for C⊕ as the case of
C⊖ follows from symmetry. Using the previous ideas, one might hope to simply
guess the grid lines between individual ⊕-indecomposable parts and to simulate
many copies of the automaton recognizing C. Unfortunately, there can be too
many of these parts which would cause the set of states to be superpolynomial.
However, notice that each box can intersect at most two ⊕-indecomposable parts
that are not fully covered by the box. It is therefore sufficient to simulate only
these two incomplete parts together with their coordinates, and upon completion
of a part, check whether its simulated automaton for C finished in an accepting
state.

Finally, part (e) is similar to the NLOL case. As in part (a), the automaton
for C ⊙ D simulates the automata for C and D with set of accepting states being

167

RC × RD. The only difference is in the transition rules for the symbol , as we
want to initialize the non-empty leaf for only one of the automata. Therefore, we
add a rule → (p, q) whenever → p ∈ ∆C and → q ∈ ∆D, or → p ∈ ∆C and

→ q ∈ ∆D.

Let us conclude this section by remarking that C-recognition can be solved
in polynomial time whenever C is BD-recognizable. First, we generate the automa-
ton A recognizing permutations from a BD-recognizable class C of size up to n.
Since the set of reachable states does not depend on the shape of BD-tree, we
choose an arbitrary BD-tree T of P (e.g. first merging each column individually
bottom-up and then merging columns from left to right). Then we compute the
set of reachable states for the root of T in time O(n · |Q|), and thus polynomial
in n, using standard tree automata approach [54].

7.2.3 GT-recognizable classes
The recognition problem for a permutation class of bounded grid-width is not
necessarily tractable. For instance, it is known that all the proper subclasses of
Av(321) have bounded grid-width [86]; however, Av(321) has uncountably many
subclasses, and therefore some of them have undecidable recognition problem.

Our next goal is therefore to introduce a type of permutation classes whose
recognition problem is tractable on inputs of bounded grid-width. Informally
speaking, a class C is GT-recognizable, if for any g, the C-recognition problem on
inputs of grid-width at most g can be solved by a tree automaton operating on a
grid tree of grid-width at most g.

To work within the tree automata framework, it is not suitable to use the grid
trees directly, because each leaf of the grid tree contains the ‘global’ coordinates of
the corresponding element with respect to the entire permutation. For the purposes
of automata computation, it is more convenient to distribute the information
about the elements into all the vertices of the tree, in such a way that the ground
term corresponding to the subtree rooted in a given vertex describes the relative
position of the elements in represented by the subtree, without referring to the
size of the entire permutation. To this end, we will introduce a modification of
grid trees, so-called merge-labeled trees, which can be seen as ground terms over
a signature whose size depends only on g. We start by introducing the symbols of
the signature.

Let I1 and I2 be two interval families. We say that an interval family I =
{I1 < I2 < · · · < Im} is a merge of I1 and I2, if ⋃︁ I1 is disjoint from ⋃︁ I2 and I
is the union of I1 and I2. For such I1, I2 and I, a merge description of I1 and
I2 into I is the tuple (m, f), where f : [m] → {1, 2} is a function which describes
which interval belongs to I1 and which belongs to I2, i.e. for every k ∈ [m] the
interval Ik belongs to If(k).

Let M≤g be the set of all merge descriptions such that both I1 and I2 contain
at most g intervals. Observe that the merge description, together with the interval
families I1 and I2, uniquely determines the merged interval family I. There exists
less than 2g 2g such merge descriptions, i.e. the size of M≤g is bounded by a
function of g.

When we merge two interval families I1 and I2 into I there might occur
two consecutive intervals inside I such that their union is also an interval. Let

168

I = {I1 < I2 < · · · < Im} be an interval family such that Ik ∪ Ik+1 constitutes an
interval. The k-th interval join of I is the interval family I ′ obtained by replacing
the intervals Ik and Ik+1 with their union Ik ∪ Ik+1.

Let T be a grid tree representing a permutation π of grid-width at most g. We
will now describe how it can be transformed into a ground term over signature
FGT

g that consist of

• a constant symbol Leaf,
• a set of unary symbols {Col1,Col2, . . . ,Col2g−1},
• a set of unary symbols {Row1,Row2, . . . ,Row2g−1}, and
• a set of binary symbols M≤g × M≤g.

Proposition 7.4. We can transform a grid tree T representing a permutation π
of grid-width at most g into a ground term t over signature FGT

g such that it is
possible to reconstruct the original permutation π from t.

Proof. As the first step, for each node v of T we choose the smallest interval
family Iv such that ⋃︁ Iv = Πx(πT

v) and similarly the smallest interval family Jv

such that ⋃︁Jv = Πy(πT
v). Observe that each of the families has size at most g

since their size is exactly equal to the intervalicity of the sets Πx(πT
v), respectively

Πy(πT
v). As the second step of the transformation, we generate recursively for

each vertex v of T a ground term tv.
For a leaf v of the tree T we set tv = Leaf. For an internal node u with children

v and w, we generate a sequence of nested terms that transforms the interval
families Iv, Iw into Iu and simultaneously Jv,Jw into Ju. Observe that there is a
sequence of pairs of interval families (I1,J1), . . . , (Il,Jl) such that

• I1 is the merge of Iv and Iw and J1 is the merge of Jv and Jw,
• Il = Iu and Jl = Ju, and
• for every i ∈ {2, . . . , l} either Ii is the k-th interval join of Ii−1 for some k

and Ji−1 = Ji, or the other way round.

In other words, the sequence changes gradually the result of merging the
interval families of v and w into the interval families of u, concatenating a pair of
neighboring intervals in each step. Using this sequence we generate a sequence of
nested ground terms t1, . . . , tl in the following way.

First, we generate the term t1 = MI ,MJ (tv, tw), where MI is the merge
description of Iv and Iw, and similarly MJ is the merge description of Jv and
Jw, and tv, tw, are the ground terms generated recursively for the children of u.

Now we describe the terms ti for all i ≥ 2. If Ii is a k-th interval join of Ii−1,
we set the term ti = Colk(ti−1). Otherwise, if Ji is a k-th interval join of Ji−1 ,
we set ti = Rowk(ti−1). Observe that k is at most 2g − 1 in each step since the
interval families I1, J1 are obtained by merging two interval families of size at
most g, and the process never increases the sizes of the interval families. Finally,
we set tv = tl.

It follows from the transformation that the term tv uniquely determines
the interval families Iv and Jv, and therefore also the grid tree T and the
permutation π.

The ground term generated in Proposition 7.4 for a permutation π is called a
merge-labeled tree of π.

169

We say that a tree automaton A = (FGT
g , Q,∆, Qf) recognizes a permutation

class C on inputs of grid-width at most g, if for every merge-labeled tree T of
grid-width at most g the automaton A accepts T if and only if T represents a
permutation from C. Note that we do not assume here that every permutation
from C has grid-width bounded by g.

We say that a permutation class C is grid tree recognizable, or GT-recognizable
for short, if there is an algorithm that receives the constant g as input and outputs
a tree automaton Ag that recognizes C over merge-labeled trees of grid-width at
most g.

Proposition 7.5. If C is GT-recognizable class, then the C-recognition problem
can be solved in time O(f(gw(π)) · n), where f is a computable function. In
particular, if a permutation class C has bounded grid-width and is GT-recognizable,
then C-recognition is polynomial-time solvable.

Proof. Let π be the input permutation of length n. Using the tools developed in
Section 2.1, we can obtain a tree decomposition ofGπ of width at most 2 tw(π)+1 ≤
16 gw(π)+1 and transform it into a grid tree of grid-width at most 16 gw(π)+3 all
in time 2O(gw(π)) ·n. The grid tree can then be transformed to a merge-labeled tree t
by Proposition 7.4. Finally, we construct the corresponding automaton Ag in time
depending only on g, and simulate it on t in time O(f(g) · |t|) = O(f(g) · n).

Before we move towards our main result, let us make a few remarks about the
expressive power of GT-recognizability. The notion of GT-recognizable classes is
closely related to the previously well-studied notion of tree-automata on bounded
tree-width decompositions of graphs and other relational structures. The key
result in this area is Courcelle’s theorem [55], which states that any property
expressible in monadic second-order logic can be recognized by a tree automaton
on decomposition trees of bounded width. One could hope that indeed every class
defined by an MSO sentence in TOTO is GT-recognizable. Unfortunately, we were
not able to prove this fact.

It can however be shown that every class determined by finitely many minimal
forbidden patterns is GT-recognizable, and moreover, if C and D are both GT-
recognizable classes, then so are Cr, Cc, C−1, C ⊕ D, C ∪ D, C ∩ D or C ⊙ D, among
other similar examples.

Unfortunately, these facts do not yield any new cases of tractable C ⊙ D-
recognition. The reason is that if both C and D are infinite classes, then by
Erdős–Szekeres theorem [65], their merge C ⊙ D contains either Av(321), Av(123)
or Av(21) ⊙ Av(12) as a subclass, and all of these classes have the long path
property and thus, they contain permutations of arbitrarily large tree-width and
grid-width (Proposition 2.33). We therefore omit here the proofs of most of the
above-mentioned facts on GT-recognizability, and instead focus on the connection
between GT-recognizable and BD-recognizable classes, which will lead us to our
main result. The only fact needed for our application is that any principal class is
GT-recognizable.

Proposition 7.6. Any class of the form Av(σ) is GT-recognizable.

Proof. Suppose that σ has length k. Observe that every merge-labeled tree over
the signature FGT

g can be interpreted as a representation of a gridded permutation.

170

Formally, we associate to the ground term t a permutation πt together with two
interval families It = {I t

1, . . . , I
t
g} and J t = {J t

1, . . . , J
t
g} such that It forms a

partition of Πx(πt) and J t forms a partition of Πy(πt). Note that whenever some
of the interval families defined by t has size smaller than g we complete it to
length g with empty intervals. We describe construction of a tree automaton A
that keeps track of all the possible embeddings of πt but only with respect to the
families It and J t.

A distribution (of σ into a g × g grid) is a function f : [k] → [g] × [g] ∪ {ϵ}.
For a distribution f of σ into a g × g grid, let Sf ⊆ [k] denote the indices that do
not map to ϵ. Then we say that such a distribution f is realizable for a ground
term t over FGT

g , if there is a partial mapping g : Sf → πt such that moreover, f
correctly prescribes in which intervals lie the images under g, i.e. for each i ∈ Sf

with f(i) = (m, l) we have g(i) ∈ I t
m × J t

l .
Clearly for a fixed σ and g there are kg2+1 such distributions. Fix any ordering

of them f1, f2, . . . that can be computed just from k and g. We define the set of
states of A to be the set of all {0, 1}-vectors of length kg2+1, where the i-th bit
is set to 1 if and only if the distribution fi is realizable for the given term. It is
trivial to set the vector when t = Leaf since a distribution f is realizable if and
only if there is at most one i ∈ [k] such that f(i) ̸= ϵ.

