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Introduction
Systems with boundary or point control are an important class of controlled
distributed parameter systems. They represent, for instance, plate equations
with distributed noise which are accessible (controllable) only at certain points
in the domain or in terms of boundary conditions, for example

wtt(t, x) − ∆wt(t, x) + ∆2w(t, x) = Ix=x0u(t) + l(t, x), (t, x) ∈ R+ × G, (1)

w(0, x) = w0, wt(0, x) = w1, x ∈ G,

w(t, x) = wt(t, x) = 0, (t, x) ∈ R+ × ∂G,

where G ⊂ Rn, x0 ∈ G, l formally stands for the noise and u for the control.
Another example is heat equation

yt(t, x) = ∆y(t, x) + l(t, x), (t, x) ∈ R+ × G, (2)

yv(t, x) + h(x)y(t, x) = u(t, x), (t, x) ∈ R+ × ∂G,

y(0, x) = y0(x), x ∈ G,

where yv(t, x) is normal derivative of y in (t, x) ∈ R+ × ∂G in direction v, v
being the outward normal to ∂G, G ⊂ Rn, x0 ∈ G, l denotes the noise. Ergodic
(and adaptive) control for such systems have been studied in numerous papers
in case when l is white in time, possibly correlated in space, Gaussian noise.
The first results in this direction have been obtained in [5], the main idea of
which already appeared in [11] where the (technically easier) distributed control
of linear distributed parameter systems has been studied. Adaptive control for
such systems dependent also on an unknown parameter was further investigated
in [7]. Let us also mention analogous results for the case of semilinear (typically,
stochastic reaction-diffusion) systems [12], [8], [14] and [13]. In all these papers the
noise term is a (space-dependent) Brownian motion. There are a few papers where
other types of noise are considered, like the fractional noise type disturbances in
[10] and [9]. All previous control results are proved path-wise sense and some of
them are proved in mean-value sense as well.

We are not aware of any earlier result for Lévy noise for this problem. There-
fore, the goal of this Thesis is to study the ergodic control of the diffusion pro-
cesses with the Lévy noise. As these results in the case of the Brownian motion
are already known, we focus on the pure jump Lévy noise.

The original results summarized in this Thesis are published in the papers
[17], where the square integrable Lévy process is considered, and in [18], where
we can find the result for more general cylindrical Lévy process.

The Thesis is divided into five chapters. The original result with proofs are
covered by the chapters 2 – 5.

Chapter 1 contains some preliminaries as

1. strongly continuous and analytic semi-groups, some useful properties of
these semi-groups,
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2. square integrable Lévy process and its characteristics,

3. square integrable martingales, their basic properties and the stochastic in-
tegration with respect to the square integrable martingales,

4. cylindrical Lévy process, its characteristics and stochastic integration with
respect to the cylindrical Lévy process.

Chapter 2 is devoted to controlled stochastic evolution equations in the general
form, the concepts of the solutions and the hypotheses imposed on the coeffi-
cients as well as on the process representing the noise in the controlled stochastic
evolution equations.

In chapter 3 the control problem is formulated, including the optimality cri-
terion as well as the assumptions on the corresponding coefficients. Some known
results on operator-valued Riccati equations are recalled.

Chapter 4 is devoted to the Itô formula in mean value, applicable to the
stochastic evolution equations defined in the chapter 2 and for the quadratic
forms with the operators defined in the chapter 3 (Lemma 8). Note that the
solutions are not strong in general - the driving Lévy process is merely cylindrical
and both the drift term and the control operator are in general unbounded and
only densely defined. When we add the assumption on the noise term to be
Hilbert-Schmidt, we have the path-wise version of this Itô formula (Lemma 11)
as well.

Chapter 5 contains the main results of the paper - the optimal control is
found in feedback form in a certain natural class of stabilizing controls, and the
formula for the optimal cost is given in terms of the solution to appropriate
operator-valued ”algebraic” Riccati equation. The control is optimal in the mean
for the cylindrical Lévy process (Theorem 12) as we apply the Itô formula in the
mean value sense, proved in the previous section in this case. This control is
optimal path-wise as well (Theorem 16) if we add some technical assumptions on
the diffusion operator as well as on the coefficients of the cost functional. Most
importantly, we need that the coefficient in the noise term is Hilbert-Schmidt,
to be able to apply the path-wise Itô formula in this particular case. Some
applications to ergodic adaptive control problem are summarized in section 5.3
(Theorem 23). The examples of specific controlled SPDEs satisfying the above
imposed conditions are given in this chapter as well (section 5.4). These examples
are given:

1. boundary control for stochastic heat equation,

2. ergodic point control of stochastic plate equation with structural damping,

3. ergodic point control of stochastic Kelvin-Voigt plate equation.
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1. Preliminaries

1.1 Strongly continuous semigroups
In this section, we introduce the theory of the strongly continuous semigroups
as well as we summarize basic results related to these semigroups based on [24].
Proofs of the results stated in this section can be found in [24].

Let H = (H, | · |H) and Y = (Y, | · |Y) be real separable Hilbert spaces. We
define the semigroup of bounded linear operators on H as the family S(t), t ≥ 0
such that

1. S(t) ∈ L(H), s ≥ 0,

2. S(0) = IH,

3. S(s + t) = S(s)S(t), s, t ≥ 0,

where L(H) denotes the set of bounded linear operators on H and IH denotes
the identity operator on H. If there is no danger of confusion, we simply write I
instead of IH. Note that the condition 3 above is called semigroup property. The
semigroup S can be characterized by the infinitesimal generator of S. We say
that the operator A is the infinitesimal generator of the semigroup S if

Ax = lim
t→0+

(S(t) − S(0))x
t

= lim
t→0+

S(t)x − x

t

for all x ∈ D(A), where D(A) denotes the domain of A and in this case

D(A) =
{︄

x ∈ H; ∃y ∈ H : lim
t→0+

S(t)x − x

t
= y

}︄
.

We say that the semigroup S of bounded linear operators on H is strongly con-
tinuous if

lim
t→0+

S(t)x = x, x ∈ H.

We state some key properties of the strongly continuous semigroup S with the
infinitesimal generator A.

1. There exist M ≥ 1 and ω ≥ 0 such that

|S(t)|H ≤ Meωt, t ≥ 0.

2. S(·)x : R+ → H is continuous, x ∈ H.

3. For x ∈ D(A), t > s ≥ 0: ∫︂ t

s
S(r)xdr ∈ D(A),

A
(︃∫︂ t

s
S(r)xdr

)︃
= S(t)x − S(s)x.
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4. For x ∈ D(A), t ≥ 0:
S(t)x ∈ D(A),

AS(t)x = S(t)Ax.

5. A is the closed linear operator and D(A) = H .

6. S is given uniquely by A. It means that if T is a strongly continuous
semigroup with the infinitesimal generator A, then S(t) = T (t), t ≥ 0.

Remark. We can see from the properties above that S(t)x can be interpreted as
the solution of the deterministic evolution equation

ẏ = Ay, y(0) = x (1.1)

if x ∈ D(A). We show an example of a strongly continuous semigroup on the
finite dimensional H = R as a motivation of (1.1).
Example. Consider the equation (1.1) with A on H = R. In this case, the linear
operator A can be interpreted as multiplication by a ∈ R. We can rewrite the
equation (1.1) as

ẏ = ay, y(0) = x, (1.2)

where x ∈ R. It is well known that the solution to the equation 1.2 is the
exponential function

y(t) = eatx, t ≥ 0.

Therefore, the strongly continuous semigroup generated by the operator A can
be interpreted as the semigroup of linear operators S(t), t ≥ 0, defined as the
multiplication by the numbers eat, t ≥ 0. This means that

S(t)x = eatx, x ∈ R, t ≥ 0. (1.3)

Remark. Another motivation is the equation (1.1) with the bounded operator A.
In this case, the solution is similarly intuitive as in the finite dimensional case
(1.2) as we can see in the example below.
Example. Assume the equation (1.1) with A ∈ L(H). It is known that:

1. A generates an uniformly continuous semigroup, that means

lim
t→0+

S(t) = S(0)

in L(H). Note that this property is much stronger than the property of
strongly continuous semigroups.

2.

S(t) = eAt =
∞∑︂

n=0

(tA)n

n! , t ≥ 0. (1.4)

Remark. The sum in (1.4) is defined only for the bounded operator A in general
Hilbert spaces. Therefore, to get the correct definition of the more general con-
cept of the evolution equations in the Hilbert spaces, the concept of uniformly
continuous semigroups is extended to strongly continuous semigroups.
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We define the resolvent set ρ(A) of the operator A as the set of all λ ∈ C such
that

(λIH − A)−1 ∈ L(H)

and denote
R(λ, A) = λ(λI − A)−1, λ ∈ ρ(A).

The set {R(λ, A); λ ∈ ρ(A)} is called the resolvent of A.
We say that S is a semigroup of contractions iff M0 = 1 in (1.1). This means

that there exists ω ≥ 0 such that

|S(t)|H ≤ eωt, t ≥ 0.

We use later the following properties of the resolvent set and the resolvent of
A generating a semigroup of contractions:

1. R+ ⊂ ρ(A),

2. For λ > 0:

|λR(λ, A)|L(H) ≤ 1. (1.5)

3. For x ∈ D(A):

lim
t→∞

λR(λ, A)x = x. (1.6)

The inequality (1.5) is implied by the Hille-Yosida Theorem:

Theorem 1. Let A be a linear operator on H. A generates a strongly continuous
semigroup of contractions S on H if and only

1. A is closed and D(H)¯ = H,

2. R+ ⊂ ρ(A) and for all λ > 0:

|R(λ, A)|L(H) ≤ 1
λ

. (1.7)

For us is important the implication that for A a generator of a strongly con-
tinupus semigroup of contractions (1.7) holds.

In the definition of the general strongly continuous semigroup, we require the
semigroup property only on R+. We introduce the analytic semigroups as the
family of the bounded linear operators with the semigroup property on larger
subset of C, a cone around the R+. More precisely, S is an analytic semigroup
on

Aϕ1,ϕ2 = {z ∈ C; arg(z) ∈ (−ϕ1, ϕ2)}, ϕ1, ϕ2 > 0,

if

1. S(·) is analytic on Aϕ1,ϕ2 ,

2. S(0) = I,
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3. for each x ∈ H
lim

z→0,z∈Aϕ1,ϕ2

S(z)x = x,

4. S(z1 + z2) = S(z1)S(z2), z1, z2 ∈ Aϕ1,ϕ2 .

The semigroup S is analytic if S is analytic on Aϕ1,ϕ2 for some ϕ1, ϕ2 > 0. The
analytic semigroups have some key properties listed below:

It is known that there is a constant M0 > 0 such that for all t ≥ 0 we have

|AS(t)|L(H) ≤ M0

t
.

Before further description of the properties of the analytic semigroups, we
define the fractional power of the operators. Let A be a densely defined closed
linear operator and there exist a neighborhood of zero V and M > 0 such that

ρ0 ⊂ ρ(A),

|λR(λ, A)|L(H) ≤ M

1 + |λ|
, λ ∈ ρ0,

where
ρ0 = {λ; 0 < ω < | arg λ| ≤ π} ∪ V.

If M = 1 and ω = π
2 , A is the infinitesimal generator of a strongly continuous

semigroup. If ω < π
2 , A is the infinitesimal generator of an analytic semigroup.

We further assume ω < π
2 .

We can define for α > 0:

(−A)−α =
∫︁∞

0 rα−1S(r)dr

Γ(α)

as the integral converges in the uniform operator topology. Γ denotes the Gamma
function. Further we define for α = 0: (−A)−0 = IH, (−A)0 = IH and for α > 0:

(−A)α = ((−A)−α)−1.

It is known that

1.
D ((−A)α) = R

(︂
(−A)−α

)︂
,

where R ((−A)−α) denotes the range of the operator (−A)−α,

2.
Aα+βx = AαAβx, x ∈ D

(︂
Amax{α+β,α,β}

)︂
for α, β ∈ R.

We continue with the list of properties of the analytic semigroup S with the
infinitesimal generator A.

1. There exists a constant c such that⃓⃓⃓
(−A)−α

⃓⃓⃓
L(H)

≤ c, α ∈ [0, 1].
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2. If 0 < α ≤ 1 and B : H → H is a closed linear operator such that
D((−A)α) ⊂ D(B), then there is a constant c such that

|Bx|H ≤ c|(−A)αx|H, x ∈ D(Aα).

3. S(t) maps H to D((−A)α), t > 0, α ≥ 0.

4. For x ∈ D(Aα) and α ∈ R, we have

(−A)αS(t)x = S(t)(−A)αx, t ≥ 0.

5. For t > 0 and α ∈ R, the operator (−A)αS(t) is bounded on H.

6. For α ∈ R, we have constants β > 0 and Mα such that

|(−A)αS(t)|L(H) ≤ Mαe−βt

tα
, t > 0.

1.2 Square integrable Lévy process
In this chapter, we summarize some properties of the square integrable Lévy
process based on [25]. We can find the corresponding proofs in [25].

