
DOCTORAL THESIS

RNDr. Ing. Otakar Trunda

Heuristic Learning for
Domain-independent Planning

Department of Theoretical Computer Science and Mathematical Logic

Supervisor of the doctoral thesis:
prof. RNDr. Roman Barták, Ph.D.

Study programme:
Computer science

Study branch:
Theoretical Computer Science and Artificial Intelligence

Prague 2022

I declare that I carried out this doctoral thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In date signature of the author

i

Rád bych tuto práci věnoval své mamince, která mě motivovala ke studiu a
společně s tátou mě po celou dobu podporovali.

Děkuji své př́ıtelkyni Kamile za jej́ı trpělivost a vytvářeńı př́ıjemného
prostřed́ı, kde bylo možné skloubit studijńı povinnosti s pracovńım a rodinným
životem.

Dále chci poděkovat profesoru Bartákovi za vedeńı této práce a za všechny
znalosti, které mi předal během naš́ı mnohaleté spolupráce.

ii

Title: Heuristic Learning for Domain-independent Planning

Author: RNDr. Ing. Otakar Trunda

Department of Theoretical Computer Science and Mathematical Logic

Supervisor: prof. RNDr. Roman Barták, Ph.D., Department of Theoretical
Computer Science and Mathematical Logic

Abstract:

Automated planning deals with the problem of finding a sequence of actions
leading from a given state to a desired state, e.g., solving Rubik’s Cube, delivering
parcels, etc. The state-of-the-art automated planning techniques exploit informed
forward search guided by a heuristic, where the heuristic estimates a distance from
a state to a goal state.

In this thesis, we present a technique to automatically construct an efficient
heuristic for a given planning domain. The proposed approach is based on training
a deep neural network using a set of previously solved planning problems from
the same domain. We use a novel way of extracting features for states which
doesn’t depend on usage of existing heuristics. The trained network can be used
as a heuristic on any problem from the domain of interest without any limitation
on the problem size. Our experiments show that the technique is competitive
with popular domain-independent heuristic.

We also introduce a theoretical framework to formally analyze behavior of learned
heuristics. We state and prove several theorems that establish bounds on the
worst-case performance of learned heuristics.

Keywords: Heuristic learning, Machine learning, Classical planning, Heuristic
search

iii

Název práce: Učeńı heuristik pro doménově nezávislé plánováńı

Autor: RNDr. Ing. Otakar Trunda

Katedra teoretické informatiky a matematické logiky

Vedoućı disertačńı práce: prof. RNDr. Roman Barták, Ph.D., Katedra teoretické
informatiky a matematické logiky

Abstrakt:

Automatizované plánováńı se zabývá hledáńım posloupnosti akćı, které vedou k
dosažeńı ćılového stavu ze zadaného počátečńıho stavu, např. řešeńı Rubikovy
kostky, doručováńı baĺık̊u, atd. Moderńı plánovaćı techniky jsou založené na in-
formovaném dopředném prohledáváńı ř́ızeném heuristikou, kde heuristika posky-
tuje odhad vzdálenosti daného stavu od ćılového stavu.

V této práci představujeme techniky pro automatické vytvořeńı efektivńı heuris-
tiky pro jakoukoli zadanou plánovaćı doménu. Navržené řešeńı je založené na
trénováńı hluboké neuronové śıtě s využit́ım dř́ıve vyřešených plánovaćıch
problémů ze stejné domény. Navrhli jsme nový zp̊usob extrakce př́ıznak̊u pro
stavy plánovaćıch problémů, která neńı závislá na využit́ı existuj́ıćıch heuris-
tik. Natrénovanou śı̌t je možné využ́ıt jako heuristiku při řešeńı jakéhokoli
problému z dané domény bez ohledu na velikost problému. Experimenty ukazuj́ı,
že navržená technika je kompetitivńı s populárńı doménově nezávislou heuris-
tikou.

Představujeme také teoretický rámec pro formálńı analýzu vlastnost́ı naučených
heuristik. Formulujeme a dokazujeme věty, které stanovuj́ı meze na výkonnost
naučených heuristik v nejhorš́ım př́ıpadě.

Kĺıčová slova: Učeńı heuristik, Strojové učeńı, Klasické plánováńı, Prohledáváńı
s heuristikou

iv

Contents

Introduction 4

1 Background and Related Work 7
1.1 Automated Planning . 7

1.1.1 STRIPS . 10
1.1.2 Finite Domain Representation (FDR) 12
1.1.3 Languages . 13
1.1.4 Comparison and translation between formats 13
1.1.5 Popular planning techniques 14
1.1.6 Notation . 16

1.2 Machine Learning . 16
1.2.1 Notation . 17
1.2.2 Supervised learning . 17
1.2.3 Error function . 18
1.2.4 Machine learning models 20

1.3 Heuristic Learning . 20
1.3.1 Variants of HL . 20
1.3.2 Action costs . 22
1.3.3 Usage scenarios of HL . 23

1.4 Related Works . 24
1.4.1 Heuristic learning . 25
1.4.2 Performance guarantees 26

2 Heuristics in an ML Age 27
2.1 Heuristics and Search Algorithms 27
2.2 The Process of Heuristic Estimation 28

2.2.1 Statistical perspective . 29
2.3 Components of the Heuristic . 31

2.3.1 Desired behavior . 31
2.3.2 HL connections . 32

2.4 Heuristic Adjustments . 32
2.4.1 Shift-adjustment . 33
2.4.2 Avg-adjustment . 33
2.4.3 Min-adjustment . 34
2.4.4 Adjustments vs. weighting 35
2.4.5 Properties . 35

3 The Framework 38
3.1 Training Data . 38

3.1.1 Sampling the state spaces 38
3.1.2 Calculating goal-distances 40

3.2 Features Engineering . 41
3.2.1 Required properties . 41
3.2.2 Simple features . 41

3.3 Error Function . 43

1

3.3.1 Choice of the Loss Function 43

4 Graph-based Features 44
4.1 Object Graph . 44

4.1.1 Properties of the graph . 46
4.2 Extracting Features . 47
4.3 Properties of Fα(s) . 48

4.3.1 Extracted knowledge . 49
4.3.2 Length of the vector . 50
4.3.3 Expressive power . 50

4.4 Computing Features from Scratch 51
4.5 Computing Features Incrementally 51

4.5.1 Extended object graph . 52

5 Experiments 59
5.1 Data . 59

5.1.1 Number and distribution of data samples 59
5.2 Heuristics’ Accuracy and Adjustments 59

5.2.1 Heuristics’ accuracy . 60
5.2.2 Performance of adjusted heuristics 60
5.2.3 Summary . 63

5.3 Expressive Power of Features . 63
5.3.1 Correlation between features and targets 66

5.4 Performance of Learned Heuristics 68
5.4.1 Generalization capabilities 69
5.4.2 Choice of hyper-parameters 69
5.4.3 Training results . 70
5.4.4 Performance evaluation . 72
5.4.5 Results . 73

5.5 MSE versus LogMSE . 74

6 Performance Guarantees 83
6.1 Motivation . 83
6.2 Stochastic Heuristics . 84

6.2.1 Properties of stochastic heuristics 84
6.2.2 Learned heuristics as Stochastic heuristics 88
6.2.3 Practical applicability . 88

Conclusion 90

Bibliography 91

List of Figures 101

List of Tables 104

List of Abbreviations 105

List of publications 106

2

A Attachments 108
A.1 Description of planning domains used in the experiments 108

A.1.1 Zenotravel . 108
A.1.2 Blocks . 108

A.2 Description of ad-hoc solvers . 109
A.2.1 Zenotravel Solver . 109
A.2.2 Blocks Solver . 109
A.2.3 planning.domains benchmarks 110

A.3 Content of attached archive . 111

3

Introduction
Deterministic sequential decision-making problems, such as Rubik’s cube,
Sokoban or Vehicle Routing are among the hardest combinatorial optimization
tasks. Currently, the most popular approach for solving them is breadth-first
search in the state space of the problem together with a heuristic distance-
estimator to guide the search, i.e. A∗ algorithm and its variants. Performance of
the algorithm heavily depends on the heuristic used.

In this thesis, we use machine learning techniques to improve performance of
such algorithms. We present a way to automatically construct a strong heuristic
for any given problem. In the literature, this task is called Heuristic learning
(HL). We investigate two main approaches:

1. Improving existing heuristics by automatically identifying their weaknesses
and overcoming them.

2. Creating strong heuristics automatically from scratch.

Motivation
Machine learning (ML) is currently revolutionizing many areas of computer sci-
ence as well as industries1. In the fields of sound processing ([63]), image process-
ing ([89]) and language processing ([90]), most of the traditional human-designed
algorithms have now been replaced by deep neural networks. The same revolu-
tion occurred in game-playing as well. Deep neural network is a key component
of AlphaGo engine - the first computer program ever to beat a top level human
player in Go2. The similar technique was later used in DeepStack - currently the
best Texas Hold’em Poker engine ([64]) and AlphaZero which can play chess, Go
and shogi at a super-human level ([83]).

Traditional chess engines have been able to beat best human players for some
time now. They are based on the alpha-beta algorithm and they utilize expert
knowledge about the game acquired by human players during the past thousand
years. Nowadays, AlphaZero can beat them after just few days of learning from
self-play, without any human knowledge incorporated. After observing games
played by AlphaZero, chess grand masters have even been forced to reconsider
several principles of chess strategy that were widely believed to be valid in the
past3.

Another version of the learning engine called AlphaStar4 is currently trying
to master the popular video game Starcraft II. It is already able to compete with
top level human players and keeps improving5

1https://www.artiba.org/blog/real-world-examples-how-ai-is-revolutionizing-top-industries
2https://www.cbc.ca/news/science/go-google-alphago-lee-sedol-deepmind-1.3488913
3https://www.technologyreview.com/2017/12/08/147199/alpha-zeros-alien-chess-shows-

the-power-and-the-peculiarity-of-ai/
4https://en.wikipedia.org/wiki/AlphaStar (software)
5https://www.theverge.com/2019/10/30/20939147/deepmind-google-alphastar-starcraft-2-

research-grandmaster-level

4

https://www.artiba.org/blog/real-world-examples-how-ai-is-revolutionizing-top-industries
https://www.cbc.ca/news/science/go-google-alphago-lee-sedol-deepmind-1.3488913
https://www.technologyreview.com/2017/12/08/147199/alpha-zeros-alien-chess-shows-the-power-and-the-peculiarity-of-ai/
https://www.technologyreview.com/2017/12/08/147199/alpha-zeros-alien-chess-shows-the-power-and-the-peculiarity-of-ai/
https://en.wikipedia.org/wiki/AlphaStar_(software)
https://www.theverge.com/2019/10/30/20939147/deepmind-google-alphastar-starcraft-2-research-grandmaster-level
https://www.theverge.com/2019/10/30/20939147/deepmind-google-alphastar-starcraft-2-research-grandmaster-level

These successes motivate us to use ML in the field of automated planning
as well. ML has been used for planning already but we can hardly talk about
a revolution. Not yet at least. One of the biggest successes so far would be
mastering Atari games in [59, 15].

In the field of classical planning, vast majority of techniques is still based
on hand coded tools. We believe that there is a great potential in using ML in
informed forward search, especially in heuristic design. Planning can be viewed
as a special case of game - a single player game - so in principle it should be
possible to apply similar techniques here as well.

Data-driven approaches to combinatorial optimization are currently a hot re-
search topic. Among workshops that specialize on this area, we can mention

• Bridging the Gap Between AI Planning and Reinforcement Learning6

• Knowledge Representation & Reasoning Meets Machine Learning7

• Data Science Meets Optimisation8

• and others

Goals
Our goal is to develop a domain-independent heuristic-learning system, i.e., to
apply machine learning to automatically construct strong heuristic for any given
domain. We work with classical STRIPS planning and we use a supervised learn-
ing paradigm.

The intended use-case of our technique is as follows. We are given a large
set of planning problems of the same type (i.e. same domain) and a potentially
infinite amount of time to analyze them. During the analysis phase, the system
automatically extracts useful knowledge about the domain. After the analysis,
the system will be able to solve new, previously unseen problems from the same
domain quickly by utilizing the knowledge previously obtained. The knowledge
is represented in the form of a heuristic function that A∗ algorithm can use.

Time required for the analysis phase is not taken into account. Our goal is
to show that strong heuristic can in principle be learned without any expert
knowledge and that it can outperform human-designed heuristics.

Structure
The thesis is structured as follows. The first chapter provides an introduction to
automated planning, machine learning and especially heuristic learning together
with related papers. In the second chapter, we study properties of heuristics with
respect to heuristic learning and we propose several ways of improving existing
heuristics.

6https://prl-theworkshop.github.io/
7https://kr2ml.github.io/
8https://tailor-network.eu/events/ijcai-2022-dso-workshop-data-science-meets-

optimisation/

5

https://prl-theworkshop.github.io/
https://kr2ml.github.io/
https://tailor-network.eu/events/ijcai-2022-dso-workshop-data-science-meets-optimisation/
https://tailor-network.eu/events/ijcai-2022-dso-workshop-data-science-meets-optimisation/

The third chapter presents our HL framework and in the fourth we describe
our novel way of extracting features. The fifth chapter contains an experimen-
tal evaluation of the proposed techniques. Our method outperforms a popular
human-designed tool in the number of problems solved as well as solution quality
on two hard planning domains.

The last chapter provides theoretical results about efficiency of our method.
We show that under some reasonable assumptions, the learned heuristic will find
high quality solution with some high probability.

6

1. Background and Related Work
In this chapter, we describe the problem of action planning as
well as introduce the fields of machine learning and heuristic
learning. We also review related works and establish notation.

1.1 Automated Planning
Planning deals with finding a sequence of decisions (actions) which - when ex-
ecuted in the given environment - leads to achieving the given goal. Executing
actions affects state of the environment. We work with classical planning ([65])
which specifies the previous description in several ways:

1. the environment is fully observable, deterministic and static

2. executing actions is instantaneous, i.e. time is not taken into account

3. goal conditions are explicit, i.e. a set of goal states is given and the task is
just to reach any of those states

4. the solver is domain-independent, in a sense that it accepts its inputs in
a standardized format and is applicable to a wide range of different envi-
ronments

More formally:

Definition 1 (Classical planning task). Classical planning task T is a tuple
T = (S,A, γ, s0, goal, c), where

• S is a set of states

• A is a set of actions

• γ : S × A ↦→ S is a partially defined successor function

• s0 ∈ S is the initial state

• goal : S ↦→ {0, 1} is a goal condition and {s ∈ S | goal(s) = 1} is a set of
all goal states

• c : A ↦→ R is a cost function

We will also use the term planning problem when referring to planning tasks.
If P is a planning problem then by SP we denote the set of states of P , by AP

the set of actions of P and so on. When the problem P is not important or clear
from context, we will just write S,A, γ and so on.

γ is a partial function, i.e. it need not be defined for all elements of S × A.
When γ(s, a) is defined, we say that action a is applicable to state s. Otherwise
we say that it is not applicable.

7

Example 1.1

Consider the following scenario. There are two houses denoted Purple house and
Yellow house, a van and a parcel. The parcel is currently located at the Yellow
house and the goal is to transport it to the Purple house. It is possible to move
the van from one house to the other and to load or unload the parcel.

We can model the scenario as a simple planning problem P. The set of states S
in this case contains 6 elements: S = {s1, s2, s3, s4, s5, s6} such that s1 represents
the situation where both the van and the parcel are near the Yellow house, s2 is
the same but the parcel is loaded in the van, in s3 the parcel in near the Purple
house while the van is at the Yellow house, s4 is the other way around: van at the
Purple house while parcel at the Yellow house, in s5 both object are at the Purple
house and the parcel is loaded and s6 is the same except the parcel is not loaded.
That covers all possible situations in our scenario.

We have 6 actions here: A = {a1, a2, a3, a4, a5, a6}. a1 represents driving the
van from the Yellow house to the Purple house, a2 represents driving the other
way, a3 represents loading the parcel at the Yellow house and a4 unloading it at
the Yellow house. Actions a5 and a6 represent loading and unloading the parcel at
the Purple house.

The successor function is defined such that the parcel can only by loaded if
it is at the same position as the van. When unloaded, the parcel will be at the
same position as the van and moving the van changes its position accordingly.
E.g., action a3 is applicable to state s1 and result of application is state s2, i.e.
γ(s1, a3) = s2. On the other hand, a3 is not applicable to s4 therefore γ(s4, a3) is
not defined.

The whole state space is depicted in figure 1.1 and its simplified diagram in
figure 1.2.

Figure 1.1: State-space of a simple planning problem.

8

Figure 1.2: Simplified diagram of the state-space.

The initial state is s1, there are two goal states s3 and s6 and all actions have
the same cost, i.e. ∀a ∈ A : c(a) = 1.

Definition 2 (Set of finite sequences). Let X be a non-empty set. By X<∞ we
denote the set of all finite non-empty sequences of elements of X.

Definition 3 (Extended successor function). Given a problem
P = (S,A, γ, s0, goal, c), we define the extended successor function
γP+ : S × A<∞ ↦→ S as

• γ+(s, ⟨a⟩) = γ(s, a)

• γ+(s, ⟨a1, a2, . . . , an⟩) = γ+(γ(s, a1), ⟨a2, a3, . . . , an⟩)

Definition 4 (Extended cost function). We also define extended cost function
cP+ : A<∞ ↦→ R as cP+(⟨a1, a2, . . . , an⟩) = ∑︁n

i=1 c(ai).

Definition 5 (Reachable state). We say that state s ∈ S is reachable if there
exists a sequence of actions π ∈ A<∞ such that γ+(s0, π) = s where s0 is the
initial state.

Definition 6 (Plan). A sequence of actions π ∈ A<∞ is called plan for P if
γP+(sP0 , π) is a goal state. The value cP+(π) is called cost of plan π.

We do not work with partially ordered planning so plan will always be a fully-
ordered sequence.

Example 1.2

In the previous example, a sequence ⟨a3, a1, a6⟩ is a plan. Cost of the plan is 3.

Now we can define solution to a planning problem. There are two alternatives:
optimal planning deals with finding a plan for P whose cost is minimal among all
plans - i.e. an optimal plan. Only optimal plans are considered solutions in this
scenario.

Satisficing planning, on the other hand, just aims at finding some plan. In
this scenario, we accept any plan as a solution but we still care about quality of
the plan. Plans with lower cost are considered better.

9

Literature distinguishes between planning with action costs and without action
costs. In the latter case, costs of all actions are the same, so the task is just to
minimize the number of actions in the plan. This scenario is sometimes referred to
as planning with unit costs and the term classical planning is typically connected
with the unit costs scenario.

In this thesis, we focus on domains with unit action costs. Our technique is
applicable also to non-unit costs scenarios to some degree. See 1.3.2 for details.

There are currently two major formalisms used to describe planning tasks:
the STRIPS formalism and the FDR formalism. We will be using both of them
so we define them here.

1.1.1 STRIPS
STRIPS (STanford Research Institute Problem Solver. See [26]) is based on
predicate logic. It uses constants and predicates to describe state-space of the
planning problem. Constants typically correspond to objects in the world, while
predicates describe their relations.

States

We are given a set of constants C, and a set of predicate symbols Ψ. Each
predicate symbol has its arity ar : Ψ ↦→ N0. A set Q of all instantiated predicates
is defined as Q = {(p, c1, c2, . . . , car(p)) | p ∈ Ψ, ci ∈ C}. A state is then defined
as an assignment of values {true, false} to all predicates of Q, i.e. s : Q ↦→
{true, false}. A set of all states denoted by S contains all such assignments,
hence |S| = 2|Q|.

For a state s ∈ S and a predicate q ∈ Q, we say that q holds in the state s or
that it is positive in the state, if s(q) = true. Otherwise we say that predicate q
doesn’t hold in s or that it is negative in the state. A set of all predicates that are
positive in s is denoted by s+ and the set of all negative predicates by s−. STRIPS
states are typically represented by a set of positive predicates. Predicates that
are not explicitly mentioned as positive are considered negative. Typically, vast
majority of predicates are negative in all states.

Unary predicates can model state of an object, e.g. isEmpty(hoist1) or can
represent types of objects, e.g. isCity(city2). Nullary predicates can represent
global binary features, like isDaytime. Binary predicates allows to model rela-
tions between two objects, e.g. at(robot1, location1). Ternary or general n-ary
predicates can be used to represent more complex relations.

Example 1.3

Let’s model the previous example using the STRIPS formalism. We will use
4 constants: van, parcel, PHouse and Y House and two predicate symbols at

and in both with arity of 2. In the initial state there are 2 positive predicates:
at(van, Y House) and at(parcel, Y House). All other predicates are negative.

10

Goal condition

A partial state is an assignment s : Q ↦→ {true, false, ∗} where the asterisk
represents a ”don’t care” value. States are considered special cases of partial
states.

Given two partial states s1, s2, we say that s1 is subsumed by s2 if
∀q ∈ Q : s2(q) = ∗, or s1(q) = s2(q).

Goal condition is specified via a partial state sg. All states that are subsumed
by sg are considered goal states.

Example 1.4

In our example, the goal condition is at(parcel, PHouse). Any state in which this
predicate holds is considered a goal state. More formally:
sg(at(parcel, PHouse)) = true and ∀q ∈ Q \ {at(parcel, PHouse)} : sg(q) = ∗.

Transitions

Transitions are defined in a form of so called actions. A STRIPS action is a tuple
a = (prec+, prec−, eff +, eff −), where prec+, prec−, eff +, eff − ⊆ Q. Action a =
(prec+, prec−, eff +, eff −) is applicable to a state s ∈ S, if prec+ ⊆ s+ and prec− ⊆
s−. If action a is applicable to s then successor of s via a is a state s′ defined as
follows:

• ∀q ∈ eff − : s′(q) = false

• ∀q ∈ eff + \ eff − : s′(q) = true

• ∀q ∈ Q \ eff + \ eff − : s′(q) = s(q)

If action a is not applicable to s then the transition is not defined.

Example 1.5

Actions from our example can be modeled as follows:

• a1 = ({at(van, Y House)}, ∅, {at(van, PHouse)}, {at(van, Y House)})

• a2 = ({at(van, PHouse)}, ∅, {at(van, Y House)}, {at(van, PHouse)})

• a3 = ({at(van, Y House), at(parcel, Y House)}, ∅,
{in(parcel, van)}, {at(parcel, Y House)})

• a4 = ({at(van, Y House), in(parcel, van)}, ∅,
{at(parcel, Y House)}, {in(parcel, van)})

• a5 = ({at(van, PHouse), at(parcel, PHouse)}, ∅,
{in(parcel, van)}, {at(parcel, PHouse)})

• a6 = ({at(van, PHouse), in(parcel, van)}, ∅,
{at(parcel, PHouse)}, {in(parcel, van)})

11

Fluent and rigid predicates

It is useful to distinguish between two types of predicates: rigid ones and fluent
ones.
Definition 7 (Fluent and rigid predicates). Predicate q ∈ Q is called rigid if it
is never present among the effects (positive or negative) of any action. If there
is a predicate symbol ψ ∈ Ψ such that all predicates qi that use ψ are rigid, we
say that the predicate symbol ψ is rigid. Predicates and predicate symbols that
are not rigid are called fluent.

Rigid predicates occur in preconditions of actions but they never change their
value during the planning process. They will be positive in a reachable state if
any only if they are positive in the initial state hence their values don’t need to
be stored in each state separately (like the fluent ones) but rather just once for
all reachable states.

Example 1.6

Rigid predicates are used to describe static properties of the problem, like a road
map. E.g. there could be predicate adjacent(a, b) which signifies that it is possible
to drive from a to b directly.

They are also often used to specify types of objects. E.g. in the Zenotravel
domain (see A.1.1) there is a unary predicate symbol city and in the initial state
we can find predicates city(city1), city(city2), etc.

1.1.2 Finite Domain Representation (FDR)
Finite Domain Representation (also called Multi-valued Planning Task) uses
multi-valued state variables to describe states (see [43]). It is similar to the
predicate formalism and extends it in some respects. It is based on state variables
instead of instantiated predicates and it allows these variables to be assigned
values from a larger domain than just {true, false}.

A finite set of variables V = {v1, v2, . . . , vn} is given and for each v ∈ V we
are given its domain D(v).

A state s is an assignment s : V ↦→ Πn
i=1D(vi) such that

∀vi ∈ V : s(vi) ∈ D(vi). The number of states in this case is |S| = Πn
i=1|D(vi)|.

Partial states, goal condition and actions are defined in the same way as in
STRIPS, here we just use V instead of Q and D(vi) instead of {true, false}. As
we don’t distinguish between positive and negative predicates, actions just have
their preconditions and effects defined as partial states. We will write action
using notation a = (preconditions ↦→ effects).

Example 1.7

To model our previous example in FDR, we need just two variables van Loc and
parcel Loc. Variable van Loc will represent location of the van and it will have
domain D(van Loc) = {Y House, PHouse}. Variable parcel Loc will capture lo-
cation of the parcel with three possible values {Y House, PHouse, van}.

Actions in this case look as follows.

12

• a1 = (van Loc = Y House ↦→ van Loc = PHouse)

• a2 = (van Loc = PHouse ↦→ van Loc = Y House)

• a3 = (van Loc = Y House, parcel Loc = Y House ↦→ parcel Loc = van)

• a4 = (van Loc = Y House, parcel Loc = van ↦→ parcel Loc = Y House)

• a5 = (van Loc = PHouse, parcel Loc = PHouse ↦→ parcel Loc = van)

• a6 = (van Loc = PHouse, parcel Loc = van ↦→ parcel Loc = PHouse)

1.1.3 Languages
Planning tasks need to be written down using a specific language that planners
understand and can work with. The most popular language nowadays is PDDL
- Planning Domain Definition Language ([38]). There are several variants of the
language capable of describing classical STRIPS problems as well as more com-
plex planning tasks like ADL (Action Description Language) that allows arbitrary
logic formulas in preconditions and goals, probabilistic planning and others.

A PDDL description of a STRIPS planning task is divided into two files:
a Domain file and a Problem file. The domain file contains description of predicate
symbols (including types) and action templates called operators. The problem file
then contains names of objects (i.e., constants) and instantiated predicates that
describe both initial and goal state. A Planning domain is a set of all planning
tasks that share the same domain file. It represents a class of similar problems.

Example 1.8

In case of Zenotravel (see A.1.1), the domain file specifies that there are planes,
cities and passengers, passengers can be either at cities or in planes, planes can fly
between cities and passengers can embark on and disembark from planes.

The problem file then specifies the number of cities and their identifications
as well as the number and identifications of passengers and planes, their current
locations and their destinations.

Multi-valued planning tasks, on the other hand are typically specified using
the SAS+ language (Simplified Action Structures). It just lists the number of
variables and for each variable the size of its range. Variables are encoded as
numbers from 0 to |V | − 1 and domain of each variable vi is encoded into a set
{0, 1, . . . , |D(vi)|−1}. A state is then encoded simply as an array of integers with
size of |V |.