When t = Coli(t′), the associated transition rules are also very simple. For every
distribution f ′ that is realizable for the term t′, there is exactly one distribution f
such that f is realizable for the term t. This holds since the interval family
It is obtained from It′ by replacing a union of two consecutive intervals which
determines exactly how to transform the distribution f ′ to f . The same holds
symmetrically when t = Rowi(t′).

Finally, suppose that t = MI ,MJ (t1, t2). We claim that tor every pair of
distributions f1 and f2 such that f1 is realizable for t1 and f2 is realizable for t2,
we can decide whether they combine to a realizable distribution f for t. This
follows since the mutual position of points p ∈ πt1 such that p belongs to the
box I t1

a × J t1
b and q ∈ πt2 such that q belongs to the box I t2

c × J t2
d is uniquely

determined by the indices a, b, c, d together with the merge descriptions MI and
MJ . Therefore, we can compute the transition rules in this case as well.

7.3 Combining BD- with GT-recognizability
In this section, we use a dynamic programming approach to recognize any merge
of a BD-recognizable class with a GT-recognizable class of bounded grid-width.

Theorem 7.7. If C is a BD-recognizable class and D is a GT-recognizable class
such that moreover gwD(n) ≤ g for some constant g, then C ⊙ D-recognition
is polynomial-time solvable.

Proof. For the proof of Theorem 7.7, let the input be a permutation π of
length n. We generate first the tree automaton AC = (FBD, QC,∆C , RC) recogniz-
ing permutations from C of size up to n over BD-trees, and the tree automaton
AD = (FGT

g , QD,∆D, RD) recognizing D over merge-labeled trees of grid-width
at most g. Note that we can obtain these automata in time polynomial in n.
The general outline of our approach is that we want to efficiently simulate AD on
subpermutations of π of grid-width at most g, while at the same time simulating

171

AC on the remaining elements. We know that the size of QC is at most nc for a
constant c, and the size of QD is at most f(g) for a computable function f .

We shall define a polynomially bounded number of subproblems that can be
efficiently solved by recursion. A subproblem is a tuple p = (I,J , h, s), where

• I and J are interval families of integers in [n], each of size at most g,
• h : I × J → QC assigns a state of AC to each box in I × J , and
• s ∈ QD is a state of the automaton AD.

There are at most n4g choices for I and J , at most ncg2 choices for h, and at
most f(g) choices for s, which makes the total number of subproblems at most
f(g)n4g+4cg2 , i.e. polynomial in n for fixed g.

We say that a subproblem (I,J , h, s) is feasible if the points of Sπ that lie in⋃︁(I × J) can be partitioned into two disjoint sets PC and PD with the following
properties:

(a) For any two intervals I ∈ I and J ∈ J the state h(I, J) is reachable on
PC ∩ I × J by the automaton AC.

(b) The permutation πD corresponding to PD can be represented by a merge-
labeled tree t of width at most g with the property that the interval families
Ir and Jr represented at the root node r of t are precisely the standardization
of I and J with respect to PD, and there is a run of the automaton AD
over the tree t that assigns to r the state s.

Moreover, we say that a subproblem (I,J , h, s) is initial if

(a) both I and J contain only single intervals I = [n] and J = [n] respectively,
(b) h(I, J) ∈ RC, i.e., it is an accepting state of the automaton AC, and
(c) s ∈ RD, i.e it is an accepting state of the automaton AD.

It follows from the definition that π belongs to C ⊙ D if and only if at least
one of the initial subproblems is feasible. Thus, if we can efficiently determine the
feasibility of the initial subproblems, we can solve C ⊙ D-recognition.

We describe a recursive procedure Feasible(I, J , h, s) that answers whether
a given subproblem is feasible. Intuitively, we aim to mimic the way interval
families are manipulated in merged-labeled trees.

First we would like to identify subproblems that can correspond to the leaves
of a merge-labeled tree. We say that a subproblem (I,J , h, s) is leaf-feasible if it
is feasible and moreover

(a) both I and J contain only single intervals I and J respectively,
(b) the conditions of feasibility hold for a partition of Sπ ∩ I × J into PC and

PD such that the set PD contains only a single point, and
(c) there exists a rule Leaf → s ∈ ∆D, i.e a leaf of a merge-labeled tree can

obtain the state s during a run of the automaton AD.

It is possible to efficiently check whether a subproblem is leaf-feasible. First
we check conditions (a) and (c). Since we require the set PD to be a singleton,
this guarantees the second condition of feasibility. In this case, we have at most n
possibilities how to choose the singleton set PD and for each such choice we can
test in polynomial time whether the state h(I, J) can be reached by a run of AC
over an arbitrarily chosen BD-tree of PC, thus verifying the final condition (b).

172

We continue with identifying subproblems that correspond to merging rows or
columns. We say that subproblem (I ′,J ′, h′, s′) is a column split of a subproblem
(I,J , h, s) if

(a) J ′ = J ,
(b) there is a k ∈ m such that I ′ = {I ′

1 < · · · < I ′
m+1} is the k-th interval join

of I = {I1 < · · · < Im},
(c) the rule Colk(s′) → s exists in ∆D,
(d) h′(I, J) = h(I, J) for every I ∈ I \ {Ik} and every J ∈ J , and
(e) for every J ∈ J there exists a rule (h′(I ′

k, J), h′(I ′
k+1, J)) → h(Ik, J) in ∆C.

In this case, all the conditions (a) up to (e) are straightforward to check
algorithmically. Symmetrically, we define a row split of a subproblem just by
swapping the roles of I and J , replacing Col with Row in condition (c) and
replacing the symbol with in condition (d).

Finally, we need to take care of the ‘merge’ nodes of merge-labeled trees. We
say that subproblems (I1,J1, h1, s1) and (I2,J2, h2, s2) combine to the subproblem
(I,J , h, s) if

(a) I1 and I2 merge to I as witnessed by the merge description MI ,
(b) J1 and J2 merge to J as witnessed by the merge description MJ ,
(c) the rule MI ,MJ (s1, s2) → s exists in ∆D,
(d) for every i ∈ {1, 2} and every I ∈ Ii and J ∈ Ji, h(I, J) = hi(I, J), and
(e) for every pair of intervals (I, J) from (I1 × J2) ∪ (I2 × J1), the state h(I, J)

is reachable by AC on the point set Sπ ∩ (I × J).

As before, we can check all the conditions (a) up to (e) algorithmically in
polynomial time.

In summary, Feasible returns a positive answer for a subproblem p if p is
leaf-feasible, or if there is a subproblem p′ that is either a row or a column split of
p and Feasible gives a positive answer on p′, or if there are two subproblems p1
and p2 that combine to p and Feasible returns positive answer for both of them.

We store all the computed results of Feasible in a table, effectively turning it
into a dynamic programming approach. The algorithm for C ⊙ D-recognition
declares that π is in C ⊙ D if and only if Feasible succeeds for at least one initial
problem. See Algorithm 1.

We claim that the total running time of Algorithm 1 is polynomial in n. We
have seen that the total number of subproblems is polynomial in n and that
each of the checks during the runtime of Feasible can also be performed in
polynomial time. Thus, the claim follows. Note that we are not trying to optimize
the runtime as this is a fairly generic algorithm and our goal is to identify which
cases of C ⊙ D-recognition belong to P.

We are left with proving the correctness of the algorithm. First, we claim that
whenever Feasible outputs a positive answer on a subproblem (I,J , h, s) then
it is indeed feasible. This is easy to see since it is possible to reconstruct from
the recursive calls a partition of Sπ into PC and PD together with a certificates in
the form of box decomposition tree T with an accepting run of AC over T , and a
merge-labeled tree t with an accepting run of AD over t.

173

Algorithm 1: Deciding whether π belongs to C ⊙ D
Function Feasible(I,J , h, s):

The function Feasible is memoized, i.e. it gets fully executed at most
once for each subproblem. If the function is invoked again with the
same parameters as in a previous call, it will return the cached result
immediately.

if (I,J , h, s) is leaf-feasible then
return true

for each subproblem (I ′,J ′′, h′, s) that is a row or a column split of
(I,J , h, s) do

if Feasible(I ′,J ′, h′, s′) then
return true

for each pair of subproblems (I1,J1, h1, s1) and (I2,J2, h2, s2) that
combine to (I,J , h, s) do

if Feasible(I1,J1, h1, s1) and Feasible(I2,J2, h2, s2) then
return true

return false

for each initial problem (I,J , h, s) do
if Feasible(I,J , h, s) then

return ”yes”
return ”no”

For the converse, we proceed to show by induction on the sizes of I and J
that whenever a subproblem (I,J , h, s) is feasible the function Feasible returns
a positive answer. Let PC and PD be the partition of the points of Sπ that lie in⋃︁ I × J that witnesses its feasibility. Furthemore, let t be the merge-labeled tree
such that the interval families Ir and Jr represented at the root node r of t are
precisely the standardization of I and J with respect to PD, together with a run
of the automaton AD over the tree t that assigns to r the state s.

The rest of the proof depends on the root symbol r of t. First, suppose that
the root symbol is Leaf. This implies that the subproblem is actually leaf-feasible
and Feasible just checks the leaf-feasibility of a subproblem according to its
definition.

Now suppose that the root symbol is Colk or Rowk for some k. Let us assume
without loss of generality that it is Colk as the other case is symmetrical. Our goal
is to show that there is a feasible subproblem (I ′,J ′, h′, s′) that is a column-split
of (I,J , h, s). Observe that there is an interval family I ′ such that I is a k-th
interval join of I ′ and the points of PD are distributed in J × I ′ in accordance
with the merge-labeled tree t. The run of automaton AD over t gives us also the
state s′ assigned to the child of r. We only need to take care of the function h′ on
the newly created boxes in order to satisfy the condition (e) of the column-split
definition. Recall that Ik ∈ I is the interval partitioned into the intervals I ′

k and
I ′

k+1 in I ′. We claim that for any J ∈ J there are two states q1, q2 ∈ QC such that
the rule (q1, q2) → h(Ik, J) exists in ∆C. That is true since the state h(Ik, J)
is reachable over arbitrary BD-tree of PC ∩ (Ik × J) so it does not matter how
we choose to initially split the box Ik × J . In this way, we obtained a feasible

174

column split of the subproblem (I,J , h, s). Thus it follows from induction that
Feasible gives positive answer for (I,J , h, s).

Finally, suppose that the root symbol of the merge-labeled tree is MI × MJ .
Similarly to before, we can obtain interval families I1, I2 and J1, J2 such that
the merge description MI describes the merge of I1 and I2 into I, MJ describes
the merge of J1 and J2 into J , and moreover the interval families agree with the
distribution of the points PD prescribed by t. The run of automaton AD over t
gives us also the states s1 and s2 assigned to the children of r. Moreover, the
condition (d) in the definition of subproblems combination tells how to define
the functions h1 and h2. In this way, we obtained two feasible subproblems that
combine to (I,J , h, s). The rest follows from induction.