Let (Ω, A, F , P) be a complete filtered probability space. We start with the
definition of the H-valued martingale. We say, that the H-valued stochastic pro-
cess M on I, I ⊂ R, is H-valued martingale with respect to the filtration F
if

1. M is F -adapted,

2. M(t) is integrable for each t ∈ I,

3. for all t ≥ s, s, t ∈ I:

E[M(t)|Fs] = M(s), , P − a.s.,

where P-a.s means almost surely with respect to the probability measure P (fur-
ther, we can write a.s. instead of P-a.s.). If there is no danger of confusion,
we simply write martingale instead of H-valued martingale. This definition is a
straight generalization of the analogous one in finite dimension. Therefore, the
properties are similar as in the finite dimension.

1. If we have a H-valued integrable process Z on I, I ⊂ R, such that Z(t)−Z(s)
is independent of Fs, t ≥ s, s, t ∈ I, then the process M defined as

M(t) = Z(t) − EZ(t), t ∈ I,

is a martingale.

2. Any stochastically continuous square integrable H-valued martingale M has
a version with càdlàg trajectories. We denote this version M as well.
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Remark. Note that the naming càdlàg is taken from French ”continue à droite,
limite à gauche” which we can translate as ”right continuous with left limits”
or as ”continuous on (the) right, limit on (the) left”. Therefore, the namings
”RCLL” (”right continuous with left limits”) or sometimes ”corlol” (”continuous
on (the) right, limit on (the) left”) are used in some papers and books as well.
Nevertheless, the most popular is the French naming ”càdlàg”. Therefore, we use
it in this Thesis.

We define the Lévy process L in H as the H-valued stochastic process L on
R+ such that

1. The increments L(ti) − L(ti−1), i = 1, . . . , n, are independent for each 0 ≤
ti−1 < ti, i = 1, . . . , n, n ∈ N,

2. The increments L(t) − L(s), 0 ≤ s < t, are stationary,

3. L is stochastically continuous.

Example. An important particular case of the Lévy process is the Wiener process.
We define the Wiener process W in H as the Lévy process in H with continuous
trajectories and zero mean. It is known that W is Gaussian and square integrable,
which means that there exists a positive semi-definite trace-class operator QW on
H such that for all ti ≥ 0, xi ∈ H, i ∈ {1, . . . , n}, n ∈ N:

(⟨W (t1), x1⟩H, . . . , ⟨W (tn), xn⟩H) ∼ N(0Rn , Qn),

where Qn is an n × n matrix with the cells Qi,j given by

Qi,j = min{ti, tj}⟨Qxi, xj⟩H, i, j = 1, . . . , n

and ⟨·⟩H denotes the scalar product in H.
The general Lévy process L has a version with càdlàg trajectories. We consider

this version. Denote ∆L(t) = L(t) − L(t−) . The Poisson random measure
corresponding to L is defined as

N(t, A) = #{s ≤ t; ∆L(s) ∈ A}, t ≥ 0, A ∈ B(H), Ā ∩ 0H = ∅,

where B(H) denotes the Borel σ-algebra of the space H. Since the trajectories
are càdlàg, N(t, A) is finite for each t > 0 and A ∈ B(H), Ā∩0H = ∅. It is known
that

EN(t, A) = tEN(1, A) = tν(A), t ≥ 0, A ∈ B(H), Ā ∩ 0H = ∅

where ν is finite for A ∈ B(H), Ā ∩ 0 = ∅. The measure ν is called the Lévy
measure or the intensity jump measure of the Lévy process L and satisfies∫︂

H

(︂
min

{︂
|z|2H, 1

}︂)︂
dν(z) < ∞. (1.8)

The compensated Poisson random measure corresponding to L is defined as the
compensated measure N(t, A), that is

Ñ(t, A) = N(t, A) − tν(A), t ≥ 0, A ∈ B(H), Ā ∩ 0H = ∅.
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The characteristic function ϕL(t) of the Lévy process L at time t ≥ 0 is given by

log ϕL(t)(x) = t(i⟨a, x⟩H − 1
2⟨QW x, x⟩H

+
∫︂
H

(︂
ei⟨z,x⟩H − 1 − i⟨z, x⟩HI|x|H<1(⟨z, x⟩H)

)︂
dν(z),

where IA(x) is defined as 1 if x ∈ A else 0, log denotes the natural logarithm and

1. a ∈ H,

2. QW is a symmetric positive semi-definite trace-class operator on H and

3. ν is a non-negative measure concentrated on H \ {0H} such that (1.8) is
fulfilled.

The measure ν is the Lévy measure of L defined above and the triple (a, QW , ν) is
called the characteristics of L. The formula describing the characteristic function
of the Lévy process L is known as the Lévy-Khinchin formula. Note that in the
Lévy-Khinchin formula, we can use any open bounded set containing 0H instead
of the open sphere |x|H < 1 if we modify the vector a accordingly.
Remark. If the integral ∫︂

|z|H<1
(ei⟨z,x⟩H − 1)dν(z)

exists, we can use ∅ instead of |x|H < 1 in the Lévy-Khinchin formula and adjust
⟨a, x⟩H by

−
∫︂

|z|H<1
⟨z, x⟩Hdν(z).

In this case, we can rewrite the log ϕL(t)(x) formula as:

log ϕL(t)(x) = t(i⟨ã, x⟩H − 1
2⟨QW x, x⟩H +

∫︂
H

(ei⟨z,x⟩H − 1)dν(z),

where
⟨ã, x⟩H = ⟨a, x⟩H −

∫︂
|z|H<1

⟨z, x⟩Hdν(z).

On the other hand, if the integral∫︂
|z|H≥1

⟨z, x⟩Hdν(z)

exists, we can use R instead of |x|H < 1 in the Lévy-Khinchin formula and adjust
⟨a, x⟩H by ∫︂

|z|H≥1
⟨z, x⟩Hdν(z).

In this case, we can simplify the log ϕL(t)(x) formula to:

log ϕL(t)(x) = t(i⟨ã, x⟩H − 1
2⟨QW x, x⟩H +

∫︂
H

(︂
ei⟨z,x⟩H − 1 − i⟨z, x⟩H

)︂
dν(z),

where
⟨ã, x⟩H = ⟨a, x⟩H +

∫︂
|z|H≥1

⟨z, x⟩Hdν(z).
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The Lévy process can be decomposed in distribution ([25], chapters 4.5, 4.6,
6.3) as

L(t) = at + W (t) +
∫︂ t

0

∫︂
|z|H≥1

zN(ds, dz) +
∫︂ t

0

∫︂
|z|H<1

zÑ(ds, dz), t ≥ 0,

where

1. W is a Wiener process in H with the covariance operator QW ,

2. N is a Poisson measure with the intensity measure dt × dν(x),

3. L0 given by
L0(t) = at, t ≥ 0,

has the characteristic function

log ϕL0(t)(x) = it⟨a, x⟩H, x ∈ H,

4. L1 given by
L1(t) = W (t), t ≥ 0,

has the characteristic function

log ϕL1(t)(x) = −t
1
2⟨QW x, x⟩H, x ∈ H,

and is a martingale,

5. L2 given by
L2(t) =

∫︂ t

0

∫︂
|z|H≥1

zN(ds, dz), t ≥ 0,

has the characteristic function

log ϕL2(t)(x) =
∫︂

|x|H≥1

(︂
ei⟨z,x⟩H − 1

)︂
dν(z), x ∈ H,

6. L3 given by
L3(t) =

∫︂ t

0

∫︂
|z|H<1

zÑ(ds, dz), t ≥ 0,

has the characteristic function

log ϕL3(t)(x) =
∫︂

|x|H<1

(︂
ei⟨z,x⟩H − 1 − i⟨z, x⟩H

)︂
dν(z), x ∈ H,

and is a martingale.

Note that multiplying the characteristic functions of L1, L2 and L3, we easily
obtain the characteristic function described by the Lévy-Khinchin formula.

We consider square integrable Lévy process. We know that we have a vector
µ ∈ H and a positive semi-definite operator Q on H such that for s, t ≥ 0,
x, y ∈ H:

1.
E⟨L(t), x⟩H = ⟨µ, x⟩Ht,
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2.
E⟨L(t) − µt, x⟩H⟨L(s) − µs, y⟩H = min{s, t}⟨Qx, y⟩H.

We define the mean and the covariance operator of L as µ and Q with the
properties defined above. It is known that

1.
µ =

(︄
a +

∫︂
|z|H≥1

zdν(z)
)︄

t,

2. ∫︂
H

|z|2Hdν(z) < ∞

and we can decompose the operator Q to Q = QW + QJ , where

⟨QJx, y⟩H =
∫︂
H

⟨x, z⟩H⟨y, z⟩Hdν(z).

We define the stochastic integral with respect to the general H-valued square
integrable martingale M as in [25].
Remark. As mentioned in the previous paragraphs, the square integrable H-valued
Lévy process in the form

L(t) = W (t) +
∫︂ t

0

∫︂
H

zÑ(ds, dz), t ≥ 0,

is a H-valued square integrable martingale.
We consider the version of M with the càdlàg trajectories. We denote ⟨M⟩

the compensator of ⟨M⟩2
H. It means that

⟨M(t)⟩2
H − ⟨M⟩t, t ≥ 0,

is a martingale. Such process ⟨M⟩ exists and is unique in the class of predictable
processes with locally bounded variation. There exists so called martingale co-
variance Q that is a nuclear positive semi-definite operator process and for all
x, y ∈ H, s, t, u, v ∈ R+, s ≤ t ≤ u ≤ v we have

E[⟨M(t) − M(s), x⟩H⟨M(t) − M(s), y⟩H|Fs] = E
[︃∫︂ t

s
⟨Qrx, y⟩Hd⟨M⟩r|Fs

]︃
(1.9)

and

E[⟨M(t) − M(s), x⟩H⟨M(v) − M(u), y⟩H|Fu] = 0. (1.10)

Based on the equations (1.9) and (1.10), we get an Itô isometry for simple pro-
cesses and we can follow the standard steps of the construction of the stochastic
integral.

We start with the simple Hilbert-Schmidt stochastic process Φ on [0, T ], T >
0, as

Φ(t) =
n∑︂

i=1
IAi

Iti−1≤t≤ti
Φi, (1.11)
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where T ≥ ti > ti−1 ≥ 0, Ai ∈ Fti−1 , σ(Φi) ⊂ Fti−1 , i ∈ {1, . . . , n}, n ∈ N. The
family of processes in the form (1.11) will be denoted as S. We can define the
stochastic integral for Φ ∈ S,

IM(Φ)(T ) =
n∑︂

i=1
IAi

Φi(M(ti) − M(ti−1)). (1.12)

Applying (1.9) and (1.10), we obtain the isometry

E|IM(Φ)(T )|2H = E
∫︂ T

0

⃓⃓⃓⃓
Φ(t)Q

1
2
t

⃓⃓⃓⃓2
HS

d⟨M⟩t, . (1.13)

where | · |HS denotes the Hilbert-Schmidt norm.
For the stochastic process of Hilbert-Schmidt operators Y on [0, T ], we denote

the norm:

|Y |2H = E
∫︂ T

0

⃓⃓⃓⃓
Y (s)Q

1
2
s

⃓⃓⃓⃓2
HS

d⟨M⟩s. (1.14)

Define H as the space of all F -predictable stochastic process of Hilbert-Schmidt
operators Y on [0, T ] such that | · |H < ∞. We know by (1.13) that for Φ ∈ S,
|Φ|H < ∞. IM(·)(T ) defined on S by (1.12) can be uniquely extended on H.
By this extension, we obtain the stochastic integral for all stochastic process of
Hilbert-Schmidt operators Y ∈ H.

We have for all Y ∈ H:

1. IM(Y )(·) is the square integrable martingale which is mean-square contin-
uous and has a càdlàg version.

2. For a bounded operator C on H, CY ∈ H and CIM(Y ) = IM(CY ).

1.3 Cylindrical Lévy process
Define the cylindrical subsets of H as the sets of the form

C({h1, . . . , hn}; B) = {h ∈ H : (⟨h, h1⟩H, . . . , ⟨h, hn⟩H) ∈ B},

where {h1, . . . , hn} ⊂ H, B ∈ B(Rn), n ∈ N. For arbitrary V ⊂ H,

C(V ) = {C(V, B); B ∈ B(Rn)}

and denote C(V ) = σ(C(V )). A function ν : C(H) → R is a cylindrical measure
on C(H) if it is a measure on C(K) for each K finite subset of H. Let K be a
finite subset of H and let f : (H, C(K)) → (C, B(C)). The integral∫︂

H
f(z)dν(z)

is well defined as a complex valued Lebesgue integral if it exists (ν is a measure
on C(K)). For more details cf. [26], p. 4.

We define a cylindrical random variable Z on (Ω, A, P) in H as a linear and
continuous map H → L0(Ω, A, P), where L0(Ω, A) (or simply L0) is a set of real
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valued random variables on (Ω, A). Set Z(u) = ⟨Z, u⟩. A cylindrical process
Z on (Ω, A, P) in H is a family (Z(t), t ≥ 0) of cylindrical random variables on
(Ω, A, P) in H. The characteristic function of cylindrical random variable Z is
defined as

ϕZ(h) = Eei⟨Z,h⟩H , h ∈ H.