SAS+ format doesn’t use action templates (operators) but rather enumer-
ates all instantiated action straightaway. Also, it doesn’t separate informa-
tion about domain and problem to two files but uses a single file instead. See
https://www.fast-downward.org/TranslatorOutputFormat for more details about
the SAS+ format.

1.1.4 Comparison and translation between formats
SAS+ uses more concise inner representation of states and it is therefore better
suited for implementation of most state-space search algorithms. States can be

13

https://www.fast-downward.org/TranslatorOutputFormat

represented simply as arrays of integers. PDDL on the other hand can provide
better insight into the structure of the problem. Also, PDDL description can
be more efficient for very large problems as it uses operators to define actions.
Operators are templates that describe how to create actions. In SAS+ format,
all actions have to be enumerated while PDDL only provides operators and hence
SAS+ input file could be exponentially larger than the PDDL one.

A PDDL problem can be directly translated to SAS+ by creating a single
binary variable for each instantiated predicate. SAS+ however often allows us to
create much more efficient encoding.

Definition 8 (MutEx). We say that two predicates are mutually exclusive
(MutEx) if they can never both be positive in any reachable state. A mutex
group is a set of predicates such that every pair of them is MutEx.

Example 1.9

In our example, a set of predicates
{at(parcel, PHouse), at(parcel, Y House), in(parcel, van)} forms a mutex group.

Many of such mutex groups can be discovered automatically by analyzing the
initial state and structure of actions. Each mutex group can then be modeled
using a single SAS+ variable which often generates much smaller state space than
the original PDDL representation.

There is a translator available ([43]) that translates any PDDL problem to
a concise SAS+ representation in a reasonable time. We use PDDL format for
the domain analysis and SAS+ representation for the actual planning.

1.1.5 Popular planning techniques
Currently, the most popular technique for solving planning problems is informed
forward search in the state-space of the problem, i.e. a variant of A∗ or IDA∗

algorithm 1 ([20, 77]). Those informed algorithms make use of heuristic distance
estimators or simply heuristics to guide the search.

Heuristics

Definition 9 (Heuristic). Given a planning problem P = (S,A, γ, s0, goal, c),
heuristic h is a mapping h : S ↦→ R+

0
2.

Heuristics are the key components of currently used search algorithms and
a lot o research effort now focuses on developing accurate and easy-to-compute
heuristics3. In general, heuristics can be divided into two categories: domain-
specific heuristics and domain-independent heuristics.

1Planners based on this paradigm have been stably winning the International Planning
Competitions (IPCs) for the past 10 years. See https://ipc2018-classical.bitbucket.io/ for infor-
mation on the latest IPC and https://ipc2018-classical.bitbucket.io/planner-abstracts/ipc-2018-
planner-abstracts-classical-tracks.pdf for abstracts of participating planners.

2In some specific scenarios, heuristics that produce negative values are also used, e.g. in cost
partitionings ([55]).

3See for example https://www.aaai.org/Library/ICAPS/icaps-library.php

14

https://ipc2018-classical.bitbucket.io/
https://ipc2018-classical.bitbucket.io/planner-abstracts/ipc-2018-planner-abstracts-classical-tracks.pdf
https://ipc2018-classical.bitbucket.io/planner-abstracts/ipc-2018-planner-abstracts-classical-tracks.pdf
https://www.aaai.org/Library/ICAPS/icaps-library.php

Domain independent heuristics work with the PDDL or SAS+ description
of the problem and are in principle applicable to any problem defined in the
respective formalism although performance of the heuristic often varies based on
type of problem. Some heuristics focus on problems with actions costs, some of
them were developed specifically for unit-costs problems and some can be used
in both scenarios.

Domain-specific heuristics, one the other hand, are only applicable to a single
domain or a small set of similar domains. They can leverage domain specific
knowledge and hence are typically more efficient than domain-independent ones.
Developing a domain-specific heuristic for a new domain, however requires a sig-
nificant effort and access to expert knowledge while domain-independent heuris-
tics can be used off-the-shelf. As an example of domain-specific heuristic, we can
look at Sokoban solvers, e.g. [70, 69].

Among popular domain-independent heuristics we can mention hGoalCount and
critical path heuristics h0, h1, . . . , hk ([65]), delete relaxation heuristics like hFF
([48]), hCFF ([25]) or hRed−Black ([53]), landmarks-based heuristics like hLM−cut
([44, 6, 96]), abstraction heuristics like Pattern databases ([75, 82]), Merge-and-
Shrink ([47, 7]) and Cost partitioning ([28, 78]). Other approaches also exist, e.g.
operator counting ([71]).

We will describe two heuristics here in greater detail as we will be using them
in our experiments.

GoalCount heuristic - hGC is a very simple heuristic, one of the first ever
created for the purposes of planning. It counts the number of goal predicates
that are not yet satisfied in current state, i.e. hGC(sP) = |GP \ sP |. The heuris-
tic is admissible as long as no action can accomplish multiple goal predicates
simultaneously.

FastForward heuristic - hFF ([48]) is a much more sophisticated one. It is
based on so called delete relaxation: After applying an action, some predicates
become positive while others become negative (i.e. they are deleted from the
state). The delete relaxation does not delete those predicates but instead marks
them as don’t care, i.e. from that point on, they will pretend to have whatever
truth value is required of them.

Given a state s, it is possible to compute a relaxed plan - a plan from s using
the delete relaxation mechanism - and use the length of such plan as a lower
bound on the length of the actual plan. Since computing relaxed plans is still
hard, hFF uses an approximation of them and hence is not guaranteed to be
admissible. (See definition 13.)

The Fast Forward planning system won the International Planning Compe-
tition (IPC) in 2000 and performed well also in the following IPCs. Since then,
hFF has become a popular benchmark to test new heuristics against.

The idea of delete relaxation has been later generalized to the Red-Black plan-
ning ([16]) and is still being extensively developed and used in heuristics, e.g.
in [54, 25]. Also, hFF is the default heuristic in Fast Downward ([41, 77]) -
currently one of the most popular and best performing planning systems. See
http://www.fast-downward.org/ .

15

http://www.fast-downward.org/

Search algorithms

As for the search algorithm, planners are typically based on standard A* or
IDA* or their modified versions adjusted specifically for planning. Among those
modifications, we can mention multiple open lists and helpful actions ([48, 41]),
control rules, usage of portfolios of algorithms and/or heuristics ([46]), and others
([65]). There are currently many versions of the A∗ algorithm tailored for specific
types of problems, e.g. [40].

These diverse planning approaches are often intended for specific use-case sce-
narios. For example, some techniques guarantee finding optimal plans. Others
do not but they specialize in finding high-quality plans in reasonable time. Other
techniques only focus on finding just any plan as quickly as possible without tak-
ing its cost into account. See e.g. https://ipc2018-classical.bitbucket.io/#tracks
for examples of usage-scenarios.

Techniques also exist that don’t rely on state-space forward search like HTN
planning ([65]), symbolic search ([19, 57, 21]), or plan-space planning ([65, 18]).

Other planning-related problems also exist like proving non-existence
of a plan ([22]), plan recognition ([62]), planning in partially observable environ-
ments, in non-deterministic environments, etc. ([66]).

In this thesis, we deal only with the problem of finding plans and we work
with informed forward search algorithms.

1.1.6 Notation
In the rest of this thesis we use the following notation.

• P, P1, Pi denote planning problems

• S or SP denote set of all states of some planning problem

• s, sP , s1, si denote states of some planning problems

• s0, s
P
0 denote initial state of some planning problem

• given a reachable state s of some problem P , g(s) denotes cost of the cheap-
est path (plan) from sP0 to s.

Definition 10 (Goal-distance). Let sP ∈ SP be state. By h∗(sP) we denote the
goal-distance of sP in P , i.e. the cost of the optimal plan from sP to some goal
state of P , or ∞ if there is no path from sP to a goal state. We refer to h∗(s) as
to goal-distance, distance-to-go, cost-to-go or perfect heuristic.

1.2 Machine Learning
Machine learning (ML) is a wide field which nowadays encompasses a large variety
of different techniques. We will only introduce here the area of supervised learning
as that is the one we are using in our framework. We will first introduce several
notions from statistics and ML.

16

https://ipc2018-classical.bitbucket.io/#tracks

1.2.1 Notation
Throughout this text we use the following notation:

• Random variables (RVs) are denoted by capital roman letters such as Z

• Probability of an event ω is denoted by P[ω], e.g. P[Z < a]

• Expected value of a RV Z is denoted by E [Z]

• Variance of a RV Z is denoted by var[Z]

• By Z ∼ N(µ, σ2) we denote the fact that RV Z is normally distributed
with mean µ and variance σ2

• By exp{x} we denote ex

• Tensor space (over R) is a set Rd1 ×Rd2 ×· · ·×Rdk for some d1, d2, . . . dk ∈ N.

• Tensor is element of a tensor space

Tensors are higher-dimensional matrices. Vectors and matrices are both spe-
cial cases of tensors, vectors are 1-dimensional tensors while matrices are 2-
dimensional ones. In the following text, we will be using the term vector instead
of tensor. I.e., by vector we actually mean either vector, matrix or general tensor.
When saying that two vectors have the same size, we mean that those tensors
come from the same tensor space.

1.2.2 Supervised learning
In the supervised learning scenario, we work with a set of objects B, a set X
called the feature space and a set Y called the output space. There is a mapping
f : B ↦→ X called features extractor that assigns features to objects.

There is a random variable B with domain B and another RV Y with domain
Y and an unknown joint probabilistic distribution P(B,Y).

We are also given a set of samples T = {t1, t2, . . . , tk}. Each sample ti consists
of an object bi ∈ B and a desired output yi ∈ Y such that (bi, yi) is sampled from
the (unknown) joint probability distribution P(B,Y). If the features extractor f
is fixed, we can write ti = (xi, yi), where xi = f(bi). We denote by m : B ↦→ Y
the (unknown) optimal prediction model where ∀b ∈ B : m(b) = E [Y|B = b].

The goal is to produce a model m̂ : B ↦→ Y such that ∀b ∈ B : m̂(b) is close
to E [Y|B = b]. When the features extractor is fixed, we can write m̂(xi) instead
of m̂(bi) where xi = f(bi).

The model m̂ is typically determined by a set of parameters - like parameters
of linear regression, weights and biases of a neural net, etc. Lets denote the vector
of parameters by θ and the parametrized model by m̂θ. We will still use m̂ when
the parameter vector is not important or clear from context. See [39] section 2.4
for more exact definitions.

17

Example 1.10

In the face recognition task, the set of objects B is a set of images of peoples’ faces,
typically in a jpeg or other format. Each image is normalized to some predefined
size and then transformed to a bitmap format, i.e. a matrix of gray-scale of each
pixel, or three matrices (i.e. a tensor) in case of RGB images. This encoding is
done by the features extractor f . The output space Y is a set of IDs of people that
we wish to recognize.

Methods of supervised learning are used for two fundamentally different tasks:
classification and regression. In a classification task, Y is discrete and finite and
there is no order defined on it (e.g. a set of colors, set of kinds of animals like
{cat, dog}, etc.). In a regression task, Y is continuous and there is a non-trivial
metric defined on Y . In this thesis, we only work with regression.

We use the following terminology. Given a sample ti = (bi, yi), a features
extractor f and a predictive model m̂,

• xi = f(bi) we call the features of ti

• yi we call the target or label of ti

• ŷi = m̂(xi) we call the output on ti.

1.2.3 Error function
Quality of the estimation is measured by so called loss function or error function
Err : Y × Y ↦→ R+

0 . The error function quantifies the divergence between m
and m̂ on the set of samples. Given a sample ti = (xi, yi) and an output of
the model yî = m̂θ(xi), error of the model on this sample is Err(yi, ŷi). Given
a set of samples, the error is calculated for each individual sample and the results
are aggregated via a sum or an average. Given the set of training data T and
the model m̂, by Err(T, m̂) we denote the cumulative error over all samples, i.e.
Err(T, m̂) =

∑︁
(xi,yi)∈T

Err(yi,m̂(xi))
|T | .

Machine learning algorithms in general try to minimize the cumulative error
of m̂θ on the set of samples by successively adjusting the parameter vector θ.

In the regression setting, X and Y are tensor spaces and typical error functions
are Mean absolute error and Mean squared error. We define those over vector
spaces, for tensors the definitions are similar.

Definition 11 (Common error functions). Given y, ŷ ∈ Rd, the mean absolute
error (MAE) is calculated as

ErrMAE(y, ŷ) = MAE(y, ŷ) =
∑︁d
i=1 |y[i] − ŷ[i]|

d

Mean squared error (MSE) is calculated as

ErrMSE(y, ŷ) = MSE(y, ŷ) =
∑︁d
i=1(y[i] − ŷ[i])2

d

18

Distribution of error

We will talk in a greater detail about distribution of error. We will refer to this
in section 5.5 where we describe benefits of the loss function we’ve designed.

For any loss function Err it holds that yi = ŷi ⇒ Err(yi, ŷi) = 0. In practice,
it never happens that the cumulative error would reach zero. The model might
not be able to represent the unknown function perfectly, or there could be some
noise present in the training data, etc., hence the error will always be greater
than 0.

For given training data T = {(xi, yi)}ni , model mθ and a loss function Err,
let’s denote by Θ the set of all possible values of θ and by L the minimal value
of error that is achievable on the given data. I.e.

L = min
θ̂∈Θ

(︄
1
n

n∑︂
i=1

[︂
Err(yi, ŷθ̂i)

]︂)︄

where ŷθ̂i = mθ̂(xi) and n is the number of training samples.
Different values of θ lead to different distribution of error among the samples.

E.g. for some θ1, error on the first sample will be smaller than the error on the
second one: Err(y1, ŷ

θ1
1) < Err(y2, ŷ

θ1
2), while for some other value θ2 it will be

the other way around: Err(y1, ŷ
θ2
1) > Err(y2, ŷ

θ2
2). By adjusting θ, it is possible

to reduce the error on individual samples. Once the cumulative error reaches the
limit L, however, reducing the error on one sample is only possible at the cost of
increasing the error on some other samples.

Loss functions differ in the way they distribute the error. E.g. MSE prefers
values of θ that lead to even distribution of error among all samples. It prefers
large number of small errors over fewer number of larger errors as can be seen in
the following example.

Example 1.11

Let’s compare behaviour of two loss functions: MSE and MAE. The set of training
samples looks as follows T = {(2, 2), (3, 4), (4, 3), (5, 2), (6, 3)} and there is a model
mθ. Table 1.1 shows behaviour of the model with two different values of θ denoted
θ1 and θ2.

xi yi ŷθ1
i ŷθ2

i

⃓⃓⃓
yi − ŷθ1

i

⃓⃓⃓ ⃓⃓⃓
yi − ŷθ2

i

⃓⃓⃓
(yi − ŷθ1

i)2 (yi − ŷθ2
i)2

2 2 3 4 1 2 1 4
3 4 3 4 1 0 1 0
4 3 3 4 0 1 0 1
5 2 3 4 1 2 1 4
6 7 3 4 4 3 16 9

Table 1.1: Distribution of error for two different loss functions.

MAE is calculated as MAE = 1
n

∑︁
|yi − ŷi|. In our example, MAE(T, mθ1) =

7/5 and MAE(T, mθ2) = 8/5 so the value θ1 is preferred. Using MSE, we get
MSE(T, mθ1) = 19/5 and MSE(T, mθ2) = 18/5 so using MSE, θ2 would be pre-
ferred.

19

1.2.4 Machine learning models
There are many types of ML models that differ in the way they work and es-
pecially in the type of features they require. We will distinguish two categories
of models: one-to-one and sequence-to-sequence. One-to-one models work with
feature vectors of fixed size and produce a fixed size vector as their output.
Size and shape of inputs and outputs are hard-coded in the model hence it only
accepts inputs of certain type. This is the case for most standard models like
linear regression, decision trees, support vector machines, feed-forward neural
networks and others whose input space is Rd for some fixed dimension d, or in
general a tensor space Rd1 ×Rd2 × · · · ×Rdk for some fixed d1, d2, . . . dk ∈ N.

Sequence-to-sequence models on the other hand allow variable size inputs to
be given to the model and size of their output varies as well. These are often used
for processing time series data or texts. Among the most popular models in this
category we can mention Long short-term memory (LSTM) or Gated recurrent
unit (GRU). See [35] for details.

Some models like linear regression or symbolic regression make strong assump-
tions about structure of the problem and hence they can work even with a very
small number of training samples.

More complex models like shallow or deep neural nets can better fit the data
but require larger amount of training data to work properly and avoid overfitting.
See [35, 39] for details.

In this thesis we only work with one-to-one models, specifically with deep
feed-forward neural networks.

1.3 Heuristic Learning
Heuristic learning (HL) is an application of supervised ML to estimate goal dis-
tances of states of some planning problem. The set of objects B in this case
is a set of states of planning problems, output space is R+

0 . Training samples
are pairs (sPi , h∗(sPi)) where sPi is a state and h∗(sPi) is its goal-distance in P .
The system involves a ML model that is trained to approximate the mapping
s ↦→ h∗(s). The trained model is then used as a heuristic function during search.

Example 1.12

The HL approach can be used to learn an efficient combination of several heuris-
tics. Given a set of heuristics H = {h1, h2, . . . , hk} and a set of training samples
(sPi , h∗(sPi)), one can use linear regression to find values of parameters
{c0, c1, . . . , ck} such that c0 +∑︁k

j=1 cj · hj(s) is close to h∗(s) on the set of samples.
This way of combining the heuristics might give better result than using simple

maximum or sum.

1.3.1 Variants of HL
HL can be used in several different scenarios based on the generalization capa-
bilities that are required of the model. No unified categorization of HL variants
currently exists in the literature so we propose the following three categories.

20

Type I HL

By Type I we denote the variant of HL that aims at constructing a heuristic
tailored for a single problem. In this case, the model will only generalize over
different states of the same problem, i.e. the set of predicates, predicate symbols
and constants as well as the goal condition will always be the same.

Given a problem P and a set of training data (sPi , h∗(sPi)), the goal is to
construct a heuristic h : SP ↦→ R and then use it to solve the problem P as fast
as possible. Typically, the time required to construct the heuristic is considered
part of the solving process hence we want to minimize the sum of heuristic-
construction time and search time.

This variant is sometimes referred to as per-instance heuristic learning, e.g.
in [23].

Type II HL

In the Type II scenario we aim at constructing a heuristic applicable to a whole
domain, i.e. we generalize over problems from the same domain. In this case,
the model needs to be able to handle inputs with variable set of constants and
variable goal conditions. The set of predicate symbols as well as action-templates
will remain the same in all inputs.

We are given several problems P = {P1, P2, . . . Pk} from the same domain
W and a set of training data {(sPj

i , h
∗(sPj

i)) | Pj ∈ P}, the task is to construct
a heuristic h applicable to any problem from W . (I.e. not only to problems in
P .)

Typically, the time required for training the model is not considered a part
of the solving process. It is considered a pre-processing, or a domain analysis
phase that could take several hours or even days. After the model is trained, new
problems from the same domain can be solved quickly.

Unlike the Type I, here the ML model needs to be able to handle problems
of different sizes and with different goal conditions hence the features extractor
must be much more sophisticated.

We could further distinguish systems that generalize over fluent predicates
only (see section 1.1.1), e.g. over problems on a fixed ”route map” and systems
that generalize over both fluent and rigid predicates. There is also a significant
difference between working with action costs vs. unit costs as described in the
following section.

In [23], authors refer to Type II HL as to per-domain heuristic learning without
explicitly distinguishing the fluents-only vs. full nor the action costs variants.

Type III HL

Type III HL deals with the task of automatically creating a domain-independent
heuristic. The setting is similar as in the previous case except that the train-
ing problems come from several different domains and the heuristic have to be
applicable to previously unseen domains.

This requires a very flexible features extractor and a ML model with huge
expressive power like Recurrent NN, Neural Turing machine or models based on
Genetic programming.

21

In this thesis, we deal with the Type II scenario.

1.3.2 Action costs
Generalization capabilities of the model are also related to costs of actions. In
the Type I scenario, there are no difficulties. Any model is applicable to both
unit-cost and non unit-cost problems in the same way.

In the case of Type II HL, domains with unit-costs are easier as they don’t
require the model to generalize over costs of actions. Domains where action costs
are present can be further divided into two categories:

1. Costs are domain-dependent: cost of action only depends on name of the
action. (Denoted DDCosts for future reference.)

2. Costs are instance-dependent: cost of action depends on both name of the
action and its arguments. (Denoted IDCosts.)

In the PDDL, we are given templates of actions that define name, number of
arguments, types of arguments and preconditions and effects described relatively,
i.e., in terms of arguments. These templates are referred to as operators. When
we specify arguments of the operator, we get an instance which is referred to as
instantiated action.

Example 1.13

In Zenotravel, the operator Fly has five arguments:
Fly(?a - Aircraft, ?c1, ?c2 - City, ?fl before, ?fl after - FuelLevel)

Instantiated action can then look as follows:
Fly(plane1, city1, city2, fl3, fl2).

With DDCosts, costs of all instances of the same operator are the same while
with IDCosts, the costs of instances could differ.

Example 1.14

Zenotravel features actions board, debark, fly and refuel. Originally, costs of all
actions are 1. If we changed cost of action fly to 10 and refuel to 5, for example,
the domain would still have DDCosts.

If the cost of fly actions depended also on cities between which the plane flies,
like c(fly(city1, city2)) = 10, c(fly(city1, city3)) = 18, etc, we would get IDCosts.

With DDCosts, costs of actions are the same across the whole domain, i.e.,
they need not to be encoded into features of states. When predicting h∗(s), the
model needs to estimate the number of applications of each operator required
to reach the goal. With unit costs, the model only needs to predict the sum
of number of applications of each operator which is always easier. Besides this,
however, the DDCosts variant is still quite similar to the unit-costs scenario.

The scenario with IDCosts is much more complex. Not only must costs of all
instantiated actions be encoded in the features vector but the model needs to be
able to generalize over problems with arbitrary action costs.

22

Just by changing the action costs, it is already possible to encode NP-hard
problems, such as TSP. Imagine the following scenario: We are given a fixed set
of cities and a single operator move(?c1, ?c2) to travel between the cities. Cost
of each instantiated action corresponds to distance between the respective cities.
The goal is to visit all cities and minimize plan cost. The HL system for this
domain would have to be able to learn a general algorithm for solving TSPs.

1.3.3 Usage scenarios of HL
The Type II HL requires significant amount of time to train the model hence it
might seem that the approach is not practically applicable. The time demands
do limit usage of this method but in many scenarios it can prove beneficial.

When there is a need to solve a business problem using action planning, the
AI practitioner has several options:

• use a domain-independent solver

• use existing domain-specific solver

• develop a new domain-specific solver

• use heuristic learning

A domain-independent solver can be used of-the-shelf as long as there is
a PDDL model of the problem. This is the easiest and the most common way.
Efficiency of domain-independent solvers however varies and on some domains
they perform poorly.

Domain-specific solvers perform much better but they are only applicable to
a narrow range of domains. There are planning and optimization problems like
Traveling Salesman Problem or Vehicle Routing Problem for which appropriate
solvers exist. In practice, however, the problems are very specific. They often
involve additional constrains and parameters like types of vehicles, number of
drivers, their working hours etc. It is unlikely that solver would already exist for
such specific problem. Dropping the additional constrains would lead to finding
inferior or even infeasible solutions.

Another option is to develop a solver specifically for the problem at hand as
has been done in [94] for example. Such endeavour requires cooperation between
AI researchers, SW developers and domain experts and typically takes a lot of
time and resources.

Heuristic learning allows us to combine advantages of the other approaches.
It constructs a strong heuristic which provides good performance and doesn’t
require access to domain knowledge nor time of AI researchers and developers,
i.e. it can be used of-the-shelf. This could be very useful in business applications.
Successes of AlphaZero and other learning engines indicate that the ML approach
could even achieve better performance than human designed systems. It might
therefore be advantageous to use HL even if the domain expert was available.

From the ML perspective, heuristic learning has another significant advan-
tage: training data can be labeled automatically. This saves us the time and
resources required for humans to label the samples which is required in most ML
applications.

23

The biggest drawbacks of the method are time required to train the model
and the need for training problems. Due to these limitations, the technique is
only applicable in specific situations.

In practice, the ideal use case scenario is as follows.

• a company needs to solve planning tasks on a daily basis

• tasks are similar to each other

• when new task arrives, it must be solved quickly

• there is a large number of historical tasks available

The situation resembles operations of a shipping company that needs to plan
routes for deliveries every day, or any other company whose operations involve
navigation, for example. In such scenarios, it is acceptable for the company to
spend several days or even weeks training the model as long as it will be cheap
and the resulting heuristic will be efficient.

Search algorithms are typically tested in a different setting: a problem de-
scription is given and the clock starts ticking immediately. The goal is to solve
the problem as fast as possible while quality of the solution is taken into account
in the evaluation. See https://ipc2018-classical.bitbucket.io/#tracks for example.
In that setting, our technique is not applicable. We argue, however, that from
a practical point of view, such setting is very rare since in practice we always
have historical data or some other source of information that we can use.

In the past, the IPC also featured a learning track4 in which several small
problems are given as inputs together with their optimal solutions and some time
is allowed to analyze the data. After the analysis, a set of new problems similar
to the previous ones is given and the task is to solve each of them quickly. This
is much closer to our intended use-case.

1.4 Related Works
Many attempts have been made to utilize ML in planning and in general search.
See [51] and [95] for surveys. ML has been used to learn reactive policies ([36,
61]), control knowledge ([97]), for plan recognition ([5]) and for other planning-
related tasks ([58]). ML tools are also often used to combine several heuristics
([76, 27]) and in particular to help portfolio-based planners to efficiently combine
multiple search algorithms ([11, 81]). [92] presents the Explicit Estimation Search
algorithm that learns error of the heuristic online during search and adjusts future
estimates accordingly.

A lot of papers exist that utilize ML in neoclassical planning paradigm (partial
observability, non-deterministic actions, extended goals etc.) mostly to learn
reactive policies ([91, 29]). Several attempts also exist to utilize reinforcement
learning for planning like [37, 73, 30]. These techniques are not directly related
to our work.

4https://www.cs.colostate.edu/ ipc2014/

24

https://ipc2018-classical.bitbucket.io/#tracks
https://www.cs.colostate.edu/~ipc2014/

1.4.1 Heuristic learning
Heuristic learning was investigated by [1] where the authors used a bootstrapping
procedure with a NN to successively learn stronger heuristics using a set of small
planning problems for training. The paper proposed an efficient way of generating
training data based on switching between learning and search phases. The tech-
nique become popular and was successfully used by other authors ([13, 93, 24]).
We use a modified version of this technique as well. A domain-independent gen-
eralization of this approach was published later in [31].

Type I HL
Most papers deal with the Type I HL scenario and they use either a set of simple
heuristics like PDBs as features ([2, 8]) or SAS+ encoding as features ([93, 23,
24]). In [34], authors combined heuristic values with other information about the
problem like the number of objects. Serious attempt to use other kind of features
was made in [97].