A typical example of a GT-recognizable permutation class of bounded grid-
width is the class of separable permutations. In particular, Theorem 7.7 in
combination with Proposition 7.6 yields the following consequence.

Corollary 7.8. Let D be the class Av(213), one of its symmetries, or the class of
separable permutations. For any BD-recognizable class C, the C ⊙ D-recognition
is polynomial-time solvable.

7.4 Hardness results
Let us focus on examples of merge classes whose recognition problem is NP-hard.
Our goal is to show that Av(α) ⊙ Av(α)-recognition is NP-complete for any
simple pattern α of length at least 4. Observe that this coincides with the results
obtained in Proposition 3.10 where we show that the class Av(α) ⊙ Av(α) for
such α cannot be defined by an FO sentence in TOTO.

Due to the technical nature of the reduction, we first prove the case α = 2413
and later we show how to modify the proof for arbitrary simple pattern α. Note
that Av(α) ⊙ Av(α)-recognition is clearly in NP for arbitrary α and thus, it is
sufficient to prove its NP-hardness.

Theorem 7.9. Av(3142) ⊙ Av(3142)-recognition is NP-complete.

Proof. Our NP-hardness argument is based on the reduction from the classical
NP-complete problem known as Monotone Not-All-Equal 3-SAT [106]. We
say that a 3-CNF formula φ is positive if it contains no negative literal ¬xi.

Monotone Not-All-Equal 3-SAT (Monotone NAE-3-SAT)
Input: A set of variables V and a positive 3-CNF formula φ over V .

Output: Is there a truth assignment ϕ : V → {T, F} such that each clause
in φ contains at least one true and at least one false variable?

If an assignment with the desired property exists, we say that φ is NAE-
satisfiable. Note that Monotone NAE-3-SAT remains NP-hard even if we
require that every clause in φ contains exactly three positive, pairwise different
literals.

This proof shares a fair portion of notation and concepts with the proof of
Proposition 3.10 and therefore, we start by recalling these. We state all of them
in their general form for an arbitrary simple pattern α.

175

B1

◁
◁

◁
◁
◁
◁

◁
◁

◁
◁
◁

◁

◁
◁

◁
◁
◁
◁

◁

◁
◁

◁
◁

◁

◁
◁

◁

◁

◁

◁

◁

◁

◁
◁

◁
◁

◁
◁

◁

◁

◁
◁

B3

B2

B5 B6

B4

B7B8

α

α

◁
◁

◁
◁

◁
◁

Figure 7.2: The global structure of the permutation π used in the proof of
Theorems 7.9 and 7.11.

A 2-coloring ψ : π → {red, blue} is admissible, if π does not contain a monochro-
matic copy of α. Clearly, π belongs to Av(α) ⊙ Av(α) if and only if it has an
admissible coloring. The permutations α▷, α◁, α△ and α▽ are obtained from α by
removing the rightmost, leftmost, topmost and bottommost element, respectively.
We say that a point set P forms a right arrow if it is isomorphic to α▷. A point p
is said to lie in the range of the right arrow P , if p lies to the right of P and
the point set P ∪ {p} is isomorphic to α. Similarly, we define top, left and down
arrows as point sets isomorphic to α△, α◁ and α▽ , respectively. Their ranges are
defined analogously.

Fix an admissible coloring ψ. If π contains a monochromatic arrow of any
kind in ψ then all the points in its range must receive the opposite color. In
particular, if we have a sequence of disjoint arrows P1, . . . , Pℓ such that Pi+1 lies
in the range of Pi and the arrow P1 is monochromatic, then in fact each Pi must
be monochromatic and their colors alternate along the sequence.

Construction of π. Given an instance (V, φ) of Monotone NAE-3-SAT, we
will construct a permutation π ≡ π(V, φ) such that π ∈ Av(α) ⊙ Av(α) if and only
if φ is NAE-satisfiable. Suppose that V = {x1, . . . , xn} and φ consists of clauses
K1, . . . , Km.

Let us now describe the overall structure of the permutation π. Refer to Fig-
ure 7.2. The elements of π are partitioned into a sequence of blocks B1, B2, . . . , Bℓ

forming a clockwise spiral starting with the innermost block B1. Thus, for instance,
if i is a multiple of four, then any element in the block Bi is to the left of all the
elements in the block Bi−1, and it is to the left and below all the elements in the
blocks B1, B2, . . . , Bi−2. The total number ℓ of blocks is a multiple of four; we
will specify the exact value of ℓ later.

176

key element

bottom chunk

left chunk

top chunk

α▷

α▷

α◁
1

α◁
2

α◁
3

Figure 7.3: Left: the structure of a variable gadget σ(xi), for a variable xi

appearing in two clauses. The dotted lines are the boundaries of the ranges of the
two copies of α▷. Right: the structure of a clause gadget τ(Kj), for a clause Kj.
The dotted lines are the boundaries of the ranges of α◁

1, α◁
2 and α◁

3 in Bℓ−1.

The first block B1 is the variable block. It contains, for each variable xi ∈ V ,
a copy of a variable gadget σ(xi), to be described later. The variable gadgets are
arranged inside B1 into a decreasing sequence, that is, the elements of B1 are
isomorphic to the permutation σ(x1) ⊖ σ(x2) ⊖ · · · ⊖ σ(xn).

The final block Bℓ is the clause block. It contains, for each clause Kj in φ, a
copy of a clause gadget τ(Kj), with the clause gadgets being arranged into an
increasing sequence τ(K1) ⊕ τ(K2) ⊕ · · · ⊕ τ(Km).

Let us now describe the variable gadget σ(xi) for a variable xi ∈ V . Suppose
that xi appears in di distinct clauses. The gadget σ(xi) is obtained by inflating
α = 3142 as follows (see the left part of Figure 7.3):

• The leftmost and the bottommost element of α are both inflated into a copy
of α; we will call the two copies of α obtained by this inflation the left chunk
and the bottom chunk of σ(xi).

• The rightmost element remains a singleton (i.e., it is not inflated at all); we
will call this element the key element of σ(xi).

• The topmost element is inflated into a direct sum of di copies of α▷, and
each of these di copies of α▷ is associated with a distinct clause containing xi.
We call this group of elements the top chunk of σ(xi).

Observe that in any admissible two-coloring of σ(xi), all the elements in the top
chunk must have a different color than the key element. This is because both
the left chunk and the bottom chunk necessarily contain elements of both colors.
Therefore, if the top chunk contained an element sharing a color with the key
element, this would create a monochromatic copy of α and the coloring would not
be admissible.

Let us now look at the intermediate blocks B2, B3, · · · , Bℓ−1. Recall that for
every clause Kj and every variable xi ∈ Kj, the top chunk in the variable gadget
σ(xi) contains a right arrow associated with the clause Kj. In particular, B1
contains exactly 3m such right arrows, one for each pair (i, j) such that xi ∈ Kj.
The block B2 will contain 3m down arrows, each down arrow placed fully inside

177

the range of one of the 3m right arrows from B1. Likewise, the block B3 will
contain 3m left arrows, each one in the range of a distinct top arrow from B2.
In general, for any i ∈ {2, . . . , ℓ − 1}, the elements in a block Bi consist of 3m
disjoint arrows, all oriented towards Bi+1, and each of them inside the range of a
distinct arrow in Bi−1.

In particular, for each pair (i, j) such that the variable xi is in the clause Kj,
the permutation π contains a sequence of ℓ− 1 arrows arranged into a clockwise
spiral, with one arrow of the sequence in each of the blocks B1, . . . , Bℓ−1, and
with the property that each arrow in the sequence except the first is in the range
of the immediately preceding arrow. We call this sequence of arrows the track of
the pair (i, j).

Let us now specify the relative position of the arrows inside each block Bi,
and therefore the relative position of the 3m tracks in π. In the block B2, the
arrows form an increasing sequence, that is, the elements of π inside B2 are
order-isomorphic to the direct sum of 3m copies of α▽.

For every subsequent block Bi with 3 ≤ i ≤ ℓ − 1, we distinguish two cases,
depending on the parity of i. If i is even, then the 3m arrows in Bi are arranged
into layered sequence with layers of size at most two; that is, the elements inside
Bi are isomorphic to a permutation of length 3m from the Fibonacci class ⊕21
with each element inflated by a copy of α∗, where α∗ is either equal to α▽ (if i ≡ 2
mod 4), or to α△ (if i ≡ 0 mod 4). Symmetrically, for i ≥ 3 odd, the 3m arrows
inside Bi are arranged to form an inflation of a permutation of length 3m from
the class ⊖12.

The effect of this arrangement of arrows is to ensure that when the tracks pass
through a block Bi, their relative position changes by swapping in parallel some
pairs of neighboring tracks. Note that this is the same procedure that we used
when ‘sorting by gadgets’ in the proof of Theorem 5.6.

Inside the block B1, the arrows of the 3m tracks are ordered in such a way
that the tracks involving the variable x1 are the outermost, followed by those
involving x2 and so on, up to the tracks involving xn which are nearest to the
center of the spiral. Inside the block B2, the relative position of the tracks will
remain the same.

By suitably exchanging some set of pairs of adjacent tracks in each of the
blocks B3, . . . , Bℓ−1, we eventually reach an ordering in which the three tracks
involving the clause K1 are the outermost, followed by those involving K2, and
so on, up to the three tracks involving Km that are nearest to the center. The
number ℓ of blocks is chosen to be large enough, so that the initial ordering of
the tracks inside B1 can be transformed into the desired final ordering by at most
ℓ− 3 parallel swaps. It is easy to see that we can choose ℓ ∈ O(m).

Let us now describe the clause block Bℓ. Recall that this block contains an
increasing sequence τ(K1) ⊕ τ(K2) ⊕ · · · ⊕ τ(Km) of clause gadgets. Let Kj be
a clause in φ. Suppose that α◁

1, α◁
2 and α◁

3 are the three left arrows in Bℓ−1
belonging to the three tracks involving the clause Kj, numbered top to bottom.
The clause gadget τ(Kj) then consists of four elements forming a copy of the
pattern α = 3142, where the topmost element of τ(Kj) is in the range of α◁

1, the
bottommost is in the range of α◁

3 and the remaining two are in the range of α◁
2.

See the right part of Figure 7.3. This completes the description of π.

178

Claim 7.10. The Monotone NAE-3-SAT instance (V, φ) has a NAE-satisfying
assignment if and only if π has an admissible coloring.

