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Introduction
Great advances have been made in computer graphics when it comes to realistic
image synthesis algorithms. We are now able to accurately predict the behavior
of light as it interacts with matter, by using light transport simulations built on
top of physical principles. The degree of attainable realism no longer depends on
the image formation process itself, but now critically depends on good material
models that describe the light-matter interaction, both in a principled sense, and
with respect to the concrete model’s parameters.

One approach to finding such a parameter set is the use of analysis-per-
synthesis. There, optimization techniques are used to find a solution of the
appearance-matching problem and calculate the material model’s parameters.
Depending on the parameter domain, different optimization strategies can be
used, with gradient-based optimization being used often for its simplicity and fa-
vorable convergence behavior, especially in the light of the last decades advances
in the field of gradient-based optimization algorithms. This, however, requires
the calculation of gradients for the light transport simulation algorithms and ma-
terial models involved, which is a very challenging problem.

Automatic differentiation, a technique invented in the 1960s by Robert Edwin
Wengert, allows one to calculate the derivative of an (almost) arbitrary program
with respect to its inputs. This is based on the assumption that the numerical
computation performed by every program can be deconstructed into its elemen-
tary arithmetic operations. By calculating the derivative of each of these opera-
tions and applying the chain rule, the derivative of the entire program is obtained.
One popular application of this technique is in machine learning. There, the gra-
dient of the neural network’s outputs with respect to the network’s weights is
used together with a gradient-descent optimizer find a (locally) optimal param-
eter set. This process of calculating the network’s derivatives, which is called
“back-propagation” in the machine learning field, is an instance of reverse-mode
automatic differentiation.

In contrast to “top down” tabulated material models, where the reflectance prop-
erties of an object’s surface are essentially scanned and stored, procedural material
appearance models aim to describe the surface reflectance “bottom up” using a
computational graph based on noise and hashing functions and transformations.
This offsets the extreme storage requirements of the tabulated data approaches
with an increased computational cost for the evaluation of the procedural model.

Using differentiable procedural appearance models allows to employ gradient-
based optimization to automatically home in on a suitable parameter set that is
locally optimal for approximating the intended material-light interaction. Match-
ing procedural appearance then becomes critically dependent on the expressive
power of the model, with generalized procedural models being able to cover a
significant range of materials, but not all of it. This necessitates using material-
specific models that may even provide information about the underlying object
anatomy, if the model was built from first principles.

3



Computational fabrication using PolyJet 3D printers poses a similar appearance
matching situation. In PolyJet 3D printers, scattering ink droplets are deposited
one by one using jetting technology and rapidly hardened using ultraviolet light.
The droplets form a heterogeneous participating medium. Using a differentiable
volume renderer allows one to calculate the sensitivity of the printed objects’
appearance to changes of the volume’s ink composition. Optimizing these pa-
rameters then allows for the calculation of printing instructions that result in the
best possible reproduction of the input appearance. If the input was acquired
using material scanning, this closes the loop and allows for a ”replicator” type
system that can, essentially, copy objects.

Exemplified by these two use-cases, this work discusses the challenges of ap-
pearance matching using gradient-based optimization. Specifically, the contribu-
tions include

• A inverse rendering approach to automatically matching the appearance of
an anatomically meaningful procedural wood model

• A loss function for coarse-structure matching based on signal phase in gabor
space

• A novel tree-ring detector with applications in dendrochronology

• A method to calculate derivatives of discontinuous procedural solid textures

• A end-to-end differentiable pipeline for polyjet appearance optimization

• A novel parameterization of 3D print volumes based on material mixtures

• A metric that allows controlling the volume optimization to favor specific
visual stimuli
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1. Context
1.1 Automatic Differentiation
Many problems in science and engineering not only require calculation of some
function, but also of its derivative, in code. These gradients can then be used
to drive optimization algorithms, where some of them even require higher-order
derivatives, such as Newton’s method. This is then used to solve problems like

min 𝑓(𝑥). (1.1)

A tempting solution is the use of finite differences, where the function is
evaluated at nearby points and the definition of the derivative is applied. Using
central differences with some small value 𝜀 yields

𝜕𝑓
𝜕𝑥

≈ 𝑓(𝑥 − 𝜀) + 𝑓(𝑥 + 𝜀)
2𝜀

. (1.2)

Using this approach is a bad idea for several reasons: The result is only a
biased approximation of the derivative. Evaluating it can be expensive, because
for a function of N variables, it requires at least N+1 evaluations. Further, choos-
ing a suitable value of 𝜀 can be difficult and leads to issues with numerical stability.

Computer-algebra systems provide the option to compute the derivative of a func-
tion, and some can even export source-code for the obtained expressions, giving
ready-to-run solutions. The generated code, however, is not human-readable for
all but the most simple expressions, and thus not maintainable.

In his dissertation, Wengert [1964] introduced automatic differentiation, and
proposed what is now called forward-mode automatic differentiation. The key
idea is decomposing the program into elementary calculations. By calculating
the derivative of each of these calculations and successively applying the chain
rule, the derivative of the whole program, or more precisely its Jacobian matrix,
can be obtained.

If the program is a map ℝ𝑁 → ℝ𝑀, then its derivative is the 𝑀 × 𝑁 Jacobian
matrix 𝐽 = [𝑗𝑚𝑛] with elements 𝑗𝑚𝑛 = 𝜕𝑓𝑚

𝜕𝑥𝑛
.

Let’s start with an example. Suppose we want to calculate the derivative of
a program that implements the function 𝑓(𝑥1, 𝑥2) ∶ ℝ2 → ℝ, 𝑦 = 𝑥1𝑠𝑖𝑛(𝑥2). De-
composed into elementary computations, this can be written as a computational
graph shown in Figure 1.1.

In the graph, the intermediate results (outputs of each node) are shown as the
edge labels 𝑤𝑖. Their respective derivatives are denoted 𝑤′

𝑖 = 𝜕𝑤𝑖
𝜕𝑥 . To calculate

𝜕𝑓
𝜕𝑥2

, we can do a forward-mode traversal of the graph, seeding 𝑤′
1 = 0 and 𝑤′

2 = 1.
The intermediate result 𝑤′

3, according to the chain rule, is

𝑤′
3 = cos(𝑤2)𝑤′

2 (1.3)

and further
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Figure 1.1: Example graph for forward-mode automatic differentiation

𝑤′
4 = 𝑤3𝑤′

1 + 𝑤′
3𝑤1 = cos(𝑤2)𝑤′

2𝑤1 = cos(𝑥2)𝑥1. (1.4)

What we have essentially done is constructing the derivative 𝜕𝑥2
𝑓 by succes-

sively applying the chain rule

𝜕𝑓
𝜕𝑥2

= ( 𝜕𝑓
𝜕𝑤3

(𝜕𝑤3
𝜕𝑤2

(𝜕𝑤2
𝜕𝑥

))) . (1.5)

It is important to note that in practice, these calculations are evaluated nu-
merically, not symbolically.

Calculating the Jacobian Matrix using forward-mode requires one graph traver-
sal for each of the N input parameters. This can get inefficient in cases where
𝑁 ≫ 𝑀. For these programs a reverse traversal of the graph is much better.
This is done by seeding the output, �̄�4 = 𝜕𝑤4

𝑓 in our example, with 1 and going
backwards through the graph.

Figure 1.2: Example graph for reverse-mode automatic differentiation. The values
in the adjoint graph (in blue) flow in the opposite direction of the primal values

Figure 1.2 shows the intermediate steps with the primal values 𝑤𝑖, and their
respective adjoint values �̄�𝑖. The intermediate adjoint values are obtained by
successive substitution using the chain rule, i.e.
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�̄�3 = 𝜕𝑓
𝜕𝑤3

= �̄�4 (𝜕𝑤4
𝜕𝑤3

) = 𝜕𝑓
𝜕𝑤4

𝜕𝑤4
𝜕𝑤3

, (1.6)

and so forth. The chain-rule is effectively nested from back to front, like so:

𝜕𝑓
𝜕𝑥2

= ((( 𝜕𝑓
𝜕𝑤3

) 𝜕𝑤3
𝜕𝑤2

) 𝜕𝑤2
𝜕𝑥2

) (1.7)

This is called reverse-mode automatic differentiation, Bartholomew-Biggs
et al. [2000]. It requires only one graph-traversal per output parameter, making it
much more efficient than forward mode for functions with 𝑁 ≪ 𝑀. For optimiza-
tion problems driven by some scalar loss function, this is the case (𝑁 = 1), and
a similar reason is behind its popularity in machine learning, where it is called
back-propagation. Many neural networks have way more parameters than they
have outputs.

1.2 Implementing automatic differentiation
Implementations of automatic differentiation can either rely on compile-time code
augmentation, or on maintaining a transcript of the performed computations and
intermediate results at run-time. This transcript can later be traversed in a
derivative pass. Different limitations in terms of time and memory complexity
arise, depending on the implementation strategy.

Compile-time forward-mode accumulation relies on a transformation of the primal
program, adding derivative computations, and running this derivative pass once
for every input variable the program’s derivative is to be calculated with respect
to. The result is a time-complexity of 𝑂(𝑁). Most implementations are based
on operator overloading. Using type overloading, the required multiple passes
through the derivative code can be transformed to a single pass using operations
on gradient vectors instead of scalars, with the resulting linear space complexity.
An advantage to this strategy is its ease of implementation and the possibility for
the compiler to optimize both the primal and derivative computations (Schroeder
[2022]), a disadvantage is its poor scalability.

Runtime implementations of automatic differentiation are usually based on
recording a transcript, called a “gradient tape” or Wengert tape. This actually
allows to later apply the chain rule in an arbitrary manner, with forward-mode
and reverse-mode traversals being the ends of a whole spectrum of traversal or-
ders. This leads to the interesting question of the optimal traversal strategy, a
problem known as the optimal jacobian accumulation problem (i.e. Naumann
[2008]). Compiler optimization is not available for this runtime implementation,
except when involving just in time compilation.

Numerous frameworks using this particular way of implementing automatic differ-
entiation are available. Machine learning frameworks such as TensorFlow (Abadi
et al. [2016]), Pytorch (Paszke et al. [2017]) or Jax (Bradbury et al. [2018]),
and computer graphics focussed libraries such as Dr.Jit (Jakob et al. [2022a])
and DiffTaichi (Hu et al. [2019]) are popular examples. A notable technique
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here is just-in-time compilation, that can greatly improve on the efficiency and
portability of the derivative computations, and allows targeting a broad range
of compute devices such as wide-SIMD many-core CPUs and GPUs. With the
application of automatic differentiation on inverse rendering problems, a range of
domain-specific consequences arise. These are discussed in Section 1.6.

1.3 Physics of light

1.3.1 Radiometry
Light is both an electromagnetic wave and a particle, due to the wave-particle
duality in quantum physics. In computer graphics and light transport simulation,
the particle model is commonly used, as its propagation can be easily described
using geometric ray optics. Wave optical effects like polarization and interference
are negligible in many applications, but can play a role in certain situations and
hence require either approximative or accurate treatment.

Light particles, or photons, carry a specific amount of energy 𝐸, depending on
their frequency or wavelength,

𝐸 = ℎ𝑓 (1.8)
,

with the Planck constant ℎ ≈ 6.626 ⋅ 10−34𝐽 ⋅ 𝐻𝑧−1. Light in the visible
spectrum has frequencies of approximately 790 … 400 ⋅ 1012𝐻𝑧, or wavelengths of
around 𝜆 = 380 … 750 ⋅ 10−9𝑚, respectively.

Measuring the total number of photons emitted by a hypothetical ideal point
light source, per unit time, gives radiant flux Φ[𝐽𝑠−1 = 𝑊], Figure 1.3 left.
Radiant intensity 𝐼(𝜔) [𝑊𝑠𝑟−1] then is a portion of this radiant flux emitted
in a certain direction 𝜔 on the unit sphere 𝕊, measured in steradians, Figure 1.3,
middle. Integrating radiant intensity over all directions calculates the radiant
flux, Φ = ∫

𝕊
𝐼(𝜔)𝑑𝜔.

Irradiance is the radiant flux per unit area, 𝐸(𝑥)[𝑊𝑚−2], Figure 1.3 right
image. It is important to note that to calculate radiant flux 𝐸 through an area
element 𝑑𝐴 that is not oriented orthogonally to the flux’s direction, the factor
cos 𝜃 appears. 𝜃 measures the angle between the normal of the area element and
the direction of the radiant flux, which is called the Poynting vector.

Radiance then is the radiant flux per unit area and solid angle, 𝐿(𝜔, 𝑥), its
unitis [𝑊𝑚−2𝑠𝑟−1] and its relation to the radiant intensity

𝐿(𝜔, 𝑥) = 𝜕𝐼(𝜔)
𝜕𝐴⟂

= 𝜕𝐼(𝜔)
𝜕𝐴 cos 𝜃

. (1.9)

In rendering systems, radiance is the natural unit of measurement. Radiance
does not change for light propagating in a vacuum in a straight line.

1.3.2 Describing surface reflectance
When light interacts with matter, it is scattered and absorbed to various pro-
portions. This behaviour is dependent on the incident angle 𝜔𝑖. Formally, a
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Figure 1.3: Illustration of the radiometric quantities radiant flux (left), radiant
intensity (middle) and irradiance (right)

surface interaction can be described by the bidirectional subsurface scattering
and reflection distribution function, or BSSRDF, Figure 1.4 right. It is a 6-
dimensional function of the incident direction, the outgoing direction 𝜔𝑜, the
incoming surface interaction point 𝑥𝑖 and the outgoing surface point 𝑥𝑜. When
not considering subsurface light transport, 𝑥𝑖 = 𝑥𝑜 (or more elaborate cases with
refraction, where 𝑥𝑜 is a non-stochastic function of the incident direction), the
function can be simplified to four dimensions and split into two separate lobes,
the bidirectional reflectance distribution function, BRDF, and the bidirectional
transmittance distribution function, BTDF, Figure 1.4 left.