[23] provides a comprehensive study of hyper-parameters for Type I HL. Au-
thors experiment with different input encodings (SAS+ vs. one-hot), classifica-
tion vs. regression, different ML models and NN architectures and they inves-
tigate the amount of training data needed to achieve competitive results. The
follow-up paper ([24]) adds a comparison of different training data-generation
methods and a comparison of efficiency between Type I and Type II HL systems.

In [67] authors propose yet another method for sampling state-space of the
problem which leads to a better distribution of training data and a better perfor-
mance of the learned heuristic. A comprehensive analysis of sampling methods
for HL is available in [4].

Type II HL
Several Type II HL systems also exist [80, 52]. The method proposed in [80]
utilize recurrent NN with a new elaborate way of extracting features based on
hyper-graphs. Authors report competitive results against the LM-cut heuristic.
The technique is able to address Type III HL as well which is also investigated in
the paper, so far with limited success.

In [52] authors use a feed-forward network and they encode description of the
state as well as goal conditions in the features vector. They propose a canoni-
cal abstraction to keep dimensions of the features vector fixed regardless of the
number of objects in the problem. The paper reports competitive results against
hand-coded heuristics.

Most papers use a standard MSE loss function without any adjustments and
the effects of choice of the loss function is not studied. Few exceptions exist:
in [93] the authors proposed a modification to the loss function used during the
training to bias the model towards under-estimation which increased quality of
solutions found during the subsequent search.

25

1.4.2 Performance guarantees
A lot of effort has been devoted to provide theoretical performance guarantees
for NNs and other ML models, i.e. bounds on the prediction error under various
conditions. See [35], section 6.4. In planning, the situation is similar. Many
heuristic search algorithms provide optimality guarantees or at least some bounds
on solution quality. See [87, 33] for example.

There is very little work, however, on providing any theoretical guarantees
in situations where planning is combined with learning or with data-driven tech-
niques in general. The only related work is Probably bounded sub-optimal search
framework introduced in [85] and further studied in [86, 88]. Authors use collected
samples in a form of (h(si), h∗(si))i to estimate heuristic accuracy and provide
probabilistic bounds on solution quality. Besides this, utilizing data is still very
uncommon in combinatorial search.

26

2. Heuristics in an ML Age
In this chapter, we review the role of heuristics in forward search
algorithms. We mention several well known theorems about per-
formance of A∗ algorithm and we analyze properties of heuristics
from the machine learning perspective.
We also present the notion of heuristic adjustment - an auto-
mated data-based modification of existing heuristics that we’ve
developed.

2.1 Heuristics and Search Algorithms
Current state-of-the-art forward search algorithms use heuristics to guide the
search towards promising areas of the state-space. The heuristic imposes an order
on the set of open nodes which determines what nodes will be expanded first.
Properties of the heuristic have significant impact on performance of the search
algorithm - both run-time and solution quality. The most important performance
guarantees are presented as theorems 1 and 2.

Definition 12 (Cost of A* solution). Let P be a planning problem and h a heuris-
tic. For a state s ∈ SP , we denote by Ah(s) the cost of plan that A∗ algorithm
finds from s to some goal state of P using h as heuristic. If no such plan exists,
we set Ah(s) = ∞.

Definition 13 (Admissible heuristic). Given a planning problem P , heuristic h
is called admissible on P if ∀sP ∈ SP : h(sP) ≤ h∗(sP). The heuristic is called
admissible if it is admissible on all problems to which it can be applied.

Theorem 1 (Optimality of A∗). Let P be a planning problem and h an admissible
heuristic then Ah(sP0) = h∗(sP0), i.e., the algorithm finds optimal solution.

Proof. See Theorem 2.10. in [20].

Definition 14 (ϵ-admissible heuristic). Given a planning problem P and ϵ ≥ 1,
heuristic h is called ϵ-admissible on P if ∀sP ∈ SP : h(sP) ≤ ϵ · h∗(sP). The
heuristic is called ϵ-admissible if it is ϵ-admissible on all problems to which it
can be applied.

Theorem 2 (Bounded suboptimality of A∗). Let P be a planning problem and
h an ϵ-admissible heuristic then Ah(sP0) ≤ ϵ · h∗(sP0), i.e., cost of the solution is
no more than ϵ-times greater than cost of the optimal solution.

Proof. See Lemma 6.2. in [20].

Another important property of a heuristic is its informedness.

Definition 15 (Heuristic domination). Let h1, h2 be heuristics. We say that h2
dominates h1 if ∀s : h1(s) ≤ h2(s) ≤ h∗(s).

Definition 16 (Set of expanded states). Let h be a heuristic and sP a state. By
ASh(s) we denote a set of states that A∗ expanded when searching from s and
using h as heuristic.

27

Theorem 3 (Space-efficiency of A∗). Let P be a planning problem and h1, h2
heuristics such that h2 dominates h1. Then ASh2(sP0) ⊆ ASh1(sP0).

Heuristics that produce higher estimates lead to finding solutions quickly, even
when they’re not admissible. Lower estimates on the other hand lead to finding
solutions of higher quality. There is a tradeoff between speed and solution quality.

2.2 The Process of Heuristic Estimation
Role of the heuristic is to estimate h∗(·) which is not known and cannot typically
be computed during the search due to the high computational complexity of such
task. Time complexity of A∗ on a planning problem depends on accuracy of the
heuristic used. Theorem 3 in [68] (page 186) states that if ∀s ∈ SP : h(s) = h∗(s)
then A∗ with h finds optimal solution to P after expanding only polynomial
number of nodes. Given the fact that NP-hard planning problems do exist and
assuming that P ̸= NP , it is not possible for a polynomial-time computable h to
be equal to h∗ on all states. We rely here on an intuitive notion of complexity. For
more exact definitions of complexity of planning domains see [42]. For a review
of several more recent complexity results see [45].

The notion of heuristic residue (also called error of heuristic) captures the
difference between h∗(s) and h(s).

Definition 17 (Heuristic residue). Let h be a heuristic. For a given state sP ,
residue of h on sP denoted Rh(sP) is Rh(sP) = h∗(sP) − h(sP).

The process of calculating the heuristic estimate can be divided to two phases.
Given the set of states S, we first divide it into categories and then assign an
estimate to each category. There is a set of categories ∆, a dividing component
d : S ↦→ ∆ and an estimating component e : ∆ ↦→ R.

Every existing heuristic h can be disassembled into these two components
dh, eh such that ∀s ∈ S : h(s) = eh(dh(s)) and |∆| << |S|.

This view on heuristics is very useful for our work as heuristics constructed
by HL systems work in the similar way. They extract features of states using
the features extractor f : S ↦→ Rd and then use an ML model M : Rd ↦→ R to
produce the estimate based on the features. ∆ in this case corresponds to the
”features-space” of the heuristic.

We will show how operations of any heuristic can be viewed in this way. When
computing h(s), the heuristic first creates a simplified inner representation F (s)
of the state s and then compute h(s) as a function of F (s). If the heuristic is
represented by an algorithm, F (s) can for example be defined as a sequence of
values of local variables of that algorithm during the computation.

The inner representation that the heuristic uses is implicit, hence not directly
observable but its approximation can be reconstructed by analyzing behavior of
the heuristic.

Definition 18 (Heuristic equivalence). Let h be a heuristic and P a problem. A
heuristic equivalence ∼h is an equivalence relation on SP defined as
s1 ∼h s2 ⇔ h(s1) = h(s2).

28

Given a heuristic h, we can define the set of categories ∆ as a set of equivalence
classes of ∼h. We will call this set the ∆-sets of h.
Definition 19 (∆-sets). Let h be a heuristic, P be a problem and s ∈ SP its
state. By ∆h

s we denote the set of states with the same heuristic estimate as s,
i.e. ∆h

s = {si ∈ SP | si ∼h s}.
We will just write ∆s when the heuristic is clear from context. We will also

use h(∆s) to denote value of the heuristic on states in ∆s. The value is the same
for all s ∈ ∆s.

2.2.1 Statistical perspective
For given s, we can rewrite the formula for residue as h∗(s) = h(s) + Rh(s) =
eh(dh(s)) +Rh(s) = eh(∆s) +Rh(s). In this equation, h∗(s) is the value we want
to estimate, eh(∆s) is the part of the information that h can compute and Rh is
the residue that we cannot compute using only h.

For given heuristic h and state s let’s define
• R−

h (s) = min{Rh(si) | si ∈ ∆s}

• R+
h (s) = max{Rh(si) | si ∈ ∆s}

Then ∀s : Rh(s) ∈ [R−
h (s), R+

h (s)]. From this point of view, Rh(s) can be seen
as a random noise with an unknown distribution over interval [R−

h (s), R+
h (s)].

Values R−
h (s) and R+

h (s) are the same for all states s ∈ ∆s hence we can write
R−
h (∆s) instead of R−

h (s) and similarly for R+
h .

Example 2.1

Consider the problem whose state space is depicted in figure 1.2. Lets assume
we have two admissible heuristics h1 and h2 that give us estimates as shown in
table 2.1.

state s h∗(s) h1(s) Rh1(s) h2(s) Rh2(s)
s1 3 2 1 1 2
s2 2 2 0 1 1
s3 0 0 0 0 0
s4 4 2 2 1 3
s5 1 1 0 0 1
s6 0 0 0 0 0

Table 2.1: Example of estimates and residues of two heuristics over a simple
state-space.

Lets analyze the ∆-sets of the two heuristics. The relation ∼h1 has three equiv-
alence classes. Table 2.2 shows them together with their corresponding heuristic
values and bounds R− and R+. Table 2.3 shows the same for heuristic h2.

set ∆h1
s h1(∆s) R−

h1
(∆s) R+

h1
(∆s)

{s3, s6} 0 0 0
{s5} 1 0 0
{s1, s2, s4} 2 0 2

29

Table 2.2: ∆-sets of heuristic h1.

set ∆h2
s h2(∆s) R−

h2
(∆s) R+

h2
(∆s)

{s3, s5, s6} 0 0 1
{s1, s2, s4} 1 1 3

Table 2.3: ∆-sets of heuristic h2.

Values R− and R+ delimit the interval in which the unknown residue lies. E.g.
if h1(s) gives us an estimate of 2, the actual value h∗(s) equals to 2 + x where x is
unknown and lies in [0, 2].

As we saw, computing a heuristic can be viewed as estimating a noisy random
variable. The issue of value estimation is well studied in the field of statistics that
deals estimating mean, variance or other properties of unknown random variables.
ML models are based on statistical approaches as well hence it is useful to compare
heuristic distance estimators to these techniques.

There are three basic types of estimates:

1. point estimate

2. interval estimate

3. estimation of distribution

A point estimate is a single number that is in some sense close to the unknown
value. An interval estimate provides a confidence interval that contains the un-
known value with high probability and estimation of the distribution furthermore
indicates how likely it is that the estimated value lies in some specific part of the
interval.

Example 2.2

Given a sampling x1, x2, . . . xk of some unknown RV X , we may use average of
x1, x2, . . . xk as a point estimate of E (X).
If in addition we knew that X ∼ N(µ, σ2) for some unknown µ and σ2, we could
use the sampling to construct and interval [a, b] such that P[E (X) ∈ [a, b]] ≥ 0.95,
for example.
We could also come up with a function d̂X such that ∀c : P[X < c] ≥ d̂X (c) which
would give us an estimation of distribution of X .

If we compare heuristics to those techniques, we see that non-admissible
heuristics work similarly to point estimates as they produce a single value h(s)
such that |h∗(s) − h(s)| is as small as possible. h(s) can be either smaller of
greater than h∗(s).

Admissible heuristics produce a single value as well but in this case the result
should be interpreted as an interval estimate. If the heuristic is admissible then
h(s) ≤ h∗(s) so the heuristic actually provides an interval I = [h(s),∞) and
guarantees that h∗(s) ∈ I. This can be seen as a 100%-confidence interval. No
upper bound nor an estimate of distribution is provided, i.e. the heuristic doesn’t
tell us how likely it is that h∗ lies in some specific part of the interval.

30

2.3 Components of the Heuristic
It is possible to analyze the two components (dh and eh) of a heuristic separately.
There are strong connections between properties of the HL system and behavior
of the two components of the resulting learned heuristic. We will first analyze
the desired behavior of these components for the learned heuristic and then point
out the correspondence between settings of the HL system and properties of the
learned heuristic.

2.3.1 Desired behavior
Ideally, the d-component should divide states to categories with the same h∗, i.e.,
for an optimal d-component it should hold that

∀s1, s2 : d(s1) = d(s2) ⇔ h∗(s1) = h∗(s2).

For an NP − hard planning problem such function d cannot be computed in
polynomial time unless P = NP . (See the following example.) This shows that
the dividing component is actually the hard and interesting part of any heuristic
estimation.

Example 2.3

Let’s assume we have a black-box for computing the optimal d-component. We can
use it to determine for any given states s1, s2 whether d(s1) = d(s2), i.e. whether
h∗(s1) = h∗(s2).

Now, given a nontrivial Sokobana problem with the initial state s0, we can
easily construct a state sx of the same problem that is unsolvable. This can be
achieved by adding an unrecoverable configuration (see [14]), e.g. placing a crate
to a corner. Now we ask the black-box whether h∗(s0) ?= h∗(sx). They will have
the same value if and only if the state s0 is unsolvable.

We can use the black-box to determine whether any given Sokoban instance
is solvable. The decision-problem version of Sokoban, however is known to be
PSPACE-hard. See Theorem 2.1 in [17].

ahttps://en.wikipedia.org/wiki/Sokoban

In ML applications, the features-space has a form of vector space over R on
which we have a natural metric: Euclidean distance. The ML system works best
if there is a strong correlation between dist(f(s1), f(s2)) and |h∗(s1) − h∗(s2)|,
∀s1, s2 ∈ S, i.e., if states whose targets are close to each other have similar
features.

As for the e-component, it is not clear what the optimal behaviour is. It affects
both admissibility and informedness of the heuristic. For a given d-component,
we need to assign an estimate to each set ∆s = {si ∈ S | d(si) = d(s)}. Let’s
denote mins = minsi∈∆s(h∗(si)) and maxs = maxsi∈∆s(h∗(si)).

To guarantee admissibility, we need e(∆s) ≤ mins. It’s never useful to produce
an estimate e(∆s) < mins hence the most informed admissible heuristic (with the
given d-component) should produce e(∆s) = mins. If admissibility is not required,
a different value from the interval [mins,maxs] might be preferred.

31

https://en.wikipedia.org/wiki/Sokoban

Knowing the distribution of h∗(si) over si ∈ ∆s, we can take quantiles of the
distribution into account. E.g., we may produce an estimate e(∆s) = β such that
β ≤ h∗(si) for at least 80 % of states si ∈ ∆s, i.e. guaranteeing that the heuristic
is admissible on at least 80 % of states, etc. The final choice depends on user’s
preferences with respect to the speed vs. solution quality trade-off.

2.3.2 HL connections
In the HL system, the d-component of the resulting heuristic is fully determined
by the choice of features extractor. The training data or even the choice of model
(neural network, linear regression, etc.) have no impact on it. I.e., if two states
s1 and s2 have the same features, the learned heuristic will always produce the
same estimate for both of them.

The e-component can be controlled by the choice of loss function. When using
MSE, the model will prefer e(∆s) = β such that ∑︁si∈∆s

(h∗(si) − β)2 is minimal.
Other loss functions might lead to producing an average of {h∗(si) | si ∈ ∆s}, a
median or some other value.

The loss function is not evaluated over the whole S but only over the given
set of training samples hence the choice of training data and other techniques
like regularization also affect the e-component. Furthermore, ML models are
able to interpolate the features space, i.e. when calculating e(∆s), they take into
account also data points in other categories than just ∆s, i.e., those that have
similar features.

These circumstances cannot be directly controlled but by a proper choice of
the loss function, the user can project their preferences about the e-component
of the learned heuristic.

2.4 Heuristic Adjustments
The presented component-based view can help tune hyper-parameters of a HL
system and can also be used to analyze existing heuristics. Given a heuristic h and
a set of training data in a form (si, h∗(si)), we can construct an approximation
of ∆-sets of the heuristic as well as compute bounds on residues R−(∆s) and
R+(∆s) as in example 2.1.

We can then use this information to discover possible discrepancies in behavior
of the heuristic and even fix them automatically. We call this process heuristic
adjustment. By adjusting a heuristic h, we actually create a new heuristic h′

whose d-component is the same as the one of h and the e-component is replaced
by one computed from the training samples.

Example 2.4

In table 2.3 we see that R−
h2

is greater than 0 for the second ∆-set. This is undesir-
able as it means that the heuristic systematically underestimates the corresponding
set of states. Simply by increasing the estimate on these states, we can come up
with a heuristic h′

2 that is more informed than h2 and is still admissible. The
adjusted heuristic in this case looks as follows:

32

h′
2(s) =

{︄
h2(s) + 1 if h2(s) = 1
h2(s) otherwise

The new heuristic can be evaluated in the same time as h2 (up to a small
additive constant) and dominates the original. Using h′

2 will always yield the same
or better results than using h2 with respect to both search-speed and solution
quality according to theorems 1 and 3.

We propose three types of adjustments: Shift-adjustment, Avg-adjustment and
Min-adjustment.

2.4.1 Shift-adjustment
As example 2.4 shows, the lower bound R−

h should never be greater than 0. The
shift-adjustment is based on identifying such discrepancies and fixing them by
shifting the estimate appropriately.

Underestimation such as the one in the example should never occur with state-
of-the-art domain-specific heuristics as it harms the performance and is avoidable.
Author of the heuristic should be able to identify and remove such anomaly.

With domain-independent heuristics, however, this can happen. The system-
atical underestimation could only occur on some specific domain and shifting
the value globally could make the heuristic inadmissible on other domains. It is
not possible for the author of heuristic to manually check its behaviour on all
existing domains and adjust it to each such domain. With the ML approach,
however, we can do exactly that as the adjustment is applied automatically and
is domain-specific.

It is also possible to shift the heuristic the other way, i.e. identify ∆-sets on
which a systematical overestimation occurs and mitigate it by lowering the value.
We identify both systematical underestimation and overestimation. We denote
the resulting heuristic hshift and define it as follows.

hshift(s) =

⎧⎪⎨⎪⎩
mins, if h(s) < mins
maxs, if h(s) > maxs
h(s) otherwise

2.4.2 Avg-adjustment
Analyzing the distribution of the residue among states can also be used to adjust
the heuristic. In particular, we would like to determine if there is a dependence
between h(si) and Rh(si) for si ∈ SP . If such dependence is present, the ML
model could utilize it to predict Rh(s) from h(s).

Example 2.5

If the heuristic would always predict h∗(s)/2 (i.e. ∀s : h(s) = h∗(s)/2), then given
enough samples (h(si), h∗(si)), the model would easily learn the dependence and
would be able to predict h∗(s) accurately.

33

This can be achieved by calculating average of h∗(s) over each ∆-set and use
that as the estimate. We call this procedure avg-adjustment and we denote the
resulting heuristic havg. The heuristic is defined as follows:

havg(s) = average{h∗(si) | si ∈ ∆s}
= average{h∗(si) | si ∈ SP , h(si) = h(s)}

See the following example.

Example 2.6

We do this modification for heuristic h2 defined in table 2.1. There are two ∆-sets
∆s1 and ∆s3 . ∆s3 contains states s3, s5, s6. When we average their h∗, we get
1/3. When we do the same for ∆s1 , we get the average of 3. Table 2.4 compares
behaviour of h2 and havg2 .

state h∗ h2 Rh2 havg2 Rhavg
2

s1 3 1 2 3 0
s2 2 1 1 3 -1
s3 0 0 0 1/3 -1/3

s4 4 1 3 3 1
s5 1 0 1 1/3 2/3

s6 0 0 0 1/3 -1/3

Table 2.4: Comparison of heuristics h2 and havg2

We can see that havg2 has lower average error but we have lost admissibility of
the heuristic as on states s2, s3 and s6 havg2 overestimates the true distance.

2.4.3 Min-adjustment
By taking minimum of h∗(·) instead of average, we can make the heuristic ad-
missible. We denote such heuristic hmin and define it as follows.

hmin(s) = mins

= min{h∗(si) | si ∈ SP , h(si) = h(s)}

Example 2.7

The following table 2.5 compares behavior of heuristic h2 defined in 2.1 and its
min-adjustment hmin2 .

34

state h∗ h2 Rh2 hmin2 Rhmin
2

s1 3 1 2 2 1
s2 2 1 1 2 0
s3 0 0 0 0 0
s4 4 1 3 2 2
s5 1 0 1 0 1
s6 0 0 0 0 0

Table 2.5: Comparison of heuristics h2 and hmin2

2.4.4 Adjustments vs. weighting
There is a popular technique for increasing the heuristic value called weighting.
Given a heuristic h and a weight w ∈ R,w > 1, a weighted heuristic is defined
simply as h(w)(s) = w · h(s). The weighted heuristic is more informed and hence
might find solutions faster but typically it is not admissible so it doesn’t guarantee
optimality of the solution. If h is admissible then h(w) is w-admissible so theorem 2
can be used to obtain a bound on solution quality.

It is also possible to down-weight an inadmissible heuristic, i.e. to use w < 1.
This does slow down the search but should improve the solution quality. By
adjusting the weight, the user can choose the speed vs. quality ratio that suits
their usage scenario.

The presented modifications - especially the averaging - serve the similar pur-
pose as weighting, i.e. making the heuristic more informed. There is however
a fundamental difference between weighting and using a data-driven approaches
like averaging or shifting.

Weighting increases the heuristic value for all states evenly. There is no guar-
antee that the new value will be closer to h∗ or that the weighted heuristic will
perform any better during search than the original. There is also no guide-
line on how to choose the weight nor any theoretical reasoning why weighting
is the correct way to improve the heuristic. There are many other transforma-
tions we could apply to the heuristic, like h(s) + c, h(s) · h(s), h(s) · log(h(s)),
h(s) + c · (log(h(s)) − 1), etc.

Heuristic adjustments are related to the work of Roni Stern at al. ([86, 88])
who also developed a way of utilizing data to modify heuristic behavior. Au-
thors report significant improvements over weighted A∗ and some other bounded-
suboptimal algorithms.

2.4.5 Properties
The min-adjustment yields the most informed admissible heuristic with the given
d-component. The avg-adjustment yields a heuristic with the lowest mean abso-
lute error (MAE), given the d-component and the shift-adjustment corrects some
obvious errors of h. hshift will always have the same or lower MAE than h without
compromising its admissibility nor informedness.

Unlike weighting, these data-driven modifications allow targeting a specific
types of states and provide theoretical guarantees of the behaviour. They give
the user a direct control over the distribution of P[h∗(s) = x | h(s) = y]. E.g., it

35

is possible to modify the heuristic in such a way that ∀s : hmodified(s) −h∗(s) < 2
or that the number of states on which the heuristic overestimates is less than 5%
of all states, etc.

We are actually only constructing approximations of heuristics hmin, hshift
and havg as we don’t calculate the value over the whole S but over the training
data only. The theoretical properties like admissibility can only be guaranteed on
the set of training data. If the set of training samples is too small or poorly chosen
then the heuristics might not exhibit the advertised behavior when deployed.

The properties can only be guaranteed ”asymptotically”, i.e., as the set of
training samples converges to S, the number of states that violates the property
goes to zero.

We’ve create adjusted variants of two domain-independent heuristics and com-
pared their performance with the originals on a set of planning benchmarks. Re-
sults are provided in the Experiments section.

Heuristic adjustments as heuristic learning

The presented heuristic adjustments are simple examples of HL. In this case, the
features vector of a state s consists only of a single number: h(s). Each type of
adjusted heuristic can be constructed by ML using a proper loss function. E.g.,
when we use MAE, the learned heuristic will be close to havg as havg has the
lowest possible MAE on the set of training data, etc.

Beyond point estimates

Historically, researches have been developing heuristics that provide point esti-
mates of lower bounds because they can be created easily using some form of
relaxation ([75]). Search algorithms reflect this and vast majority of them uses
heuristics as point estimators. This holds for A∗ and it’s variants, as well as for
greedy heuristic search, beam stack search and many others.

There is however a much larger variety of information that the heuristic could
provide.

1. standard lower bound: ∀s : h(s) = b, such that b ≤ h∗(s)

2. upper bound: ∀s : h(s) = t, such that h∗(s) ≤ t

3. interval: ∀s : h(s) = [b, t], such that b ≤ h∗(s) ≤ t

4. confidence interval: e.g. for a 90%-confidence interval: h(s) = [b, t], such
that ∀s : |{si ∈ ∆s | b ≤ h∗(si) ≤ t}| ≥ 0.9 · |∆s|

5. distribution characteristics: h(s) = (µ, σ2), such that

• average[h∗(si) | si ∈ ∆s] ≤ µ

• var[h∗(si) | si ∈ ∆s] ≤ σ2

6. density function estimate: h(s) = q, such that

• q : R ↦→ [0, 1]
• ∀x ∈ R : |{si∈∆s|h∗(si)<x}|

|∆s| ≤ q(x)

36

It is difficult to design a standard heuristic (i.e. hand coded, not data-based)
that would provide this kind of information. For example: providing an upper
bound is equivalent to deciding whether the planning task is solvable. This alone
is PSPACE-hard in the STRIPS formalism. (See [9], theorem 3.1.) Even if
such heuristics existed, current search algorithm would not be able to utilize the
additional information.

With the data-oriented approaches, however, it is possible to obtain this kind
of more elaborate information, or at least its approximations. We believe that
data-based approaches to heuristic design have a great potential and could lead
to spawning a whole new generation of search algorithms that will be able to use
the additional information and even provide some form of guarantees on run-time
and solution quality.

In this thesis, we do not pursue the endeavor of creating new search algorithms.
We use the HL approach to learn a heuristic in the standard format and we use
a standard A∗ algorithm to deploy it.

37

3. The Framework
In this chapter, we present our HL framework. We describe our
approach to obtaining the training data, extracting features and
selecting a loss function.

We work with the Type II HL (see section 1.3.1) and our approach is domain-
independent in a sense that the domain from which the training problems come
might be arbitrary. Once the model is trained on data from some specific domain,
it will only be applicable to problems from that domain but the process can be
repeated on any domain of interest. Our approach can therefore be described as
an automatic creation of domain-specific heuristic for any domain.

Our approach is able to generalize over both fluent and rigid predicates. With
respect to action-costs, our framework is applicable to DDCosts domains but not
to IDCosts ones. See 1.3.2 for details. The technique is not applicable to Type
III HL, i.e., it can’t generalize across domains.

We are given problems P1, P2, . . . Pk from the same domain D. In the first
phase, we train an ML model based on training data generated from given prob-
lems. We call this phase the domain-analysis phase. After the model is trained,
new, previously unseen problem P from the same domain D is given and solved
by A∗ using the trained model as heuristic. We refer to this phase as the deploy-
ment phase. We focus here on the domain-analysis phase as in the deployment
phase we use standard A∗ algorithm without any modifications.

3.1 Training Data
The training data are pairs (f(si), h∗(si)) where si are states, f(si) denotes fea-
tures of si and h∗(si) is cost-to-go from si to the nearest goal state which plays
the role of a target during the training.

