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To whom it may concern

The PhD thesis of Michal Opler is a major contribution to the study of the
(parameterized) complexity of the Permutation Pattern Matching (denoted PPM)
problem, when the pattern or the text are required to belong to a permutation class C.
In the thesis, permutation class means a set of permutations that is downward-closed
under taking patterns, or equivalently a set of permutations that is defined by the
avoidance of a (possibly infinite) set of patterns. These permutation classes have been
the topic of hundreds of research papers (see e.g. the annual conference Permutation
Patterns), most of them in the field of enumerative and bijective combinatorics, but
with some work in neighboring fields, the ones most relevant to the present thesis
being algorithms, complexity and logic.

The work presented in this thesis is remarkable in two aspects. First, it is to
my knowledge one of the first (series of) work(s) which takes a general approach to
studying the PPM problem, as opposed to previous approaches which were usually
specifically designed for each class C studied. Second, it allows to identify precisely
the hardness of PPM on many classes, and in particular in almost all principal classes
(those defined by the avoidance of a single pattern σ, i.e. when C = Av(σ)). This
illustrates the applicability of the general results obtained. In my opinion, these
applications justify the general theory successfully developed by Michal Opler.

Another aspect of the thesis that I have particularly liked is the interplay
between permutations and graphs. While PPM is obviously a permutation problem
(and arguably one of the most – if not the most – natural ones), its study as done by
Michal Opler often uses concepts analog to or inspired by graph theory or graph
algorithms. This should not be misunderstood: solving problems on permutations
is not achieved by straightforwardly specializing or adapting similar results from
graphs. However, building on the immense knowledge gained after decades of graph
theory, Michal Opler has shown that some ideas of this field can be adapted fruitfully
to the permutation setting.

The thesis contains 6 main chapters (numbered 2 to 7), preceded by an
introduction, some preliminary notions gathered in Chapter 1, and followed by a
brief conclusion. I offer below an overview of the results obtained in each chapter,
obviously biased by my personal preferences. The document is over 200 pages long,
and contains some but rather few typos compared to the length. It is generally
well-written, although in some occasions too dense for my taste. There are numerous
illustrations, which are essential to facilitate the reading. The organization is maybe
not very friendly, starting with many definitions before we see their interest, but



it serves the purpose of the thesis quite well in the end: it shows how to build a
general structural theory on which the analysis of the complexity of PPM can be
developed.

Introduction: A short introduction presents the results of the thesis and their
organization. Striking in this introduction is the level of generality of the results
obtained, especially compared to the previously known results on restricted variants
of PPM.

Chapter 1: This preliminary chapter sets all the classical definitions needed
later. The presentation is clear, although I find it sometimes heavier than necessary.
I find Section 1.2 (a recap on all notions of generalized patterns in the literature)
very handy. I also particularly like the way of building permutations illustrated by
Figure 1.10: we start by allowing vertical of horizontal alignments between points,
but then apply a rotation by a tiny angle in order to break these alignments. It is
very natural and practical, but I don’t remember seeing it elsewhere before.

Chapter 2: This long chapter first presents many notions of width for per-
mutations, and establishes results on how they compare to each other. Essentially,
the boundedness of one is equivalent to the boundedness of another, except for
the twin-width (which is the smallest of all considered width). Then, Chapter 2
describes four properties of permutation classes, all based on the existence of grid
subclasses satisfying certain conditions. These four properties are called (each being
more restrictive that the previous one) Long Path property (LPP), Cycle property
(CP), Deep Tree property (DTP) and Bicycle property (BP). It is proved that the LPP
implies unbounded treewidth, and it is conjecture that this is actually an equivalence.
This part is technical and notationally heavy, but the many figures are very helpful.
The final part of the chapter investigates which of these four properties are satisfied
by principal classes, resulting in an almost complete (only 5 excluded patterns are
left aside) classification of the growth of treewidth in principal permutation classes.
I should mention that bounded treewidth results in PPM being computationally
easy to solve, so that this result is closely related to the study of PPM restricted
to permutation classes. This final part flows very easily after the theory developed
earlier in the chapter; to me, it fully justifies the efforts done in building this structural
theory.

Chapter 3: Chapter 3 deviates a bit from the main focus of the thesis (which is
the PPM problem) and deals with logic. The various width defined in Chapter 2 are
useful here, making this chapter still quite well-connected with the rest of the thesis.
The first part of this chapter recalls known results about the (in)expressibility of FO
(first order logic) on permutations, while the second part investigates (in)expressibility
in MSO (monadic second order logic). These results are new, and only partly inspired
by the previous work on FO by other authors (including myself). In particular, they
identify a property expressible in MSO but not in FO: the fact that a permutation is
a merge of two permutations, each avoiding a fixed (but arbitrary) simple pattern
α. Another contribution of this chapter is to provide FPT algorithms for model
checking of formulas in MSO, for the parameter clique-width (recalling that it was
already known for FO and twinwidth).