A cylindrical process L on (Ω, A, F , P) in H is a cylindrical Lévy process if
the stochastic process

((⟨L(t), h1⟩, . . . , ⟨L(t), hn⟩), t ≥ 0)

is a Lévy process on (Ω, A, F , P) in Rn for each {h1, . . . , hn} ⊂ H, n ∈ N. We
have

log ϕL(t)(h) = t
(︃

ip(h) − 1
2q(h)

)︃
+
∫︂
H

(ei⟨z,h⟩H − 1 − i⟨z, h⟩HIBR(⟨z, h⟩H))dν(z),

where

1. p : H → R is a continuous mapping,

2. q : H → R is a quadratic form and

3. ν is a cylindrical measure on C(H) such that ν ◦⟨h, ·⟩−1
H is the Lévy measure

on B(R) of the scalar Lévy process ⟨L, h⟩ = (⟨L(t), h⟩, t ≥ 0) for each h ∈ H.

The cylindrical measure ν is called cylindrical Lévy measure of L and (p, q, ν) are
called cylindrical characteristics of L.

The cylindrical process Z has weak second moments if

⟨Z, h⟩ = (⟨Z(t), h⟩, t ≥ 0)

has finite second moments for all h ∈ H. The cylindrical process Z is a cylindrical
martingale if ⟨Z, h⟩ is a martingale for all h ∈ H.

For each Hilbert-Schmidt operator ϕ on H and each t ≥ 0 exists a square
integrable random variable Lϕ such that for all h ∈ H

⟨L(t), ϕ∗h⟩ = ⟨Lϕ(t), h⟩H,

where ϕ∗ denotes the adjoint operator of the operator ϕ .
For simplicity we write ϕL = Lϕ.
For each T : R+ → L(H) and t ≥ 0 we have that∫︂ t

0
T (s)ϕdL(s) =

∫︂ t

0
T (s)dϕL(s), (1.15)

where the first integral is defined as in [26] and the second integral is defined
as in [25]. This can be shown by the standard approximation approach as both
integrals are defined as limits in L2 of the same approximating random sequence.

We define the stochastic integral with respect to the cylindrical Lévy process
with weak second moments following the steps in [26].
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For each 0 ≤ s ≤ t and Hilbert-Schmidt operator ϕ on H, there exists a square
integrable random variable Zϕ on H such that for all h ∈ H:

⟨L(t) − L(s), ϕ∗h⟩ = ⟨Zϕ, h⟩ . (1.16)

We define the simple random Hilbert-Schmidt operator Φ on H as

Φ(ω) =
n∑︂

i=1
IAi

(ω)ϕi, ω ∈ Ω, (1.17)

where Ai ∈ A, i ∈ {1, . . . , n}, are disjoint sets, ϕi are Hilbert-Schmidt operators
on H, i ∈ {1, . . . , n}, n ∈ N. Using (1.16), we can define the square integrable
random variable Is,t(Φ) on H for Φ in the form (1.17) as

Is,t(Φ) =
n∑︂

i=1
IAi

Zϕi
(1.18)

and combining (1.18) with (1.16), we define

⟨L(t) − L(s), Φ∗h⟩ = ⟨Is,t(Φ), h⟩ ,

where
⟨Is,t(Φ), h⟩ =

n∑︂
i=1

IAi
⟨Zϕi

, h⟩ =
n∑︂

i=1
IAi

⟨L(t) − L(s), ϕ∗
i h⟩ ,

for all h ∈ H.
Note that Is,t is a linear operator from the space of the simple random Hilbert-

Schmidt operators on H, SHS(H), in the form (1.17) to the space of the square
integrable random variables L2((Ω, A, P),H) (or simply L2(H)). As the space
SHS(H) is dense in the space of random Hilbert-Schmidt operators on H, LHS(H),
the operator Is,t can be uniquely extended on LHS(H). Then, we can correctly
define for Φ ∈ LHS(H) and h ∈ H:

⟨L(t) − L(s), Φ∗h⟩ = ⟨Is,t(Φ), h⟩ . (1.19)

We define the simple Hilbert-Schmidt stochastic process Y on [0, T ], T > 0,
as

J(t) =
n∑︂

i=1
Iti−1≤t≤ti

Φi, (1.20)

where T ≥ ti > ti−1 ≥ 0, σ(Φi) ⊂ Fti−1 , i ∈ {1, . . . , n}, n ∈ N. Denote the space
of the processes in the form (1.20) by S. For J ∈ S, we define

I(J) =
n∑︂

i=1
Iti−1,ti

(Φi) (1.21)

and using this in combination with (1.19)

⟨I(J), h⟩ =
n∑︂

i=1

⟨︂
Iti−1,ti

(Φi), h
⟩︂

=
n∑︂

i=1
IAi

⟨L(t) − L(s), Φ∗
i h⟩

for all h ∈ H.
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We define for the stochastic process of Hilbert-Schmidt operators Y on [0, T ]:

|Y |2H = E
∫︂ T

0
|Y (s)|2HSds, (1.22)

where | · |HS denotes the Hilbert-Schmidt norm. We define H as the space of all
F -predictable stochastic process of Hilbert-Schmidt operators Y on [0, T ] such
that | · |H < ∞. Note that for J ∈ S, |J |H < ∞. It is known from [26] that I is
continuous on S and S is dense in H with respect to | · |H. Therefore, I can be
uniquely extended on H and we can correctly define for Y ∈ H:∫︂ T

0
Y (s)dL(s) = I(Y ).

It is proved in [26] that for Y ∈ H:

1. There exists a version with strong second moments and càdlàg trajectories
of the process ∫︂ t

0
Y (s)dL(s), t ∈ [0, T ].

2. If L is a cylindrical martingale, then∫︂ t

0
Y (s)dL(s), t ∈ [0, T ].

is a cylindrical martingale.
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2. Controlled stochastic
evolution equation
In this chapter, we introduce two different settings describing the controlled dy-
namic systems we focus on in this Thesis. We summarize basic properties of these
dynamic systems as well. We start with the more general one.

We are concerned with the controlled stochastic evolution equation (SEE)

dXU(t) =
(︂
AXU(t) + BU(t)

)︂
dt + ΦdL(t), XU(0) = x, (2.1)

where x ∈ H. A is the infinitesimal generator of an analytic semigroup S on H.
For some fixed β > 0 the operator −A + βI is strictly positive (in the sequel,
β > 0 is fixed). For α > 0 we denote by Dα

A the domain of the fractional power
(−A + βI)α equipped with the graph norm |y|Dα

A
= |(−A + βI)αx|H and Dα

A∗

the domain of the fractional power (−A∗ + βI)α equipped with the graph norm
|y|Dα

A∗ = |(−A∗ + βI)αx|H.
We assume:

(A1) Φ ∈ L(H) and there exists δ ∈ (0, 1
2 ] such that Φ∗(−A∗+βI)− 1

2 +δ is Hilbert-
Schmidt.

(A2) B : D(B) ⊂ Y → D(A∗)′, the dual of D(A∗) with respect to the topology
of H, and (βI − A)ϵ−1B ∈ L(Y,H), for a given ϵ ∈ (1

2 , 1].

(A3) We have that
U ∈ L2,loc

F (R+,Y),

where L2,loc
F (R+,Y) denotes the space of all F -progressively measurable pro-

cesses from L2,loc(R+,Y) , where

L2,loc(R+,Y)

=
{︃

Y : R+ × Ω → Y measurable; ∀t > 0 : E
∫︂ t

0
|Y (s)|2Yds < ∞

}︃
.

U has the meaning of control process and U = L2,loc
F (R+,Y) is the space of

admissible controls.

(A4) L is a cylindrical Lévy process on (Ω, A, F , P) in H with weak second
moments and cylindrical characteristics (p, 0, ν) such that

p(h) = −
∫︂
H

(︂
⟨z, h⟩HIBC

R
(⟨z, h⟩H)

)︂
dν(z),

where BC
R denotes the complement of the set BR in the set R. Note that

the integral exists as L has weak second moments (and therefore weak first
moments). The characteristic function of L is

Eei⟨L(t),h⟩ = e
∫︁
H(ei⟨z,h⟩H−1−i⟨z,h⟩H)dν(z), h ∈ H.
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It means that L has zero Gaussian part and its Lévy measure ν is cylindrical.
L is a cylindrical martingale as ⟨L, h⟩ is centered for all h ∈ H and we can
write for all h ∈ H

⟨L(t), h⟩ =
∫︂ t

0

∫︂
R\{0}

uÑh(ds, du), t ∈ R+,

where Ñh is compensated Poisson measure of ⟨L(t), h⟩ with Lévy measure
ν ◦ ⟨u, ·⟩−1 (cf. [26], p. 10, 11).

As we mentioned in the previous section, the process Lϕ = (Lϕ(t), t ≥ 0) is
a càdlàg square integrable martingale ([26], Corollary 4.4., p. 16) for a Hilbert-
Schmidt operator ϕ. We are using characteristic function of ϕL for each h ∈ H
and t ≥ 0:

Eei⟨ϕL(t),h⟩H = Eei⟨L(t),ϕ∗h⟩ = e
∫︁
H(ei⟨z,ϕ∗h⟩H−1−i⟨z,ϕ∗h⟩H)dν(z)

= e
∫︁
H(ei⟨z,h⟩H−1−i⟨z,h⟩H)d(ν◦ϕ−1)(z)

(the integrals of cylindrical measurable functions with respect to ν are the stan-
dard Lebesgue integrals). It means that ϕL is Lévy process in H without Gaussian
part and with Lévy measure νϕ = ν ◦ ϕ−1 (ν ◦ ϕ−1 is indeed a Radon measure
with strong second moments, cf. [26], p. 15). We can write

Lϕ(t) =
∫︂ t

0

∫︂
H

zÑϕ(ds, dz), t ∈ R+,

where Ñϕ is a compensated Poisson measure of Lϕ.
Remark. The most intuitive concept of the solution of (2.1) is the strong solution,
which is defined by the equation

XU(t) = x +
∫︂ t

0

(︂
AXU(s) + BU(s)

)︂
ds +

∫︂ t

0
ΦdL(t), t ≥ 0,

if we suppose additional assumptions:

1. XU(s) ∈ D(A), s ≥ 0, a.s.,

2. U(s) ∈ D(B), s ≥ 0, a.s.,

3. AXU(s) + BU(s) is a.s. integrable:∫︂ t

0

⃓⃓⃓
AXU(s) + BU(s)

⃓⃓⃓
ds < ∞, t ≥ 0

4. Φ is a Hilbert-Schmidt operator on H.

But the assumptions above are fulfilled only for limited set of equations (2.1).
Therefore, we work with the concepts of mild or weak solutions as defined below.
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The mild solution X ∈ Lp,loc
F (R+,H) of the stochastic evolution equation (2.1)

is defined by the equation

XU(t) = S(t)x +
∫︂ t

0
S(t − s)BU(s)ds +

∫︂ t

0
S(t − s)ΦdL(s), t ≥ 0, (2.2)

where the stochastic integral
∫︁ t

0 S(t − s)ΦdL(s), t ≥ 0, is defined as in [26]. Due
to (A2), we may write∫︂ t

0
S(t − s)ΦdL(s) =

∫︂ t

0
S(t − s)(−A∗ + βI) 1

2 −δd(−A∗ + βI)− 1
2 +δΦL(s), t ≥ 0,

c.f. [25]. We can easily see that both integrals in (2.2) exist. In fact, we have the
following.

Lemma 2. Let
Z(t) =

∫︂ t

0
S(t − r)ΦdL(r),

Ẑ(t) =
∫︂ t

0
S(t − r)BU(r)dr,

t ≥ 0. Then Z, Ẑ ∈ L2,loc
F (R+,H) and, consequently,

XU ∈ L2,loc
F (R+,H).

Proof. The fact that Ẑ(·) =
∫︁ ·

0 S(· − r)BU(r)dr ∈ L2,loc
F (R+,H) has been proved

in [5], Lemma 2.1.
Let t ∈ R+. It follows that

E|Z(t)|2 =
∫︂ t

0

⃓⃓⃓
S(t − r)(−A + βI) 1

2 −δ(−A + βI)− 1
2 +δΦ

⃓⃓⃓2
HS

dr

≤
⃓⃓⃓
(−A∗ + βI)− 1

2 +δΦ
⃓⃓⃓2
HS

∫︂ t

0

⃓⃓⃓
S(t − r)(−A∗ + βI) 1

2 −δ
⃓⃓⃓2
L(H)

dr

≤ c1

∫︂ t

0

1
(t − r)1−2δ

for each t ∈ [0, T ] and therefore we have c2 > 0 such that∫︂ T

0
E|Z(t)|2dt ≤ c1

∫︂ T

0

(︄∫︂ t

0

1
(t − r)1−2δ

dr

)︄
dt ≤ c2 < ∞.

