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1 Introduction

"The generality that I embrace, instead of dazzling our lights, will reveal to
us rather the true laws of Nature in all their splendor, and we will �nd there
even stronger reasons to admire its beauty and simplicity."

� Leonhard Euler1

Non-equilibrium thermodynamics has a very general ambition to systemati-
cally describe evolution of any macroscopic system. Instead of making up a
particular theory for each particular type of systems, the goal is to have a
general structure capable to describe all systems, although such a goal might
not be achievable. There are three main routes in non-equilibrium thermo-
dynamics: (i) classical non-equilibrium thermodynamics based on balance
laws, entropic closures, and constitutive relations, (ii) non-equilibrium sta-
tistical mechanics, using ensemble averaging or maximization of entropy, (iii)
and geometric mechanics in connection with thermodynamics, described by
cotangent bundles, Lie groups, and Lie algebras [Arnold, 1966]. In this ha-
bilitation, I advocate the third route.

What are the di�culties of classical non-equilibrium thermodynamics? Let
us consider for instance complex �uids, �uids with some additional internal
structures (for instance chains of polymeric molecules). Despite some early
observations of complex �uids, the need for a systematic description of their
motion rose with the advent of plastics. Since then, �ows of complex �u-
ids have been ubiquitous in chemical industry (�uids in reactors), processing
industry (�owing foods and paints), or even electrochemistry (redox �ow bat-
teries). But traditional �uid mechanics based on the Navier-Stokes equations
fails to predict behavior of complex �uids and it is necessary to add extra
state variables expressing the internal structures of the �uids (for instance
correlations of orientations of polymeric molecules) [Bird et al., 1987, Müller
and Ruggeri, 1998].

Classical non-equilibrium thermodynamics proceeds in four steps: First the

1"La généralité que j'embrasse, au lieu d'éblouïr nos lumieres, nous découvrira plutôt

les véritables loix de la Nature dans tout leur éclat, et on y trouvera des raisons encore

plus fortes, d'en admirer la beauté et la simplicité." [Dugas and de Broglie, 1950]



state variables are identi�ed (typically mass, momentum, energy, and an ex-
tra state variable). Second, their balance laws are written (time derivative
of a quantity equals to the divergence of �ux of the quantity plus a pro-
duction term). The balance laws involve some unknown quantities like the
stress tensor or heat �ux. Third, the evolution equation for entropy is ob-
tained from the balance laws, still containing the undetermined quantities.
Fourth, constitutive relations are chosen, expressing the unknown quantities
in terms of the state variables while obeying the second law of thermody-
namics [Truesdell, 1984, Müller, 1985, Jou et al., 2010, Berezovski and Ván,
2017].

But the second step (writing the balance laws) has little physical relevance
for quantities that are not supposed to be conserved. Indeed, any partial
di�erential equation can be written in the form of balance law if it contains
only the �rst time derivative of a quantity and higher derivatives only with
respect to space. There are only eight basic conserved quantities in classi-
cal mechanics: mass, three components of momentum, three components of
angular momentum, and energy [Landau and Lifshitz, 1976]. Therefore, den-
sities of mass, momentum, and energy obey conservation laws, although their
evolution equations contain an a priori unknown stress tensor and heat �ux
(expressing Newton's laws and collecting non-mechanical macroscopic �uxes
of energy). The state variables encoding some internal structure of the com-
plex �uid, however, are typically not conserved and thus their balance laws
are merely an arbitrary way of writing the equations. Moreover, the fourth
step (identi�cation of the constitutive relations) is often not unique, since one
can choose any constitutive relations that do not violate the second law of
thermodynamics; anything that neither increases nor decreases the entropy
can be added. Classical non-equilibrium thermodynamics does not provide
any general and unique way towards evolution equations of complex �uids.

On the other hand, Newtonian mechanics can be seen as a consequence of
the principle of stationary action, and this principle leads also to contin-
uum mechanics of complex �uids. A geometric formulation of the principle
of stationary action is Hamiltonian mechanics on a cotangent bundle, and
continuum mechanics can be formulated in a geometric way as well. The state
variables are then equipped with geometric structures like Poisson brackets,
and once the energy is determined, the evolution equations are implied in a
unique way with no need of balance laws or constitutive relations. The con-
servation laws become consequences of geometry instead of being postulated.
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In other words, geometric mechanics is an alternative and advantageous ap-
proach towards continuum mechanics [Grmela and Carreau, 1987].

Another route in non-equilibrium thermodynamics is based on statistical
mechanics. It starts with a detailed description, for instance by means of dis-
tribution functions of classical particles, and evolution equations of some less
detailed state variables are then obtained by averaging the detailed evolu-
tion equations. Although the process of averaging is feasible in simple cases,
it becomes di�cult in more complex nonlinear cases. The averaging is typ-
ically carried out with respect to space (BBGKY hierarchy) or momentum
(Grad hierarchy) [Kirkwood, 1946, Grad, 1958, Struchtrup, 2005, Gorban and
Karlin, 2005, Ruggeri and Sugiyama, 2015]. Geometric formulation of the av-
eraging makes the process more tractable in some cases, since it splits the
equations into several building blocks that can be treated separately. How-
ever, many parts of statistical mechanics are still waiting to be geometrized,
provided that it is possible at all.

This habilitation summarizes a part of my research related to multiscale
Hamiltonian mechanics and continuum thermodynamics. From the mathe-
matical point of view, I work with cotangent bundles, in�nite-dimensional
Lie groups, and with the related Poisson geometry [Arnold, 1966] in combi-
nation with generalized gradient dynamics [Otto, 2001]. From the physical
point of view, the Poisson geometry can be seen as Hamiltonian mechanics
(reversible evolution), while gradient dynamics, evolution along the gradi-
ent of a dissipation potential, provides thermodynamic behavior (growth of
entropy and irreversibility). This combination is a key idea of the General
Equation for Non-Equilibrium Reversible-Irreversible Coupling (GENERIC),
where the evolution is prescribed as the sum of reversible Hamiltonian me-
chanics and irreversible gradient dynamics [Grmela and Öttinger, 1997, Öt-
tinger and Grmela, 1997].

The Hamiltonian part of GENERIC is given by two building blocks, a Poisson
bracket and an energy functional, while the gradient part by another two
building blocks, a dissipation potential and entropy. This decomposition to
building blocks allows GENERIC to better express the multiscale character
of non-equilibrium thermodynamics, where a single physical system can be
described by various sets of state variables, di�ering in the amount of details.
Such di�erent levels of description should be compatible with each other so
that building blocks on less detailed levels of description can be derived

9



from the building blocks on more detailed levels. Moreover, it is possible to
equip the deterministic GENERIC equations with stochastic terms whose
compatibility with the deterministic evolution is guaranteed by a generalized
�uctuation-dissipation theorem [Öttinger, 2005].

How to construct continuum mechanics geometrically? Why is continuum
mechanics (disregarding the dissipative terms) often described by hyperbolic
evolution equations? Is it possible to construct dissipative dynamics from
purely Hamiltonian mechanics? Can dissipation potential be non-convex?
From where does irreversible evolution emerge, if motion of classical parti-
cles is purely reversible? Having detailed evolution equations for a physical
system, how to derive a less detailed description? Answers to these questions
can be found in our monograph [Pavelka et al., 2018b] and the six recent
papers attached to this thesis.2

Section 2 focuses on geometric continuum mechanics constructed from Pois-
son brackets. First, canonical Hamiltonian mechanics is derived from the
stationary action principle in both �nite-dimensional systems (mechanics of
classical particles) and in�nite-dimensional systems (Lagrangian continuum
mechanics). The principle of stationary action also gives the evolution equa-
tions of the rigid body, which is a prototype of non-canonical Hamiltonian
mechanics (degenerate, with non-empty kernel). Subsequently, canonical La-
grangian continuum mechanics is reduced to non-canonical Eulerian contin-
uum mechanics, suitable for both solids and complex �uids. Kinetic theory
is another example of non-canonical Hamiltonian mechanics. It is obtained
by a lift of classical particle mechanics to the level of distribution functions
(mathematically to a Lie algebra dual), and it can be reduced to �uid me-
chanics. Moreover, �uid mechanics can be extended by a semidirect product
to a Hamiltonian theory of electrodynamics of moving media. All these me-
chanical equations are reversible with respect to the time-reversal transfor-
mation, they automatically satisfy Onsager-Casimir reciprocal relations, and
they typically consist of quasilinear hyperbolic partial di�erential equations
of the �rst order.

Section 3 equips reversible mechanics with irreversible terms, forming the
GENERIC structure. GENERIC automatically satis�es a nonlinear general-
ization Onsager-Casimir reciprocal relations. The dissipation potentials (gen-

2In all the attached papers I am either the �rst author or the corresponding author, or
the main author was my student writing the paper as a part of his thesis.
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erating the irreversible evolution) are usually convex, but they can be also
non-convex without violating the second law of thermodynamics. Such non-
convexity results in a kind of phase transitions in behavior of complex �uids
(for instance, jumps of the stress tensor when increasing strain rate). More-
over, reversible mechanical equations can be equipped with irreversible dy-
namics constructed from the mechanics (for instance dissipative rigid body
mechanics). Finally, a detailed GENERIC description (in particular purely
Hamiltonian mechanics) can be reduced to a less detailed GENERIC evolu-
tion. Such compatibility between various levels of description is the essence
of multiscale non-equilibrium thermodynamics, illustrated in Figure 1.

Figure 1: On the cover of monograph [Pavelka et al., 2018b], we would like
to demonstrate several features of non-equilibrium thermodynamics. First,
thermodynamics is an inherently multiscale theory. Each level of descrip-
tion di�ers in the amount of contained information, and neighboring levels
should be compatible with each other. Second, there are many approaches
(languages) towards non-equilibrium thermodynamics. Finally, since non-
equilibrium thermodynamics aims to eventually describe all macroscopic
physical systems within a single framework, it will probably never be �n-
ished.
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2 Multiscale geometric continuum mechanics

�The aim of Mathematical Physics is not only to facilitate for the physicist
the numerical calculation of certain constants or the integration of certain
di�erential equations. It is besides, it is above all, to reveal to him the hidden
harmony of things in making him see them in a new way.�

� Henri Poincaré [Poincaré, 2012]

Instead of working directly with the evolution equations in Newtonian me-
chanics, we prefer to reveal the geometric structure under the hood (Poisson
brackets and energy). Poisson brackets are skew-symmetric bilinear oper-
ators that take two functionals of chosen state variables and give another
functional, and together with energy they give the reversible evolution equa-
tions of the state variables. In classical mechanics of particles, the Poisson
bracket is canonical, see Section 2.1, but for other state variables (for instance
rigid body mechanics), they are di�erent and non-canonical (having non-zero
kernel). A feature of Poisson brackets is the Jacobi identity, thanks to which
the evolution equations preserve the Poisson bracket, and skew-symmetry
of the brackets ensures conservation of energy. Poisson brackets and energy
express a self-consistent internal structure of equations in mechanics.