Figure 1.4: Illustration of the surface reflectance distribution function (BRDF,
left), the transmittance distribution function (BTDF, left), and the subsurface
reflectance distribution function (BSSRDF, right)

For all incident directions 𝜔𝑖, the B*DFs need to integrate to a value smaller
than 1, ∫

ℍ
𝑓𝑟(𝜔𝑖, 𝜔𝑜)𝑑𝜔𝑜 < 1 ∀𝜔𝑖 ∈ 𝕊, to not violate conservation of energy.

1.3.3 Volumetric light transport
Light propagation in participating media can be intuitively described as a random
walk where simulated photons interact with the medium at certain points. These
collision events can either be pure scattering (the simulated particle changes di-
rection) or purely absorbing (the simulated particle vanishes). More formally,
we introduce the scattering coefficient 𝜎𝑠[𝑚−1] and the absorption coeffi-
cient 𝜎𝑎[𝑚−1]. Their sum is called the medium optical density or extinction

9



(a) (b) (c)

Figure 1.5: The Tea in image (a) is an absorbing medium (spectrally varying)
with a very low scattering coefficient and thus has a low single scattering albedo
corresponding to its dark color, and a low density. The milk in image (a), on the
other hand, is low absorbing but high scattering, giving it a high single-scattering
albedo and high scattering coefficient; clouds or steam (b) consists of small drop
of water, a scattering but almost non-absorbing medium, whereas smoke consists
of small soot particles that absorb and sometimes scatter light. Image (c) shows
a qualitative sketch of the properties in the albedo/density plane

coefficient, 𝜎𝑡 = 𝜎𝑠 + 𝜎𝑎, with the inverse 𝜎−1
𝑡 [𝑚] being the mean free path

length of the simulated particle. The fraction of scattering events compared to all
medium interactions is called the single scattering albedo, 𝛼 = 𝜎𝑠

𝜎𝑡
. Figure 1.5

illustrates how these properties map to the appearance of participating media.
Beer’s law describes the radiant intensity 𝐼 at a distance 𝑡, starting with an

initial radiant intensity 𝐿0, as

𝐼(𝑡) = 𝐼0 𝑒−𝜎𝑡𝑡 (1.10)

The change of direction in the case of a scattering event can be described by a
probability density function, called the scattering phase function, 𝑓𝑝(𝑥, 𝜔, 𝜔′),
with 𝜔 and 𝜔′ being the incoming and outgoing directions, respectively. Phase
functions need to integrate to 1 in order to adhere to the principle of energy
conservation, ∫

𝕊
𝑓𝑝(𝑥, 𝜔, 𝜔′)𝑑𝜔′) = 1.

In the simplest case, the scattering phase function is a uniform probability
density function with the value of 𝑓𝑝(𝑥, 𝜔, 𝜔′) = 1

4𝜋 . Anisotropic phase functions
are commonly approximated by the Heney-Greenstein function, an approximation
of the more accurate (but more complex) Mie scattering phase function Mie [1908]

𝑓𝑝,𝐻𝐺(𝑔, 𝜔, 𝜔′) = 1
4𝜋

1 − 𝑔2

(1 + 𝑔2 − 2𝑔 cos(𝜔, 𝜔′)3/2 . (1.11)

The asymmetric factor −1 ≤ 𝑔 ≤ 1, adjusts the probability density function
between dominantly back-scattering 𝑔 < 0 and dominantly forward scattering
𝑔 > 0.

A point in a heterogeneous medium can now be parameterized by either the
combinations of parameters (𝛼, 𝜎𝑡, 𝑓𝑝)𝑇, or the triplet (𝜎𝑠, 𝜎𝑎, 𝑓𝑝)𝑇. Only the
second parameterization using 𝜎𝑠 and 𝜎𝑎 allows to aggregate material mixtures
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into one using linear combinations, a property that we used to parameterize the
material model in our appearance fabrication contribution.

The radiative transfer equation,

(𝜔 ⋅ ∇)𝐿(𝜔) = −𝜎𝑡𝐿(𝑥, 𝜔) + 𝜎𝑠 ∫
𝕊2

𝑓𝑝(𝑥, 𝜔, 𝜔′)𝐿(𝑥, 𝜔′)𝑑𝜔′ (1.12)

written in its integral form (called the volume rendering equation),

𝐿(𝑥, 𝜔) = ∫
𝑦

𝑥
𝜏(𝑥, 𝑦)𝜎𝑠(𝑦)𝐿𝑠(𝑦, 𝜔)𝑑𝑦 (1.13)

with the in-scattered radiance

𝐿𝑠(𝑦, 𝜔) = ∫
𝕊2

𝑓𝑝(𝑦, 𝜔, 𝜔′)𝐿(𝑦, 𝜔′)𝑑𝜔′ (1.14)

and the transmittance

𝜏(𝑥, 𝑦) = 𝑒𝑥𝑝( − ∫
𝑦

𝑥
𝜎𝑡(𝑠)𝑑𝑠) (1.15)

describes the radiance field in a participating medium.

1.4 Light transport simulation
Computer graphics is currently split into two approaches to the generation of
images: Real-time online rendering, and offline rendering, Figure 1.6 has an ex-
ample of both. Both employ, at least until the time of this writing, distinctively
different techniques to the image generation, adapted to the goal of the respec-
tive approaches: Real-time rendering must obey tight timing restrictions of a few
milliseconds per frame, and is commonly building on rasterization as the fun-
damental image generation process. The available time for offline rendering is
considerably longer, in the order of several minutes to hours per image are com-
mon. This allows the use of precise, physically based light transport simulations
based on Monte Carlo integration. With recent developments in de-noising low
sample count Monte Carlo renderings, the application of MC seems to becomes
feasible also in the real time domain and could lead to a convergence of real-time
and offline rendering.

Monte Carlo rendering is capable of capturing all effects of ray-optical light
propagation such as subsurface scattering or caustics, providing for great realism,
and has been widely adopted across many industries, from movies to architectural
simulations. As an example, about half of the images on the IKEA website are
renderings, not photographs (Figure 1.7).

The basic idea behind light transport simulation is to simulate the propagation
of individual photons through the scene by sampling paths that connect a light

1Screenshot by User Asdfiel on the flightsimulator.com forums, ”Asdfiel” [2021] Image
”Porsche 911 Carrera T” by Gustavo Coutinho, via the Corona Renderer Gallery, Coutinho
[2021]
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source to the camera, via a number of scattering events at object surfaces. This
is formalized in the rendering equation, Kajiya [1986]:

𝐿(𝑥, 𝜔) = 𝐿𝑒(𝑥, 𝜔) + ∫
ℍ

𝑓𝑟(𝑥, 𝜔𝑖 → 𝜔𝑜)𝐿(𝑥, 𝜔𝑖)(𝜔𝑖 ⋅ �̂�)𝑑𝜔𝑖 (1.16)

Here, L is the incident radiance at point 𝑥 from direction 𝜔, 𝐿𝑒 is the radiance
emitted by some light source, 𝑓𝑟 describes the throughput of a surface interaction
at 𝑥 for incoming radiance from direction 𝑤𝑖 towards direction 𝑤𝑜. The surface
normal is denoted with �̂�, the vector inner product is denoted with ⋅.All of the
functions here can be wavelength-dependent, which we will omit without loss of
generality.

Path space formulation Note that this formulation requires recursively eval-
uating incident radiance at surface interaction points. Using a change of variables,
the recursive integral can be expressed as a non-recursive integral over all paths

̄𝑥 ∈ 𝜔, the so-called path space integral formulation of light transport:

𝐿(𝑥, 𝜔) = ∫
Ω

𝑓( ̄𝑥)𝑑𝜇( ̄𝑥) (1.17)

𝑓( ̄𝑥) = 𝑊𝑖(𝑥0 ← 𝑥1)𝐿𝑒(𝑥𝑙−1 ← 𝑥𝑙)
𝑙

∏
𝑘=1

𝐺(𝑥𝑘 ↔ 𝑥𝑘+1)𝑀(𝑥𝑘−1 ← 𝑥𝑘 ← 𝑥𝑘+1)

(1.18)
𝑓( ̄𝑥), the measurement contribution function, describes the radiance contribu-
tion of a path ̄𝑥, calculated from emitted radiance 𝐿𝑒 and the product of the
throughput of all scattering events 𝑀 (material term) and free flight 𝐺 (geome-
try term). 𝑀 models the camera pixel response (usually a box filter). Paths ̄𝑥
consist of 𝑘 segments 𝑥0…𝑥𝑘, the arrows in the notation denote individual path
segments, i.e. 𝑥1 → 𝑥2 is a path segment from 𝑥1 to 𝑥2, see Figure 1.8 for an
sketch.

This formulation generalizes to participating media, where 𝐺 then is a func-
tion of the path throughput according to Beer’s law for free-flight propagation
between medium scattering-events (Equation 1.20), and M (Equation 1.19) de-
scribes the scattering-event itself. Scattering events can be either at surface in-
teractions where M is the bidirectional scattering distribution function (BSDF),

(a) (b)

Figure 1.6: Screenshot from Microsoft Flight Simulator 2020, showing state of
the art realtime graphics (a), and a off-line rendering of an outdoor scene(b)1
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Figure 1.7: Rendered kitchen scene from the IKEA catalog, Image from Visual-
ization [2017]

Figure 1.8: A path of length 𝑙 = 4 with two surface interactions 𝑥1 and 𝑥2 and a
medium interaction 𝑥3

or at medium interactions. For medium interactions, 𝑀 is a product of the single
scattering albedo 𝛼, the medium density 𝜎𝑡 and the phase function 𝑓𝑝. 𝑀 and 𝐺
can be spatially varying for heterogeneous media.

𝑀(𝑥𝑘−1 ← 𝑥𝑘 ← 𝑥𝑘+1) = {
𝛼(𝑥𝑘)𝜎𝑡(𝑥𝑘)𝑓𝑝(𝑥𝑘, 𝜔(𝑥𝑘 ← 𝑥𝑘+1)) 𝑚𝑒𝑑𝑖𝑢𝑚
𝑓𝑟(𝑥𝑘, 𝜔(𝑥𝑘 ← 𝑥𝑘+1)) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(1.19)

𝐺(𝑥𝑘 ↔ 𝑥𝑘+1) = {
𝜏(𝑥𝑘, 𝑥𝑘+1) 𝑚𝑒𝑑𝑖𝑢𝑚
𝑉 (𝑥𝑘 ↔ 𝑥𝑘+1) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(1.20)

Here, 𝑉 is the binary visibility function, that is 0 when the path segment
contains an occlusion.

Since path space can have very long paths, this is especially true for dense
participating media, tracing them becomes intractable and a upper limit for the
path length is imposed. To avoid bias resulting from truncating path space to this
limit, Russian Roulette is used to terminate paths at random when they exceed
a certain number of interactions.
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To form an Monte Carlo estimator, the integral is converted into a sum over
a certain number of evaluations of the primary estimator �̂�, which is constructed
by dividing the integrand by the probability of sampling the path ̄𝑥,

∫
Ω

𝑓( ̄𝑥)𝑑𝜇( ̄𝑥) ≈
𝑀𝐶

𝑓( ̄𝑥)
𝑝( ̄𝑥)

= �̂�( ̄𝑥) (1.21)

Repeating this process 𝑁 times gives the Monte Carlo estimate of the integral,

∫
Ω

𝑓( ̄𝑥)𝑑𝜇( ̄𝑥) ≈
𝑁

∑
𝑖=1

�̂�(𝑖)( ̄𝑥) (1.22)

with the variance decreasing with increasing N. Monte Carlo is not always
necessary. For certain simple cases, analytical solutions exist (i.e. inverse adding-
doubling Prahl et al. [1993]).

1.5 Sampling path space
The Monte Carlo method requires sampling paths ̄𝑥 from path space Ω. A general
strategy is to start all paths at the observer, and on each material interaction
continue the path by sampling from the respective probability density function
for a new outgoing direction, until a light source is hit. Depending on the scene,
this sampling strategy can result in a high variance of the estimators, which is
especially visible with effects caused by changes in the index of refraction (i.e.
caustics), or when light sources are obstructed by geometry. Other path-sampling
strategies can be used Veach [1998], such as light tracing (starting at the light
source and terminating paths when they hit the camera sensor) or bidirectional
path tracing, where paths are started both at light sources and the sensor, and
get subsequently merged.

Figure 1.9: Regular tracking leads to bias

Rendering participating media adds the question of how to sample free flight
distance between interactions to the path sampling strategies. Analytical solu-
tions exist for volumes with (piece-wise) homogeneous density. In the heteroge-
neous case, a straightforward, albeit biased solution is sampling the volume in
regular intervals (“raymarching”), Figure 1.9. An unbiased estimator can be con-
structed by using null-collision algorithms such as Woodcock Tracking Woodcock
et al. [1965], a technique from the neutron transport community. A modification
of Woodcock Tracking can also be used to importance-sample free flight distances
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in heterogeneous media. Miller [1967] provided a proof, Galtier et al. [2016] found
a useful integral formulation.

1.6 Differentiable Light Transport Simulation
Within the path space integral framework, material appearance is represented by
the 𝑀-term, Equation. 1.19. To solve material appearance matching problems,
we are interested in finding an appropriate model for 𝑀, and its parameters. We
want to solve this inverse rendering problem in an analysis-by-synthesis fashion,
where from a set of observations of a scene the parameters are to be reconstructed.
To that end, we will differentiate both light transport and the material model,
and plug the obtained gradient values into a gradient descent optimizer.

Gradient descent has many favorable properties, such as a convergence guarantee
if the parameter space is convex, and is very easy to implement using automatic
differentiation. Applied on a physically based light transport simulation based on
Monte Carlo integration, this creates an estimator for the derivative of the path
space integral, Equation. 1.17 with respect to the material models’ parameters.
For the sake of simplicity, we will, without a loss of generality, only consider one
differentiable parameter in the following.

Applying automatic differentiation to a Monte Carlo path tracer leads to many
challenges, of which two are relevant for this thesis. First, the potentially very
high computational cost when computing derivatives with respect to many input
parameters, which is the case, for example, in heterogeneous volumetric appear-
ance matching. Second, in the correct handling of discontinuities in the integrand
that depend on the differential parameters. Domain-specific solutions have been
proposed to address these challenges.

