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ABSTRAKT (CZ) 
 

   Moderní přístupy ke studiu monogenních vrozených poruch imunity, podpořené v posledních 

dekádách bezprecedentním rozvojem genetických metod, odkrývají nové, dosud neprobádané 

funkční aspekty imunitního systému. Nemoci s nápadným klinickým fenotypem, leč víceméně 

normálními základními imunologickými nálezy, jako jsou poruchy vrozené či intrinsické imunity 

se selektivně zvýšenou náchylností k jedinému infekčnímu agens, poskytují vzácnou příležitost 

ke studiu interakcí imunitního systému člověka s patogeny. Tato práce se zaměřuje na 

imunopatologické, genetické a klinické aspekty takových onemocnění, konkrétně na chronickou 

mukokutánní kandidózu způsobenou hypermorfními (gain-of-function, GOF) mutacemi ve STAT1 

genu, které způsobují poruchy Th17 asociovaných imunitních mechanismů, a vrozenou 

náchylností k mykobakteriálním onemocněním (Mendelian susceptibility to mycobacterial 

diseases, MSMD) způsobenou poruchami signální dráhy IL-12, IL-23/IFNy. Práce dále přispívá k 

objasnění role IL-6 signalizace v protistafylokokové imunitě a zabývá se novým onemocněním 

dětského věku PIMS-TS (Paediatric inflammatory multisystem syndrome temporally associated 

with SARS-CoV-2), jako život ohrožujícím důsledkem imunopatologie spuštěné jediným 

konkrétním patogenem, který se s vysokou pravděpodobností vyvíjí v důsledku individuální, 

dosud neznámé genetické predispozice. Poznatky prezentované v této práci bylo možné v 

několika případech přenést přímo do klinické praxe, např. použití JAK inhibitorů u pacientů se 

STAT1 GOF a úpravu dávkování podle nově vyvinutého STAT fosfoflow protokolu, doporučení k 

očkování proti SARS-CoV-2 u STAT1 GOF pacientů, profylaxi a léčbu IFNγ u pacientů s AD 

parciálním deficitem IFNγR1, individuální terapeutická doporučení pro pacienta s unikátní 

kombinovanou poruchou IFNγ a NOD2 signalizace nebo identifikaci prediktorů závažnosti u 

PIMS-TS a doporučené terapeutické strategie u tohoto onemocnění. 
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ABSTRACT (ENG) 
 

   The modern approach to studies of monogenic inborn errors of immunity, driven by 

unprecedented advances of genetic tools, opens vast undiscovered areas of immune system 

components and functions. In particular, the diseases with striking clinical phenotypes with 

normal or near normal baseline immunophenotype, such as disorders of innate and intrinsic 

immunity with susceptibility to single pathogen, provide a unique window into the host-pathogen 

interactions. This thesis covers various novel aspects of immunopathology, genetics and clinical 

facets behind some such diseases, namely chronic mucocutaneous candidiasis due to 

hypermorphic (gain-of-function, GOF) STAT1 mutations, which hamper Th17-associated immune 

activities, and Mendelian susceptibility to mycobacterial diseases (MSMD) due to impairment of 

IL-12, IL-23/IFNγ signalling pathway. Moreover, it contributes to the mounting evidence that IL-

6 signalling is non-redundant in anti-staphylococcal immunity. Finally, it explores the novel 

Paediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 (PIMS-

TS) as a single pathogen-driven life-threatening immunopathology, which likely develops due to 

individual, yet unknown, genetic predisposition. The findings presented in this thesis were in 

several cases translated directly into the patients’ clinical management, for example the use of 

JAK inhibitors in STAT1 GOF patients and the use of newly developed STAT phosphoflow protocol 

for dose adjustments, the recommendations on vaccination against SARS-CoV-2 in STAT1 GOF 

patients, the prophylaxis and treatment with IFNγ in patients with AD partial IFNγR1 deficiency, 

individualized therapeutic recommendation for a patient with unique combined impairment of 

IFNγ and NOD2 signalling, or the identification of severity predictors in PIMS-TS and its 

recommended management strategies. 
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INTRODUCTION 

1.1 INBORN ERRORS OF IMMUNITY   
 
    Inborn errors of immunity (IEI), or primary immunodeficiencies, represent a group of rare 

diseases driven by genetic defects, that profoundly affect the functions of immune system.  The 

failure of human immune defences manifests characteristically as increased microbial 

susceptibility which results in frequent, chronic, often severe or even life-threatening infections. 

Given the organizational complexity and multilevel interactions of the human immune processes 

with the other microsystems, it is unsurprising that IEI also manifest with symptoms spanning 

broadly beyond infections. In fact, most patients with IEI also suffer from various degree of immune 

dysregulation arising either as a direct consequence of the genetic defect or, secondarily, during the 

recruitment of homeostatic regulatory mechanisms. Both instances may lead to abnormal 

mistargeted immunologic hyperreactivity presenting as allergic or autoimmune manifestations and 

may also result in failure of tumour immunosurveillance. 

   IEI are rare diseases. Their overall incidence varies geographically; in most European countries, 

including the Czech Republic, the incidence does not exceed 2-3/100 000 inhabitants. At the time 

of conception of this thesis, the Czech National IEI Register included approximately 1000 patient 

records.  As of 2022, a total of 485 IEI were described, however a great deal of them is still 

represented by individual patients or kindreds only (Tangye S. et al., 2022). Although the first IEI, 

the Bruton agammaglobulinemia, was described 70 years ago (Bruton O.,1952), it wasn’t until the 

turn of the millenium that the rapidly developing methods of genetic analyses enabled an overt 

boom of precision diagnostics in the field of IEI. The specific clinical and immunophenotypical 

clusteres became linked with genotypes and many crucial discoveries were made concerning the 

origin, development, purpose and regulation of various constituents of the immune system. Until 

nowadays, the investigations of patients with novel genetic defects presenting with unique 

phenotypes keep providing invaluable clues into the intricate immune molecular-cellular 

machinery and facilitate the development of precision therapeutic strategies aiming towards 

individually- tailored treatments.  Based on the expanding knowledge, IEI are now classified into 

ten specific categories, although many disorders span phenotypically across more than one 

category. These are listed in Table 1. The most frequent IEI are antibody deficiencies, accounting 

for over 55% of all IEI (Durandy A. et al., 2013). The disorders discussed in this thesis belong to the 

group entitled Disorders of intrinsic and innate immunity, which are ultrarare, representing less 

than 2% of IEI. 
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Table 1. Phenotypical classification for IEI with examples of diseases, according to International 

Union of Immunological Societies (IUIS) (Tangye S. et al., 2022) 

 

 

 
 

 

 

 

1. Combined cellular and humoral immunodeficiencies Severe combined immunodeficiency  
HyperIgM syndrome 
Reticular dysgenesis 

2. Syndromic immunodeficiencies DiGeorge syndrome 
Wiskott-Aldrich syndrome 
HyperIgE syndrome  

3. Predominantly antibody immunodeficiencies X-liked agammaglobulinemia 
Common variable immunodeficiency 
Selective IgA deficiency 

4. Diseases of immune dysregulation IPEX syndrome 
Autoimmune lymphoproliferative syndromes 
Familial hemophagocytic lymphohistiocytoses 

5. Phagocytic disorders  Congenital neutropenia 
Chronic granulomatous disease 
Leukocyte adhesion deficiency 

6. Defects of innate and intrinsic immunity  Mendelian susceptibility to mycobacterial diseases  
Chronic mucocutaneous candidiasis  
Isolated congenital asplenia 

7. Autoinflammatory diseases TRAPS 
Familial Mediterranean fever 
HyperIgD syndrome 

8. Complement deficiencies Deficiencies of C5-C9 components (disseminated 
Neisseria predisposition) 
Hereditary angioedema  
Haemolytic-uremic syndrome 

9. Bone marrow failure  Fanconi anaemia 
Dyskeratosis congenita 
Mirage syndrome 

10. Phenocopies of immunodeficiencies Autoantibodies against IFNγ  
Autoantibodies against IL-17/IL-22  
Pulmonary alveolar proteinosis 
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1.2 INNATE, ADAPTIVE AND INTRINSIC IMMUNITY  
 
   Immune mechanisms are traditionally divided into the frontline innate and experience-shaped 

adaptive compartments. However, such oversimplified and rigorous segregation is grossly 

underappreciative of the complexity and interconnectivity of both immune mechanisms, as 

evidenced by the many disorders affecting primarily innate components which also disrupt the 

functionalities of adaptive mechanisms, and vice versa. Nevertheless, for scholarly purposes the 

classification provides a level of advantageous clarity.  While the adaptive pool comprises of three 

cell types only, i.e., αβ T lymphocytes, γδ T lymphocytes, and B lymphocytes, the innate armament 

is much more diverse. It encompasses a three-tier defence system, which includes 1. 

mechanical/chemical barriers (such as skin, ciliary clearance, low gastric pH) 2. humoral factors 

[such as soluble factors in saliva, mucus or breast milk, complement system, acute phase reactants, 

and broad range of cytokines, particularly type I interferons alpha, beta and omega (IFNα, IFNβ, 

IFNω), type II interferon gamma (IFNγ) and type III interferon delta (IFNλ), tumor necrosis factor 

alpha (TNF-α), interleukin (IL)-1, IL-6, IL-12, IL-12, IL-10, transforming growth factor beta (TGF-

β)] and 3. a magnitude of innate immune cells with diverse functions and origin. These are either 

bone marrow-derived (neutrophil granulocytes, monocytes, macrophages, dendritic cells, natural 

killer cells, innate lymphoid cells) or of non-hematopoietic origin (e.g., epithelial and endothelial 

cells, keratinocytes, fibroblasts) (Medzhitov R. and Janeway C., 2000; Mogensen T., 2009). 

   Innate immunity orchestrates the first line of protection against pathogens, which is initiated 

directly upon the contact. Almost immediately, multiple soluble factors get engaged in a fight 

against viruses, bacteria, fungi or parasites. Within hours, various cellular signalling cascades are 

engaged chiefly by the ligand activation of molecular sensors called pattern recognition receptors 

(PRRs), such as Toll-like (TLR), NOD-like (NLR), RIG-like (RLR) receptors, double-stranded 

ribonucleic acid (dsRNA)-activated protein kinase receptors, C-type lectin receptors, and others. 

These are highly evolutionarily conserved receptors unique to microorganisms, which respond to 

various microbial components and products, called pathogen-associated molecular patterns 

(PAMPS). They include, for example, the bacterial lipopolysaccharides, lipoproteins, 

peptidoglycans, zymosan, mannan, flagellin or microbial nucleic acids (Li D. and Wu M., 2021; 

Mogensen T., 2009). Innate immune processes are principally always the same in nature and 

diverse only in the temporospatial aspects. Under physiologic conditions, they are short-spanned 

and tightly contra regulated to avoid excessive activation and mistargeted inflammation, which 

would inflict self-induced tissue damage and give rise to autoinflammatory disorders. 
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   Although efficient and quick in action, innate immunity operates via non-specific antimicrobial 

tools only, as it bridges the time until the adaptive immunity gets involved, which is usually within 

days. Contrary to the innate, the adaptive mechanisms target non-self antigens with high selectivity 

and specificity, which is achieved by somatic genetic mutations. Moreover, ait is the main 

instrument of immune memory. Despite their varied roles, both subsystems are complementary 

and integrated, aiming for the most efficient, yet controlled host protection (Alberts B. and Johnson 

A., 2002).  

   In between the conventional innate and adaptive immune responses, another intracellular 

mechanism of antiviral protection has evolved, called “intrinsic” immunity. The term refers to 

constitutively expressed array of genes and their protein products, that are ready at all times to 

restrict viral replication immediately upon sensing of the pathogen. Much like the innate immunity 

with its interferon-dominated antiviral response, the intrinsic restriction factors also respond in 

the same manner upon each contact with the virus; on the other hand, similarly to adaptive 

immunity, the intrinsic immunity targets a specific virus or specific viral taxa to achieve their 

attenuation (Bieniasz P., 2004; Yan N. and Chen Z, 2012). Some of the most studied intrinsic 

restriction factors interfere with Herpes simplex virus 1 (such as promyelocytic leukaemia protein-

nuclear body constituent proteins, E3 SUMO ligases or DNA repair proteins) (Alandijany T., 2019), 

Human immunodeficiency virus (such as Tripartite motif-containing protein 5 alpha, Apolipoprotein 

B mRNA editing enzyme, catalytic subunit 3G) (Stremlau M. et al., 2004; Sheehy A. et al., 2002) or 

Cytomegalovirus (such as Death-associated protein 6) (Saffert R. and Kalejta R., 2006). 