In typical ML applications the training data are given as inputs. In the HL
scenario, the situation is somewhat different as it is possible to label the data
without the need of human assistance. The training data can be generated and
labeled automatically given enough computation power. This is the preferred
way of acquiring the training data in HL since large datasets of goal-distances of
states are not readily available for most planning domains.

Generating the training data involves three tasks: sampling states si from
SP1 ∪ SP2 ∪ · · · ∪ SPk , computing features f(si) and calculating goal-distances
h∗(si) for those states.

Schema of the analysis phase is depicted in figure 3.1

3.1.1 Sampling the state spaces
We generate the training data ourselves hence we have a direct control over its
properties. From the ML perspective, it is important that training data come
from the same probability distribution as the data encountered during the de-
ployment. Evaluating the model on completely different type of inputs would

38

Figure 3.1: Schema of the domain-analysis phase.

lead to poor performance and unpredictable behaviour, especially when using
a high variance1 model such as deep neural network (as reported e.g. in [24]).

Computing h∗(si) is very time-consuming hence many existing approaches
only use states for which it is easy to compute h∗(si), such as states close to goal
or states that lay on optimal paths from s

Pj

0 to goal state. This however violates
the distribution requirement.

We would like to train the model on the same type of states that it will
encounter during the search phase. This would require to predict what kind of
states will A* expand. Making such predictions is tricky as the set of expanded
nodes depends on the heuristic used which depends on how the model is trained
and that depends back on the choice of training data.

We adopt a technique by [1], which solves this issue by an iterative procedure
that combines training and search steps.

The first set of training samples is empty. Then in each iteration the model
is trained on current set of samples and a time-limited search is performed on all
training problems using the trained model as a heuristic. States that the algo-
rithm expanded are collected and used as training samples in the next iteration.
The time limit is increased in each successive iteration, and the process contin-
ues until sufficient amount of samples is generated or all training problems can
be solved within the time limit. In the first iteration where the set of training
samples is empty, the model is not actually trained but a blind heuristic is used
instead.

Pseudocode for this process is presented as Algorithm 1.
1See Bias–variance tradeoff. E.g. https://en.wikipedia.org/wiki/Bias-variance tradeoff

39

https://en.wikipedia.org/wiki/Bias%E2%80%93variance_tradeoff

Algorithm 1: Domain analysis phase
Input: Set of planning problems {Pj} ⊂ D used for training
features extractor F
Output: Trained model M that realizes mapping F [SD] ↦→ R

1 L := 1;
2 trainingStates := ∅;
3 repeat
4 compute h∗(si) for each state si ∈ trainingStates;
5 assign features fi = f(si) to all states si ∈ trainingStates;
6 M := train neural net on data {(fi, h∗(si))};
7 foreach problem P ∈ {Pj} do
8 run IDA* on P with time limit L minutes using M as heuristic;
9 T := states of P that were expanded during the search;

10 trainingStates := trainingStates ∪ T ;
11 end
12 L := L+ 1;
13 until termination criterion is met;
14 return M ;

3.1.2 Calculating goal-distances
Goal-distances of states can be calculated by a simple BFS or A∗ with an admis-
sible heuristic. This process can take minutes or even hours and since we work
with millions of training states, this approach is not practical.

We decided to use ad-hoc solvers to calculate goal-distances for sampled states.
This allows us to work with larger training problems in reasonable time. The ad-
hoc solvers we’ve developed are briefly described in attachment A.2.

The usage of ad-hoc solvers is not necessary and they don’t limit applicability
of our method in any way. They can be omitted if the user has sufficient compu-
tational power to calculate goal-distances directly or if they have an alternative
source of training data.

The issue of obtaining well-distributed training data in reasonable time is cur-
rently being extensively studied ([24, 67, 4, 52]). In this thesis, we don’t inves-
tigate sampling techniques. We circumvent the issue by using the bootstrapping
technique together with our ad-hoc solvers and we focus on different aspects of
HL.

Imperfect goal-distances

Ad-hoc solvers that we use don’t guarantee optimality of solutions they provide.
Instead they find near-optimal solutions in reasonable time. We can however
still use these imperfect values to train the network. Solvers may both over- and
under-estimate the true distance-to-go. This can be seen as a random noise in
the training data.

Such noise is often present in ML applications and the ML models are made to
be able to handle it. Given enough data, the ML model will be able to distinguish
signal from noise, i.e., it will be able to recognize and partially remove the noise in
training data and provide even better estimates than the ad-hoc solvers used for

40

training. Imperfect goal-distances were used as labels in [67, 23] where authors
report that the learned heuristic indeed outperforms its teacher.

3.2 Features Engineering
Features extractor assigns real-numbered vectors of fixed size to states. This is
one of the most important components in any ML application2.

Given a planning domain D, the features extractor F realizes a mapping
F : SD ↦→ Rλ(D), i.e., assigns a real valued vector to any state of any problem
from the domain of interest where λ(D) is the size of feature vectors for domain
D.

3.2.1 Required properties
Requirements on the features extractor are closely related to the generalization
capabilities that we expect from the model. We work with the Type II HL and we
use one-to-one model (see section 1.2.4) hence length of the feature vector needs
to be fixed and independent of the specific problem instance.

Features should be informative in a sense that states with different goal-
distances should have different features, and comparable among problems from
the whole domain so that the knowledge is transferable to previously unseen
problems. We would also like features to be invariant under objects renaming.
I.e. if we changed names of constants in the PDDL representation of the state,
the new state should have the same features as the original.

Properties of P that affect h∗(sP) have to be accessible to the model. Namely
the set of available actions and the goal condition. The model is trained on prob-
lems from a single domain and for such problems the set of actions is always
the same so it is not necessary to encode it into features of states. Goal condi-
tions, however, must be encoded so that the learned knowledge is transferable to
problems with different goal states.

3.2.2 Simple features
We will review here two popular features extraction techniques used for HL.

SAS+ representation as features

In the SAS+ formalism, states are represented as vectors of values of state vari-
ables, i.e., vectors of integers. It is possible to use this representation as the
feature vector.

This features extractor is very informative as it assigns unique vector to each
state. I.e. it will never happen that two states have the same features but different
targets which typically happens with standard features extractors. Also, features
can be computed in zero time as we already have states represented as ”feature
vectors” during the planning process.

Size of the features vector in this case depends on the number of objects in
the planning problem hence it can’t generalize over problems of different size. It

2https://towardsdatascience.com/machine-learning-isnt-models-it-s-features-be87b386db39

41

https://towardsdatascience.com/machine-learning-isnt-models-it-s-features-be87b386db39

cannot even generalize over problems of the same size that have different goal
conditions since the goal conditions are not represented in the vector. For these
reasons, the SAS+-features vector is only suitable for the Type I HL.

Heuristics as features

Given a set of simple heuristics B = {h1, h2, . . . , hq}. We can calculate features as
FB(s) = (h1(s), h2(s), . . . , hq(s)). HL papers often use a set of pattern database
heuristics (PDBs). See [75].

This features extractor guarantees that vectors have fixed size and it is rel-
atively well informed. Heuristics take into account goal conditions hence the
features are comparable among problems with different goals, at least to some
degree.

Heuristics can be evaluated on problems of any size so the features extractor
can in principle be applied to problems of different size and its computation is
quite fast as long as the heuristics are simple enough. Due to these properties, it
is currently one of the most popular features extractors for HL.

There are however two issues with this approach.
PDBs are not transferable between problems. PDB is based on a pattern i.e.

a set of objects from the planning problem. When a set of objects is selected
and a pattern is created, there is no guarantee that new problems will contain
objects with the same names, and even if they do, the role of those objects might
be different. I.e. it is not invariant under objects renaming.

Also, goal conditions of new problems might differ from those on which the
pattern has been created. Even if we re-computed the PDB with the same pattern
on the new problem, those two values would not be comparable.

Another issue rises from the fact that accuracy of a heuristic often deteriorates
as the problem size increases. See the following example.

Example 3.1

There are two problems P1, P2 with initial states sP1
0 , sP2

0 respectively. The first
problem is small, it has h∗(sP1

0) = 20 while the second is larger, we have h∗(sP2
0) =

100. We have an admissible heuristic h. Let’s find two states sP1
1 and sP2

2 such that
h(sP1

1) = h(sP2
2) = 15.

Typically, the relative accuracy of a heuristic much higher on small problems
(see [75] section 3.5.2), i.e. we have h∗(sP1

1) = 20 while h∗(sP2
2) = 40. When used in

HL, these two states would have the same features: ⟨15⟩ but very different targets:
20 vs. 40. This illustrates that the features are not comparable among problems
of very different size.

Heuristic values can be used as features in the Type I HL where none of these
issues occur. The approach is also useful for learning and efficient combination
of several heuristics.

We believe that Type II HL system requires a much more flexible features
extractor as features of states of different problems must be comparable. We
have developed a new way of extracting features that is designed specifically for
planning applications. We will describe it in chapter 4.

42

3.3 Error Function
Error function, or loss function is the criterion that is minimized during the
training. In the regression setting, MSE is the most popular loss function but
other loss functions also exist. MSE for 1D output is defined as

MSE =
∑︁(yi − ŷi)2

n

where yi is the expected output for the i-th sample, ŷi is the actual output of
the model on the i-th (yi, ŷi ∈ R) sample and n in the number of samples. The
sum goes over all samples.

In the heuristic learning scenario, the expected output is goal-distance of the
state, i.e. yi = h∗(si) and the trained model is used as a heuristic function, so
we can denote ŷi = hL(si), where hL is the resulting learned heuristic. By using
this notation it is clear that MSE criterion minimizes average of (h∗(si)−hL(si))2

which is average of RhL
(si)2 - squared residues. (See definition 17.)

3.3.1 Choice of the Loss Function
Choice of the loss function has a significant impact on properties of the learned
heuristic as explained in detail in section 2.3.2. For example, we could change
the formula for MSE like this:

MSE(w) = 1
n

n∑︂
i=1

err(w)(yi, ŷi)

where

err(w)(yi, ŷi) =
{︄
w · (ŷi − yi)2 if ŷi > yi
(ŷi − yi)2 otherwise

for some w > 1.
This would penalize overestimation more harshly than underestimation and

hence should make the resulting heuristic closer to being ”admissible”. This
attempt has been made in [93].

The loss function affects properties of the resulting heuristic. It is however
not clear what the desired properties are, as discussed in section 2.3.1. User
preferences must be taken into account when setting properties of the learned
heuristic with respect to the search speed vs. solution quality.

We experimented with two loss functions: the standard MSE and an adjusted
version that we call LogMSE defined as follows.

LogMSE =
∑︁ [log(yi + 1) − log(ŷi + 1)]2

n

for yi, ŷi ≥ 0.
Comparison of heuristics learned by MSE and by LogMSE can be found in

section 5.4.5. Advantages of LogMSE in the HL scenario are discussed in detail
in section 5.5.

43

4. Graph-based Features
This chapter presents our novel way of extracting features of
states of planning problems. We use a direct encoding of the
state to an integer vector without relying on existing hand-coded
heuristics.

Our method is based on transforming the state to a graph which we call Object
graph and then counting the number of occurrences of specific subgraphs in the
object graph and using those counts as features. We first define the object graph.

4.1 Object Graph
We work with the PDDL representation of the problem, so we are given a set of
constants C, a set of predicate symbols Ψ, a set Q of all instantiated predicates
and a goal condition G ⊂ Q. We don’t support negative goal conditions as they
can be compiled-away so the goal condition is just a set of predicates that need
to hold.

Let’s first define the notion of vertex labeled graph.
Definition 20 (Vertex labeled graph). A vertex labeled graph is a triple
(V,E,L) where (V,E) is a graph and L : V ↦→ N0 is a labeling function.
Definition 21 (Object graph). An object graph for a state s of a planning
problem P (denoted G(sP)) is a vertex labeled graph G(sP) = (V,E,L) defined
as follows. The set of vertices V consists of four disjoint sets:

1. there is a vertex vc for every constant c ∈ CP

2. there is a vertex vψ for every predicate symbol ψ ∈ ΨP

3. there is a vertex vq for every instantiated predicate q ∈ QP that is true in s

4. there is a vertex vgq for every goal predicate q ∈ GP

The set E contains an edge eqψ from vq or vgq to vψ if instantiated predicate
q uses the predicate symbol ψ, and an edge ecq from vc to vq or vgq if instantiated
predicate q contains constant c.

Every vertex of the graph is labeled by an integer using a labelling function
L : V ↦→ N0 that looks as follows.

• every constant-vertex vc is labeled 0

• every predicate-vertex vq is labeled 1

• every goal-predicate-vertex vgq is labeled 2

• every predicate-symbol-vertex vψ is assigned a unique label from
[3, 4, . . . , |Ψ| + 2] where |Ψ| is the number of predicate symbols.

If types are present, they are treated as unary predicate symbols. E.g. if
a constant plane1 has type Plane, we add a predicate symbol Plane to Ψ and we
set the instantiated predicate Plane(plane1) to be true in all states.

44

Example 4.1

Let’s take a look at the initial state of the problem pfile1 of the zenotravel domain.
(See A.1.1 for details about the domain and URLs to the PDDL representation.)
Zenotravel domain uses the following predicate symbols:

at, in, fuel-level, next
aircraft, person, city, flevel

Predicate symbols on the first line are binary, the others are unary (types). Problem
pfile1 contains the following constants:

plane1,
person1, person2,
city0, city1, city2,
fl0, fl1, fl2, fl3, fl4, fl5, fl6

The initial state is defined by these fluent predicates:

at(plane1, city0)
fuel-level(plane1, fl1)
at(person1, city0)
at(person2, city2)

and the following rigid predicates:

aircraft(plane1),
person(person1), person(person2),
city(city0), city(city1), city(city2),
flevel(fl0), flevel(fl1), flevel(fl2), flevel(fl3),

flevel(fl4), flevel(fl5), flevel(fl6),
next(fl0, fl1), next(fl1, fl2), next(fl2, fl3),

next(fl3, fl4), next(fl4, fl5), next(fl5, fl6)

Goal condition is as follows:

at(plane1, city1)
at(person1, city0)
at(person2, city2)

In figure 4.1 there is the object graph for this state. Colors represent labels.
Constants are colored red (label 0), initial predicates are green (label 1) and goal
predicates yellow (label 2). There are 8 predicate symbols that are represented by
8 nodes with mutually different colors. These have labels 3 - 10. Unary predicate
symbols are drawn as circles, binary ones as diamonds.

45

Figure 4.1: Example of an object graph for the initial state of problem pfile1
of the zenotravel domain.

4.1.1 Properties of the graph
Size of the graph G(sP) is linear in the size of s and in the number of goal
conditions. The number of vertices is |C|+ |G|+ |s|+ |Ψ|. Every predicate (initial
or goal) is connected to the corresponding predicate symbol and a constants
where a is the arity of the predicate symbol. Hence, number of edges is at most
(am + 1) · (|s| + |G|) where am is the maximum arity of some predicate symbol
from Ψ, |s| is the number of predicates that are positive the s and |G| is the
number of goal predicates.

The graph need not be connected as seen in the example, but it often is. the
number of constants, initial and goal predicates is problem-specific. Number of
predicate symbols, on the other hand, is domain-specific and will be the same for
all problems within the domain.

The object graph is an equivalent representation of the state and goal con-
dition. The original PDDL representation of the state and of the goal can be
reconstructed back from the graph.

46

4.2 Extracting Features
We use the object graph to extract features by counting the number of occurrences
of specific subgraphs while taking into account labels of nodes. Let’s first define
the necessary notions.
Definition 22 (Isomorphism of labeled graphs). Let G1 = (V1, E1,L1) and G2 =
(V2, E2,L2) be two vertex labeled graphs. We say that G1 and G2 are isomorphic
if |V1| = |V2| and there exists a bijection f : V1 ↦→ V2 such that

1. ∀v1, v2 ∈ V1 : (v1, v2) ∈ E1 ⇔ (f(v1), f(v2)) ∈ E2

2. ∀v ∈ V1 : L1(v) = L2(f(v))

Let Bk
α be a set of all connected non-isomorphic vertex-labeled graphs con-

taining at most α vertices where the labels are from {0, 1, 2 . . . k − 1}.

Example 4.2

Figure 4.2 shows an example of graphs B2
2 - colors represent labels.

Figure 4.2: The set of graphs B2
2 .

Figure 4.3 shows the set B2
3 .

Figure 4.3: The set of graphs B2
3 .

Definition 23 (Occurrence of a graph in another graph). Occurrence of a
graph G1 in graph G2 is a set of vertices T of G2 such that induced subgraph of
G2 on T is isomorphic to G1.

47

Definition 24 (Object graph features). Given a state s and α, k ∈ N, the object
graph feature vector of s (denoted Fα(s)) is an integer vector of size |Bk

α| whose
i-th component is the number of occurrences of the i-th graph from Bk

α in G(s).

Example 4.3

Consider the graph G in figure 4.4 with two different labels represented by colors.
(I.e. the parameter k equals two.) We use α = 2, i.e. we count occurrences of
connected subgraphs of size up to 2. The set B2

2 is shown in figure 4.2.

Figure 4.4: A simple graph used to demonstrate computation of features.

We order elements of B2
2 to a sequence and fix their order. The order is arbitrary

but must be the same for all states that we assign features to. Then we count the
number of occurrences of each element of B2

2 . The resulting vector is F2(G) =
(5, 3, 5, 2, 1) as shown in figure 4.5.

Figure 4.5: Example of extraction of features from a vertex labeled graph.
Left-hand side: example graph, right-hand side: set of B2

2 together with
the resulting features vector. The two occurrences of one of the graphs are
marked.

4.3 Properties of Fα(s)
The parameter α of Fα(s) determines the maximum size of subgraphs that are
considered and it can be adjusted by the user. With low α, the vector will be
short and will contain less information about the state but its computation will
be faster, and vice versa.

48

The parameter k in the definition of Object graph features (definition 24),
on the other hand, cannot be adjusted by the user and is fully determined by
the number of labels used in the object graph of s, i.e. by the domain. We’ve
intentionally defined the labeling function in such a way that k is domain-specific
but not problem-specific. As stated in definition 21, the number of labels equals
to the number of predicate symbols + 3. This ensures that size of the features
vector is constant across the whole domain and hence our features extraction is
usable for the Type II HL. See section 1.3.1 for details.

4.3.1 Extracted knowledge
The number of occurrences of small graphs with size 1 and 2 captures knowledge
about size of the problem: the number of objects for each type, the number of
positive predicates and size of the goal condition. This information has been used
before in hand-coded HL features extractors ([34]) and is known to be beneficial.

If the domain only contains unary and binary predicates, graphs with size 5
can capture knowledge about the number of not accomplished goals. The graph
looks as depicted in figure 4.6.

Figure 4.6: A graph of size 5 which indicates that a binary predicate is already
accomplished.

Each occurrence of the graph represents a goal predicate that is already ac-
complished in the current state. The total number of goal predicates is captured
by the number of occurrences of another graph so the model can calculate the
value of hGoalCount, for example. (See section 1.1.5 for description of hGoalCount).

In zenotravel domain, this knowledge can be captured even by graphs of size
4 as the predicate symbol-vertex is not relevant. This tells the model how many
passengers and planes are not yet at their destinations. A larger graph can for
example represent a pair of passengers that can share the ride, i.e. having the
same current location and the same destination, etc.

In blocks domain (see A.1.2), graphs of size 4 can tell the number of blocks
that are not yet correctly placed. Occurrence of a certain graph of size 5 can for
example indicate the fact, that there are 2 blocks A on top of B and B is not
correctly placed so both of them will have to be moved, etc.

49

In general, the knowledge that the features vector captures is domain-specific.
The larger subgraphs we count the more complex knowledge the vector can cap-
ture.

4.3.2 Length of the vector
Length of the features vector is limited by the size ofBk

α which grows exponentially
in both α and k. See [3] for an asymptotic formula for the number of connected
graphs.

Length of the vector is at most ∑︁α
i=1 2

i(i−1)
2 C ′

i(k), where 2
i(i−1)

2 is the number
of graphs on i vertices and C ′

i(k) = (k+i−1)!
i!(k−1)! is the number of combinations with

repetition of size i from k elements, i.e. the number of ways how labels can be
assigned to vertices.

In practice, |Fα(·)| is much lower since we only include graphs from Bk
α that

occurred at least once in the training data. Vast majority of graphs do not
occur due to the way how the object graph is defined. For example, every pred-
icate symbol ψi has its own label li and every object graph contains exactly one
vertex with such label. Graphs that contain more than one vertex labeled li can
never occur. Also, graphs that contain edge between vertices with the same label
cannot occur, etc.

The set of graphs whose occurrences we actually count we call the Features
graphs. The set of features graphs is a subset of Bk

α. In the rest of this chapter,
we use Bk

α also when referring to the set of Features graphs as there should be
no confusion.

Actual lengths of vectors for various values of α are shown in Table 5.1 in the
Experiments section.

4.3.3 Expressive power
We can measure expressive power of features extractor by calculating the relative
amount of states that are assigned the same features event though they have
different targets. We say that the features extractor has high expressive power if
amount of such states is low. E.g. an extractor that assigns the same features
to all states has the lowest possible expressive power while an extractor which
assigns a unique vector to every state has the highest possible expressive power.

ML models produce their predictions solely based on features of states hence
they require that states with different cost-to-go are distinguished by having
different features. This is important especially among states whose difference in
cost-to-go is high. On the other hand, if the expressive power of the features
extractor is too high, it harms generalization capabilities of the model.

Our graph-based features extractor guarantees that features will be unique
as long as the size of subgraphs that we count is greater or equal to size of the
object graph, i.e. when α ≥ n where n is size of the object graph. This is more
of a theoretical property as in practice α is quite low (e.g. 2 ∼ 6) while size of
object graphs as much larger (10 ∼ 1000) and potentially unlimited.

It is not known whether or not Fα(G) uniquely determines every graph on n
vertices for some α < n, not even for α = n− 1. It is an open problem in graph

50

theory known as the Reconstruction conjecture1.
In our application, α is always fixed before the training and we require that the

trained model is applicable to problems of any size. Hence we cannot guarantee
that α ≥ n as the size of object graphs could be arbitrarily large. For this reason
features are not unique for all states.

The expressive power depends on α: the higher α the longer and more expres-
sive the vectors are. It is difficult to provide any theoretical guarantees as the
expressive power is domain dependent. We’ve tried to measure it experimentally
on the set of training data we’ve collected. Results can be found in section 5.3.

Longer vectors always contain strictly more information than the shorter ones.
For any α and any G, the set of graphs whose occurrence Fα counts is a subset
of the graphs that Fα+1 counts hence the features vector Fα(G) is contained in
the vector Fα+1(G).

4.4 Computing Features from Scratch
Given an object graph G(s), the features vector Fα(s) can be computed by a re-
cursive procedure that iterates through all connected subgraphs with size up to
α in the graph and its time complexity is proportional to the number of such
subgraphs. It is difficult to estimate the number in general as it strongly depends
on the structure of the graph. E.g. a cycle with n vertices contains just n con-
nected induced subgraphs of size α < n, while a clique on n vertices contains

(︂
n
α

)︂
such subgraphs. The number depends on the edge-connectivity of the graph, i.e.
on how many paths are there between pairs of vertices, as well as on degrees of
vertices.

Experimental results show that the time required to compute features grows
exponentially in α as well as in the size of object graph. The size of object graph is
proportional to the number of objects in the planning problem, hence the method
is very slow on larger problems.

4.5 Computing Features Incrementally
When we take into account the way how A∗ algorithm operates, it is possible
to calculate the features vector incrementally. A∗ expands nodes in a forward
manner. Roughly speaking, the algorithm operates in the following way:

1. select state s from the open list

2. enumerate all its successors si

3. for each successor compute its heuristic estimate and insert it to the open
list

After computing Fα(s), we can store this information and utilize it later when
calculating features of its successors si = γ(s, a). States s and si differ only locally
as each action a changes just a small number of predicates. Knowing this, we can
only modify counts of subgraphs that were affected by applying the action.

1https://en.wikipedia.org/wiki/Reconstruction conjecture

51

https://en.wikipedia.org/wiki/Reconstruction_conjecture

Unfortunately, Fα(s) and a alone are not sufficient to determine features of
the successor. For any fixed α there exist states s1 ̸= s2 and action a1 applicable
to both states such that Fα(s1) = Fα(s2) but Fα(γ(s1, a1)) ̸= Fα(γ(s2, a1)). A
more sophisticated approach is needed.

4.5.1 Extended object graph
We have come up with a way to generate features incrementally using so called
Extended object graph. Lets first define the required notions.

Definition 25 (Contribution of a vertex). Let G(s) be an object graph and v its
vertex. Contribution of v to Fα(s) (denoted by C(v)) is a set of all occurrences
of graphs from Bα in G(s) which intersect with v.

Occurrence is a set of vertices of G(s) as stated in Definition 23.

Definition 26 (Extended object graph). Extended object graph (EOG) is a
structure associated with a state s that contains:

• object graph G(s)

• vector Fα(s)

• contribution C(v) for every vertex v ∈ G(s)

Applying action to a state s can be viewed as performing some local changes
in G(s). These changes can be decomposed into a sequence of several atomic
operations of 3 types: AddVertex, RemoveVertex and AddEdge.

Example 4.4

In Zenotravel, there is an action a = board(person1, city1, plane1) that removes
predicate at(person1, city1) adds predicate in(person1, plane1). Given G(s), we
can construct G(γ(a, s)) by first removing vertex that represents predicate
at(person1, city1), then adding vertex for predicate in(person1, plane1) and then
successively adding edges between the new vertex and vertices representing in,
person1 and plane1.

We will now show how each of the three atomic operations can be performed
incrementally over the extended object graph. Pseudo-code for each procedure is
presented as Algorithm 2, 3 and 4 respectively.

We store the EOG in a carefully designed data structure (DS) that helps to
speed-up the three operations. Our DS contains the following:

• representation of the original object graph

• every vertex of the graph holds reference to all occurrences that intersects
with it

• every r ∈ C(v) holds reference to the graph from Bk
α whose occurrence r

indicates.

52

Algorithm 2: Remove vertex
Input: Extended object graph W , its vertex v
Output: Extended object graph W with vertex v removed

1 foreach occurrence r ∈ C(v) do
2 foreach vi ∈ r do
3 remove r from C(vi);
4 end
5 let j be index of graph in Bk

α whose occurrence r holds;
6 decrease value of Fα(s)[j] by 1;
7 end
8 remove vertex v from G(s) together with all incident edges;

Algorithm 3: Add vertex
Input: Extended object graph W , new vertex v
Output: Extended object graph W with vertex v added

1 add vertex v to G(s);
2 let i be index of graph in Bk

α that consists of a single vertex with label
same as v;

3 increase value of Fα(s)[i] by 1;
4 set C(v) = {{v}};

• every graph bi ∈ Bk
α holds reference to all its occurrences in G(s)

There is also additional information stored in the Features extractor itself:

• for every graph bi ∈ Bk
α and for every pair of vertices v1, v2 ∈ bi that are

not connected by an edge, the result of adding an edge between v1, v2 is
precomputed and index of the resulting graph in Bk

α is stored

• the same for connecting two graphs from Bk
α with an edge

See the following example.