1.6.1 Differentiating the rendering equation
In a simplified form, the Leibniz integral rule can be applied to calculate the the
derivative of the rendering equation by simply moving the differential operator
inside the integral,

𝜕
𝜕𝜋

∫
Ω

𝑓(𝑥, 𝜋)𝑑𝜇(𝑥) =
(1)

∫
Ω

𝜕
𝜕𝜋

𝑓(𝑥, 𝜋)𝑑𝑥 (1.23)

This simplification comes with the condition that the integrand does not con-
tain discontinuities that depend on 𝜋. Before discussing a more general form
next, note the following.

Non-Commutativity of Monte Carlo estimation and the derivative op-
erator Applying Monte Carlo and then taking the derivative

∫
Ω

𝑓( ̄𝑥)𝑑𝜇( ̄𝑥) ≈ 𝑓( ̄𝑥)
𝑝( ̄𝑥)

↦
𝜕𝜋

𝜕
𝜕𝜋

[𝑓( ̄𝑥)
𝑝( ̄𝑥)

] (1.24)

is not the same as taking the derivative and then applying Monte Carlo
estimation (non-commutative)
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∫
Ω

𝑓( ̄𝑥)𝑑𝜇( ̄𝑥) ↦
𝜕𝜋

∫
Ω

𝜕
𝜕𝜋

𝑓( ̄𝑥)𝑑𝜇( ̄𝑥) ≈
𝑀𝐶

𝜕
𝜕𝜋𝑓( ̄𝑥)
𝑝( ̄𝑥)

(1.25)

Zeltner et al. [2021] have a detailed discussion of the implications in the con-
text of differentiable rendering.

1.6.2 Differentiating the rendering equation in the pres-
ence of parametric discontinuities

If the integrand contains discontinuities that depend on 𝜋, the simplification
in Equation 1.23 would lead to an inconsistent, biased Monte Carlo estimator.
The Reynolds Transport Theorem, a generalization of the Liebniz integral rule,
Vennard [2011], adds what is called the boundary term (second summand in
Equation 1.27) in order to consider the parametric discontinuities as well. Let
𝐷(𝜋) be a parametric integration domain with a boundary 𝜕𝐷(𝜋) and

𝐷′(𝜋) = 𝐷(𝜋) − 𝜕𝐷(𝜋) (1.26)

the domain’s interior. The Reynolds transport theorem then states that

𝜕
𝜕𝜋

∫
𝐷

𝑓(𝜔, 𝜋)𝑑𝜔 = ∫
𝐷′(𝜋)

𝜕
𝜕𝜋

𝑓(𝜔, 𝜋)𝑑𝜔 + ∫
𝜕𝐷(𝜋)

(𝜕𝜔
𝜕𝜋

⋅ �̂�)𝑓(𝜔, 𝜋)𝑑𝜕𝐷′(𝜋) (1.27)

Here, �̂� is the boundary’s outward pointing normal vector with the boundary
movement velocity 𝜕𝜋𝜔. With zero boundary velocity (or a zero boundary), this
identity reduces to the simplified Leibniz integral identity of Eqn. 1.23.

Examples of parametric discontinuities include changing the shape or posi-
tion of objects that can lead to changes in visibility, or changes in discontinuous
procedural textures, like thresholded Perlin noise. Computer graphics made good
progress towards correctly calculating derivatives of light transport in these cases.

Edge sampling, introduced by Li et. al. Li et al. [2018], computes the boundary
term by explicitly sampling the silhouette edges of the scene’s geometry. While
being a straightforward solution, finding relevant silhouette edges can be quite
difficult. In the presence of millions of triangles that make up the scene, only a
small fraction of them contribute to the gradient. The search for these silhouette
edges becomes a significant performance bottleneck. A more efficient solution to
the problem was found by Loubet et al. [2019], followed by Bangaru et al. [2020],
who both apply reparameterizations to the integral, effectively removing the dis-
continuity in the integrand for the parameter 𝜋, and in the process alleviating
the necessity for explicit edge sampling.

This can be interpreted in two ways, as stated by Loubet et al. [2019] in their
paper.

”Instead of integrating a function with a discontinuity whose position
depends on [𝜋] , we integrate in a space where the discontinuity does
not move when [𝜋] changes. This is equivalent to importance sampling
the integral [...] using samples [...] that follow the discontinuity”
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Figure 1.10 has a sketch that illustrates the concept.
Applying the Divergence Theorem gives rise to an unbiased version of these

reparameterizations. The theorem relates the boundary integral to an area inte-
gral, which for the resulting Monte Carlo estimators translates to relating edge
samples to area samples.

Figure 1.10: Sketch of a discontinuity that moves with some parameter (left),
area samples (yellow) and edge samples (orange) when using edge sampling Li
et al. [2018], illustration of reparameterization, a technique that does not need to
explicitly sample the discontinuity

It’s equation

∮
𝜕𝐷

(𝑓 ⋅ �̂�)𝑑𝑥 = ∬
𝐷−𝜕𝐷

(∇𝜔 ⋅ 𝑓)𝑑𝜔 (1.28)

allows us to rewrite the boundary term from Equation 1.27 as

∮
𝜕𝐷

𝑓(𝜔, 𝜋)(𝜕𝜋𝜔 ⋅ �̂�)𝑑𝜔 = ∬
𝐷′

▽𝜔 ⋅ (𝑓(𝜔, 𝜋)𝑉𝜋(𝜔))𝑑𝜔. (1.29)

𝑉𝜋(𝜔), called a warp field, is a smooth interpolation of the boundary velocity
𝜕𝜋𝜔. For a discontinuous solid texture (i.e. thresholded Perlin noise), construct-
ing the warp field is straightforward and involves only a projection of the boundary
velocity onto the desired geometry, see Section 2.4. Using a convolution-based
approach allows for the construction of a warp field for discontinuities caused
by positional changes of silhouettes of mesh-based geometry. Vicini et al. [2022]
show how to obtain a warp field while sphere tracing a signed distance field. The
primary application for the latter two examples are in the inverse rendering of
shapes.

Not all problems with discontinuities require the accuracy of handling the deriva-
tives as shown here. By convolving the integrand with a small gaussian kernel,
parametric discontinuities vanish at the cost of a small bias of the resulting es-
timator. This is not always possible, e.g. convolving the visibility change intro-
duced by an object’s silhouette when differentiating with respect to its position
is not meaningful. In our work on inverse rendering procedural wood appearance
in Section 2, we apply a similar strategy by differentiating the signal phase of
the original periodically discontinuous solid texture in Gabor space, leading to
improved convergence of the optimization algorithm2.

2Gabor filters kernels are sinusodials multiplied by a gaussian
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Implementing reparameterization into a differentiable renderer that is based
on automatic differentiation requires overriding the default gradient calculations.
Depending on the concrete implementation of automatic differentiation, this can
require substantial changes to the renderer, including changing the core path
tracing loop.

1.7 Implementing differentiable renderers
We will now turn to the discussion of implementations of differentiable rendering
algorithms, that need to address both the challenge of correctly handling discon-
tinuities, and the challenge of gracefully scaling with the number of differentiable
parameters.

Many differentiable, physically-based light transport simulations are available.
Redner (Li et al. [2018]), which also implements the edge-sampling approach
(Section 1.6.2) to handle parametric discontinuities. Interestingly, Redner can
use either TensorFlow or PyTorch as a framework for automatic differentiation,
and also has a CUDA backend implementing the derivative computations very
efficiently. The Mitsuba3 renderer (Jakob et al. [2022b]) is a successor to the
very popular Mitsuba physically based renderer (Jakob [2010]). The system is
based on a custom library for automatic differentiation and vectorization with a
strong rendering focus, Dr.Jit, and contains an implementation of the reparame-
terization approach to handling discontinuities based on the divergence theorem.
Mitsuba3 and also contains very efficient algorithms to compute derivatives with
respect to a large number of scene parameters. TEG (Bangaru et al. [2021]) is a
differentiable programming language that contains an integral primitive, making
it possible to analytically compute derivatives of some integrals with parametric
discontinuities, based on automatic elimination of the Dirac terms that emerge
within. DiffTaichi ( Hu et al. [2019, 2020]) is a language developed to implement
differentiable physics simulations that has applications in computer graphics. Be-
yond physically-based light transport simulations, there exist differentiable ras-
terizers that are used in machine learning, such as Liu et al. [2019].

In a very basic form, a differentiable renderer can be created by applying au-
tomatic differentiation to an unidirectional path tracer (see the algorithm in Fig-
ure 1.11 for a simple example). Using an object oriented language that supports
operator overloading, this can be realized quite elegantly by implementing a few
essential differentiable data types (e.g. float, vectors, matrices and so on) and
overloading their operators such that they also compute the gradients with re-
spect to the differentiable parameter(s) 𝜋.

The gradient computation can be, for forward-mode automatic differentia-
tion, realized by storing a gradient vector with each differentiable variable, that
contains the intermediate derivative values with respect to the differentiable pa-
rameters. For large numbers of these parameters, this can quickly become very
expensive, both computationally (because we need to perform the derivative-
computation once per participating parameter), and in terms of memory use.
The latter can sometimes be improved by using a sparse representation of the
gradient vector for scenes where only a small subset of all differentiable param-
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Algorithm 1 𝜕𝛼𝑉 𝑜𝑙𝑝𝑎𝑡ℎ
1: 𝐿𝑒 ← 1.0
2: 𝑟𝑜, 𝑟𝑑 ← 𝑐𝑎𝑠𝑡𝑅𝑎𝑦𝑇 ℎ𝑟𝑜𝑢𝑔ℎ𝑃𝑖𝑥𝑒𝑙()
3: 𝑡 ← 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡(𝑟)
4: 𝑥𝑖 ← 𝑟𝑜 + 𝑡 ∗ 𝑟𝑑
5: 𝑟𝑜 ← 𝑥𝑖
6: 𝜏 ← 1.0
7: 𝜕𝜏 ← 0.0
8: 𝜕𝛼 ← 1.0 ▷ seed
9: while in medium do

10: 𝑡 ← 𝑠𝑎𝑚𝑝𝑙𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑟)
11: 𝑡𝑚𝑎𝑥 ← 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡(𝑟)
12: if 𝑡 ≥ 𝑡𝑚𝑎𝑥 then ▷ sampled distance outside medium
13: 𝑥𝑖+1 ← 𝑟𝑜 + 𝑡𝑚𝑎𝑥 ∗ 𝑟𝑑
14: 𝜏 ← 𝜏 ∗ 𝑔𝑒𝑡𝜏(𝑥𝑖, 𝑥𝑖+1)
15: break
16: else
17: 𝑥𝑖+1 ← 𝑟𝑜 + 𝑡 ∗ 𝑟𝑑
18: 𝜏 ← 𝜏 ∗ 𝛼
19: 𝜕𝜏 ← 𝜏 ∗ 𝜕𝛼 + 𝜕𝜏 ∗ 𝛼 ▷ product rule
20: 𝑟𝑜 ← 𝑥𝑖+1
21: 𝑟𝑑 ← 𝑠𝑎𝑚𝑝𝑙𝑒𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛()
22: 𝑥𝑖 ← 𝑥𝑖+1
23: end if
24: end while
25: return 𝜏 ∗ 𝐿𝑒, 𝜕𝜏

Figure 1.11: Algorithm to estimate radiance derivatives of a homogeneous volume
with single scattering albedo 𝛼 seen from some point outside. The volume density
𝜎𝑡 is hidden inside the sampleDistance and 𝑔𝑒𝑡𝜏 functions. sampleDistance is as-
sumed to perfectly importance sample Beer’s law, Equation 1.10. sampleDirection
samples the phase function 𝑓𝑝 for a scattered direction, and is again assumed to
perfectly importance sample. These simplifications allow to write the algorithm
without explicitly considering the probability density function, because all of the
factors in the denominator of the primary estimator cancel out while inside the
medium, and only the last path segment requires spectial treatment. 𝑔𝑒𝑡𝜏 cal-
culates the transmittance between two points using Beer’s law. The volume is
further assumed to have a null-interaction at its boundary (so no change of di-
rection due to a change in the index of refraction, for example), the only light
source is an environment map that emits radiance 𝐿𝑒 = 1.0.
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eters are actually involved during rendering, depending on what subset of Path
Space is being sampled. This allows to exploit the sparsity when involving par-
tially visible or highly undersampled textures, or in grid-based heterogeneous
volumes. Our initial work on optimizing PolyJet printouts using differentiable
rendering, Sec. 3, was based on this technique.

Reverse-mode automatic differentiation is commonly implemented by record-
ing a computational graph while performing the primal pass through the path
tracer. A traversal of the graph in reverse (or any other order) to accumulate
derivatives, as discussed in Sec. 1.2, then calculates the gradient. A compile-time
implementation of reverse-mode is also possible, Schroeder [2022]. In a physically-
based renderer, this graph can become very large, especially in the presence of
participating media, which requires simulating hundreds of medium interactions
per path sampled. Every interaction requires the evaluation of the phase func-
tion, recursively estimating in-scattered radiance and estimating transmittance
between interactions. Hundreds of these paths need to be traced for an image
per pixel to converge to a sufficiently small level of variance. In-memory storage
of the Wengert tape then is no longer feasible.

1.7.1 Efficient handling of large gradient vectors
To meet the demand for high-performance differentiable physically-based ren-
dering, domain-specific methods have been developed to address the memory-
hardness of storing the Wengert tape in large-scale automatic differentiation.
Jakob et al. [2022a] write:

“Efficient methods in this area turn the derivative of a simulation into a sim-
ulation of the derivative.”