From the mathematical point of view, a Poisson bracket and an energy con-
stitute a Poisson geometry, which is a generalization of symplectic geometry
(canonical) to the non-canonical case. Poisson brackets can be derived from
the principle of stationary action or by reduction from more detailed Poisson
brackets. Figure 2 shows a hierarchy of Poisson brackets that contains the
Lagrangian continuum mechanics (elasticity with large deformations), the
Eulerian theory of with distortion (unifying the motion of �uids and solids),
mechanics of non-Newtonian �uids, �uid mechanics, kinetic theory, and elec-
trodynamics of moving media. Further realizations of Poisson geometry can
be found in [Pavelka et al., 2018b], including a theory of charged mixtures.
But let us start from the beginning, recalling the Hamiltonian formulation
of classical mechanics of particles.

2.1 Classical Hamiltonian mechanics

The geometric character of classical mechanics goes back to Lagrange, Bernoulli,
Euler, Poisson, d'Alambert, Jacobi, and Hamilton [Lagrange, 1811, Lagrange
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Figure 2: A hierarchy of levels of description in Hamiltonian continuum me-
chanics. The principle of stationary actions leads to the starting points in
the diagram (blue): (i) the Lagrangian continuum mechanics (state variables
x and M), (ii) the Liouville equation (state variable fN), and (iii) Hamilto-
nian electrodynamics (state variables D and B). From the Poisson brackets
at those starting points, one can derive less detailed Poisson brackets ex-
pressing kinematics on less detailed levels of description (red). Solid arrows
indicate such projections. This way we get Eulerian continuum mechanics
(with state variables ρ, m, s, and A) and kinetic theory (state variable f).
From the latter two, one gets the �uid mechanics (state variables ρ, m, and
s). Finally, coupling of electrodynamics and �uid mechanics by means of the
semidirect product theory leads to electrodynamics of moving media (state
variables ρ, m, s, D, and B).
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and Bertrand, 1855, Poisson, 1809, Jacobi, 1840, Hamilton, 1834, 1835]. Now
we only brie�y recall the classical �nite-dimensional Hamiltonian mechanics
[Landau and Lifshitz, 1976, Goldstein, 2002].

Once a manifold Q with coordinates q is de�ned, a Lagrangian L(q, q̇) is
used to construct an action integral,∫ t1

t0

L(q, q̇)dt. (2.1)

The stationary points (curves) of the action, which describe motion of the
physical system parametrized by coordinates q, are solutions to the Euler-
Lagrange equations, which can be rewritten as Hamilton canonical equations,(

q̇
ṗ

)
=

(
0 1
−1 0

)
︸ ︷︷ ︸

=L

·
(
Hq

Hp

)
. (2.2)

Momentum p = ∂L
∂q̇

and the Hamiltonian H(q,p) = −L(q, q̇(q,p))+q̇(q,p)·
p come from the velocity q̇ and Lagrangian L by Legendre transformation.
From Equation (2.2), we can see that the evolution of position and momen-
tum is given by an operator L (here just a matrix) and by derivatives of the
Hamiltonian (here denoted by subscripts). The operator L is called a Pois-
son bivector, it is skew-symmetric and twice contravariant on the manifold
M = T ∗Q (the cotangent bundle of Q). In the inertial reference frames, the
Hamiltonian coincides with the energy of the system3.

Time evolution of any functional F of the state variables q and p can be
expressed as

Ḟ (q(t),p(t)) = {F,E}(CM), (2.3)

where {•, •}(CM) is the canonical Poisson bracket of classical mechanics,

{F,G}(CM) = FqiGpi −GqiFpi . (2.4)

Equation (2.3) looks di�erent from the Hamilton canonical equations (2.2),
both are equivalent.

Poisson bivector L in classical mechanics can be also seen as the inverse of the
symplectic two-form, and Hamilton canonical equations represent evolution

3Note that in non-inertial reference frames, the connection between energy and Hamil-
tonian is less direct[Strocchi, 2018].
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within symplectic geometry [Fecko, 2006]. However, the Poisson bivectors
in continuum mechanics will typically be non-invertible, breaking the direct
connection with symplectic geometry. Therefore, we have to introduce the
more general Poisson geometry.

2.2 Hamiltonian mechanics and Poisson geometry

Poisson geometry can be seen as a generalization of symplectic geometry,
allowing for non-invertible Poisson bivectors and for additional conserved
quantities than those obtained by the Noether theorem [Goldstein, 2002].
From the geometric perspective, the reason is that the manifold of state
variables is typically not a cotangent bundle, but rather a Lie group, Lie
algebra, or its dual.

Consider a spaceM (or manifold) with local coordinates x (state variables).
Kinematics of the state variables is expressed by a Poisson bracket, which
may be di�erent from the Poisson bracket of classical mechanics (2.4). In
general, a Poisson bracket is a bilinear mapping taking two functionals from
a space of functionals over M, F(M), and giving another functional from
F(M), {F(M),F(M)} 7→ F(M). Moreover, it has the following properties:

skew-symmetry : {F,G} = −{G,F}, (2.5a)
Leibniz rule : {FG,H} = F{G,H}+ {F,H}G, (2.5b)

and Jacobi identity : {F, {G,H}}+ {G, {H,F}}+ {H, {F,G}} = 0
(2.5c)

for all admissible4 functionals F , G, and H. Evolution of any functional
F ∈ F(M) and the evolution of the state variables are then prescribed as5

Ḟ = {F,E} and ẋi = LijExj , (2.6)

and the relations between a Poisson bivector and the corresponding Poisson
bracket are

{F,G} = 〈Fx|L|Gx〉 and Lij = {xi, xj}. (2.7)
4Admissible so that the mathematical operations are well de�ned [Ebin and Marsden,

1970].
5The equivalence between the evolution of functionals and evolution of state variables

can be shown by the chain rule, as long as we have solutions in the classical sense [Evans,
1998].
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The right hand side of the latter equation in (2.6) can be interpreted as
components of the Hamiltonian vector �eld

X = X i δ

δxi
= LijExj

δ

δxi
= L|dE〉, (2.8)

which can be also seen as the action of the Poisson bivector L = Lij δ
δxi
⊗ δ
δxj

on
the di�erential of energy dE = Exidx

i. In order to cover also �eld theories,
we use the functional derivatives δ • /δ• and the contraction between two
indexes then stands for integration (L2 scalar product) or the duality in the
sense of distributions [Courant and Hilbert, 2008, Roubí£ek, 2005, Evans,
1998].

What is the meaning of properties (2.5), that any Poisson bracket has to
satisfy? From the skew-symmetry of the Poisson bracket, one obtains the
�rst law of thermodynamics,

Ė = {E,E} = −{E,E} = 0, (2.9)

the law of conservation of energy. Therefore, we shall be restricted to iso-
lated systems in inertial Galilean reference frames, where the Hamiltonian
coincides with the energy [Strocchi, 2018] and where energy is conserved. The
second property (Leibniz rule) tells that biasing energy by a constant has no
e�ect on the evolution equations. Finally, Jacobi identity can be interpreted
as a requirement of self-consistency of the Hamiltonian evolution. Indeed, it
is equivalent to the equation LXL = 0, expressing that the Lie derivative of
the Poisson bivector �eld with respect to the Hamiltonian vector �eld is zero,
or that the Poisson bivector is passively advected by the Hamiltonian �ow
[Fecko, 2006].

Due to the possible degeneracy of the Poisson bivector, Poisson brackets
admit additional conserved quantities, Casimirs (here denoted by S), for
which it holds that

{S,G} = 0 ∀G ∈ F(M). (2.10)

For instance entropy is a typical Casimir of the Poisson brackets, as we shall
see later. Poisson brackets admitting Casimirs are non-canonical (they can
not be transformed to the canonical form).

The Poisson bracket of classical mechanics originates from the principle of
least action and subsequent interpretation of the Euler-Lagrange equations as
dynamics on the cotangent bundle. Where do non-canonical Poisson brackets
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come from? They can be obtained by variation of action on a Lie group, where
only variations respecting the Lie group are allowed [Arnold, 1966], and by
reduction from more detailed Poisson brackets [Pavelka et al., 2016]. Let us
�rst discuss the former possibility.

2.3 Rigid body motion

In this section we show how a non-canonical Poisson bracket is brought up
when describing a freely rotating rigid body. Motion of the rigid body can
be seen as motion within the Lie group SO(3), which consists of all rotations
in the three-dimensional Euclidean space [Poincaré, 1901]. Let us denote by
X (Lagrangian coordinates) the position of a material point in a frame co-
rotating with the rigid body (body frame). The position of the point in the
laboratory space (Eulerian coordinates) can be then expressed as x = R ·X
where R ∈ SO(3) is an (orthogonal) rotation matrix. When we di�erentiate
this relation with respect to time, we obtain the velocity ẋ = v in terms of
the rotation matrix,

v = Ṙ ·X = Ṙ ·R−1︸ ︷︷ ︸
=ω̂

·x, (2.11)

where ω̂ is a skew-symmetric angular velocity matrix (an element of the Lie
algebra so(3)). Transformation of this matrix into the body frame,

Ω̂ = R−1 · ω̂ ·R = R−1Ṙ, (2.12)

is called the body angular velocity. Because this matrix is skew-symmetric,
it can be represented by the pseudovector of body angular velocity Ω such
that Ω̂ ·X = Ω×X, which leads to formula

R−1 · Ṙ ·X = Ω×X ∀X. (2.13)

Varying R and Ω in formula (2.13), we obtain that the variations of Ω are
constrained to

δΩ = Σ̇ + Ω×Σ, (2.14)

where Σ is the pseudovector corresponding to the skew-symmetric matrix
Σ̂ = R−1 · δR ∈ so(3). Details of the calculation can be found in [Marsden
and Scheurle, 1993], and an introduction to Lie groups and algebras in [Fecko,
2006]. So far we have recalled kinematics on the group SO(3), including the
form of admissible variations within the Lie algebra so(3).
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Let us now proceed to the variational principle. The kinetic energy of the
rotating rigid body,

T =

∫
1

2
ρ0v

2dX, (2.15)

can be also expressed in terms of the angular velocity, using equation (2.11),
as

T =
1

2
I ijΩiΩj, where I ij =

∫ (
X2δij −X iXj

)
dx (2.16)

is the tensor of inertia. Because we have the freedom to choose the body
reference frame, we choose it so that the tensor of inertia becomes diagonal,
I = diag(Ix, Iy, Iz) with Ix ≤ Iy ≤ Iz. Variation of action

δ

∫ t1

t0

T (Ω)dt (2.17)

respecting constraint (2.14) leads to the Euler-Lagrange equation

d

dt
(I ·Ω) = (I ·Ω)×Ω, (2.18)

where I is the tensor of inertia.