Example 4.5

Let’s use the graph in figure 4.7 to demonstrate. Numbers identify vertices, colors
represent labels. The example should resemble an actual object graph: it is con-
nected, there is relatively small number of labels and there are no edges between
vertices with the same label. Colors red, gold and green resemble predicate-symbol
labels (see definition 21), and there is exactly one vertex with such label in every
Object graph. Blue color resembles predicate label.

53

Algorithm 4: Add edge
Input: Extended object graph W , two its vertices v1, v2
Output: Extended object graph W with edge (v1, v2) added

1 add edge (v1, v2) to G(s);
2 foreach occurrence r ∈ C(v1) ∩ C(v2) do
3 replace r in both C(v1) and C(v2) by occurrence of a graph with the

same vertex set and edge (v1, v2) added;
4 modify the vector Fα accordingly;
5 end
6 foreach occurrence r1 ∈ C(v1) \ C(v2) do
7 foreach occurrence r2 ∈ C(v2) \ C(v1) do
8 if |r1 ∪ r2| ≤ α then
9 g = induced subgraph of G(s) on vertices r1 ∪ r2;

10 add occurrence of g to both C(v1) and C(v2);
11 let i be index of graph g in Bk

α;
12 increase value of Fα(s)[i] by 1;
13 end
14 end
15 end

Figure 4.7: Example of a vertex labeled graph (top left), a set of 13 features
graphs whose occurrences we count (on the right) and the corresponding
features vector (bottom left).

The number of labels k = 4, and we count subgraphs of size α ≤ 3. The set
of features graphs is depicted in figure 4.7. Only graphs that can actually occur
are tracked. E.g. graphs with an edge between vertices with the same label or
containing more than one vertex with red, green or gold label are not present.

Sum of the values in the features vector is 20 since there are 20 occurrences of
the subgraphs we track. We denote them r1, r2, . . . , r20. Each occurrence is s set
of vertices together with the corresponding isomorphism. Here is the list.

Occurrences of single-vertex graphs A ∼ D:

• r1 = (A, {A1 ↦→ 1})

54

• r2 = (A, {A1 ↦→ 4})

• r3 = (A, {A1 ↦→ 5})

• r4 = (B, {B1 ↦→ 2})

• r5 = (C, {C1 ↦→ 3})

• r6 = (D, {D1 ↦→ 6})

Occurrences of two-vertex graphs: E ∼ G:

• r7 = (E, {E1 ↦→ 2, E2 ↦→ 1})

• r8 = (E, {E1 ↦→ 2, E2 ↦→ 4})

• r9 = (F, {F1 ↦→ 3, F2 ↦→ 1})

• r10 = (F, {F1 ↦→ 3, F2 ↦→ 4})

• r11 = (F, {F1 ↦→ 3, F2 ↦→ 5})

• r12 = (G, {G1 ↦→ 6, G2 ↦→ 4})

Occurrences of three-vertex graphs: H ∼ M :

• r13 = (H, {H1 ↦→ 1, H2 ↦→ 2, H3 ↦→ 4})

• r14 = (I, {I1 ↦→ 1, I2 ↦→ 3, I3 ↦→ 4})

• r15 = (I, {I1 ↦→ 1, I2 ↦→ 3, I3 ↦→ 5})

• r16 = (I, {I1 ↦→ 4, I2 ↦→ 3, I3 ↦→ 5})

• r17 = (K, {K1 ↦→ 2, K2 ↦→ 1, K3 ↦→ 3})

• r18 = (K, {K1 ↦→ 2, K2 ↦→ 4, K3 ↦→ 3})

• r19 = (L, {L1 ↦→ 2, L2 ↦→ 4, L3 ↦→ 6})

• r20 = (M, {M1 ↦→ 3, M2 ↦→ 4, M3 ↦→ 6})

Note that the isomorphism need not be unique. E.g., in the occurrence r13, we
could have r13 = (H, {H1 ↦→ 4, H2 ↦→ 2, H3 ↦→ 1}) instead. This does not affect
the results in any way.

Contributions of individual vertices look as follows:

• Vertex: 1, C(1) = {r1, r7, r9, r13, r14, r15, r17}

• Vertex: 2, C(2) = {r4, r7, r8, r13, r17, r18, r19}

• Vertex: 3, C(3) = {r5, r9, r10, r11, r14, r15, r16, r17, r18, r20}

• Vertex: 4, C(4) = {r2, r8, r10, r12, r13, r14, r16, r18, r19, r20}

• Vertex: 5, C(5) = {r3, r11, r15, r16}

• Vertex: 6, C(6) = {r6, r12, r19, r20}

55

The above information is stored in the EOG.
The following mapping is stored in the Features extractor and is shared by all

EOGs. It holds precomputed results of adding edges between vertices of features
graphs.

E.g., if there is an occurrence of the graph A on vertex 1 and an occurrence of
the graph B on vertex 2 then adding an edge (1, 2) will create a new occurrence
of the graph denoted E on vertices {1, 2}. The isomorphism in this case is {E1 →
1, E2 → 2}.

The particular vertices 1, 2 are not important as we can specify the isomorphism
using just identifiers of vertices of graphs A and B. The generalized mapping
is {A1 ↔ E2, B1 ↔ E1}. Vertices indicating where the edge is added can be
expressed via graphs A and B as well. In this case, the new edge is {A1, B1}. This
generalized information is shareable between all EOGs.

Following is the list of all add-edge operations that create new occurrence of
some features graph.

• {A1, B1} : E, {A1 ↔ E2, B1 ↔ E1}

• {A1, C1} : F, {A1 ↔ F2, C1 ↔ F1}

• {A1, D1} : G, {A1 ↔ G2, D1 ↔ G1}

• {A1, E1} : H, {A1 ↔ H1, E1 ↔ H2, E2 ↔ H3}

• {A1, F1} : I, {A1 ↔ I1, F1 ↔ I2, F2 ↔ I3}

• {A1, G1} : J, {A1 ↔ J1, G1 ↔ J2, G2 ↔ J3}

• {B1, F2} : K, {B1 ↔ K1, F1 ↔ K3, F2 ↔ K2}

• {B1, G2} : L, {B1 ↔ L1, G1 ↔ L3, G2 ↔ L2}

• {C1, E2} : K, {C1 ↔ K3, E1 ↔ K1, E2 ↔ K2}

• {C1, G2} : M, {C1 ↔ M1, G1 ↔ M3, G2 ↔ M2}

• {D1, E2} : K, {D1 ↔ L3, E1 ↔ L1, E2 ↔ L2}

• {D1, F2} : M, {D1 ↔ M3, F1 ↔ M1, F2 ↔ M2}

We will new demonstrate the execution of Remove vertex and Add edge oper-
ations over the EOG.

Remove vertex 1
For each ri ∈ C(1), we remove ri from all C(vi) sets that contain it. We also
decrease the counter at the corresponding index in the features vector. The list of
contributions now looks as follows:

• Vertex: 1, C(1) = {r1, r7, r9, r13, r14, r15, r17}

• Vertex: 2, C(2) = {r4, r7, r8, r13, r17, r18, r19}

• Vertex: 3, C(3) = {r5, r9, r10, r11, r14, r15, r16, r17 , r18, r20}

• Vertex: 4, C(4) = {r2, r8, r10, r12, r13, r14, r16, r18, r19, r20}

56

• Vertex: 5, C(5) = {r3, r11, r15, r16}

• Vertex: 6, C(6) = {r6, r12, r19, r20}

Changes made to the features vector are depicted in figure 4.8.

Figure 4.8: Changes to the features vector caused by removal of vertex 1.

Add edge (5, 6)
We add the edge to the original EOG depicted in figure 4.7.

First, we check occurrences that include both vertices 5 and 6. We would
replace each such occurrence with an occurrence of a modified graph. No such
occurrences are present in our example.

Now we check all pairs of occurrences (ri, rj) such that ri ∈ C(5), rj ∈ C(6)
and the sum of sizes of |ri| + |rj | ≤ α = 3. In our example, we have 3 such pairs:
(r3, r12), (r11, r6) and (r3, r6). For each pair, we identify which graph from the
set of features graphs will newly occur after adding the edge. Here we use the
precomputed mapping.

Processing pair (r3, r12): we are adding edge between vertices 5 and 6 that
are mapped A1 ↦→ 5 and G1 ↦→ 6 in r3, r12 respectively. We then access the
precomputed mapping using index {A1, G1}, we get

(A1, G1) : J, {A1 ↔ J1, G1 ↔ J2, G2 ↔ J3}

This tells us that the new occurrence will look like this:
r21 = (J, {J1 ↦→ 5, J2 ↦→ 6, J3 ↦→ 4}). The concrete vertices are obtained by
composing the precomputed mapping with mappings in r3 and r12.

After processing all three pairs, we have three new occurrences:

• r21 = (J, {J1 ↦→ 5, J2 ↦→ 6, J3 ↦→ 4})

• r22 = (M, {M1 ↦→ 3, M2 ↦→ 5, M3 ↦→ 6})

• r23 = (G, {G1 ↦→ 6, G2 ↦→ 5})

Contributions after adding the edge:

• Vertex: 1, C(1) = {r1, r7, r9, r13, r14, r15, r17}

• Vertex: 2, C(2) = {r4, r7, r8, r13, r17, r18, r19}

• Vertex: 3, C(3) = {r5, r9, r10, r11, r14, r15, r16, r17, r18, r20,r22}

• Vertex: 4, C(4) = {r2, r8, r10, r12, r13, r14, r16, r18, r19, r20,r21}

57

• Vertex: 5, C(5) = {r3, r11, r15, r16,r21, r22, r23}

• Vertex: 6, C(6) = {r6, r12, r19, r20,r21, r22, r23}

The features vector is updated as shown in figure 4.9.

Figure 4.9: Changes to the features vector caused by adding edge {5, 6}.

Using this DS, we can perform operation Add vertex in O(1), Remove vertex
in O(α · |C(v)|) and Add edge in O(α · |C(v1)| · |C(v2)|).

EOG for the initial state is constructed from scratch and every other EOG is
constructed from the EOG of its predecessor via applying a sequence of atomic
graph operations that corresponds to the action used. The EOG is then stored
together with each state when it is added to the open list.

To our best knowledge, this is the first features extraction technique developed
for HL that allows incremental computation. With exception of SAS+-based
features, of course which don’t require any computation.

58

5. Experiments
In this chapter, we present our main experimental results. We
overview the data we’ve collected, compare performance of the
learned heuristic with a baseline and analyze the results. We
also present various statistics on results of the training, as well
as performance of heuristic-adjustments.

We performed various statistical analyses and ML experiments using data
generated from state-spaces of planning problems. Lets first take a look at the
data we’ve collected.

5.1 Data
Our main goal is to perform the heuristic learning as described in chapter 3 so
the data were collected to serve this purpose. We used the technique described
in section 3.1.1 to obtain a set of states {sPi

j }. We then used our ad-hoc solvers
to calculate estimates of h∗(sPi

j) for these states.
We perform the experiments on two domains: Zenotravel and Blocks. See

attachments A.1.1 and A.1.2 for details about the domains. We used all 20
problems available for Zenotravel and the first 27 problems from Blocks.

5.1.1 Number and distribution of data samples
In total, we obtained 31,434,617 unique data samples for Blocks and 25,977,816
for Zenotravel. Each data sample is a pair ⟨sP , h∗(sP)⟩.

Our ad-hoc solvers don’t guarantee optimality so the target is actually just
a close estimate of h∗ as described in section 3.1.2. We will still refer to that
number as to h∗ throughout this chapter.

Figure 5.1 shows how many samples come from individual problems in the
blocks domain. Starting with problem 21, we began to use a different setting of
our sampling procedure to compensate for increasing problem size. The original
technique would no longer finish in reasonable time on larger problems.

Figure 5.2 shows distribution of h∗ among problems in blocks domain.
Figures 5.3 and 5.4 show the same for zenotravel.
Figures 5.5 and 5.6 show distribution of samples by their target, i.e. goal

distance.

5.2 Heuristics’ Accuracy and Adjustments
We used the collected data to analyze accuracy of heuristics, find their weaknesses
- if any - any discover possible improvements. Experiments follow the reasoning
made in section 2.3. We conducted experiments with two heuristics - GoalCount
(hGC) and FastForward (hFF) on the two domains for which we have the data:
blocks and zenotravel. See section 1.1.5 for details about the heuristics.

59

Figure 5.1: Count of samples from individual problems in blocks domain.

The experiments were designed as follows: For every state in our data set, we
compute value of the two heuristics. We already have the h∗ values so this gives
us a set of tuples {⟨si, hGC(si), hFF (si), h∗(si)⟩}i.

All the data are included in the supplementary materials.

5.2.1 Heuristics’ accuracy
Figure 5.7 shows correlation between heuristic estimates and real goal-distances
for both heuristic and both domain.

The blue area represents the data as a scatter plot. In each subgraphs, the
X-axis is goal distance, Y-axis is the heuristic estimate and the red line represents
a perfect match. The closer to the red line the more informed the heuristic is.
Data points above the red line indicate overestimation. As expected, hFF is much
more informed but not admissible.

Figures 5.8 and 5.9 provide more detailed view on hFF . For every x ∈ N,
we find all states si such that hFF (si) = x and calculate minimum, average and
maximum of their true goal-distances. Formally, let Tx = {si | hFF (si) = x},
minx = min{h∗(si) | si ∈ Tx}, maxx = max{h∗(si) | si ∈ Tx} and avgx =
avg{h∗(si) | si ∈ Tx}. For each x on the X-axis, the vertical line represents the
interval [minx,maxx] and the blue dot shows avgx. Statistics include all collected
data from Blocks (figure 5.8) and all collected data from Zenotravel (figure 5.9).

5.2.2 Performance of adjusted heuristics
Based on the data, we’ve constructed the three adjusted heuristics hmin, havg and
hshift as defined in section 2.3 and tested them on a set of available problems. For
every combination of h ∈ {hGC , hFF} and domain ∈ {blocks, zenotravel} we run
an A∗ search with heuristics h, hmin, havg and hshift on all problems in domain.

60

Figure 5.2: Distribution of h∗ by problem in blocks domain. Red columns show
average of h∗, blue ones show maximum. Minimum is always 0.

Figure 5.3: Count of samples from individual problems in zenotravel domain.

Time was capped at 30 minutes per problem and there was a memory limit of 5
million nodes per problem (sum of sizes of the open list and the closed list).

When solving a problem P , we use only data from other problems - all from
the domain except P - to construct the adjusted heuristics. This should resemble
our use case scenario where we are interested in transferring the knowledge across
problems.

Figure 5.10 shows results for blocks and figure 5.11 for zenotravel. We measure
TotalNodes - sum of number of expanded nodes and the number of nodes present
in the open list at the end of the search, SolutionCost which in this case is the
number of actions in the plan, number of problems solved and search time. Blank
spaces in SolutionCost mean that the problem was not solved within the time or
memory limit. We’ve only included problems that were solved by at least one of
the heuristics.

GoalCount is an admissible but very week heuristic hence the adjusted heuris-
tics outperform it in all criteria except plan length on all problems in blocks. The
heuristic is admissible, so the min adjustment and the shift adjustment will yield
the same heuristic, i.e. ∀s : hminGC (s) = hshiftGC (s).

61

Figure 5.4: Distribution of h∗ by problem in zenotravel domain. Red columns
show average of h∗, blue ones show maximum. Minimum is always 0.

Figure 5.5: Count of samples by their goal-distances. X-axis: goal distance,
Y-axis: relative number of samples in blocks domain. (All problems combined.)

In blocks, the hGC heuristic systematically and unnecessarily underestimates
most states. The heuristic counts the number of blocks that are misplaced. Mov-
ing a block, however, requires two actions: lift and put-down hence

∀s : hGC(s) = k ⇒ h∗(s) ≥ 2k − 1
We subtract 1 because one of the k blocks could already by lifted in the state.

When using the estimate 2k−1 instead of k, the heuristic is much more informed
and still admissible. This is exactly what hminGC and hshiftGC are doing.

In zenotravel domain, the hGC heuristic counts the number of passengers that
are not yet at their destinations. For every k there exists a state s such that
hGC(s) = k = h∗(s). The state looks as follows: there are k passengers travelling
to the same destination, they are boarded in the plane that is already located
at their destination. All other passengers have already disembarked at their
respective destinations. In this state, performing the disembark action k-times
will lead to goal.

Due to this, the heuristic estimate is actually tight and can’t be improved
without loosing admissibility. Hence in this case hminGC = hshiftGC = hGC .

havgGC on the other hand is more informed that the others, solves more problems

62

Figure 5.6: Count of samples by their goal-distances. X-axis: goal distance, Y-
axis: relative number of samples in zenotravel domain. (All problems combined.)

and requires less time and memory. It is not admissible hence it doesn’t guarantee
optimality of solutions.

The FF heuristic is much more sophisticated and it is therefore unlikely that
these simple adjustments will significantly improve it. hShiftFF seems to be working
exactly like hFF which suggests that there are no obvious errors in hFF that could
be repaired by shifting, or at least they don’t occur on either of the two domains.
None of the Avg and Min adjustments outperform hFF in all criteria. hMin

FF is
admissible unlike hFF hence can improve the solution quality and provides opti-
mality guarantee. hAvgFF can sometimes be faster, especially in the blocks domain
at the cost of increasing plan length.

5.2.3 Summary
The min and shift adjustments are able to automatically identify and repair the
underestimation that occurs with hGC on blocks. havgGC outperforms hGC in search
time, memory consumption as well as number of problems solved at the cost of
loosing optimality.

Improvements over hFF are negligible but we should point out that developing
hFF took several years and many man-days of work of top-tier researchers while
the adjusted heuristic can be constructed automatically within minutes, assuming
that we already have the data.

The proposed modification are applicable to any existing heuristic and can be
used to adjust the informedness vs. admissibility tradeoff of the heuristic.

5.3 Expressive Power of Features
We experimentally measure the expressive power of our features extractor as
discussed in section 4.3.3 using the data we’ve collected.

Table 5.1 shows length of feature vectors Fα(·) based on parameter α.

63

Figure 5.7: Correlation between heuristic estimates and real goal-distances.
Top section: zenotravel, bottom section: blocks. Left hand side: hGC , right hand
side: hFF .

Size of subgraphs (α) |Fα| in Zenotravel |Fα| in Blocks
2 12 11
3 36 26
4 107 57
5 343 139
6 1140

Table 5.1: Length of feature vectors produced by our method for various values
of α on the two domains.

As explained in section 4.3.3, states with the same features are indistinguish-
able to the ML model and hence will be assigned the same output - the same
heuristic estimate. It is therefore crucial that these indistinguishable states also
have similar h∗, i.e. that the spread of h∗ amongst the indistinguishable states is
low.

To measure the expressive power of features, we use the following approach.
First we group together states with the same feature vectors, i.e., we construct
∆-sets. Then we take a look at distribution of values h∗(·) of states in each such
group, similar to the analysis in figures 5.8 and 5.9. In every ∆-set, we calculate
minimum, maximum and standard deviation of values h∗(·) of corresponding
states and we calculate range as range = maximum - minimum.

Figure 5.12 shows distribution of ranges for two values of α. On the X-axis
there is range and height of the column represent the amount of states that
belong to ∆-sets with that range. Specifically: each state belongs to exactly one
∆-set, and each ∆-set is assigned a range. We can hence group states with the

64

Figure 5.8: Distribution of true goal-distances for each heuristic estimate in
Blocks domain. X-axis: hFF estimates, Y-axis: minimum, average and maximum
of h∗ of states having the corresponding estimate. Data below the red line indicate
over-estimation of the heuristic.

same range together and plot relative size of each such group. Blue columns
corresponds to features computed with α = 2 and orange ones to value α = 4.
The lower means better as it indicates lower spread and more coherent groups.

For example, the graph shows that for α = 2 the category 54 is popu-
lated, meaning that there are states s1, s2 with the same features vectors whose
|h∗(s1) − h∗(s2)| = 54. These states will be indistinguishable by the learned
heuristic hence they will be assigned the same estimate. No matter of what that
estimate will be, the error of the heuristic will be at least 54/2 on at least half of
states that belong to the category 54.

On the other hand, for α = 4 the highest populated category is 24 and majority
of states belong to categories 0 ∼ 12. Error of the learned heuristic will be at
most 12 and should be around 12/2 or less on these states.

Table 5.2 displays average range with respect to parameter α. For each ∆-set,
we calculate the range and then weighted average of those ranges where weights
are numbers of states in corresponding ∆-sets. Table 5.3 shows average standard
deviations calculated in the same way.

Size of subgraphs (α) average range in Zenotravel average range in Blocks
2 17.00 24.74
3 12.67 24.53
4 5.75 10.74
5 2.75 3.64

Table 5.2: Average range of features’ groups for various values of α.

As expected, higher values of α lead to smaller and more coherent groups of
states that share the same features, i.e. they improve the expressive power of the
features extractor.

65

Figure 5.9: Distribution of true goal-distances for each heuristic estimate in
Zenotravel domain. X-axis: hFF estimates, Y-axis: minimum, average and max-
imum of h∗ of states having the corresponding estimate. Data below the red line
indicate over-estimation of the heuristic.

Size of subgraphs (α) avg. stdDev in Zenotravel avg. stdDev in Blocks
2 2.39 2.96
3 2.13 2.94
4 1.30 2.31
5 0.83 1.02

Table 5.3: Average standard deviations in features’ groups for various values of
α.

5.3.1 Correlation between features and targets
We measure correlation of differences between features and differences between
targets among states. This helps us answer the question of whether states with
similar targets also have similar features. This property is important as it improves
the generalization capabilities of the model and makes the learning task easier
in general, especially in the regression setting. See [74] section 6.1 for a more
thorough explanation.

Given two samples t1 = (s1, h
∗(s1)) and t2 = (s2, h

∗(s2)), we calculate dif-
ference between features as d(f(s1), f(s2)) and difference between targets as
|h∗(s1) − h∗(s2)|. We calculate these for many pairs ti, tj and measure correla-
tion coefficient between difference in features and difference in targets. Features
are points in Rk. We use three different distance metrics to calculate features-
differences: Euclidean distance (L2-norm), MAE (L1-norm), and Chebyshev dis-
tance (L∞-norm). The results are very similar for all these metrics.

Ideally, we would like to include all pairs ti, tj in the calculation but since we
have more than 106 samples, the number of pair is too great so instead we sample
107 pairs uniformly randomly and use these as a representative sample.

Figure 5.13 shows a scatter plot of the data. Each point represents a pair of
training samples. X-coordinate shows Euclidean distance between their features
while Y-coordinate represents difference in their targets for α = 2 in Blocks do-
main. The graph alone indicates that the two are highly correlated with exception

66

Figure 5.10: Performance of hFF , hGC and their modified versions in blocks.

Figure 5.11: Performance of hFF , hGC and their modified versions in zenotravel.

of the lower-left region that seems more erratic.
Figure 5.14 shows correlation coefficients for various values of α on the two

domains. The correlation is high in all cases which indicates that our features
are well chosen. The correlation coefficient seems to go down slightly for α > 3.
We believe that this is caused by the curse of dimensionality. As α increases,
dimensionality of the features-space increases as well which means that features

67

Figure 5.12: Distribution of ranges of ∆-sets in blocks. Blue graph corresponds
to α = 2, the orange one to α = 4. Calculated over all collected data from Blocks
domain.

Figure 5.13: Scatter plot of features’ differences against targets’ differences.

are more likely to be far from each other even if the relative number of indices
on which they differ stays the same.

The raw data are included in the supplementary materials.

5.4 Performance of Learned Heuristics
In this section, we present our main experimental results. We compare heuristics
created by our HL framework with a popular domain independent heuristic on
a set of planning problems. We use FastForward heuristic ([48]) as a baseline.
The heuristic has been around for quite some time now and it is still often used
as a baseline in experiments, like in [49] for example.

We experiment with two domain: Zenotravel and Blocks and we run the HL
process separately on each domain.

68

Figure 5.14: Correlation coefficients between features-distance
and targets-distance for various values of α.

5.4.1 Generalization capabilities
The intended use-case scenario, as described in section 3, looks as follows. We are
given s set of problems all from the same domain that can be used for training.
Afterwards the trained model should be able to quickly solve new, previously
unseen problems from the same domain. To emulate this scenario, we use the
one-leave-out strategy ([35]).

We’ve collected training data from problems P1, . . . , Pn. For each problem Pi,
we train the network using data from all other problems except Pi. Then we use
the learned heuristic to solve Pi.

This way we have to train many different models instead of just one for the
whole domain, but it allows us to verify that the knowledge is transferable across
different problem instance.

5.4.2 Choice of hyper-parameters
We use a NN with 5 fully-connected hidden layers with sizes of (256, 512, 128,
64, 32) neurons respectively, and three DropOut layers. We used ReLU activation
function, Xavier weight initialization and Adam as the training algorithm (see
e.g. [56, 35]). The input layer size is the same as size of the feature vectors and
the last layer contains a single neuron with a linear activation to compute the
output. Figure 5.15 visualizes the architecture.

The network is large enough to create efficient representation of the data and
drop-out layers together with large number of data samples prevent overfitting.
The training was terminated when 1000 epochs passed without improving the test
error. The model with the lowest test error over-all was used in the deployment.

We experimented with values of parameter α (size of subgraphs) from 2 to
4. For values larger that 4, computing features of states is too costly and the
heuristic is not competitive on the domains we work with. We experimented
with two loss functions: MSE and LogMSE - see section 3.3.1 for definitions. We
also tried to include the value of hFF among the features of states. I.e., we first
trained the network having only the graph-based features as its inputs and then
another network that used both graph-based features and hFF value of the state
as its inputs. We conducted experiments for all combinations of these parameters:
α ∈ {2, 3, 4}, lossFunction ∈ {MSE,LogMSE}, FFasFeature ∈ {true, false}.
This gives us 12 different neural net-based heuristics for each problem.

The experiments were performed on HP Z640 Workstation with 64 GB of
RAM, 8 CPU cores. We trained the models using a CUDA-capable graphics card
NVIDIA Quadro M5000 with 8 GB of memory and 2048 GPU cores.

69

Figure 5.15: Architecture of the network.

The training took about 120 hours in total for zenotravel and about 175 hours
for blocks. We used the BrightWire1 NN framework to train the models.

5.4.3 Training results
This section presents results of training the networks. We present the results for
the best performing variant, which is α = 4, lossFunction = LogMSE, FFasFeature
= true. A comparison of performance of networks trained by MSE and LogMSE
is provided in section 5.5.