1.3    THE GENETIC THEORY OF HUMAN INFECTIONS 

   With the identification of microorganisms as the agents of various human illnesses, most of the 

infectious diseases’ severity was for some time attributed to the pathogen-related factors, such as 

the infectious dose, virulence, etc. The first suggestion that the outcome of individual host-pathogen 

interaction is to some extend heritable came from the 1930’ observations of familial clustering of 

both rare and common infections, and from studies of subjects with variable (that is asymptomatic 

vs. symptomatic) course of infections (Nicolle C., 1937). By the turn of the 20th century, the 

molecular genetic methods have uncovered genetic backgrounds of several “conventional” IEI 

(Ochs H. and Hitzig W., 2012; Casanova J. L. et al., 2005; Notarangelo L. et al., 2006). Through these, 

much was discovered about the human immune system physiology. A paradigm was set in place, 

that increased infectious susceptibility segregates either in a Mendelian pattern of inheritance 

(typically recessive, with complete penetrance), or in a polygenic trait (theoretical). Regardless of 
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the genetic cause, the failure of a particular immune mechanism would result in multiple infectious 

phenotypes, i.e., infections with broad spectrum or certain characteristic groups of microbes. As 

such, the disrupted development of B lymphocytes and, consequently, the antibody production, 

increases the risk of infections with encapsulated bacteria; congenital defects of phagocytes 

predispose to severe fungal infections and infections with intracellular pathogens; defects of T cells 

impair defences against viruses, bacteria, fungi and parasites. In parallel, a new concept of the 

fundamental role of pathogens in shaping the genetic background of human anti-microbial defences 

throughout the evolution was suggested (Casanova J. L. and Abel L., 2004; Picard C et al., 2006). It 

was largely derived from descriptions of severe/fatal infections due to singular pathogen or a very 

narrow spectrum of microbes in otherwise healthy subjects. It was also supported by observation 

of peculiar clinical resistance to otherwise highly infectious pathogens, frequently with obvious 

intrafamilial segregation. Many of such rare phenotypes have now been associated with their 

respective genotypes which may, indeed, follow Mendelian traits (autosomal dominant, AD; 

autosomal recessive, AR; or X-linked), and are referred to as “nonconventional” IEI (Casanova J. L. 

and Abel L., 2005). They are, in main, caused by germline mutations in genes encoding components 

of innate immune mechanisms and often inflict much broader phenotypes of immune dysregulatory 

syndromes. Thus, in addition to the two main accepted notions, i.e., that 1) single-gene variant = 

vulnerability to multiple pathogens and 2) multiple genes variants = vulnerability to one or more 

pathogens (susceptibility to common infection is due to the combined effect of multiple genes, the 

“polygenic” trait), a third mechanism was uncovered, where 3) single-gene variant = vulnerability 

to single pathogen (Casanova J. L. et al., 2005). Originally, a complete penetrance was assumed for 

single gene – single pathogen IEI, however in later identified kindreds incomplete penetrance traits 

were also noted. Furthermore, based on the complex segregation analyses and linkage studies 

another mechanism of “major gene” was proposed, suggesting that 4) only one mutated gene causes 

the single pathogen susceptibility/resistance, but other genes, epigenetic or environmental factors 

interfere with the gene expression to such extend that it may or may not manifest (thus accounting 

for the phenomenon of incomplete penetrance in the mutation carriers) (Chapman H. and Hill A., 

2012) (Table 2). 

 

 

 



MUDr. Markéta Bloomfield  Monogenic susceptibility to infectious pathogens   

Page 16 of 84 

 

Table 2. The mechanisms involved in genetic theory of infectious diseases in humans with 

examples (extended, based on Darrason M., 2013) 

 

 

These four genetic mechanisms are not by far mutually exclusive, but rather create a genetic 

continuum. Combined with the pathogen-related factors, such overlapping model neatly explains 

the inter-individual variability in response to pathogens via a unified, compellingly interactionist 

model (Figure 1).  It is highly likely, that future discoveries will further expand and shape this 

current dogma.  

 

Figure 1. A model of genetic 

continuum of human infectious 

diseases with examples of respective 

diseases (modified from Alcais̈ et al., 

2009)  
Black = susceptibility, red = resistance. HSV-

Enc = HSV encephalitis; MSMD = Mendelian 

susceptibility to infectious diseases; P. vivax = 

Plasmodium vivax; SCID = Severe combined 

immunodeficiency; HLA = Human leukocyte 

antigen; XLA = X-linked agammaglobulinemia 
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1.3.1 Inborn resistance to specific pathogens 
 
   Resistance to specific virulent pathogens is one of the most intriguing phenomena in human 

immunogenetics. It describes why some individuals do not suffer from a penetrant disease despite 

being exposed to a pathogen which is otherwise highly infectious to others. These rare experiments 

of nature create a paradigm shift, in which the wild-type genotype confers an infection 

susceptibility risk, while the mutant alleles are protective.  

   The currently known examples of such single-gene microbial resistance are all explained by the 

lack of the microbe’s point of entry into the host cells, which prevents the pathogen’s replication 

and spread. On cellular level, the underlying germline mutations knock out the genes which encode 

integral parts of surface receptors on the cells targeted by the pathogen for invasion.  Thus, the 

absence of chemokine receptor Duffy antigen and receptor for chemokines (DARC) on erythrocytes 

prevents the cellular invasion of Plasmodium vivax, the cause of malaria (Tournamille C. et al., 

1995), the absence of C-C chemokine receptor type 5 (CCR5) on T cells averts the entry of Human 

immunodeficiency virus (HIV)1 into T cells preventing AIDS (Acquired Immunodeficiency 

Syndrome) (Liu R. et al., 1996; Arenzana-Seisdedos F. and Parmentier M., 2006),  the loss of 

fucosyltransferase 2 (FUT2) receptor on enterocytes protects from norovirus enteritis (Lindesmith 

L. et al., 2003; Thorven M et al., 2005), and the lack of P antigen on erythrocytes convey natural 

resistance to parvoviral erythema infectiosum (Brown et al., 1994). While these mutations are in 

principle deleterious on DNA level, they provide a distinct biologic advantage as these individuals 

are otherwise healthy and don’t seem to have impaired immune functions in general. It is, therefore, 

easy to imagine that such disease-protective mutations, likely originally incidental, have been (and 

will be) the subjects of positive evolutionary selection, providing a population advantage under the 

continuous microbial pressure. On the other hand, it is conceivable that such benefit may come at a 

cost, perhaps in the inability to fend off other, yet unknown pathogens.   

 

1.3.2 Inborn susceptibility to specific pathogens 

   Spearheaded by the teams of Jean-Laurent Casanova, Laurent Abel, and Alexandre Alcaïs, genetic 

variants rendering carriers vulnerable to single type, or a narrow spectrum of pathogens were 

extensively studied since the 1990’. The research aimed to explore the biological background of 

severe courses of primoinfections or recurrent reinfections by single/single type of organism in 

otherwise seemingly immunocompetent individuals.  
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   Generally, these diseases share several hallmark features, which represent diagnostic clues:   

 Severe/prolonged/treatment-refractory course of primary infection with the pathogen 

(that would usually not pertain such severe symptoms) 

 Recurrent/persistent infections with the same pathogen despite adequate treatment 

 Unincreased susceptibility to other microbes 

 Normal/near normal basic immunologic parameters, (i.e., undisturbed lymphocyte and 

neutrophil counts, normal lymphocyte proliferation ability to non-specific stimuli, normal 

immunoglobulin IgG, IgA, IgM levels and IgG subclasses, normal granulocyte oxidative 

burst)  

 Familial occurrence of the symptoms or consanguinity  

 
   Table 3 enlists (non-exclusively) IEI which are known to underlie a highly selective microbial 

vulnerability. For illustrative purposes, the following account portraits some of these diseases in 

more detail. Two entities, the Mendelian susceptibility to mycobacterial diseases (MSMD) and 

monogenic chronic mucocutaneous candidiasis (CMC), will be discussed separately in greater 

detail, as they represent the main area of the author’s doctoral focus and the centerpoint of this 

thesis.  

 

 

Table 3. IEI with selective susceptibility to a specific pathogen conferred by single-gene mutations  
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1.4 MONOGENIC INBORN ERRORS OF IMMUNITY WITH SELECTIVE 

SUSCEPTIBILITY TO SINGLE/NARROW SPECTRUM OF PATHOGENS 
 

1.4.1 Epidermodysplasia verruciformis  
 
   Epidermodysplasia verruciformis (EV) is one of the most intriguing human infectious disease 

described for the first time in 1922 (Lewandowsky F. and Lutz W., 1922), thus de facto representing 

the very first reported IEI, preceding even the X-linked agammaglobulinemia. This extremely rare, 

autosomal recessive dermatosis is caused by persistent human papillomavirus (HPV) infection, 

specifically by skin-specific EV-associated oncogenic β-HPV. The patients suffer from extensive 

growth of cutaneous warts, often of bizarre appearance resembling the bark of a tree, which gave 

the disease its other name “the treeman syndrome“ (Figure 2). Most patients develop non-

melanoma skin cancer by thirty years of age. Its monogenic background wasn’t discovered until 

2002 (Ramoz N. et al., 2002); over 50% of EV cases are caused by  inactivating mutations affecting 

genes for transmembrane channel-like 6 (TMC6) and transmembrane channel-like 8 (TMC8) 

protein. Neither the physiologic function of these proteins, nor their role in HPV restriction in 

keratinocytes has been explained yet, however their involvement in zinc metabolism has been 

suggested (de Jong S. et al., 2018).  

 

  
 

Figure 2. Epidermodysplasia verruciformis due to TMC6/TMC8 mutations (Liu  W. and Ma M., 
2020; Fang F. et al., 2008) 

 

1.4.2 Herpes simplex encephalitis  
 
   Infections with Herpes simplex virus (HSV) are amongst the most common infections in humans. 

HSV is a neuro- and epitheliotropic virus with the ability of life-long latent persistence in neurons. 

Primary infection with HSV1 occurs usually in infancy and is most typically 
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asymptomatic/subclinical, or manifests as painful, yet self-limiting mucocutaneous affliction, called 

aphthous gingivostomatitis. Reactivations of the virus result in infection of epithelial cells at the 

neuro-epithelial junction, characteristically presenting as cutaneous or mucosal vesicular lesions 

(Arduino P. and Porter P., 2008). In rare cases, the primary infection takes on a devastating course, 

causing HSV encephalitis (HSE) (Figure 3A). This striking phenotype has been, in some cases, 

explained by mutations in gene encoding components of toll-like receptor 3 (TLR3) signalling 

pathway (TLR3, TRIF, TRAF3, UNC93B1, TBK1, IRF3) (Zhang S.-Y. and Casanova J.L., 2015; Andersen 

L. et al., 2015) (Figure 3B). The impairment of TLR3 downstream signalling results in aberrant type 

I and type III IFN production, which prevents efficient viral clearance in neurons and 

oligodendrocytes. Curiously, the virus does not spread beyond the brain tissue as the TLR3-

mediated HSV1 control mechanism seems to be redundant in other cell types (such as leukocytes, 

keratinocytes and fibroblasts). In fact, despite being intrinsically vulnerable to HSV1, these patients 

show a remarkable absence of mucocutaneous infections.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. A) Brain magnetic resonance imaged of four-month-old infant with Herpes simplex 

encephalitis (T1- and T2-wieghted sequences; archives of the author) B) TLR3 signalling pathway 

showing the six known proteins encoded by HSV-1 Mendelian susceptibility genes (Zhang S.-Y.  

and Casanova J.L., 2015) 

 

 

A B 



MUDr. Markéta Bloomfield  Monogenic susceptibility to infectious pathogens   

Page 21 of 84 

 

1.4.3 Severe/fatal influenza  
 
   A family of single-stranded RNA influenza viruses underlies the annual seasonal, as well as the 

irregular epidemic/pandemic human infections (World Health Organization 2018). In the majority 

of patients, influenza manifests as a self-limiting respiratory infection with mild-to-moderate 

symptoms. However, in some patients it may take on more serious course requiring hospital 

admission and ventilation support. This interindividual variability is determined by individual risk 

factors, such as pre-existing pulmonary, cardiovascular, neurologic co-morbidities, age, obesity, 

pregnancy or previous exposure to influenza (Abadom T. et al., 2016; Eski A et al., 2019; McCullers 

J., 2014), as well as  the virulence of the influenza strain and the size of the infectious inoculum. The 

individual host genetic background is also an important facet (Clohisey S. and Baillie J., 

2019)(Figure 4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Illustration of genetic spectrum of human infectious susceptibility exemplified by 

susceptibility genes for influenza A (Flu) infections (adapted from Clohisey S. and Baillie J., 2019) 

 

   Comparing flu-susceptible population to control group, several genetic variants and 

polymorphisms have been associated with increased risk of severe influenza pneumonitis, affecting 

proteins involved in viral restriction control, interferon responses, inflammation/immune 

signalling or surfactant composition, such as Interferon-induced transmembrane protein 3,  

Transmembrane protease serine 2,  TNF-α, IL-1, IL-6, IL-17, IL-28, or Pulmonary surfactant-

associated proteins  (Clohisey S. and Baillie J., 2019).  
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   In very rare cases, otherwise healthy patients experience influenza as critical illness, typically as 

an acute respiratory distress syndrome or life-threatening encephalitis (Glaser C. et al., 2012). 

These patients were presumed to have disturbed amplification or response to interferons, and, 

correspondingly, individually documented kindreds were found to harbour AR or AD mutations in 

genes encoding interferon regulatory factors (IRF7 and IRF9) (Ciancanelli et al., 2015; Hernandez 

et al., 2018). Moreover, defects of genes encoding TLR3 protein (Lim et al. 2019) and GATA2 

transcription factor (Sologuren et al., 2018) have been identified as causative for the influenza-

specific failure of intrinsic immune responses. Recently, mutations in DBR1, an RNA lariat 

debranching enzyme, were shown to predispose to increased neurotropic sensitivity to very 

narrow spectrum of pathogens, i.e., influenza, HSV1 and norovirus (Zhang S. Y. et al., 2018). The 

interesting overlap of HSV1 neuron-specific susceptibility with influenza pneumocyte-specific 

susceptibility, conveyed by TLR3 deficiencies, leaves much to be explained. It is altogether obscure, 

why defects in such pleiotropic and ubiquitous innate mechanisms as interferon signalling 

pathways should account for the very narrow or even singular pathogen susceptibility, rather than 

an overall increased viral sensitivity. Perhaps the pathogen-specific reliance on activation of 

various IFN–dependent and IFN-independent signalling mechanisms might vary according to the 

cell/tissue type.  