The weak solution of (2.1) is defined by the equation⟨︂
a, XU(t)

⟩︂
= ⟨a, x⟩H +

∫︂ t

0

⟨︂
A∗a, XU(s)

⟩︂
H

ds +
∫︂ t

0
⟨B∗a, U(r)⟩Y dr + ⟨L(t), Φ∗a⟩ ,

a ∈ D(A∗), t ∈ R+. Similarly as in Theorem 9.15 in [25] we obtain the following
equivalence:

Proposition 3. XU is the mild solution of (2.1) if and only if XU is the weak
solution of (2.1).
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Proof. Firstly, we suppose XU to be the weak solution of (2.1). For all a ∈ D(A∗)
and t ∈ R+, we can approximate (S(t − ·))∗a in the space C1(R+,H) (C1(R+,H)
denotes the space of continuously differentiable functions on R+ in H) by functions
Jn, n ∈ N, in the form

Jn(·) =
kn∑︂
i=1

f
(n)
i (·)a(n)

i ,

where a
(n)
i ∈ D(A∗), f

(n)
i ∈ C1(R+) (C1(R+) = C1(R+,R)), i = 1, . . . , kn, kn ∈ N,

n ∈ N. Therefore using Proposition 9.16 in [25] we obtain for all a ∈ D(A∗) and
t ∈ R+ ⟨︂

Jn(t), XU(t)
⟩︂
H

− ⟨Jn(0), x⟩H

=
kn∑︂
i=1

(︂
f

(n)
i (t)

⟨︂
a

(n)
i , XU(t)

⟩︂
H

− f
(n)
i (0)

⟨︂
a

(n)
i , x

⟩︂
H

)︂

=
kn∑︂
i=1

(︃∫︂ t

0

(︃(︂
f

(n)
i

)︂′
(s)

⟨︂
a

(n)
i , XU(s)

⟩︂
H

+ f
(n)
i (s)

⟨︂
A∗a

(n)
i , XU(s)

⟩︂
H

)︃
ds
)︃

+
kn∑︂
i=1

(︃∫︂ t

0
f

(n)
i (s)

⟨︂
B∗a

(n)
i , U(s)

⟩︂
H

ds +
∫︂ t

0
f

(n)
i (s)

⟨︂
a

(n)
i , ΦdL(s)

⟩︂
H

)︃
Passing to the limit it follows that

⟨a, X(t)⟩H − ⟨a, S(t)x⟩H = ⟨(S(0))∗a, X(t)⟩H − ⟨(S(t))∗a, x⟩H

=
∫︂ t

0

⟨︂
−A∗(S(t − s))∗a + A∗(S(t − s))∗a, XU(s)

⟩︂
H

ds

+
∫︂ t

0
⟨B∗(S(t − s))∗a, U(s)⟩H ds +

∫︂ t

0
⟨(S(t − s))∗a, ΦdL(s)⟩H

=
⟨︃

a,
∫︂ t

0
S(t − s)BU(s)ds

⟩︃
H

+
⟨︃

a,
∫︂ t

0
S(t − s)ΦdL(s)

⟩︃
H

.

As we obtained a continuous linear functional of a on the right side and D(A∗)
is dense in H, we have for all a ∈ H⟨︂

a, XU(t)
⟩︂
H

= ⟨a, S(t)x⟩H +
⟨︃

a,
∫︂ t

0
S(t − s)BU(s)ds

⟩︃
H

+
⟨︃

a,
∫︂ t

0
S(t − s)ΦdL(s)

⟩︃
H

or equivalently

XU(t) = S(t)x +
∫︂ t

0
S(t − s)BU(s)ds +

∫︂ t

0
S(t − s)ΦdL(s).

To get the second implication, we suppose XU to be the mild solution of (2.1).
We apply the Fubini Theorem on

Λ(r, s)(ω) = I[0,s](r)S(s − r)BU(r)(ω), s, r ∈ [0, t], ω ∈ Ω.

As S is strongly continuous, the assumption of Stochastic Fubini Theorem in [19]
are fulfilled and we can apply this theorem on

Ψ(r, s) = I[0,s](r)Φ∗S∗(s − r)A∗a, s, r ∈ [0, t].
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This theorem is formulated in Appendix A. Note that the stochastic integral of
I[0,s](r)Φ∗S∗(s − r)A∗a, s, r ∈ [0, t], is defined in [19] in such way that∫︂ t

0
I[0,s](r)Φ∗S∗(s − r)A∗adL(s) =

⟨︃
A∗a,

∫︂ t

0
I[0,s](r)S(s − r)ΦdL(s)

⟩︃
H

.

For all t ∈ R+ and a ∈ D(A∗), we obtain∫︂ t

0
⟨A∗a, X(s)⟩H ds

=
∫︂ t

0
⟨A∗a, S(s)x⟩H ds +

∫︂ t

0

⟨︃
A∗a,

∫︂ t

0
Λ(r, s)dr

⟩︃
H

ds

+
∫︂ t

0

⟨︃
A∗a,

∫︂ t

0
Ψ(r, s)ΦdL(r)

⟩︃
H

ds

=
⟨︃∫︂ t

0
S(s)∗A∗ads, x

⟩︃
H

+
∫︂ t

0

⟨︃∫︂ t

0
I[r,t](s)B∗(S(s − r))∗A∗ads, U(r)

⟩︃
H

ds

+
∫︂ t

0

∫︂ t

0
I[r,t](s)Φ∗(S(s − r))∗A∗adL(r)ds

= ⟨(S(t))∗a, x⟩H − ⟨a, x⟩H +
∫︂ t

0
⟨B∗(S(t − r))∗a, U(r)⟩H dr

−
∫︂ t

0
⟨B∗a, U(r)⟩H dr +

⟨︃
a,
∫︂ t

0
S(t − r)ΦdL(r)

⟩︃
H

−
⟨︃

a,
∫︂ t

0
ΦdL(r)

⟩︃
H

= ⟨a, X(t)⟩H −
(︃

⟨a, x⟩H +
∫︂ t

0
⟨B∗a, U(r)⟩H dr +

⟨︃
a,
∫︂ t

0
ΦdL(r)

⟩︃
H

)︃
and X is the weak solution of (2.1).

Now we define an alternative set of assumptions on the coefficients of the
equation (2.1) which will be used selectively and are more restrictive than the
original conditions (A1) – (A4). As in the previous setting, we suppose that
(A2) and (A3) holds. The main difference is given by replacing the assumption
(A1) by the stronger alternative

(A1*) Φ is Hilbert-Schmidt.

However, instead of (A1*) we will use the conditions (A1**) and (A4**)
below, which are easier to handle and do not change the type of equation.

(A1**) Φ = I,

(A4**) L = LΦ is the square integrable Lévy process defined on a stochastic
basis (Ω, A, F , P) in H of the form

L(t) =
∫︂

[0,t]

∫︂
H

zÑ(ds, dz), t ∈ R+,

where Ñ is the compensated Poisson measure with the jump measure ν.
We denote the covariance operator of L(1) by Q = ΦΦ∗.
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Obviously, (A4**) implies the weaker assumption (A4).
It means that we can rewrite the equation (2.1) in the form

dXU(t) =
(︂
AXU(t) + BU(t)

)︂
dt + dL(t), XU(0) = x. (2.3)

The mild solution (2.2) in the case of the stochastic evolution equation (2.3)
takes the form

XU(t) = S(t)x +
∫︂ t

0
S(t − s)BU(s)ds +

∫︂ t

0
S(t − s)dL(s), t ≥ 0, (2.4)

where the stochastic integral
∫︁ t

0 S(t − s)dL(s), t ≥ 0, is defined as in [25]. We al-
ready know from the Lemma 2 that both integrals in (2.4) exist as the assumption
of the Proposition 3 are fulfilled for the equation (2.3) as well.

As L is square integrable martingale (with the Hilbert-Schmidt covariance
operator Q), the following theorem is a simple consequence of the Theorem 9.24
in [25]. This theorem is formulated in the Appendix B.

Theorem 4. Assume that S is a strongly continuous semigroup of contractions
on H, which means that

|S(t)|L(H) ≤ eωt, t ≥ 0, (2.5)

for ω ∈ R. Then there exists a càdlàg version of X.

Therefore, we will impose (2.5) and consider the càdlàg version of the solution
X to (2.3) in the following chapters.

The weak solution in the case of the stochastic evolution equation (2.3) takes
the form ⟨︂

a, XU(t)
⟩︂
H

= ⟨a, x⟩H +
∫︂ t

0

⟨︂
A∗a, XU(s)

⟩︂
H

ds +
∫︂ t

0
⟨B∗a, U(r)⟩Y dr + ⟨a, L(t)⟩H ,

a ∈ D(A∗), t ∈ R+. We already know from the Proposition 3 that XU is the mild
solution of (2.3) if and only if XU is the weak solution of (2.3) as the assumption
of the Proposition 3 are fulfilled for the equation (2.3) as well.

In following chapters, we always start with basic results proved for the stochas-
tic evolution equation in the form (2.1) with the corresponding assumptions (A1)
– (A4). Then, the results will be amplified for the stochastic evolution equation
in the form (2.3) with the alternative assumptions (A1**), (A2), (A3), (A4**)
and (2.5) as the setting for the equation (2.3) is stronger then the setting for the
equation (2.3) and provides us with stronger tools. We specify which form of
the stochastic evolution equation we consider at the beginning of each chapter or
paragraph.
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3. The control problem
In this chapter, we introduce the control problem to be studied. More precisely,
we define the notions of the optimal control as well as the corresponding optimal
cost. In fact, we have two concepts of the control problem. We start with the
concept in the mean value sense and then, we formulate the concept in the path-
wise sense.

Set

J(U, t) =
∫︂ T

0

(︂⟨︂
QXU(s), XU(s)

⟩︂
H

+ ⟨RU(s), U(s)⟩Y
)︂

ds, (3.1)

where T > 0, XU is the solution of (2.1), Q ∈ L(H) is a symmetric positive
semi-definite operator and R ∈ L(Y) is a symmetric positive definite operator, i.
e.

⟨Ry, y⟩ ≥ r|y|2, y > 0, (3.2)

holds for a constant r > 0.
In the case of the mean value control, the ergodic cost functional is defined

as the ”mean average cost per time unit in long run”, that is

J̃E(U) = lim
t→∞

inf EJ(U, t)
t

, U ∈ U . (3.3)

To solve the ergodic control problem is to find D ∈ R and U0 ∈ U such that

J̃E(U) ≥ D, U ∈ U , (3.4)

and

lim
t→∞

EJ(U0, t)
t

= D. (3.5)

Then U0 and D are called the optimal control and the optimal cost, respectively.
Under some stronger assumptions, we are able to prove that D is the optimal

cost and U0 is the optimal control in the path-wise sense. In the case of path-wise
control, the ergodic cost functional is defined as the path-wise ”average cost per
time unit in long run”, that is

J̃(U) = lim
t→∞

inf J(U, t)
t

, U ∈ U , (3.6)

and D ∈ R and U0 ∈ U have to fulfill:

J̃(U) ≥ D, a.s., U ∈ U , (3.7)

and

lim
t→∞

J(U0, t)
t

= D, a.s. (3.8)

Consider the stationary Riccati equation

⟨a, A∗V b⟩H + ⟨A∗V a, b⟩H + ⟨Qa, b⟩H −
⟨︂
R−1B∗V a, B∗V b

⟩︂
H

= 0, (3.9)

a, b ∈ D(A∗).
As usual, we impose the standard stabilizability and detectability conditions.
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Definition 1. Let A ∈ L(H) and B ∈ L(Y,H). The pair (A, B) is said to be
stabilizable iff there exists H ∈ L(H,Y) such that the semigroup generated by the
operator A + BH is exponentially stable.

Definition 2. Let A ∈ L(H) and Q ∈ L(H), Q is symmetric positive semi-
definite. The pair (A, Q) is said to be detectable iff there exists K ∈ L(H) such
that the semigroup generated by the operator A + K

√
Q is exponentially stable.

Then, as we can see in [20]:

1. The equation (3.9) has a unique solution in the class of non-negative and
self-adjoint linear operators on H and, moreover, V ∈ L(H,D1−ϵ

A∗ ).

2. The semigroup SV generated by AK = A − BR−1B∗V is exponentially
stable, more specifically, there exist constants M0 > 0, ω > 0, such that

|SK(t)|L(H) ≤ M0e
−ωt, (3.10)

for each t ≥ 0.

By (3.9) there exists h(·), a continuous extension of ⟨A∗V ·, ·⟩H on H such that for
some c ∈ R+

|h(y)| ≤ c|y|2H (3.11)

holds for all y ∈ H.
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4. Itô formula
In our general case (A1)-(A4), we aim at verifying the formula:

E
⟨︂
XU(t), V XU(t)

⟩︂
H

− ⟨x, V x⟩H

= 2E
∫︂ t

0
h(XU(s))ds + E

∫︂ t

0
2
⟨︂
B∗V XU(s), U(s)

⟩︂
Y

ds + tΠ

for all t ∈ [0, T ], where we assume:

Π = lim
λ→∞

Tr(V R2(λ)ΦΦ∗(R2(λ))∗) < ∞, (4.1)

where Tr denotes the trace and h : H → R satisfies (3.11) and extends the
function ⟨A∗V ·, ·⟩H.

The standard Itô formula (Theorem D.2 in [25]) may be used for the processes
which are strong solutions of Lévy-driven SEEs. However, in the present case

1. the noise in SEE is a general cylindrical Lévy process,

2. operators A and B are not bounded.

Therefore the strong solutions generally do not exist. In this chapter, we prove a
modification of Itô formula which fits our needs related to the main results, more
specifically:

1. It is applicable to weak/mild solutions.

2. The functional takes the form ⟨·, V ·⟩H where V is the solution to the Riccati
equation.

The proof is based on approximation of SEE (2.1) by SEEs which have strong so-
lutions and which fulfill the assumptions of the standard Itô formula. To this end
we use the resolvent R(λ, A) and define R(λ) = λR(λ, A) for λ > β. Due to our
assumptions, R(λ) 1

2 −δΦ is Hilbert-Schmidt, therefore R(λ)Φ is Hilbert-Schmidt
and Lλ(·) = R(λ)ΦL(·) has the nuclear incremental covariance R(λ)ΦΦ∗(R(λ))∗.
Our approximate SEE takes the form:

dXU
λ (t) = (AXU

λ (t) + R(λ)BU(t))dt + R(λ)dLλ(t), X(0) = xλ, (4.2)

where xλ = R(λ)x and λ > β.
The proof has four steps:

1. We approximate the solution of the equation (2.1) (and specifically (2.3))
by solutions of the equations (4.2) (with Φ = I for (2.3)).