Similarly as in the case of classical mechanics in Section 2.1, we interpret
the Euler-Lagrange equation in terms of a state variable dual to the velocity,
the angular momentum in the body frame, M = ∂T

∂Ω
. Because the angular

velocity Ω is an element of the Lie algebra so(3), derivative of a functional
with respect to the angular velocity is in the dual space, M ∈ so(3)∗. Euler-
Lagrange equation (2.18) then becomes

Ṁ = M× ∂E

∂M
= {M, E}(SO(3), (2.19)

with Hamiltonian

E =
1

2

(
M2

x

Ix
+
M2

y

Iy
+
M2

z

Iz

)
(2.20)

obtained from the Lagrangian T by Legendre transformation. The Poisson
bracket of rigid body mechanics is

{F,G}(SO(3)) = −M ·
(
∂F

∂M
× ∂G

∂M

)
∀F (M) and G(M). (2.21)
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From the geometrical point of view, bracket (2.21) is a prototype of so called
Lie-Poisson brackets, which provide Hamiltonian evolution on Lie algebra
duals [Marsden and Ratiu, 1999].

Similarly as the Poisson bracket of classical mechanics corresponds to the
canonical Poisson bivector, Poisson bracket (2.21) corresponds to Poisson
bivector

Lij = −Mkε
kij. (2.22)

In contrast with the canonical case, however, this bivector is not constant.
Moreover, the rigid body Poisson bracket allows for conserved quantities that
are not connected with symmetries of the Hamiltonian through the Noether
theorem [Landau and Lifshitz, 1976]. When we consider a function of the
magnitude of M, S(M2), the value of the function is conserved,

Ṡ = {S,E}(SO(3)) = −Miεijk
∂S

∂(M2)
2MjEmk

= 0, (2.23)

as follows from the simultaneous symmetry and skew-symmetry with respect
to swapping i↔ j. Bracket (2.21) has thus Casimir functions S(m2), which
are conserved regardless the choice of energy. This means that the angular
momentum observed from the body frame does not change its magnitude6

In summary, variation of action on Lie groups leads to non-canonical Poisson
brackets, which can have Casimir functionals. Let us now explore another
way towards Poisson brackets. We shall start with a Poisson bracket on a
detailed level of description, de�ne a mapping to a less detailed level, and
obtain another Poisson bracket on the less detailed level.

2.4 Lagrangian continuum mechanics

In Lagrangian continuum mechanics, each material point has a Lagrangian
label X. These labels then form a continuous manifold of Lagrangian points.
The position of each Lagrangian point within the laboratory frame is ex-
pressed by the Lagrange 7→Euler mapping x(t,X), and the Lagrangian then
depends on the position mapping x and its derivatives, L(x, ∂tx, ∂Xx). Simi-
larly as in classical particle mechanics, the principle of stationary action then

6Notice, however, that the direction of M varies in time. It is the angular momentum
in the laboratory frame stays constant while the angular momentum in the body frame
evolves [Landau and Lifshitz, 1976].
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leads to the Hamilton canonical equations on the Lagrangian manifold,

∂tx
i =EMi

(2.24a)
∂tMi =− Exi , (2.24b)

where the Lagrangian momentum density M(t,X) is the Legendre conju-
gate of the velocity ∂tx. Note that the subscripts stand for the functional
derivatives. Hamilton canonical Equations (2.24) are also generated by the
canonical Poisson bracket of Lagrangian mechanics,

{F,G}(Lagrange) =

∫ (
δF

δxi
δG

δMi

− δG

δxi
δF

δMi

)
, (2.25)

which can be seen as the in�nite-dimensional version of the Poisson bracket
of classical mechanics.

The energy consists of the kinetic energy and elastic energy,

E =

∫ (
M2(t,X)

2ρ0(X)
+ ρ0(X)W

(
∂x(t,X)

∂X

))
dX, (2.26)

where ρ0(X) is a constant-in-time reference mass density. Finally, by plugging
this energy into Hamilton canonical equations (2.24), we get

∂tx
i =

M i

ρ0

(2.27a)

∂tMi =
∂

∂XI

(
ρ0
∂W

∂ ∂xi

∂XI

)
, (2.27b)

which are the evolution equations for Lagrangian elasticity in large deforma-
tions with position and momentum density as the state variables. Although
these equations might appear simple, they contain a large amount of infor-
mation because position of each material point is known. Instead, we can
focus on some overall properties of the continuum like mass and momentum
densities, which is the point of the following section.

2.5 Eulerian continuum mechanics

In Eulerian continuum mechanics, we no longer track each material point.
Moreover, it is easier in this setting to introduce dissipation because the Eu-
lerian equations are formulated in the laboratory frame, not in the abstract

20



Lagrangian frame. The Hamiltonian structure of Lagrangian mechanics is
translated to a Hamiltonian structure in the Eulerian frame, as shown for
instance by Beris and Edwards [Beris and Edwards, 1994]. Here, however,
we choose more detailed Eulerian state variables, namely mass density, mo-
mentum density, entropy density, and the distortion �eld, which are de�ned
in terms of the Lagrangian variables as

ρ(x) = ρ0(X(x)) · det
∂X

∂x
(2.28a)

m(x) = M(X(x)) · det
∂X

∂x
(2.28b)

s(x) = s0(X(x)) · det
∂X

∂x
(2.28c)

AI

i(x) =
∂XI

∂xi
, (2.28d)

respectively. For simplicity, we do not write the explicit dependence on time.
Distortion is the inverse of the deformation gradient evaluated at the Eule-
rian coordinate and thus it measures the deformation [Landau et al., 1986].
With these state variables, we can express the conservation laws of mass,
momentum, and energy, the second law of thermodynamics (after introduc-
ing dissipation), as well as the deformations of the continuum. Moreover,
both �uids and solids can be described using the same set of state variables
and their evolution equations thus share the same structure [Godunov and
Romenskii, 2003].

Plugging functionals dependent only on the Eulerian �elds (2.28) into Poisson
bracket (2.25), we obtain the Eulerian Poisson bracket

{F,G}(A) = {F,G}(FM) −
∫
AL

i(FAL
l
∂lGmi

−GAL
l
∂lFmi

) dx

−
∫
∂iA

L

l(FAL
l
Gmi
−GAL

l
Fmi

) dx, (2.29)
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which consists of the Poisson bracket of �uid mechanics,

{F,G}(FM) =

∫
ρ(∂iFρGmi

− ∂iGρFmi
) dx

+

∫
mi(∂jFmi

Gmj
− ∂jGmi

Fmj
) dx

+

∫
s(∂iFsGmi

− ∂iGsFmi
) dx, (2.30)

and a part expressing kinematics of the distortion �eld A [Pavelka et al.,
2020b]. The evolution equations given by bracket (2.29) are

∂tρ = −∂i(ρEmi
) (2.31a)

∂tmi = −∂j(miEmj
)− ρ∂iEρ −mj∂iEmj

− s∂iEs − AL

l∂iEAL
l

+∂i(A
L

lEAL
l
)− ∂l(AL

iEAL
l
) (2.31b)

∂ts = −∂i(sEmi
), (2.31c)

∂tA
L

l = −∂l(AL

iEmi
) + (∂lA

L

i − ∂iAL

l)Emi
(2.31d)

and they can be used to describe for instance Eulerian elasticity in large de-
formations or non-Newtonian �uids. Equations (2.31) represent the reversible
part of the Symmetric Hyperbolic Thermodynamically Compatible (SHTC)
equations [Godunov, 1972, Godunov and Romensky, 1995, Dumbser et al.,
2016, Peshkov et al., 2018], which is an approach towards continuum thermo-
dynamics suitable large scale numerical computations [Reinarz et al., 2020]
including shock waves and acoustic waves. It is also possible to transform the
distortion to its inverse, which leads to evolution equation for the Eulerian
deformation gradient [Hütter and Tervoort, 2009].

If the energy depends only on the left Cauchy-Green tensor,Bij = F i
IF

j

JG
IJ ,

where F = A−1 and GIJ is the inverse material metric (typically identity),
Poisson bracket (2.29) can be reduced to a Poisson bracket with the left
Cauchy-Green tensor (6 independent components) instead of distortion (9
components). For functionals that depend only on variables (ρ,m, s,B), we
then obtain Poisson bracket

{F,G}(LCG) = {F,G}(FM)

+

∫ (
FBik(Bjk∂jGmi

+Bji∂jGmk
)−GBik(Bjk∂jGmi

+Bji∂jFmk
)
)
dx

−
∫
∂jB

ik(FBikGmj
−GBikFmj

) dx, (2.32)
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which gives evolution equations

∂tρ = −∂i(ρEmi
) (2.33a)

∂tmi = −∂j(miEmj
)− ρ∂iEρ −mj∂iEmj

− s∂iEs −Bjk∂iEBjk

+∂i(B
jkEBjk) + ∂j(B

jk(EBik + EBki)) (2.33b)
∂tB

ik = −Emj
∂jB

ik +Bjk∂jEmi
+Bji∂jEmk

(2.33c)
∂ts = −∂i(sEmi

). (2.33d)

The equation for distortion in the SHTC equations (2.31) is replaced by
an equation for B containing the upper-convected derivative (note that the
velocity is v = Em). In contrast to the traditional non-equilibrium continuum
thermodynamics [Truesdell, 1984], the upper-convected derivative does not
need to be assumed; it follows directly from Hamiltonian mechanics.

Equations (2.31) can be also interpreted in the context of the natural con-
�gurations framework [Rajagopal and Srinivasa, 2004, Málek et al., 2018,
Leonov, 1976], where evolution of continuum is described using three con-
�gurations: a reference con�guration, a natural con�guration, and an actual
con�guration. Here, the reference con�guration is the manifold of Lagrangian
labels X, and the actual con�guration is the Eulerian laboratory frame x.
After introducing dissipation, which is done in Section 3 below, distortion
can cease to be the gradient of the mapping from the actual con�guration
to the reference, X(t,x), but it goes from the actual con�guration to the
natural one [Pelech et al., 2020].

Moreover, when the functionals depend neither on the distortion �eld nor
the left Cauchy-Green tensor, the kinematics is expressed only by the Pois-
son bracket of �uid mechanics (2.30) and the evolution equations are the
compressible Euler equations,

∂tρ = −∂i(ρEmi
) (2.34a)

∂tmi = −∂j(miEmj
)− ρ∂iEρ −mj∂iEmj

− s∂iEs (2.34b)
∂ts = −∂i(sEmi

). (2.34c)

When we change the variables from the energetic representation (having
entropy as a state variable) to the entropic representation (taking energy
density e(ρ,m, s) instead), these equations become the laws of conservation
of mass (or the continuity equation), momentum, and energy. The Poisson
bracket of �uid mechanics can be also interpreted as the Lie-Poisson bracket
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on the Lie-algebra dual of volume di�eomorphisms, combined with the two
vector spaces of the mass density and entropy density �elds by means of
semidirect products [Marsden et al., 1984].

The total entropy,

S =

∫
s dx, (2.35)

is a Casimir of the above Poisson brackets, that is {S,G}(A) = {S,G}(LCG) =
{S,G}(FM) = 0 for any functional G. Therefore, entropy is conserved by the
Hamiltonian evolution regardless of the choice of energy. The second law
of thermodynamics, which dictates that entropy of an isolated system must
grow, will be satis�ed after we add dissipative dynamics in Section 3.