 

1.4.4 Severe pyogenic infections 
 
   In some patients with severe course of invasive bacterial infections (i.e., sepsis, meningitis, 

arthritis, osteomyelitis, severe pneumonia, or deep abscesses) by Streptococcus pneumoniae spp., 

Staphylococcus aureus and Pseudomonas aeruginosa, but with unincreased vulnerability to other 

pathogens and normal basic immune parameters, mutations in genes encoding components of 

proximal PRR-mediated canonical nuclear factor‐kappa B (NF‐κB)‐dependent pathway were 

discovered (Courtois and Smahi., 2006; Ku et al., 2007; Picard et al., 2011). These include proteins 

involved in transduction of signal from TLR (other than TLR3) and most IL-1 receptors, namely 

MyD88 (Myeloid differentiation primary response gene 88), IRAK1 a IRAK4 (IL1R–associated 

kinase 1,4) or NEMO (essential modulator of NF-kB) (Figure 5). NF-kB is a ubiquitous protein 

complex with transcription factor function, that facilitates a broad spectrum of intracellular 

signalling resulting in upregulation and modulation of inflammatory responses (Picard et al. ,2003). 

In particular, biallelic loss-of-function mutations of MyD88, IRAK4 and hemizygous NEMO 

mutations confer a narrow susceptibility to invasive pneumococcal diseases (C.-L. Ku, Picard, et al. 

2007; Picard et al., 2003). Given the impaired upregulation of inflammatory molecules, these severe 
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infections are accompanied by surprisingly low increase of plasma C-reactive protein (CRP) and its 

inducer IL-6 concentrations. Also, the clinical signs of systemic inflammation are much less 

pronounced, for example only low fever is present at the beginning of infections due to IL-1 

hypoproduction. Interestingly, in a proportion of the patients, the infectious susceptibility appears 

to be age-dependent, i.e., decreases with aging.  

 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5. TLR, IL-1R family members signalling pathways and the pathway of NF-kB protein 

complex assembly (Jain et al. 2014) 

 
 

1.4.5 Recurrent/severe staphylococcal infections 
 
   Staphylococcus aureus in an encapsulated gram-positive, facultative human pathogen. It is, 

however, also a common commensal of upper airways, detectable in up to 30% of healthy people’s 

nares (Krismer et al., 2017). The pathogen-host interaction is of particularly complex nature and 

several IEI are hallmarked by increased susceptibility to Staphylococcus aureus; for instance, 

antibody and complement deficiencies, disorders of phagocytic killing, congenital asplenia, defects 

in distal components of canonical NF-kB pathway, or HyperIgE syndromes predispose individuals 

to Staphylococcal infections.  Some even confer a risk of severe organ infections or sepsis. These 
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patients, however, also suffer from infections by array of other bacterial, fungal and viral taxa. On 

the other hand, the prominent vulnerability to Staphylococcus aureus in patients with AD HyperIgE 

syndrome, caused by loss-of-function mutations in signal transducer and activator of transcription 

(STAT) 3, implies that the functional integrity of IL-6/STAT3 signalling cascade is particularly 

important in the anti-staphylococcal innate immune defence  (Park and Liu, 2020). IL-6 is a 

pleiotropic cytokine produced in response to danger signals, which participates in various biologic 

processes, including stimulation of acute phase responses, haematopoiesis and oncogenesis 

(Tanaka, Narazaki, and Kishimoto 2014) (Figure 6). Recently, sporadic patients with genetic loss of 

proteins involved in IL-6/gp130/IL6R/STAT3 signalling pathway (other than AD STAT3 loss-of-

function mutations), specifically IL-6 receptor deficiency, biallelic mutation in IL6ST encoding the 

gp130 co-receptor, and missense mutations in ZNF341 encoding a zinc finger transcription factor, 

were reported to confer selectively impeded resistance to Staphylococcus aureus (Spencer et al., 

2019; Béziat et al., 2018; Frey-Jakobs et al., 2018). These findings were supported by individual 

reports of staphylococcal infections in rare patients with autoantibodies against IL-6 (Puel et al., 

2008; Nanki et al., 2013), and by increased risk of staphylococcal infections in patients with 

rheumatologic diseases treated with IL-6 signalling blocking compounds (Nguyen et al. 2013).  

   Of note, an important clinical aspect of IL-6/STAT3 defects is the failure to mount an efficient 

acute phase response mirrored by diminished ability to increase serum CRP levels, as CRP is 

induced by IL-6 via STAT3.  

 

 

 

 

 

 
 
 
 
 

 

Figure 6. IL-6 signal transduction and its pleiotropic effect on upregulation of various biologic 

processes, including inflammatory mechanisms (inspired by Tanaka et al., 2011) 
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1.4.6 Meningococcaemia, meningococcal meningitis 
 
   The gram-negative encapsulated Neisseria meningitidis (the meningococcus) is the main cause of 

bacterial meningitis and septicaemia globally. In most carriers, it remains a harmless colonizer of 

the nasopharynx (in up to 10% of adolescents) and seldomly causes an invasive disease. In 

symptomatic cases, two epidemiological peaks typically occur; in infants >1 year of age and in 

adolescents and young adults between 15-25 years of age (Lewis and Ram, 2014). The individual 

vulnerability was puzzling until early observations that complement deficient people are at 

heightened risk of Neisseria infections (Figueroa and Densen, 1991).  

   The complement is a heavily regulated autocatalytic multienzyme system composed of 30+ 

proteins. It is activated in a stepwise manner by various exogenous and endogenous stimuli via the 

classic, alternative and lectin pathways, which converge in the C3 component. Distally from C3, the 

precisely orchestrated cleavage and interaction of terminal components C5-C9 result in the 

formation of a pore-shaped membrane attack complex with major bactericidal activity (Lewis and 

Ram, 2014; Hadders et al., 2012) (Figure 7). Patients with proximal component deficiencies are 

prone to infections by an array of pyogenic bacteria, as well as autoimmune features. Interestingly, 

studies of otherwise healthy survivors of severe or recurrent meningococcal infections identified 

genetic background in some patients, precluding functional deficiencies of factors C5-9 and 

properdin, the co-activator of alternative complement pathway. (Agarwal et al., 2010; Nürnberger 

et al., 1989; Kojima et al., 1998; Gianella-Borradori et al., 1988). Thus, deficiencies of terminal 

complement components underlie selective susceptibility to invasive meningococcal disease. 

 

 

 
 
 

 

Figure 7. The generation of membrane attack complex from distal complement components 

(Hadders et al., 2012) 
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1.4.7 Whipple‘s disease 
 
   Originally described in 1907 as a non-infectious intestinal autoinflammatory disease by H. 

Whipple, the causative agent, gram-positive bacillus Tropheryma whipplei, was cultured only in 

2000 (Raoult et al., 2000). The eponymous Whipple’s disease usually presents in later decades of 

life (50-60 years of age) and takes on a chronic course, manifesting with intestinal and systemic 

symptoms (Braubach et al., 2017). Curiously, chronic asymptomatic carriage of Tropheryma 

whipplei is common in the general population.  Recently, in a French study, IRF4 haploinsufficiency 

was shown to underlie severe Whipple’s disease with incomplete penetrance. IRF4 is expressed 

exclusively in immune cells (macrophages, dendritic cells, T and B lymphocytes) and takes part in 

regulation of leukocytes‘ differentiation and activation (Nam and Lim, 2016). As such, AD mutations 

in IRF4 represent another single-gene cause of a severe course of primary infection in otherwise 

healthy subjects (Guérin et al., 2018). 

 

1.4.8 Severe COVID-19 
 

   Most recently, the global occurrence of the novel human beta-coronavirus SARS-CoV-2 provided 

a unique opportunity to study the host-pathogen interaction in a naïve population on both 

individual and populational level. As soon as the interindividual variability of the disease, called 

COVID-19, became apparent, various risk factors were suggested to associate with its severity, such 

as age, obesity, diabetes, hypertension, coagulation dysfunctions, inflammation disorders, and 

others (Wolff et al., 2021). In parallel, corresponding to the human genetic theory of infections, the 

team around Professor Casanova formulated a hypothesis that in some patients, particularly in 

young, healthy adults, life-threatening COVID-19 may be due to an unknown monogenic IEI. 

Engaging the healthcare providers and researchers from all around the world in the COVID Human 

Genetic Effort project, several susceptibility loci known to govern TLR3–, IRF7– and TLR7-

dependent type I IFN immunity were found to underlie autosomal recessive, autosomal dominant 

or X-linked deficiencies. Together, these defects (in TLR3, TICAM, TBK1, UNC93B1, IRF3, IRF7, 

IFNAR1, IFNAR2 and TLR7) account for approximately 5% of severe COVID-19 infections in patients 

with no prior severe infections (Q. Zhang et al., 2020; Asano et al., 2021) (Figure 8A).  

   At the same time, supporting evidence of the non-redundant role of type I IFN signalling in 

protection against severe COVID-19 was delivered by the detection of high titres of neutralizing 

autoantibodies against IFNα and IFNω in about 10% of patients with severe COVID-19 pneumonia 
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(Bastard et al., 2020) (Figure 8B). Contrasting with severe COVID-19 patients with inborn genetic 

defects, these autoantibodies were predominantly found in older patients (> 60 years of age). 

   Remarkably, four months after the first COVID-19 cases were reported, a new life-threatening 

paediatric illness appeared in the high incidence communities, which was clearly temporally 

associated with SARS-CoV-2 infection and thus became known as PIMS-TS (Paediatric 

inflammatory multisystem syndrome temporally associated with SARS-CoV-2), or later MIS-C 

(Multisystem inflammatory syndrome in children) (Riphagen et al., 2020). This hyperinflammatory 

syndrome affects otherwise healthy children and resembles other childhood entities with overt 

inflammatory responses, such as toxic shock syndrome, macrophage activating syndrome, or the 

Kawasaki disease, a vasculitis of unknown aetiology with weak seasonal association with viral 

infections (Dietz et al., 2017). As such, a novel theory that rare IEI altering the immune response to 

SARS-CoV-2 may underlie the pathogenesis of MIS-C (and, by extension, the Kawasaki and other 

diseases) in some children (Sancho-Shimizu and Brodin, 2021) arose and is currently being tested. 

As a proof of principle, deleterious defects in XIAP (encoding X-linked inhibitor of apoptosis), CYBB 

(encoding beta subunit of cytochrome b-245) and haploinsufficiency of SOCS1 (suppressor of 

cytokine signalling 1) have already been shown to convey a genetic risk of MIS-C (Lee et al., 2020; 

Chou et al., 2021). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. A) Inborn errors of TLR3- and IRF7-mediated type I interferon immunity in severe 

COVID-19. In bold = proteins encoded by COVID-19 susceptibility genes (Q. Zhang et al., 2020) B) 

The effects of type I interferon autoantibodies, found in patients with severe COVID-19 (Bastard et 

al., 2020) 

 
 
 

A B 
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1.4.9 Mendelian susceptibility to mycobacterial diseases (MSMD) 
   

1.4.9.1  Mycobacteriacae and mycobacterial infections in humans  
 
   Mycobacteriacae is a multidiverse genus encompassing species that have infected humans since 

prehistoric era. In fact, tuberculosis (TB), caused by Mycobacterium (M.) tuberculosis, is the oldest 

known human contagious disease, documented by the detection of the bacterial DNA in the human 

fossils dating  9000 years back (Hershkovitz et al., 2008). Fascinating indirect evidence suggests its 

possible presence in Homo erectus 500,000 years ago (Kappelman et al., 2008). The genus includes 

over 170 species, which are traditionally divided into three groups, according to their clinical 

significance: 1. the strict pathogens, the TB-causing M. tuberculosis, the leprosy-causing M. leprae, 

and the bovine M. bovis 2. the non-tuberculous, or atypical mycobacteria (NTM), such as M. avium 

complex, M. abscessus complex, M. fortuitum, M. marinum, and M. ulcerans 3. the rare saprophytic 

organisms, such as M. smegmatis (Khandelwal and Dubey, 2020). M. tuberculosis is a highly 

contagious agent, claiming over 1.5 million deaths per year worldwide (Koch and Mizrahi, 2018). 

On the contrary, NTM are opportunistic, weakly virulent pathogens, found ubiquitously in soil, 

water reservoirs and vegetation, rarely causing human infections (Porvaznik et al., 2017).  

   If clinically penetrant, the infections with NTM most commonly manifest as pulmonary infections 

in adults (accounting for up to 85% of all adult NTM infections), lymphadenopathy in children (most 

commonly cervical lymphadenitis by M. avium complex), or by cutaneous lesions (Zhou et al., 2022; 

López-Varela et al., 2015; Lamb and Dawn, 2014; Jones et al., 2018). Risk factors for pulmonary 

NTM include the presence of underlying lung disease, low body-mass index and various secondary 

immunodeficient states affecting the cellular compartment per se, such HIV infection, treatment 

with TNF-α targeting agents, anti-IL-12/23 monoclonal antibodies or corticosteroids.  Various IEI 

also predispose to infections with NTM, such as severe combined immunodeficiency (SCID), 

HyperIgM syndrome, chronic granulomatous disease (CGD) and MSMD (discussed in detail below) 

(Henkle and Winthrop, 2015; Reichenbach et al., 2001). These IEI also represent increased risk of 

disseminated or severe localized infections, which appear in approximately in 15% of all NTM 

infections (Swenson et al., 2018). On the other hand, traumatic or surgical wounds soiled with 

contaminated materials increase the risk of cutaneous NTM even in immunocompetent patients 

(Lamb and Dawn, 2014). 

