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Chapter 1

Structure of the thesis

1.1 List of included papers
This thesis is based on the following list of papers:

[A] Grafakos, L., Honzı́k, P., and Ryabogin, D. On the p-independence bound-
edness property of Calderón-Zygmund theory, J. Reine Angew. Math. 602
(2007) 227–234.
https://doi.org/10.1515/CRELLE.2007.008

[B] Honzı́k, P. On p dependent boundedness of singular integral operators,
Math. Z. 267 (2011) 931–937.
https://doi.org/10.1007/s00209-009-0654-0

[C] Honzı́k, P. An example of an unbounded maximal singular operator, J.
Geom. Anal. 20, (2010) 153–167.
https://doi.org/10.1007/s12220-009-9096-5

[D] Grafakos, L. and Honzı́k P. A weak-type estimate for commutators, Int.
Math. Res. Not. 20 (2012) 4785–4796.
https://doi.org/10.1093/imrn/rnr193

[E] Honzı́k, P. An endpoint estimate for rough maximal singular integrals Int.
Math. Res. Not. 20 (2020) 6120–6134.
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https://doi.org/10.1093/imrn/rny189

[F] Grafakos, L. He, D., and Honzı́k, P. Rough bilinear singular integrals Adv.
Math. 326 (2018) 54–78.
https://doi.org/10.1016/j.aim.2017.12.013

[G] Buriánková, E. and Honzı́k, P. Rough maximal bilinear singular integrals
Collect. Math. 70 (2019), no. 3, 431–446.
https://doi.org/10.1007/s13348-019-00239-4

1.2 Brief overview
The papers included fall in two groups. Papers [A]–[E] deal with some fine prop-
erties of singular integral operators with rough kernel. In [A] and [B], we study
the dependence of the boundedness of the rough operator on the space Lp on the
properties of the kernel and the index p. In [C] and [E], we study the maximal
singular operator with rough kernel. In [C], we give an example of a kernel such
that the operator itself is bounded, but its maximal version is not. It is an open
question if the maximal operator with rough kernel is of the weak type 1-1. In
[E], we provide some weaker endpoint estimate. In [D] we provide a weak type
estimate in R2 for an operator related to commutators of the singular operators.
Papers [F]–[G] are about bilinear operators. These papers use a new method de-
veloped by the author for proving boundedness of a bilinear multiplier operators
using wavelet decomposition, and aply this method to the bilinear singular inte-
gral operators with rough kernel in [F] and the bilinear maximal singular integral
operators with rough kernel in [G].



Chapter 2

Introduction

We give a brief introduction of the theory of singular integral operators, then we
present the results that the author and his collaborators obtained in the field and
we also discuss the open questions and the problems remaining.

The singular integral of convolution type is an operator T expressed in the
form

T f (x) = lim
ε→0

∫
Rn\B(0,ε)

K(y) f (x− y)dy.

Here K is a non-integrable kernel which satisfies suitable set of conditions, and
f is a smooth integrable function.

2.1 Hilbert transform
The simplest and most important example of a singular integral operator is the
Hilbert transform on R,

H f (x) = lim
ε→0

∫
R\(−ε,ε)

1
πy

f (x− y)dy. (2.1)

We recall quickly the theory of the Hilbert transform, as it is the basis for the the-
ory of singular integrals. Hilbert transform is defined for C1 integrable function,
it is easy to see that the limit then exists for all x real.

The Hilbert transform is one of the principal operators in complex analysis,
if u+ iv is an analytic function in the upper half-plane, and f is an integrable
trace of u on the real axis, then H f is, up to a constant, the trace of v. This is
easily verified in the case that f is also C1, but much deeper theory is needed
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in the case when f is not smooth. The situation is still fairly simple if f ∈ L2.
Using the Fourier transform, we arrive for f ∈C1 at the formula

H f = F−1(−isgn(ξ ) f̂ (ξ )).

It is then clear from the Plancherel theorem that H is a bounded linear operator
on dense subset of L2 and it may be extended to the entire space. Also, one may
show that if f is a trace of u in the sense of L2 limit

f = lim
t→0+

u(·, t),

then H f is also a trace of v in L2 sense.
These results may be extended for Lp with 1 < p < ∞, but fail in the case

p = 1. Instead of L1 boundedness, it is possible to prove a weak type 1− 1
estimate

|{|H f | ≥ λ}| ≤C
‖ f‖1

λ
.