So far, we have seen passages the from the Lagrangian continuum mechanics
and bracket {•, •}(Lagrange) to the Eulerian continuum mechanics with dis-
tortion and bracket {•, •}(A), and from the latter to �uid mechanics with
Poisson bracket {•, •}(FM). Those two passages are reductions of Poisson
brackets because they can not be carried out in the opposite directions. In
the next section, we show another way towards Hamiltonian �uid mechanics,
based on a reduction from kinetic theory.

2.6 Hamiltonian kinetic theory

Systems with many particles can be described for instance by means of po-
sitions r and momenta p of the particles, or by the probability distribution
function dependent on those coordinates, f(t, r,p). The former way leads
to molecular dynamics while the latter to kinetic theory. Similarly as parti-
cle mechanics is a Hamiltonian theory, kinetic theory, when disregarding the
dissipative dynamics like inelastic collisions, is also Hamiltonian.

When the one-particle distribution function f(t, r,p) is the state variable,
the Poisson bracket expressing evolution of the distribution function is

{F,G}(B) =

∫ ∫
f ·
(
∂Ff
∂ri

∂Gf

∂pi
− ∂Gf

∂ri
∂Ff
∂pi

)
drdp. (2.36)

How to derive this bracket? From the geometric perspective, the bracket
acts on the Lie algebra dual of the Lie group of canonical transformations
[Marsden, 1982, Esen et al., 2019]. Alternatively, bracket (2.36) can be seen
as the average of the canonical Poisson bracket (2.4) [Pavelka et al., 2018b].
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The evolution equation given by the Boltzmann Poisson bracket is the re-
versible part of the Boltzmann equation,

∂tf = −∂Ef
∂pi

∂f

∂ri
+
∂Ef
∂ri

∂f

∂pi
. (2.37)

Similarly as in �uid mechanics, the total entropy7

S =

∫ ∫
η(f)drdp, (2.38)

is a Casimir of the Boltzmann Poisson bracket and is thus conserved. The
Boltzmann Poisson bracket is non-canonical.

The Boltzmann Poisson bracket provides an alternative way towards Hamil-
tonian �uid mechanics by reduction to the state variables of �uid mechanics

ρ(t, r) =

∫
mfdp (2.39a)

m(t, r) =

∫
pifdp (2.39b)

s(t, r) =

∫
η(f)dp, (2.39c)

where m is the mass of one particle. Plugging functionals dependent only
on the state variables of �uid mechanics into Poisson bracket (2.36), we ob-
tain the Poisson bracket of �uid mechanics (2.30), see [Pavelka et al., 2016].
Let us now consider an extension of �uid mechanics by coupling with the
electromagnetic �elds.

2.7 Hamiltonian electrodynamics of moving media

Electrodynamics of moving media combines electrodynamics with motion of
matter, for instance with Hamiltonian �uid mechanics. The Poisson bracket
for electromagnetic �elds D and B, which are the state variables in Hamilto-
nian electrodynamics, can be constructed from the canonical Poisson bracket
for the electric displacement �eld D and the vector potential A,

{F,G}(D,A) =

∫
(FD ·GA −GD · FA) dr, (2.40)

7For instance, η(f) = −kBf(ln(h3f) − 1) for ideal gases Callen [1960], Pavelka et al.
[2018b].
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by letting the functionals depend only on the D �eld and the magnetic �eld
B = ∇×A [Marsden and Weinstein, 1982]. Poisson bracket (2.40) then turns
to

{F,G}(EM) =

∫ (
FDiεijk∂jGBk −GDiεijk∂jFBk

)
dr, (2.41)

which is the electromagnetic Poisson bracket, leading to the vacuum Maxwell
equations

(∂tD
i)rev = εijk∂jEBk (2.42a)

(∂tB
i)rev = − εijk∂jEDk . (2.42b)

Electric �eld and magnetic intensity in these evolution equations are de�ned
as derivatives of energy,

E =
δE

δD
and H =

δE

δB
, (2.43)

respectively. Finally, to complete the set of Maxwell equations, we have to
add the other pair telling that ∇ · B = 0 and ∇ ·D = 0 in vacuum. These
equations follow from equations (2.42) by applying the divergence operator
by subsequent integration in time.

How to combine Hamiltonian electrodynamics with �uid mechanics? A ge-
ometric way towards electrodynamics of moving media uses the theory of
semidirect products [Marsden et al., 1984], letting the cotangent bundle of
D and A be advected by the motion of the �uid [Esen et al., 2016, Vágner
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et al., 2021]. This results into Poisson bracket

{F,G}(mEMHD) (ρ,m, s,D,B) = {F,G}(FM) + {F,G}(EM) (2.44)

+

∫
Di
(
∂jFDiGmj

− ∂jGDiFmj

)
dr

+

∫
∂jD

j(Fmi
GDi −Gmi

FDi)dr

+

∫
Dj(Fmi

∂jGDi −Gmi
∂jFDi)dr

+

∫
Bi
(
∂jFBiGmj

− ∂jGBiFmj

)
dr

+

∫
∂jB

j(Fmi
GBi −Gmi

FBi)dr

+

∫
Bj(Fmi

∂jGBi −Gmi
∂jFBi)dr,

which expresses kinematics of electrodynamics in coupling with moving charged
matter [Holm, 1986]. The evolution equations implied by this bracket contain
for instance the Lorentz force, which is a consequence of the geometric cou-
pling Pavelka et al. [2018b]. Moreover, this Hamiltonian mechanics may be
enriched by including the polarization and magnetization as state variables
[Vágner et al., 2021].

In order to write the equations in a closed form, we have to provide a formula
for energy. In this case, the energy is

EEMHD =

∫ (
1

2
ρv2 +

1

2
D · ε−1 ·D +

1

2
B · µ−1 ·B + v · (D×B) + ε(ρα, s)

)
dr.

(2.45)
The set evolution equations obtained from bracket (2.44) is invariant with
respect to the to Galilean transformations [Le Bellac and Lévy-Leblond, 1973,
Matolcsi, 1993]. In other words, Hamiltonian electrodynamics with matter
seems to lead to a Galilean invariant theory of electromagnetism. In contrast
with the old Hertz's theory [Hertz, 1890], no aether seems to be necessary.

Apart from the free charge (∇ · D), polarization charge, its conjugate mo-
mentum, and magnetization can be also added to this geometric theory by
means of semidirect products. This results in a system of evolution equations
for deformable dielectrics admitting polarization waves and for deformable
magnetic media [Vágner et al., 2021].
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So far we have discussed several examples of Hamiltonian continuum me-
chanics and connections between them. The next section de�nes in which
sense the mechanical equations are called reversible.

2.8 Reversibility and Onsager-Casimir reciprocal rela-
tions

What is the meaning of reversibility of evolution equations? Imagine a bunch
of classical particles moving according to the Hamilton canonical equations.
When we record a video of their motion, we can play it backwards, �ipping
the momenta and the time stepping. Such �ipping is called the time-reversal
transformation (TRT). Motion of the particles on the backward movie is
described by the same equations as when playing the movie forwards. In other
words, Hamilton canonical equations are invariant with respect to the time-
reversal transformation. Quantities that are not a�ected by TRT are called
even (for instance position, mass, energy, entropy, or electric �eld) while
quantities that get an minus sign are called odd (for example momentum,
velocity, or magnetic �eld). Even quantities are said to have parity P equal
to one while odd quantities have P = −1.

We have already seen that Hamilton canonical equations (2.2) are constructed
from a Poisson bivector and energy. Since the canonical Poisson bivector is
a constant matrix, it is even with respect to TRT and the following formula
holds for the bivector,

TRT (Lij) = −P(xi)P(xj)Lij ∀i, j. (2.46)

Note that in classical Hamiltonian mechanics x = (r,p). Energy is not af-
fected by TRT and is thus also even. Once condition (2.46) is satis�ed for a
Poisson bivector, the Hamiltonian evolution transforms under TRT as

ẋi = LijExj
TRT⇒ −P(xi)ẋi =− P(xi)P(xj)LijP(xj)Exj

=− P(xi)LijExj (2.47)

and the image of Hamiltonian evolution under TRT is equivalent with the
original equations.8 Condition (2.46) can be thus seen as the condition of
reversibility of Hamiltonian evolution.

8Note, however, that the TRT applies only in�nitesimally in time.
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Reversibility condition (2.46) is ful�lled by the canonical Poisson bivector,
from which the reversibility is inherited by the Boltzmann Poisson bracket
(2.36). Moreover, the condition of reversibility is valid in the case of me-
chanics of multiple particles, which similarly yields the reversibility of the
Liouville equation (and of the underlying Poisson bracket). The Lagrangian
Poisson bracket for continuum mechanics (2.25), which also ful�lls condition
(2.46), yields reversibility of all the implied Poisson brackets for Eulerian
continuum mechanics with distortion, (2.29), with the left Cauchy-Green
tensor, (2.30), as well as reversibility of the �uid mechanics Poisson bracket,
(2.32). In other words, a Poisson bracket producing reversible evolution (sat-
isfying condition (2.46)) generates a hierarchy of reversible Poisson brackets
obtained by reductions from the original bracket.

Another consequence of the reversibility condition (2.46) are the Onsager-
Casimir reciprocal relations (OCRR) [Onsager, 1931a,b, Casimir, 1945, Grmela,
1990],

(i) variables with the same parities, P(xi) = P(xj), (2.48a)
are coupled through an symmetric operator,

(ii) but variables with opposite parities, P(xi) = −P(xj),
are coupled through an skew-symmetric operator (2.48b)

with respect to simultaneous TRT and transposition [Öttinger, 2005, Esen
et al., 2016, Pavelka et al., 2018b]. This might seem surprising, since OCRR
are typically assigned to the irreversible part of the evolution [de Groot and
Mazur, 1984], so we will illustrate OCRR for instance on the Poisson bivector
of �uid mechanics,

L(r, r′) =

 0 ρ(r′) ∂δ
∂r′

0
−ρ(r)∂δ

∂r
m(r′) ∂δ

∂r′
−m(r)∂δ

∂r
−ε(r)∂δ

∂r
+ ∂δ

∂r′
p(r′)

0 ε(r′) ∂δ
∂r′
− ∂δ

∂r
p(r) 0

 , (2.49)

where δ = δ(r− r′). This operator is skew-symmetric, as each Poisson bivec-
tor. The terms coupling density with momentum (and vice versa) are even
with respect to TRT. Therefore, the coupling between density (even) and
momentum (odd) is skew-symmetric with respect to simultaneous TRT and
transposition (using the adjoint operator). On the other hand, the terms
coupling momentum with itself are odd and thus they provide symmetric
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coupling. Onsager-Casimir reciprocal relation are present already in purely
Hamiltonian mechanics.

Another unusual consequence of Hamiltonian mechanics is a Riemannian
structure on the state space of the state variables, discussed in the following
section.