   The diagnosis of NTM infection relies on a high degree of clinical suspicion. The gold diagnostic 

standard is culture-positivity, which is, however, tricky to obtain due to weeks-long incubation 

period requiring special rich media (e.g., Löwenstein-Jensen, Middlebrook 7H11-mycobactin 
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medium) and rapid bacterial overgrowth (Nicolas et al., 2010). Other direct methods of pathogen 

detection utilize (immuno)histochemical acid-fast staining (Ziehl-Neelsen, auramine-rhodamine 

fluorescent stain), immunohistochemistry with specific fluorescent labels, and modern real-time 

polymerase chain reaction (rt-PCR) assays (Choi et al., 2012). Characteristic histopathologic 

pattern of mycobacterial infection is the necrotising epithelioid granuloma, composed of activated 

macrophages, multinucleated giant cells of Langhan´s type, and CD4+ T lymphocytes in the 

microenvironment governed mainly by IL-12 and IFNγ cytokines (Shah et al., 2017). The 

assessment of antigen-specific cellular immune recall, such as IFNγ-release assays (IGRA) and 

intradermal skin testing with purified protein derivate (Mantoux test) or aviary sensitin may be 

diagnostically utilized (Hermansen et al., 2014; Bilbo et al., 2018). Moreover, indirect supportive 

indices of NTM presence may be the negative results of conventional microbiological studies and 

usually unspecific laboratory parameters with only mildly elevated inflammatory markers. 

   Treatment of NTM is notoriously precarious, owing mainly to a high natural resistance of NTM to 

first-line anti-TB drugs and the necessity of prolonged treatment (Wi, 2019).    

   Interestingly, the incidence of NTM has been reported to be increasing in the past decades, 

particularly in countries with decreasing TB incidence (K. L. Chin et al., 2020), which is likely due 

to improving access to diagnostic resources, and possibly due to the discontinuation of population-

wide TB vaccination with attenuated Bacillus Calmette-Guérin (BCG), which is presumed to provide 

some level of protection against NTM (Dolezalova and Gopfertova, 2021) (Figure 9). This 

represents a challenge for the clinicians, particularly for the paediatric immunologist, because 

opportunistic NTM infections represent the classic red flags for several IEI. 

 

 

 

Figure 9.  Cumulative incidence of 

infections with M. tuberculosis 

(causing tuberculosis, TBC) and non-

tuberculous mycobacteria (NTM) in 

the Czech paediatric population in the 

past two decades (the population-

wide vaccination with BCG was 

discontinued in 2010) (Dolezalova 

and Gopfertova, 2021) 
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1.4.9.2 Antimycobacterial immunity - overview 
 
   Mycobacteria are intracellular pathogens capable of infecting any human tissue. The 

antimycobacterial immunity is a multifaceted complex of immediate and long-term response 

actions, which may result in complete clearance, latency, or progression of the infection. The first 

barrier counteracting the host invasion by mycobacteria are the epithelial cells. Beyond the 

provision of physical obstacle, they also recognize mycobacterial PAMPS via TLR, nucleotide-

binding oligomerization domain-containing protein 2 (NOD2), Dectin-1, c-type lectin and mannose 

receptors (Ferguson and Schlesinger, 2000). Consequently, they produce various antimicrobial 

peptides (particularly LL-37, β-defensin 2 and hepcidin) and immune attractants (e.g., TNF-α, 

granulocyte-macrophage colony-stimulating factor, RANTES, C-X-C motif chemokine ligand 9 and 

10) (Li et al., 2012). These mediators draw an array of cells, i.e., phagocytes, neutrophils, 

professional antigen presenting cells and lymphocytes, to the site of infection (Griffith et al., 2014), 

where the mainstay of antimycobacterial defence rests upon the cooperation of innate and adaptive 

immune mechanisms. This is predominantly ensured by the IL-12, IL-23/ IFNγ-mediated 

communication pathway between mononuclear phagocytes (i.e., macrophages, monocytes and 

dendritic cells) and type 1 helper T cells/NK cells (Figure 10). IL-12, IL-23 and IFNγ are the 

backbone activators of proinflammatory signals and activities in these cells, augmenting processes 

such as antigen presentation, intracellular killing via production of reactive oxygen species, 

microbicidal nitric oxide or phagosome-lysosome fusion and lysosomal degradation, and paracrine 

secretion of pro-inflammatory cytokines, such as TNF-α, IL-1, IL-6 and IL-8 (Jalaledin et al., 2021). 

The histologic correlate of such complex orchestration is the sealing of mycobacteria within the 

granulomas patrolled by phagocytes and walled by the rim of CD4+T cells (Russell, 2007). 

 

Figure 10. Schematic representation of components of IL-12, IL-23/IFNγ signal transduction 

between mononuclear phagocytes (dendritic cells - DC, monocytes, macrophages) on the left and 

T and NK (natural killer) cells on the right (Bucciol et al., 2019) 
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   The humoral immunity, i.e., the complement and antibody-mediated responses, facilitating 

opsonization for enhanced phagocytosis or direct killing of mycobacteria by complement-mediated 

lysis or antibody-dependent cytotoxic activity of NK cells, were somewhat disregarded in the past 

as to their contribution to the clearance of intracellular mycobacteria (Bohlson et al., 2001; Achkar 

et al., 2015). Although still controversial, recent evidence points to specific antimycobacterial 

antibody efficacy, which may differ according to isotype and body compartment (Zimmermann et 

al., 2016). 

   Mycobacteria have developed a surprisingly broad range of strategies of immune evasion and 

survival (Fraga et al., 2018). It is likely that the human heritable antimycobacterial defence 

machinery evolved to such a complex system of interconnected redundant and non-redundant 

mechanisms thanks to the millennia-long host-pathogen interactions. Consequently, several 

genetic hosts factors are now known to confer variable levels of susceptibility to mycobacteria. 

 

1.4.9.3    Genetic host factors of mycobacterial susceptibility 
 
   On one hand, genome-wide association studies and linkage analysis identified susceptibility loci 

of variable strength of association with mycobacterioses (Thye et al., 2010, 2012; Curtis et al., 2015; 

Sveinbjornsson et al., 2016; Zheng et al., 2018). On the other hand, classic single-gene IEI with 

numeric or functional defects of T cells,  dendritic cells and aberrant intramacrophageal killing 

confer increased susceptibility to NTM, amongst various other pathogens (Duncan and Hambleton, 

2014). The third class of genetic susceptibility is represented by a group of rare monogenic inborn 

errors of intrinsic immunity, affecting the IL-12, IL-23/IFNγ circuit, which underlie a highly 

selective susceptibility to weakly virulent NTM and attenuated BCG vaccinal substrains, the 

Mendelian susceptibility to mycobacterial diseases (MSMD). To date, over 450 patients have been 

reported globally to harbour mutations in one of the 18 known MSMD-associated genes involved in 

IFNγ production (i.e., IFNG, IL12, IL12RB1, IL12RB2, IL23R, ISG15, RORC, SSPL2A), in response to 

IFNγ (i.e., IFNGR1, IFNGR2, STAT1, JAK1, TYK2, CYBB), or in both (IRF8, NEMO) (Bustamante 2020; 

Bustamante et al. 2014) (Figure 11). Recently, mutations in ZNFX1 and TBX21 were also added to 

the genetic aetiology of MSMD (Noma et al., 2022).  
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Figure 11.  Proteins affected by single-gene 

mutations underlying Mendelian susceptibility to 

mycobacterial diseases. Reported defects are 

highlighted in red (updated, based on Duncan 

and Hambleton, 2014) 

 

   Finally, an interesting aetiology of adult-onset 

MSMD phenocopy was reported – the presence of 

IFNγ autoantibodies (Browne et al., 2012; 

Kampmann et al., 2005; Lee et al., 2013). 

However, the pathophysiologic mechanism 

underlying the genesis of these autoantibodies is 

yet to be explained.  

   Unsurprisingly, patients harbouring biallelic, otherwise populationally rare variants are often 

recruited from consanguineous families. The frequency of reported MSMD genetic aetiology is 

shown in Figure 12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. The total number of individuals with each MSMD aetiology as reported globally in 

2020 (Bustamante, 2020) 
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1.4.9.4 Clinical features of MSMD 
 
   MSMD typically manifests in childhood, particularly in infants who receive BCG vaccine, but may 

present later in adolescence or adulthood. Although some patients also suffer from non-typhoid 

salmonellae or viruses (particularly the Herpesviridae family), the opportunistic mycobacterial 

vulnerability dominates the clinical phenotype. The symptoms range from adverse reactions to BCG 

vaccination, such as BCGitis – the inoculation site-limited infection associated with regional 

lymphadenopathy, to life-threatening organ/disseminated mycobacteriosis, often treatment-

refractory or recurrent (Taur et al., 2021). The severity and course of the disease is strongly 

governed by the genotype; some mutations underlie a partial loss of signal transduction within the 

IL-12, IL-23/IFNγ pathway (e.g., AD IFNGR1 or STAT1 mutations) and display variable expressivity 

and incomplete penetrance, others are responsible for complete block (e.g., AR IFGR1 and IL12RB 

mutations) with invariantly fatal prognosis (Bustamante, 2020; Boisson-Dupuis et al., 2012; Kerner 

et al., 2020). As with many other rare diseases, the genotype-phenotype correlations are being 

reinforced with every reported kindred.  

   Despite the clinically prominent immune failure, the routinely examined parameters of humoral 

and cellular immune functions are more or less normal in majority of MSMD patients, which, 

paradoxically, represents a red flag for this IEI. In patients harbouring CYBB mutations the failure 

of generation of oxidative burst may be detected (Khan et al., 2016), and in patients with RORC 

mutations the development of Th17 lymphocytes is hampered (Okada et al., 2015).  

   Patients with MSMD and active mycobacterial infections are treated with prolonged courses of 

combinations of anti-TB drugs, preferably according to the antibiotic susceptibility of the particular 

strain. Because of the high antibiotic resistance of NTM, second-and third-line anti-TB drugs are 

usually used. Patients with (at least residually) preserved functional capacity to transduce IFNγ 

signal benefit from treatment with recombinant IFNγ, while disorders with completely abolished 

signalling ability are not thus ameliorable. In these patients, hematopoietic stem cell 

transplantation (HSCT) may represent a potentially curative strategy, albeit extremely risky in the 

settings of active mycobacterial infection (Chantrain et al., 2006; Olbrich et al., 2015) and due to a 

hight risk of graft rejection, likely associated with the persistently increased serum level of IFNγ 

(Rottman et al., 2008). 

   The establishment of genetic diagnosis of MSMD enables genetic counselling for the affected 

families, however the individual predicament may be challenging to elucidate, given the 

phenomena of incomplete penetrance and variable expressivity in many of the reported MSMD 

kindreds. 
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   For illustrative purposes, the following text describes two genetic aetiologies of MSMD, 

which were so far identified in Czech patients. These patients were the once involved in the 

research projects of this author. The other MSMD aetiologies have been either reviewed or 

described individually in comprehensive details elsewhere (please, refer to the reference list).   

 

1.4.9.5 Autosomal dominant partial IFNγR1 (AD IFNγR1) deficiency 
 
   AD IFNγR1 deficiency was described in 1996 as the bona-fide first IEI with a monogenic selective 

infectious susceptibility (Jouanguy et al., 1996). By 2020, more than 50 unrelated families had been 

described worldwide, of which five patients were diagnosed in the Czech Republic. Most often, the 

heterozygous mutation is located in the hotspot encoding the cytoplasmic domain of the R1 subunit 

of the IFNγ receptor (Jouanguy et al., 1999; Bustamante et al., 2014). These mutations exert a so-

called dominant negative effect - the receptor subunit encoded by the mutated allele is both non-

functional and, at the same time, accumulates on the cell surface, thus interfering with the normal 

function of receptors encoded by the wild-type allele. As a result, the signalling is significantly 

reduced. The disease shows broad clinical heterogeneity and incomplete penetrance. The overall 

mean age of onset is 13.4 years, depending largely on whether BCG vaccine is administered 

(Dorman et al., 2004). In addition to localized or disseminated atypical mycobacteriosis, patients 

are also at greater risk of invasive non-typhoid Salmonellae. Moreover, a characteristic feature of 

IFNγR1 deficiency is mycobacterial multifocal osteomyelitis. This affinity for bone tissue is not 

satisfactorily explained, although enhanced IFNγ -dependent inhibition of osteoclast formation was 

demonstrated recently to impair the osteoclastogenesis in IFNγR1 and STAT1 deficiencies 

(Tsumura et al., 2022). The routinely tested cellular and humoral immune parameters are normal 

in majority of patients, unless skewed secondarily by the active mycobacterial (or other) infection. 

Importantly, the clinical utility of non-direct tests (i.e., Mantoux test or IFNγ-release assays) for the 

detection of mycobacteria may be hampered by the impaired cellular responsiveness, therefore 

cultures and direct detection methods (such as PCR, immunofluorescence) are more reliable. The 

ability to form specific granulomas is highly individual, reflecting each patient’s ability to produce 

or respond to IFNγ (Lammas et al., 2002). 

   The diagnosis is established by genetic testing. The functional integrity of the IL-12, IL-23/IFNγ 

circuit can also be examined by assessing the cytokine secretory response to stimulation with BCG, 

IL-12 or IFNγ (Feinberg et al., 2004), STAT phosphorylation and IFNγ-inducible gene expression 

assays (Bloomfield et al., 2018) in response to IFNγ. Moreover, the accumulation of IFNγR is 

detectable by flow cytometry and, in the author’s experience, represents a quick screening tool for 
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IFNγR1 deficiency. Excepting the genetic evaluation, the aforementioned tests are not routinely 

available in the clinical setting and require individually tailored research approach.  

   The treatment of patients with AD IFNγR1 constitutes of multidrug regimens with anti-TB drugs 

administered for months/years and, if indicated, regular subcutaneous administration of IFNγ 

(Kerner et al., 2020). Surgical debridement of the sites of infections is sometimes required. Long-

term prophylaxis with anti-TB drugs is also utilized in patients with recurrent mycobacterial 

infections. If appropriately managed, patients typically survive well into adulthood (Dorman et al., 

2004). 

 

   The first literary accounts of probable MSMD in former Czechoslovakia date back to 1959 

and 1977, reporting two cousins with disseminated BCG and salmonellosis, therefore 

resembling the symptoms of AD IFNγR1 deficiency (Dvořáček et al., 1959; Dolečková et al., 

1977). The first Czech patient with genetic aetiology of MSMD, the AD IFNγR1 deficiency, was 

identified in 2013 and reported by the author of this thesis (Bloomfield et al., 2016) (Figure 

13). Since then, three other patients and one asymptomatic carrier were diagnosed in the 

Czech Republic.  