Another problem is the existence of the limit in the formula (2.1). The stan-
dard method to address this is to define the maximal Hilbert transform

H∗ f (x) = sup
ε>0

∣∣∣∣∫R\(−ε,ε)

1
πy

f (x− y)dy
∣∣∣∣ . (2.2)

There is a general theorem stating that if a maximal operator related to a singu-
lar integral operator is of the weak type p− p, then for a function f ∈ Lp the
limit exists almost everywhere. In the case of the Hilbert tranform, the maximal
version is of the weak type p− p for 1≤ p < ∞.

2.2 General singular integrals
For a general singular integral of convolution type T with kernel K, and its max-
imal version

T ∗ f (x) = sup
ε>0

∣∣∣∣∫Rn\B(0,ε)
K(y) f (x− y)dy

∣∣∣∣ .
we also have the following six natural questions:

• Is T bounded on L2?

• Is T bounded on Lp, where 1 < p 6= 2 < ∞?
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• Is T of the weak type 1−1?

• Is T ∗ bounded on L2?

• Is T ∗ of the weak type p− p, where 1 < p 6= 2 < ∞?

• Is T ∗ of the weak type 1−1?

All these question are have a positive answer in the case when K is the
smooth homogeneous kernel

K(x) = Ω(x/|x|)/|x|n,

where Ω is C1 on the sphere Sn−1. (The smoothness may be even relaxed to only
a Dini type condition.) The results for T of this type were proved by Calderón
and Zygmund in [4] and the stopping-time argument they used became known
as the Calderón-Zygmund decomposition. It has been one of the key methods in
the Fourier analysis since.

This thesis is devoted to studying these questions in the case when Ω is non-
smooth.





Chapter 3

Description of our results

3.1 Lp estimates for Rough Singular Integrals
The singular integral operator with homogeneous kernel is the operator defined
by

TΩ f (x) = lim
ε→0

∫
Rn\B(0,ε)

Ω(y/|y|)
|y|n

f (x− y)dy. (3.1)

Ω is an integrable function on the sphere Sn−1 with a vanishing integral and f is
a smooth integrable function. It is easy to check that the integral is well defined,
there are, however, some open questions related to its boundedness on Lp spaces.

Let us first explain the utility of this operator. The Riesz transform,

R j f (x) = lim
ε→0

Cn

∫
Rn\B(0,ε)

y j

|y|n+1 f (x− y)dy,

where Cn = Γ(n+1
2 )/π

n+1
2 , is the most natural example. Riesz transform, for

a Schwartz function f , is a composition of a j-th partial derivative with Riesz
potential or

R j f = ∂ j(−∆)−1/2 f = F−1
(
−

iξ j

|ξ |
f̂ (ξ )

)
.

Therefore it is a key operator in the theory of partial differential equations,
Sobolev spaces, etc. The function Ω in this case is a linear polynomial.

Similar operators of the form ∂α(−∆)−|α|/2, where α is a multiindex, also
have singular integral representation with polynomial Ω.

There are many methods for proving the Lp boundedness of this basic op-
erator. The situation is fully resolved on L2. As the operator is of the form of
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convolution with a distribution, it may be written as a Fourier multiplier. There is
an explicit formula for the symbol of the multiplier (see [15] Proposition 5.2.3)

m(ξ ) =
∫

Sn−1
Ω(θ)

(
− log |ξ ·θ |− iπ

2
sgn(ξ ·θ)

)
dθ . (3.2)

Therefore for given Ω the operator is bounded if and only if m ∈ L∞.
For general 1 < p < ∞, the situation is more complicated and some questions

are still open. Calderón and Zygmund [5] used method of rotations to prove
boundedness of the operator under the condition that Ω ∈ L logL. To briefly
summarize this method, let us remind that it uses the one dimensional result
on the boundedness of the Hilbert transform. If Ω ∈ L1 is an odd function,
the operator generated by it can be written as an integral average of directional
Hilbert transforms, and thus it has the same bound on Lp as the Hilbert transform
itself. In particular, the constant Cp in the bound