Instead of recording and traversing the tape, the approach of Nimier-David et al.
[2020] propagates ”derivative radiation” through a scene, that is emitted by the
sensor and eventually absorbed by differentiable scene parameters. The rendering
is split into two passes, a primal and an adjoint one, that share the same basic
propagation algorithms, and both passes being linear in space complexity. This
adjoint technique makes calculating derivatives with respect to millions of scene
parameters possible, as is required for the optimization of grid-based textures.
Evaluating the adjoint pass requires, however, recursive queries for in-scattered
radiance at each scattering event, leading to quadratic time complexity. Remark-
ably Path replay backpropagation, proposed by Vicini et al. [2021], reduces this
to a linear.

A note on the interpolation of textures Some material models in computer
graphics are based on storing some tabulated data as a bitmap texture, such as a
displacement map that models small surface height variations. Rendering these
requires evaluating the spatial derivative of these displacement to calculate a local
normal vector used for lighting. Using linear interpolation to lookup texture
values then results in piece-wise constant derivatives (and as such, piece-wise
constant normal vectors), and the delivery in unsatisfactory rendered results as
a consequence. Higher-order texture interpolation needs to be used in that case.
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1.7.2 Testing derivatives calculated using Monte Carlo es-
timation

In the process of implementing a differentiable rendering algorithm, the validation
of the calculated derivative values is sometimes necessary. Comparing derivative
estimates to their finite-differences approximations is a natural choice, but these
also come with their own variance. This translates to the question of what value
for 𝜀 to use, Equation 1.2.

Too large values for 𝜀 lead to significant bias error. Too small values result
in machine round-off errors and lose any meaning if they get too small compared
to the variance of the primal estimator. Using a large number of samples to
compute estimates is essential to increase the coverage level of the confidence
intervals, which in turn allows for the use of smaller values of 𝜀. Formally, the
variance 𝕍 of an derivative estimator ̂𝑌 that uses the primary estimator 𝑓 ≈ �̂�(𝑖)

and uses finite differences,

̂𝑌 = 𝑓(𝑥 − 𝜀) + 𝑓(𝑥 + 𝜀)
2𝜀

≈ 𝜕𝑓
𝜕𝑥

= 1
2𝑁𝜀

(
𝑁

∑
𝑖=1

(�̂�(𝑖)(𝑥 + 𝜀) − �̂�(𝑖)(𝑥 − 𝜀)))
(1.30)

is

𝕍[ ̂𝑌 ] =( 1
2𝑁𝜀

)
2 𝑁

∑
𝑖=1

(𝕍[�̂�(𝑥 + 𝜀] + 𝕍[�̂�(𝑥 − 𝜀])

= 1
2𝑁𝜀2 𝕍[𝑓],

(1.31)

if �̂�(𝑖)(𝑥−𝜀) and �̂�(𝑖)(𝑥+𝜀) are independent random variables (different random
seeds used for the sampler for each of the primal renderings 𝑓). The variance thus
gets very large for 𝜀 ≪ 1. It is much better to use the same set of random inputs
for the sampling process (same seed). If �̂�(𝑖)(𝑥) is differentiable with respect to
𝑥, we can use the relation

�̂�(𝑖)(𝑥 + 𝜀) − �̂�(𝑖)(𝑥 − 𝜀) ≈ 2𝜀𝜕�̂�(𝑖)

𝜕𝑥
(1.32)

and thus

𝕍[ ̂𝑉 ] ≈ 1
𝑁

𝕍[𝜕�̂�
𝜕𝑥

]. (1.33)

For some functions, an interesting technique is fitting a suitable model (i.e.
using polynomial regression) to a sampling of the parameter domain of 𝑥. This
gives access to an approximate analytical proxy function that can be differentiated
symbolically and used for derivative validation.
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1.8 Inverse rendering as an optimization prob-
lem

Inverse rendering aims at recovering scene parameters from one or multiple views
of the target scene appearance. We frame inverse rendering as an optimization
problem, where differentiable rendering and a differentiable material model will
supply the gradients needed for the optimization to work on. Because the differ-
entiable renderer is predictive in the sense that its outputs closely match physical
reality, we can use actual photos as an input to the inverse rendering problem,
bridging the gap from physical reality to a digital twin. The process also works in
the opposite direction, by using the recovered material parameters as instructions
for a fabrication device to create physical objects.

Formally, the optimization problem is given by the minimization of some loss
function 𝐸 between one (or several) reference images 𝐼𝑟𝑒𝑓 and renderings that are
obtained by the (predictive) rendering function 𝑅.

argmin
𝜋

𝐸(𝑅(𝜁(𝜋)), 𝐼𝑟𝑒𝑓) (1.34)

The rendering operator 𝑅 takes the scene 𝜁 and its (differentiable) parame-
ters 𝜋 to an image 𝐼 ∈ ℝ𝑊×𝐻 with a resolution of 𝑊 × 𝐻 pixels. Using some
initialization 𝜋0 and given the differentiability of all functions involved, the min-
imization problem can be solved using the gradient descent algorithm with the
learning rate 𝛽:

𝜋𝑛+1 = 𝜋𝑛 − 𝛽𝜕𝐸
𝜕𝜋

(1.35)

Using the chain rule, we can string together the required derivative 𝜕𝜋𝐸 from
the derivative of the rendering operator and the derivative of the scene, which in
turn contains the material model we are interested in,

𝜕𝐸
𝜕𝜋

= 𝜕𝐸
𝜕𝑅

𝜕 𝑅
𝜕𝜁

𝜕𝜁
𝜕𝜋

, (1.36)

with the second and third factor, 𝜕𝜋𝑅, being supplied by the differentiable
rendering system that implements the differentiable material model.

1.8.1 Importance of initialization
Finding a good initialization 𝜋0 can be (but does not always have to be) very
important. The solution surface the optimization is being performed on is often
non-convex, containing many local minima that can have hugely different loss
values. Depending on the initialization, the algorithm might converge to different
solutions. Finding the global minimum thus can be very difficult, especially in
the presence of many parameters, but this is not always necessary.

As a simple example, consider a scene as shown in Figure 1.12, where a light
source is observed through two translucent slabs that have different absorption
coefficients that we are interested in, and identical (and small) scattering coef-
ficients that are fixed. The observed color is invariant of the stacking order of
the slabs, so there are at least two different solutions for the free parameters that
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result in an identical appearance. This is called a non-local ambiguity in volu-
metric light transport, that plays an important role in the context of full-color
3D printing (See Part II, Sec. 3, also Babaei et al. [2017]).

Figure 1.12: Sketch of a light source observed through two translucent slabs,
illustrating a non-local ambiguity in volumetric light transport

It can be helpful for the convergence of the optimization to transform the
problem into a space that has more favorable properties. We show examples
of such a transformation in the contributions sections of this thesis: For the
optimization of polyjet printouts, we optimize in material mixture space, instead
of the space of physical parameters of heterogeneous volumetric light transport.
For appearance-matching a procedural solid wood texture, we fit coarse structure
by optimizing in Gabor space for it gives better convergence due to the separation
of the ring structure from the rings color variations.

1.8.2 Optimization algorithms
Choosing a suitable optimization algorithm and its hyper-parameters can also
have a big impact on the convergence. Some parameters can require different
learning rates than others, due to having different loss gradient magnitudes. Fur-
ther, some of the parameters can be (non-)linearly dependent, creating ambiguity
that can negatively affect convergence behavior. In order to effectively navigate
such spaces, the machine-learning community has spawned many optimization
algorithms with favorable properties in such cases, with Adam (Kingma and Ba
[2014]) being the most prominent example.

Due to the variance of gradients obtained from a Monte Carlo estimator, gradient-
descent optimization is effectively turned into stochastic gradient descent, Rob-
bins and Monro [1951]. In inverse heterogeneous scattering, the inverse rendering
algorithm literally stochastically considers a subset of the differentiable param-
eters during each iteration due to sparse sampling of the participating medium.
As long as the gradient estimates are unbiased, the convergence guarantees that
exist for gradient descent still apply analogously. This creates a tradeoff between
iteration time and the number of iterations required for convergance, adjustable
by the sample count of the estimator. Eventually, the variance of the estimator
will prohibit the optimization to progress further and instead will show a trajec-
tory that jumps around the actual local minimum. Increasing the sample count
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allows the optimizer to get closer. Adjusting along this tradeoff on the fly during
an optimization run can lead to improvements of the overall optimization time,
e.g. starting with coarse, low-spp estimates in early iterations, and subsequently
switching to higher sample counts. Denoising the primal rendering can used re-
move some of the variance of the calculated loss values at the cost of some bias.
Denoising gradient estimates themselves seems to be an interesting direction for
further work.

Parameter ranges need to be constrained to meaningful values so the optimiza-
tion trajectory does not drift beyond the feasible set. Methods such as the use of
Lagrangian multipliers (Bertsekas [2014]) are well known. Other approaches use
sigmoids to discourage certain parameter trajectories. Projected gradient descent
(Gafni and Bertsekas [1984]) is another standard optimization algorithm devel-
oped to improve convergence under some constraints. There, after each gradient
descent step, the resulting parameters are projected back onto the feasible set.

1.8.3 Solving inverse volumetric light transport
For simple cases, analytical solutions to inverse volumetric light transport are
available, using one of several approaches. The application of Beer’s law (Equa-
tion 1.10), which is critically limited to non-scattering media; Kubelka-Munk the-
ory, Kubelka [1948], which is still widely used for modeling textiles and paints.
There are also methods that replace the radiative transfer equation with the dif-
fusion equation and solve it instead, e.g. d’Eon and Irving [2011], Haskell et al.
[1994], Lastly, the adding-doubling method by Prahl et al. [1993] can be used in
simplified cases with planar geometry to completely describe radiative transfer.

Even for an homogenous medium of arbitrary geometry, the error surface of an
gradient-based approach to the inverse rendering problem aiming at recovering
the parameters (𝜎𝑠, 𝜎𝑡) is smooth Gkioulekas et al. [2013]. However, it contains
ambiguities for media with non-isotropic phase functions 𝑓𝑝. Similarity theory
Wyman et al. [1989] studies these equivalence classes of the parameters of the
radiative transfer. While this can be exploited to improve rendering times, Zhao
et al. [2014], it can lead to convergence difficulties in the inverse rendering case.

Under the assumption of a band-limited solution radiance 𝐿, similarity theory
states that there exists alternate medium parameters (𝜎∗

𝑡 , 𝜎∗
𝑠, 𝑓∗

𝑝), such that the
corresponding radiative transfer equation

(𝜔 ⋅ ∇)𝐿(𝜔) = −𝜎∗
𝑡 𝐿(𝑥, 𝜔) + 𝜎∗

𝑠 ∫
𝕊2

𝑓∗
𝑝(𝑥, 𝜔, 𝜔′)𝐿(𝑥, 𝜔′)𝑑𝜔′ (1.37)

has a solution equal to the original one in Equation 1.12. Finding such equiv-
alent parameters is not trivial. Some approaches are based on a substitution of
radiance 𝐿 and phase function 𝑓𝑝 using spherical harmonics, using either first
order approximations or approximations of higher order, as shown by Zhao et al.
[2014].

In the heterogeneous case, non-local ambiguities, like the translucent slabs exam-
ple described above, add to the non-convexity of the solution space (Gkioulekas
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et al. [2016]). To disambiguation of the parameters, additional views under differ-
ent lighting conditions can be used as an input to the inverse rendering algorithm.
In some cases, however, this disambiguation it is not necessary: In appearance
fabrication, finding some material parameter instance that satisfies the require-
ments to the output quality is sufficient. This is discussed in more detail in
Section 3.

1.9 Appearance models
Within the framework of the rendering equation, material appearance is described
using either the BSDF (see Section 1.3.2), or in the presence of a participating
medium, in its respective volumetric properties. The most obvious property, the
surface color, is essentially created by varying the BSDF throughput with wave-
length, to simulate the absorption that is at the root of subtractive color mixing.
Other visual aspects such as gloss or surface roughness are the result of varying
the reflectance distribution with the incident angle.

Besides straight-up measuring reflectance distributions using e.g. a photo go-
niometer and using this tabulated data for image formation in the renderer, ap-
proximative models are available. Simple empirical models are usually based on
a diffuse component and a specular lobe, the latter of varying width to mimic
changing levels of gloss. The more advanced, physically based microfacet BSDFs,
Cook and Torrance [1982], models the material surface as a set of very small
ideal mirrors (“facets”) and calculate aggregate properties from their orientation
statistics. For layered surfaces, approximative BSDFs models can describe i.e.
the effect of clear coat, see for example Hanrahan and Krueger [1993]. Produc-
tion BSDF models (i.e. Disney Principled BRDF by Burley and Studios [2012])
then composite several distinct distributions capturing different appearance as-
pects (diffuse and specular reflectance, roughness, metallicity, clear coat, sheen)
into an aggregate function.

Representations of the underlying data of these functions, we call them appear-
ance models here, can roughly be categorized into four families:

• texture-based appearance stores spatially varying material parameters in
memory as textures

• exemplar-based approaches can synthesize these textures from one or several
small examples

• procedural appearance models generate this data on the fly while rendering,
often by the means of a material graph

• data-driven appearance models use neural networks for representation.

Ways of modeling volumetric appearance follow along similar lines. The vol-
ume properties are either stored in 3D-textures (grids), procedurally computed
on the fly on the basis of some noise function, or encoded in some neural repre-
sentation.
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Figure 1.13: Wood rendered using a procedural appearance model, showing vary-
ing levels of surface roughness and gloss, that are a result of the underlying
volumetric geometry

Texture-based surface appearance can capture most materials and reach very high
fidelity if the texture’s resolutions are large enough. The textures are created
by measurements, such as photography for the case of the diffuse albedo. Other
BSDF components can be acquired using commercial-grade scanning hardware
that is available to perform these at great detail, and often at great cost. Different
implementations of the acquisition process have been proposed (Guarnera et al.
[2016]), such as single-image SVBRDF capturing (Deschaintre et al. [2018]).

A major disadvantage of these methods is the memory requirement for storing
the textures involved - depending on viewing distance and object size, they can
require gigabytes of data to capture the appearance of a single object. In produc-
tion work, measurements of all BSDF components are sometimes not available,
and modeling starts from only a diffuse albedo texture. This leaves the creation
of other BSDF parameters to the hands of an artist. A step towards automating
this process is the fitting of a procedural appearance proxy, see Section 2 for our
contribution in this respect.