 

 

 

 

Figure 13. The timeline of clinical manifestations of MSMD and treatment of a Czech child with 

autosomal dominant partial IFNγR1 deficiency.  Green square, red cross = initiation and 

discontinuation of IFNγ treatment, respectively (expanded from Bloomfield et al., 2016). 
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1.4.9.6 Autosomal dominant partial STAT1 deficiency 
 
   STAT1 is an important prototypical cytokine-responsive transcription factor, transducing signals 

from interferons and other factors involved in immune responses against intracellular pathogens 

and viruses (Schindler et al., 2007; Pestka et al., 2004). In the context of antimycobacterial 

immunity, STAT1 mediates IFNγ signalling after its ligation to IFNγR via the Janus kinase (JAK)-

STAT pathway (similarly to IL-27 signalling). The phosphorylated STAT1 homodimerizes into 

gamma-activating factor (GAF) which translocates to nucleus to bind to the gamma-activating 

sequence (GAS) within promoters of IFNγ-inducible genes (Decker et al., 1997). The STAT1-

mediated antiviral signalling is orchestrated differently. During the type I interferon-driven 

recruitment of STAT1, phosphorylated STAT1 forms a heterodimer with STAT2 and IRF9, known 

as interferon-stimulated gene factor 3 (ISGF3), which is translocated to nucleus and binds the IFN-

stimulated response element (ISRE) to upregulate the IFNα- and IFN-β target genes (Horvath, 2000; 

Bluyssen and Levy, 1997) (Figure 14). 

 

 

 

Figure 14. The dual role of Signal transducer and activator of transcription 1 in type I, II, III 

interferons and IL-27 signalling  (Boisson-Dupuis et al., 2012) 

 

   Four distinct phenotypes of STAT1 genetic variants are now recognized: AR complete STAT1 

deficiency, AR partial STAT1 deficiency, AD partial STAT1 deficiency, and AD STAT1 gain-of-

function (Mizoguchi and Okada, 2021) (Figure 12). The first three of these convey MSMD phenotype 
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with or without increased susceptibility to other intracellular bacteria and viruses, depending on 

whether the IFNγ-activated responses are disturbed only, or if the IFNα/β responsiveness is also 

corrupted (Averbuch et al., 2011; Boisson-Dupuis et al., 2012). The AD partial STAT1 mutations 

have been identified in less than 50 patients worldwide (Zhang et al., 2021). The molecular 

mechanisms of decreased STAT1 signalling is mutation-specific and causes either decreased STAT1 

phosphorylation, reduced DNA-binding capacity of GAF, its defective nuclear transport, or both the 

latter (Liu et al., 2022; Dupuis et al., 2001; Tsumura et al., 2012). Similar to the AD partial IFNγR1 

deficiency, the mutations exert a dominant-negative effect on wild-type STAT1 and incomplete 

penetrance and variable expressivity is common (Bhattad et al., 2021). The disease usually 

manifests in childhood or adolescence, displaying clinical signs similar to AD IFNγR1, i.e., BCGitis in 

vaccine recipients (Figure 15A), NTM infections of variable extend (Figure 15B), as well as 

recurrent or multifocal osteomyelitis (Averbuch et al., 2011; Liu et al., 2022; Hirata et al., 2013).  

   AD partial STAT1 deficiency confers selective predisposition to mycobacterial infections, due to 

its impaired GAF-, but not ISRE-mediated responses to interferons. This is in strong contrast to AR 

complete STAT1 deficiency, which renders patients vulnerable to viruses besides NTM (mainly 

Herpesviridae) (Boisson-Dupuis et al., 2012). Such disparity is likely owing to the quantitative 

representation of STAT1 in homodimeric GAF and heterodimeric (ISGF3) STAT1 complexes.  

   The diagnosis is nowadays established primarily by genetic analysis, and may be supported by 

STAT phosphorylation assays (which, however, only detect mutations affecting STAT1 

phosphorylation), evaluation of GAS-inducible genes expression in response to IFNγ (Bloomfield et 

al., 2018) or stimulation assays with BCG, IL-12 or IFNγ (Feinberg et al. 2004). The same limitations 

for the ascertainment of mycobacteria apply as for the AD partial IFNγR1 deficiency, including the 

restricted response in IFNγ-release assays and possibly restricted capability to generate 

granulomas. The patients are treated with prolonged multidrug anti-TB regimens and may also 

benefit from adjuvant IFNγ. HSCT is not recommended due to the usually milder phenotype (Zhang 

et al., 2021). 

    

   The first Czech patient with AD partial STAT1 deficiency was identified by the author of this 

thesis in cooperation with prof. Bustamante (Laboratory of Human Genetics of Infectious 

Diseases, Paris) in 2016. Since then, 1 other patient and 4 asymptomatic carriers were found 

(Figure 15).  
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Figure 15. A) Reactivation of vaccinal Bacillus Calmette-Guérin (BCG) at the site of its inoculation, 

presenting as lupus vulgaris in otherwise healthy 6-year-old male with AD partial STAT1 

deficiency. B) Mycobacterium marinum infection of nose in a in otherwise healthy 16-year-old 

female with AD partial STAT1 deficiency (Dolezalova et al., 2022) 

 

1.4.10 Chronic mucocutaneous candidiasis (CMC) 
 

1.4.10.1    Candida species and Candida infections in humans  
 

   Candida, a fungal genus of Ascomycetes containing over 200 species, is a white asporogenous 

dimorphic yeast capable of hyphae formation. It includes seven medically important species, e.g., C. 

albicans, C. tropicalis, C. parapsilosis C. glabrata, of which C. albicans accounts for up to 80% of all 

Candida strains isolated from infected patients. Candida is a common human commensal of the 

healthy and one of the most prominent opportunistic pathogen affecting the immunocompromised 

(Chin et al., 2016), as exemplified by the high rates of intensive-care units bloodstream infections 

(Schelenz, 2008; Muderris et al., 2020). Candida species harmlessly colonize cutaneous and 

mucosal sites of the body of 30% of healthy individuals, particularly the skin, mouth, gut and 

genitals. However, if the immune barriers are breached, the yeast may invade locally and cause 

surface-limited candidiasis, manifesting as skin lesions, mucositis of the mouth, onychomycosis of 

the nails, or gastrointestinal (e.g., oesophagitis) and respiratory (e.g., laryngotracheitis) mucositis. 

The chronic mucocutaneous candidiasis is then defined as persistent or recurrent skin, nail, and 

mucosal infection (Liu et al., 2011). In most severe cases, it may spread into any organ and cause 

disseminated parenchymal candidiasis and candidemia (Plantinga et al., 2012). 

   The risk factors of penetrant Candida infections are many, both inborn and acquired, often 

iatrogenic. Surface-limited mucocutaneous infections are more common in individuals with 

compromised skin/mucosal barriers, artificial dentures, increased skin contact with water, 
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systemic antibiotic therapy, secondary immune suppression or IEI affecting the Th17 lymphocytes 

functionality (López-Martínez, 2010; Millsop and Fazel, 2016). Risk factors for invasive Candida 

infections include comorbidities and medical interventions, such as immunosuppression due to any 

secondary cause (e.g., systemic steroid administration), the use of broad spectrum antibiotics, 

indwelling central venous catheters, mechanical ventilation, renal replacement therapy, parenteral 

nutrition, diabetes mellitus, malnutrition, intensive care unit stay, as well as several primary IEI, 

particularly the numeric and functional defects of neutrophils,  (Thomas-Rüddel et al., 2022).  

   The diagnosis of infection with Candida rests upon culture results which also warrants the most 

appropriate selection of antifungal treatment according to the antibiotic resistance of the yeast 

strain. The diagnosis of systemic infections may be supported by serologic tests detecting 1,3 beta-

D-glucan, mannan or anti-mannan antibodies (Piskorska et al., 2014; Bloos et al., 2018), both 1,3 

beta-D-glucan and mannan being the integral Candida wall polysaccharide (Domer, 1989). 

   The therapeutic repertoire for candida infections is relatively broad, utilizing compounds such as 

azoles, amphotericin B and echinocandins (Glöckner et al., 2009). However, a looming current 

threat lies within the increase of antifungal drug resistant strains of Candida (Shawn et al. 2012; 

Lockhart et al., 2017). 

 

1.4.10.2    Anti-Candida immunity - overview 
 

   The human anti-Candida immunity constitutes of several integrated layers of protection which 

share the key features across various tissues yet demonstrate certain tissue-specific differences, 

modulated by whether the yeast or hyphae morphogenetic forms are being fended off (Figure 16). 

 

 

 

 

 

 

 

 

Figure 16. A high-

level overview of 

effector mechanisms 

involved in human 

antifungal immunity  

(Netea et al., 2015) 
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   The innate immune mechanisms recruited to the frontline defence include an armament of soluble 

antifungal peptides, such as epithelial cells-derived β-defensins, an array of PRR on various cells, 

such as C-type lectin receptors (dectins 1, 2, 3), TLR, NLR and RLR receptors, mannose receptors 

DC-SIGN and MINCLE, as well as neutrophil-bound Complement receptor 3 and Fcγ receptors. The 

engagement of these receptors via the Candida PAMPS, such as O/N-mannans, beta-glucans or 

chitins, initiates signalling events, which mediate and amplify the danger signal; for instance, the 

activation of SYK- and RAF1-dependent pathways [utilizing the caspase activation and recruitment 

domain-containing 9 adaptor protein (CARD9) (Drummond et al., 2011)], activation of protein 

kinase Cδ (PKCD) (Elsori et al., 2011), the NF-κB pathway, the RLR melanoma differentiation-

associated protein 5 (MDA5)-mediated pathway, or the NOD-, LRR- and pyrin domain-containing 3 

(NLRP3) inflammasome activation pathway (Netea et al., 2015). .Interestingly, NLRP3 

inflammasome is only activated by Candida hyphae, but not yeasts, which represents one of the 

discriminatory mechanisms of host response to harmless Candida colonization and invasion (Gow 

et al., 2012).   

   The overall effects of these primary immune events are the production of anti-Candida 

microbicidal peptides, pro-inflammatory cytokines (such as IL-1β, IL-6, IL-17, IL-22, IL-23, TNF-α) 

and chemokines, the recruitment of neutrophils, phagocytes and dendritic cells to the site of 

invasion, as well as activation of T lymphocytes.  The immune cells involved in the protection 

against systemic Candida invasion are mainly neutrophils (via production of ROS, fungicidal 

lysozyme, lactoferrin, elastase, cathepsin G or via formation of neutrophil extracellular traps), 

monocytes (via their proinflammatory secretory activity, bloodstream patrolling and ability to 

differentiate into macrophages) and macrophages themselves (via oxidative and non-oxidative 

killing mechanisms and their production of proinflammatory cytokines).  On the other hand, 

mucosal surfaces are guarded by innate lymphoid cells (ILC) (i.e., IFNγ- producing ILC1 and IL-

17/22 producing ILC3) and IFNγ-, IL-17-, and IL-22-producing T cells, activated by Candida 

peptides processed and presented by dendritic cells via their main histocompatibility complex class 

II (Netea et al., 2015). 

   As for the adaptive immune mechanisms, type 1 helper T cells producing IFNγ are important for 

the activation of macrophages and neutrophils, however the pivotal role is carried out by a subset 

of T helper lymphocytes called Th17. These cells are induced under the influence of TGF-β, IL-6, IL-

21 and IL-23. The three latter signal via STAT3, which upregulates the expression of Th17 master 

regulator, RORC, encoding the retinoic acid-related orphan receptor γ (RORγ), which then in turn 

acts as a lineage-specific transcription factor inducing Th17-related products IL-17F, IL-17A, IL23R 

(Chi et al., 2022). These factors subsequently promote epithelial cells’ and neutrophils’ responses 
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to Candida on the cutaneous and mucosal surfaces (van de Veerdonk et al., 2011; Liu et al., 2011; 

Puel et al., 2011). The events following the sensing of Candida are schematically summarized in 

Figure 17. 

   Antibody-mediated immunity probably plays only a minor role in Candida protection, as 

evidenced by the absence of increased fungal susceptibility in patients with inborn 

agammaglobulinemia. Some utility of antibodies is, however, suggested by that fact the 

immunoglobulin-opsonized Candida is recognized by the Fcγ receptors, which enhances its 

phagocytosis (Gazendam et al., 2014).    

 

 
 
 

Figure 17. A cell-level overview of the key aspects of human antifungal immunity (details in the 

text) (Wang and van de Veerdonk, 2016) 

 

1.4.10.3    Genetic host factors of Candida susceptibility 
 
   Infections with Candida have long been known to accompany many classic IEI, which display 

additional clinical features and/or broader infectious susceptibility beyond the propensity to 

Candida. In respect to chronic mucocutaneous candidiasis (CMC), these may be categorized as 

“syndromic CMC” and “CMC associated with other IEI” (as opposed to truly “isolated” CMC) and 
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include IEI with compromised T cell compartment, such as SCID, STAT1 gain-of-function (GOF) CMC, 

AD HyperIgE syndrome, ZFX341 deficiency, RORγ deficiency, CARD9 deficiency, autoimmune 

polyglandular syndrome type 1 (APS1 or AIRE deficiency), and neutrophil defects, such as chronic 

granulomatous disease and disorders of neutrophil development (Figure 18). 