1http://www.jackdermody.net/brightwire

70

http://www.jackdermody.net/brightwire

Figure 5.16: Accuracy of fit in zenotravel. X-axis: difference between target
and output, Y-axis: percentage of samples in each category

Figure 5.17: Accuracy of fit in blocks. X-axis: difference between target and
output, Y-axis: percentage of samples in each category

Figures 5.16 and 5.17 show accuracy of fit of the models. The average absolute
difference (MAE) defined as MAE = avgi{|yi − yî|} is MAE = 0.75 in blocks
and MAE = 0.98 in zenotravel. In blocks, the minimum difference is −21.6
on sample (y = 141, ŷ = 119.4) and maximum difference 18.6 on sample (y =
133, ŷ = 151.6). In zenotravel, the minimum and maximum differences are −13.9
on (y = 80, ŷ = 94.9) and 13.7 on (y = 94, ŷ = 80.3). The 80%-quantile of
absolute difference is 1.19 in blocks, meaning that absolute difference is less than
1.19 on more than 80% of samples. The same quantile in zenotravel is 1.5.

We also measure ratio computed as ratioi = max(yi + 1/yî + 1, y1̂ + 1/yi + 1) for
each individual sample. In blocks, the average and maximum ratio is: average
= 1.05, max = 5.62 on sample (y = 3, ŷ = 21.5). In zenotravel, these values
are: average = 1.07, max = 3.36 on sample (y = 3, ŷ = 0.2). (Minimum ratio is
always 1.)

Figures 5.18 and 5.19 present differences for various targets. We can see that
the models fit the data quite well in both domains. Better accuracy is achieved
on blocks domain. This seems to be domain specific.

71

Figure 5.18: Output of the model by target in zenotravel. X-axis: target, Y-
axis: minimum, maximum and average of outputs on samples with that target.
Red line represents perfect fit. Data above the red line indicate overestimation
of the learned heuristic.

Figure 5.19: Output of the model by target in blocks. X-axis: target, Y-axis:
minimum, maximum and average of outputs on samples with that target. Red
line represents perfect fit. Data above the red line indicate overestimation of the
learned heuristic.

5.4.4 Performance evaluation
We used all 13 heuristics (12 NN-based + hFF) to solve each of the problems.
Search time was capped at 30 minutes per problem instance. None of the heuris-
tics is admissible so they don’t guarantee finding optimal plans. We compared
performance of heuristics using the IPC-Score. Given a search problem P , a min-
imization criterion R (e.g. length of the plan) and algorithms A1, A2, . . . , Ak, the
IPC-Score of Ai on problem P is computed as follows:

IPCR(Ai, P) =
⎧⎨⎩0, if Ai didn’t solve P
R∗

Ri
, otherwise

where Ri is value of the criterion for the i-th algorithm and R∗ = mini{Ri}.
For every problem P , IPCR(Ai, P) ∈ [0, 1] and higher means better. We can
then sum up the IPC-Score over several problem instances to get accumulated
results. The IPC-Score takes into account both number of problems solved as
well as quality of solutions found. We monitor four criteria:

72

• total number of problems solved

• IPC-Score of time

• IPC-Score of plan length

• IPC-Score of number of expansions

5.4.5 Results
Figure 5.20 shows aggregated results for the two domains: number of problems
solved and IPC scores. Tables with detailed results follow in figures 5.21, 5.22,
5.23, 5.24, 5.25, 5.26. We present results of plan length, number of expanded
nodes and total runtime for every problem and each heuristic. We only include
problems solved by at least one method. There are 13 heuristics in the compar-
ison: FastForward heuristic as the baseline and 12 variants of learned heuristics
described above. Raw data can be found in the supplementary materials.

Figure 5.20: Aggregated results of experiments.

We can see that networks trained by LogMSE are superior to the ones trained
by MSE in all criteria on both domains. We will investigate this more in the
following section.

As expected, higher values of α lead to a more accurate heuristic: the number
of expanded nodes as well as plan length are better. The difference is apparent
especially for values 2 and 3. Using value α = 4 still helps but computing features
in this case is slower and so A* expands less nodes per second and the overall
results are not that much better than for α = 3.

Adding hFF as feature has a mixed effect. It is very helpful on blocks domain
when α ∈ {2, 3}, but not much helpful when α = 4. See figure 5.27. This indicates
that subgraphs of size 2 and 3 cannot capture useful knowledge about a blocks
problem hence the network rely on hFF as the source of information. Subgraphs
of size 4 seem to be able to provide the required knowledge already and adding
hFF doesn’t help anymore. This agrees with results in table 5.2 which shows that
average range of ∆-sets doesn’t change much between α = 2 and α = 3 but there
is a large drop for α = 4.

The need to evaluate hFF on every expansion slows down the search so the
performance is worse than not using hFF at all in this case. In general, adding
hFF improves accuracy of the NN so the resulting heuristic is more informed

73

Figure 5.21: Results of experiments - number of expanded nodes by each heuris-
tic on each problem on blocks. Only problems solved by at least one method are
included.

which improves both number of expansions and plan length. Due to the slow-
down, though, adding hFF doesn’t always improve runtime and the number of
problems solved.

Figure 5.28 shows the same for Zenotravel. Here adding hFF as feature is
beneficial for all values of α and for both loss functions.

Among the neural-based heuristics, the setting with α = 4, hFF added and
LogMSE performs best. When we compare it with the hFF , we see that our
method vastly outperforms the baseline on blocks where it solved 26 out of 27
problems while hFF can only solve 8 problems. Even on problems solved by both
methods, the NN heuristic finds shorter plans and expands less nodes which is
apparent in figures 5.23 and 5.21.

On the zenotravel domain, our method outperforms hFF in all criteria except
Time. As hFF can find suboptimal plans very quickly in zenotravel, it is difficult
to achieve better score even though our method solved more problems within the
time limit. On problems solved by multiple methods, hFF finds longer plans than
the best variant of learned heuristic, as figure 5.26 illustrates.

5.5 MSE versus LogMSE
The experiments showed that heuristics trained by MSE don’t perform well dur-
ing the search. Figures 5.29 and 5.30 show comparison of number of problems
solved.

74

Figure 5.22: Results of experiments - runtime for each heuristic on each problem
on blocks. Only problems solved by at least one method are included.

In this section, we analyze this phenomenon and we argue that LogMSE is
much better choice for HL.

Our analysis shows that the poor performance is caused by the distribution
of error among samples. (See section 1.2.3 for some background.) Figure 5.31
shows distribution of absolute error between samples based on their targets. The
error is larger on states with higher distance-to-go which is expected. The further
from a goal the state is the harder it should be to accurately estimate its goal
distance.

We can see that the error is distributed relatively evenly among samples with
goal distance roughly between 0 and 50. The error is between 1 and 2 on all those
states. For example, the model achieves error of ±1.5 on states 50 steps from
goal, but makes about the same error (±1.5) also on states that are 2 steps from
goal. It turns out, however, that making relatively large mistakes on states close
to goal hurts the performance a lot.

A possible explanation seems to be the fact that there is a very large number of
states on the edge of the explored space i.e. far from the initial state. These states
have similarly low f-value (sum of distance from start and the heuristic estimate).
If the heuristic overestimates one of those states even slightly, the state will move
far back in the priority queue which significantly delays its expansion. When this
happens to a state that really is close to goal, the search may get stuck for a long
time. This is consistent with results of Helmert and Röger ([45]) who showed
that adding even a small additive constant to a perfect heuristic and using that
estimate as a heuristic function already makes the search-time exponential.

75

Figure 5.23: Results of experiments - length of plan found by each heuristic
on each problem on blocks. Only problems solved by at least one method are
included.

In order to improve the search efficiency, the accuracy of the heuristic on
states close to goal (i.e. with target of 0 ∼ 10) needs to be much higher. For this
reason we’ve come up with the LogMSE loss function.

LogMSE is defined as

LogMSE =
∑︁ [log(yi + 1) − log(ŷi + 1)]2

n

for yi, ŷi ≥ 0.
As [log(yi + 1) − log(ŷi + 1)]2 = log2

(︂
yi+1
ŷi+1

)︂
, LogMSE aims to minimize the

average of relative error, i.e., the ratio between target and output. This enforces
low absolute error on samples close to goal and tolerates larger absolute error on
samples further from goal. Figures 5.32, 5.33 and 5.34 illustrate this behavior.

As figure 5.33 shows, MSE (in blue) makes large relative error on states close
to goal (i.e. with target of 0 ∼ 10) while LogMSE (orange) performs much
better on these states but has slightly larger error on states further from goal.
Figure 5.34 makes this even more apparent as it provides ratio between targets
and average of corresponding outputs.

We believe that achieving low relative error is important in HL applications
and logMSE or similar loss function should be preferred over MSE.

76

Figure 5.24: Results of experiments - number of expanded nodes by each heuris-
tic on each problem on zenotravel. Only problems solved by at least one method
are included.

Figure 5.25: Results of experiments - runtime for each heuristic on each problem
on zenotravel. Only problems solved by at least one method are included.

77

Figure 5.26: Results of experiments - length of plan found by each heuristic on
each problem on zenotravel. Only problems solved by at least one method are
included.

Figure 5.27: Number of problems solved in blocks domain (sum of both MSE
and LogMSE). On the X-axis there is α value, blue columns correspond to
networks trained without using hFF as feature, orange columns show networks
trained with hFF included.

78

Figure 5.28: Number of problems solved in zenotravel domain (sum of both
MSE and LogMSE). On the X-axis there is α value, blue columns correspond to
networks trained without using hFF as feature, orange columns show networks
trained with hFF included.

Figure 5.29: Number of problems solved by heuristics trained by LogMSE (blue
columns) and MSE (orange columns) for various values of α in blocks.

79

Figure 5.30: Number of problems solved by heuristics trained by LogMSE (blue
columns) and MSE (orange columns) for various values of α in zenotravel.

Figure 5.31: Absolute error on samples with different targets. On the X-axis
there is target - i.e. real goal distance, height of the column shows average of
absolute error (

⃓⃓⃓
Yi − Ŷ i

⃓⃓⃓
) over all samples that fall into that category. Results of

training with MSE.

80

Figure 5.32: Absolute error on samples with different targets. On the X-axis
there is target - i.e. real goal distance, height of the column shows average of
absolute error (

⃓⃓⃓
Yi − Ŷ i

⃓⃓⃓
) over all samples that fall into that category. Results of

training with LogMSE.

Figure 5.33: Figures 5.31 and 5.32 combined.

81

Figure 5.34: Relative error on samples with different targets. On the X-axis
there is target - i.e. distance to go, on the y-axis there is average of relative error
(max(y+1

ŷ+1 ,
ŷ+1
y+1)) of corresponding samples. Blue line represents networks trained

by MSE, orange line the ones trained by LogMSE.

82

6. Performance Guarantees
In this chapter, we provide theoretical performance guarantees
for heuristics constructed by HL approaches. We define the no-
tion of Stochastic heuristic and we state and prove it’s theoretical
properties.
We then show that under some reasonable assumptions, learned
heuristics can be modeled via the stochastic heuristic framework.
The presented performance bounds are applicable to any learned
heuristic, not just to those created by our method.

6.1 Motivation
Learned heuristics work well in practice as proved by our experiments as well as
by other authors ([80, 52]) but in general they are not admissible nor ϵ-admissible
for any reasonable ϵ. They don’t provide any theoretical guarantees on the per-
formance like the hand-coded heuristics do via theorems 1 and 2. These theorems
are not applicable to learned heuristics as they require the heuristic error to be
bounded on all states.

ML techniques don’t provide these types of guarantees. After the ML model
is trained, typically we get a picture similar to one in figure 5.16. The model
achieves low error on average but there could be a very small percentage of
inputs on which the error is high. Standard heuristics are designed to provide
limit on maximum of error but they tell us nothing about average error. Learned
heuristics, on the other hand, provide low average error but there is no bound on
the maximum.

We would like to leverage the fact that on average the error is low in order to
generalize theorem 2 in a probabilistic manner, i.e., guaranteeing that the quality
of the solution will be good with some high probability.

Unfortunately, requirements in theorem 2 are tight in a sense that even if
a single state would violate the requirements, there would exist a problem for
which the stated bound does not hold. Formally:

∀ϵ, h ∃P, s′ ∈ SP : h(s′) > ϵ · h∗(s′) ⇒ Ah(sP0) > ϵ · h∗(sP0)
, where Ah(sP0) is cost of solution that A∗ algorithm finds from s0 and h∗(s0) is
the cost of optimal solution. (See definitions 10 and 12.)

This is problematic for our probabilistic generalization as we have no control
over distribution of problems, i.e., we cannot argue that the counterexample
mentioned above is ”very unlikely to occur”. For this reason, arguing that the
heuristic works well on ”most” problems is not enough. We must assume that
the problem will be given by an adversary and provide a worst-case probabilistic
bound that will hold for every problem.

83

6.2 Stochastic Heuristics
We will now define a formal notion of Stochastic heuristic and formulate some of
its properties. We will later show how heuristics obtained by HL can be modeled
as stochastic heuristics.

Definition 27 (Stochastic heuristic). Given a problem P , a stochastic heuris-
tic H is a set of independent non-negative random variables H(si) for each state
si ∈ SP .

When H is used in search, we first sample each H(si) to obtain a fixed esti-
mate for each state, i.e. a standard heuristic. Then we use the standard heuristic
for search so during the search, there is no randomness involved. If the algorithm
encounters the same state several times, is always assigns it the same estimate.
Running another search on the same problem could of course produce different
results as we could obtain a different standard heuristic via the initial sampling.
When analyzing properties of a stochastic heuristic, we always address the situa-
tion before the initial sampling hence both H(s) and AH(s) are random variables
(RVs).

6.2.1 Properties of stochastic heuristics
We formulate and prove three theorems that provide bounds on solution quality
when using A∗ algorithm with stochastic heuristic. These theorems are proba-
bilistic generalizations of theorem 2. In general, we show how distributions of
H(si) affect distribution of AH(s0).

We work with a restricted planning problem, that is a problem that contains
exactly one goal state and exactly one optimal path from s0 to the goal, cost of
each action is 1 and the initial state is not a goal state.

Theorem 4. Let P be a planning problem and H be a stochastic heuristic. If
∀s ∈ SP : E [H(s)] = h∗(s), then ∀c > 1 : P[AH(s0) ≥ c · (h∗(s0))2] < 1

c

Proof. Let’s first state several inequalities that we will use in the proof.
Lemma 5 (Markov’s inequality). Let X be a random variable, such that X > 0,
then ∀a > 0 : P[X ≥ a] ≤ E [X]

a
.

Proof. See [32].

Lemma 6 (Boole’s inequality). Let Ai be events, then P[⋃︁Ai] ≤ ∑︁P[Ai]

Proof. See Theorem 1.2.11 in [10].

Lets denote by Opt(s0) the optimal path from s0 to the goal (a sequence of
states) except the initial and the goal state. Since we work with unit-cost actions,
|Opt(s0)| = h∗(s0) − 1 and ∀si ∈ Opt(s0) : h∗(si) = h∗(s0) − i.
By a contraposition of theorem 2, we have

∀ϵ ≥ 1 : AH(s0) > ϵ · h∗(s0) ⇒ (6.1)
∃si ∈ Opt(s0) : H(si) > ϵ · h∗(si) (6.2)

84

hence

P [AH(s0) > ϵ · h∗(s0)] ≤ (6.3)
P [∃si ∈ Opt(s0) : H(si) > ϵ · h∗(si)] ≤ (6.4)∑︂

si∈Opt(s0)
P [H(si) > ϵ · h∗(si)] (6.5)

(3) ≤ (4) comes from (1) ⇒ (2), while (4) ≤ (5) can be achieved by applying
Boole’s inequality.

Now, Markov’s inequality states that

∀si : P[H(si) ≥ ϵ · h∗(si)] ≤ E [H(si)]
ϵ · h∗(si)

= h∗(si)
ϵ · h∗(si)

= 1
ϵ

(6.6)

By substituting (6) to (5) we get:

∑︂
si∈Opt(s0)

P[H(si) > ϵ · h∗(si)] ≤

∑︂
si∈Opt(s0)

1
ϵ

= |Opt(s0)| · 1
ϵ

≤ h∗(s0)
ϵ

We’ve created a chain of inequalities. When we put together the first and the
last element of the chain, we get

∀ϵ > 1 : P [AH(s0) > ϵ · h∗(s0)] <
h∗(s0)
ϵ

Now for given c > 1, we set ϵ = c · h∗(s0) which gives us the required bound.

Bound in theorem 4 is quite loose as it uses [h∗(s0)]2. If we take variance of
H(s) into account, we can come up with a tighter bound.

Theorem 7. Let P be a search problem and H be a stochastic heuristic such that
∀s ∈ SP : E [H(s)] = h∗(s), var[H(s)] = σ2 < ∞. Then

∀c > 1 : P[AH(s0) > c · (h∗(s0))] <
σ

c− 1 · π2

Proof. We will use the following inequalities in the proof.
Lemma 8 (Cantelli’s inequality). Let X be a random variable, such that E [X] =
µ < ∞ and var[X] = σ2 < ∞, then ∀a > 0 : P[X − µ ≥ a] ≤ σ2

σ2+a2

Proof. See corollary of Theorem 1 in [32].

Lemma 9 (Integral approximation of a sum). Let f be a non-decreasing function
on [a− 1, b+ 1], then:

∫︂ b

a−1
f(s) ds ≤

b∑︂
i=a

f(i) ≤
∫︂ b+1

a
f(s) ds

85

Proof. See Remark 12.105 in [60].

We proceed in the same way as in the previous proof up to equation (5). We
have

∀ϵ > 1 : P [AH(s0) > ϵ · h∗(s0)] <
∑︂

si∈Opt(s0)
P [H(si) > ϵ · h∗(si)]

Lets denote z = h∗(s0). Then |Opt(s0)| = z − 1 and ∀si ∈ Opt(s0) : h∗(si) =
z − i.

When we use Cantelli’s inequality, we have:

P[H(si) ≥ ϵ · h∗(si)] = P[H(si) ≥ ϵ · (z − i)] ≤ σ2

σ2 + (ϵ− 1)2(z − i)2

When we substitute that to the sum, we get

∑︂
si∈Opt(s0)

P [H(si) > ϵ · h∗(si)] <
z−1∑︂
i=1

σ2

σ2 + (ϵ− 1)2(z − i)2 ≤

Using Lemma 9, we get

≤
∫︂ z

1

σ2

σ2 + (ϵ− 1)2(z − i)2 di =

σ

ϵ− 1 arctan (z − 1)(ϵ− 1)
σ

≤ σ

ϵ− 1 · π2
Now given c > 1, we just set ϵ = c.

Theorem 7 is a direct generalization of theorem 2 as it imposes the same bound
on Ah(s). The probability bound, however, is quite loose hence the theorem is
only applicable for large c. Specifically for c > σ·π

2 + 1. Since σ is the standard
deviation of H(s), is could be quite large in practice: between 5 and 10 or even
larger depending on the problem.

Theorems 4 and 7 make no assumptions about distribution of H(si), i.e. they
work for any distribution. They don’t even require that H(si) are identically
distributed. A much better bound can be obtained for specific distributions.

Theorem 10. Let P be a search problem and H be a stochastic heuristic such
that ∀s ∈ SP : H(s) ∼ N(h∗(s), σ2), σ2 < ∞. Then

∀c > 1 : P[AH(s0) ≥ c · (h∗(s0))] < exp
{︄

−(c− 1)2

2σ4

}︄
σ2

√
2π(c− 1)

Proof. We again make use of several well known notions and inequalities.
Definition 28 (Gauss error function). The Gauss error function erf is de-
fined as

erf (x) = 2√
π

∫︂ ∞

x
exp

{︂
−t2

}︂
dt

86

By erfc we denote the complementary error function:

erfc(x) = 1 − erf (x)
Erfc can be used to calculate cumulative distribution function for normally

distributed random variables.
Lemma 11 (CDF of normally distributed random variable). Let X ∼ N(µ, σ2),
then ∀q : P[X > q] = 1 − 1

2erfc
(︂
µ−q√

2σ2

)︂
There is no closed-form formula for erf(x), so various approximations are

used:
Lemma 12 (Bounds on Gauss error function). For all x > 0:

2 exp {−x2}
√
π
(︂√

x2 + 2 + x
)︂ < erfc(x) < exp {−x2}√

πx

Proof. See [12], sections III and IV.

We again proceed in the same way as in the proof of theorem 4 up to equation
(5) which gives us

∀ϵ > 1 : P [AH(s0) > ϵ · h∗(s0)] <
∑︂

si∈Opt(s0)
P [H(si) > ϵ · h∗(si)] =

Using z = h∗(s0), |Opt(s0)| = z − 1 and ∀si ∈ Opt(s0) : h∗(si) = z − i, we get

=
z−1∑︂
i=1

P [H(si) > ϵ · (z − i)] ≤

By applying Lemma 9 we get

≤
∫︂ z

1
P [H(si) > ϵ · (z − i)] di ≤

we can just calculate this directly using Lemmata 11 and 12 to obtain

≤ σ2

exp
{︂

(ϵ−1)2

2σ4

}︂√
2π(ϵ− 1)

−
exp

{︂
− (ϵ−1)2

2σ4

}︂
√
π
(︃

ϵ−1√
2σ2 +

√︂
(ϵ−1)2

2σ4 + 2
)︃

Now we can drop the second term which is negative hence by doing so we
only increase the value. For given c > 1, we set ϵ = c. That gives us the required
bound.

Theorem 10 is based on a strong assumption of normality but it also provides
a very strong bound: the probability of producing a solution whose cost is c-times
greater than the optimal cost is exponentially small with respect to c2.

87

6.2.2 Learned heuristics as Stochastic heuristics
In the rest of this chapter, we will describe how learned heuristics can be modeled
as stochastic heuristics and we will discuss whether assumptions of theorems 4, 7
and 10 actually hold in HL applications.

Stochastic heuristic assigns a random variable to each state. The learned
heuristic, on the other hand, is represented by a neural network. Let θ be a vector
of trainable parameters of the network, i.e. weights and biases. During training,
θ is adjusted to minimize the given loss function. The training algorithm is
randomized, so the resulting parameter vector θ is a random variable.

We can model the function represented by the NN as a stochastic heuristic in
the following way. Lets denote by H(s) = NNθ(s) the heuristic value for a state
s, i.e. the output of a neural network with parameters θ on a state s. Since θ
is random variable, H(s) is a random variable as well. Once the NN is trained,
however, it operates in a deterministic manner.

The stochastic heuristic model applies to the neural net before it is trained.
Training the network (and fixing θ) corresponds to sampling the stochastic heuris-
tic and obtaining a standard heuristic. This modeling approach is necessary
because of the adversary-argument mentioned before.

After the NN is trained, it is possible to analyze it, discover its weaknesses and
come up with an adversary example: a planning problem on which the learned
heuristic performs poorly. We can overcome this by defining the stochastic heuris-
tic in the way we did, i.e. analyzing behavior of the net before it is trained. First
the adversary produces the problem and only after that the stochastic heuristic is
sampled. Since the adversary has no control over the sampling, the probabilistic
bounds will hold.

When stating the probabilistic bounds, we don’t average over problems but
rather over all possible outcomes of the randomized training algorithm. When
we are given an adversary example, we can just re-train the network using the
same training data and chances are that the new network will no longer have any
difficulties with that example.

6.2.3 Practical applicability
Our theorems are based on several assumptions: independence of H(si) and H(sj)
for si ̸= sj, unbiasedness, i.e. E [H(s)] = h∗(s) and non-negativity:
∀s : P[H(s) < 0] = 0.

We can easily guarantee non-negativity of estimates by restricting outputs
of the NN only to positive values, i.e. replacing any negative output by zero.
Assumptions of independence and unbiasedness of H(si) are more tricky, but
can be justified by analyzing the bias-variance tradeoff for NNs ([39]). NNs are
universal approximators ([50]) and in general they have high variance and low
bias hence for a large enough network, H(s) should be unbiased and ∀si, sj : H(si)
and H(sj) should be close to independent.

Normality

The normality assumption can’t be guaranteed in practice. We used it mostly to
demonstrate that a very tight bound can be proved when we know the distribution

88

of outputs with respect to the randomized training algorithm. In general, such
distribution is very difficult to analyze. The distribution of h∗(si) with respect
to features of si is domain specific hence distribution of H(si) will be domain
specific as well.

We don’t require that all H(si) are identically distributed. In theorems 7 and
10 we’re assuming that var[H(si)] is the same for all states but even if it wasn’t,
the theorem would still hold with an identical proof. In fact, we can just use
σ2 = maxsi∈S var[H(si)]. If the actual variance is lower for some states, it will
only improve the bound.

Theorems stated here are not tied to our particular HL framework. They
can be applied to any HL system and also to other kinds of heuristics that were
constructed by stochastic optimization algorithms like Monte-Carlo Tree Search,
heuristic-selection approaches, genetic algorithms, hyper-heuristics and others,
as long as they fulfill the requirements of independence, unbiasedness and non-
negativity.

89

Conclusion
In this thesis, we analyzed the issue of utilizing ML techniques to improve effi-
ciency of heuristic forward-search algorithms. We followed two lines: using data
analysis to adjust existing hand-coded heuristics and creating new heuristics from
scratch which is the main topic of the thesis.

We have developed a way to automatically adjust any given heuristic based
on a set of training data. The adjustments are domain-specific and can leverage
domain knowledge as well as users’ preferences regarding search-time vs. solution
quality trade-off. The process is fully automatic and much more flexible than
simple weighting.

We presented a technique to automatically construct a strong heuristic for a
given planning domain. Our technique is domain-independent and can extract
knowledge about any STRIPS domain using a given set of training problems. The
knowledge in represented by a trained neural network. Our technique outperforms
a popular domain-independent heuristic hFF in both number of problems solved
and solution quality on two challenging planning domains.

We analyzed the problem from the ML perspective, described how choice
of training data affects generalization, and how an inappropriate choice of loss-
function causes poor search-performance of an otherwise well-trained model. We
showed that the Mean Squared Error – the most common loss function – is not
appropriate for heuristic learning tasks and we presented a better alternative.

We pointed out strong correspondences between settings of the training algo-
rithm and properties of the learned heuristic. We also proposed a categorization
of HL approaches based on different generalization capabilities of the heuristic.

We’ve developed a novel technique for extracting features from states of plan-
ning problems where we encode the state directly without using existing hand-
coded heuristics. The method allows to compute features incrementally during
the forward-search which is very useful in planning application. An informed
and incrementally computable features extractor have been one of the few miss-
ing pieces to making domain-independent heuristic learning competitive with the
state-of-the-art.

Last but not least, we have provided theoretical bounds on solution quality
for learned heuristics. These can be considered probabilistic generalizations of
the well-known bounds for weighted A*.

Our approach falls into category of zero-learning as it works without any
human-knowledge initially added. In general, hand-coded tools provide worst-
case performance guarantees and are explainable while ML approaches provide
better average performance. The HL framework that we’ve developed combines
advantages of both as it works well in practice and we provided theoretical per-
formance guarantees that make the system trustworthy.

We believe that machine learning still has a great undiscovered potential to
improve heuristic design as well as other aspects of planning and combinatorial
search in general and that we will be seeing more of these attempts in the future.