2. We state the existence of the strong solution of the equation (4.2) (equation
(4.2) with Φ = I in the case of (2.3), respectively).

3. We apply the standard Itô formula to the equation (4.2) (equation (4.2)
with Φ = I in the case of (2.3), respectively).

4. We pass to the limit in the formulae obtained in the step 3.
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Firstly, we consider the equation (2.1) with pure jump cylindrical Lévy process
with weak second moments to obtain our most general result. In the case of the
general cylindrical Lévy process that we consider, we are not able to apply the
path-wise limit theorems on the stochastic part of the equation obtained in the
step (3). Therefore we have to apply the mean value on the equation obtained
from (3) prior to (4) and we obtain only the Itô formula in the the mean value
sense.

In this general case, the four steps of the proof are realized by four Lemmas:

1. Lemma 5 allows us to approximate the solution of the equation (2.1) by
solutions of the equations (4.2).

2. Lemma 6 states the existence of the strong solution of the equation (4.2).

3. In Lemma 7, we apply the mean value version of the standard Itô formula
to the equation (4.2).

4. In Lemma 8, we apply limit theorems to the formula proved in the Lemma
7.

Lemma 5. 1. There exists the sequence {λn}n∈N, such that λn → ∞, n → ∞,
and for all t ∈ [0, T ] limn→∞ XU

λn
(t) = XU(t) a.s.,

2. for each T > 0 there exists a constant C > 0 such that

sup
n∈N

sup
t∈[0,T ]

E|Xλ(t)|2 ≤ C. (4.3)

Proof. 1. Since R(λ) → I strongly as λ → ∞, we have that xλ → x and there
exists c > 0 such that |R(λ)|L(H) ≤ c, λ > 0. As in Lemma 3.2. in [5] we
have that

lim
λ→∞

⃓⃓⃓⃓∫︂ t

0
S(t − s)R(λ)BU(s)ds −

∫︂ t

0
S(t − s)BU(s)ds

⃓⃓⃓⃓
H

= lim
λ→∞

⃓⃓⃓⃓∫︂ t

0
S(t − s)(R(λ) − I)BU(s)ds

⃓⃓⃓⃓
H

= 0, a.s., t ∈ [0, T ],

and
sup

λ>β,t∈[0,T ]

⃓⃓⃓⃓∫︂ t

0
S(t − s)R(λ)BU(s)ds

⃓⃓⃓⃓
H

< ∞ a.s.

For fixed t > 0 we have :

E
⃓⃓⃓⃓∫︂ t

0
S(t − r)ΦdL(r) −

∫︂ t

0
S(t − r)R(λ)dLλ(r)

⃓⃓⃓⃓2
H

= E
⃓⃓⃓⃓∫︂ t

0
S(t − r)

(︂
I − R2(λ)

)︂
ΦdL(r)

⃓⃓⃓⃓2
H

≤ c1

∫︂ t

0

⃓⃓⃓
S(t − r)

(︂
I − R2(λ)

)︂
Φ
⃓⃓⃓2
HS

dr

= c1

∫︂ t

0
|S(t − r)(−A + βI) 1

2 −δ(−A + βI)δ− 1
2
(︂
I − R2(λ)

)︂
Φ|2HSdr

≤ c2

∫︂ t

0

⃓⃓⃓
S(t − r)(−A + βI) 1

2 −δ
⃓⃓⃓2
L(H)
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⃓⃓⃓
(−A + βI)δ− 1

2 (I − R2(λ))Φ
⃓⃓⃓2
HS

dr

≤ c3

∫︂ t

0

1
(t − r)1−2δ

dr
⃓⃓⃓
(−A + βI)δ− 1

2 (I − R2(λ))Φ
⃓⃓⃓2
HS

= c4Tr
(︂
(−A + βI)δ− 1

2
(︂
I − R2(λ)

)︂
ΦΦ∗

(︂
I − R2(λ)

)︂∗
((−A + βI)δ− 1

2 )∗
)︂

,

for some constants c1, c2, c3, c4 > 0. This converges to 0 for λ → ∞ (cf.
Lemma 3.2. in [5]). Therefore, there exists a sequence {λn}n∈N such that
λn → ∞, n → ∞, and

lim
n→∞

∫︂ t

0
S(t − r)R(λn)dLλn(r) =

∫︂ t

0
S(t − r)dL(r), a.s.

2. For t ∈ [0, T ] we have that

E
⃓⃓⃓⃓∫︂ t

0
S(t − s)R(λn)BU(s)ds

⃓⃓⃓⃓2

≤ c1|R(λn)|2L(H)

⃓⃓⃓
(βI − A)ϵ−1B

⃓⃓⃓2
L(Y,H)

×E
(︃∫︂ t

0

⃓⃓⃓
S(t − s)(βI − A)1−ϵ

⃓⃓⃓
L(H)

|U(s)|Yds
)︃2

≤ c2E
(︄∫︂ t

0

1
(t − s)1−ϵ

|U(s)|Yds

)︄2

≤ c3

(︄∫︂ T

0

1
s(1−ϵ)2 ds

)︄∫︂ T

0
E|U(s)|2Yds ≤ c

for a universal constant c > 0 (which may be different from line to line).
Here we used the already mentioned fact that the operators R(λn) are
uniformly bounded in L(H). Also, similarly as in the proof of lemma 2 we
get

E
⃓⃓⃓⃓∫︂ t

0
S(t − s)R(λn)dLλn(s)

⃓⃓⃓⃓2
H

≤ c
∫︂ t

0

⃓⃓⃓
S(t − s)(βI − A) 1

2 −δR2(λn)(βI − A)δ− 1
2 Φ
⃓⃓⃓2
HS

ds

≤ c
⃓⃓⃓
(βI − A)δ− 1

2 Φ
⃓⃓⃓2
HS

|R2(λn)|L(H)
1

(t − s)1−2δ
≤ c

for a universal constant c > 0 independent of n ∈ N and t ∈ [0, T ] which
completes the proof of (4.3).

We can prove the following Lemma similarly as Lemma 3.1 in [5].

Lemma 6. For λ > β the equation (4.2) has the unique strong solution.
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Proof. As in Lemma 3.1 in [5] we can prove that a.s.∫︂ T

0

∫︂ t

0
|AS(t − s)R(λ)BU(s)|Hdsdt < ∞.

Moreover ∫︂ T

0

∫︂ t

0

⃓⃓⃓
AS(t − s)R2(λ)Φ 1

2
⃓⃓⃓2
HS

dsdt

≤
∫︂ T

0

∫︂ t

0
|AS(t − s)|2L(H)dsdt|R(λ)|4L(H)

⃓⃓⃓
Φ 1

2
⃓⃓⃓2
HS

< ∞,

therefore we can use the Theorem 8.14 in [25] to obtain∫︂ T

0
AXU

λ (t)dt =
∫︂ T

0
AS(t)xdt +

∫︂ T

0
A
∫︂ t

0
S(t − s)R(λ)BU(s)dsdt

+
∫︂ T

0
A
∫︂ t

0
S(t − s)R(λ)ΦdLλ(s)dt

= S(T )x − x +
∫︂ T

0

∫︂ T

s
AS(t − s)dtR(λ)BU(s)ds

+
∫︂ T

0

∫︂ T

s
AS(t − s)dtR(λ)ΦdLλ(s)

= S(T )x − x +
∫︂ T

0
S(T − s)R(λ)BU(s)ds −

∫︂ T

0
R(λ)BU(s)ds

+
∫︂ T

0
S(T − s)R(λ)ΦdLλ(s) −

∫︂ T

0
R(λ)ΦdLλ(s)

= XU
λ (T ) − x −

∫︂ T

0
R(λ)BU(s)ds −

∫︂ T

0
R(λ)ΦdLλ(s).

Now we can apply the standard Itô formula to the strong solutions of (4.2).
We use this fact in the following lemma.

Lemma 7. Assume (A1)-(A4), V ∈ L(H,D1−ϵ
A∗ ) is non-negative and self-adjoint

operator on H. Then

E
⟨︂
XU

λ (t), V XU
λ (t)

⟩︂
H

− ⟨xλ, V xλ⟩H = E
∫︂ t

0
2
⟨︂
V XU

λ (s), AXU
λ (s)

⟩︂
H

ds

+E
∫︂ t

0
2
⟨︂
B∗R∗(λ)V XU

λ (s), U(s)
⟩︂
Y

ds + Tr(V R2(λ)ΦΦ∗(R2(λ))∗).

Proof. Xλ is the strong solution of (4.2), therefore using Theorem D.2 in [25] we
obtain ⟨︂

XU
λ (t), V XU

λ (t)
⟩︂
H

− ⟨xλ, V xλ⟩H =
∫︂ t

0
2
⟨︂
V XU

λ (s−), dXU
λ (s)

⟩︂
H

+
∑︂
s≤t

(︂⟨︂
XU

λ (s), V XU
λ (s)

⟩︂
H

−
⟨︂
XU

λ (s−), V XU
λ (s−)

⟩︂
H

− 2
⟨︂
V XU

λ (s−), ∆XU
λ (s)

⟩︂
H

)︂

=
∫︂ t

0
2
⟨︂
V XU

λ (s), AXU
λ (s)

⟩︂
H

ds +
∫︂ t

0
2
⟨︂
V XU

λ (s−), R2(λ)ΦdL(s)
⟩︂
H
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+
∫︂ t

0
2
⟨︂
V XU

λ (s−), R(λ)BU(s)
⟩︂
H

ds +
∑︂
s≤t

⟨︂
∆XU

λ (s), V ∆XU
λ (s)

⟩︂
H

=
∫︂ t

0
2
⟨︂
V XU

λ (s), AXU
λ (s)

⟩︂
H

ds +
∫︂ t

0
2
⟨︂
Φ∗(R2(λ))∗V XU

λ (s−), dL(s)
⟩︂
H

+
∫︂ t

0
2
⟨︂
B∗R∗(λ)V XU

λ (s), U(s)
⟩︂
Y

ds +
∑︂
s≤t

⃓⃓⃓
∆V

1
2 R2(λ)ΦL(s)

⃓⃓⃓2
H

.

where ∆XU
λ (s) = XU

λ (s) − XU
λ (s−) and

∆V
1
2 R2(λ)ΦL(s) = V

1
2 R2(λ)ΦL(s) − V

1
2 R2(λ)ΦL(s−)

= V
1
2 (R2(λ)ΦL(s) − R2(λ)ΦL(s−)) = V

1
2 ∆R2(λ)ΦL(s).

Note that V
1
2 R2(λ)ΦL(s) is a square integrable Lévy processes. As

E
⃓⃓⃓⃓∫︂ t

0
2
⟨︂
Φ∗(R2(λ))∗V XU

λ (s−), dL(s)
⟩︂
H

⃓⃓⃓⃓
< ∞,

we obtain
E
∫︂ t

0
2
⟨︂
Φ∗(R2(λ))∗V XU

λ (s−), dL(s)
⟩︂
H

= 0.

We can see that

E
∑︂
s≤t

⃓⃓⃓
∆V

1
2 R2(λ)ΦL(s)

⃓⃓⃓2
H

= Tr(V R2(λ)ΦΦ∗(R2(λ))∗)

and the result follows.

In the following Lemma, we approximate this result on the weak/mild solution
of (2.1). Here, we use Lemma 5.

Lemma 8. Assume (A1)-(A4), V ∈ L(H,D1−ϵ
A∗ ) is non-negative and self-adjoint

on H and let (4.1) hold. Assume further that there exists a continuous function
h : H → R satisfying (3.11) extending the function ⟨A∗V ·, ·⟩H. Then for all
t ∈ [0, T ] we have

E
⟨︂
XU(t), V XU(t)

⟩︂
H

− ⟨x, V x⟩H

= 2E
∫︂ t

0
h(XU(s))ds + E

∫︂ t

0
2
⟨︂
B∗V XU(s), U(s)

⟩︂
Y

ds + tΠ.

Proof. By Lemma 7, we have:

E
⟨︂
XU

λ (t), V XU
λ (t)

⟩︂
H

− ⟨xλ, V xλ⟩H = E
∫︂ t

0
2
⟨︂
V XU

λ (s), AXU
λ (s)

⟩︂
H

ds

+E
∫︂ t

0
2
⟨︂
B∗R∗(λ)V XU

λ (s), U(s)
⟩︂
Y

ds + tT r(V R2(λ)ΦΦ∗(R2(λ))∗). (4.4)

Lemma 5 yields a sequence {λn}n∈N, such that λn → ∞, n → ∞, and for all
t ∈ [0, T ] a.s.

lim
n→∞

⟨︂
XU

λn
(t), V XU

λn
(t)
⟩︂
H

=
⟨︂
XU(t), V XU(t)

⟩︂
H
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and
lim

n→∞
h(XU

λn
(t)) = h(XU(t)).