 

 

 

Figure 18. Aetiologies of chronic mucocutaneous candidiasis, presenting as either singularly 

increased susceptibility to Candida (column on the left), or associated with other features or IEI 

(column on the right) 

 

 

   The first two genetic aetiologies of “isolated” candidiasis were found to underlie AR IL-17 receptor 

A deficiency and AD IL-17F deficiency in 2011 (Puel et al., 2011b). The discoveries provided a long-

expected proof of a principle that IL-17 and its signalling sequalae are essential for mucocutaneous 

immunity against C. albicans, but redundant for other antimicrobial immunity. To date, mutations 

in IL17RA, IL17F, IL17RC, ACT1 and JNK1 are known to underlie the isolated CMC (Puel, 2020). 

Correspondingly, many of the CMC symptoms in other IEI may be explained by the impairment of 

Th17 induction or activities. For instance, the failure of Th17 induction in AD HyperIgE syndrome 

is due to the lack of STAT3 which fails to mediate signalling downstream from IL-6, IL-21 and IL-23 

receptors (Ma et al., 2008); in STAT1 GOF the functional dominance of STAT1 over STAT3 and the 

inhibitory effect of type I IFN-rich environment on STAT3 underlies the Th17-penia; in AR ZNF341 

deficiency and RORγ deficiency low Th17 counts are due to the loss of STAT3 transcription 

regulator and the loss of Th17 transcription factor, respectively (Ma et al., 2008; Okada et al., 2015). 

The restriction of IL-17 and IL-22 activity in APS1 is due to the presence of autoantibodies against 

these cytokines (Puel et al., 2010). Interestingly, phenocopies of monogenic isolated CMC were 

reported in adult-onset CMC cases due to the high level of neutralizing autoantibodies against 
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cytokines IL-17A, IL-17F and IL-22 (Ku et al., 2020). Finally, a secondary “isolated” CMC is 

sometimes experienced by patients treated for autoimmune disorders with monoclonal antibodies 

targeting anti-IL-17 (Báez-Gutierrez and Rodríguez-Ramallo, 2021). 

   Interestingly, only a small fraction of CMC patients develops invasive candidiasis. The relative 

scarcity of invasive candidiasis in patients with profound T cell defects (who, on the other hand, 

frequently suffer from CMC) underscores the limited role of T cells in prevention of systemic 

Candida invasion, but their pivotal role in defence against surfaces-restricted infections.  

Conversely, invasive candidiasis is more common in neutrophil disorders, monocyte/macrophage 

disorders, or CARD9 deficiency, which, interestingly also predisposes to invasive dermatophytosis 

(Puel, 2020; Vinh, 2011). 

 

   The following text describes in further detail a rare syndromic CMC caused by 

hypermorphic mutations in STAT1 (STAT1 GOF) as this disease was at the centre of this 

author’s doctoral research. The first Czech patient with STAT1 GOF CMC was diagnosed in 

2015. At the time of conception of this thesis, 12 patients with STAT1 GOF CMC have been 

identified, most of them are managed by the author of this thesis.  

 

1.4.10.4    STAT1 gain-of-function chronic mucocutaneous candidiasis (STAT1 GOF 
CMC) 

 

   The hypermorphic mutations in STAT1 were originally described to convey a selective 

susceptibility to superficial Candida infections with some autoimmune features (van de Veerdonk 

et al., 2011). To date, over 400 patients have been reported worldwide, harbouring a total of over 

100 mutations. Intriguingly, STAT1 GOF was found to underlie over half of all inherited cases of 

CMC. Studies on larger cohorts also demonstrated that the mutations results in syndromic disease 

with a complex and heterogeneous set of infectious and non-infectious symptoms (Toubiana et al., 

2016; Liu et al., 2011). This diversity of clinical features is not understood; however, a variant-

specific gene transcription profile was reported in some mutations (Giovannozzi et al., 2021; Ovadia 

et al., 2018).  

   The individuals affected by STAT GOF mutations suffer from extensive, recurrent or refractory 

CMC (Figure 19). The risk of invasive candidiasis is also increased (in ~10% of cases), and the 

infectious spectrum is wider, i.e., patients suffer from other fungal, viral and bacterial pathogens. 

Moreover, up to 40% of patients develop autoimmune complications (such as thyroiditis, immune 

cytopenia, hepatitis, systemic lupus-like symptoms, diabetes mellitus, Addison disease), some 
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present with vasculopathies (large vessel aneurysms in 6% of patients), and skin/mucosal 

malignancies (in 6% of patients).  

 

 

 

 

 

 

 

 

 

 

 

Figure 19. Clinical presentation of chronic mucocutaneous candidiasis in a patient with STAT1 

gain-of-function mutation (archives of the author) 

 

   The median age of onset is approximately one year, although the diagnosis is often delayed until 

adulthood (Depner et al., 2016; Toubiana et al., 2016; Okada et al., 2020; Puel et al., 2011). In fact, a 

significant proportion of patients with milder CMC symptoms is diagnosed only when their 

offspring displays similar symptoms, as STAT1 GOF segregates in AD trait. On the other hand, the 

disease is incompletely penetrant, and minority of cases arise from de-novo mutations.  

   The pathophysiology has not been fully explained yet. While the increased fungal susceptibility is 

now well linked to the failure of Th17 immunity (Zheng et al., 2015), the non-infectious features of 

STAT1 GOF CMC are much less understood, particularly the autoimmune and vascular 

complications. On a molecular level, the increased STAT1 activity is proposed to be caused by one, 

or a combination of the following: augmented STAT1 phosphorylation, delayed STAT1 

dephosphorylation, increased total STAT1 protein levels or increased stability of the STAT1 dimer 

(Zheng et al., 2015; Zimmerman et al., 2019). These events likely result in altered histone 

acetylation upon STAT1-DNA interaction. Consequently, the transcription of STAT3-inducible 

genes is reduced, as STAT1 and STAT3 compete for the DNA-binding sites (Zheng et al., 2015). Thus, 

the STAT3-mediated Th17 differentiation is hampered, and the Th17-dependent defence against 

Candida is impaired.   

   On the other hand, the pathophysiological background of autoimmune features in STAT1 GOF is 

only hypothesized. Several theories, derived mainly from similarities with other IEI with diverse 

autoimmune dysregulation, such as APS1 syndrome (Zimmerman et al., 2017), 
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immunodysregulation-polyendocrinopathy-enteropathy X-linked syndrome (IPEX syndrome) 

(Bennett et al., 2001)or type I interferonopathies (eg., Aicardi-Goutières syndrome, systemic lupus 

erythematodes) (Crow, 2011; Crow and Manel, 2015) were suggested. The presence of 

autoantibodies or intrinsic defects of B cells and their signalling (Romberg et al., 2017; Hiller et al., 

2018), the role of regulatory cells (Treg) (Uzel et al., 2013), and the pro-autoimmune bias of the 

enhanced type I and II signalling via the enhanced activity of STAT1 (Okada et al., 2020) were 

examined, alas, none of these mechanisms have provided an overarching explanation. 

   The baseline immunologic work-up may yield normal results, even in cases with extensive CMC. 

Nevertheless, dysgammaglobulinaemia (most commonly low IgG2 and IgG4) and T or B 

lymphopenia (most frequently decreased memory B lymphocytes) are regular findings. These are 

likely secondary sequalae of the chronic inflammatory milieu, rather than primary consequences of 

the STAT1 mutation. In terms of life-threatening systemic Candida invasion, the most dangerous 

setting is a concurrence with immune neutropenia, which allows a swift breach of the host anti-

Candida defence.  

   The diagnosis is established by genetic analysis; nowadays, NGS methods are employed for 

targeted single gene/multiple-gene panel/ or whole exome sequencing (Casanova et al., 2014; 

Ovadia et al., 2018; Xie et al., 2022). Supporting evidence is the low peripheral blood Th17 count, 

which may be determined with and without stimulation with mitogens (phorbol myristate acetate) 

or specific antigens (Candida, PPD, zymosan etc.), STAT1 phosphorylation assays and gene 

expression studies (Bloomfield et al., 2018). 

   The therapeutic mainstay is a long-term prophylactic administration of antifungals (Figure 20) 

and vigorous antimicrobial treatment of all infections. In neutropenic patients, 

granulocyte/granulocyte-monocyte growth factors may be used, and in the case of 

hypogammaglobulinemia, polyclonal immunoglobulins are administered (Toubiana et al., 2016; 

Depner et al., 2016).  
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Figure 20. Effect of treatment with antifungal itraconazole on chronic symptoms of 

mucocutaneous candidiasis in a child with STAT1 gain-of-function mutation (archives of the 

author) 

 

   The latest progress suggested the possible utility of small molecules, which directly impact the 

immunopathologic mechanism of the disease via targeting the upstream Janus kinases (Forbes et 

al., 2018; Bloomfield et al., 2018; Deyà-Martínez et al., 2022). These JAK inhibitors (e.g., ruxolitinib, 

baricitinib) block the ability of JAK to phosphorylate STAT1, thus reducing its activity and 

ameliorating the symptoms of CMC and autoimmunity. Recently, sporadic data implied a curative 

potential of HCST (Leiding et al. ,2017; Kiykim et al., 2019), which is, however, burdened with a high 

risk of secondary graft failure, possibly due to abnormally increased type I and II interferon 

signalling. While the overall 1 year survival was only 40% (Leiding et al., 2017), the HSCT was 

performed as “ultimum refugium” in the majority of reported patients. It is, therefore, plausible, 

that a pre-emptive approach in a clinically stable conditions would yield better results.   
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AIMS OF THE THESIS 
 

The key objectives of this thesis are the following: 

 

Primary objectives 

 

A) To describe selected clinical, immunologic, and genetic aspects of patients with STAT1-gain-of-

function chronic mucocutaneous candidiasis and translate the findings into their clinical 

management 

 

B) To describe selected clinical, immunologic, and genetic aspects of patients with Mendelian 

susceptibility to mycobacterial diseases and translate the findings into their clinical 

management 

 

C) To report a proof-of-principal case that systemic Staphylococcus aureus infection in individuals 

with disturbed IL-6 signalling may arise due to the presence of IL-6 autoantibodies  

 

D)  To contribute to investigations concerning the novel severe Paediatric inflammatory 

multisystem syndrome – temporally associated with SARS-CoV-2 (PIMS-TS; also MIS-C - 

Multisystemic inflammatory syndrome in children)  

 

Secondary objectives 

 

E) To increase awareness of IEI with selective microbial susceptibility, encourage referrals of suspect 

individual to immunologists and promote national cooperation 

 

F) To connect with the international network of clinicians and researchers working in the fields of rare 

IEI to maximize the benefit of collective experience 
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METHODS 
 

Patients  

   The majority of patients described in this thesis are followed by the author at the Department of 

Immunology, Motol University Hospital in Prague and Department of Paediatrics, Thomayer 

University Hospital, Prague.  Some individuals are regularly followed at other departments across 

the country. Informed consents with inclusion in the respective research projects were obtained 

from the participants and/or by the participants’ legal guardians in accordance with the Declaration 

of Helsinki.  

   Data on demographics, clinical manifestations, routine laboratory features and other 

investigations, therapeutic management, and outcomes were collected from the medical records 

and obtained via patient/parent interview or communications with other patients’ healthcare 

providers. International data sharing was based on personal communications of the author of this 

thesis. 

 

Laboratory methods 

   Laboratory, analytic and statistical methods were used according to the individual aim of each 

presented study and performed at the Department of Immunology, Motol University Hospital in 

Prague, Childhood Leukaemia Investigation Prague laboratory and the genetic laboratory in Centre 

for Cardiovascular Surgery and Transplantation, Masaryk University, Brno. Some genetic 

evaluations were performed in Laboratoire de Génétique Humaine des Maladies Infectieuses, 

Institut National de la Santé et de la Recherche Médicale et Université Paris Descartes, France. 

   The laboratory methods are described in detail in the manuscripts which substantiate this thesis. 

In general, these included flow cytometry methods, immunoassays and various techniques of DNA 

and RNA sequencing. 
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RESULTS 

1.1 PRIMARY ENDPOINTS - PUBLICATIONS DIRECTLY SUPPORTING THE 

THESIS 
 

This section introduces the following publications which directly substantiate the thesis: 

  

1. Utility of ruxolitinib in a child with chronic mucocutaneous candidiasis caused by a novel 

STAT1 gain-of-function mutation 

2. Impact of JAK inhibitors in pediatric patients with STAT1 Gain of function (GOF) mutations-

10 children and review of the literature  

3. Immunogenicity and Safety of COVID-19 mRNA Vaccine in STAT1 GOF Patients 

4. Mutual alteration of NOD2-associated Blau syndrome and IFNγR1 deficiency 

5. Manifestations of cutaneous mycobacterial infections in inborn errors of IL-12, IL-23/IFNγ 

immunity 

6. Mendelian susceptibility to mycobacterial disease: The first case of a diagnosed adult 

patient in the Czech Republic 

7. Anti-IL6 autoantibodies in an infant with CRP-less septic shock 

8. Nationwide observational study of paediatric inflammatory multisystem syndrome 

temporally associated with SARS-CoV-2 (PIMS-TS) in the Czech Republic 

9. EAACI statement and guideline on the pathogenesis, immunology, and immune-targeted 

management of the Multisystem inflammatory syndrome in children (MIS-C) or Pediatric 

inflammatory multisystem syndrome (PIMS-TS) 

10. B cells, BAFF and interferons in MIS-C 
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1.1.1 UTILITY OF RUXOLITINIB IN A CHILD WITH CHRONIC MUCOCUTANEOUS 
CANDIDIASIS CAUSED BY A NOVEL STAT1 GAIN-OF-FUNCTION MUTATION 

 
Bloomfield M, Kanderová V, Paračková Z, Vrabcová P, Svatoň M, Froňková E, Fejtková M, Zachová 
R, Rataj M, Zentsová I, Milota T, Klocperk A, Kalina T, Šedivá A. Utility of Ruxolitinib in a Child with 
Chronic Mucocutaneous Candidiasis Caused by a Novel STAT1 Gain-of-Function Mutation. J Clin 
Immunol. 2018 Jul;38(5):589-601.  
 