2.9 Riemannian structure of Hamiltonian mechanics of
hydrodynamic type

Although Hamiltonian mechanics is generated by a skew-symmetric bivec-
tor while the metric tensor in Riemannian geometry is symmetric, these two
concepts are intimately related. When the Poisson bivector contains only
ultralocal terms (proportional to Dirac δ) and weakly non-local terms (pro-
portional to ∇δ), it can be written in the following form,

Lij = {xi(r), xj(r′)} = gij(x(r))∂rδ(r− r′) + bijk (x(r))∂rx
kδ(r− r′). (2.50)

If, moreover, the energy does not depend on gradients of the state variables,
the Hamiltonian system is called of hydrodynamic type, and the Hamiltonian
evolution equations can be rewritten as a system of quasilinear �rst-order
equations,

∂tx
i =

(
gik

∂2e

∂xk∂xj
+ bikj

∂e

∂xk

)
∂rx

j. (2.51)

Any Hamiltonian system of hydrodynamic type generates a pseudo-Riemannian
geometry on the manifold of state variables and the inverse metric tensor gij

can be read from the formula for the Poisson bivector (2.50) [Tsarëv, 1991,
Dubrovin and Novikov, 1983].

If the metric tensor is non-degenerate (det g 6= 0), then bijk = −gilΓjlk and Γjlk
are the Christo�el symbols of an a�ne connection. Moreover, the connection
is then metric-compatible and Jacobi identity of the Poisson bracket yields
zero curvature and torsion. Equations (2.51) can be then rewritten as

∂tx
i = gijejk∂rx

k, (2.52)

where eij = ∇i∇je is the second covariant gradient of the energy density
e. After multiplication of these equations by the second covariant gradient,
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which is symmetric and positive de�nite in the case non-degenerate met-
ric and convex energy, the set of equations becomes symmetric hyperbolic
[Friedrichs, 1978, Pavelka et al., 2020b]. Indeed, the matrix in front of the
time-derivative is positive de�nite and the matrix in front of the spatial
derivative is symmetric.

So far we have discussed the Hamiltonian structure of continuum mechanics.
In the following text, Hamiltonian mechanics will be equipped with irreverible
dynamics responsible for thermodynamic behavior.
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3 Mutliscale non-equilibrium thermodynamics

�Thermodynamics is a funny subject. The �rst time you go through it, you
don't understand it at all. The second time you go through it, you think you
understand it, except for one or two small points. The third time you go
through it, you know you don't understand it, but by that time you are so
used to it, it doesn't bother you anymore.�

� Arnold Sommerfeld [Angrist and Helper, 1967]

By thermodynamics, one often means classical equilibrium thermodynamics
and its applications in heat engines. However, equilibrium thermodynamics
is just a part of non-equilibrium thermodynamics, which describes also sys-
tems out of thermodynamic equilibrium. Is there a general structure behind
non-equilibrium thermodynamics? And how to derive a less detailed non-
equilibrium thermodynamic description from a more detailed theory? None
of these questions has been answered satisfactorily so far, but we will discuss
at least some partial answers.

3.1 Classical and multiscale non-equilibrium thermody-
namics

Classical equilibrium thermodynamics stems from works of Carnot, Clausius,
Joule, Kelvin, and others, and was given a geometric meaning by Gibbs
[Carnot, 1824, Clausius et al., 1867, Gibbs, 1984]. A key concept in ther-
modynamics is the entropy, which has emerged when studying heat engines.
Once the dependence of entropy on energy, volume, and number of moles of
chemical constituents (the fundamental thermodynamic relation) is known,
the equilibrium behavior of the macroscopic physical system is determined.
Regarding evolution of the system, processes in classical thermodynamics
are typically quasi-static, moving from one equilibrium state to another with
in�nitesimal velocity [Callen, 1960].

But what if the processes are faster than the time necessary for the equili-
bration of the system? The equilibrium description then turns inadequate,
leading to non-equilibrium thermodynamics. In non-equilibrium thermody-
namics, physical systems are described by more detailed state variables than
the equilibrium variables (energy, volume, composition, and entropy). The
state variables are then equipped with evolution equations, and future states
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of the system are determined by solving the equations [de Groot and Mazur,
1984].

Consider an isolated system in equilibrium (for instance a gas in a box),
described by the equilibrium state variables. When it is brought out of the
equilibrium by an external force, additional state variables on top of the
equilibrium ones (for instance velocity of matter) start to play an impor-
tant role. Which set of state variables is appropriate for description of the
system? If the distribution of the velocities of particles of the gas is non-
Maxwellian initially, the kinetic theory is most likely the appropriate level of
description. However, after the time su�cient for restoring the Maxwellian
distribution, hydrodynamics becomes compatible with the observed phenom-
ena although it contains less details than the kinetic theory. And equilibrium
thermodynamics will eventually become appropriate as the system reaches
the equilibrium. In other words, any isolated physical system can be described
on various levels of description and the less detailed levels become appropri-
ate as the system gradually reaches the equilibrium. This is the multiscale
character of non-equilibrium thermodynamics [Pavelka et al., 2018b].

The microscopic origin of classical equilibrium thermodynamics can be seen
in statistical physics, where by maximization of entropy we obtain the equilib-
rium distribution function and the equilibrium fundamental thermodynamic
relation [Landau and Lifschitz, 1969, Pavelka et al., 2018b]. And because
classical equilibrium thermodynamics can be seen as the �nal stage of multi-
scale non-equilibrium thermodynamics, we can expect that non-equilibrium
thermodynamics also follows from statistical physics. Statistical physics is
actually a reduction method from more detailed levels (for instance from
the knowledge of distribution function) to less detailed levels (for instance
to the hydrodynamic �elds). But in non-equilibrium thermodynamics there
can still be some evolution on the less detailed level of description (unlike on
the equilibrium level of description). Therefore, apart from the fundamental
thermodynamic relation, we have to derive also the evolution equations on
the less detailed level. Reduction of a detailed description to a fundamental
thermodynamic relation on a less detailed level is called static reduction while
reduction to the less detailed evolution equations is called dynamic reduction.

In contrast to mechanics, which is invariant with respect to the time-reversal
transformation and thus reversible, thermodynamic behavior is irreversible
[Pavelka et al., 2014]. Non-equilibrium thermodynamics thus contains both
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the reversible and irreversible dynamics. Splitting the evolution to reversible
and irreversible is a cornerstone of the General Equation for Non-Equilibrium
Reversible-Irreversible Coupling (GENERIC) [Grmela and Öttinger, 1997,
Öttinger and Grmela, 1997], summarized in monographs [Öttinger, 2005,
Pavelka et al., 2018b]. In GENERIC, the evolution equations of chosen state
variables have two ingredients: Hamiltonian mechanics and gradient dynam-
ics. The former, which is reversible and keeps both energy and entropy, was
discussed in Section 2, while the latter, which is irreversible and produces
entropy or diminishes energy, will be discussed now.

3.2 General Equation for Non-Equilibrium Reversible-
Irreversible Coupling (GENERIC)

GENERIC was developed in 1997 by Grmela and Öttinger [Grmela and Öt-
tinger, 1997, Öttinger and Grmela, 1997] as a non-equilibrium thermody-
namic framework unifying �uid mechanics, kinetic theory, and mechanics of
non-Newtonian �uids. The main idea is to combine Hamiltonian mechanics
(given by a Poisson bracket and energy) and dissipative gradient dynam-
ics (generated by a dissipation potential and entropy) [Dzyaloshinskii and
Volovick, 1980, Grmela, 1984, Kaufman, 1984, Morrison, 1984, Gyarmati,
1970]. A connection between GENERIC and �uctuations, turning GENERIC
to stochastic di�erential equations, was shown in monograph [Öttinger, 2005],
and the hierarchical geometric structure of GENERIC was summarized in
monograph [Pavelka et al., 2018b].9

To construct a model within GENERIC, one �rst needs to de�ne a manifold
M (or a vector space) of state variables x ∈M and four building blocks:

1. Poisson bracket {•, •}

2. energy functional E(x)

3. dissipation potential Ξ(x,x∗)

9Instead of a dissipation potential, it is also possible to use a bilinear positive semi-
de�nite operator called dissipative bracket [Morrison, 1984, Öttinger, 2005]. When the
dissipative bracket is symmetric, it is equivalent to a quadratic dissipation potential. The
question whether non-symmetric dissipative brackets are necessary has been long debated
[Hütter and Svendsen, 2013, Grmela, 2018].
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4. entropy functional S(x).

The former two blocks constitute the Hamiltonian (reversible) part while the
latter two form the gradient (irreversible) part. Moreover, conjugate variables
x∗ are introduced as the derivatives of entropy, x∗ = Sx. Within GENERIC,
evolution on manifold M is given as the sum of the Hamiltonian part and
the gradient part,

∂tx = {x, E}+ Ξx∗

∣∣∣
x∗=Sx

, (3.1)

and since the Hamiltonian part has already been discussed in Section 2.2, we
shall now focus on the gradient part.

To be consistent with the thermodynamics, the dissipation potential must
satisfy the following conditions: (i) 〈x∗,Ξx∗〉 ≥ 0 ∀x,x∗, (ii) Ξ(x, •) has a

minimum at x∗ = 0, and (iii)
〈
Ex,Ξx∗

∣∣∣
x∗=Sx

〉
= 0. Condition (i) expresses

consistency with the second law of thermodynamics,

Ṡ = {S,E}︸ ︷︷ ︸
=0

+

〈
Sx,Ξx∗

∣∣∣
x∗=Sx

〉
≥ 0, (3.2)

noting that {S,E} = 0 because S is assumed to be a Casimir of the Poisson
bracket. Condition (ii) expresses that the irreversible evolution disappears in
the thermodynamic equilibrium, where Sx = 0. Condition (iii) ensures the
�rst law of thermodynamics,

Ė = {E,E}︸ ︷︷ ︸
=0

+

〈
Ex,Ξx∗

∣∣∣
x∗=Sx

〉
= 0. (3.3)

Entropy increases in GENERIC while energy is kept constant.10

Condition (i), expressing the second law of thermodynamics, is automatically
satis�ed for convex dissipation potentials [Pavelka et al., 2020a, Roubí£ek,
2005], which is why dissipation potentials are usually assumed convex. Due
to condition (ii) (minimum at the origin), dissipation potentials can be con-
sidered quadratic near the equilibrium. A quadratic dissipation potential can

10Note that for simplicity we assume only isolated or boundary-less systems, where
�uxes of energy and entropy through the boundary disappear.
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be expressed by a symmetric positive semi-de�nite operator M, called the
dissipative matrix,

Ξ =
1

2
〈x∗|M|x∗〉 =

1

2
x∗iM

ijx∗j , M = MT , M ≥ 0, (3.4)

and GENERIC evolution (3.1) then becomes

∂tx
i = LijExj +M ijSxj , (3.5)

where Lij is the Poisson bivector corresponding to the Poisson bracket. Con-
dition (ii) is then satis�ed automatically and condition (i) follows from the
positive semi-de�niteness of the dissipative matrix. Condition (iii) is trans-
lated into the requirement that M ijExj = 0 ∀i. This quadratic form of
gradient dynamics has been developed by Landau and Ginzburg [Ginzburg
and Landau, 1950] in the context of physics and by Otto in the context of
mathematics [Otto, 2001].