‖TΩ f‖ ≤Cp‖ f‖p

behaves like 1/(p− 1) when p approaches 1. This is an optimal result. On the
other hand, in case Ω is odd, the idea is to use the Riesz transforms to symmetrize
it. The formal identity ∑ j R jR jTΩ = TΩ is combined with the observation that for
Ω∈ L logL the operator R jTΩ can be written as an operator TΩ j with Ω integrable
and odd. (See [15] Section 5.2)

This proof leads to a constant which behaves as 1/(p− 1)2, which is not
optimal. Moreover, there are some even functions Ω which are not in L logL,
but the operator is still bounded. The first result of this type was proved by
Grafakos and Stefanov in [20] and later improved by Fan, Guo and Pan [14] Let
us describe their results. Inspired by the formula (3.2), Grafakos and Stefanov
introduced quantity

mα(Ω)(ξ ) =
∫

Sn−1
|Ω|(θ)(log |ξ ·θ |)1+α dθ , (3.3)

and proved that if mα is bounded on Sn−1, then the operator TΩ is bounded on Lp

in the range |1/p− 1/2| < α/(4+ 2α). This range was improved by Fan, Guo
and Pan to |1/p−1/2|< α/(2+2α).

Or contribution to this area is to provide examples to show that the bounded-
ness of the operator TΩ may be indeed p dependent. In the article [A], we proved
the following
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Theorem 1. For every α satisfying 0≤α < 1 there is an even integrable function
Ω on Sn−1 with mean value zero with mα(Ω) ∈ L∞(Sn−1) such that the operator
TΩ is unbounded on Lp whenever∣∣∣∣1p − 1

2

∣∣∣∣> 1
1+α

.

In particular, there is a function Ω such that TΩ is Lp bounded exactly when
p = 2.

We note that while this example is sharp when α = 0 and p = 2 for other α

there is a gap between the positive and negative result. In effort to close the gap,
we proved another theorem in [B]:

Theorem 2. For every α > 0 there is an even integrable function Ω on Sn−1 with
mean value zero with mα(Ω)∈ L∞(Sn−1) such that the operator TΩ is unbounded
on Lp whenever ∣∣∣∣1p − 1

2

∣∣∣∣> 3α +1
6(1+α)

.

This theorem does not close the gap completely, but it gives better results for
p close to 1.

3.2 Weak type 1−1 estimates
In general, weak type 1−1 estimate for an operator T is an estimate

|{|T f |> λ}| ≤C‖ f‖1/λ

for all f ∈ L1 and λ > 0. While singular integral operators are never bounded on
L1, they often satisfy this weaker estimate. If the operator T is also bounded on
some space Lp, p > 1, then from the Marcinkiewicz interpolation theorem one
gets the bound on all spaces Lq with 1 < q < p, with a constant that behaves as
1/(q−1) when q goes to 1.

The weak space Lp,∞ is defined by its quasinorm

‖ f‖p,∞ = inf
{

C > 0 : |{| f |> λ}| ≤ Cp

λ p forall λ > 0
}
.

In this notation the weak type estimate becomes ‖T f‖1,∞ ≤C‖ f‖1. Let us note
that while the space Lp,∞, p > 1 may be renormed to become a Banach space, it
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is not the case with L1,∞. This means that the method of rotations cannot be used
to prove the weak type 1−1 estimates for singular integrals.

Weak type 1− 1 estimates for singular integral operators in Rn were first
proved by Calderón and Zygmund [4]. The method they used involves splitting
the function f into a part g, which is in L2 and a part b, which is in L1 and
has some strong cancellation properties and is supported by a family of disjoint
dyadic cubes with measure controlled by ‖ f‖1.

In order to use the cancellation of b, the singular kernel needs to have some
minimal smoothness. Therefore, while it was possible to use the Calderón and
Zygmund method to prove the boundedness of the operator TΩ when the function
Ω satisfies some type of Hölder smoothness or a Dini condition, it is no longer
possible if the Ω is only in L∞ or some bigger space. It has been an open question
for quite some time if the weak type estimate may be proved in the non-smooth
case.