Chapter 4: Here, the complexity of PPM (in its unrestricted variant) is studied.
It has been known since the article of Bose, Buss and Lubiw in the nineties that
PPM is NP-complete. The thesis provides a proof of this fact, as a preparation for
later proofs. The given reduction is elegant and easy to follow (but I can’t tell how
new it is). In addition to NP-completeness, a lower bound for the complexity of
PPM under ETH (exponential time hypothesis) is provided, which is exponential
in the size of the pattern. We then move to the parameterized complexity of PPM.



The breakthrough result of Guillemot and Marx, stating that PPM is FPT for the
size of the pattern, is presented. It appears like a little miracle in this landscape,
where many variants of PPM are proven W[1]-hard (so, not FPT) for the size of
the pattern. This is the case of the variant Left-PPM, introduced in the thesis, and
proved to be W[1]-complete. As a consequence, it is established that the size of the
pattern is essentially the only parameter which allows PPM to be FPT.

The NP-hardness of PPM is then extended to C-PPM (where both pattern and
text are required to belong to C) in the case where C satisfies the LPP or the DTP.
However, the complexity lower bounds for solving these variants (under ETH) are
lower than in the general case. Finally, an important result of Berendsohn et al is
stated, about the complexity of the counting version of PPM (“how many occurrences
of the pattern in the text are there?”). It relates the bounded treewidth property to
the solubility in polynomial time of ]PPM. The thesis proves that this complexity is
best possible when C has the LPP.

All the reductions in this chapter are technical, but well-explained and illustrated
to help the reader understand.

Chapter 5: Chapter 5 moves to the study of C-PPM, and reduces the gap
between the cases known to be in P and those known to be NP-complete. After
providing a very nice state of the are on the complexity of C-PPM, the main result is
Theorem 5.6. It states that C-PPM is NP-complete when C satisfies some technical
property (called the computable D-rich path property, for some non-monotone-
griddable class D). The proof is a complicated reduction from 3-SAT, and it is very
well presented, with first an overview and then the details organized with care. A
consequence is the NP-completeness of C-PPM for all principal classes C defined
by excluded patterns of size at least 4, except for five patterns where the problem
remains open. (These are the same special cases as in Chapter 2, and for the same
reason that the corresponding classes do not have the BP).

Chapter 6: The focus in Chapter 6 is on C-pattern PPM when C is a monotone
grid class (of underlying gridding matrix M, i.e. C = Grid(M)). It should be noted
that Grid(M)-PPM is proved to be in P by Theorem 5.5 in the previous chapter. So
in Chapter 6, the pattern is still required to belong to Grid(M), but not the text.

The complexity of Grid(M)-pattern PPM obeys a trichotomy, which follows one
established for the growth of the treewidth, and which depends on the cycle structure
of the matrix M (meaning of the underlying graph which connects non-empty entries
of M which are closest in the same row or in the same columns). When M is acyclic,
usual grid classes techniques are used to show that Grid(M) has bounded pathwidth
(hence treewidth), yielding that Grid(M)-pattern PPM is in P. When M is unicyclic in
each connected component, it is shown that the treewidth grows like the squareroot
of the size. The proof involves finding a drawing of a certain graph associated to
the pattern in the projective plane, which I found nice and original. It follows that
Grid(M)-pattern PPM in NP-complete, with a lower bound for the complexity under
ETH which is exponential in the squareroot of the size. Finally, when Grid(M) is
polycyclic, the treewidth can grow linearly, and no improvement to the complexity
of PPM is obtained compared to the general case.

This chapter is concluded by an extension of the previous results to classes
Grid(M) where entries are not required to be monotone, but to have bounded
treewidth. The cycle condition that drives the complexity of Grid(M)-pattern PPM
above is propagated to this setting, but need to be complemented by a technical
property, called the bumper-ended path property.

Chapter 7: This final chapter deals with the problem of recognizing whether
a permutation belongs to a given class C, especially when C is a merge class. The



topic studied here seemed to me mostly disconnected from the rest of the thesis. An
exception is certainly the NP-hardness of recognizing whether a permutation is a
merge of two permutations, each avoiding a fixed (but arbitrary) simple pattern α,
which is the property expressible in MSO but not in FO encountered in Chapter 3.

While the recognizability problem is very natural, the motivation for focusing
on merge classes is unclear to me. In addition, the results presented are mostly
preliminary. (And this is also visible looking at the open problems corresponding
to Chapter 7 listed in the conclusion.) While this shows that Michal Opler has
perspectives for continuing his research work, I don’t think it was a good choice to
include the material of this chapter in the thesis (which is more than satisfactory
even, without the results of Chapter 7).

Conclusion: It summarizes many open questions encountered along the thesis.
They show the breadth of the results obtained in the thesis, and identify clearly
which points are still missing to obtain an even more complete view of the complexity
of PPM and its restricted variants. I also find that the questions on the expressivity
of FO and MSO on permutations are very interesting.

In conclusion, the work presented by Michal Opler makes a very good PhD
thesis, and I strongly recommend the admittance of the candidate to defend his
thesis.

Yours sincerely,

Mathilde Bouvel