An example of quadratic gradient dynamics in continuum thermodynamics
is the Fourier heat conduction. The state variable is the �eld of total energy
density e, the total entropy is a functional of e, typically S =

∫
s(e(r))dr,

and dissipation potential is

Ξ(Fourier) =

∫
λ

2
(∇e∗)2dr. (3.6)

Gradient dynamics generated by this dissipation potential then reads

∂te = −∇ · (λ∇e∗)
∣∣∣
e∗=Se

= −∇ ·
(
λ∇T−1

)
, (3.7)

where the inverse temperature is identi�ed with the derivative of entropy
with respect to the energy density. Heat �ux is equal to Jq = λ∇T−1 and
heat thus �ows against the gradient of temperature. The non-negative ma-
terial coe�cient λ can depend on energy and is proportional to the thermal
conductivity. The implied evolution equation for entropy density s(e) is

∂ts = T−1∂te = −∇ · (λT−1∇T−1) + λ(∇T−1)2. (3.8)

The former term on the right hand side represents negative divergence of
the entropy �ux Js = Jq/T , which is the classical relation between heat and
entropy �uxes [Landau and Lifschitz, 1969, Callen, 1960]. This relation can
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be seen as a consequence of gradient dynamics, but notice that it needs to
be generalized in the context of hyperbolic heat conduction [Pavelka et al.,
2018b], [Szücs et al., 2021]. The second term on the right hand side of Equa-
tion (3.8) is the entropy production, which is clearly non-negative and ensures
the second law of thermodynamics.

Another quadratic example is the isothermal viscous dissipation.11 It repre-
sents irreversible evolution in the equation for momentum density m and is
generated by dissipation potential

Ξ(viscous) =

∫
µD2dr, (3.9)

where D = T
2

(
∇m∗ + (∇m∗)T

)
. Once evaluated at m = Sm = −v/T ,

we obtain that D = 1
2

(
∇v + (∇v)T

)
, which is the usual symmetric velocity

gradient (or strain rate). The full GENERIC evolution for momentum density
in isothermal �uids is the combination of the Hamiltonian part (Equation
(2.34b)) and derivative of dissipation potential (3.9),

∂tmi =− ∂j(miEmj
)− ∂ip+

δΞ(viscous)

δm∗i

=− ∂j(miv
j)− ∂ip+ ∂j

(
µ(∂iv

j + ∂jv
i)
)
, (3.10)

where the pressure is equal to

p = −e+ ρ
∂e

∂ρ
+mj

∂e

∂mj

+ s
∂e

∂s
. (3.11)

This formula is actually equivalent with the usual notion of pressure in sys-
tems with the local thermodynamic equilibrium Pavelka et al. [2018b].

Dissipation potentials for Fourier heat conduction and viscous dissipation in-
volve spatial gradients, which is why they are called weakly non-local. Apart
from these weakly non-local dissipation potentials, we often meet also ultralo-
cal dissipation potentials, that involve no spatial gradients. Such dissipation
potentials occur in chemical reactions [Grmela, 2012, Ajji et al., 2021], elec-
trochemical reactions [Pavelka et al., 2015a], hyperbolic heat conduction, or
plasticity [Dumbser et al., 2016, Godunov et al., 1996]. For instance the SHTC

11For simplicity we neglect the bulk viscosity, treatment of which can be found in
[Pavelka et al., 2018b], as well as the non-isothermal case.
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equations have ultralocal dissipation potentials, where an irreversible term
appears in the equation for distortion A and another term (entropy produc-
tion) in the equation for entropy [Peshkov et al., 2018]. Similarly, in the case
of dynamics of the left Cauchy-Green tensor B, an ultralocal dissipation po-
tential can be used to formulate the Maxwell model of non-Newtonian �uids
[Pelech et al., 2020]. An advantage of ultralocal dissipation potentials is that
they do not alter the hyperbolic character of the evolution equations, but
a disadvantage is that mathematical analysis (like proof of large-time exis-
tence and uniqueness of weak solutions) becomes di�cult without the weakly
non-local terms [Feireisl et al., 2016]. Anyway, gradient dynamics is respon-
sible for dissipative behavior (raising entropy) and it produces irreversible
evolution. Let us have a closer look at the meaning of irreversibility.

3.3 Time-reversal transformation and Onsager-Casimir
reciprocal relations

The time-reversal transformation (TRT) is a tool that distinguishes between
reversible and irreversible transformation, and we have already discussed it
in the context of Hamiltonian mechanics in Section 2.8. We have already seen
that Onsager-Casimir reciprocal relations (OCRR) are satis�ed by Hamilto-
nian mechanics and now we will discuss TRT and OCRR in relation with the
gradient dynamics. Both dissipation potentials and entropy are required to
be even with respect to TRT, since �ipping velocities of all particles could
otherwise violate the second law of thermodynamics. Gradient dynamics then
gets an extra minus sign under TRT with respect to the time derivative of
the state variables,

ẋi =
δΞ

δx∗i

TRT⇒ −P(xi)ẋi =
δΞ

δx∗i
P(xi), (3.12)

while the reversible part was invariant with respect to TRT.

When the dissipation potential is quadratic, its evenness leads to the condi-
tion

P(M ij) = P(xi)P(xj). (3.13)

For instance the Fourier dissipation potential (3.6) corresponds to the dissi-
pative matrix

M (e(r),e(r′) =
∂

∂r′i
∂

∂ri
(
λT 2δ(r− r′)

)
, (3.14)
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which is symmetric with respect to swapping e(r) and e(r′) and even with
respect to TRT. It is thus compatible with OCRR (2.48) because it provides
coupling between state variables of the same parity (energy and energy).
Both parts of GENERIC are automatically compatible with OCRR.

Dissipation potentials can typically be expressed in terms is their density ξ,
where Ξ =

∫
ξdr, and the density is a function of thermodynamic forces X.

For instance, in the case of Fourier heat conduction we have ξF = λ
2
(XF )2

and X = ∇e∗. By interchanging the second derivatives, we obtain that

∂2ξ

∂Xi∂Xj

=
∂2ξ

∂Xj∂Xi

, (3.15)

which is a generalization of OCRR to the case of non-quadratic dissipa-
tion potentials. Thermodynamic �uxes corresponding to the thermodynamic
forces are de�ned as Ji = ∂ξ

∂Xi
. One can then obtain additional Maxwell rela-

tions between the forces and �uxes, for example
(
∂J1

∂J2

)
X1

=
(
∂X2

∂X1

)
J2
[Grmela

et al., 2015], as well as a generalization of the Braun-Le Chatelier principle
for gradient dynamics [Chatelier, 1884, Pavelka and Grmela, 2019]. Instead
of expressing dissipation potentials in terms of the thermodynamic forces, we
can carry out the Legendre transformation to the dual dissipation potentials,
which depend on the thermodynamic �uxes. This brings us to the concept
of dual gradient dynamics, studied in the following section.

3.4 Dual gradient dynamics and non-convex dissipation
potentials

In dual gradient dynamics the dual dissipation potentials are expressed in
terms of the thermodynamic �uxes rather than in terms of the forces, which
provides a tool for analyzing non-convex dissipation potentials. The de�nition
of thermodynamic �uxes can be also interpreted as a solution J(X) to the
equation

∂

∂Xi

(
−ξ + JiXi

)
= 0, (3.16)

which is actually the Legendre transformation from ξ(X) to the dual dissi-
pation potential density,

ξ∗(J) = −ξ(X(J)) + JiXi(J). (3.17)

39



The inverse Legendre transformation, from ξ∗ to ξ, reads

∂

∂Ji
(
−ξ∗ + JiXi

)
= 0, or

∂ξ∗

∂Ji
= Xi. (3.18)

If we have gradient dynamics

ẋi =
∂ξ

∂Xi

, (3.19a)

then the dual gradient dynamics is

∂ξ∗

∂ẋi
= Xi. (3.19b)

Dual gradient dynamics is used for instance when describing the austenite-
martensite transformations [T·ma et al., 2018] and the Legendre transfor-
mation is also behind the formulation of continuum thermodynamics based
on the Gibbs energy [Pr·²a et al., 2020].

Let us now turn to the possibility of non-convex dissipation potentials in
non-Newtonian �uids. Convexity of the dissipation potential is a su�cient
condition for ful�llment of the second law of thermodynamics, but not nec-
essary. The irreversible part of the Cauchy stress can be obtained similarly
as in the Newtonian case, as the irreversible term under the divergence in
the momentum equation,

T =
∂ξ

∂D
. (3.20)

This relation is a particular realization of gradient dynamics in terms of the
forces and �uxes (3.19a).12 While in the Newtonian case the stress is pro-
portional to the strain rate, a nonlinear relation has been observed in non-
Newtonian �uids [Olmsted, 2008]. In [Boltenhagen et al., 1997], the stress-
strain rate relation for a non-Newtonian �uid was acquired (Figure 3) by
putting the �uid between two concentric cylinders, one of which is static
while the other rotating, and by measuring the angular velocity and forces
exerted on the cylinders. They observed that when varying the shear stress

12Note that the divergence operator in front of the stress tensor can be put into equa-
tion (3.19a), but we do not include it explicitly, for simplicity. Note also that we assume
incompressibility until the end of this section. Therefore, we do not need to distinguish
between T and its deviatoric part and between D and its deviatoric part explicitly. More
details can be found in [Jane£ka and Pavelka, 2018].
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Figure 3: Steady-state stress/shear�rate behavior for a 7.5/7.5 mM
TTAA/NaSal solution from the controlled shear stress (∆) and controlled
shear�rate (•) experiments [Boltenhagen et al., 1997]. The dashed arrow in-
dicates the experimentally observed jump in shear stress while the dotted
arrow indicates the expected jump when lowering shear rates (hysteresis),
based on the theoretical analysis. Figure adapted from [Jane£ka and Pavelka,
2018].
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(slowly increasing the external force rotating the outer cylinder), the shear
rate behaves continuously. On the other hand, when varying the shear rate
(slowly increasing the rotation rate), the shear stress exhibits a jump. What
is the reason for such asymmetry? Let us answer this question by phenomeno-
logical means.

The strain�stress relation D(T) in Figure 3 can be obtained as dual gradient
dynamics (3.19b)

D =
∂ξ∗

∂T
(3.21)

with a dissipation potential motivated by Le Roux and Rajagopal [Le Roux
and Rajagopal, 2013]. The dependence D(T), replacing T(D), is sometimes
called an implicit constitutive relation [Málek et al., 2010, Perlácová and
Pr·²a, 2015]. Figure 4 shows the dual dissipation potential while Figure 5
displays dissipation potential ξ (obtained by the Legendre transformation of
ξ∗). Since ξ is multi-valued (not being a function), it has to be split into
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|�δ|
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Figure 4: Dual dissipation potential ξ∗ (T). The region C −D is not convex.
The dashed tangent line B−E indicates the convex hull of the potential and
coincides with the Maxwell lever rule construction. The region B − C and
D − E are convex. Figure adapted from [Jane£ka and Pavelka, 2018].

several branches that are functions. On the other hand, the dual dissipation
potential ξ∗ is not multi-valued, which makes it easier to use than ξ. In the
dissipation potential ξ in Figure 5, however, we can see an unstable branch
(C−D), two metastable branches (B−C andD−E), and two stable branches
A−B and E−F . Stability of the branches can be analyzed in a similar way
as in classical thermodynamics [Callen, 1960] although here it is not caused
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Figure 5: Dissipation potential ξ (D) obtained by Legendre transformation of
ξ∗. In regions II and III, the potential is multivalued and the dashed curve
C − D is an unstable branch. Curves A − B and E − F correspond to the
convex hull of the dissipation potential ξ∗. Figure adapted from [Jane£ka and
Pavelka, 2018].

by non-convexity entropy or free energy, but by the shape of the dissipation
potential. Transition between the various branches can be then interpreted
as a dissipative phase transition.