The question was first solved by Christ and Rubio de Francia in [7] and also
Hofmann [21] for operators on R2. The method they use is, roughly speaking,
based on estimating the L2 norm of the operator TΩ away from the support of the
function b. This allows the use of some L2 methods specific to the convolution
operators. In higher dimension, the question was solved by Seeger in [25]. In
particular, he showed that if Ω ∈ L logL(Sn−1), the TΩ is of the weak type 1−1.
This result was generalized by Tao in [28] to more general underlying spaces.

Our results form [B] show that there is an operator TΩ bounded on all Lp,
1 < p < ∞, which is not of the weak type 1−1.

The method of Christ and Rubio de Francia works even for more complicated
operators, which are not of the convolution type. In the article [D], we studied
the commutator operators introduced by Christ and Journé in [6]. Let us describe
the operators briefly.

Suppose that Ω is C1(Sn−1) and

K(x) = Ω(x/|x|)/|x|n,
The operator TΩ is the bounded on Lp 1 < p < ∞ and of the weak type 1− 1.
Chris and Journé introduced operator with kernel

La(x,y) = K(x− y)
∫ 1

0
a((1− t)x+ ty)dt,

where a is a function from L∞. The operator is then defined for smooth integrable
functions f as

T f (x) = lim
ε→0

∫
Rn\B(0,ε)

L(x,y) f (y)dy.
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This operator is called commutator operator of Christ and Journé, which is a
bit of misnomer, because the operator is not directly an algebraic commutator,
however, it does play very important role in the study of commutator operators.

Christ and Journé proved that this operator is bounded on Lp for 1 < p < ∞,
see [6]. While the kernel K is smooth, the new kernel L is in general not smooth,
but it does have some smoothness properties, in particular, for fixed x and y the
function τ(t) = L(x, ty) is smooth for t > 0. We observed that this smoothness
enables the use of the L2 methods from [7] and in [D] we proved the following
theorem:

Theorem 3. The Christ and Journé commutator T on R2 is of the weak type
1−1.

This result was later extended to all dimensions by Seeger [26] and general-
ized for a wider class of operators by Ding and Lai in [12].

3.3 Estimates for Maximal Rough Singular
Integrals

The singular integral operator is initially defined on smooth functions, and if it is
proved to be apriori bounded on some function space such as Lp into a complete
space, such as Lp or Lp,∞, it may be then extended to the entire space using the
density. Therefore,if the operator TΩ is apriori bounded on smooth Lp functions,
we get a method to assign a value TΩ f for a function f ∈ Lp even if the function
f is not smooth or even continuous. It is, however, an interesting question if the
limit in the formula (3.1) converges to the same function almost everywhere.

This problem is solved using a maximal operator. We define the maximal
singular operator

T ∗Ω f (x) = sup
ε>0

∣∣∣∣∫Rn\B(0,ε)

Ω(y/|y|)
|y|n

f (x− y)dy
∣∣∣∣ . (3.4)

Now, it is a well known theorem that if for 1 ≤ p < ∞ the operator T ∗
Ω

f is
bounded on Lp, or even if it is only bounded from Lp to the weak space Lp,∞,
then the limit in the formula (3.1) converges almost everywhere. (See Theorem
2.1.14 of [15].)

The supremum in the definition of T ∗
Ω

means that the operator is well defined
pointwise for any locally integrable f . It is also bigger than TΩ in the points,
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where TΩ is defined. In general, T ∗
Ω

is not directly controlled pointwise or in
norm by TΩ, however, many important cases are covered by the Cotlar inequality.
For example, if the function Ω is smooth, then

T ∗Ω( f )(x)≤C(M(TΩ( f ))(x)+M( f )(x)),

where M is the Hardy-Littlewood maximal function and f is a Schwartz func-
tions. This was first obtained by Cotlar [10] for Hilbert transform, and later
extended to many other settings. (See also Theorem 5.3.4 of [15].)

In case of the non-smooth Ω, the Cotlar inequality is no longer valid. Also,
while for p > 1 it follows from the Cotlar inequality that if TΩ is Lp bounded,
then T ∗

Ω
is Lp bounded, this line of reasoning cannot be used for the weak type

1− 1 estimate. For a function f in L1, the TΩ f is only in L1,∞, and therefore
M(TΩ f ) may not be even well defined.