   In this article, the author and her colleagues reported a novel STAT1 mutation to underlie features 

of extensive CMC. We established the hypermorphic effect of the mutation by employing single-cell 

STAT phosphoflow assay, which was developed by the authors. Moreover, the paper was one of the first 

to described the utility of targetted therapy of STAT1 GOF with JAK inhibitor ruxolitinib in pediatric 

settings, and the first to monitor the clinical effect of the compound in parallel to the cellular responses 

to JAK inhibitor. The optimized phosphoflow protocol was then used for treatment monitoring prior 

to this child HSCT, and for dose adjustements in three other STAT1 GOF patients who received JAK 

inhibitor.   

Achieved key objectives = A, E  

 

 

 
 

Representative figure: Clinical progress paralleled to IFNγ-induced p-STAT1 (Tyr701) activation 
during ruxolitinib treatment of STAT1c.617T > C patient 
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1.1.2 IMPACT OF JAK INHIBITORS IN 10 PEDIATRIC PATIENTS WITH STAT1 GAIN-
OF-FUNCTION MUTATIONS (STAT1 GOF) AND REVIEW OF THE LITERATURE 

 
Deyà-Martínez A, Rivière JG, Roxo-Junior P, Ramakers J, Bloomfield M, Guisado Hernandez P, 
Blanco Lobo P, Abu Jamra SR, Esteve-Sole A, Kanderova V, García-García A, Lopez-Corbeto M, 
Martinez Pomar N, Martín-Nalda A, Alsina L, Neth O, Olbrich P. Impact of JAK Inhibitors in Pediatric 
Patients with STAT1 Gain of Function (GOF) Mutations-10 Children and Review of the Literature. J 
Clin Immunol. 2022 Jul;42(5):1071-1082.  
 

   This international collaborative study arose from the applicant’s communications with colleagues 

from Spain and Brazil and concerned the experience with efficacy and safety of precision treatment of 

paediatric STAT1 GOF patients with JAK inhibitors. Prior to this publication, such reports had been 

scarce, limited to individual reports. Based on our collective experience, this group of authors formed 

recommendations regarding dosing, monitoring, and follow-up care and envisaged paths for future 

clinical research, such as drug level monitoring or the identification of treatment-response biomarkers. 

The group has since become involved in the European Society for Immunodeficiency (ESID) and 

European Society for Blood and Marrow Transplantation (EBMT) multicentric retrospective study on 

JAK inhibitors treatment in patients with inborn errors of the JAK/STAT pathways.   

Achieved key objectives = A, F 

 
 

 
 
 

Representative figure: Effect of JAK inhibitor ruxolitinib on Immune deficiency and 
dysregulation activity (IDDA) score in STAT1 GOF pediatric patients 
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1.1.3 IMMUNOGENICITY AND SAFETY OF COVID-19 mRNA VACCINE IN STAT1 GOF 
PATIENTS 

 
Bloomfield M, Parackova Z, Hanzlikova J, Lastovicka J, Sediva A. Immunogenicity and Safety of 
COVID-19 mRNA Vaccine in STAT1 GOF Patients. J Clin Immunol. 2022 Feb;42(2):266-269.  
 

   The emergence of COVID-19 brough on serious concerns about its course in patients with IEI. On the 

other hand, the availability of mRNA vaccines against SARS-CoV-2 raised questions about their safety 

and efficiency in individuals with IEI. It had been altogether unknown, if the STAT1 GOF IFN-

augmented environment would be protective or detrimental in case of SARS-CoV-2 infection and 

vaccination, as, hypothetically, both may increase the risk of the catastrophic cytokine-driven 

hyperinflammation seen in delayed stages of COVID-19 in some patients. At the time when only three 

records of COVID-19 infection and only two records of mRNA vaccinations in STAT1 GOF existed 

worldwide, we reported seven STAT1 GOF patients with an uneventful course of COVID-19 vaccination 

(including data on antibody and T-cell mediated responses), and/or SARS-CoV-2 infection, including 

two patients receiving JAK inhibitor. Additionally, two of the patients described in this publication 

harbour previously unreported mutations, which expanded the known STAT1 GOF- associated variant 

pool. 

Achieved key objectives = A, E 

 

 
 
Representative figure: Immune responses to SARS-CoV-2 mRNA vaccine in STAT1 GOF patients 

after the second vaccine dose 
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1.1.4 MUTUAL ALTERATION OF NOD2-ASSOCIATED BLAU SYNDROME AND IFNYR1 
DEFICIENCY 

 
Parackova, Z*, Bloomfield*, Vrabcova P,  Zentsova I, Klocperk A, Milota T, Svaton M, Casanova JL, 
Bustamante J, Fronkova E, Sediva A. 2019. Mutual alteration of NOD2-associated Blau syndrome 
and IFNγR1 deficiency. J. Clin. Immunol. 2020; 40:165–178. 
  
*Authors contributed equally 
 
   In this work, we followed an extraordinary experiment of nature – a unique kindred harbouring 

heterozygous mutations in two innate immune mechanisms of antimicrobial defences - IFNGR1 

(associated MSMD) and NOD2 (associated with Blau syndrome). Together, they resulted in a combined 

phenotype of milder MSMD and atypical Blau syndrome. This was intriguing, because NOD2 Blau 

syndrome, an auto-inflammatory granulomatous disease of unknown pathophysiology, was 

hypothesized to involve abnormal response to IFNγ. These two pathways have, however, not been 

previously mechanistically linked.  

   Utilizing an array of NOD2 and IFNγ pathways-probing molecular methods, we demonstrated a 

functional crosstalk, which suggested that IFNγ is an important driver in the NOD2 hyperreactivity in 

Blau syndrome, independently of IFNγR/STAT1-mediated signalling.  

Our two years long effort eventually enabled intelligence-based selection of optimal therapy for the 

patient. Moreover, the hereby described observations contributed to the notion of therapeutic 

targeting of IFNγ signalling in Blau syndrome BS.  

Achieved key objectives = B, F 

 

 
Representative figure: DNA sequencing chromatograms, the pedigree and segregation of the 

NOD2 and IFNGR mutations, and the NOD2 protein structure highlighting the aminoacid 
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substitution in the proband 

 
   We were honoured that this work was co-authored by Prof. J.L.Casanova and received personal 

appreciation from doctor Edward B. Blau: 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dear colleagues,  
I am the Edward B. Blau …and I must tell you your article … is one of the most fascinating that I have 
read in many a year. 
The clinical presentation, diagnosis and treatment are first rate. The laboratory work was also of the 
highest order. 
I have always been interested in what stimulates the (deficient) NOD2 system … to go onto 
unchecked granuloma formation. 
I have thought it might be … benign Mycobacterium. Please extend my congratulations on a 
splendid piece of work to your colleagues. 
 
Very sincerely yours, 
Edward B. Blau, M. D. 
Marshfield, WI, USA  
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1.1.5 MANIFESTATIONS OF CUTANEOUS MYCOBACTERIAL INFECTIONS IN INBORN 
ERRORS OF IL-12, IL-23/IFNy IMMUNITY 

 
Dolezalova K, Strachan T, Matej R, Ricna D, Bloomfield M. Manifestations of cutaneous 
mycobacterial infections in inborn errors of IL-12, IL-23/IFNγ immunity. European Journal of 
Dermatology. 2022; 7;32(4):1-10. 
 
   In this manuscript, we aimed to portrait patients with MSMD from the dermatologic perspective, as 

individuals with disturbed IL-12, IL-23/IFNy circuit often present with cutaneous infections with non-

tuberculous mycobacteria. The mycobacteriosis in MSMD may, however, adapt an atypical or severe 

course, lacking the classic granulomatous nature. Collaborating with Czech and Slovakian paediatric 

TB specialists, geneticists and the pathologist, two main objectives of this article were set: to increase 

awareness of MSMD to facilitate timely referral of the suspect cases, and to highlight the 

characteristics of NTM infections and the pitfalls of their diagnosis in both the immunocompetent and 

MSMD patients. Specifically, infections with M. marinum and BCG in AD partial STAT1 deficiencies, 

infections with M. avium-intracellulare, M. abscessus-immunogenum and BCG in AD partial IFNyR1 

deficiency, and infections with M. abscessus-intracelulare and BCG in fatal AR complete IFNyR1 

deficiency were depicted. Moreover, one of the presented family harboured a previously unreported 

mutation in STAT1 gene, thus enriching the known disease-associated genotypes. Also, one of the 

children was successfully treated with IFNy.  

Achieved key objectives = B, E, F 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Representative figure: Mycobacterium avium-intracellulare scrofuloderma of the thorax due to 

autosomal recessive complete IFNyR1 deficiency 
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1.1.6 MENDELIAN SUSCEPTIBILITY TO MYCOBACTERIAL DISEASES: 
THE FIRST CASE OF A DIAGNOSED ADULT PATIENT IN THE CZECH REPUBLIC 

 

Prucha M, Grombirikova H, Zdrahal P, Bloomfield M, Parackova Z, Freiberger T. Mendelian 
Susceptibility to Mycobacterial Disease: The First Case of a Diagnosed Adult Patient in the Czech 
Republic. Case Reports Immunol. 2020 Dec;8836685.  
 
   This case study represents an example of a successful national collaboration. It describes a 42-year-

old woman, who suffered from severe obscure mycobacterial infections most of her life. Only in her 

adulthood, she was referred to a genetic evaluation and found to harbour IFNGR1 mutation by the 

team of geneticists, who specialize in IEI. The loss-of-function consequence of the variant was validated 

by the author of this thesis and her colleagues. Based on previous experience and literary accounts, 

treatment with recombinant IFNy was recommended, which improved the clinical condition of the 

patient and prevented further mycobacterial infections. Effectively, this cooperation has, to the patient 

benefit, brought together the expertise of four different clinics and departments. The paper adds to the 

expanding pool of patients who are diagnosed with inborn immunodeficiency in later adulthood and 

reports the first adult Czech patient diagnosed with penetrant MSMD.  

Achieved key objectives = B, E 

 

 

 

Representative figure: The sequence of infections with non-tuberculous mycobacteria in patient 
with autosomal dominant partial IFNyR1 deficiency 

 

 

Year
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1.1.7 ANTI-IL6 AUTOANTIBODIES IN AN INFANT WITH CRP-LESS SEPTIC SHOCK 
 
Bloomfield M*, Parackova Z*, Cabelova T, Pospisilova I, Kabicek P, Houstkova H, Sediva A. Anti-IL6 
Autoantibodies in an Infant With CRP-Less Septic Shock. Front. Immunol. 2019;10: 1–6.  
*Authors contributed equally 
 
   Certain IEI are associated with skewed inflammatory acute phase response, as well as increased 

susceptibility to Staphylococcus aureus (e.g., STAT3 HyperIgE syndrome, IL6R deficiency, or gp130 

mutation). Examining a child with staphylococcal sepsis, who failed to mount an adequate C-reactive 

protein (CRP) and IL-6 response, we tested the functional integrity of IL-6/gp130/IL6R/STAT3 

pathway and established that the patient’s cells were able to produce and secrete normal amounts of 

IL-6 and displayed normal STAT3 recruitment upon IL-6 stimulation. Surprisingly, the failed CRP 

induction was explained by the presence of autoantibodies against IL-6 in the patient’s serum. Prior to 

this publication, only three patients with anti-IL6 autoantibodies had been reported to suffer localized 

bacterial infections. As such, this work provided a proof-of principle, that systemic Staphylococcal 

infection, too, may arise due to disturbed IL-6 signalling on the account of naturally occurring anti-

IL6 autoantibodies. Since the monogenic defects of IL-6 signalling (other than STAT3 loss-of-function) 

have only been reported in a handful of patients, our findings indirectly affirmed the crucial role of IL6 

signalling in the anti-staphylococcal immunity. Importantly, they also translated to a larger-scale 

clinical issue, i.e., the need for caution in patients receiving compounds interfering with IL-6 signalling, 

such as those currently used for several rheumatologic, immune dysregulation diseases and cancer.  

   This work was received the best poster award in the 14th Paediatric congress in Olomouc in 

2019.  

Achieved key objectives = C, E 

 

 

 

 
 
 
 
 
 
 
 
 
 

 
Representative figure: IL-6/IL6R/STAT3 investigations in a patient with Staphylococcal sepsis 

and failed induction of C-reactive protein 
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1.1.8 NATIONWIDE OBSERVATIONAL STUDY OF PAEDIATRIC INFLAMMATORY 
MULTISYSTEM SYNDROME TEMPORALLY ASSOCIATED WITH SARS-COV-2 
(PIMS-TS) IN THE CZECH REPUBLIC 

 
David J, Stara V, Hradsky O, Tuckova J, Slaba K, Jabandziev P, Sasek L, Huml M, Zidkova I, Pavlicek J, 
Palatova A, Klaskova E, Banszka K, Terifajova E, Vyhnanek R, Bloomfield M, Fingerhutova S, 
Dolezalova P, Prochazkova L, Chramostova G, Fencl F, Lebl J. Nationwide observational study of 
paediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 (PIMS-TS) 
in the Czech Republic. Eur J Pediatr. 2022 Aug; 20:1–10.  
 
PIMS-TS (MIS-C) is a novel life-threatening disease which emerged during the COVID-19 pandemic. Its 

pathophysiology is unknown, yet, indisputably, the immune system dysregulation and genetic factors 

play the pivotal roles. As such, PIMS-TS represents another disease with predisposition to severe course 

of infection by a single pathogen, as all other infections seem to take on an uneventful course in these 

children. This retrospective nationwide observational study collected epidemiologic, clinical and 

laboratory data of 207 Czech children with PIMS-TS from nine university hospitals and eight regional 

hospitals, representing the largest cohort reported at the time of publishing. We established that the 

incidence of PIMS-TS out of all SARS-CoV-2-positivelly tested children was 0.9:1,000. The delay 

between PIMS-TS cases accumulation from the peak of the COVID-19 wave was 3 weeks. Beyond the 

epidemiological observations, several predictors of life-threatening myocardial dysfunction were 

identified. These included chiefly the clinical signs of cardiovascular involvement at the initial phases 

of the disease, decreased concentration of haemoglobin, thrombocytopenia, elevated concentration of 

CRP, procalcitonin B-type natriuretic peptide and troponin. Upon follow-up, majority of patients fully 

recovered and had normal cardiac function.  