90

Bibliography
[1] Shahab Jabbari Arfaee, Sandra Zilles, and Robert C. Holte. Bootstrap learn-

ing of heuristic functions. In Ariel Felner and Nathan R. Sturtevant, edi-
tors, Proceedings of the Third Annual Symposium on Combinatorial Search,
SOCS 2010. AAAI Press, 2010. URL http://aaai.org/ocs/index.php/
SOCS/SOCS10/paper/view/2071.

[2] Shahab Jabbari Arfaee, Sandra Zilles, and Robert C. Holte. Learning heuris-
tic functions for large state spaces. Artificial Intelligence, 175(16), 2011.
ISSN 0004-3702.

[3] Edward A. Bender, E. Rodney Canfield, and Brendan D. McKay. The
asymptotic number of labeled connected graphs with a given number of
vertices and edges. Random Structures & Algorithms, 1(2):127–169, 1990.
doi: 10.1002/rsa.3240010202. URL https://onlinelibrary.wiley.com/
doi/abs/10.1002/rsa.3240010202.

[4] Rafael Vales Bettker, Pedro Minini, A. G. Pereira, and M. Ritt. Understand-
ing sample generation strategies for learning heuristic functions in classical
planning. CoRR, abs/2211.13316, 2022. doi: 10.48550/arXiv.2211.13316.
URL https://doi.org/10.48550/arXiv.2211.13316.

[5] Francis Bisson, Hugo Larochelle, and Froduald Kabanza. Using a recur-
sive neural network to learn an agent’s decision model for plan recognition.
In Twenty-Fourth International Joint Conference on Artificial Intelligence,
2015.

[6] Blai Bonet and Malte Helmert. Strengthening landmark heuristics via hitting
sets. Frontiers in Artificial Intelligence and Applications, 215:329–334, 06
2010. doi: 10.3233/978-1-60750-606-5-329.

[7] Martim Brandao, Amanda Jane Coles, Andrew Coles, and Jörg Hoffmann.
Merge and shrink abstractions for temporal planning. In Akshat Kumar,
Sylvie Thiébaux, Pradeep Varakantham, and William Yeoh, editors, Pro-
ceedings of the Thirty-Second International Conference on Automated Plan-
ning and Scheduling, ICAPS 2022, Singapore (virtual), June 13-24, 2022,
pages 16–25. AAAI Press, 2022. URL https://ojs.aaai.org/index.php/
ICAPS/article/view/19781.

[8] Robert Brunetto and Otakar Trunda. Deep heuristic-learning in the rubik’s
cube domain: an experimental evaluation. In J. Hlaváčová, editor, Proceed-
ings of the 17th ITAT Conference Information Technologies - Applications
and Theory, pages 57–64. CreateSpace Independent Publishing Platform,
2017. ISBN 978-1974274741.

[9] Tom Bylander. The computational complexity of propositional strips plan-
ning. Artificial Intelligence, 69(1-2):165–204, 1994.

91

http://aaai.org/ocs/index.php/SOCS/SOCS10/paper/view/2071
http://aaai.org/ocs/index.php/SOCS/SOCS10/paper/view/2071
https://onlinelibrary.wiley.com/doi/abs/10.1002/rsa.3240010202
https://onlinelibrary.wiley.com/doi/abs/10.1002/rsa.3240010202
https://doi.org/10.48550/arXiv.2211.13316
https://ojs.aaai.org/index.php/ICAPS/article/view/19781
https://ojs.aaai.org/index.php/ICAPS/article/view/19781

[10] G. Casella and R.L. Berger. Statistical Inference. Cengage Learning,
2021. ISBN 9780357753132. URL https://books.google.cz/books?id=
FAUVEAAAQBAJ.

[11] Isabel Cenamor, Tomás De La Rosa, and Fernando Fernández. Learning
predictive models to configure planning portfolios. In Proceedings of the 4th
workshop on Planning and Learning (ICAPS-PAL 2013), 2013.

[12] Seok-Ho Chang, Pamela C Cosman, and Laurence B Milstein. Chernoff-type
bounds for the gaussian error function. IEEE Transactions on Communica-
tions, 59(11):2939–2944, 2011.

[13] Hung-Che Chen and Jyh-Da Wei. Using neural networks for evaluation in
heuristic search algorithm. In AAAI, 2011.

[14] Joseph Culberson. Sokoban is pspace-complete. Technical report, 1997.

[15] Andrea Dittadi, Frederik K. Drachmann, and Thomas Bolander. Plan-
ning from pixels in atari with learned symbolic representations. CoRR,
abs/2012.09126, 2020. URL https://arxiv.org/abs/2012.09126.

[16] Carmel Domshlak, Jörg Hoffmann, and Michael Katz. Red–black plan-
ning: A new systematic approach to partial delete relaxation. Artifi-
cial Intelligence, 221:73 – 114, 2015. ISSN 0004-3702. doi: https://doi.
org/10.1016/j.artint.2014.12.008. URL http://www.sciencedirect.com/
science/article/pii/S0004370214001581.

[17] Dorit Dor and Uri Zwick. Sokoban and other motion planning problems.
Computational Geometry, 13(4):215–228, 1999.

[18] Filip Dvořák and Roman Barták. Integrating time and resources into plan-
ning. In 22nd IEEE International Conference on Tools with Artificial Intel-
ligence, volume 2, pages 71–78. IEEE, 2010.

[19] Stefan Edelkamp. Optimal symbolic pddl3 planning with mips-bdd. 5th
International Planning Competition Booklet (IPC-2006), pages 31–33, 2006.

[20] Stefan Edelkamp, Stefan Schroedl, and Sven Koenig. Heuristic Search: The-
ory and Applications. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2010. ISBN 0123725127.

[21] Stefan Edelkamp, Peter Kissmann, and Álvaro Torralba. BDDs strike back
(in AI planning). In Blai Bonet and Sven Koenig, editors, Proceedings of
the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-
30, 2015, Austin, Texas, USA, pages 4320–4321. AAAI Press, 2015. URL
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9834.

[22] Salomé Eriksson, Gabriele Röger, and Malte Helmert. Unsolvability certifi-
cates for classical planning. In Laura Barbulescu, Jeremy Frank, Mausam,
and Stephen F. Smith, editors, Proceedings of the Twenty-Seventh Inter-
national Conference on Automated Planning and Scheduling, ICAPS 2017,
Pittsburgh, Pennsylvania, USA, June 18-23, 2017, pages 88–97. AAAI Press,

92

https://books.google.cz/books?id=FAUVEAAAQBAJ
https://books.google.cz/books?id=FAUVEAAAQBAJ
https://arxiv.org/abs/2012.09126
http://www.sciencedirect.com/science/article/pii/S0004370214001581
http://www.sciencedirect.com/science/article/pii/S0004370214001581
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9834

2017. URL https://aaai.org/ocs/index.php/ICAPS/ICAPS17/paper/
view/15734.

[23] Patrick Ferber, Malte Helmert, and Jörg Hoffmann. Neural network heuris-
tics for classical planning: A study of hyperparameter space. In ECAI 2020 -
24th European Conference on Artificial Intelligence, volume 325 of Frontiers
in Artificial Intelligence and Applications, pages 2346–2353. IOS Press, 2020.
doi: 10.3233/FAIA200364. URL https://doi.org/10.3233/FAIA200364.

[24] Patrick Ferber, Florian Geißer, Felipe W. Trevizan, Malte Helmert, and
Jörg Hoffmann. Neural network heuristic functions for classical planning:
Bootstrapping and comparison to other methods. In Akshat Kumar, Sylvie
Thiébaux, Pradeep Varakantham, and William Yeoh, editors, Proceedings
of the Thirty-Second International Conference on Automated Planning and
Scheduling, ICAPS 2022, Singapore (virtual), June 13-24, 2022, pages 583–
587. AAAI Press, 2022. URL https://ojs.aaai.org/index.php/ICAPS/
article/view/19845.

[25] Maximilian Fickert and Jörg Hoffmann. Online relaxation refinement for
satisficing planning: On partial delete relaxation, complete hill-climbing,
and novelty pruning. Journal of Artificial Intelligence Research, 73:67–115,
2022.

[26] Richard E. Fikes and Nils J. Nilsson. Strips: A new approach to the appli-
cation of theorem proving to problem solving. Artificial Intelligence, 2(3):
189–208, 1971. ISSN 0004-3702. doi: https://doi.org/10.1016/0004-3702(71)
90010-5. URL https://www.sciencedirect.com/science/article/pii/
0004370271900105.

[27] Michael Fink. Online learning of search heuristics. In Marina Meila and
Xiaotong Shen, editors, Proceedings of the Eleventh International Confer-
ence on Artificial Intelligence and Statistics, AISTATS 2007, San Juan,
Puerto Rico, March 21-24, 2007, volume 2 of JMLR Proceedings, pages 114–
122. JMLR.org, 2007. URL http://proceedings.mlr.press/v2/fink07a.
html.

[28] Guillem Francès, Augusto B. Corrêa, Cedric Geissmann, and Florian Pom-
merening. Generalized potential heuristics for classical planning. In Pro-
ceedings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence, IJCAI-19, pages 5554–5561. International Joint Conferences on
Artificial Intelligence Organization, 7 2019. doi: 10.24963/ijcai.2019/771.
URL https://doi.org/10.24963/ijcai.2019/771.

[29] Sankalp Garg, Aniket Bajpai, and Mausam. Size independent neural
transfer for RDDL planning. In J. Benton, Nir Lipovetzky, Eva Onain-
dia, David E. Smith, and Siddharth Srivastava, editors, Proceedings of
the Twenty-Ninth International Conference on Automated Planning and
Scheduling, ICAPS 2018, Berkeley, CA, USA, July 11-15, 2019, pages 631–
636. AAAI Press, 2019. URL https://ojs.aaai.org/index.php/ICAPS/
article/view/3530.

93

https://aaai.org/ocs/index.php/ICAPS/ICAPS17/paper/view/15734
https://aaai.org/ocs/index.php/ICAPS/ICAPS17/paper/view/15734
https://doi.org/10.3233/FAIA200364
https://ojs.aaai.org/index.php/ICAPS/article/view/19845
https://ojs.aaai.org/index.php/ICAPS/article/view/19845
https://www.sciencedirect.com/science/article/pii/0004370271900105
https://www.sciencedirect.com/science/article/pii/0004370271900105
http://proceedings.mlr.press/v2/fink07a.html
http://proceedings.mlr.press/v2/fink07a.html
https://doi.org/10.24963/ijcai.2019/771
https://ojs.aaai.org/index.php/ICAPS/article/view/3530
https://ojs.aaai.org/index.php/ICAPS/article/view/3530

[30] Clement Gehring, Masataro Asai, Rohan Chitnis, Tom Silver, Leslie Kael-
bling, Shirin Sohrabi, and Michael Katz. Reinforcement learning for classical
planning: Viewing heuristics as dense reward generators. In Proceedings of
the International Conference on Automated Planning and Scheduling, vol-
ume 32, pages 588–596, 2022.

[31] Cedric Geissmann. Learning heuristic functions in classical planning. Mas-
ter’s thesis, University of Basel, Switzerland, 2015.

[32] B. K. Ghosh. Probability inequalities related to markov’s theorem. The
American Statistician, 56(3):186–190, 2002. ISSN 00031305. URL http:
//www.jstor.org/stable/3087296.

[33] Daniel Gilon, Ariel Felner, and Roni Stern. Dynamic potential search—a new
bounded suboptimal search. In Ninth Annual Symposium on Combinatorial
Search, 2016.

[34] Pawel Gomoluch, Dalal Alrajeh, Alessandra Russo, and Antonio Buc-
chiarone. Towards learning domain-independent planning heuristics. arXiv
preprint arXiv:1707.06895, 2017.

[35] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[36] Edward Groshev, Maxwell Goldstein, et al. Learning generalized reactive
policies using deep neural networks. Symposium on Integrating Represen-
tation, Reasoning, Learning, and Execution for Goal Directed Autonomy,
2017.

[37] Arthur Guez, Mehdi Mirza, Karol Gregor, Rishabh Kabra, Sébastien
Racanière, Théophane Weber, David Raposo, Adam Santoro, Laurent
Orseau, Tom Eccles, et al. An investigation of model-free planning. In
International Conference on Machine Learning, pages 2464–2473. PMLR,
2019.

[38] Patrik Haslum, Nir Lipovetzky, Daniele Magazzeni, and Christian Muise. An
introduction to the planning domain definition language. Synthesis Lectures
on Artificial Intelligence and Machine Learning, 13(2):1–187, 2019. doi:
10.2200/S00900ED2V01Y201902AIM042.

[39] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of
Statistical Learning. Springer Series in Statistics. Springer New York Inc.,
New York, NY, USA, 2001.

[40] Zhibo He, Chenguang Liu, Xiumin Chu, Rudy R Negenborn, and Qing Wu.
Dynamic anti-collision a-star algorithm for multi-ship encounter situations.
Applied Ocean Research, 118:102995, 2022.

[41] Malte Helmert. The fast downward planning system. Journal of Artificial
Intelligence Research, 26(1):191–246, 2006. ISSN 1076-9757. doi: 10.1613/
jair.1705. URL https://doi.org/10.1613/jair.1705.

94

http://www.jstor.org/stable/3087296
http://www.jstor.org/stable/3087296
http://www.deeplearningbook.org
https://doi.org/10.1613/jair.1705

[42] Malte Helmert. Understanding Planning Tasks: Domain Complexity and
Heuristic Decomposition. Springer-Verlag, Berlin, Heidelberg, 2008. ISBN
978-3-540-77722-9.

[43] Malte Helmert. Concise finite-domain representations for pddl plan-
ning tasks. Artificial Intelligence, 173(5):503–535, 2009. ISSN 0004-
3702. doi: https://doi.org/10.1016/j.artint.2008.10.013. URL https://www.
sciencedirect.com/science/article/pii/S0004370208001926. Ad-
vances in Automated Plan Generation.

[44] Malte Helmert and Carmel Domshlak. Landmarks, critical paths and ab-
stractions: What’s the difference anyway? In Proceedings of the Nineteenth
International Conference on International Conference on Automated Plan-
ning and Scheduling, ICAPS’09, page 162–169. AAAI Press, 2009. ISBN
9781577354062.

[45] Malte Helmert and Gabriele Röger. How good is almost perfect? In Pro-
ceedings of the 23rd National Conference on Artificial Intelligence - Volume
2, AAAI’08, page 944–949. AAAI Press, 2008. ISBN 9781577353683.

[46] Malte Helmert, Gabriele Röger, and Erez Karpas. Fast downward stone
soup: A baseline for building planner portfolios. In ICAPS 2011 Workshop
on Planning and Learning, pages 28–35. Citeseer, 2011.

[47] Malte Helmert, Patrik Haslum, Jörg Hoffmann, and Raz Nissim. Merge-and-
shrink abstraction: A method for generating lower bounds in factored state
spaces. J. ACM, 61(3), June 2014. ISSN 0004-5411. doi: 10.1145/2559951.
URL https://doi.org/10.1145/2559951.

[48] Jörg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan
generation through heuristic search. Journal of Artificial Intelligence Re-
search, 14:253–302, 2001. doi: 10.1613/jair.855. URL https://doi.org/
10.1613/jair.855.

[49] Daniel Höller, Pascal Bercher, Gregor Behnke, and Susanne Biundo. On
guiding search in HTN planning with classical planning heuristics. In Sarit
Kraus, editor, Proceedings of the Twenty-Eighth International Joint Confer-
ence on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16,
2019, pages 6171–6175. ijcai.org, 2019. doi: 10.24963/ijcai.2019/857. URL
https://doi.org/10.24963/ijcai.2019/857.

[50] Kurt Hornik. Approximation capabilities of multilayer feedforward networks.
Neural Networks, 4(2):251 – 257, 1991. ISSN 0893-6080. doi: https://
doi.org/10.1016/0893-6080(91)90009-T. URL http://www.sciencedirect.
com/science/article/pii/089360809190009T.

[51] Sergio Jiménez, Tomás De la Rosa, Susana Fernández, Fernando Fernández,
and Daniel Borrajo. A review of machine learning for automated planning.
The Knowledge Engineering Review, 27(4):433–467, 2012.

95

https://www.sciencedirect.com/science/article/pii/S0004370208001926
https://www.sciencedirect.com/science/article/pii/S0004370208001926
https://doi.org/10.1145/2559951
https://doi.org/10.1613/jair.855
https://doi.org/10.1613/jair.855
https://doi.org/10.24963/ijcai.2019/857
http://www.sciencedirect.com/science/article/pii/089360809190009T
http://www.sciencedirect.com/science/article/pii/089360809190009T

[52] Rushang Karia and Siddharth Srivastava. Learning generalized relational
heuristic networks for model-agnostic planning. In Thirty-Fifth AAAI Con-
ference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on
Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh
Symposium on Educational Advances in Artificial Intelligence, EAAI 2021,
Virtual Event, February 2-9, 2021, pages 8064–8073. AAAI Press, 2021. URL
https://ojs.aaai.org/index.php/AAAI/article/view/16983.

[53] Michael Katz. Red-black heuristics for planning tasks with conditional ef-
fects. Proceedings of the AAAI Conference on Artificial Intelligence, 33
(01):7619–7626, Jul. 2019. doi: 10.1609/aaai.v33i01.33017619. URL https:
//ojs.aaai.org/index.php/AAAI/article/view/4755.

[54] Michael Katz. Red-black heuristics for planning tasks with conditional ef-
fects. Proceedings of the AAAI Conference on Artificial Intelligence, 33:
7619–7626, 07 2019. doi: 10.1609/aaai.v33i01.33017619.

[55] Thomas Keller, Florian Pommerening, Jendrik Seipp, Florian Geißer, and
Robert Mattmüller. State-dependent cost partitionings for cartesian ab-
stractions in classical planning. In Proceedings of the 25th International
Joint Conference on Artificial Intelligence (IJCAI 2016), 2016.

[56] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. In Yoshua Bengio and Yann LeCun, editors, 3rd Interna-
tional Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL
http://arxiv.org/abs/1412.6980.

[57] Peter Kissmann and Stefan Edelkamp. Improving cost-optimal domain-
independent symbolic planning. In Twenty-Fifth AAAI Conference on Arti-
ficial Intelligence, 2011.

[58] George Konidaris, Leslie Pack Kaelbling, and Tomas Lozano-Perez. From
skills to symbols: Learning symbolic representations for abstract high-level
planning. Journal of Artificial Intelligence Research, 61, 2018.

[59] Nir Lipovetzky, Miquel Ramirez, and Hector Geffner. Classical planning with
simulators: Results on the atari video games. In Proceedings of the 24th In-
ternational Conference on Artificial Intelligence, IJCAI’15, page 1610–1616.
AAAI Press, 2015. ISBN 9781577357384.

[60] C. Mariconda and A. Tonolo. Discrete Calculus: Methods for Counting.
UNITEXT. Springer International Publishing, 2016. ISBN 9783319030388.
URL https://books.google.cz/books?id=37iiDQAAQBAJ.

[61] Mario Mart́ın and Hector Geffner. Learning generalized policies from plan-
ning examples using concept languages. Applied Intelligence, 20(1):9–19,
2004.

[62] Felipe Meneguzzi and Ramon Fraga Pereira. A survey on goal recognition as
planning. In Zhi-Hua Zhou, editor, Proceedings of the Thirtieth International
Joint Conference on Artificial Intelligence, IJCAI 2021, Virtual Event /

96

https://ojs.aaai.org/index.php/AAAI/article/view/16983
https://ojs.aaai.org/index.php/AAAI/article/view/4755
https://ojs.aaai.org/index.php/AAAI/article/view/4755
http://arxiv.org/abs/1412.6980
https://books.google.cz/books?id=37iiDQAAQBAJ

Montreal, Canada, 19-27 August 2021, pages 4524–4532. ijcai.org, 2021. doi:
10.24963/ijcai.2021/616. URL https://doi.org/10.24963/ijcai.2021/
616.

[63] Zied Mnasri, Stefano Rovetta, and Francesco Masulli. Anomalous sound
event detection: A survey of machine learning based methods and applica-
tions. Multimedia Tools and Applications, 81(4):5537–5586, 2022.

[64] Matej Moravč́ık, Martin Schmid, Neil Burch, Viliam Lisý, Dustin Morrill,
Nolan Bard, Trevor Davis, Kevin Waugh, Michael Johanson, and Michael
Bowling. DeepStack: Expert-level artificial intelligence in heads-up no-limit
poker. Science, 356(6337), 2017. ISSN 1095-9203. doi: 10.1126/science.
aam6960. URL http://dx.doi.org/10.1126/science.aam6960.

[65] Dana Nau, Malik Ghallab, and Paolo Traverso. Automated Planning: Theory
& Practice. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2004. ISBN 1558608567.

[66] Jennifer M. Nelson and Rogelio E. Cardona-Rivera. Partial-order, partially-
seen observations of fluents or actions for plan recognition as planning.
CoRR, abs/1911.05876, 2019. URL http://arxiv.org/abs/1911.05876.

[67] Stefan O’Toole, Miquel Ramirez, Nir Lipovetzky, and Adrian R Pearce. Sam-
pling from pre-images to learn heuristic functions for classical planning. In
Proceedings of the International Symposium on Combinatorial Search, vol-
ume 15, pages 308–310, 2022.

[68] J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem
Solving. The Addison-Wesley Series in Artificial Intelligence. Addison-
Wesley, 1984. ISBN 9780201055948. URL https://books.google.cz/
books?id=0XtQAAAAMAAJ.

[69] André Grahl Pereira, Marcus Ritt, and Luciana S. Buriol. Optimal sokoban
solving using pattern databases with specific domain knowledge. Artif.
Intell., 227:52–70, 2015. doi: 10.1016/j.artint.2015.05.011. URL https:
//doi.org/10.1016/j.artint.2015.05.011.

[70] André Grahl Pereira, Robert Holte, Jonathan Schaeffer, Luciana S. Buriol,
and Marcus Ritt. Improved heuristic and tie-breaking for optimally solving
sokoban. In Subbarao Kambhampati, editor, Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelligence, IJCAI 2016, New
York, NY, USA, 9-15 July 2016, pages 662–668. IJCAI/AAAI Press, 2016.
URL http://www.ijcai.org/Abstract/16/100.

[71] Florian Pommerening, Gabriele Röger, Malte Helmert, and Blai Bonet. Lp-
based heuristics for cost-optimal planning. In Proceedings of the Twenty-
Fourth International Conferenc on International Conference on Automated
Planning and Scheduling, ICAPS’14, page 226–234. AAAI Press, 2014. ISBN
9781577356608.

[72] Raymond Reiter. Knowledge in action. Mit Press, 2001. ISBN 978-0-262-
52700-2.

97

https://doi.org/10.24963/ijcai.2021/616
https://doi.org/10.24963/ijcai.2021/616
http://dx.doi.org/10.1126/science.aam6960
http://arxiv.org/abs/1911.05876
https://books.google.cz/books?id=0XtQAAAAMAAJ
https://books.google.cz/books?id=0XtQAAAAMAAJ
https://doi.org/10.1016/j.artint.2015.05.011
https://doi.org/10.1016/j.artint.2015.05.011
http://www.ijcai.org/Abstract/16/100

[73] Or Rivlin, Tamir Hazan, and Erez Karpas. Generalized planning with deep
reinforcement learning. CoRR, abs/2005.02305, 2020. URL https://arxiv.
org/abs/2005.02305.

[74] Franz Rothlauf. Design of modern heuristics: principles and application.
Springer Science & Business Media, 2011.

[75] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-
proach. Prentice Hall, 3 edition, 2010. ISBN 9780136042594.

[76] Mehdi Samadi, Ariel Felner, and Jonathan Schaeffer. Learning from multiple
heuristics. In Dieter Fox and Carla P. Gomes, editors, AAAI, pages 357–362.
AAAI Press, 2008. ISBN 978-1-57735-368-3.

[77] Jendrik Seipp and Gabriele Röger. Fast downward stone soup 2018.
IPC2018–Classical Tracks, pages 72–74, 2018.

[78] Jendrik Seipp, Thomas Keller, and Malte Helmert. Saturated cost partition-
ing for optimal classical planning. Journal of Artificial Intelligence Research,
67, 01 2020. doi: 10.1613/jair.1.11673.

[79] Bart Selman. Near-optimal plans, tractability, and reactivity. In Proceedings
of the Fourth International Conference on Principles of Knowledge Repre-
sentation and Reasoning, KR’94, page 521–529, San Francisco, CA, USA,
1994. Morgan Kaufmann Publishers Inc. ISBN 155860328X.

[80] William Shen, Felipe Trevizan, and Sylvie Thiébaux. Learning domain-
independent planning heuristics with hypergraph networks. Proceedings of
the International Conference on Automated Planning and Scheduling, 30
(1):574–584, Jun. 2020. URL https://ojs.aaai.org/index.php/ICAPS/
article/view/6754.

[81] Silvan Sievers, Michael Katz, Shirin Sohrabi, Horst Samulowitz, and Patrick
Ferber. Deep learning for cost-optimal planning: Task-dependent planner
selection. Proceedings of the AAAI Conference on Artificial Intelligence, 33
(01):7715–7723, Jul. 2019. doi: 10.1609/aaai.v33i01.33017715. URL https:
//ojs.aaai.org/index.php/AAAI/article/view/4767.

[82] Silvan Sievers, Daniel Gnad, and Álvaro Torralba. Additive pattern
databases for decoupled search. In Lukás Chrpa and Alessandro Saetti,
editors, Proceedings of the Fifteenth International Symposium on Combina-
torial Search, SOCS 2022, Vienna, Austria, July 21-23, 2022, pages 180–
189. AAAI Press, 2022. URL https://ojs.aaai.org/index.php/SOCS/
article/view/21766.

[83] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Matthew Lai, Arthur Guez, Marc Lanctot, L. Sifre, Dharshan Kumaran,
Thore Graepel, Timothy P. Lillicrap, Karen Simonyan, and Demis Hassabis.
A general reinforcement learning algorithm that masters chess, shogi, and
go through self-play. Science, 362:1140 – 1144, 2018.

98

https://arxiv.org/abs/2005.02305
https://arxiv.org/abs/2005.02305
https://ojs.aaai.org/index.php/ICAPS/article/view/6754
https://ojs.aaai.org/index.php/ICAPS/article/view/6754
https://ojs.aaai.org/index.php/AAAI/article/view/4767
https://ojs.aaai.org/index.php/AAAI/article/view/4767
https://ojs.aaai.org/index.php/SOCS/article/view/21766
https://ojs.aaai.org/index.php/SOCS/article/view/21766

[84] John Slaney and Sylvie Thiébaux. Blocks world revisited. Artif. Intell., 125
(1–2):119–153, January 2001. ISSN 0004-3702. doi: 10.1016/S0004-3702(00)
00079-5. URL https://doi.org/10.1016/S0004-3702(00)00079-5.

[85] Roni Stern, Ariel Felner, and Robert Holte. Probably approximately correct
heuristic search. Proceedings of the 4th Annual Symposium on Combinatorial
Search, SoCS 2011, 01 2011.