Data-driven approaches imply an appearance matching process due to their fun-
damental approach: The neural networks weights are trained on examples of the
desired appearance, such as a face, until some convergence criterion is reached.
Gradient-based optimization is used to train the network, driven by some loss
function. Neural volumes have been a very successful approach here, see Milden-
hall et al. [2021], Dellaert and Yen-Chen [2021]. Procedural appearance models
have seen increasing adaptation in production use. They are usually not limited
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Figure 1.14: The tiled floor material on the left is dominated by the regular
grid-like structure, requiring a custom material graph. Stone on the right shows
dominantly stochastic appearance, making it a good candidate to model using
procedural noise. Images from Shi et al. [2020]

in image resolution, and can, depending on the material graph, express a substan-
tial range of material appearances (Figures 1.13, 1.14). Another clear advantage
is the usually negligible storage requirement, which is offset by an increased per-
pixel computational cost to evaluate the procedural model. Their bottom-up
synthesis approach is based on performing transformations and filtering, often on
the basis of elementary noise functions, in a computational graph. This is used
for both highly-structured surfaces such as a tiled floor, and unstructured ones
that can best be described by its statistical properties.

1.10 Matching procedural models
Procedural appearance models are usually created by a skilled artist. The manual
process is quite time-consuming process, requiring many hours of work – both
for the creation of the basic material graph, and its adaptation to a specific
target appearance. Automating the entire process of finding a good procedural
representation of a target appearance is extremely challenging, because it includes
the design of a suitable material graph.

This can be tackled in different ways. One way is using the same, general
model to render all objects with, and finding appropriate parameters to match
the desired appearance. Such a model needs to have a large appearance gamut
in order to be universally applicable. Recent work in Neural Radiance Fields
Mildenhall et al. [2021], and in solid noise functions (e.g. Galerne et al. [2012])
are two examples of that. Appearance-matching of strictly noise-based procedural
appearance boils down to matching its statistical properties, that can be obtained
by spectral analysis in their respective bases. Lagae et al. [2010], for example,
use a multi-octave wavelet noise and match using principal component analysis
and histogram analysis. For Gabor noise, Galerne et al. [2012] show a method
for approximating a Gabor noise power spectrum into a sparse sum of Gaussians.

Highly structured materials, (Figure 1.14, left) cannot be approximated well
using noise functions. Instead, they require a specific procedural model that is
then tied to a certain material class – a function to model a tiled floor would
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hardly be convincing if being applied to a wooden object. Since the automation
of the design of a material graph from scratch is not yet possible, existing ap-
proaches instead build on top of a library of material graphs and reduce the design
problem to a selection problem. This has been explored by Shi et al. [2020]. If
the object’s material class is known as a prior, the model can be selected manually.

Given an appropriate material model, an instance of its parameters has to be
found such that its rendering closely matches the desired appearance. This begs
the question of how to quantitatively measure an appearance difference, a sub-
problem that we explore further in Sections 3 and 2. With a suitable difference
metric available, numerical optimization can be used to find the parameter set in
question.

Guo et al. [2020] optimize model parameters under a Bayesian framework.
They obtain differentiable models by implementing them using a automatic dif-
ferentiation framework (PyTorch), and use a loss function based on VGG feature
maps (Style loss, Gatys et al. [2015, 2016]). Shi et al. [2020] show a similar ap-
proach.

The use of a loss function that considers non-local features for polishing the model
parameters is very important here. This is because the selected procedural model
may not be able to create a pixel-perfect replica of the target appearance, so us-
ing a per-pixel loss function may lead to unsatisfactory solutions. Metrics that
consider structural similarity, like the one proposed by Wang et al. [2004], can
improve on that, by also considering a small neighborhood around each pixel.
Style loss (e.g. Jing et al. [2019]) can connect features that are spatially even
more seperated, due to the multiple levels of convolution of a VGG network that
are used to calculate these perceptual loss values.

For discrete problems (integer constraints), using gradient descent is not fea-
sible. Solving these combinational inverse design problems is still tractable in
some cases, e.g. Ansari et al. [2020, 2022].

1.11 Wood anatomy and optical properties
Wood, as a product of nature, was one of the first building materials known
to man. It is highly sought after for its decorative properties that show great
variation through the different wood species and even across members of the
same species. Processes such as physical surface abrasion through sanding or
planing, treatment with compounds such as oil, wax, resins and paint, and more
recently chemical alterations of the different compounds wood is made from add
to the appearance gamut the material can exhibit.

In computer-graphics, wood surfaces are often created by mapping a texture
onto a shape that consists of the diffuse reflectance, and can supply other param-
eters to complete an approximate description of its reflectance properties. These
are commonly derived from the diffuse reflectance by a manual process that is
performed by a texture artist. Sometimes, BSDF inputs are acquired by mate-
rial scanning, which gives accurate information but comes with high demands
for storing it. Some procedural, ground-up appearance models are also available
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that are inspired by the underlying wood anatomy, Liu et al. [2016], Larsson et al.
[2022]. The fully automatic matching of a procedural wood appearance model is
still an unsolved problem.

If wood grows in an area with pronounced yearly seasons, it shows charac-

Figure 1.15: Transverse surface of a willow stem. Note the characteristic yearly
growth rings, and the double core due to a side-branch starting nearby

teristic, quasi-cylindrical growth zones called growth rings. This is in contrast
to trees from geographic regions where the yearly weather variations are small
(i.e. the tropics). Their wood can still show phases of faster and slower growth,
but they do not correlate with the age of the tree. In temperate climate zones,
growth in spring is characterized by large cell lumina 3 and thin cell walls of the
tracheids. Later in the year, usually after the summer solstice, growth changes
to thicker walls, smaller lumina that is darker and contains more lignin. Wood
formed in this second phase is called latewood, see Figure 1.16 for a qualitative
overview.

Variations of these growth patterns can be caused by a multitude of environ-
mental factors, including the availability of water and sunlight due to the weather
or other locally changing conditions (such as another tree shadowing the specimen
due to its faster growth). Dendrochronology is the science of dating the growth
rings based on these variations, and vice versa. It allows to assign exact calendar
years even in some wood exemplars that have been found in archeological sites,
and can also be used to derive climate conditions from the growth variations.
The latter is used as primary data in climate research.

From a functional perspective, early growth secures optimal transport of wa-
ter and nutrients from the root to the treetop; late growth contributes more to

3Lumen is the biological name for the inside of a cell
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Figure 1.16: Coniferous species’ ring patterns are created by environmentally
caused variations in cell diameter and wall thickness; Redrawn after Figure 1 in
Cuny et al. [2014]

the static strength of the plant. The material between two cells, called the mid-
dle lamella, can be characterized as a homogeneous, isotropic gel, consisting of
hemicelluloses, pectine and later lignin, Hänsel [2014]. The cell walls themselves
consist of so called fibrils that are arranged in a helical fashion around the vertical
axis of the tracheid’s cell volume. Fibrils are some ten nanometers in diameter,
and made of bundles of cellulose molecules. In essence, wood could be described
as a naturally occurring, fiber reinforced polymer.

Optical properties Wood displays a wide range of optical features, and we
already mentioned the characteristic patterns formed from the growth variations.
The surface of wood has spatially varying reflectance, latewood usually being
more glossy than earlywood. The surface reflectance is anisotropic, depending
mostly on the local fiber orientation. Some species of wood show fluorescence.

Wave-optical effects can be observed when considering transparent wood.
Transparent wood is created by a chemical process called de-lignification, where
lignin is removed from between the cell walls, and replaced with an artificial,
transparent polymer. This leaves the cell walls and the fibrils they consist of
mostly intact, creating a highly anisotropic scattering medium with structure-
sizes in the order of magnitude of the wavelength of light.

Kienle et al. [2008] performed both spatially- and time-resolved measurements
in the near-infrared frequency range, and verified their results using Monte Carlo
simulations. For the simulation, they model wood as a grid of infinitely long,
hollow, parallel cylinders with a homogeneous scattering medium in between.
They established the anisotropic nature of wood reflectance and its dependence
on moisture content, and most importantly by their simulations that wood’s in-
teraction with light can mostly be explained by the cylinder grid structure the
tracheids form. It seems reasonable to assume that at least qualitatively, their
results can be transferred to the visible range.

These results were later confirmed by Kitamura et al. [2016], who also per-
formed time-of-flight near infrared spectroscopy measurements in order to deter-
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mine the optical absorption- and scattering coefficient of wood cell wall substance.
They modeled the medium as a regular grid of tubes with a square cross-section,
with dimensions based on microscopic measurements of the specimen they were
recreating.

Figure 1.17: ”Diagrammatic log section that illustrates the relationship of tan-
gential (t), radial (r), and transverse or cross (x) surfaces. Note patterns and
growth- ring orientation on different surfaces.”, Beals and Davis [1977], Figure 2.
Radial cuts go through the center of the stem, tangential cuts are offset

Sugimoto et al. [2018] performed spatially and spectrally resolved measure-
ments in the optical frequency range. They measured transmittance and re-
flectance with different fiber orientations. This data is sufficient to plug in to one
of the analytical approximations of the radiative transfer equation. We used the
inverse adding doubling method with the values shown in Table 1.1.

radiant intensity
reflected transmitted 𝜎𝑎 [𝑚𝑚−1] 𝜎𝑠 [𝑚𝑚−1]

tangential
direction 0.62 0.2 0.0842 16.2

transverse
direction 0.38 0.5 0.0573 3.23

Table 1.1: Estimate for the volumetric properties of coniferous wood from data
reported by Sugimoto et al. [2018]. The index of refraction was assumed to
be 𝐼𝑂𝑅 = 1.55, the sample thickness 𝑑 = 0.50𝑚𝑚, the light beam diameter
𝑑 = 1.0𝑚𝑚. Figure 1.17 for an additional overview

To render wood volumetrically, we assume the optical density 𝜎𝑡 = 𝜎𝑎 +𝜎𝑠 to
be constant with varying wavelength and instead calculate a spectrally varying
single-scattering albedo. To reflect density variations due to different cell wall
thicknesses, we vary the density in the range of 𝜎𝑡 ∈ [3.3, 16.21]𝑚𝑚−1. This
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rough estimate completely ignores wood’s anisotropy and can only serve as a first
step towards physically-based volumetric rendering of wood.

The apparent surface albedo of a participating medium does not map trivially
to the single-scattering albedo 𝛼. This was studied extensively by Elek et al.
[2017], who analyzed both the forward and inverse mapping using a sampling of
the parameter space and successively regressing a polynomial to find an analytic
approximation. They map the single-scattering albedo 𝛼 to a apparent surface
color 𝐶 using the following polynomial:

𝛼(𝐶) =
𝐾

∑
𝑘=1

𝑐𝑘(1 − (1 − 𝐶 − 𝐶𝑠
1 − 𝐶𝑠

)𝑑𝑘)

𝑐𝑘 ={0.163581, 0.391943, 0.029277, 0.316847, 0.098352}
𝑑𝑘 ={3.969542, 15.94272, 46.26871, 59.95706, 206.5716}
𝐶𝑠 =0.04526

(1.38)

We use this mapping to find approximate values for the single-scattering
albedo of our wood volumes from their median surface reflectance, resolved in
RGB space.

1.12 Color 3D Printing
Much like computer numerically controlled machining revolutionized manufac-
turing, 3D printing is making its way towards transforming how we manufacture
physical objects. While dimensional accuracy, and more recently also other me-
chanical properties, were the main goal of creating and improving the available
3D printing technologies, additive appearance is slowly emerging as a new tech-
nique to creating objects with the desired optical properties. The most promising
printing technology to control objects’ visual properties is PolyJet 3D printing,
or simply “UV Printing”).

The Polyjet technology works by depositing drops of liquid, colored photopoly-
mers that can be rapidly hardened by applying UV light. This allows for the
building of solid, three dimensional structures. Figure 1.18 shows some example
objects. Due to the printer’s ability to switch between several different materials,
on a per-droplet basis, it is possible to control the printout in very fine detail.
This essentially allows for the printing of heterogeneous scattering volumes, with
a typical voxel-size of about 15 µm, see Figure 1.19 for a sketch of the operating
principle.

Controlling the surface appearance of such a printout is difficult, due to the
non-trivial light transport happening inside the volume that can lead to washed-
out colors, blurring of sharp edges. Being aware of the problem, printer manu-
facturers made a big range of materials available to improve on the appearance
accuracy – primary (CMYWK) colored materials are available with different op-
tical densities. Low-scattering inks can be used to expand on the color-gamut of
the printout, while sacrificing texture sharpness. Highly dense/opaque materials
do the opposite, reducing color-bleed while limiting the color gamut.

The gamut of printable appearances also depends on the geometry of the
printed items. Thin features reduce the attainable opaqueness, and can intro-
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Figure 1.18: Photograph of some Polyjet printouts. The diameter of the globe is
6cm. Image by Sumin et al. [2019]

duce geometric cross-talk. This is highly dependent on the appearance target –
a thin slab with similar colors on the opposing sides is less problematic than the
same geometry with one white and one black side. On arbitrary geometry, the
achievable appearance gamut is a function of local curvature and material thick-
ness. Several publications have been addressing these issues (Elek et al. [2017],
Sumin et al. [2019]). In Part II, Section 3 we contribute a novel, general approach
to 3D print appearance optimization based on a differentiable material model for
the printed volumes.
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Figure 1.19: Sketch of the principle of a Polyjet UV printer
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2. Contribution I: Appearance
matching
2.1 Summary
Procedural wood appearance allows for beautiful renderings of a material we all
are very familiar with. Liu et al. [2016] proposed the go-to model here, which has
a large expressive range that covers many wood species. In their closing remarks,
they propose to solve the hard problem of automatically matching their models
parameters to a concrete wood specimen automatically. This was the motivation
to develop the solution herein.