Correctness (“if”). Suppose first that π has an admissible coloring ψ. Define
a truth assignment ϕ : V → {T, F} by setting ϕ(xi) = T if and only if the key
element in the variable gadget σ(xi) is blue. We claim that ϕ is a NAE-satisfying
assignment. To see this, choose a clause Kj in φ. If ϕ does not NAE-satisfy Kj , it
means that the key elements of the three variables in Kj all have the same color
in ψ, and therefore all the four elements in the clause gadget τ(Kj) have the same
color, contradicting the admissibility of ψ.

Correctness (“only if”). Suppose that (V, φ) has a NAE-satisfying assignment
ϕ, and let us define a red-blue coloring ψ of π as follows: the key element of the
variable gadget σ(xi) is blue if and only if ϕ(xi) = T . The elements of the left
chunk and of the bottom chunk of σ(xi) are colored arbitrarily in such a way
that each of these chunks has at least one red and at least one blue element.
Finally, the top chunk is colored by the color that differs from the color of the key
element. Having colored all the variable gadgets, we extend the coloring to the
entire π by following, inside each track, the rule that any element in the range of
a monochromatic arrow must have a color that differs from the color of the arrow.

We claim that the coloring ψ is admissible. To see this, let πR and πB be
the subpermutations of π formed by the red elements and the blue elements,
respectively. We claim that both these permutations avoid α. Let us look at πR,
the case of πB being analogous. To check that πR avoids α, we will repeatedly
apply Observation 3.12 which we now restate.

Observation 3.12. Suppose that γ is a permutation which contains an interval I,
and suppose that I has no copy of the simple pattern α. Let γ− be a permutation
obtained from γ by ‘deflating’ the interval I, i.e., by replacing I by a single element.
Then γ contains α if and only if γ− contains α.

Our goal is to show that by repeatedly deflating α-avoiding intervals, πR can be
reduced to a permutation from the clockwise spiral which is a subclass of Av(3142)
(see Subsection 2.3.1).

Consider first the red elements inside a variable gadget σ(xi). If the key
element in this gadget is red, then there are no red elements in the top chunk of
σ(xi), and the red elements in the left and the bottom chunk form an interval in
πR of size at most three. Thus, each chunk can be deflated in πR to a single point,
with the top chunk being empty. In particular, the deflation of chunks turns the
red part of σ(xi) into an interval of size at most three, which can then be deflated
to a single point.

Similarly, if the key point of σ(vi) is blue, the top chunk of the gadget is all
red. Since all the elements in B2 in the range of the arrows in the top chunk are
blue, the entire top chunk is an interval in πR, and can be deflated to a single
point. We then easily see that the red part of σ(xi) can again be deflated to a
point. Thus, the red part of B1 is deflated to a single decreasing sequence.

Consider now a block Bi with 2 ≤ i ≤ ℓ− 1, and let us look at the 3m arrows
in this block that belong to the 3m tracks. If such an arrow is red, all the elements
in its range are blue, and therefore every such red arrow is an interval in πR and

179

can be deflated to a point. These points will form a permutation either from the
class ⊕21 or from its symmetry ⊖12. Suppose without loss of generality that i is
even as the other case is symmetric. In this case, the points obtained by deflating
the red arrows in Bi form a permutation from the class ⊕21 and we focus on
pairs of points in the ‘wrong’ position, i.e. forming a pattern 21. Any such pair
of points is necessarily consecutive, and since the corresponding two tracks only
contain blue arrows in Bi−1 and Bi+1, the two red points again form an interval
in πR, and can be deflated to a single point, reducing the red part of Bi to an
increasing sequence.

It remains to deal with the clause block Bℓ. We will show that the red part of
each clause gadget τ(Kj) can be deflated either to a single point or to a direct sum
of two points, and therefore the red part of Bℓ can be deflated to an increasing
sequence of points. Recall that τ(Kj) is vertically partitioned into three parts,
each part belonging to the range of a different arrow in Bℓ−1, with the top part
and the bottom part of τ(Kj) consisting of one element each, and the middle part
consisting of two elements. Since ϕ was a NAE-satisfying assignment, at most
two of the three parts can be red. If the top and bottom parts are red, we do not
need to deflate anything, as these two parts form a direct sum of two singletons.
In any other case, we easily see that the red points of τ(Kj) form a single interval
and can be deflated into a point.

We conclude that ψ is indeed admissible. This completes the proof.

We remark that we have not put much effort into making the reduction more
efficient and thus, we do not obtain reasonable conditional lower bounds under
ETH. We continue by generalizing the reduction for arbitrary simple pattern α.

Theorem 7.11. For any simple permutation α of length at least 4, Av(α)⊙Av(α)-
recognition is NP-complete.

Proof. Let us explain how to adapt the proof of Theorem 7.9 to the case of
general α. Let α = α1, α2, . . . , αk be a simple permutation of size k ≥ 4. Note
that α must contain 2413 or 3142, because otherwise it would be separable, but
there are no separable simple permutations of size 3 or more. Suppose therefore
that α contains 3142, the other case being symmetric.

The general structure of π remains the same as in the proof of Theorem 7.9
(refer to Figure 7.2). Moreover, the generalization of the variable gadget σ(xi)
is straightforward: we take a copy of α, we inflate all its elements except the
rightmost one and the topmost one by a copy of α, we inflate the topmost element
by the di-fold direct sum α▷ ⊕ α▷ ⊕ · · · ⊕ α▷, where di is the number of clauses
containing the variable xi.

The main difficulty lies in the construction of the clause gadget τ(Kj). Let αb

and αt be the bottommost and the topmost element of α, respectively; in other
words, we have αb = 1 and αt = k. Note that both b and t are greater than 1 and
smaller then k, for otherwise α could be written as a direct sum or skew sum of
smaller permutations, and it would not be simple.

Suppose now that b < t, that is, the bottommost element of α is to the left
of the topmost one. In such case, we may directly generalize the construction of
τ(Kj) of the previous proof: τ(Kj) will consist of a copy of α distributed into the
ranges of three copies of α◁, with the topmost element of τ(Kj) in the range of the
topmost α◁

1, the bottommost element of τ(Kj) in the range of the bottommost α◁
3,

180

and the remaining k − 2 elements of τ(Kj) in the range of the middle α◁
2. With

these gadgets, we can perform the reduction from Monotone NAE-3-SAT and
prove its correctness exactly as in the proof of Theorem 7.11.

Now consider the case b > t. In this situation, we will look at the leftmost and
rightmost element of α, that is, the elements α1 and αk. If α1 > αk, we replace
the permutation α by the permutation α′ = (α−1)r, which corresponds to the
counter-clockwise 90-degree rotation of α. We see that α′ still contains 3142, and
its topmost element is to the right of the bottommost one, therefore our situation
is reduced to the previous case, and we may conclude that Av(α′) ⊙ Av(α′)-
recognition is NP-complete. By symmetry, the problem of Av(α) ⊙ Av(α)-
recognition is NP-complete as well.

Finally, suppose that b > t and α1 < αk. Then the four elements α1, αb,
αt and αk form a copy of 2413 in α. Therefore, the reverse αr of α contains
3142, and its topmost element is to the right of the bottommost one, and we
may again conclude that Av(αr) ⊙ Av(αr)-recognition, and therefore also
Av(α) ⊙ Av(α)-recognition, is NP-complete.

Despite our results, the complexity of many cases of C ⊙ D-recognition
remains open. Perhaps the most natural question is to consider the merge of
classes that have bounded grid-width but do not belong to NLOL. Classes of
this type include many important examples, such as the class Av(2413, 3142) of
separable permutations, or the class Av(213) and its symmetries.

Open problem 7.12. What is the complexity of C ⊙ D-recognition when
C and D are any two (possibly identical) classes from the set {Av(2413, 3142),
Av(213),Av(231),Av(132),Av(312)}?

The complexity of recognizing permutations merged from two separable sub-
permutations, or more generally from k separable permutations, is also mentioned
as an open problem by Hoàng and Le [81, Problem 1], who state it in an equivalent
graph-theoretic setting as generalized coloring of permutation graphs by k colors,
with each color inducing a P4-free subgraph.

It is also natural to consider ‘unbalanced’ merges, when one of the two classes
is very simple, e.g., the class Av(21) of increasing permutations. Our results imply
that C ⊙ Av(21)-recognition is tractable when C is in NLOL or when C is a
GT-recognizable class of bounded grid-width, but we know nothing about the
remaining cases.

Open problem 7.13. For which classes C is the C ⊙ Av(21)-recognition
solvable in polynomial time?

181

182

Conclusion
We collect all the open problems and unresolved questions that occurred throughout
the thesis. In Chapter 2, we showed that any permutation class with the long
path property has unbounded tree-width (Proposition 2.33). However, there is
no known example of a class without the long path property having unbounded
tree-width and we conjecture that these two properties are equivalent.

Conjecture 2.31. A permutation class C has unbounded tree-width if and only
if it has the long path property.

Furthermore, we used our tools to prove tight asymptotic bounds on the
tree-width growth of all principal classes with five exceptions up to symmetry. We
restate our question asking how quickly the tree-width can grow in these classes.

Open problem 2.58. What is the tree-width growth of Av(σ)-PPM, when σ is
a permutation from the set {3412, 3142, 4213, 4123, 41352}?

We have not presented any explicit open problems in Chapter 3. One possible
direction of future research might be to further unravel the boundary of FO- and
MSO-definability. In other words, we ask to determine which permutation classes
can be defined using first-order or monadic second-order sentences in TOTO.
A less ambitious instance of this question is presented by merge classes. We
showed that the class Av(α) ⊙ Av(α) is not FO-definable for any simple pattern α
(Proposition 3.10). How does the situation change when we look at non-simple α?
It is unclear where the boundary is since, e.g., for arbitrarily large monotone α,
the class Av(α) ⊙ Av(α) is actually finitely based and thus, definable by an FO
sentence.

Open problem 7.14. Which classes of the form Av(α) ⊙ Av(α) are definable by
FO sentences in TOTO?

In Chapter 4, the complexity of unrestricted PPM was thoroughly explored
both from the classical and from the parameterized point of view. However, the
pattern-restricted variant C-Pattern PPM presents opportunities for future
research. For instance assuming that C has the computable deep tree property,
we showed that C-Pattern #PPM cannot be solved in time f(k) · no(k/ log2 k)

where k is the length of the pattern and n is the length of the text, unless ETH
fails (Theorem 4.27). However, the best lower bound we can impose on the
tree-width growth of C is Ω(n/ log n) (Proposition 2.39) which implies that the
tree-width based algorithm (Theorem 4.13) cannot solve C-Pattern #PPM in
time f(k) · no(k/ log k). Notice the single logarithmic factor in the exponent. Can it
be that, in fact, C-Pattern #PPM cannot be solved in time f(k) · no(k/ log k) for
any class with the computable deep tree property?