Also, ⃓⃓⃓⟨︂
B∗R∗(λ)V XU

λ (s), U(s)
⟩︂
Y

−
⟨︂
B∗V XU(s), U(s)

⟩︂
Y

⃓⃓⃓
≤
⃓⃓⃓⟨︂

B∗R∗(λ)V XU(s), U(s)
⟩︂
Y

−
⟨︂
B∗V XU(s), U(s)

⟩︂
Y

⃓⃓⃓
+
⃓⃓⃓⟨︂

B∗R∗(λ)V XU
λ (s), U(s)

⟩︂
Y

−
⟨︂
B∗R∗(λ)V XU(s), U(s)

⟩︂
Y

⃓⃓⃓
=
⃓⃓⃓⟨︂

B∗(R∗(λ) − I)V XU(s), U(s)
⟩︂
Y

⃓⃓⃓
+
⃓⃓⃓⟨︂

B∗R∗(λ)V (XU
λ (s) − XU(s)), U(s)

⟩︂
Y

⃓⃓⃓
for s ∈ [0, T ]. As

lim
λ→∞

|(R∗(λ) − I)V XU(s)|D1−ϵ
A∗

= 0,

and B∗ ∈ L(D1−ϵ
A∗ ,Y), we have

lim
λ→∞

⃓⃓⃓⟨︂
B∗(R∗(λ) − I)V XU(s), U(s)

⟩︂
Y

⃓⃓⃓
≤ lim

λ→∞
|B∗(R∗(λ) − I)V X(s)|Y|U(s)|Y = 0.

It is easy to see that for each y ∈ H

lim
z→y

| ⟨B∗R∗(λ)V (z − y), U(s)⟩H | = 0

uniformly with respect to λ > β. Therefore we obtain

lim
n→∞

|
⟨︂
B∗R∗(λn)V (XU

λn
(s) − XU(s)), U(s)

⟩︂
Y

| = 0, a.s.

Furthermore, taking into account (3.11), we may use Lemma 5 (4.3) to conclude
that the sequences of functions

t ↦→
⟨︂
XU

λn
(t), V XU

λn
(t)
⟩︂
H

, s ↦→
⟨︂
XU

λn
(s), AXU

λn
(s)
⟩︂
H

are uniformly integrable on Ω and (0, t) × Ω, respectively. Let us show that the
family

s ↦→ 2
⟨︂
B∗R∗(λn)V XU

λn
(s), U(s)

⟩︂
Y

is uniformly integrable on (0, t) × Ω as well. We have that⃓⃓⃓⟨︂
B∗R∗(λn)V XU

λn
(s), U(s)

⟩︂
H

⃓⃓⃓
≤ |B∗|L(D1−ϵ

A∗ ,Y)|R
∗(λn)|L(D1−ϵ

A∗ )|V |L(H,D1−ϵ
A∗ )|X

U
λn

(s)|H|U(s)|Y

≤ k|XU
λn

(s)|H|U(s)|Y,

s ∈ [0, t], n ∈ N, for a constant k > 0. Using Hölder inequality we obtain

E
∫︂ t

0

⃓⃓⃓
XU

λn
(s)
⃓⃓⃓
H

|U(s)|Yds ≤
(︃

E
∫︂ t

0
|XU

λn
(s)|2Hds

)︃ 1
2
(︃

E
∫︂ t

0
|U(s)|2Yds

)︃ 1
2

,

which is bounded by a constant independent of n ∈ N in virtue of Lemma 5
(4.3). Therefore, recalling the assumption (4.1), we may pass to the limit as
λ = λn → ∞ in all terms in the formula (4.4), which completes the proof.
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The above Lemma completes the proof of the mean value Itô formula.
In the following proposition, we illustrate some cases in which are the assump-

tion (4.1) of the mean value Itô formula fulfilled.

Proposition 9. Let V ∈ L(H,D1−ϵ
A∗ ) be non-negative and self-adjoint on H and

let one of the following conditions be satisfied.

1. Φ is Hilbert-Schmidt,

2. V is nuclear,

3. V ∈ L(Dδ− 1
2

A∗ ,D
1
2 −δ

A∗ ).

Then (4.1) is fulfilled, where Π = Tr(V ΦΦ∗) in case of (1) and (2) and

Π = Tr((R∗(β))δ− 1
2 V ΦΦ∗(R∗(β)) 1

2 −δ)

in case of (3).

Proof. This Proposition is a simple consequence of Proposition 3.4 in [5].

Recall that in the case of (1), the equation (2.1) can be rewritten using (1.15)
as

dXU(t) =
(︂
AXU(t) + BU(t)

)︂
dt + dLΦ(t), XU(0) = x, (4.5)

where LΦ is a square integrable Lévy process. It means that the proved mean
value Itô formula is applicable to the equation (2.3).

We can obtain stronger result for the equation (2.3) in which we assume
(A1**), (A4**) and (2.5). The equation (2.3) still does not have strong solution
as the operators A and B still are not bounded. Therefore, the standard Itô
formula (Theorem D.2 in [25]) is still not applicable. Again, we can use the
Yosida approximations (4.2) (Φ = I) and apply the steps 1-4. But in the case of
the square integrable Lévy process, we can apply limit theorems path-wise to the
stochastic parts of the equation obtained in the step (3) and we do not need to
apply mean value functional to the equation before the step (4). Therefore, we
obtain the path-wise result in this case:⟨︂

XU(t), V XU(t)
⟩︂
H

− ⟨x, V x⟩H

= 2
∫︂ t

0
h(XU(s))ds +

∫︂ t

0
2
⟨︂
B∗V XU(s), U(s)

⟩︂
Y

ds

+2
∫︂ t

0

⟨︂
V XU(s−), dL(s)

⟩︂
H

+
∑︂
s≤t

⃓⃓⃓
V

1
2 ∆L(s)

⃓⃓⃓2
H

, a.s.,

for all t ∈ [0, T ], where ∆L(s) = L(s) − L(s−), s ≥ 0.
We already know from the Lemma 5 that for all t ∈ [0, T ]

lim
n→∞

XU
λn

(t) = XU(t) a.s.

and by Lemma 6 for λ > β (4.2) has the unique strong solution (Φ = I and we
have square integrable Lévy process in both cases). Therefore, for the steps (1)
and (2), it is enough to prove the path-wise version of the upper bound (4.3).
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Lemma 10. There exists a sequence {λn}n∈N, such that λn → ∞, n → ∞, and

sup
n∈N,t∈[0,T ]

|XU
λn

(t)|H < ∞, a.s.

Proof. Since R(λ) → I strongly as λ → ∞, we have a c > 0 such that |R(λ)| ≤ c,
λ > 0. As in Lemma 3.2. in [5] we have that

lim
λ→∞

⃓⃓⃓⃓∫︂ t

0
S(t − s)R(λ)BU(s)ds −

∫︂ t

0
S(t − s)BU(s)ds

⃓⃓⃓⃓
H

= lim
λ→∞

⃓⃓⃓⃓∫︂ t

0
S(t − s)(R(λ) − I)BU(s)ds

⃓⃓⃓⃓
H

= 0, a.s., t ∈ [0, T ],

and
sup

λ>β,t∈[0,T ]

⃓⃓⃓⃓∫︂ t

0
S(t − s)R(λ)BU(s)ds

⃓⃓⃓⃓
H

< ∞ a.s.

By Corollary 2.14 in [15] we have a c1 > 0 such that

E sup
t∈[0,T ]

⃓⃓⃓⃓∫︂ t

0
S(t − r)dL(r) −

∫︂ t

0
S(t − r)R(λ)dLλ(r)

⃓⃓⃓⃓2
H

= E sup
t∈[0,T ]

⃓⃓⃓⃓∫︂ t

0
S(t − r)(I − R2(λ))dL(r)

⃓⃓⃓⃓2
H

≤ c1

∫︂
H

∫︂ T

0
|S(t − r)(I − R2(λ))z|2Hdrdν(z).

As we have c2, c3 > 0 such that∫︂
H

∫︂ T

0
|S(t − r)(I − R2(λ))z|2Hdrdν(z)

≤
∫︂
H

∫︂ T

0
|S(t − r)|2L(H)|I − R2(λ)|2L(H)|z|2Hdrdν(z)

≤ c2

∫︂
H

|z|2Hdν(z) < ∞

for all λ > β and

lim
λ→∞

|S(t − r)(I − R2(λ))z|H ≤ lim
λ→∞

|S(t − r)|L(H)|(I − R2(λ))z|H = 0,

we obtain

lim
λ→∞

E sup
t∈[0,T ]

⃓⃓⃓⃓∫︂ t

0
S(t − r)dL(r) −

∫︂ t

0
S(t − r)R(λ)dLλ(r)

⃓⃓⃓⃓2
H

= 0.

Therefore, there exists a sequence {λn}n∈N such that

lim
n→∞

sup
t∈[0,T ]

⃓⃓⃓⃓∫︂ t

0
S(t − r)R(λn)dLλ(r) −

∫︂ t

0
S(t − r)dL(r)

⃓⃓⃓⃓
H

= 0, a.s.

It follows that {︃∫︂ t

0
S(t − r)R(λn)dLλ(r), t ∈ [0, T ]

}︃
n∈N

is a.s. uniformly bounded sequence of càdlàg functions which means

sup
n∈N

sup
t∈[0,T ]

⃓⃓⃓⃓∫︂ t

0
S(t − r)R(λn)dLλ(r)

⃓⃓⃓⃓
H

< ∞, a.s.
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In the following Lemma, we merge the steps (3) and (4) and prove the path-
wise Itô formula for weak solutions.

Lemma 11. Assume (A1**), (A2)-(A3), (A4**) and let V ∈ L(H,D1−ϵ
A∗ ) be

non-negative and self-adjoint on H. Assume further that there exists a continuous
function h : H → R satisfying (3.11) extending the function ⟨A∗V ·, ·⟩H. Then for
all t ∈ [0, T ] we have ⟨︂

XU(t), V XU(t)
⟩︂
H

− ⟨x, V x⟩H

= 2
∫︂ t

0
h(XU(s))ds +

∫︂ t

0
2
⟨︂
B∗V XU(s), U(s)

⟩︂
Y

ds

+2
∫︂ t

0

⟨︂
V XU(s−), dL(s)

⟩︂
H

+
∑︂
s≤t

⃓⃓⃓
V

1
2 ∆L(s)

⃓⃓⃓2
H

, a.s.,

where ∆L(s) = L(s) − L(s−), s ≥ 0.

Proof. Xλ is the strong solution of (4.2) in virtue of Theorem 6. Therefore, we
obtain (cf. Theorem D.2 in [25])

⟨︂
XU

λ (t), V XU
λ (t)

⟩︂
H

− ⟨xλ, V xλ⟩H =
∫︂ t

0
2
⟨︂
V XU

λ (s−), dXU
λ (s)

⟩︂
H

+
∑︂
s≤t

(︂⟨︂
XU

λ (s), V XU
λ (s)

⟩︂
H

−
⟨︂
XU

λ (s−), V XU
λ (s−)

⟩︂
H

− 2
⟨︂
V XU

λ (s−), ∆XU
λ (s)

⟩︂
H

)︂

=
∫︂ t

0
2
⟨︂
V XU

λ (s−), AXU
λ (s)

⟩︂
H

ds +
∫︂ t

0
2
⟨︂
V XU

λ (s−), R(λ)dLλ(s)
⟩︂
H

+
∫︂ t

0
2
⟨︂
V XU

λ (s−), R(λ)BU(s)
⟩︂
H

ds +
∑︂
s≤t

⟨︂
∆XU

λ (s), V ∆XU
λ (s)

⟩︂
H

=
∫︂ t

0
2
⟨︂
V XU

λ (s), AXU
λ (s)

⟩︂
H

ds +
∫︂ t

0
2
⟨︂(︂

R2(λ)
)︂∗

V XU
λ (s−), dL(s)

⟩︂
H

+
∫︂ t

0
2
⟨︂
B∗R∗(λ)V XU

λ (s), U(s)
⟩︂
Y

ds +
∑︂
s≤t

⃓⃓⃓
V

1
2 R2(λ)∆L(s)

⃓⃓⃓2
H

.

We can prove in the same way as in Lemma 8 that there is a sequence {λn}n∈N,
such that λn → ∞, n → ∞, and for all t ∈ [0, T ]

lim
n→∞

⟨︂
XU

λn
(t), V XU

λn
(t)
⟩︂
H

=
⟨︂
XU(t), V XU(t)

⟩︂
H

,

lim
n→∞

h(XU
λn

(t)) = h(XU(t)),

and
lim

n→∞

⟨︂
B∗R∗(λn)V XU

λn
(s), U(s)

⟩︂
Y

=
⟨︂
B∗V XU(s), U(s)

⟩︂
Y

a.s..