In production, wood is still mostly modeled using textures acquired by mate-
rial scanning, with the availability of textures for spatially varying roughness and
normal maps being the exception rather than the rule. Using a procedural proxy
for the diffuse surface albedo that is anatomically meaningful allows for the auto-
matic generation of normal- and roughness-information from a plain photo, and
also gives a considerable amount of meaningful artistic control.

The main challenge for us was recovering a plausible map of the wood fibre
orientation and the classification of pixels into the earlywood-latewood gamut, to
also enable the use of anisotrophic material models. This requires to orient the
specimen within the tree stem to get an idea of the sub surface ring structure. We
solve this by identifying growth rings on the specimen’s surface, and reasoning
about the parameters of the cylindrical coarse structure that could have created
them. Our method is based on Gabor space, both for ring detection and for re-
covering a smooth deformation field that allows to accurately match the observed
pattern.

Our approach not only gives rise to automatically generating BSDF param-
eters, but also enables volumetric renderings of thin wood veneer, where the
coarse-structures and fibre orientations hafe a significant impact on the rendered
appearance. We also found interesting connections to the field of dendrochronol-
ogy, where the accurate automatic identification of growth ring boundaries is an
active research topic.
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Figure 1: Our method is capable of taking a 2D scan of a real wood specimen (left, photograph) and then automatically matching cor-
responding parameters for a procedural solid wood appearance model based on [LDHM16]. Such a model is fully three-dimensional and
allows realistic rendering of carved wooden solids (right, Monte Carlo simulated render) based on the input photographs.

Abstract
Wood is a volumetric material with a very large appearance gamut that is further enlarged by numerous finishing techniques.
Computer graphics has made considerable progress in creating sophisticated and flexible appearance models that allow con-
vincing renderings of wooden materials. However, these do not yet allow fully automatic appearance matching to a concrete
exemplar piece of wood, and have to be fine-tuned by hand. More general appearance matching strategies are incapable of
reconstructing anatomically meaningful volumetric information. This is essential for applications where the internal structure
of wood is significant, such as non-planar furniture parts machined from a solid block of wood, translucent appearance of thin
wooden layers, or in the field of dendrochronology.
In this paper, we provide the two key ingredients for automatic matching of a procedural wood appearance model to exemplar
photographs: a good initialization, built on detecting and modelling the ring structure, and a phase-based loss function that
allows to accurately recover growth ring deformations and gives anatomically meaningful results. Our ring-detection technique
is based on curved Gabor filters, and robustly works for a considerable range of wood types.

CCS Concepts
• Computing methodologies → Reflectance modeling; Image processing; • Applied computing → Environmental sciences;

† Corresponding author

1. Introduction

In wood rendering and wood appearance modeling, the cur-
rent state of the art is based either on highly precise BSSRDF
measurements (BTFs, appearance scans), or procedural models.
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Measurement-based approaches yield pixel-perfect matches at the
cost of high storage and memory-bandwidth requirements, acquisi-
tion complexity, and inability to edit the data after acquisition. On
the other hand, procedural wood models allow artistic control and
editing, but they are difficult to match to given wood samples, both
if an exact match to a given piece of wood is needed, or only with
regard to a general wood type. Recent work on using optimisation
to match procedural material models to observations [SLH∗20] has
been quite successful in a broad range of settings, including wood.
However, as figure 2 shows, current approaches still fail to properly
match a given wood sample down to its internal 3D structure – a
feature that is needed to make wood grain wrap correctly around a
solid 3D object. Specifically, as figure 2 shows, extant techniques
are capable of generating an internal ring structure - but not one that
really convincingly matches the wood grain pattern seen on the top
surface, like in the results we show for our technique in figure 8.

Our main contribution, described in section 3, is that we pro-
pose a robust, deterministic method for the automatic inference of
a locally fit, procedural 3D material model for wood. Our approach
allows one to obtain realistic solid wood textures that can be carved
to any geometry (such as the elephants in Fig. 1). Our approach is
not based on machine learning and does not rely on any training
datasets.

Our work builds on the assumption that by accurately identify-
ing the basic ring structure and its deformations, we can satisfy
not only the requirements from wood rendering, that is to attain
closely matching structural appearance (Fig. 3, bottom left), but
also the requirements of dendrochronology for a precisely aligned
identification of ring boundaries (Fig. 3, bottom right). In the den-
drochronology field (section 2.3), core samples of living trees are
inspected for their growth rings variations, and the resulting data is
interesting for climate research, archaeology, and art history. Au-
tomatic approaches have to be robust to the wide range of wood
anatomical features, as certain wood species (e.g., diffuse-porous
hardwoods) are very difficult to work with. Our approach performs
well even in these settings, and in fact, we used it in dendrochrono-
logical contexts as a means of verifying its performance.

2. Related work

2.1. Modelling wood appearance

Wood is a complex material with an intricate volumetric struc-
ture. Hartmann et al. [HKRFM17] dive into the complex process
that controls the formation of wood cells, whose variance is ulti-
mately responsible for the emergence of the characteristic growth
patterns. From a technical standpoint, wood is a bio-composite
formed from three different kinds of molecules: cellulose, hemi-
cellulose, and lignin. Lignin is the main chemical responsible for
the wood color. It is preferentially found in areas of thick cell
walls [LVS∗18], which explains why late growth shows a higher
color saturation than early growth in coniferous species. Chemi-
cally replacing lignin with a transparent polymer results in transpar-
ent wood, a material with interesting optical properties [VCL∗18].

The basic approaches for modelling wood in photorealistic ren-
dering can be divided into material scanning ones, which essen-
tially treat the material as a surface of certain optical properties, and

procedural, which typically model the whole three-dimensional
wood interior. Our method is based on finding the corresponding
parameters for a procedural model, such that a scanned surface
of a wood can be transformed into a fully procedural and editable
3D model.

Material scanning and BTFs The appearance of a specific spec-
imen of wood can be measured and encapsulated in various ways.
Bidirectional Texture Functions (BTFs) [DVGNK99] store the full
6-dimensional surface reflectance using, essentially, lookup tables.
Material scanners are available that capture diffuse reflectance, spa-
tially varying roughness and a normal map, which can be fed into
an appropriate BRDF implementation, such as the Disney Princi-
pled BRDF [BS12]. Both approaches can yield impressive realism
for the specimen they were applied to, but suffer from immense
storage requirements. Henzler et al. [HMR20] propose an interest-
ing data-driven approach to generate solid textures from 2D spec-
imen, wood being one of their use-cases. Their approach has the
advantage of providing an infinite solid texture, but represents the
input texture only qualitatively.

General solid noise functions Procedural noise can be a versa-
tile tool to capture the texture of a wide range of materials, Per-
lin Noise [Per85] and Gabor Noise (e.g. [LLDD09]) being promi-
nent examples. Matching the noise function parameters to obtain
a desired input texture is also possible: For example, [GLLD12]
show a method to match the power spectrum of Gabor Noise to
exemplars, while [BMM∗21] show an example of fitting the pa-
rameters of a Perlin Noise even in the presence of discontinuities.
Since our goal is to closely match the ring structure, using power-
spectrum based noise would require additional and hard to control
steps, since matching the rings requires a precise match of both the
noise signals’ amplitude and phase.

Domain-specific procedural models A state of the art appearance
model of wood is the work of Liu et al. [LDHM16], on whose work

Figure 2: False-color volume rendering of a solid texture that was
fit using a differentiable material graph, (left and middle) com-
pared to our approach. The density of the volume is set to σt = 15
for growth-lateness of greater 0.9, σt = 0.5 otherwise, both with a
homogeneous single-scattering albedo α = (0.805,0.578,0.359)T

(RGB). The model in the first image was optimized with our board
orientation estimate, but without an intial guess for the deforma-
tion field as a prior. The second image additionally uses our initial
deformation field. The third image shows a visualization of our re-
sult; insets are the respective frontal, non-volume renderings. No-
tice how in spite of the very good match in terms of frontal appear-
ance, the left and middle volumes show blurry ring boundaries.

© 2023 The Author(s)
Computer Graphics Forum © 2023 The Eurographics Association and John Wiley & Sons Ltd.

37



Thomas K. Nindel & Mohcen Hafidi & Tomáš Iser, Alexander Wilkie / Automatic inference of anatomically meaningful solid wood texture from a single photograph

Photograph
or 2D scan

Real wood specimen

Ring detection

2D wood texture

3D fitting

Automatic growth
ring labeling

2D ring pattern

Solid wood model
based on [LDHM16]

Parametrized
3D neighborhood

Our method

DendrochronologyRendering

Path tracing

Render

3D mesh

Labeled growth rings
boundaries

Color
map

Figure 3: Method pipeline overview. Our method starts with a real
wood specimen (top left) that is scanned or photographed from one
side. The 2D image is then processed to detect the wood growth
rings (see also Fig. 4). This process is already useful for auto-
matic ring labeling in dendrochronology (bottom right), where the
input image is a 2D scan of a flattened drilled cylinder of a tree.
For use in solid wood rendering (bottom left), the 2D ring pattern
has to be further processed and fitted in a 3D space, since we are
interested in parameters of a solid 3D appearance model based
on [LDHM16]. As only a 2D scan is available as input, the 3D fit-
ting can only be expected to approximate the actual specimen in its
local neighborhood. The final path-traced render is using the fitted
parameters and model on an arbitrary user-specified 3D mesh.

we based our results (Fig. 3). Their model uses various distortion
functions to modulate a cylindrical coordinate system. Together
with a sawtooth-like function that describes the color saturation
changes in the earlywood / latewood transitions, they also provide
expressions for diffuse reflectance and the fibre direction. These
can be used as base functions to define inputs to a BRDF shader.
By the explicit way they model wood “age” on a sub-ring scale,
their model can be seen as anatomically informed. Once the model

parameters are tuned, a process that requires manual work by an ex-
pert, it is very expressive and can be used to model many species of
wood. We are directly building on this model, and our contribution
is that we are able to automatically recover its main parameters. We
also recover a color map that describes coarse-level variations as a
function of ring growth time.

Larsson et al. [LIY∗22] extend the expressive power of wood-
specific procedural solid textures by the integration of wood knots,
based on a skeletal description of the branches and a distance-field
based formulation of their respective area of influence to the growth
rings formation.

2.2. Procedural appearance matching

Differentiable material graphs allow for the use of gradient-based
optimization to polish material parameters, after a good initial
guess has been found [GHYZ20, SLH∗20]. Since the success of
appearance matching depends on (and can be limited by) the ex-
pressive power of the underlying procedural model, neural loss
functions [AAL16] seem to be best suited in finding plausible pa-
rameters for a wide range of material graphs, because they evaluate
appearance differences in qualitative, perceptual terms. This allows
these algorithms to converge to satisfactory results even if the ex-
pressiveness of the underlying graph is limited. However, none of
these works provide a 3D solid texture that can be used to "carve"
objects from or accurately replicate the curvature of the growth
rings present in the target.

[LP00] show a half-automatic system that can extract param-
eters for a procedural 3D solid wood texture. From a thresholded
input image, they are able to estimate ring frequency and spatial
orientation of a given wood plank, based on image statistics. Ring
variations are modelled statistically in terms of turbulence intensity
and frequency. Their orientation estimates are based on statistical
properties of the thresholded image, while ours is based on accu-
rately identified rings. Our method also accurately recovers the de-
formation field.

2.3. Dendrochronology

Automated dendrochronological measurements rely on image pro-
cessing techniques that use either photos [WQZ∗10, FDBP16,
FDBP17,Len20], or computed-tomography (CT) data [MGSS∗21]
as their input. Salient points of these methods is the application
of 2D image processing techniques to the problem of growth ring
identification. They achieve reasonable accuracy for coniferous
species, but their accuracy greatly degrades in the presence of
pores.

Notable data driven approaches include [FD18], who use a U-
Net that was trained on manually labeled data, while [PAH∗22] use
a Mask R-CNN architecture. Neural networks seem to improve de-
tection rates compared to the approaches based on traditional 2D
image processing especially for ring porous wood, a category that
our ring detection method shows on-par performance. Data driven
approaches create likelihood maps for ring boundaries, that are sub-
sequently thresholded to get exact locations. In contrast, our ap-
proach directly pinpoints the ring boundaries without the ambiguity
of a likelihood.
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Martinez et al. [MGSS∗21] extend the idea of tree ring extraction
to 3D data and reconstruct tree ring isosurfaces from X-ray com-
puted tomography data based on edge detection. Basing the method
on CT data makes the approach very robust, because of strong cor-
relation between X-ray intensities and material density. The lim-
ited availability of CT scanners hinders the practical applicability
of their approach.

In a more broader context, systems for the identification of tree
species from either microscopic or macroscopic images build on
segmenting anatomical features of wood, including its rings. Mar-
tins [Mar18] contains a survey of the proposed methods. Datasets
of dendrochronological measurements are available through the
work of [FDBP17], the WIAD database [RSB∗21], both contain-
ing labels. The DendroElevator [oM22] database accumulates data
from several sources, containing some very detailed tree ring im-
ages (up to microscopic scale) obtained from wood core samples.
Some of their data are labelled.

2.4. Finding rings in images

Another field that considers the enhancement, identification, and
segmentation of ring-like structures is fingerprint identification.
The key differences to our domain are the bandwidth of ring fre-
quencies (fingerprint ridges are quite evenly spaced), and the pres-
ence of branching (fingerprint ridges can split and merge, which
usually is not the case for tree rings). This bandwidth limitation
makes transferring techniques that are informed by or based on
frequency-domain information (e.g., [THG16, LWL∗20]) some-
what more problematic, but not impossible. To our knowledge,
the connection between the fingerprint enhancement domain and
growth ring identification was first discovered in [Jon08]. We base
our approach on curved Gabor filters [Got11], which perform very
well on fingerprint images. Gabor filters [Gab46] have been used
across many disciplines for signal analysis and processing, and are
often amongst the top performers from the suitable candidates. A
very interesting property is their capability for retrieving phase in-
formation [Kon09], further [GR19, AG21].