Additionally, we have not been able to utilize the bicycle property in any of
our reductions. Is there a way to leverage the bicycle property in order to obtain
more efficient reductions and as a result, sharper conditional lower bounds under
ETH?

183

In Chapter 5, we pursued the complexity of the text-restricted PPM variant
C-PPM. Even though we made significant progress, the complete picture remains
elusive, unlike in the case of C-Pattern PPM. The most striking open problem
is to determine the complexity of Av(σ)-PPM for the five remaining principal
classes up to symmetry.

Open problem 5.16. What is the complexity of Av(σ)-PPM, when σ is a
permutation from the set {3412, 3142, 4213, 4123, 41352}?

In Chapter 6, we showed that a sharp dichotomy exists for the tree-width
growth and complexity of Grid(M)-Pattern PPM over monotone grid classes
(Theorems 6.1 and 6.7). We can also characterize exactly when a general grid
class Grid(M) has bounded tree-width and when the corresponding Grid(M)-
Pattern PPM problem is NP-hard (Theorem 6.8). However, the situation is
widely open for Grid(M)-PPM.

Open problem 7.15. Characterize the complexity of Grid(M)-PPM for non-
monotone gridding matrices.

Finally, Chapter 7 is definitely the most fruitful source of open problems since
the complexity of C ⊙ D-recognition remains in most cases unresolved. We
restate the two particular questions of interest posed at the end of the chapter.
The first asks about merges involving subclasses of separable permutations. The
second concerns the case of ‘unbalanced’ merges, when one of the two classes is
very simple, e.g., the class Av(21) of increasing permutations.

Open problem 7.12. What is the complexity of C ⊙ D-recognition when
C and D are any two (possibly identical) classes from the set {Av(2413, 3142),
Av(213),Av(231),Av(132),Av(312)}?

Open problem 7.13. For which classes C is the C ⊙ Av(21)-recognition
solvable in polynomial time?

Permutations in higher dimensions. Finally, we propose a possible future
direction of research. There have been lately some works considering the extension
of permutations to higher dimensions [15, 43, 31]. A d-dimensional permutation
can be defined easily either as a subset of [n]d in general position or equivalently
as a relational structure consisting of d linear orders.

Luckily, we treated both dimensions of permutations as equals1 and owing to
that, many of our results can be generalized to higher dimensions in a straightfor-
ward way. For example, all the parameters defined in Chapter 2 can be extended
to higher dimensions and moreover, it can be shown that similar relationships hold
between them. Similarly, the algorithm for PPM based on CSPs (Subsection 4.2.5)
carries through with minimal modifications. On the other hand, we know that
higher dimensional permutations act differently at least in some aspects. For
instance, Guillemot and Marx [77] proved that the 3-dimensional analogue of
PPM is W[1]-hard with respect to the pattern length, which sharply contrasts
with their fpt-algorithm for 2-dimensional PPM (Theorem 4.5). Therefore, we
find it intriguing to explore the different behavior that occurs in higher dimensions.

1that is often not the case when one works with permutations in the one-line notation.

184

Bibliography
[1] Dimitris Achlioptas, Jason I. Brown, Derek G. Corneil, and Michael Molloy.

The existence of uniquely −G colourable graphs. Discrete Math., 179(1-
3):1–11, 1998. doi: 10.1016/S0012-365X(97)00022-8.

[2] Shlomo Ahal and Yuri Rabinovich. On complexity of the subpattern
problem. SIAM Journal on Discrete Mathematics, 22(2):629–649, 2008.
doi: 10.1137/S0895480104444776.

[3] Michael Albert and V́ıt Jeĺınek. Unsplittable classes of separable permuta-
tions. Electron. J. Combin., 23(2):Paper 2.49, 20, 2016. doi: 10.37236/
6115.

[4] Michael Albert, Jay Pantone, and Vincent Vatter. On the growth of merges
and staircases of permutation classes. Rocky Mountain J. Math., 49(2):355–
367, 2019. doi: 10.1216/RMJ-2019-49-2-355.

[5] Michael H. Albert. On the length of the longest subsequence avoiding an
arbitrary pattern in a random permutation. Random Structures Algorithms,
31(2):227–238, 2007. doi: 10.1002/rsa.20140.

[6] Michael H. Albert, Robert E. L. Aldred, Mike D. Atkinson, and Derek A.
Holton. Algorithms for pattern involvement in permutations. In Algorithms
and computation (Christchurch, 2001), volume 2223, pages 355–366, 2001.
doi: 10.1007/3-540-45678-3_31.

[7] Michael H. Albert, M. D. Atkinson, Mathilde Bouvel, Nik Ruškuc, and
Vincent Vatter. Geometric grid classes of permutations. Trans. Amer. Math.
Soc., 365(11):5859–5881, 2013. doi: 10.1090/S0002-9947-2013-05804-7.

[8] Michael H. Albert and Mike D. Atkinson. Simple permutations and pattern
restricted permutations. Discrete Math., 300(1-3):1–15, 2005. doi: 10.
1016/j.disc.2005.06.016.

[9] Michael H. Albert, Mathilde Bouvel, and Valentin Féray. Two first-order
logics of permutations. J. Combin. Theory Ser. A, 171:105158, 46, 2020.
doi: 10.1016/j.jcta.2019.105158.

[10] Michael H. Albert, Marie-Louise Lackner, Martin Lackner, and Vincent
Vatter. The complexity of pattern matching for 321-avoiding and skew-
merged permutations. Discrete Math. Theor. Comput. Sci., 18(2):Paper
No. 11, 17, 2016. doi: 10.46298/dmtcs.1308.

[11] Michael H. Albert, Steve Linton, and Nikola Ruskuc. The insertion encod-
ing of permutations. Electron. J. Combin., 12:Research Paper 47, 31, 2005.
doi: 10.37236/1944.

[12] Vladimir E. Alekseev, Alastair Farrugia, and Vadim V. Lozin. New re-
sults on generalized graph coloring. Discrete Math. Theor. Comput. Sci.,
6(2):215–221, 2004.

185

https://doi.org/10.1016/S0012-365X(97)00022-8
https://doi.org/10.1137/S0895480104444776
https://doi.org/10.37236/6115
https://doi.org/10.37236/6115
https://doi.org/10.1216/RMJ-2019-49-2-355
https://doi.org/10.1002/rsa.20140
https://doi.org/10.1007/3-540-45678-3_31
https://doi.org/10.1090/S0002-9947-2013-05804-7
https://doi.org/10.1016/j.disc.2005.06.016
https://doi.org/10.1016/j.disc.2005.06.016
https://doi.org/10.1016/j.jcta.2019.105158
https://doi.org/10.46298/dmtcs.1308
https://doi.org/10.37236/1944

[13] Ragnar Pall Ardal, Tomas Ken Magnusson, Émile Nadeau, Bjarni Jens
Kristinsson, Bjarki Agust Gudmundsson, Christian Bean, Henning Ulfars-
son, Jon Steinn Eliasson, Murray Tannock, Alfur Birkir Bjarnason, Jay
Pantone, Arnar Bjarni Arnarson, and Sigurjón Ingi Jónsson. Permutatri-
angle/permuta: version 2.1.0, version v2.1.0, 2021. doi: 10.5281/zenodo.
4945792.

[14] Sanjeev Arora and Boaz Barak. Computational complexity. Cambridge
University Press, Cambridge, 2009, pages xxiv+579. doi: 10 . 1017 /
CBO9780511804090. A modern approach.

[15] Andrei Asinowski and Toufik Mansour. Separable d-permutations and guil-
lotine partitions. Ann. Comb., 14(1):17–43, 2010. doi: 10.1007/s00026-
010-0043-8.

[16] Aistis Atminas, Robert Brignall, Vadim V. Lozin, and Juraj Stacho. Mini-
mal classes of graphs of unbounded clique-width defined by finitely many
forbidden induced subgraphs. Discrete Applied Mathematics, 295:57–69,
2021. doi: 10.1016/j.dam.2021.02.007.

[17] Sergey Avgustinovich, Sergey Kitaev, and Alexandr Valyuzhenich. Avoid-
ance of boxed mesh patterns on permutations. Discrete Applied Mathe-
matics, 161(1-2):43–51, 2013. doi: 10.1016/j.dam.2012.08.015.

[18] Eric Babson and Einar Steingŕımsson. Generalized permutation patterns
and a classification of the Mahonian statistics. Sém. Lothar. Combin.,
44:Art. B44b, 18, 2000.

[19] Jakub Balabán and Petr Hliněný. Twin-width is linear in the poset width.
In 16th International Symposium on Parameterized and Exact Compu-
tation, IPEC 2021, September 8-10, 2021, Lisbon, Portugal, volume 214,
6:1–6:13, 2021. doi: 10.4230/LIPIcs.IPEC.2021.6.

[20] Christian Bean, Bjarki Gudmundsson, and Henning Ulfarsson. Auto-
matic discovery of structural rules of permutation classes. Math. Comp.,
88(318):1967–1990, 2019. doi: 10.1090/mcom/3386.

[21] Christian Bean, Henning Ulfarsson, and Anders Claesson. Enumerations of
permutations simultaneously avoiding a vincular and a covincular pattern
of length 3. J. Integer Seq., 20(7):Art. 17.7.6, 25, 2017.

[22] Benjamin Aram Berendsohn. Complexity of Permutation Pattern Matching.
Master’s thesis, Freie Universität Berlin, 2019.

[23] Benjamin Aram Berendsohn, László Kozma, and Dániel Marx. Finding
and counting permutations via CSPs. Algorithmica, 83(8):2552–2577, 2021.
doi: 10.1007/s00453-021-00812-z.

[24] Frank Bernhart and Paul C. Kainen. The book thickness of a graph.
J. Combin. Theory Ser. B, 27(3):320–331, 1979. doi: 10.1016/0095-
8956(79)90021-2.

[25] David I. Bevan. Growth rates of geometric grid classes of permutations.
Electron. J. Combin., 21(4):Paper 4.51, 17, 2014. doi: 10.37236/4834.

186

https://doi.org/10.5281/zenodo.4945792
https://doi.org/10.5281/zenodo.4945792
https://doi.org/10.1017/CBO9780511804090
https://doi.org/10.1017/CBO9780511804090
https://doi.org/10.1007/s00026-010-0043-8
https://doi.org/10.1007/s00026-010-0043-8
https://doi.org/10.1016/j.dam.2021.02.007
https://doi.org/10.1016/j.dam.2012.08.015
https://doi.org/10.4230/LIPIcs.IPEC.2021.6
https://doi.org/10.1090/mcom/3386
https://doi.org/10.1007/s00453-021-00812-z
https://doi.org/10.1016/0095-8956(79)90021-2
https://doi.org/10.1016/0095-8956(79)90021-2
https://doi.org/10.37236/4834

[26] David I. Bevan, Robert Brignall, Andrew Elvey Price, and Jay Pantone.
Staircases, dominoes, and the growth rate of 1324-avoiders. Electronic
Notes in Discrete Mathematics, 61:123–129, 2017. doi: https://doi.
org/10.1016/j.endm.2017.06.029. The European Conference on
Combinatorics, Graph Theory and Applications (EUROCOMB’17).