Next we show that

lim
n→∞

∫︂ t

0
h
(︂
XU

λn
(s)
)︂

+
⟨︂
B∗R∗(λn)V XU

λn
(s), U(s)

⟩︂
Y

ds

=
∫︂ t

0
h
(︂
XU(s)

)︂
+
⟨︂
B∗V XU(s), U(s)

⟩︂
Y

ds. (4.6)
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Indeed, by first part of Lemma 5 and continuity of h we have

lim
n→∞

h
(︂
XU

λn
(s)
)︂

+
⟨︂
B∗R∗(λn)V XU

λn
(s), U(s)

⟩︂
Y

= h
(︂
XU(s)

)︂
+
⟨︂
B∗V XU(s), U(s)

⟩︂
Y

, a.s.

for each s ∈ (0, t). Hence (4.6) follows by the Dominated Convergence Theorem
as ⃓⃓⃓

h(XU
λn

(s))
⃓⃓⃓
+
⃓⃓⃓⟨︂

B∗R∗(λn)V XU
λn

(s), U(s)
⟩︂
Y

⃓⃓⃓
≤ k sup

n∈N,r∈[0,T ]

⃓⃓⃓
XU

λn
(r)
⃓⃓⃓2
H

+ |B∗|L(D1−ϵ
A∗ ,Y)|R

∗(λn)|L(H)|V |L(H,D1−ϵ
A∗ )|X

U
λn

(s)|H|U(s)|Y

≤ c1

(︄
sup

n∈N,r∈[0,T ]

⃓⃓⃓
XU

λn
(r)
⃓⃓⃓2
H

+ sup
n∈N,r∈[0,T ]

|XU
λn

(r)|H|U(s)|Y
)︄

for a constant c1 > 0, which is an integrable majorant due to second part of
Lemma 5.

Next,

E
⃓⃓⃓⃓∫︂ t

0
2
⟨︂(︂

R2(λ)
)︂∗

V XU
λ (s−), dL(s)

⟩︂
H

−
∫︂ t

0
2
⟨︂
V XU(s−), dL(s)

⟩︂
H

⃓⃓⃓⃓2

≤ E
⃓⃓⃓⃓∫︂ t

0
2
⟨︂(︂

R2(λ) − I
)︂∗

V XU
λ (s−), dL(s)

⟩︂
H

⃓⃓⃓⃓2

+E
⃓⃓⃓⃓∫︂ t

0
2
⟨︂(︂

R2(λ)
)︂∗

V (XU
λ (s−) − X(s−)), dL(s)

⟩︂
H

⃓⃓⃓⃓2
= E

∫︂ t

0
2
⃓⃓⃓(︂

Q
1
2
)︂∗ (︂

R2(λ) − I
)︂∗

V XU(s)
⃓⃓⃓2
H

ds

+E
∫︂ t

0
2
⃓⃓⃓(︂

Q
1
2
)︂∗

(R(λ))∗ V (XU
λ (s) − XU(s))

⃓⃓⃓2
H

ds

.
Obviously,

lim
λ→∞

⃓⃓⃓(︂
Q

1
2
)︂∗ (︂

R2(λ) − I
)︂∗

V XU(s)
⃓⃓⃓
H

≤ lim
λ→∞

⃓⃓⃓
Q

1
2
⃓⃓⃓
L(H)

⃓⃓⃓(︂
R2(λ) − I

)︂∗
V XU(s)

⃓⃓⃓
H

= 0

and
2
⃓⃓⃓(︂

Q
1
2
)︂∗ (︂

R2(λ) − I
)︂∗

V XU(s)
⃓⃓⃓2
H

≤ 4
⃓⃓⃓
Q

1
2
⃓⃓⃓2
L(H)

(c4 + 1)|V |2L(H)|XU(s)|2H,

therefore,
lim

λ→∞
E
∫︂ t

0
2
⃓⃓⃓(︂

Q
1
2
)︂∗ (︂

R2(λ) − I
)︂∗

V XU(s)
⃓⃓⃓2
H

ds = 0.

Moreover,

lim
λ→∞

E
∫︂ t

0
2
⃓⃓⃓(︂

Q
1
2
)︂∗ (︂

R2(λ)
)︂∗

V (XU
λ (s) − XU(s))

⃓⃓⃓2
H

ds

≤ lim
λ→∞

2t
⃓⃓⃓
Q

1
2
⃓⃓⃓2
L(H)

c4|V |2L(H)E sup
s∈[0,t]

|XU
λ (s) − XU(s)|2Hds = 0
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as in the proof of Lemma 5. As a consequence we obtain

lim
λ→∞

E
⃓⃓⃓⃓∫︂ t

0
2
⟨︂(︂

R2(λ)
)︂∗

V XU
λ (s−), dL(s)

⟩︂
H

−
∫︂ t

0
2
⟨︂
V XU(s−), dL(s)

⟩︂
H

⃓⃓⃓⃓2
= 0.

Thus we can find a sequence {λn}n∈N, such that λn → ∞, n → ∞, and

lim
n→∞

∫︂ t

0
2
⟨︂(︂

R2(λn)
)︂∗

V XU
λn

(s−), dL(s)
⟩︂
H

=
∫︂ t

0
2
⟨︂
V XU(s−), dL(s)

⟩︂
H

, a.s.

Finally for all z ∈ H

lim
λ→∞

⃓⃓⃓⟨︂
V R2(λ)z, R2(λ)z

⟩︂
H

− ⟨V z, z⟩H
⃓⃓⃓

= lim
λ→∞

⃓⃓⃓⟨︂(︂
R2(λ) − I

)︂
z, V R2(λ)z

⟩︂
H

−
⟨︂(︂

I − R2(λ)
)︂

z, V z
⟩︂
H

⃓⃓⃓
≤ lim

λ→∞

(︂⃓⃓⃓⟨︂(︂
R2(λ) − I

)︂
z, V R2(λ)z

⟩︂
H

⃓⃓⃓
+
⃓⃓⃓⟨︂(︂

I − R2(λ)
)︂

z, V z
⟩︂
H

⃓⃓⃓)︂
≤ lim

λ→∞

⃓⃓⃓
(R2(λ) − I)z

⃓⃓⃓
H

|V |L(H)

⃓⃓⃓
R2(λ)

⃓⃓⃓
L(H)

|z|H +
⃓⃓⃓(︂
I − R2(λ)

)︂
z
⃓⃓⃓
H

|V |L(H)|z|H

≤ lim
λ→∞

⃓⃓⃓(︂
R2(λ) − I

)︂
z
⃓⃓⃓
H

|V |L(H)(c2 + 1)|z|H = 0

and

lim
λ→∞

E
⃓⃓⃓⃓∫︂ t

0

∫︂
H

⟨︂
V R2(λ)z, R2(λ)z

⟩︂
H

N(ds, dz) −
∫︂ t

0

∫︂
H

⟨V z, z⟩HN(ds, dz)
⃓⃓⃓⃓

≤ lim
n→∞

t
∫︂
H

⃓⃓⃓⟨︂
V R2(λ)z, R2(λ)z

⟩︂
H

− ⟨V z, z⟩H
⃓⃓⃓
dν(z) = 0

by Dominated Convergence Theorem.
Hence there is a sequence {λn}n∈N, such that λn → ∞, n → ∞, and a.s.

lim
n→∞

∑︂
s≤t

⃓⃓⃓
V

1
2 R2(λn)∆L(s)

⃓⃓⃓2
H

= lim
n→∞

∫︂ t

0

∫︂
H

⟨︂
V R2(λn)z, R2(λn)z

⟩︂
H

N(ds, dz)

=
∫︂ t

0

∫︂
H

⟨V z, z⟩HN(ds, dz) =
∑︂
s≤t

⃓⃓⃓
V

1
2 ∆L(s)

⃓⃓⃓2
H

a.s.,

which completes the proof.
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5. Optimal control results

5.1 Mean value optimal control result
As in the previous chapter, we start with the equation (2.1) with pure jump
cylindrical Lévy process with weak second moments. As we mentioned, the key
tool in the proofs is the Itô formula. In the case of cylindrical Lévy process, we
have only the Itô formula in mean value sense (Lemma 8) and we prove only
the mean value optimal control for the ergodic problem (3.4)-(3.5). For such
ergodic problem, we assume that (A1)-(A4), the standard stabilizability and
detectability conditions (Definitions 1 and 2) and the assumptions of Proposition
9 are satisfied.

We consider a process

K(ω, ·) : R → L(H,Y)

that is progresively measurable, P-a.s. continuous in the operator topology and
such that

lim
t→∞

K(t) = K0 = −R−1B∗V

P-a.s. in L(H,Y), where V is the solution to the Riccati equation (3.9).
The main result for the equation (2.1) and the ergodic problem (3.7) and (3.8)

is stated below.

Theorem 12. Assume (A1)-(A4), (4.1) and stabilizability and detectability con-
ditions from Definitions 1, 2, let K be deterministic. Then the feedback control

U0(t) = K(t)X(t), t ≥ 0,

is an optimal control for the ergodic problem (3.4)-(3.5) in the class of all controls
from the space U satisfying

E
⟨︂
V XU(t), XU(t)

⟩︂
H

t
→ 0, t → ∞. (5.1)

The optimal cost is D = Π.

The three steps of the proof of the theorem Theorem 12 can be reformulated
as follows:

1. We have that

lim
t→∞

inf EJ(U, t)
t

≥ Π (5.2)

for all controls U from the space U satisfying (5.1).

2. The feedback control U0 satisfies (5.1).

3. The feedback control U0 is an optimal control for the ergodic problem (3.4)
- (3.5), that is

lim
t→∞

EJ(U0, t)
t

= Π. (5.3)
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We prove these three facts in three separate lemmas.

Lemma 13. Let V be the solution of the Riccati equation (3.9). Then (5.2) holds
true.

Proof. Using Lemma 8 we obtain

E
⟨︂
XU(t), V XU(t)

⟩︂
H

− ⟨x, V x⟩H

= 2E
∫︂ t

0
h(XU(s))ds + E

∫︂ t

0
2
⟨︂
B∗V XU(s), U(s)

⟩︂
Y

ds + tΠ.

We have, using (3.9),

E

⟨︂
XU(s), V XU(s)

⟩︂
H

− ⟨x, V x⟩H
t

= −E
∫︁ t

0

(︂⟨︂
XU(s), QXU(s)

⟩︂
H

+ ⟨U(s), RU(s)⟩Y
)︂

ds

t
+ Π

+E
∫︁ t

0

⟨︂
XU(s), V BR−1B∗V XU(s)

⟩︂
H

ds

t

+
2
∫︁ t

0

(︂⟨︂
XU(s), V BU(s)

⟩︂
H

+ ⟨U(s), RU(s)⟩Y
)︂

ds

t

= −E
J(U, t)

t
+ Π

+E
∫︁ t

0

⟨︂
R−1B∗V XU(s) + U(s), R(R−1B∗V XU(s) + U(s))

⟩︂
Y

ds

t
.

Since

E
∫︁ t

0

⟨︂
R−1B∗V XU(s) + U(s), R(R−1B∗V XU(s) + U(s))

⟩︂
Y

ds

t
≥ 0, t ≥ 0,

we obtain (5.2) by (5.1).

As the next step, in the following lemma we prove that the feedback control
U0 satisfies (5.1), that is U0 is in the set of controls where we want to find the
optimal one.

Lemma 14. We have that

E
⟨︂
XU0(t), V XU0(t)

⟩︂
H

t
→ 0, t → ∞. (5.4)

Proof. Take ϵ∗ > 0 such that

θ = θϵ∗ = (3ϵ∗Γ(ϵ)) 1
ϵ < ω.

Since K(t) converges to K0 in the uniform operator topology as t → ∞, we can
find r > 0 such that for all s ≥ r:

|K(s) − K0|2L(H,Y) < ϵ∗. (5.5)
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Using the Proposition 3, we can see that XU0 is the mild solution of

dXU0(t) =
(︂
AXU0(t) + BK(t)XU0(t)

)︂
dt + ΦdL(t), XU0(0) = x, (5.6)

iff XU0 satisfies the mild formula

XU0(t) = SV (t − r)XU0(r)

+
∫︂ t

r
SV (t − s)B(K(t) − K0)XU0(s)ds +

∫︂ t

r
SV (t − s)ΦdL(s), t ≥ r, (5.7)

(recall the notation in (3.10)). By (3.10) we obtain

E
⟨︂
XU0(t), V XU0(t)

⟩︂
H

≤ E|XU0(t)|2H|V |L(H)

≤ 3|V |L(H) |SV (t − r)|2L(H) E|XU0(r)|2H

+3|V |L(H)E
(︃∫︂ t

r
|SV (t − s)B|L(Y,H) |K(s) − K0|L(H,Y)

⃓⃓⃓
XU0(s)

⃓⃓⃓
H

ds
)︃2

+3E
⃓⃓⃓⃓∫︂ t

r
SV (t − s)ΦdL(s)

⃓⃓⃓⃓2
H

≤ 3M0e
−ω(t−r)E

⃓⃓⃓
XU0(r)

⃓⃓⃓2
H

+ 3
∫︂ t

r

e−ω(t−s)

(t − s)1−ϵ
|K(s) − K0|2L(H,Y)E

⃓⃓⃓
XU0(s)

⃓⃓⃓2
H

ds + c1

≤ c2 + 3ϵ∗
∫︂ t

r

e−ω(t−s)

(t − s)1−ϵ
E
⃓⃓⃓
XU0(s)

⃓⃓⃓2
H

ds + c1

for some constants c1 and c2 dependent only on r.
Following the same steps of as in the proof of Lemma 7.1.1. in [16], we obtain:

E
⃓⃓⃓
XU0(t)

⃓⃓⃓2
H

≤ c2 + c3

∫︂ t

r
E ′(θ(t − s))e−ω(t−s)ds + c1,

for a constant c3, where E ′(z) is asymptotically

zϵ−1

Γ(ϵ) , z → 0+,

ez

ϵ
, z → ∞.