For operators with smooth kernel, such as T ∗
Ω

when Ω is smooth, it is possible
to use the Calderón-Zygmund method to obtain the weak type 1−1 estimate in
very similar way it is used for the operator TΩ itself. This is no longer true for a
rough function Ω. Interestingly, the new take on the Calderón-Zygmund method,
used by Christ and Rubio de Francia in [7] and Seeger [25] to prove weak type
1−1 estimate for rough TΩ, does not work for the maximal version T ∗

Ω
, even if

Ω ∈ L∞. It is a famous open question if the operator is of the weak type 1− 1
under this condition. Also it is open question if the limit in the definition of TΩ

converges almost everywhere for f ∈ L1.

Let us now describe our contribution to this area. In [E], we proved the
following:

Theorem 4. Let Ω ∈ L∞(Sn−1) with mean value 0. Then the operator T ∗
Ω

is
bounded from L(log logL)2+ε(B(0,1)) to L1,∞ for any ε > 0.

This theorem replaces the space L1 in the weak type estimate by the slightly
smaller Orlicz space L(log logL)2+ε . Because of scaling considerations, such
result may only be local, and therefore we restrict the space to the unit ball.
An obvious corollary to this result is that for f ∈ L(log logL)2+ε(Rn) the limit
in (3.1) converges almost everywhere, since the maximal operator may be easily
localized.

The difference in the boundedness of TΩ and T ∗
Ω

is rather subtle. While some
examples are known for more general kernels, the only example where TΩ is
bounded on some space and T ∗

Ω
is not is due to us in [C]. We proved:



3.4. ESTIMATES FOR BILINEAR ROUGH SINGULAR INTEGRALS 15

Theorem 5. There is Ω ∈ L1(S1) with mean value 0 such that the operator T ∗
Ω

is
not bounded on L2, while the operator TΩ is bounded on L2.

3.4 Estimates for Bilinear Rough Singular
Integrals

Let us have a tempered distribution ω on R2n. We define a convolution oper-
ator Tω = ω ∗ψ for a Schwartz function ψ on R2n. Related bilinear operator
is defined for ϕ1,ϕ2 from Schwartz space on Rn as Tω(ϕ1,ϕ2)(x) = Tω(ϕ1×
ϕ2)(x,x), where ϕ1×ϕ2 is tensor product of functions and (x,x) is the member
of R2n with coordinates (x1, . . . ,xn,x1, . . . ,xn).

Since the bilinear operators of this type are not as well known as the lin-
ear convolution operators, we will make here few basic observations from the
theory. First, in linear case, the simplest convolution operator is the identity,
represented by the convolution with the Dirac measure. In the bilinear case, the
same role is played by the product operator. Thus, in linear case Tδ ( f )(x) =
( f ∗δ )(x) = f (x), in the bilinear case we have Tδ ( f ,g)(x) = f (x)g(x). In a sim-
ilar fashion, if the tempered distribution ω on R2n is a tensor product of two
tempered distributions ω1,ω2 on Rn, we see that Tω( f ,g) = Tω1( f )Tω2(g).

A convolution operator may be expressed as a Fourier multiplier. We have

Tω( f ) = F−1(ω̂ f̂ ).

The function m= ω̂ is then called the symbol of the multiplier. In similar fashion
for a bilinear operator, we have bilinear multiplier

Tω( f ,g)(x) = F−1(ω̂( f̂ × ĝ))(x,x).

We can write it in this form, since Fourier transform of a tensor product is a
tensor product of Fourier transforms.

Bilinear singular integral is then defined as the bilinear p.v. convolution with
a singular kernel K. In the included papers, we have the kernel of the rough type

K(y) =
Ω(y/|y|)
|y|2n ,

with Ω ∈ Lp(S2n−1) for suitable p > 1 and with mean value 0. We denote such
operator TΩ.
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The study of bilinear operators of this type goes back to Calderón, who in-
troduced the bilinear Hilbert transform as a tool to study certain commutator
operators in [2], [3]. Coifmann and Meyer proved the boundedness of the bilin-
ear singular integral with smooth kernel, such as TΩ, where Ω is a smooth, from
Lp1(Rn)×Lp2(Rn) to Lq(Rn), for 1 < p1, p2 < ∞, 1/q = 1/p1+1/p2 and q > 1
in [8], [9]. This result was later extended by Grafakos and Torres in [19] and
also independently by Kenig and Stein in [22] to q > 1/2.