Achieved key objectives = D, E 

 

 

 

Representative figure: 
Predictors of myocardial 
dysfunction in PIMS-TS 
stratified by the level of 

healthcare provider for the 
use of a) general 
practitioners b) hospital 
care providers 
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1.1.9 EAACI STATEMENT AND GUIDELINE ON THE PATHOGENESIS, IMMUNOLOGY, 
AND IMMUNE-TARGETED MANAGEMENT OF THE MULTISYSTEM 
INFLAMMATORY SYNDROME IN CHILDREN (MIS-C) OR PEDIATRIC 
INFLAMMATORY MULTISYSTEM SYNDROME (PIMS) 

 
Feleszko W, Okarska-Napierała M, Pauline Buddingh E, 
Bloomfield M, Sediva A, Bautista-Rodriguez C, Brough HA, Eigenmann PA, Eiwegger T, Eljaszewicz 
A, Eyerich S, Gomez-Casado C, Fraisse A, Janda J, Jiméeneéz-Saiz R, Kallinich T, Krohn IK, Mortz CG, 
Riggioni C, Sastre J, Sokolowska M, Strzelczyk Z, Untersmayr E, Tramper-Stranders G. EAACI 
statement and guideline on the pathogenesis, immunology, and immune-targeted management of 
the Multisystem inflammatory syndrome in children (MIS-C) or Pediatric inflammatory 
multisystem syndrome (PIMS-TS). Under review in Allergy, 2022.  
 

   This multinational European collaborative endeavour reflected the need to address the multiple 

existing case definitions of MIS-C associated with SARS-CoV-2 infections and the lack of unified 

management guidelines. Members of European Academy of Allergology and Clinical Immunology 

formulated a joint statement regarding the immune aspects of MIS-C, as well as clinically practical 

management algorithms. Four main hypotheses of immune pathologic mechanisms were defined, 

involving both innate and adaptive components, i.e., the superantigen-driven hyperinflammation, 

persistent SARS-CoV-2 exposure, leaky gut theory allowing continuous exposure to the virus, and the 

presence of autoantibodies. The applicant directly contributed to this work, particularly to the section 

on Immunology of MIS-C, receiving the opportunity to familiarize herself with the proceedings of a 

Delphi-based consensus protocol. 

Achieved key objectives = D, F 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

 
Representative figure: 
Overview of the hypothesized 
mechanisms of MIS-C (PIMS-
TS) immunopathology 
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1.1.10 B CELLS, BAFF AND INTERFERONS IN MIS-C 
 
Klocperk A*, Bloomfield M*, Parackova Z, Aillot L, Fremuth L, Sasek L, David J, Fencl F, Skotniova 
A, Rejlova K, Magner M, Hrusak O, Sediva A. B cells, BAFF and interferons in MIS-C. MedRxiv preprint, 
version posted May 21, 2022.  
*Authors contributed equally 
 
   This work was a hypothesis-driven exploration of the involvement of B cells in the pathogenesis of 

MIS-C associated with SARS-CoV-2 infections in children. Parallels with clinical and immune 

phenotype of a classic autoimmune disorder, systemic lupus erythematosus, such as the strong 

interferon-based proinflammatory bias and the presence of autoantibodies suggested a disorder of B 

cell maturation or survival. We found elevated serum levels of B-cell activating factor (BAFF) and a 

counter-regulative depression of its receptor (BAFFR) on MIS-C B cells, as well as decreased proportion 

of mature B cells, called plasmablasts. These findings implied that a polyclonal B cell activation may 

be an important driver of the self-reactive phenomena accompanying MIS-C. The project connected 

paediatric and immunology departments of three Czech university hospitals and colleagues from 

Academy of Sciences, Czech Republic.  

Achieved key objectives = D, E 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Ilustrative figure: The involvement of humoral immunity in PIMS-TS (MIS-C) with autoreactive B 

cells driven towards autoantibody production by elevated BAFF 
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1.2 SECONDARY ENDPOINTS 
 

   During the doctoral programme, the applicant also co-authored several peer-reviewed papers 

published in international journals with impact factors, which explored clinical and 

immunopathological features of other rare IEI predisposing to infections yet displaying a broader 

infectious phenotype.  

 
1. Bloomfield M, Klocperk A, Zachova R, Milota T, Kanderova V, Sediva A. Natural Course of 

Activated Phosphoinositide 3-Kinase Delta Syndrome in Childhood and Adolescence. Front 
Pediatr. 2021 Jul 19;9:697706.  
 

2. Fejtkova M, Sukova M, Hlozkova K, Skvarova Kramarzova K, Rackova M, Jakubec D, 
Bakardjieva M, Bloomfield M, Klocperk A, Parackova Z, Sediva A, Aluri J, Novakova M, 
Kalina T, Fronkova E, Hrusak O, Malcova H, Sedlacek P, Liba Z, Kudr M, Stary J, Cooper MA, 
Svaton M, Kanderova V. TLR8/TLR7 dysregulation due to a novel TLR8 mutation causes 
severe autoimmune hemolytic anemia and autoinflammation in identical twins. Am J 
Hematol. 2022 Mar 1;97(3):338-351.  

 
4. Kanderova V, Grombirikova H, Zentsova I, Reblova K, Klocperk A, Fejtkova M, Bloomfield 

M, Ravcukova B, Kalina T, Freiberger T, Sediva A. Lymphoproliferation, immunodeficiency 
and early-onset inflammatory bowel disease associated with a novel mutation in Caspase 8. 
Haematologica. 2019 Jan;104(1): e32-e34.  
 

5. Smetanova J, Milota T, Rataj M, Bloomfield M, Sediva A, Klocperk A. Accelerated Maturation, 
Exhaustion, and Senescence of T cells in 22q11.2 Deletion Syndrome. J Clin Immunol. 2022 
Feb;42(2):274-285.  
 

6. Mensa-Vilaró A, Bravo García-Morato M, de la Calle-Martin O, Franco-Jarava C, Martínez-
Saavedra MT, González-Granado LI, González-Roca E, Fuster JL, Alsina L, Mutchinick OM, 
Balderrama-Rodríguez A, Ramos E, Modesto C, Mesa-Del-Castillo P, Ortego-Centeno N, 
Clemente D, Souto A, Palmou N, Remesal A, Leslie KS, Gómez de la Fuente E, Yadira Bravo 
Gallego L, Campistol JM, Dhouib NG, Bejaoui M, Dutra LA, Terreri MT, Mosquera C, González 
T, Cañellas J, García-Ruiz de Morales JM, Wouters CH, Bosque MT, Cham WT, Jiménez-
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1.3 COVID-19 INTERMEZZO 
 
   During the outbreak of SARS-CoV-2 pandemic in 2019/2020, the applicant temporarily refocused 

on research of COVID-19-associated immune aspects, utilizing the teams’ experience with single-

gene innate immune pathology, and co-authored several peer-reviewed publications in journals 

listed below.  

   This subject was of particular interest to the applicant, as a proportion of severe/fatal COVID-19 

infections was shown to be the result of inborn error of type I interferon and TRL7 signalling. The 

applicant therefore participated in a global effort led by Dr. Casanova and Dr. Shen-Ying to 

ellucidate the genetic background behind severe COVID-19 and MIS-C. The resulting publications 

are co-authored by the applicant as part of a large consortium of clinicians involved in Covid Human 

Genetic Effort project. The applicant contributed by material and data collection. These works and 

listed in italic below, for completeness sake.  

   The applicant further contributed to MIS-C research by entering the HyperPed COVID Registry 

project, a retrospective multinational observational study, and a global research consortium on 

MIS-C led by colleagues from Imperial Collage, London and Rockefeller University, New York. The 

results from these collaborations are pending.    
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DISCUSSION  
    

   The modern studies of pathogenesis of ultrarare IEI teach us that the intricate complexity of our 

immune system clockwork is much wider than originally appreciated. The exploration of human 

genetic factors in the host-pathogen interactions and their defects offers unique opportunities to 

gain new insights into immune system composition and orchestration of its operational processes. 

This particularly resonates when clinically severe symptoms are not accompanied by any apparent 

abnormalities in routinely performed immunologic examinations, such as in the diseases addressed 

by the hereby presented research. Such patients, often initially reported in single-case studies, not 

seldomly unveil novel immune mechanisms and functionalities or confirm pre-existing hypotheses, 

which then drives multidisciplinary research. Given the interconnectivity of immune processes 

with each other, with other human biological systems and with the microbial biosphere, the 

translational potential of any new discovery is incontestable. However, it is a long route from the 

discovery of a novel gene, protein or mechanistic interaction to the verification of its causality and 

to the development and deployment of a new therapeutic strategy. In between, a long-term patient 

follow-up, disease course and treatment response monitoring provide additional data. If backed by 

multicentre collaborations, even the “rare” eventually becomes strong enough to build a thorough 

apprehension. In this thesis, the applicant hoped to participate in these efforts by some such 

insights.   

 

   Each work’s findings are discussed briefly in the Results section above and, in detail, in the 

attached manuscripts which substantiate this thesis. 

 

 

 

 

 

 

 

 

 

 

 

 



MUDr. Markéta Bloomfield  Monogenic susceptibility to infectious pathogens   

Page 65 of 84 

 

CONCLUSIONS 

 

   This work contributed to the understanding of three rare IEI and one disease with presumed 

immunogenetic background, all with selective microbial susceptibility. 

   With the continuing emergence of new infectious diseases, as witnessed globally during the 

COVID-19 pandemic in 2019, and the alarmingly increasing resistance of pathogens to currently 

available antimicrobial compounds, the need for continuing investigations of the immune 

antimicrobial mechanisms is sorely evident and must receive major attention. In the future, the 

author hopes to continue to contribute to research activities concerning monogenic susceptibility 

to individual microbes and other rare diseases with antimicrobial immune failures. 
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SOUHRN (SUMMARY IN CZECH) 

 

   Výsledky předkládané v této dizertační práci přispívají k porozumění imunopatologie několika 

vrozených poruch imunity se zvýšenou náchylností ke konkrétnímu infekčnímu patogenu: 

 

A) u STAT1 gain-of-function chronické mukokutánní kandidózy byly popsány nové mutace, 

imunoprofilace, klinické a buněčné odpovědi na novou efektivní terapii JAK inhibitorem, využití 

nově vyvinutého fosfoflow protokolu a imunogenicita a bezpečnost mRNA vakcíny proti COVID-19  

B) u Vrozené vnímavosti k mykobakteriálním onemocněním byly popsány nové mutace, jejich 

klinické a imunopatologické aspekty a terapeutické využití IFNy  

C) u sepse způsobené Staphylococcus aureus byly jako příčina selhání obranyschopnosti se 

systémovým projevem identifikovány autoprotilátky proti IL-6, jako první taková reference 

vůbec 

D) u nového onemocnění PIMS-TS (Paediatric inflammatory multisystem syndrome 

temporally associated with SARS-CoV-2) byla publikována epidemiologická data, prediktory 

závažnosti průběhu onemocnění, popsány imunopatologické mechanismy týkající se 

autoreaktivních charakteristik B lymfocytů a navrženy doporučené postupy pro klinickou praxi  

  

  Autorka se na těchto studiích účastnila tvorbou hypotéz, designem studijních protokolů, sběrem a 

analýzou dat a klinickou péčí o pacienty. Dále ustanovila pacientské kohorty, navázala národní a 

mezinárodní spolupráci a po dobu studia aktivně prezentovala na tuzemských i zahraničních 

konferencích.  

   Výsledky se v řadě případů podařilo přenést přímo do klinické praxe; umožnily mimo jiné 

stratifikaci pacientů podle rizik, tvorbu individualizovaných léčebných plánů „na míru“ pacientovi, 

vč. konkrétních preventivních opatření, cílené terapeutické a profylaktické medikace, léčebných 

zákroků a možnosti poskytnutí genetického poradenství.  
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SUMMARY 
 
   The data presented in this dissertation thesis expanded the understanding of immunopathology 

underling several IEI with increased susceptibility to single infectious pathogens: 

 

A) in STAT1 gain-of-function chronic mucocutaneous candidiasis novel mutations, 

corresponding immune profiles, clinical and cellular responses to novel, efficient therapy with JAK 

inhibitors, the utility of a newly developed phosphoflow protocol, and immunogenicity and safety 

of COVID-19 vaccination were reported  

B) in Mendelian susceptibility to mycobacterial diseases novel mutation, clinical and 

immunopathological features, and the utility of IFNy were described  

C) in sepsis due to Staphylococcus aureus, IL-6 autoantibodies were identified as the cause of 

immune failure with systemic consequence for the first time  

D) in the novel Paediatric inflammatory multisystem syndrome temporally associated with 

SARS-CoV-2 epidemiological observations, predictors of disease severity, management guidelines 

were established, and immune pathologic mechanisms, such as self-reactive B cell pathology, were 

identified 

  

   The applicant contributed to the results by establishing the hypotheses, designing the study 

protocols, performing the data collections and analyses, and managing the patients. In parallel, 

patient cohorts were established, national and international cooperations developed. During the 

doctoral study, the author actively presented in several national and international conferences. 

  Importantly, the findings were, in several cases, translated directly into the patients’ clinical 

management. Our endeavours enabled risk stratifications, individualized management strategies, 

including avoidance behaviour, targeted therapeutic and prophylactic medications, procedures, 

and genetic counselling.  
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