Let us now return to the question why behavior of the �uid is di�erent
when the stress is controlled from the case when the strain rate is controlled.
When slowly raising the shear rate, we start in regime I in Figure 5, where
shear stress is determined uniquely. After passing to regime II, another pos-
sible state appears, but the shear stress evolves continuously due to careful-
ness of the experimentalists (smallness of external perturbations). Passing
also through regime III, point C (boundary between regimes III and IV) is
reached, where the metastable state becomes unstable and the shear stress
jumps to the stable state. That is why shear stress behaves discontinuously.

On the other hand, when slowly varying T, there is always a unique value
of D, determined by slope of dissipation potential Ξ∗ in Figure 4, and the
slope varies continuously. That is why no jump in shear rate is observed in
the experiment.

Moreover, it could be expected that when going back from high shear rates
to the small ones, shear stress would fall as low as to point D, from which
it would jump to the stable state on branch A. One should thus observe
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hysteresis in Figure 3, but no such experiment has been carried out.

The dual dissipation potential provides a phenomenological description of
the observed experimental behavior. But how to derive such dissipation po-
tential? Or how to derive dissipation potentials in general? There are sev-
eral possibilities. If we know the statistical character of �uctuations of the
state variables in terms of the theory of large deviations, a corresponding
dissipation potential can be constructed [Mielke et al., 2014], using a gener-
alized �uctuation-dissipation theorem [Mielke et al., 2016]. The dissipation
potential can be also derived by a dynamic reduction from a more detailed
dynamics, as in Section 3.6. Alternatively, if no such reduction is available,
one can construct dissipation phenomenologically from purely Hamiltonian
mechanics [Bloch et al., 1996, Pavelka et al., 2019b], which is discussed in
the following section.

3.5 Ehrenfest regularization of Hamiltonian systems

Ehrenfest regularization is a method converting a purely Hamiltonian evolu-
tion to a partly dissipative evolution. Averaging Hamiltonian evolution (2.6)
over time τ , we obtain, after an approximation, that

1

τ

∫ τ

0

ẋidt =
xi(t+ τ)− xi(t)

τ
≈ LijExj +

τ

2

δ

δxk
(
LijExj

)
LklExl . (3.22)

Ehrenfest regularization [Pavelka et al., 2019a] is then the evolution equation

ẋi = LijExj +
τ

2

δ

δxk
(
LijExj

)
LklExl , (3.23a)

which consists of the original Hamiltonian dynamics and an irreversible term
(the second on the right hand side). The irreversible term increases all concave
Casimirs of the underlying Poisson bracket, in particular the entropy (Ṡ ≥ 0),
and reduces the energy (Ė ≤ 0).

Moreover, the irreversible term can be split into two contributions, leading
to two other forms of Ehrenfest regularization. The entropic Ehrenfest regu-
larization,

ẋi = LijExj +
τ

2

δ

δxk
(
Lij
)
ExjL

klExl , (3.23b)
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conserves energy (Ė = 0) and produces entropy (Ṡ ≥ 0), while the energetic
Ehrenfest regularization,

ẋi = LijExj +
τ

2
LijExjxkL

klExl , (3.23c)

reduces energy (Ė ≤ 0) and keeps the entropy (Ṡ = 0).

Which form of Ehrenfest regularization to choose? It depends on the quan-
tities that should be conserved. The energetic Ehrenfest regularization can
be used for instance in the case of rigid body rotation, where the Casimir
M2 (magnitude of angular momentum) is conserved while energy should de-
crease. We will explore this case in more detail below. On the other hand,
the energetic Ehrenfest regularization can be used in the kinetic theory, pro-
viding growth of entropy while keeping the energy constant, which leads to
kinetic equations with di�usion in space [Svärd, 2018].

The full Ehrenfest regularization (3.23a) is useful when constructing numeri-
cal schemes for non-canonical Hamiltonian mechanics. Indeed, using the for-
ward Euler discretization of the full Ehrenfest regularization, (3.23a), while
taking τ equal to the numerical time step dt, we obtain a numerical scheme
conserving both energy and entropy up to the second order in dt. Numerical
results for rigid body rotation are shown in Figure 6a.13

On the other hand, the energetic Ehrenfest regularization of rigid body me-
chanics leads to results in Figure 6b. While the magnitude of angular momen-
tum is conserved, the energy is reduced. Although in the purely Hamiltonian
case (without any regularization), rotations around both the axes with the
lowest and the highest moments of inertia are stable, only the latter is sta-
ble after the regularization. Such behavior was observed for instance in the
unexpected change of rotation of the Explorer 1 probe [Likins, 1966].

Although Ehrenfest regularization leads to systems with desired thermody-
namic properties (entropy increasing or energy decreasing), it is only a phe-
nomenological way to dissipative dynamics. Moreover, it does not provide
any information about the value of the relaxation time τ . Ehrenfest regular-
ization is, however, the �rst step in the Ehrenfest reduction, where dynamics
on a detailed level of description is reduced to dynamics on a less detailed
level [Gorban et al., 2001, Karlin et al., 2003, Pavelka et al., 2018a,b].

13The principal moments of inertia were chosen as Iz > Iy > Ix.
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(a) Numerical results of the full

Ehrenfest discretization (3.23a) for
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(b) Forward Euler discretization of

the energetic Ehrenfest regularization

(3.23c) of rigid body motion. Only

pure rotation around the z−axis
is stable (even asymptotically sta-
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major z−axis.

Figure 6: Evolution of components (mx red,my green andmz blue) of angular
momentum of a rigid body observed from the body reference frame.

In the following section, we shall discuss another method that needs no a
priori knowledge of the relaxation time.

3.6 Lack-of-�t reduction

The lack-of-�t reduction is a method of dynamic reduction, reducing a de-
tailed level of description with the GENERIC structure to a less detailed
GENERIC [Pavelka et al., 2020a]. Similar goal (albeit without the underly-
ing GENERIC structure) is carried out for instance by the Chapman-Enskog
reduction (requiring dissipative terms on the detailed level) [Chapman et al.,
1990, de Groot and Mazur, 1984], projection operator techniques (often lead-
ing to integrodi�erential equations) [Zwanzig, 2001], or the Ehrenfest reduc-
tion [Ehrenfest and Ehrenfest, 1990, Gorban et al., 2001, Karlin et al., 2003,
Pavelka et al., 2018a]. A special feature of the lack-of-�t reduction, which
was �rst proposed in [Turkington, 2013], is that it leads to the GENERIC
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structure and that dynamics on the lower level of description can be dissipa-
tive even if the detailed evolution is purely reversible. Moreover, the method
contains no �tting parameters.

Let us consider an upper level (more detailed) with state variables x ∈ M,
entropy ↑S(x), energy ↑E(x), Poisson bivector ↑L(x), and dissipation poten-
tial ↑Ξ(x,x∗), which constitute the GENERIC building blocks for evolution

ẋi = ↑L
ij ∂↑E

∂xj
+
∂↑Ξ

∂x∗i

∣∣∣
x∗=↑Sx

. (3.24)

A mapping π from the upper level M to a lower level N de�nes the less
detailed state variables y = π(x) ∈ N . What is the autonomous dynamics
on the less detailed level (expressed only in terms of state variables y)?

First we have to carry out the static reduction which leads to the entropy
and energy on the lower level (↓S(y) and ↓E(y)). In the static reduction the
lower-level entropy ↓S is obtained by evaluating the upper-level entropy ↑S
at the MaxEnt values, x(y∗(y)). The MaxEnt (maximum entropy) values
are obtained by maximization of ↑S with the constraints that we know the
value of y, which gives the MaxEnt mapping y 7→ y∗ 7→ x. The image
of the lower-level manifold N under this mapping is a submanifold of M,
called the MaxEnt submanifold. The MaxEnt mapping can be interpreted
as a sequence of two Legendre transformations, a non-invertible one from x
to y∗ and an invertible from y∗ to y, as in Figure 7. Similarly, the lower-
level energy ↓E(y) = ↑E(x(x∗(y))) is obtained by evaluating the upper-level
energy at the MaxEnt image of y.

LT

LT

π

M
axEnt

x x∗

y y∗

Figure 7: Relations between state variables on the upper level of description
and the lower level and their conjugates. LT stands for Legendre transforma-
tions which are invertible. The MaxEnt mapping is not invertible.
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After the static reduction, we can turn to the dynamic reduction, actually
comparing the evolution equations on both levels. We are looking for a vector
�eld14 expressing evolution of the lower conjugate variables, ẏ∗, [Turkington,
2013]. Imagine that we have such a vector �eld. Then residuum

Ri = ẋi − ∂xi

∂y∗a
ẏ∗a = ↑L

ij ∂↑Ē

∂xj
+
∂↑Ξ

∂x∗i
− ∂xi

∂y∗a
ẏ∗a (3.25)

expresses the di�erence between the known vector �eld on the upper level
(the right hand side of Equation (3.24)) on the MaxEnt submanifold and the
MaxEnt mapping of the sought reduced dual vector �eld ẏ∗. The residuum
measures the lack of �t between those two vector �elds on the MaxEnt sub-
manifold [Pavelka et al., 2020a]. The lack-of-�t Lagrangian is then de�ned
using the entropic norm (see [Gorban and Karlin, 2005]) of the residuum as

L(y∗(t), ẏ∗(t)) = −1

2
Ri(x(y∗))

∂2↑S

∂xi∂xj

∣∣∣
x(y∗)

Rj(x(y∗)), (3.26)

where the MaxEnt values of x were substituted into the expressions on the
upper level of description. Action∫ t1

t0

dtL(y∗(t), ẏ∗(t)) (3.27)

is then minimized15, keeping the initial time t0 and the �nal state y∗1 �xed
while letting the �nal time and the initial state vary. The reason is that as the
�nal time t1 approaches in�nity, the �nal state y∗1 is expected to approach
the thermodynamic equilibrium, determined by the maximum of entropy.
The minimum of the action (denoted as Ψ(t1,y

∗
0)) then depends on the �nal

time and initial state.