[27] Hans L. Bodlaender. Some classes of graphs with bounded treewidth. Bull.
EATCS, 36:116–125, 1988.

[28] Hans L. Bodlaender, P̊al Grøn̊as Drange, Markus S. Dregi, Fedor V.
Fomin, Daniel Lokshtanov, and Michal Pilipczuk. A ck n 5-approximation
algorithm for treewidth. SIAM J. Comput., 45(2):317–378, 2016. doi:
10.1137/130947374.

[29] Miklós Bóna. A new record for 1324-avoiding permutations. Eur. J. Math.,
1(1):198–206, 2015. doi: 10.1007/s40879-014-0020-6.

[30] Miklós Bóna. A new upper bound for 1324-avoiding permutations. Combin.
Probab. Comput., 23(5):717–724, 2014. doi: 10.1017/S0963548314000091.

[31] Nicolas Bonichon and Pierre-Jean Morel. Baxter d-permutations and other
pattern avoiding classes. arXiv:2202.12677, 2022.

[32] Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and
Rémi Watrigant. Twin-width II: small classes. In Proceedings of the 2021
ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual
Conference, January 10 - 13, 2021, pages 1977–1996, 2021. doi: 10.1137/
1.9781611976465.118.

[33] Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and
Rémi Watrigant. Twin-width III: max independent set, min dominating set,
and coloring. In 48th International Colloquium on Automata, Languages,
and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland
(Virtual Conference), volume 198, 35:1–35:20, 2021. doi: 10.4230/LIPIcs.
ICALP.2021.35.

[34] Édouard Bonnet, Eun Jung Kim, Amadeus Reinald, and Stéphan Thomassé.
Twin-width VI: the lens of contraction sequences. In Proceedings of the
2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual
Conference / Alexandria, VA, USA, January 9 - 12, 2022, pages 1036–1056,
2022. doi: 10.1137/1.9781611977073.45.

[35] Édouard Bonnet, Eun Jung Kim, Amadeus Reinald, Stéphan Thomassé,
and Rémi Watrigant. Twin-width and polynomial kernels. In 16th Interna-
tional Symposium on Parameterized and Exact Computation, IPEC 2021,
September 8-10, 2021, Lisbon, Portugal, volume 214, 10:1–10:16, 2021. doi:
10.4230/LIPIcs.IPEC.2021.10.

[36] Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrig-
ant. Twin-width I: tractable FO model checking. In 61st IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2020, Durham,
NC, USA, November 16-19, 2020, pages 601–612, 2020. doi: 10.1109/
FOCS46700.2020.00062.

187

https://doi.org/https://doi.org/10.1016/j.endm.2017.06.029
https://doi.org/https://doi.org/10.1016/j.endm.2017.06.029
https://doi.org/10.1137/130947374
https://doi.org/10.1007/s40879-014-0020-6
https://doi.org/10.1017/S0963548314000091
https://arxiv.org/abs/2202.12677
https://doi.org/10.1137/1.9781611976465.118
https://doi.org/10.1137/1.9781611976465.118
https://doi.org/10.4230/LIPIcs.ICALP.2021.35
https://doi.org/10.4230/LIPIcs.ICALP.2021.35
https://doi.org/10.1137/1.9781611977073.45
https://doi.org/10.4230/LIPIcs.IPEC.2021.10
https://doi.org/10.1109/FOCS46700.2020.00062
https://doi.org/10.1109/FOCS46700.2020.00062

[37] Édouard Bonnet, Jaroslav Nesetril, Patrice Ossona de Mendez, Sebas-
tian Siebertz, and Stéphan Thomassé. Twin-width and permutations.
arXiv:2102.06880, 2021.

[38] Piotr Borowiecki. Computational aspects of greedy partitioning of graphs. J.
Comb. Optim., 35(2):641–665, 2018. doi: 10.1007/s10878-017-0185-2.

[39] Prosenjit Bose, Jonathan F. Buss, and Anna Lubiw. Pattern matching for
permutations. Inform. Process. Lett., 65(5):277–283, 1998. doi: 10.1016/
S0020-0190(97)00209-3.

[40] Jean Bourgain and Amir Yehudayoff. Expansion in SL2(R) and monotone
expanders. Geom. Funct. Anal., 23(1):1–41, 2013. doi: 10.1007/s00039-
012-0200-9.

[41] Mireille Bousquet-Mélou, Anders Claesson, Mark Dukes, and Sergey Kitaev.
(2 + 2)-free posets, ascent sequences and pattern avoiding permutations.
J. Combin. Theory Ser. A, 117(7):884–909, 2010. doi: 10.1016/j.jcta.
2009.12.007.

[42] Petter Brändén and Anders Claesson. Mesh patterns and the expansion
of permutation statistics as sums of permutation patterns. Electron. J.
Combin., 18(2):Paper 5, 14, 2011. doi: 10.37236/2001.

[43] Samuel Braunfeld. The undecidability of joint embedding for 3-dimensional
permutation classes. Discrete Mathematics & Theoretical Computer Sci-
ence, vol. 22 no. 2, Permutation Patterns 2019, 2021. doi: 10.46298/
dmtcs.6165.

[44] Robert Brignall. Grid classes and partial well order. J. Combin. Theory
Ser. A, 119(1):99–116, 2012. doi: 10.1016/j.jcta.2011.08.005.

[45] Karl Bringmann, László Kozma, Shay Moran, and N. S. Narayanaswamy.
Hitting set for hypergraphs of low VC-dimension. In 24th Annual European
Symposium on Algorithms, volume 57, Art. No. 23, 18, 2016. doi: 10.4230/
LIPIcs.ESA.2016.23.

[46] Hajo Broersma, Fedor V. Fomin, Jaroslav Nešetřil, and Gerhard J. Woeg-
inger. More about subcolorings. Computing, 69(3):187–203, 2002. doi:
10.1007/s00607-002-1461-1.

[47] Jason I. Brown. The complexity of generalized graph colorings. Discrete
Applied Mathematics, 69(3):257–270, 1996. doi: 10.1016/0166-218X(96)
00096-0.

[48] Marie-Louise Bruner and Martin Lackner. A fast algorithm for permutation
pattern matching based on alternating runs. Algorithmica, 75(1):84–117,
2016. doi: 10.1007/s00453-015-0013-y.

[49] Marie-Louise Bruner and Martin Lackner. The computational landscape of
permutation patterns. Pure Math. Appl. (PU.M.A.), 24(2):83–101, 2013.

[50] J. Richard Büchi. Weak second-order arithmetic and finite automata.
Z. Math. Logik Grundlagen Math., 6:66–92, 1960. doi: 10.1002/malq.
19600060105.

188

https://arxiv.org/abs/2102.06880
https://doi.org/10.1007/s10878-017-0185-2
https://doi.org/10.1016/S0020-0190(97)00209-3
https://doi.org/10.1016/S0020-0190(97)00209-3
https://doi.org/10.1007/s00039-012-0200-9
https://doi.org/10.1007/s00039-012-0200-9
https://doi.org/10.1016/j.jcta.2009.12.007
https://doi.org/10.1016/j.jcta.2009.12.007
https://doi.org/10.37236/2001
https://doi.org/10.46298/dmtcs.6165
https://doi.org/10.46298/dmtcs.6165
https://doi.org/10.1016/j.jcta.2011.08.005
https://doi.org/10.4230/LIPIcs.ESA.2016.23
https://doi.org/10.4230/LIPIcs.ESA.2016.23
https://doi.org/10.1007/s00607-002-1461-1
https://doi.org/10.1016/0166-218X(96)00096-0
https://doi.org/10.1016/0166-218X(96)00096-0
https://doi.org/10.1007/s00453-015-0013-y
https://doi.org/10.1002/malq.19600060105
https://doi.org/10.1002/malq.19600060105

[51] Binh-Minh Bui Xuan, Michel Habib, and Christophe Paul. Revisiting T.
Uno and M. Yagiura’s algorithm (extended abstract). In Algorithms and
computation, volume 3827, pages 146–155, 2005. doi: 10.1007/11602613_
16.

[52] Laurent Bulteau, Guillaume Fertin, Vincent Jugé, and Stéphane Vialette.
Permutation Pattern Matching for Doubly Partially Ordered Patterns. In
33rd Annual Symposium on Combinatorial Pattern Matching, 2022.

[53] Anders Claesson, Vı́t Jeĺınek, and Einar Steingŕımsson. Upper bounds
for the Stanley–Wilf limit of 1324 and other layered patterns. J. Comb.
Theory A, 119:1680–1691, 8, 2012. doi: 10.1016/j.jcta.2012.05.006.

[54] Hubert Comon, Max Dauchet, Rémi Gilleron, Florent Jacquemard, Denis
Lugiez, Christof Löding, Sophie Tison, and Marc Tommasi. Tree Automata
Techniques and Applications. 2008, page 262.

[55] Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable
sets of finite graphs. Inform. and Comput., 85(1):12–75, 1990. doi: 10.
1016/0890-5401(90)90043-H.

[56] Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic
Second-Order Logic - A Language-Theoretic Approach, volume 138. Cam-
bridge University Press, 2012.

[57] Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time
solvable optimization problems on graphs of bounded clique-width. Theory
Comput. Syst., 33(2):125–150, 2000. doi: 10.1007/s002249910009.

[58] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel
Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameter-
ized algorithms. Springer, Cham, 2015, pages xviii+613. doi: 10.1007/978-
3-319-21275-3.

[59] Vida Dujmović, David Eppstein, and David R. Wood. Structure of graphs
with locally restricted crossings. SIAM Journal on Discrete Mathematics,
31(2):805–824, 2017. doi: 10.1137/16M1062879.

[60] Vida Dujmović, Anastasios Sidiropoulos, and David R. Wood. Layouts
of expander graphs. Chic. J. Theoret. Comput. Sci.:Art. 1, 21, 2016. doi:
10.4086/cjtcs.2016.001.

[61] Andrzej Ehrenfeucht. An application of games to the completeness problem
for formalized theories. Fund. Math., 49:129–141, 1961. doi: 10.4064/fm-
49-2-129-141.

[62] T́ınaz Ekim, Pinar Heggernes, and Daniel Meister. Polar permutation
graphs are polynomial-time recognisable. European J. Combin., 34(3):576–
592, 2013. doi: 10.1016/j.ejc.2011.12.007.

[63] Murray Elder and Yoong Kuan Goh. k-pop stack sortable permutations
and 2-avoidance. Electron. J. Combin., 28(1):Paper No. 1.54, 15, 2021.
doi: 10.37236/9606.