3. Method

3.1. Overview

Our overall goal (Figs. 1, 3) is to reconstruct a subset of parameters
that we can plug into the procedural wood appearance model pro-
posed by Liu et al. [LDHM16]. Their starting point is a cylindrical
coordinate system that has the z-axis aligned with the stem of the
tree, and they apply distortion functions that work on both the radial
distance and the azimuth. They further propose several versions of
the spatially varying distortion field, like procedural noise, or us-
ing a lookup table (“distortion texture”). This can be either applied
in a radially symmetric way, where the texture-space y-coordinates
correspond to radial distances and the x-coordinates to values of z
in tree space, or using a more elaborate helical wrapping to allow
distortions that vary with the azimuth.

Our approach aims at recovering this distortion texture, and a
basic color map, from a single photograph of the tangential plane
of a wood cut. Please also refer to Figure 4 for a graphical overview.

We recover this data using a three-stage process. First, we calcu-
late both an estimate of the board orientation, and an initial es-
timate of the distortion field from the locations of growth rings
(Sec. 3.3, 3.4). The growth rings are found using curved Gabor
filters (Sec. 3.2). Second, we polish the distortion field using a
signal-phase informed optimization scheme (Sec. 3.6). Finally, a
color map is calculated.

3.2. Curved Gabor filters

The key idea to curved Gabor filters is to calculate them in an im-
age over curved regions that follow local orientation (Fig. 4, left to
middle). The initial local orientation is obtained from the 2D image
gradient: we use the Scharr operator [Sch00] after smoothing the
image with a small Gaussian kernel. The gradient is averaged over
a rectangular neighborhood, rotated 90° and normalized to obtain
the initial local orientation field.

Once the local orientation is known, we compute a curved region
around each point in the image. Each curved region consists of 2p+
1 parallel contours with 2q+ 1 points each, in our implementation
p = q = 80. They are constructed by first sampling perpendicular
to the local orientation for p steps, into both positive and negative
directions. From each of the 2p+ 1 points, a sampling walk along
the local orientation in positive and negative directions for q steps,
gives the pixel values of the curved region. As the step size is 1
pixel for both, we can look at the result as a pixelated patch of
2p×2q pixels that follows the local curvature.

Because the patch is rotated so that it follows the local orienta-
tion, growth rings will always be aligned horizontally when sam-
pled isometrically. This allows estimating the local ring-frequency
of a patch from the number of peaks is contains.

Using the (fixed) ring orientation inside each patch P and the
detected frequency, we then calculate the convolution of the patch
with a complex Gabor kernel K = {Kre,Kim} of an appropriate size
to get the filtered patch P′:

P′ = P∗K, (1)

Kre(x,y,θ, f ,σx,σy) = exp
(︃
− 1

2
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· cos(2π f xθ),

(2)
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· sin(2π f xθ), (3)

xθ = x · cosθ+ y · sinθ,

yθ =−x · sinθ+ y · cosθ.
(4)

We accumulate the resulting signals P′ over all patches, giv-
ing a complex valued filtered image I f = (Ire, Iim). Transforming

to polar coordinates gives a magnitude-image Imag =
√︂

I2
re + I2

im,
and a phase-image Iφ = arctan2(Iim, Ire). From the phase informa-
tion, we can estimate the location of tree ring boundaries at where
Iφ(x,y) = π

2 , the location of the signals negative zero crossing. The

© 2023 The Author(s)
Computer Graphics Forum © 2023 The Eurographics Association and John Wiley & Sons Ltd.

39



Thomas K. Nindel & Mohcen Hafidi & Tomáš Iser, Alexander Wilkie / Automatic inference of anatomically meaningful solid wood texture from a single photograph

Input wood texture Local orientation Curved region around a point Gabor filter phase response Detected rings

0

Figure 4: Ring detection process. We start with an input 2D texture (left) and compute its local orientation. We then compute a curved region
around each point in the image and apply a Gabor filter on it. Accumulating over all pixels gives the Gabor filter phase response. We then
trace the rings in the phase image to detect their positions (right).

phase image contains a sign ambiguity that we resolve later (Sec-
tions 3.6, 4.3).

As as side-effect to calculating the Gabor filter on curved re-
gions, it is also possible to estimate local curvature and local ring
frequency. The local curvature can be computed from the absolute
value of the differences of the local orientation of the contours’
middle points and their end points. This can be used to identify
anomalies such as knots.

The final local orientation field is obtained from the phase image
using the same procedure that calculated the initial local orientation
estimate, which gives a smooth field that follows along the growth
ring’s trajectory.

3.3. Ring detection

To detect a growth ring, we seed the algorithm at any point p =
(x,y) where Iφ(x,y)≈ π

2 , and walk along the local orientation field
into both positive and negative directions. By following the orien-
tation field instead of just thresholding the phase image, our algo-
rithm can trace rings even across small anomalies.

3.4. Estimating board location

With the detected visible growth rings it becomes possible to reason
about the boards orientation within the 3D tree coordinate system.
Using this positional information then allows us to calculate an es-
timate of the distortion field that would lead to the observed pattern.
We show this for tangential cut planes, but the approach can easily
be extended to other cuts as well.

Our position estimate starts with automatically finding the pro-
jection of the tree center (the z axis) onto the plane. It is usually
located between the two rings with the largest mean distance from
one another, with the remaining inter-ring distances being mono-
tonically decreasing to both sides. This projection of the tree-center
also gives the translation of the tangential board along its y-axis.
From the median average inter-ring distance, we can induce the
average scale of the rings in image-space coordinates. To find the
x-translation of the observed plane, we fit the radial scaling factor
and translation on the XY-plane using a brute force search in the
neighbourhood of the initial estimate, which only takes seconds to
compute. The resulting sign of the x-translation is ambiguous since
we are only observing a plane.

3.5. Modeling growth distortions and initial guess

In their model, Liu et. al. [LDHM16] model distortions of points in
tree space q in the radial and/or tangential direction, magnitudes mr
and mt . The magnitudes are spatially varying and can be any func-
tion f : R3 → R, such as a Perlin noise, or a texture. The location
of the distorted point q′ is given by

q′ = d(p) = q+mr(q)r̂+mt(q)t̂. (5)

r̂ and t̂ are unit vectors into the radial and tangential direction,
respectively. As the initial guess for the distortion field, we use the
difference between the observed and the ideal, undistorted rings
in image space and map this displacement to radial distortions
mr(q)(̂r) using the board location estimate. Tangential distortions
mt(q) are not used here due to the ambiguity of radial and tan-
gential distortions when only observing a planar projection of the
deformed tree rings.

3.6. Polishing the initial deformation field

A sufficiently accurate initial guess of the deformation field is im-
portant for accurate convergence of the final polishing step. The
periodic nature of the texture function constrains gradient-based
optimization to the interval of the period the starting point is con-
tained in. More precisely, the initial deformation field needs to have
a local phase error of less than π

2 for best results.

Formally, we want to minimize an energy E that is a function of
the reference image J and a rendered image I.

argmin
mr ,c,sr

E(J, I) (6)

I is obtained from a rendering operator, R, that takes the boards
orientation, given by the linear transformation T , a ring scaling fac-
tor sr, the distortion field d(q) and a color map c(qr) to an rendered
image I:

I =R(T,sr,d,c) (7)

sr encodes the mean width of growth rings in radial units, the
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color map c describes, for each ring individually, the color-changes
observable as the tree growth forms early and late growth. The
distortion field encodes the ring growth variations. In its simplest
form, the rendering function is just a projection of the solid texture
to image space by a cutting plane. Note that all functions need to
be differentiable in order for gradient descent optimization to be
applicable.

Loss function Optimizing using a per-pixel loss, or a feature loss,
will result in a good appearance matched image, even good es-
timates for BRDF parameters other than color, through the use
of a differentiable renderer as R. Problems arise due to the co-
optimization of both distortion field and color map and will lead
to a fit that lacks anatomical meaning (Fig. 2). This is due to the
non-orthogonality of the parameters: From a reasonable gamut of
colors in the color map, individual surface pixels can be modulated
by using the distortion field, making it a proxy to achieve a certain
surface color. This does not move the rings as a whole, but rather
individual points. The result is a non-smooth, "fuzzy" deformation
field that can even lead to ring fold-over.

To overcome this, the optimization needs to be constrained, or
the metric improved. We have experimented implementing a mono-
tonic constraint on the distorted radii to discourage foldover, and
we also tried enforcing smoothness by convolving the distortion
field with a Gaussian kernel in exponentially increasing intervals
during optimization. However, we were not able to attain signif-
icant improvements. Another potential issue arises from the peri-
odic discontinuity the procedural model contains, which is a di-
rect result of the underlying sawtooth-like function that describes
the growth periods of non-tropical wood grain (cf. figure 9). It has
been shown that not accounting for discontinuities can lead to con-
vergence issues (shown for example by Loubet et. al. in [LHJ19]) .
We implemented an experimental reparameterizing renderer on top
of the Mitsuba 3 renderer [JSR∗22] to correctly handle texture dis-
continuities, and also tried smoothing the falling edge of the yearly
growth boundary by convolving with a small Gaussian kernel. Nei-
ther lead to satisfactory convergence behaviour in our experiments.

We finally opted for improving the optimization metric by in-
troducing using a loss based on signal phase. We also separate the
optimization of the deformation field from the color map into a two
stage process. Our loss encodes the difference in signal phase be-
tween points on the reference image, and points on the rendered
image of the current iteration.

E =
(︁
Jφ − Iφ

)︁2 (8)

The phase-based loss function lets the optimizer fit the locations
of entire rings holistically. One could implement a phase-based loss
on top of a bank of regular Gabor filters that recover the phase in-
formation for both the reference image I and the rendering of the
current iteration. Propagating loss gradients back through this fil-
ter bank is very costly, however. Due to the constrained nature of
the underlying solid texture (tree rings cannot be arbitrarily placed,
but follow certain rules), the phase information can be directly ob-
tained: rendering the fractional part of the radial coordinate in the

distorted tree’s cylindrical coordinate system, multiplied by 2π cir-
cumvents this bottleneck. The phase response of the curved Gabor
filter calculated from the input image earlier then serves as the op-
timization target.

The phase ambiguity on the reference image can be resolved by
assuming a fixed orientation, and flipping the phase values by 180°
beyond the projected tree center, given it is visible in the image. We
also note that the loss function of the optimization needs to respect
the cyclic nature of phase information when taking differences.

Optimization algorithm and hyperparameters We implemented
the fitting procedure using a custom differentiable rasterizer. The
rasterizer is built on top of TensorFlow [AAB∗15], which is used
as a framework for reverse-mode automatic differentiation. We use
their implementation of the Adam optimizer [KB14] to drive the
optimization loop. The learning rate was set to 0.03, and we run the
optimization for 500 epochs. A single run takes less than a minute
on a NVIDIA RTX 2080 GPU for a target texture with a resolution
of 750x735.

4. Results

4.1. Structurally matching wood appearance

We apply our method to several pieces of coniferous wood, where
most rings are identified correctly. Difficulties arise where the plane
grazes a growth ring tangentially, where tiny variations of the es-
timated board location and the ring distortion can create huge
changes in appearance. This can be seen in Figure 8, 1st and 3rd
column, where mistakenly identified rings add to the problem, lead-
ing to a noisy, implausible distortion estimate in that area. In con-
trast, the specimen in the third column does not suffer from this
problem, since it does not contain the projection of the tree center.

Through the fit, we obtain a solid texture (see also Figure 5)
that also supplies semantic information that we use to derive other
BRDF parameters. In Figure 1, we show a rendering that modu-
lates the roughness and displacement as a function to the lateness
of growth of each ring, which results in a very realistic appearance
with specular highlights that are in alignment with the late growth.

Figure 5: The procedural wood model is an infinite 3D texture cen-
tered around a virtual tree (left). An arbitrary 3D mesh, such as a
cube (middle), can be positioned within the 3D texture coordinate
system accordingly to where the object was carved from the tree.
This gives a textured solid wood object (right) that can be rendered.

© 2023 The Author(s)
Computer Graphics Forum © 2023 The Eurographics Association and John Wiley & Sons Ltd.

41



Thomas K. Nindel & Mohcen Hafidi & Tomáš Iser, Alexander Wilkie / Automatic inference of anatomically meaningful solid wood texture from a single photograph

4.2. Volumetric appearance

For small material thicknesses, volumetric light transport becomes
significant for the appearance of wood. Examples are decorative
use-cases such as veneer lamp shades, or functional usages such as
translucent wood touch panels, or architectural use of delignified
wood. To illustrate the importance of subsurface reconstruction of
the wood grain, we simplify the cellular anatomy into an approxi-
mate participating medium. Using our fit, we set the spatially vary-
ing density proportionally to the lateness of growth, latewood being
more dense than earlywood. The volumetric properties were esti-
mated to a scattering coefficient of µt ≈ 16.0mm−1 for latewood,
µt ≈ 6.5mm−1 for earlywood, and a (wavelength dependent) single
scattering albedo derived from the surface reflectance.

To come up with the density parameters, we applied the In-
verse Adding-Doubling Method [Pra11] on data provided in
[SKSG18], who performed measurements on Sugi wood, a conifer-
ous subspecies, using micro spectrometer hardware. The heteroge-
neous single scattering albedo is calculated using the surface albedo
mapping function proposed by Elek et. al [ESZ∗17], their Eqn. 4.
Fig. 6 compares the translucent appearance of both a model that
was fit using our pipeline, and a simple extrusion of the surface
ring pattern into the depth of the volume. The appearance differ-
ence is explained by the orientation of the latewood shells, which is
perpendicular in the extruded case, but follows wood grain in the fit
case. In Fig. 7 we show a volumetric rendering of a lampshade. The
characteristic warm-colored translucent appearance wood shows
when it is backlit is captured very well.

4.3. Dendrochonology

We confirm the robustness of our ring detection method by running
it on a dendrochonological dataset. There, accuracy of detection is
very important, since it is used as primary data for various other
fields, including climate research.