How to �nd the extremal trajectory y∗(t)? It is obtained by means of the
Hamilton-Jacobi equations [Gelfand and Fomin, 2012],

− ∂Ψ

∂y∗a
=

∂L
∂ẏ∗a

, (3.28a)

∂Ψ

∂t
= H

(
t, y∗1,−

∂Ψ

∂y∗a

)
, (3.28b)

14Note that the right hand side of an evolution equation ẋi = Xi can be interpreted as
components of vector �eld X = Xi ∂

∂xi .
15Note that the minus sign makes the Lagrangian positive de�nite, since the second

di�erential of entropy is negative de�nite (concave function).
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where H is the Legendre transformation of L,

H(y∗, z) = −L(y∗, ẏ∗(y∗, z)) + zaẏ∗a(y
∗, z) (3.29)

with the dependence ẏ∗(z) calculated from za = ∂L
∂ẏ∗a

. Since the Lagrangian
does not explicitly depend on time, we can assume that the action is time-
independent and the Hamilton-Jacobi equation (3.28b) turns to

H
(

y∗,− ∂Ψ

∂y∗

)
= 0. (3.30)

The minimal action Ψ(y∗) is determined as the solution to this stationary
Hamilton-Jacobi equation. Finally, equation (3.28a) can be rewritten, using
the concrete form of Lagrangian (3.26), as

ẏa = ↓L̃
ab∂↓E

∂yb
+

∂

∂y∗a

(↑Ξ(x(y),x∗(y∗)) + Ψ(y∗)
)︸ ︷︷ ︸

=↓Ξ(y∗)

, (3.31)

where ↓L̃
ab

= δπa

δxi
↑L

ij δπb

δxj

∣∣∣
x(y∗)

is the lower-level bivector16. A GENERIC evo-

lution on the upper level (3.24) is reduced to a GENERIC evolution on
the lower level of description (3.31) by minimization of the lack-of-�t ac-
tion (3.27). In particular, even if the evolution on the upper level is purely
Hamiltonian, the evolution on the lower level can contain dissipation.

While functionals ↓S and ↓E are obtained by the static reduction, the lower-
level bivector ↓L̃ and dissipation potential ↓Ξ are obtained by the dynamic
reduction, minimizing the lack of �t between the exact evolution on the
MaxEnt submanifold and the MaxEnt mapping of the reduced evolution.
Even in the case of purely Hamiltonian evolution on the upper level (↑Ξ = 0),
the reduced evolution can be dissipative. Indeed, the lower-level dissipation
potential contains the minimum of the action, Ψ, which may be non-zero. In
other words, dissipation can be interpreted as an emergent property brought
up by disregarding some details of the upper level of description [Pavelka
et al., 2020a].

16Note that it is not guaranteed that the reduced bivector satis�es Jacobi identity and if
it is the case, the reduced evolution is actually called pre-GENERIC [Kraaij et al., 2018].
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4 Conclusion, my contribution, and outlook

GENERIC is a framework for non-equilibrium thermodynamics combining
Hamiltonian mechanics and gradient dynamics. It is constructed from four
building blocks: an energy, an entropy, a Poisson bracket, and a dissipation
potential. GENERIC is compatible with the �rst law of thermodynamics, the
second law, and generalized Onsager-Casimir reciprocal relations. In contrast
to other forms of non-equilibrium thermodynamics [de Groot and Mazur,
1984, Truesdell, 1984, Müller, 1985, Jou et al., 2010, Berezovski and Ván,
2017], which are based on balance equations and subsequent entropic clo-
sures, the Hamiltonian part of GENERIC is based on geometric mechanics
while balance laws come as a consequence. Moreover, the building blocks of
GENERIC can be used to conveniently pass between various levels of de-
scription, for instance via the presented hierarchy of Poisson brackets.

My main contributions to the Hamiltonian part of GENERIC are: (i) Clar-
i�cation of the time-reversal transformation also for state variables without
parity (for instance the distribution function in kinetic theory) [Pavelka et al.,
2014], (ii) a hierarchy of Poisson brackets starting with Liouville equation and
going to weakly non-local extensions of �uid mechanics including entropy
(geometric grandcanonical BBGKY hierarchy) [Pavelka et al., 2016], (iii)
the Hamiltonian structure of Eulerian continuum mechanics with distortion
[Peshkov et al., 2018], (iv) the Riemannian approach towards hyperbolicity of
Hamiltonian systems [Pavelka et al., 2020b], and (v) the Hamiltonian struc-
ture of electrodynamics coupled with motion of matter [Esen et al., 2016,
Vágner et al., 2021].

Regarding the irreversible part of GENERIC, my main contributions are: (i)
the GENERIC version of Ehrenfest reduction [Gorban et al., 2001, Karlin
et al., 2003, Pavelka et al., 2018a], which resulted in the Ehrenfest regu-
larization of Hamiltonian systems [Pavelka et al., 2019b]. (ii) We have also
shown how to use non-convex dissipation potentials in GENERIC [Jane£ka
and Pavelka, 2018] and what are the physical implications (phase transitions
in the dynamic behavior of complex �uids). (iii) Finally, we have generalized
the method of lack-of-�t reduction to non-Boltzmann entropies and non-
canonical Poisson brackets while allowing also full GENERIC evolution on
the upper level of description (instead of being only purely Hamiltonian with
only the Boltzmann entropy) [Pavelka et al., 2020a].
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Another area of my research, standing out of the scope of this thesis, is theo-
retical electrochemistry (related to my Ph.D. thesis). My main contributions
are: (i) Generalization of the exergy analysis in thermodynamic optimization
[Ho�mann et al., 2003], where in the case of non-isothermal boundary it is
not entropy production that cases e�ciency losses, but a related quantity
(map of losses) [Pavelka et al., 2015a, Vágner et al., 2017], (ii) explanation
why desorption in Na�on membranes (in hydrogen fuel cells) is faster than
absorption [Klika et al., 2017], and (iii) calculation of the open-circuit voltage
in vanadium and zinc-air redox-�ow batteries better explaining the experi-
mental data [Pavelka et al., 2015b, del Olmo et al., 2021]. Although the
GENERIC framework has only rarely been applied in electrochemistry be-
cause electrochemical processes are usually purely dissipative [Pavelka et al.,
2015a, Bedeaux et al., 2014], it might enrich electrochemistry by inertial ef-
fects (adding Hamiltonian mechanics [Ajji et al., 2021]) and by improving
the transition state theory (by multiscale thermodynamics [Gorban, 2021]).

In future, I would like to address for instance the following issues:

1. Where does GENERIC come from? Section 3.6 provides an answer by
means of the lack-of-�t reduction, where GENERIC is derived from
purely Hamiltonian mechanics by minimizing a discrepancy between
evolutions on two levels of description. The method also reduces a full
GENERIC evolution (including dissipation) to a less detailed GENERIC.
However, the lack-of-�t reduction still contains several caveats. It has
to be generalized to properly take into account boundary conditions, it
remains unclear whether the method is transitive, and further numer-
ical tests are needed to better understand where the method correctly
approximates the detailed evolution. If successfull, the method could
become a general tool for reductions in non-equilibrium thermodynam-
ics [Gorban and Karlin, 2014].

2. The sum of Hamiltonian mechanics and gradient dynamics, on which
GENERIC is based, is di�cult to grasp from the geometrical point
of view. Although each of the parts has its own well de�ned geo-
metric setting, their sum lacks solid geometric formulation. So far the
best choice for a geometry unifying both the reversible and irreversible
parts of GENERIC seems to be the contact geometry [Arnold, 1989,
Grmela, 2010, Pavelka et al., 2018b], but a comprehensive formulation
of GENERIC including the in�nite-dimensional case of �elds is missing.
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3. The Lagrangian continuum mechanics can be mapped to the Eulerian
continuum mechanics with the distortion �eld, as in Section 2.5, and
a further reduction leads to �uid mechanics. On the other hand, �uid
mechanics can be also obtained by a reduction from kinetic theory
(from the Liouville or Boltzmann equation). Can Eulerian continuum
mechanics with distortion be obtained from kinetic theory as well?
Answering this question would show how to add �uctuations to the
equation for distortion, which should play a role for instance in simu-
lations of colloidal solid particles by means of the dissipative particle
dynamics method [Ellero et al., 2003, Hütter et al., 2018].

4. Super�uids, for instance liquid helium-4 at low temperatures, show re-
markable behavior like �ows through a very narrow capillary caused by
a temperature di�erence [Landau, 1941]. The main approaches towards
modeling of super�uids include the Landau-Tisza model, the Hall-
Vinen-Bekarevich-Khalatnikov model (HVBK), the vortex �lament model,
and the Gross-Pitaevskii model [Landau et al., 1986]. Moreover, mod-
els for hyperbolic heat conduction have also been shown compatible
with behavior of super�uids [Mongiovì et al., 2018]. Do all those mod-
els possess the GENERIC structure and are they related with each
other via a hierarchy of Poisson brackets? Preliminary data indicate
that GENERIC indeed provides a unifying framework at least for the
Landau-Tisza, HVBK, and hyperbolic heat conduction models.

5. The equations describing processes in electrochemistry consist of purely
dissipative drift-di�usion equations equipped at most with the Poisson
equation for the electric potential. Such equations possess no inertial
e�ects. On the other hand, inertial e�ects can a�ect rates of chemical
reactions [Calef and Wolynes, 1983], and transport of charged species
with inertia seems to be important on the nanoscale [Amatore et al.,
2008]. The Hamiltonian electrodynamics of moving media, shortly pre-
sented in Section 2.7, should lead to a theory where both transport and
electrochemical equations contain inertial e�ects, for instance wave-like
propagation of polarization and magnetization, interacting with ultra-
fast electrochemical reactions. Moreover, this approach could lead to a
fully Galilean invariant theory of electrodynamics of moving bodies ap-
proximating the Lorentz-invariant theory [Einstein, 1905] without the
need of aether [Hertz, 1890].

52



6. Similarly as symplectic integrators exhibit superior numerical stability
in simulations of particle mechanics, Poisson integrators should be ad-
vantageous when solving evolution equations of non-canonical Hamilto-
nian systems (for instance the Eulerian continuum mechanics) [Hairer
et al., 2013, Leimkuhler et al., 2004]. Hamiltonian integrators should
respect the Hamiltonian structure of the continuous equations. A way
to derive them is the direct discretization of the action integral or
of the underlying Lie group [Kraus, 2013, Gawlik and Gay-Balmaz,
2020]. On the other hand, GENERIC contains also irreversible evolu-
tion, which should be discretized as well, and several approaches have
been proposed [Romero, 2009, Öttinger, 2018]. However, I believe that
one should �rst derive a geometric framework covering both the re-
versible and irreversible parts of GENERIC, for instance the contact
geometric approach above, and discretize that framework in order to
obtain geometric integrators for GENERIC.

7. Finally, the multiscale character of non-equilibrium thermodynamics is
closely related to pattern recognition. On the other hand, modern tech-
niques of machine learning like autoencoders provide means of pattern
recognition [Gorban et al., 2018]. Therefore, it seems that multiscale
GENERIC could enrich machine learning by providing extra geometric
structure while autoencoders could pave an alternative way for passing
between levels of description [González et al., 2019, Chinesta et al.,
2021].
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