Bilinear Hilbert transform is much more complex operator than the Hilbert
transform itself. The operator is defined for f ,g in the Schwartz space on R and
unit vector (α,β ) ∈ S1 as

Hα,β ( f ,g)(x) = lim
ε→0

1
π

∫
R\(−ε,ε)

f (x−αt)g(x−β t)
dt
t
.

This operator was shown to be bounded form Lp1×Lp2 → Lq for 1/q = 1/p2 +
1/p2 with q > 2/3 for α 6= 0 6= β and α 6= β by Lacey and Thiele in [23], [24].

The bilinear Hilbert transform is generated by the directional Hilbert trans-
form on R2 in the direction (α,β ). It is an open problem if a similar operator
generated by directional Hilbert transform on R2n is bounded for any p1, p2. We
note that even the proof in one dimension is extremely difficult.

In order to prove boundedness of the bilinear singular integral with rough
kernel, several strategies may be employed. First, just as in the linear case, it is
possible to use the method of rotations. This relies on the uniform boundedness
of the directional bilinear Hilbert transform, proved by Grafakos and Li [18]
and therefore it may be only used in dimesion one. The author and some coau-
thors summarized this approach in [11]. As this paper contains mostly simple
observations, we do not include it in this thesis.

The method of rotations fails in higher dimensions, because the estimates for
bilinear Hilbert transforms are not available. Therefore, we decided for the ap-
proach used in Duoandikoetxea and Rubio de Francia [13]. To briefly summarize
this method, the operator TΩ is written as a series of singular integral operators
Tj, where the operators Tj have increasingly rough kernels, but the L2 norm of
the operators decreases as 2−ε j. Duoandikoetxea and Rubio de Francia then use
a bootstrapping argument to extend this to all 1 < p < ∞. Alternatively, the weak
type estimate for the operators Tj increases as j and it is possible to use interpo-
lation and duality to show that Tj form convergent series for all 1 < p < ∞.

The critical point is the L2 estimate for the operator Tj. In the linear case it
is obtained simply by noting that the operator Tj may be written as a Fourier
multiplier with symbol m j and ‖m j‖∞ ≤ 2−ε j. There is no direct analog of this
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in the bilinear case. It is possible to show that there is a bounded symbol m such
that for any combination of p1, p2 the related bilinear Fourier multiplier operator
is not bounded.

Or efforts therefore concentrated on improving the understanding of the bi-
linear Fourier multipliers. We achieved a breakthrough by using a wavelet de-
composition of the multiplier symbol. This is the central idea of the papers [F]
and [G].

First, we obtained the following theorem for bilinear singular integrals with
rough kernel in [F]:

Theorem 6. For all n≥ 1, if Ω ∈ L2(S2n−1), then for TΩ, we have

‖TΩ‖L2(Rn)×L2(Rn)→Lp(Rn) < ∞.

Using the usual decompositions of the kernel and interpolating with known
results for smooth kernels, we also obtained the following:

Theorem 7. For all n≥ 1, if Ω ∈ L∞(S2n−1), then for TΩ, we have

‖TΩ‖Lp1(Rn)×Lp2(Rn)→Lp(Rn) < ∞

whenever 1 < p1, p2 < ∞ and 1/p = 1/p1 +1/p2.

A maximal version of the bilinear theorem was proved in [G]. The maximal
singular operator is defined in the same way as in the linear case, by replacing
the principal value by supremum. We again denote such operator T ∗

Ω
. The main

result of [G] is:

Theorem 8. For all n≥ 1, if Ω ∈ L2(S2n−1), then for T ∗
Ω

, we have

‖T ∗Ω‖L2(Rn)×L2(Rn)→Lp(Rn) < ∞.

These result were since improved and extended several times. For example,
Grafakos, He, and Slavı́ková extended the result for Ω with weaker integrability,
see [17]. Also, a multilinear version of the theorem is currently in preparation.
The wavelet argument was applied to other bilinear operators, such as bilinear
Hörmander multipliers, see [16] or bilinear spherical maximal function[1].
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The bilinear local L2 case Math. Z. 289 (2018), no. 3-4, 875–887.

[17] L. Grafakos, D. He, and L. Slavı́ková, L2×L2→ L1 boundedness criteria
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