[64] Calvin C. Elgot. Decision problems of finite automata design and related
arithmetics. Trans. Amer. Math. Soc., 98:21–51, 1961. doi: 10.2307/
1993511.

189

https://doi.org/10.1007/11602613_16
https://doi.org/10.1007/11602613_16
https://doi.org/10.1016/j.jcta.2012.05.006
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1007/s002249910009
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1137/16M1062879
https://doi.org/10.4086/cjtcs.2016.001
https://doi.org/10.4064/fm-49-2-129-141
https://doi.org/10.4064/fm-49-2-129-141
https://doi.org/10.1016/j.ejc.2011.12.007
https://doi.org/10.37236/9606
https://doi.org/10.2307/1993511
https://doi.org/10.2307/1993511

[65] Paul Erdös and George Szekeres. A combinatorial problem in geometry.
Compositio Math., 2:463–470, 1935.

[66] Alastair Farrugia. Vertex-partitioning into fixed additive induced-hereditary
properties is NP-hard. Electron. J. Combin., 11(1):Research Paper 46, 9,
2004. doi: 10.37236/1799.

[67] Jörg Flum and Martin Grohe. Model-checking problems as a basis for
parameterized intractability. Log. Methods Comput. Sci., 1(1):1:2, 36, 2005.
doi: 10.2168/LMCS-1(1:2)2005.

[68] Jacob Fox. Stanley–Wilf limits are typically exponential. arXiv:1310.8378v1,
2013.

[69] Roland Fräıssé. Sur quelques classifications des systèmes de relations. Publ.
Sci. Univ. Alger. Sér. A, 1:35–182 (1955), 1954.

[70] Eugene C. Freuder. Complexity of k-tree structured constraint satisfaction
problems. In Proceedings of the 8th National Conference on Artificial
Intelligence. Boston, Massachusetts, USA, July 29 - August 3, 1990, 2
Volumes, pages 4–9, 1990.

[71] Robert Ganian, Petr Hliněný, Joachim Kneis, Alexander Langer, Jan
Obdržálek, and Peter Rossmanith. Digraph width measures in parameter-
ized algorithmics. Discrete Applied Mathematics, 168:88–107, 2014. doi:
10.1016/j.dam.2013.10.038.

[72] Alice L. L. Gao and Sergey Kitaev. On partially ordered patterns of lengths
4 and 5 in permutations. Electron. J. Combin., 26(3):Paper No. 3.26, 31,
2019. doi: 10.37236/8605.

[73] Pawel Gawrychowski and Mateusz Rzepecki. Faster exponential algorithm
for permutation pattern matching. In 5th Symposium on Simplicity in
Algorithms, SOSA@SODA 2022, Virtual Conference, January 10-11, 2022,
pages 279–284, 2022. doi: 10.1137/1.9781611977066.21.

[74] John R. Gilbert, Joan P. Hutchinson, and Robert Endre Tarjan. A separator
theorem for graphs of bounded genus. J. Algorithms, 5(3):391–407, 1984.
doi: 10.1016/0196-6774(84)90019-1.

[75] Erich Grädel, Phokion G. Kolaitis, Leonid Libkin, Maarten Marx, Joel
Spencer, Moshe Y. Vardi, Yde Venema, and Scott Weinstein. Finite model
theory and its applications. Springer, Berlin, 2007, pages xiv+437.

[76] Martin Grohe and Dániel Marx. On tree width, bramble size, and expansion.
J. Combin. Theory Ser. B, 99(1):218–228, 2009. doi: 10.1016/j.jctb.
2008.06.004.

[77] Sylvain Guillemot and Dániel Marx. Finding small patterns in permutations
in linear time. In Proceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 82–101, 2014. doi: 10.1137/1.
9781611973402.7.

[78] Sylvain Guillemot and Stéphane Vialette. Pattern matching for 321-
avoiding permutations. In Algorithms and computation, volume 5878,
pages 1064–1073, 2009. doi: 10.1007/978-3-642-10631-6_107.

190

https://doi.org/10.37236/1799
https://doi.org/10.2168/LMCS-1(1:2)2005
https://arxiv.org/abs/1310.8378v1
https://doi.org/10.1016/j.dam.2013.10.038
https://doi.org/10.37236/8605
https://doi.org/10.1137/1.9781611977066.21
https://doi.org/10.1016/0196-6774(84)90019-1
https://doi.org/10.1016/j.jctb.2008.06.004
https://doi.org/10.1016/j.jctb.2008.06.004
https://doi.org/10.1137/1.9781611973402.7
https://doi.org/10.1137/1.9781611973402.7
https://doi.org/10.1007/978-3-642-10631-6_107

[79] Arie Nicolaas Habermann. Parallel Neighbor-Sort (or the Glory of the
Induction Principle). Technical report, Computer Science Department,
Carnegie Mellon University, 1972.

[80] Petr Hliněný and Sang-il Oum. Finding branch-decompositions and rank-
decompositions. SIAM Journal on Computing, 38(3):1012–1032, 2008. doi:
10.1137/070685920.

[81] Chinh T. Hoàng and Van Bang Le. P4-free colorings and P4-bipartite
graphs. Discrete Math. Theor. Comput. Sci., 4(2):109–122, 2001.

[82] Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and
their applications. Bull. Amer. Math. Soc. (N.S.), 43(4):439–561, 2006.
doi: 10.1090/S0273-0979-06-01126-8.

[83] Sophie Huczynska and Vincent Vatter. Grid classes and the Fibonacci di-
chotomy for restricted permutations. Electron. J. Combin., 13(1):Research
Paper 54, 14, 2006. doi: 10.37236/1080.

[84] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-
SAT. J. Comput. System Sci., 62(2):367–375, 2001. doi: 10.1006/jcss.
2000.1727. Special issue on the Fourteenth Annual IEEE Conference on
Computational Complexity (Atlanta, GA, 1999).

[85] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which prob-
lems have strongly exponential complexity? J. Comput. System Sci.,
63(4):512–530, 2001. doi: 10.1006/jcss.2001.1774. Special issue on
FOCS 98 (Palo Alto, CA).

[86] V́ıt Jeĺınek and Jan Kynčl. Hardness of permutation pattern matching. In
Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pages 378–396, 2017. doi: 10.1137/1.9781611974782.
24.

[87] Vı́t Jeĺınek and Michal Opler. Splittability and 1-amalgamability of per-
mutation classes. Discrete Math. Theor. Comput. Sci., 19(2):Paper No. 4,
14, 2017. doi: 10.23638/DMTCS-19-2-4.

[88] Vı́t Jeĺınek, Michal Opler, and Jakub Pekárek. A complexity dichotomy
for permutation pattern matching on grid classes. In 45th International
Symposium on Mathematical Foundations of Computer Science, MFCS
2020, August 24-28, 2020, Prague, Czech Republic, volume 170, 52:1–52:18,
2020. doi: 10.4230/LIPIcs.MFCS.2020.52.

[89] Vı́t Jeĺınek and Pavel Valtr. Splittings and Ramsey properties of per-
mutation classes. Advances in Applied Mathematics, 63:41–67, 2015. doi:
10.1016/j.aam.2014.10.003.

[90] André E. Kézdy, Hunter S. Snevily, and Chi Wang. Partitioning permuta-
tions into increasing and decreasing subsequences. J. Combin. Theory Ser.
A, 73(2):353–359, 1996. doi: 10.1016/s0097-3165(96)80012-4.

[91] Sergey Kitaev. Introduction to partially ordered patterns. Discrete Applied
Mathematics, 155(8):929–944, 2007. doi: 10.1016/j.dam.2006.09.011.

[92] Sergey Kitaev. Partially ordered generalized patterns. Discrete Math.,
298(1-3):212–229, 2005. doi: 10.1016/j.disc.2004.03.017.

191

https://doi.org/10.1137/070685920
https://doi.org/10.1090/S0273-0979-06-01126-8
https://doi.org/10.37236/1080
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1137/1.9781611974782.24
https://doi.org/10.1137/1.9781611974782.24
https://doi.org/10.23638/DMTCS-19-2-4
https://doi.org/10.4230/LIPIcs.MFCS.2020.52
https://doi.org/10.1016/j.aam.2014.10.003
https://doi.org/10.1016/s0097-3165(96)80012-4
https://doi.org/10.1016/j.dam.2006.09.011
https://doi.org/10.1016/j.disc.2004.03.017

[93] Donald E. Knuth. The art of computer programming. Vol. 1: Fundamental
algorithms. Addison-Wesley Publishing Co., Reading, Mass.-London-Don
Mills, Ont., 1969, pages xxi+634. Second printing.

[94] Ephraim Korach and Nir Solel. Tree-width, path-width, and cutwidth.
Discrete Applied Mathematics, 43(1):97–101, 1993. doi: 10.1016/0166-
218X(93)90171-J.

[95] Tuukka Korhonen. A single-exponential time 2-approximation algorithm for
treewidth. In 62nd IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 184–
192, 2021. doi: 10.1109/FOCS52979.2021.00026.

[96] Richard J. Lipton and Robert Endre Tarjan. A separator theorem for
planar graphs. SIAM Journal on Applied Mathematics, 36(2):177–189,
1979. doi: 10.1137/0136016.

[97] Vadim V. Lozin. Minimal classes of graphs of unbounded clique-width.
Ann. Comb., 15(4):707–722, 2011. doi: 10.1007/s00026-011-0117-2.

[98] Tomas Ken Magnusson, Émile Nadeau, Christian Bean, Henning Ulfarsson,
Jon Steinn Eliasson, and Jay Pantone. Permutatriangle/tilings: version
3.0.0, version v3.0.0, 2021. doi: 10.5281/zenodo.4948344.

[99] Dániel Marx. Can you beat treewidth? Theory Comput., 6:85–112, 2010.
doi: 10.4086/toc.2010.v006a005.

[100] B. E. Neou. Permutation pattern matching. PhD thesis, Université Paris-
Est; Università di Verona, 2017.

[101] Both Emerite Neou, Romeo Rizzi, and Stéphane Vialette. Pattern matching
for separable permutations. In String processing and information retrieval.
Volume 9954, pages 260–272. Springer, Cham, 2016. doi: 10.1007/978-
3-319-46049-9_25.

[102] Sang-Il Oum. Approximating rank-width and clique-width quickly. ACM
Transactions on Algorithms, 5(1):Art. 10, 20, 2009. doi: 10.1007/11604686_
5.

[103] Sang-il Oum and Paul Seymour. Approximating clique-width and branch-
width. J. Combin. Theory Ser. B, 96(4):514–528, 2006. doi: 10.1016/j.
jctb.2005.10.006.

[104] Neil Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects
of tree-width. J. Algorithms, 7(3):309–322, 1986. doi: 10.1016/0196-
6774(86)90023-4.