To detect rings in dendrochonolgy images, the images are first
being scaled to uniform width, and then converted to HSV col-
orspace, from which only the V-channel is used. The detection
procedure is executed as detailed above. The phase sign ambigu-
ity is resolved by assuming an image orientation with the youngest

Figure 6: Volumetric appearance is highly dependent on grain ori-
entation - shown here are renderings of 1.8mm thick veneer sheets
backlit by a spherical light source. The volumetric properties are
derived from our fit (right), and extruded along the surface normal
(left). Insets show side-views to illustrate grain

Figure 7: Volumetric rendering of a lampshade that was cut from a
fit model using our method (Fig. 8, 2nd column). Both single scat-
tering albedo and volumetric density are heterogeneous.

Ours [FD18] [FDBP17]
species rings sen pre sen pre sen pre
larch 99 0.77 0.83 0.90 1.00
spruce 115 0.93 0.96 0.99 1.00
pine 108 0.79 0.91 0.93 0.97
ash 114 0.98 0.97 0.97 0.98 0.45 0.85
birch 30 0.17 0.06 0.86 0.74

Table 1: Comparison of sensitivity (sen) and precision (pre) of our
ring-detection method and two state of the art methods on a den-
drochronological dataset. [FD18] was developed especially with
ringporous wood in mind. Our method performs especially well
on ringporous wood (ash) and gives decent results on confierous
species (first three rows). Diffuseporous woods such as birch are
problematic, where our approach produces many false positives.

rings at the bottom of the image. The recovered rings are then com-
pared to ground-truth by measuring the closest distance between
the ground-truth label (one x/y coordinate pair for each ring). If the
distance is smaller than 3 pixels, conforming with the evaluation
shown in [FDBP17], the ring is counted as a match. Table 1 sum-
marizes the performance of our approach. Performance for conifer-
ous woods is good. For ring-porous woods, an anatomical variety
that has shown to be problematic in previous work, our results are
exellent. The high accuracy of our fit means that it can also supply
additional data for dendrochronological evaluations. Fig. 9 shows a
partial color map, superimposed with the inverse lightness, which
correlates with the time the latewood transition occurred in the re-
spective year.
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Figure 8: Results obtained with our approach. Rows from top to bottom: Input texture, detected rings, frontal view of fit model (diffuse
reflectance only), volumetric visualization (false color), fit color map.

5. Conclusion

In this paper, we demonstrated curved Gabor filters to be an ef-
ficient technique for the extraction of tree ring information from
single images of planar wooden boards. This information can then
be used to build a realistic, anatomically meaningful 3D procedu-
ral texture that closely matches the structure of the log the original
board was cut from.

The main focus of our work was to establish an automatic
pipeline that is fast and accurate. The technology we ported and
adapted from fingerprint detection not only serves as a tree ring
detector with great performance, but also enables the efficient op-
timization of the ring deformations based on signal phase. The re-
construction of additional BSDF parameters by using differentiable

rendering could further improve the model: but as the results of
this paper show, the approach we currently use is already suitable
for production work. Our pipeline further enables volumetric ren-
dering of wood’s subsurface light transport, and can pave a way to
finding a faster, approximate BSSRDF, which we see as a interest-
ing direction for further work.

We also see a potential of our robust ring extraction technique
to be adopted by the dendrochronology community, where ring la-
belling is an important task that our method solves as a side effect.
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2.4 Differentiable rendering of procedural solid
textures containing parametric discontinu-
ities

Suppose we sketch a solid texture for wood using a sawtooth wave modulated by
a factor 𝑝 that scales the texture radially. Using cylindrical coordinates 𝑝𝑐𝑦𝑙 =
(𝑟, 𝜃, 𝑧)𝑇, this forms a basic growth rings pattern,

𝑓(𝑝𝑐𝑦𝑙, 𝜋) = 𝑓𝑟𝑎𝑐(𝜋𝑟); 𝑓𝑟𝑎𝑐(𝑥) = 𝑥 − ⌊𝑥⌋ (2.1)
This solid texture has a periodic discontinuity at the falling edge of the sawtooth
function. Fig. 2.1, large image, shows a primal rendering of a lamp shade with
this texture applied to the lightness of the basic wood color. Using a differentiable
renderer that does not explicitly handle the discontinuity yields incorrect results
when calculating the derivative of the pixel intensities with respect to the scaling-
parameter (Fig. 2.1, right inset image). To obtain the correct derivative, the

Figure 2.1: Application of the reparameterization technique on a discontinous
solid texture. The insets show the image gradient with respect to a radial scaling
factor for the growth rings, using reparameterization (left), and naive automatic
differentiation (right). Below the insets the color map from negative gradient
(red) to positive gradient values (blue) is shown

reparameterization technique discussed in Sec. 1.6.2 can be used on camera rays,
Figure. 2.1, left inset. This requires the definition of the warp field 𝑉𝜋. For our
example function, this is straight-forward: The local velocity field is obtained by
taking the texture function’s derivative with respect to the parameter of interest,
in cartesian coordinates 𝑣′ = (𝑝𝑥, 𝑝𝑦, 0)𝑇. Since the texture changes along the
surface of the object it is applied to, the velocity field needs to be projected
onto the surface, to obtain the surface warp field. Practically and for arbitrary
solid textures, the boundary velocity can itself be calculated using automatic
differentiation if no obvious analytical solution is available, at a small performance
penalty.
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3. Contribution II: Appearance
fabrication
3.1 Summary
The technology for Color 3D printing is available for quite a long time, and until
2017 color management was done analogously to the methods that are used in
color 2D printing. These phenomenological approaches lead to decent results,
but largely ignored the effects of the complex light transport that happens in
objects of arbitrary geometry. In their work, Elek et al. [2017] introduced a new
way to obtain printer instructions from an appearance specification, which was
based on iterative optimization. Their approach did not require the pipeline to
be differentiable, but instead used a heuristical refinement operator. This comes
with the benefit to getting around the fact that for the printer, a discrete material
to voxel assignment is required. This discretization makes the problem of finding
an optimal printer recipe an instance of integer programming and thus will no
longer be solvable using gradient descent.

Our differentiable approach is based on the idea of taking the halftoning out
of the optimization loop and only apply it as the final step, after a (locally) opti-
mal solution for the heterogeneous volume the printout represents is found. We
instead optimize in material mixture space, taking advantage of the fact that the
(𝜎𝑎, 𝜎𝑠, 𝑓𝑝)𝑇 - parameterization allows to express any affine combination of the
printing materials optical properties with an equivalent aggregate set of values.

Because this allows for the use of gradient-based optimization, it also unlocks
the use of differentiable metrics to steer the optimization towards certain visual
stimuli, and more use cases such as ink selection and objects with spatially varying
translucency.

3.2 Baseline comparison to remapped planar so-
lution

To establish that treating the printing optimization problem requires considering
full three dimensional light transport, we try to extend the approach of Elek et al.
[2017] to 3D. Their method can be generalized by first optimizing the texture
map of the 3D object using their 2.5D-pipeline, and subsequently wrapping the
resulting planar volume around the 3D mesh using the UV parameterization of
the texture and an internal distance field.

This approach contains certain pitfalls: Texture mapping 3D geometry intro-
duces stretch, which for the remapped solution translates into a change of voxel
volume. The resulting changes in light scattering distance affect the appearance
of the printed result.

We addressed this by manual pre-processing of the UV map to minimize
stretch, and by carefully selecting the resolution and dimensions of the optimized
2.5D slab so that distances in UV space are kept constant during remapping.
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We further add enough margin to work around light bleeding occurring at the
borders of UV islands, and fill the borders using an inpainting algorithm. This
helps the planar optimization by reducing the artificial color contrast between
UV-covered texture map regions and the background. After optimizing a slab
with the pre-processed texture applied using Elek et al. [2017]’s method, the
result gets warped into its final shape of the 3D object. The result can then
directly be printed. The transformation requires a mapping of all internal voxels
to their respective closest surface point. We iterate over all volume voxels, find
the corresponding surface point, which also stores the texture UV coordinates.
This identifies the column of the 2.5D-solution, while the distance between the
volume voxel and the surface voxel gives the lookup depth inside the column.
Figure 3.1 compares printouts with a full 3D solution to this remapped 2.5D

Figure 3.1: Baseline Comparison (a) of results achieved with planar scattering
compensation (remapped to 3D using UV + depth coordinates) and our native
3D pipeline without our refinement improvements (the new update step and the
content-aware gamut mapping). (c) and (d) show cropouts of a region highlight-
ing problems of the 2.5D method and cross-sections thereof in comparison to the
target appearance (b)

approach. To be fair, both images use the same optimization heuristic. The 2.5D
vase (a) shows an overly saturated appearance. On thin regions such as the neck
(dashed rectangle) and foot (solid rectangle and cropouts (c), (d)), the surface
shows unwanted darkening. The CIEDE2000 average (calculated on renderings)
is 15 for the 2.5D object, 10 for the 3D one. Depending on surface curvature, 2.5D

Figure 3.2: Color shifts on the abdomen and darkening on the paws of a 2.5D
remapped printout (left) compared to a native 3D printout (right)

colums get their cross-sections expanded or contracted going into the depth of the
volume. In concave regions, the colum’s voxels expand to cover a greater volume.
This in turn leads to a higher absorption and thus a darker surface appearance.
Convex regions compress white voxels, likewise increasing the absorptive effect of
other colored voxels. This can, in some cases, lead to significant color shifting,
as shown in Figure 3.2.
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3.3 Voxelization and auxiallary data structure
To process a textured mesh into a data structure the optimization pipeline can
work on, we first need to convert the geometriy into an isotropic voxel grid, using
OpenVDB Museth [2013]. Polyjet printers can have different resolutions across
their axis, from which we choose the lowest. Only in the final step, after the
optimization, this is up-sampled and halftoned to the native printer resolution.
After the volume is voxelized, the volume elements are classified into interior,
exterior and surface voxels, respectively. The surface voxels get a target color
and a normal vector assigned.

The interior voxels are then processed to create a map to their respective
nearest surface point. For each internal voxel, the unit hemisphere is sampled and
rays are intersected with the object surface to discover initial connections. These
connections are clustered using a weight based on their, and the corresponding
surface normal direction. The clusters are then iteratively refined by re-sampling
using a von Mises-Fisher distribution and merging distributions using the same
weight as for the initial clustering. This results in a surface correspondence
mapping that aligns with the surface normal directions.

The sensor employed to sample the surface appearance of an object uses the
surface voxels as an origin to shoot rays into the volume along the inverse normal
direction.
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Conclusion
Differentiable rendering is an exciting and challenging topic in computer graph-
ics. It allows for the use of gradient-based optimization to solve inverse rendering
problems that can recover scene parameters from observations. This allows to
connect a material model to physical reality. We have explored the recovery of
material parameters in two directions:

Appearance fabrication, where a virtual appearance specification is trans-
lated into the instructions of a 3D printer. The material-model there is a hetero-
geneous scattering medium consisting of discrete voxels made of exactly one of
several available inks

Appearance matching, where a real-world observation gets translated into
a virtual appearance model. The material-model is based on a procedural solid
texture that is anatomically informed

The two use-cases do not only differ in their starting- and endpoints, but in
several other ways. The optimization tasks differ in how sensitive they are to
a good initialization, and both require a suitable material parameterization and
loss function to converge gracefully.

The inverse volume rendering task for our appearance fabrication contribu-
tion worked very well with a naive initialization. This is likely due to the many
minima the solution space contains, most of them with a similar loss value. We
parameterized the appearance model using material mixtures, which was nec-
essary to circumvent solving the very challenging integer programming problem
the discrete material-to-voxel assignment would otherwise pose. A composite loss
function was used, allowing for control over the conflicting goals of best possible
contrast and color accuracy.

In contrast, the initialization of our wood appearance matching approach
has rigid error bounds that need to be honored for the optimization to con-
verge to good results, or rings will be skipped. The parameterization based on
phase-information from complex gabor filters allows for the recovery of a smooth
deformation field without foldover, in concert with a simple L2 loss.
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Future Challenges
So far, we have only considered diffuse surface reflectance in appearance fabrica-
tion, and shown a qualitative proof-of-concept for how to incorporate spatially
varying translucency. Embedding translucency quantitatively, so it is measur-
able with a metric that can then drive the optimizer, is a very difficult problem.
Translucency and object shape are related and create perceptual ambiguity. Dif-
ferent illumination conditions add to this, and the human visual system uses
several of such cues to disambiguate. Recent success with using neural networks
as perceptive loss functions seem a promising cue to warrant exploring a similar
approach to measure translucency.

Volumetric light transport simulated in RGB colorspace leads to inaccuracies
in prediction, which then also affects derivatives computed by a differentiable
renderer. Taking appearance fabrication to a spectral workflow will both alle-
viate these errors, and pave a way to an even more challenging problem: Some
of the available printing materials show fluorescence. Fluorescence adds to the
prediction error, and adds another dimension to the ambiguities of volumetric
appearance beyond the ones discussed here. This can pose both a challenge and
a great opportunity.

We have shown evidence that inverse volumetric light transport works well
with naive initializations. There are, however, configurations that in some cases
will lead to way better optimized results, which the optimizer simply cannot
explore by gradient descent from these starting points. One can imagine, for
example, 3D prints that use an internal structure of ”light channels” made from
transparent or white voxels, to optically connect otherwise largely separated parts
of the object.

Wood exhibits volumetric light transport, especially in veneer-like applications.
Light transport there is to a large degree explainable by the multiple changes in
index of refraction when light traverses across the elongated wood cells. While
modeling of all cells and rendering this using brute force volumetric path tracing
is possible, it is also computationally very expensive. Approximating the cellular
geometry using a fully anisotropic phase function like SGGX seems like a logical
step to replace modeling of the volumetric microgeometry explicitly. The com-
putational cost of full volumetric light transport simulation remains, however.
A approximative BSSRDF, akin to the very successful hair reflectance models,
can be a building block towards making volumetric wood appearance practical
in production. Based on general cell shape, this BSSRDF could be useful to de-
scribe light transport in other porous materials, like foam or sponges, and enable
appearance matching applications for these as well.
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A. Attachments
A browser-based implementation of the volumetric path tracer sketched in Fig-
ure 1.11, that also allows interacting with its source code, can be found at
https://www.shadertoy.com/view/tlBXWW
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