[86] Roni Stern, Ariel Felner, and Robert C. Holte. Search-aware conditions for
probably approximately correct heuristic search. In Daniel Borrajo, Ariel
Felner, Richard E. Korf, Maxim Likhachev, Carlos Linares López, Wheeler
Ruml, and Nathan R. Sturtevant, editors, Proceedings of the Fifth Annual
Symposium on Combinatorial Search, SOCS 2012, Niagara Falls, Ontario,
Canada, July 19-21, 2012. AAAI Press, 2012. URL http://www.aaai.org/
ocs/index.php/SOCS/SOCS12/paper/view/5374.

[87] Roni Stern, Ariel Felner, Jur van den Berg, Rami Puzis, Rajat Shah, and Ken
Goldberg. Potential-based bounded-cost search and anytime non-parametric
a∗. Artificial Intelligence, 214:1–25, 2014. ISSN 0004-3702. doi: https://doi.
org/10.1016/j.artint.2014.05.002. URL https://www.sciencedirect.com/
science/article/pii/S0004370214000551.

[88] Roni Stern, Gal Dreiman, and Richard Valenzano. Probably bounded sub-
optimal heuristic search. Artificial Intelligence, 267:39–57, 2019. ISSN
0004-3702. doi: https://doi.org/10.1016/j.artint.2018.08.005. URL https:
//www.sciencedirect.com/science/article/pii/S0004370218306015.

[89] S Suganyadevi, V Seethalakshmi, and K Balasamy. A review on deep learning
in medical image analysis. International Journal of Multimedia Information
Retrieval, 11(1):19–38, 2022.

[90] Tian-Xiang Sun, Xiang-Yang Liu, Xi-Peng Qiu, and Xuan-Jing Huang.
Paradigm shift in natural language processing. Machine Intelligence Re-
search, 19(3):169–183, 2022.

[91] Takeshi Takahashi, He Sun, Dong Tian, and Yebin Wang. Learning heuris-
tic functions for mobile robot path planning using deep neural networks.
In Proceedings of the International Conference on Automated Planning and
Scheduling, volume 29, pages 764–772, 2019.

[92] Jordan Thayer and Wheeler Ruml. Bounded suboptimal search: A direct
approach using inadmissible estimates. In IJCAI International Joint Con-
ference on Artificial Intelligence, pages 674–679, 01 2011. doi: 10.5591/
978-1-57735-516-8/IJCAI11-119.

[93] Jordan Thayer, Austin Dionne, and Wheeler Ruml. Learning inadmissible
heuristics during search. In Proceedings of International Conference on Au-
tomated Planning and Scheduling, 2011.

[94] D. Toropila, F. Dvořák, O. Trunda, M. Hanes, and R. Barták. Three ap-
proaches to solve the petrobras challenge: Exploiting planning techniques for

99

https://doi.org/10.1016/S0004-3702(00)00079-5
http://www.aaai.org/ocs/index.php/SOCS/SOCS12/paper/view/5374
http://www.aaai.org/ocs/index.php/SOCS/SOCS12/paper/view/5374
https://www.sciencedirect.com/science/article/pii/S0004370214000551
https://www.sciencedirect.com/science/article/pii/S0004370214000551
https://www.sciencedirect.com/science/article/pii/S0004370218306015
https://www.sciencedirect.com/science/article/pii/S0004370218306015

solving real-life logistics problems. In 2012 IEEE 24th International Con-
ference on Tools with Artificial Intelligence, ICTAI 2012, volume 1, pages
191–198. IEEE, 2012. ISBN 978-1-4799-0227-9.

[95] Sam Toyer, Sylvie Thiébaux, Felipe Trevizan, and Lexing Xie. Asnets: Deep
learning for generalised planning. Journal of Artificial Intelligence Research,
68:1–68, 2020.

[96] Julia Wichlacz, Daniel Höller, and Jörg Hoffmann. Landmark heuristics for
lifted classical planning. In Luc De Raedt, editor, Proceedings of the Thirty-
First International Joint Conference on Artificial Intelligence, IJCAI 2022,
Vienna, Austria, 23-29 July 2022, pages 4665–4671. ijcai.org, 2022. doi: 10.
24963/ijcai.2022/647. URL https://doi.org/10.24963/ijcai.2022/647.

[97] Sungwook Yoon, Alan Fern, and Robert Givan. Learning control knowledge
for forward search planning. Journal of Machine Learning Research, 9(Apr):
683–718, 2008.

100

https://doi.org/10.24963/ijcai.2022/647

List of Figures

1.1 State-space of a simple planning problem. 8
1.2 Simplified diagram of the state-space. 9

3.1 Schema of the domain-analysis phase. 39

4.1 Example of an object graph for the initial state of problem pfile1
of the zenotravel domain. 46

4.2 The set of graphs B2
2 . 47

4.3 The set of graphs B2
3 . 47

4.4 A simple graph used to demonstrate computation of features. . . . 48
4.5 Example of extraction of features from a vertex labeled graph.

Left-hand side: example graph, right-hand side: set of B2
2 together

with the resulting features vector. The two occurrences of one of
the graphs are marked. 48

4.6 A graph of size 5 which indicates that a binary predicate is already
accomplished. 49

4.7 Example of a vertex labeled graph (top left), a set of 13 features
graphs whose occurrences we count (on the right) and the corre-
sponding features vector (bottom left). 54

4.8 Changes to the features vector caused by removal of vertex 1. . . 57
4.9 Changes to the features vector caused by adding edge {5, 6}. . . . 58

5.1 Count of samples from individual problems in blocks domain. . . . 60
5.2 Distribution of h∗ by problem in blocks domain. Red columns show

average of h∗, blue ones show maximum. Minimum is always 0. . 61
5.3 Count of samples from individual problems in zenotravel domain. 61
5.4 Distribution of h∗ by problem in zenotravel domain. Red columns

show average of h∗, blue ones show maximum. Minimum is always 0. 62
5.5 Count of samples by their goal-distances. X-axis: goal distance, Y-

axis: relative number of samples in blocks domain. (All problems
combined.) . 62

5.6 Count of samples by their goal-distances. X-axis: goal distance,
Y-axis: relative number of samples in zenotravel domain. (All
problems combined.) . 63

5.7 Correlation between heuristic estimates and real goal-distances.
Top section: zenotravel, bottom section: blocks. Left hand side:
hGC , right hand side: hFF . 64

5.8 Distribution of true goal-distances for each heuristic estimate in
Blocks domain. X-axis: hFF estimates, Y-axis: minimum, average
and maximum of h∗ of states having the corresponding estimate.
Data below the red line indicate over-estimation of the heuristic. . 65

5.9 Distribution of true goal-distances for each heuristic estimate in
Zenotravel domain. X-axis: hFF estimates, Y-axis: minimum,
average and maximum of h∗ of states having the corresponding
estimate. Data below the red line indicate over-estimation of the
heuristic. 66

101

5.10 Performance of hFF , hGC and their modified versions in blocks. . . 67
5.11 Performance of hFF , hGC and their modified versions in zenotravel. 67
5.12 Distribution of ranges of ∆-sets in blocks. Blue graph corresponds

to α = 2, the orange one to α = 4. Calculated over all collected
data from Blocks domain. 68

5.13 Scatter plot of features’ differences against targets’ differences. . . 68
5.14 Correlation coefficients between features-distance

and targets-distance for various values of α. 69
5.15 Architecture of the network. 70
5.16 Accuracy of fit in zenotravel. X-axis: difference between target and

output, Y-axis: percentage of samples in each category 71
5.17 Accuracy of fit in blocks. X-axis: difference between target and

output, Y-axis: percentage of samples in each category 71
5.18 Output of the model by target in zenotravel. X-axis: target, Y-

axis: minimum, maximum and average of outputs on samples with
that target. Red line represents perfect fit. Data above the red
line indicate overestimation of the learned heuristic. 72

5.19 Output of the model by target in blocks. X-axis: target, Y-axis:
minimum, maximum and average of outputs on samples with that
target. Red line represents perfect fit. Data above the red line
indicate overestimation of the learned heuristic. 72

5.20 Aggregated results of experiments. 73
5.21 Results of experiments - number of expanded nodes by each heuris-

tic on each problem on blocks. Only problems solved by at least
one method are included. 74

5.22 Results of experiments - runtime for each heuristic on each problem
on blocks. Only problems solved by at least one method are included. 75

5.23 Results of experiments - length of plan found by each heuristic
on each problem on blocks. Only problems solved by at least one
method are included. 76

5.24 Results of experiments - number of expanded nodes by each heuris-
tic on each problem on zenotravel. Only problems solved by at least
one method are included. 77

5.25 Results of experiments - runtime for each heuristic on each problem
on zenotravel. Only problems solved by at least one method are
included. 77

5.26 Results of experiments - length of plan found by each heuristic on
each problem on zenotravel. Only problems solved by at least one
method are included. 78

5.27 Number of problems solved in blocks domain (sum of both MSE
and LogMSE). On the X-axis there is α value, blue columns cor-
respond to networks trained without using hFF as feature, orange
columns show networks trained with hFF included. 78

5.28 Number of problems solved in zenotravel domain (sum of both
MSE and LogMSE). On the X-axis there is α value, blue columns
correspond to networks trained without using hFF as feature, or-
ange columns show networks trained with hFF included. 79

102

5.29 Number of problems solved by heuristics trained by LogMSE (blue
columns) and MSE (orange columns) for various values of α in
blocks. 79

5.30 Number of problems solved by heuristics trained by LogMSE (blue
columns) and MSE (orange columns) for various values of α in
zenotravel. 80

5.31 Absolute error on samples with different targets. On the X-axis
there is target - i.e. real goal distance, height of the column shows
average of absolute error (

⃓⃓⃓
Yi − Ŷ i

⃓⃓⃓
) over all samples that fall into

that category. Results of training with MSE. 80
5.32 Absolute error on samples with different targets. On the X-axis

there is target - i.e. real goal distance, height of the column shows
average of absolute error (

⃓⃓⃓
Yi − Ŷ i

⃓⃓⃓
) over all samples that fall into

that category. Results of training with LogMSE. 81
5.33 Figures 5.31 and 5.32 combined. 81
5.34 Relative error on samples with different targets. On the X-axis

there is target - i.e. distance to go, on the y-axis there is average of
relative error (max(y+1

ŷ+1 ,
ŷ+1
y+1)) of corresponding samples. Blue line

represents networks trained by MSE, orange line the ones trained
by LogMSE. 82

103

List of Tables

1.1 Distribution of error for two different loss functions. 19

2.1 Example of estimates and residues of two heuristics over a simple
state-space. 29

2.2 ∆-sets of heuristic h1. 29
2.3 ∆-sets of heuristic h2. 30
2.4 Comparison of heuristics h2 and havg2 34
2.5 Comparison of heuristics h2 and hmin2 35

5.1 Length of feature vectors produced by our method for various val-
ues of α on the two domains. 64

5.2 Average range of features’ groups for various values of α. 65
5.3 Average standard deviations in features’ groups for various values

of α. 66

104

List of Abbreviations
• DS - Data structure.

• EOG - Extended object graph. See section 4.5.1.

• FF - FastForward (planning system). See section 1.1.5.

• FDR - Finite Domain Representation. See section 1.1.2

• GA - Genetic algorithm.

• GRU - Gated recurrent unit. See section 1.2.4.

• HL - Heuristic learning. See section 1.3.

• IPC - International Planning Competition.

• LogMSE - Logarithmic Mean Squared Error. See section 5.5.

• LSTM - Long short term memory. See section 1.2.4.

• ML - Machine learning.

• MSE - Mean Squared Error. See section 1.2.3.

• MutEx - Mutually Exclusive predicates. See definition 8.

• NN - (Artificial) neural network.

• PDDL - Planning Domain Description Language. See section 1.1.3.

• PDB - Pattern Database. See section 3.2.2.

• RL - Reinforcement learning.

• RV - Random variable.

• SAS - Simplified Action Structures. See section 1.1.3.

• STRIPS - Stanford Research Institute Problem Solver. See section 1.1.1.

• TSP - Travelling salesman problem.

105

List of publications
2021

Otakar Trunda and Roman Barták. Heuristic learning in domain-independent plan-
ning: Theoretical analysis and experimental evaluation. In Ana Paula Rocha, Luc
Steels, and H. Jaap van den Herik, editors, Agents and Artificial Intelligence, volume
12613 of Lecture Notes in Computer Science, pages 254–279. Springer International
Publishing, 2021.

2020

Otakar Trunda and Roman Barták. Deep learning of heuristics for domain-
independent planning. In Ana Paula Rocha, Luc Steels, and H. Jaap van den Herik,
editors, Proceedings of the 12th International Conference on Agents and Artificial In-
telligence, ICAART 2020, Volume 2, Valletta, Malta, February 22-24, 2020, pages
79–88. SCITEPRESS, 2020.

2017

Robert Brunetto and Otakar Trunda. Deep heuristic-learning in the rubik’s cube do-
main: An experimental evaluation. In Jaroslava Hlaváčová, editor, Proceedings of the
17th Conference on Information Technologies - Applications and Theory (ITAT 2017),
Martinské hole, Slovakia, September 22-26, 2017, volume 1885 of CEUR Workshop
Proceedings, pages 57–64. CEUR-WS.org, 2017.

2016

Otakar Trunda. Monte carlo tree search as a hyper-heuristic framework for classical
planning. In M. Katz N. Lipovetzky Ch. Muise M. Ramırez A. Torralba J. Ben-
ton, D. Bryce, editor, Proceedings of the 8th Workshop on Heuristics and Search for
Domain-independent Planning co-located with 26th International Conference on Auto-
mated Planning and Scheduling (HSDIP@ICAPS) 2016, London, UK, June 13, 2016,
pages 111–119. CreateSpace Independent Publishing Platform, 2016.

Otakar Trunda and Robert Brunetto. Fitness landscape analysis of hyper-heuristic
transforms for the vertex cover problem. In Brona Brejová, editor, Proceedings of the
16th ITAT Conference Information Technologies - Applications and Theory, Tatranské
Matliare, Slovakia, September 15-19, 2016, volume 1649 of CEUR Workshop Proceed-
ings, pages 179–186. CEUR-WS.org, 2016.

2015

Tomáš Balyo, Roman Barták, and Otakar Trunda. Reinforced encoding for planning
as SAT. Acta Polytechnica CTU Proceedings, 2(2):1–7, 2015.

2014

Otakar Trunda. Automatic creation of pattern databases in planning. In V. Kůrková,
L. Bajer, M. Holeňa, M. Nehéz, L. Peška, and P. Vojtáš, editors, Proceedings of
the 14th conference ITAT 2014 – Workshops and Posters, pages 85–92. Institute of
Computer Science AS CR, 2014.

Otakar Trunda and Roman Barták. Determining a proper initial configuration of
red-black planning by machine learning. In Joaquin Vanschoren, Pavel Brazdil, Car-
los Soares, and Lars Kotthoff, editors, Proceedings of the International Workshop on

106

Meta-learning and Algorithm Selection co-located with 21st European Conference on
Artificial Intelligence, MetaSel@ECAI 2014, Prague, Czech Republic, August 19, 2014,
volume 1201 of CEUR Workshop Proceedings, pages 51–52. CEUR-WS.org, 2014.

2013

Otakar Trunda and Roman Barták. Using monte carlo tree search to solve planning
problems in transportation domains. In Félix Castro-Espinoza, Alexander F. Gel-
bukh, and Miguel González-Mendoza, editors, Advances in Soft Computing and Its
Applications - 12th Mexican International Conference on Artificial Intelligence, MI-
CAI 2013, Mexico City, Mexico, November 24-30, 2013, Proceedings, Part II, volume
8266 of Lecture Notes in Computer Science, pages 435–449. Springer International
Publishing, 2013.

2012

Daniel Toropila, Filip Dvorak, Otakar Trunda, Martin Hanes, and Roman Barták.
Three approaches to solve the petrobras challenge: Exploiting planning techniques
for solving real-life logistics problems. In IEEE 24th International Conference on
Tools with Artificial Intelligence, ICTAI 2012, Athens, Greece, November 7-9, 2012,
pages 191–198. IEEE Computer Society, 2012.

107

A. Attachments

A.1 Description of planning domains used in
the experiments

A.1.1 Zenotravel
Zenotravel describes a transportation problem. There are cities, persons and
planes; persons and planes are located at cities. Goal is to transport persons and
planes to their destinations. Planes can fly between any two cities and persons
can board planes that are in the same city and they can leave the plane at any
city.

Planes have unlimited capacity but limited amount of fuel. When flying from
one city to another, one unit of fuel is consumed and when the fuel level reaches
zero, the plane can’t fly. At an time a plane can increase its fuel level by one unit
by performing the refuel action. The task is to find a plan that minimizes the
number of actions.

Finding optimal plans for Zenotravel is NP-hard. There is a 2-approximation
algorithm but a polynomial-time approximation scheme does not exist unless
P=NP. See [42], theorem 5.4.2.

PDDL files for the Zenotravel domain and 20 problems can be found on the
http://planning.domains website, specifically on
http://api.planning.domains/json/classical/problems/17. Both PDDL and SAS
versions of the problems we used in the experiments are provided in the supple-
mentary materials.

A.1.2 Blocks
Blocks domain features a scenario with several blocks (containers) stacked on top
of each other and a hoist to manipulate them. Goal is to rearrange the blocks
from given initial configuration to a specified target configuration using as few
actions as possible.

Block can be located either on the ground or on top of another block. Blocks
that have no other block located on top of them are called free. Only free blocks
can be moved by the hoist and only one block can be picked up at any time.
When a block is picked up, it can be dropped down either on the ground or on
top of another block that is currently free. No other actions are available.

Similar to the Zenotravel, computational complexity of Blocks is NP-hard,
a 2-approximation algorithm exists but not a polynomial-time approximation
scheme. See [79, 84].

PDDL files can again be found on the http://planning.domains website:
http://api.planning.domains/json/classical/problems/112. Both PDDL and SAS
versions of the problems we used in the experiments are provided in the supple-
mentary materials.

108

http://planning.domains
http://api.planning.domains/json/classical/problems/17
http://planning.domains
http://api.planning.domains/json/classical/problems/112

A.2 Description of ad-hoc solvers
We provide a brief description of ad-hoc solvers that we’ve developed to generate
training data.

A.2.1 Zenotravel Solver
Our Zenotravel solver combines genetic algorithm (GA) with a greedy search
to find high-quality solution for any Zenotravel problem in a reasonable time.
We use a two-phase procedure. First, we split the problem into several disjoint
components and then solve each component by a simple greedy algorithm. Given
a Zenotravel problem P , let C be a set of all cities, M set of all planes and T set
of all persons. We split P into a set of components Q such that every component
qi ∈ Q contains a single plane and a set of persons. The number of components
is the same as the number of planes. Components are disjoint, i.e., every plane is
present in exactly one component and the same holds for every person. Formally:
Q = {qi | qi = (mi, Ti), Ti ⊂ T, i ̸= j ⇒ (mi ̸= mj, Ti ∩ Tj = ∅),⋃︁i{mi} =
M,

⋃︁
i Ti = T}. Every component represents a sub-problem: the task in qi is to

transport persons Ti to their destinations using only a single plane mi.
Every component qi = (mi, Ti) can be solved by the following greedy proce-

dure. First we create a Delivery graph (see [42]) of qi (denoted Di) whose vertices
are cities and there is an edge from c1 to c2 if there exists a person t ∈ Ti whose
current location is c1 and target location is c2. We remove all isolated vertices
from Di and then we find its topological order.

Since planes have infinite capacity, component qi can be solved by visiting
vertices of Di in a topological order. At every city c, the plane mi loads all
persons from Ti that are not yet at their destinations and unloads persons whose
destination is c. Original and target location of the plane are added the beginning
and at the end of the journey respectively.

We run GA to find the best possible splitting into components. We use a
straightforward encoding: genome is a vector v of size |T |, where every v[i] is
assigned value from {1, 2, . . . |M |}. v[i] = j means that person ti belongs to
component qj. The number of components is the same as the number of planes
and every plane mj belongs to component qj. For every candidate solution v,
we perform the splitting according to v, solve each component by the greedy
algorithm and use sum of lengths of plans as the objective function. GA searches
for splitting that minimizes the objective function.

Parameters of the GA are as follows: size of the population: 100, termination
criterion: 20 generations passed without improving the solution. We use single
point cross-over and several types of mutations.

A.2.2 Blocks Solver
Our blocks solver uses a simple greedy algorithm to find close-to-optimal solu-
tions to blocks problems of any size. We utilize the notions of GoodTower and
BadTower (see [72] for example). A block being on table means that there are
no blocks under it. For a block X we say that GoodTower(X) is true if either of
these conditions hold:

109

1. X is currently on table and goal position of X is on table or it is not defined

2. X is located on Y, goal position of X is on Y and GoodTower(Y) is true

Otherwise we say that the block is BadTower. Blocks that are BadTower have
to be moved at least once. On the contrary, blocks that are GoodTower don’t
have to be moved and therefore should not be moved. Before we describe the
algorithm, lets first define a few notions:

• let C be the set of blocks that are currently clear - i.e., there is no block
located on top of them

• CG be a set of blocks from C that are GoodTower

• CB be a set of blocks from C that are BadTower

• u(X) be the unavailability of a block X defined as the number of blocks
that are located on top of X (height of the tower standing on top of X)

• GTC (good-tower candidates) be a set of blocks X such that there exists
YX ∈ CG and goal position of X is on YX , together with blocks B whose
goal position is on table or undefined. These are blocks that can be used
to extend or start a good tower.

Our algorithm repeatedly applies the following rules: (the first applicable rule
is used)

1. if there is X ∈ CB whose goal location is on table, move it to table

2. if there are X ∈ CB and Y ∈ CG such that goal location of X is on Y , move
X on Y .

3. if |GTC| ≥ 1 select X ∈ GTC whose u(X) is minimal, move all blocks on
top of X to table (separately, not on top of each other), then move X such
that GoodTower(X) is true

4. select block X ∈ CB randomly and move it to table

Steps 1 and 2 are special cases of step 3.

A.2.3 planning.domains benchmarks
The http://planning.domains website stores more information about the bench-
mark problems than just their PDDL files. For each problem they keep track of
the best plan found so far by anyone and they present these results in a form of
lower bound and upper bound on the length of the optimal plan. These can be
used by anyone to compare their solutions to optimal ones or at least to the best
known ones.

If an optimal plan has been found (by an algorithm that guarantees optimal-
ity), both lower and upper bounds equal the length of the optimal plan. This is
the case for some small problems but for the larger ones, algorithms that guar-
antee optimality are too slow to provide solution.

110

http://planning.domains

Lower bounds are produced by running an optimal algorithm, e.g. some sort
of Breadth-First Search, for a limited time and then examining how far from the
initial state the algorithm was able to reach. If it expanded some node as far as
r steps from the initial state and still did not find a plan, then this can be used
to guarantee that there is no plan shorter than r.

Upper bounds can be produced by providing a plan that solves the given
problem. Validity of such plan can be checked quickly and length of the plan
constitutes an upper bound on the length of the optimal plan.

The website provides an API and encourages users to submit their plans in
order to improve the bounds. Submitted plans are validated automatically by
the server before the bounds are updated.

We used our solvers to find solution for several of the problems for which
optimal plans are not yet known and we have been able to improve the best
known upper bounds for many problems. See
http://api.planning.domains/json/classical/problems/17 and
http://api.planning.domains/json/classical/problems/112
(the field upper bound description).

A.3 Content of attached archive
Domain files

Contains input files of the planning problems used in experiments. There are
both PDDL and SAS versions. PDDL files were downloaded from
http://api.planning.domains/json/classical/problems/17 (zenotravel) and
http://api.planning.domains/json/classical/problems/112 (blocks). SAS variants
were obtained using the translator available at
https://github.com/aibasel/downward/tree/main/src/translate.

Training data

All data samples we’ve collected. Folder states for training contains samples for
individual problems. The structure is following: each row represents a state,
columns:

• column 1: full ID of the state

• column 2: real goal distance of the state

• column 3: value of FastForward heuristic on that state

• columns 4-5 are redundant and used just to check consistency of our meth-
ods

Full ID of a state consists of domain name file name array of SAS state values.
It uniquely identifies the state and the state can be reconstructed out of it.

The file graphs.xlsx contains statistical properties of the data, tables and
graphs.

111

http://api.planning.domains/json/classical/problems/17
http://api.planning.domains/json/classical/problems/112
http://api.planning.domains/json/classical/problems/17
http://api.planning.domains/json/classical/problems/112
https://github.com/aibasel/downward/tree/main/src/translate

Heuristic accuracy

Accuracy of FastForward heuristic on the collected states. There is the raw data
as well as various statistics and graphs.

Heuristic adjustments results

Search results for FastForward heuristic, GoalCount heuristic and their adjusted
versions on both domains. Folder results 30mins 1M contains runs with time
limit of 30 minutes and memory limit of 1 million expanded nodes. In folder
results 30mins 5M there are runs with 5 million memory limit. Only results
from results 30mins 5M are presented in the thesis.

Experiments results

Contains raw data of results of search runs. FastForward heuristic and the 12
variants of learned heuristics. There are aggregated results, tables and graphs.

source

Sources of our planner and our HL framework.

thesis.pdf

Text of this thesis.

112

	Introduction
	Background and Related Work
	Automated Planning
	STRIPS
	Finite Domain Representation (FDR)
	Languages
	Comparison and translation between formats
	Popular planning techniques
	Notation

	Machine Learning
	Notation
	Supervised learning
	Error function
	Machine learning models

	Heuristic Learning
	Variants of HL
	Action costs
	Usage scenarios of HL

	Related Works
	Heuristic learning
	Performance guarantees

	Heuristics in an ML Age
	Heuristics and Search Algorithms
	The Process of Heuristic Estimation
	Statistical perspective

	Components of the Heuristic
	Desired behavior
	HL connections

	Heuristic Adjustments
	Shift-adjustment
	Avg-adjustment
	Min-adjustment
	Adjustments vs. weighting
	Properties

	The Framework
	Training Data
	Sampling the state spaces
	Calculating goal-distances

	Features Engineering
	Required properties
	Simple features

	Error Function
	Choice of the Loss Function

	Graph-based Features
	Object Graph
	Properties of the graph

	Extracting Features
	Properties of Fα(s)
	Extracted knowledge
	Length of the vector
	Expressive power

	Computing Features from Scratch
	Computing Features Incrementally
	Extended object graph

	Experiments
	Data
	Number and distribution of data samples

	Heuristics' Accuracy and Adjustments
	Heuristics' accuracy
	Performance of adjusted heuristics
	Summary

	Expressive Power of Features
	Correlation between features and targets

	Performance of Learned Heuristics
	Generalization capabilities
	Choice of hyper-parameters
	Training results
	Performance evaluation
	Results

	MSE versus LogMSE

	Performance Guarantees
	Motivation
	Stochastic Heuristics
	Properties of stochastic heuristics
	Learned heuristics as Stochastic heuristics
	Practical applicability

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	List of publications
	Attachments
	Description of planning domains used in the experiments
	Zenotravel
	Blocks

	Description of ad-hoc solvers
	Zenotravel Solver
	Blocks Solver
	planning.domains benchmarks

	Content of attached archive