[105] Vladislav Rutenburg. Complexity of generalized graph coloring. In Mathe-
matical Foundations of Computer Science 1986, Bratislava, Czechoslovakia,
August 25-29, 1996, Proceedings, volume 233, pages 573–581, 1986. doi:
10.1007/BFb0016284.

[106] Thomas J. Schaefer. The complexity of satisfiability problems. In Pro-
ceedings of the 10th Annual ACM Symposium on Theory of Computing,
May 1-3, 1978, San Diego, California, USA, pages 216–226, 1978. doi:
10.1145/800133.804350.

192

https://doi.org/10.1016/0166-218X(93)90171-J
https://doi.org/10.1016/0166-218X(93)90171-J
https://doi.org/10.1109/FOCS52979.2021.00026
https://doi.org/10.1137/0136016
https://doi.org/10.1007/s00026-011-0117-2
https://doi.org/10.5281/zenodo.4948344
https://doi.org/10.4086/toc.2010.v006a005
https://doi.org/10.1007/978-3-319-46049-9_25
https://doi.org/10.1007/978-3-319-46049-9_25
https://doi.org/10.1007/11604686_5
https://doi.org/10.1007/11604686_5
https://doi.org/10.1016/j.jctb.2005.10.006
https://doi.org/10.1016/j.jctb.2005.10.006
https://doi.org/10.1016/0196-6774(86)90023-4
https://doi.org/10.1016/0196-6774(86)90023-4
https://doi.org/10.1007/BFb0016284
https://doi.org/10.1145/800133.804350

[107] Neil Sloane and OEIS Foundation Inc. The online encylopedia of integer
sequences, 2022.

[108] Zvezdelina E. Stankova. Forbidden subsequences. Discrete Math., 132(1-
3):291–316, 1994. doi: 10.1016/0012-365X(94)90242-9.

[109] Boris Avraamovich Trakhtenbrot. Finite automata and the logic of one-
place predicates. Sibirsk. Mat. Ž., 3:103–131, 1962. doi: 10.1090/trans2/
059/02.

[110] Henning Úlfarsson. Describing West-3-stack-sortable permutations with
permutation patterns. Sém. Lothar. Combin., 67:Art. B67d, 20, 2012.

[111] Vincent Vatter. An Erdős-Hajnal analogue for permutation classes. Discrete
Math. Theor. Comput. Sci., 18(2):Paper No. 4, 5, 2016.

[112] Vincent Vatter. Finding regular insertion encodings for permutation classes.
J. Symbolic Comput., 47(3):259–265, 2012. doi: 10.1016/j.jsc.2011.11.
002.

[113] Vincent Vatter. Growth rates of permutation classes: from countable
to uncountable. Proc. Lond. Math. Soc. (3), 119(4):960–997, 2019. doi:
10.1112/plms.12250.

[114] Vincent Vatter. Permutation classes. In Miklos Bona, editor, Handbook of
enumerative combinatorics, pages 753–833. CRC Press, Boca Raton, FL,
2015.

[115] Vincent Vatter. Small permutation classes. Proc. Lond. Math. Soc. (3),
103(5):879–921, 2011. doi: 10.1112/plms/pdr017.

[116] Vincent Vatter and Steve Waton. On partial well-order for monotone grid
classes of permutations. Order, 28(2):193–199, 2011. doi: 10.1007/s11083-
010-9165-1.

[117] Stehpen D. Waton. On Permutation Classes Defined by Token Passing
Networks, Gridding Matrices and Pictures: Three Flavours of Involvement.
PhD thesis, Univ. of St Andrews, 2007.

[118] Julian West. Permutations with forbidden subsequences and stack-sortable
permutations. PhD thesis, Massachusetts Institute of Technology, 1990,
(no paging).

[119] Kai Ting Keshia Yap, David Wehlau, and Imed Zaguia. Permutations avoid-
ing certain partially-ordered patterns. Electron. J. Combin., 28(3):Paper
No. 3.18, 41, 2021. doi: 10.37236/1020.

193

https://doi.org/10.1016/0012-365X(94)90242-9
https://doi.org/10.1090/trans2/059/02
https://doi.org/10.1090/trans2/059/02
https://doi.org/10.1016/j.jsc.2011.11.002
https://doi.org/10.1016/j.jsc.2011.11.002
https://doi.org/10.1112/plms.12250
https://doi.org/10.1112/plms/pdr017
https://doi.org/10.1007/s11083-010-9165-1
https://doi.org/10.1007/s11083-010-9165-1
https://doi.org/10.37236/1020

194

List of publications
[P1] Michael Albert, Vı́t Jeĺınek, and Michal Opler. Two examples of Wilf-

collapse. Discrete Math. Theor. Comput. Sci., 22(2):Paper No. 9, 13, 2021.
doi: 10.46298/dmtcs.5986.

[P2] Václav Blažej, Pavel Dvořák, and Michal Opler. Bears with hats and
independence polynomials. In Graph-theoretic concepts in computer science.
Volume 12911, pages 283–295. Springer, Cham, 2021. doi: 10.1007/978-
3-030-86838-3_22.

[P3] Václav Blažej, Michal Opler, Matas Šileikis, and Pavel Valtr. Non-homotopic
loops with a bounded number of pairwise intersections. In Graph Drawing
and Network Visualization - 29th International Symposium, GD 2021,
Tübingen, Germany, September 14-17, 2021, Revised Selected Papers, vol-
ume 12868, pages 210–222, 2021. doi: 10.1007/978-3-030-92931-2_15.

[P4] Václav Blažej, Michal Opler, Matas Šileikis, and Pavel Valtr. On the
intersections of non-homotopic loops. In Algorithms and discrete applied
mathematics. Volume 12601, pages 196–205. Springer, Cham, 2021. doi:
10.1007/978-3-030-67899-9_15.

[P5] V́ıt Jeĺınek, Michal Opler, and Jakub Pekárek. Griddings of Permutations
and Hardness of Pattern Matching. In 46th International Symposium on
Mathematical Foundations of Computer Science (MFCS 2021), volume 202,
65:1–65:22, 2021. doi: 10.4230/LIPIcs.MFCS.2021.65.

[P6] Vı́t Jeĺınek, Michal Opler, and Jakub Pekárek. Long paths make pattern-
counting hard, and deep trees make it harder. In 16th International Sym-
posium on Parameterized and Exact Computation, IPEC 2021, September
8-10, 2021, Lisbon, Portugal, volume 214, 22:1–22:17, 2021. doi: 10.4230/
LIPIcs.IPEC.2021.22.

[P7] Vı́t Jeĺınek, Michal Opler, and Jakub Pekárek. A complexity dichotomy
for permutation pattern matching on grid classes. In 45th International
Symposium on Mathematical Foundations of Computer Science, MFCS
2020, August 24-28, 2020, Prague, Czech Republic, volume 170, 52:1–52:18,
2020. doi: 10.4230/LIPIcs.MFCS.2020.52.

[P8] Michael Albert, V́ıt Jeĺınek, and Michal Opler. Wilf collapse in permutation
classes. arXiv:1909.13348, 2019.

[P9] Vı́t Jeĺınek, Michal Opler, and Pavel Valtr. Generalized coloring of per-
mutations. In 26th European Symposium on Algorithms. Volume 112, Art.
No. 50, 14. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2018. doi:
10.4230/LIPIcs.ESA.2018.50.

[P10] Vı́t Jeĺınek and Michal Opler. Splittability and 1-amalgamability of per-
mutation classes. Discrete Math. Theor. Comput. Sci., 19(2):Paper No. 4,
14, 2017. doi: 10.23638/DMTCS-19-2-4.

195

https://doi.org/10.46298/dmtcs.5986
https://doi.org/10.1007/978-3-030-86838-3_22
https://doi.org/10.1007/978-3-030-86838-3_22
https://doi.org/10.1007/978-3-030-92931-2_15
https://doi.org/10.1007/978-3-030-67899-9_15
https://doi.org/10.4230/LIPIcs.MFCS.2021.65
https://doi.org/10.4230/LIPIcs.IPEC.2021.22
https://doi.org/10.4230/LIPIcs.IPEC.2021.22
https://doi.org/10.4230/LIPIcs.MFCS.2020.52
https://arxiv.org/abs/1909.13348
https://doi.org/10.4230/LIPIcs.ESA.2018.50
https://doi.org/10.23638/DMTCS-19-2-4

[P11] Matěj Konečný, Stanislav Kučera, Michal Opler, Jakub Sosnovec, Štěpán
Šimsa, and Martin Töpfer. Squarability of rectangle arrangements. In
Proceedings of the 28th Canadian Conference on Computational Geome-
try, CCCG 2016, August 3-5, 2016, Simon Fraser University, Vancouver,
British Columbia, Canada, pages 101–106, 2016.

[P12] Michal Opler. Major index distribution over permutation classes. Adv. in
Appl. Math., 80:131–150, 2016. doi: 10.1016/j.aam.2016.06.011.

196

https://doi.org/10.1016/j.aam.2016.06.011

	Introduction
	Preliminaries
	Permutations
	Symmetries of permutations
	Basic operations acting on permutations
	Classical permutation classes

	Generalized permutation patterns
	Vincular patterns
	Bivincular patterns
	Mesh patterns
	Partially ordered patterns.
	Other notions of patterns

	Grid classes
	Building gridded permutations
	Geometric grid classes

	Structural properties
	Width parameters
	Twin-width
	Tree-width
	Grid-width
	Clique-width
	Horizontal and vertical grid-width
	Modular-width

	Containment of grid subclasses
	Long path property
	Cycle property
	Deep tree property
	Bicycle property

	Principal classes
	Classes without the deep tree property
	Classes with the bicycle property

	Logic of permutations
	First-order logic
	Expressibility of first-order logic
	First-order model checking

	Monadic second-order logic
	Properties expressible in MSO
	Properties inexpressible in MSO
	Monadic second-order model checking

	Permutation pattern matching
	Classical complexity
	Parameterized complexity
	Left-aligned patterns
	Pattern parameters
	Counting patterns
	Generalized patterns
	Patterns as CSPs

	Pattern from a given permutation class
	Classical complexity
	Parameterized complexity

	Pattern matching inside a fixed permutation class
	Current state of the art
	Monotone-griddable classes
	Hardness results
	Overview of the proof of Theorem 5.6
	Details of the hardness reduction
	Principal classes

	Grid classes
	Monotone grid classes
	Tree-width
	Pattern matching

	General grid classes
	Classes with bumper-ended paths
	Classes without bumper-ended paths

	Generalized coloring
	Previous results
	Different recognition frameworks
	NLOL-recognizable classes
	BD-recognizable classes
	GT-recognizable classes

	Combining BD- with GT-recognizability
	Hardness results

	Conclusion
	Bibliography
	List of publications