Therefore we can find t0 > r such that for all t > t0:

E
⃓⃓⃓
XU0(t)

⃓⃓⃓2
H

≤ c4

∫︂ t

r

e(θ−ω)(t−s)

(t − s)1−ϵ
ds + c5 < c6 (5.8)

for some constants c4, c5 and c6 dependent only on r. Therefore

E
⟨︂
XU0(t), V XU0(t)

⟩︂
H

t
→ 0, t → ∞,

which concludes the proof.
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It remains to show that U0 is the optimal control for this ergodic problem.
This last step is formulated now.

Lemma 15. Let the assumptions of Theorem 12 be satisfied. Then

lim
t→∞

EJ(U0, t)
t

= Π. (5.9)

Proof. Recall that U0(t) = K(t)X(t) where K(t) → K0 in L(H,Y). Following
the steps of the proof of Lemma 13, we obtain

E

⟨︂
XU0(s), V XU0(s)

⟩︂
H

− ⟨x, V x⟩H
t

= −E
J(U0, t)

t
+ Π+

E
∫︁ t

0

⟨︂
−KXU0(s) + K(s)XU0(s), R(−KXU0(s) + K(s)XU0(s))

⟩︂
H

ds

t
.

By (5.8) it is easy to see that

lim
t→∞

E
∫︁ t

0

⟨︂
−KXU0(s) + K(s)XU0(s), R(−KXU0(s) + K(s)XU0(s))

⟩︂
H

ds

t

= lim
t→∞

c1
E
∫︁ t

0 |K − K(s)|2L(H,Y)

⃓⃓⃓
XU0(s)

⃓⃓⃓2
H

ds

t
= 0.

Hence in virtue of Lemma 14 we obtain (5.3).

Let us remind that in the case of the equation (2.3), the assumptions (A1)-
(A4) as well as the assumptions of Proposition 9 are satisfied. Therefore, for the
equation (2.3), the optimal cost is Π = Tr(V ΦΦ∗) and the optimal control is U0
for the ergodic problem (3.4)-(3.5).

5.2 Path-wise optimal control result
In the previous chapter, we proved the path-wise Itô lemma 11 for the equation
(2.3). Using this version of the Itô lemma, we can obtain a path-wise result for
the equation (2.3) if we add the assumption of strict positivity of the operator
Q in (3.6). Therefore, in the rest if this chapter, we assume Q in (3.6) to be the
positive operator, which means that

⟨Qy, y⟩ ≥ s|y|2, y > 0, (5.10)

holds for a constant s > 0. Moreover, suppose (A1**), (A2)-(A3) and (A4**)
are fulfilled. Recall the operator-valued process K introduced in the section 5.1.

The main result for the equation (2.3) and the control problem (3.7)-(3.8)
follows.
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Theorem 16. Assume (A1)-(A4), (4.1) and stabilizability and detectability con-
ditions from Definitions 1, 2. Then the feedback control U0(t) = KX(t), t ≥ 0, is
an optimal control for the ergodic problem (3.7), (3.8) in the class of all controls
from the space U satisfying

lim
t→∞

sup
∫︁ t

0

⃓⃓⃓
XU(s)

⃓⃓⃓2
H

ds

t
< ∞, a.s. (5.11)

and ⟨︂
V XU(t), XU(t)

⟩︂
H

t
→ 0, t → ∞, a.s. (5.12)

The optimal cost is D = Tr(V Q).

In this case, the three steps of the proof of the theorem 12 have the following
form:

1. We have that

lim
t→∞

inf EJ(U, t)
t

≥ Tr(V Q) (5.13)

for all controls U from the space U satisfying (5.11) and (5.12). This will
be proved in the Lemma 19.

2. The feedback control U0(t), t ≥ 0, satisfies (5.11) and (5.12). These two
assumptions will be verified in the Lemmas 20 and 21 respectively.

3. The feedback control U0(t), t ≥ 0, is an optimal control for the ergodic
problem (3.7) - (3.8), that is

lim
t→∞

J(U0, t)
t

= Tr(V Q). (5.14)

This step will be proved in the Lemma 22.

In the rest of the section 5.2 the assumptions of Theorem 16 are supposed to
hold.

Before proving this final result, the following two Lemmas will be useful.

Lemma 17. Suppose that (5.11) holds. Then we have a.s.∫︁ t
0

⟨︂
V XU(s−), dL(s)

⟩︂
H

t
→ 0, t → ∞. (5.15)

Proof. ∫︁ t
0

⟨︂
V XU(s−), dL(s)

⟩︂
H

t

=
∫︁ t

0

⟨︂
V XU(s−), dL(s)

⟩︂
H

⟨
∫︁ ·

0 ⟨V XU(s−), dL(s)⟩H⟩t

⟨︂∫︁ ·
0

⟨︂
V XU(s−), dL(s)

⟩︂
H

⟩︂
t

t

×I
[limt→∞

⟨︂∫︁ t

0 ⟨V XU (s−),dL(s)⟩H
⟩︂

t
=∞]
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+
∫︁ t

0

⟨︂
V XU(s−), dL(s)

⟩︂
H

t
I[∀t∈R+:⟨

∫︁ ·
0 ⟨V XU (s−),dL(s)⟩H⟩

t
≤C],

where C depends only on ω ∈ Ω and ⟨·⟩ denotes the quadratic variation. Now we
compute ⟨︂∫︁ ·

0

⟨︂
V XU(s−), dL(s)

⟩︂
H

⟩︂
t

t
=
∫︁ t

0

⃓⃓⃓
(Q 1

2 )∗V XU(s−)
⃓⃓⃓2
H

ds

t

≤
⃓⃓⃓
(Q 1

2 )∗
⃓⃓⃓
L(H)

|V |L(H)

∫︁ t
0

⃓⃓⃓
XU(s)

⃓⃓⃓2
H

ds

t
,

which converges by (5.11). Since
∫︁ ·

0

⟨︂
V XU(s−), dL(s)

⟩︂
H

is a càdlàg martingale,
we obtain

lim
t→∞

∫︁ t
0

⟨︂
V XU(s−), dL(s)

⟩︂
H

⟨
∫︁ ·

0 ⟨V XU(s−), dL(s)⟩H⟩t

I[limt→∞⟨
∫︁ ·

0 ⟨V XU (s−),dL(s)⟩H⟩
t
=∞] = 0

a.s. (cf. [28] or [22] ). Moreover, it is well known that

lim sup
t→∞

∫︁ t
0

⟨︂
V XU(s−), dL(s)

⟩︂
H

I[∀t∈R+:⟨
∫︁ ·

0 ⟨V XU (s−),dL(s)⟩H⟩
t
≤C]

t
= 0,

which concludes the proof.

Lemma 18. We have
∑︁

s≤t

⃓⃓⃓
V

1
2 ∆L(s)

⃓⃓⃓2
H

t
− Tr(V Q) → 0, t → ∞, a.s. (5.16)

Proof. We can easily see that for all s, t ∈ R+∑︂
r≤s

⃓⃓⃓
V

1
2 ∆L(r)

⃓⃓⃓2
H

and ∑︂
s<r≤s+t

⃓⃓⃓
V

1
2 ∆L(r)

⃓⃓⃓2
H

are independent, ∑︂
r≤t

⃓⃓⃓
V

1
2 ∆L(r)

⃓⃓⃓2
H

and ∑︂
s≤r≤s+t

⃓⃓⃓
V

1
2 ∆L(r)

⃓⃓⃓2
H

are equally distributed and

E
∑︂
r≤t

⃓⃓⃓
V

1
2 ∆L(r)

⃓⃓⃓2
H

= tT r(V Q) < ∞.

Therefore, using the law of large numbers for processes with stationary indepen-
dent increments (c.f. Theorem 2.1 in [27]), we obtain (5.16).
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Lemma 19. Let V be the solution of the Riccati equation (3.9). Let U ∈ U be
arbitrary such that (5.11)-(5.12) are satisfied. Then we have

lim
t→∞

inf J(U, t)
t

≥ Tr(V Q), a.s. (5.17)

Proof. By Lemma 11, ⟨︂
XU(t), V XU(t)

⟩︂
H

− ⟨x, V x⟩H

= 2
∫︂ t

0
h(XU(s)) +

∫︂ t

0
2
⟨︂
B∗V XU(s), U(s)

⟩︂
Y

+2
∫︂ t

0

⟨︂
V XU(s−), dL(t)

⟩︂
H

+
⎛⎝∑︂

s≤t

⃓⃓⃓
V

1
2 ∆L(s)

⃓⃓⃓2
H

− tT r(V Q)
⎞⎠+ tT r(V Q)

Then we have, using (3.9),⟨︂
XU(t), V XU(t)

⟩︂
H

− ⟨x, V x⟩H
t

= −
∫︁ t

0

(︂⟨︂
XU(s), QXU(s)

⟩︂
H

+ ⟨U(s), RU(s)⟩Y
)︂

ds

t
+ Tr(V Q)

+
∫︁ t

0

⟨︂
XU(s), V BR−1B∗V XU(s)

⟩︂
H

ds

t

+
2
∫︁ t

0

(︂⟨︂
B∗V XU(s), U(s)

⟩︂
Y

+ ⟨U(s), RU(s)⟩Y
)︂

ds

t

+
∑︁

s≤t

⃓⃓⃓
V

1
2 ∆L(s)

⃓⃓⃓2
H

− tT r(V Q)
t

+2
∫︁ t

0

⟨︂
V XU(s−), dL(s)

⟩︂
H

t
.

Hence, ⟨︂
XU(t), V XU(t)

⟩︂
H

− ⟨x, V x⟩H
t

= −J(U, t)
t

+ Tr(V Q)

+
∫︁ t

0

⟨︂
R−1B∗V XU(s) + U(s), R(R−1B∗V XU(s) + U(s))

⟩︂
Y

ds

t

+
∑︁

s≤t

⃓⃓⃓
V

1
2 ∆L(s)

⃓⃓⃓2
H

− tT r(V Q)
t

+
∫︁ t

0

⟨︂
V XU(s−), dL(s)

⟩︂
H

t
. (5.18)
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Since ∫︁ t
0

⟨︂
R−1B∗V X(s) − U(s), R(R−1B∗V XU(s) − U(s))

⟩︂
Y

ds

t
≥ 0, t ≥ 0,

it suffices to use (5.12) on the left side and Lemmas 17 and 18 on the right side
of the equality (5.18).

Lemma 20. We have that

lim
t→∞

sup
∫︁ t

0

⃓⃓⃓
XU0(s)

⃓⃓⃓2
H

ds

t
< ∞, a.s. (5.19)

Proof. Since Q and R−1 are strictly positive definite and(︂
Q

1
2
)︂∗

and V

are bounded, Lemma 11 yields⟨︂
XU0(t), V XU0(t)

⟩︂
H

− ⟨x, V x⟩H

= 2
∫︂ t

0
h(XU0(s))ds + 2

∫︂ t

0

⟨︂
B∗V XU0(s), U0(s)

⟩︂
Y

ds + Tr(V Q)

+
⎛⎝∑︂

s≤t

⃓⃓⃓
V

1
2 ∆L(s)

⃓⃓⃓2
H

− tT r(V Q)
⎞⎠

+
∫︂ t

0

⟨︂
V XU0(s−), dL(s)

⟩︂
H

= 2
∫︂ t

0

⟨︂
B∗V XU0(s), (K(s) − K0)XU0(s)

⟩︂
Y

ds −
∫︂ t

0

⟨︂
XU0(s), QXU0(s)

⟩︂
H

ds

−
∫︂ t

0

⟨︂
B∗V XU0(s), R−1B∗V XU0(s)

⟩︂
Y

ds + tT r(V Q)

+
⎛⎝∑︂

s≤t

⃓⃓⃓
V

1
2 ∆L(s)

⃓⃓⃓2
H

− tT r(V Q)
⎞⎠

+
∫︂ t

0

⟨︂
V XU0(s−), dL(s)

⟩︂
H

≤ −c0

∫︂ t

0

⃓⃓⃓
XU0(s)

⃓⃓⃓2
H

ds +
∫︂ t

0

(︂
−c1 + c2|K(s) − K0|L(Y,H)

)︂ ⃓⃓⃓
XU0(s)

⃓⃓⃓2
H

ds

−2
∫︂ t

0

⃓⃓⃓(︂
Q

1
2
)︂∗

V XU0(s)
⃓⃓⃓2
H

ds

⎛⎝c2 −
∫︁ t

0

⟨︂
V XU0(s−), dL(s)

⟩︂
H

⟨
∫︁ ·

0 ⟨V XU0(s−), dL(s)⟩H⟩t

⎞⎠
+
⎛⎝∑︂

s≤t

⃓⃓⃓
V

1
2 ∆L(s)

⃓⃓⃓2
H

− tT r(V Q)
⎞⎠+ tT r(V Q),
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where

lim sup
t→∞

c1
∫︁ t

0

(︂
−c1 + c2|K(s) − K0|L(Y,H)

)︂ ⃓⃓⃓
XU0(s)

⃓⃓⃓2
H

ds

t
≤ 0, a.s..

Similarly as in the proof of Lemma 17 we obtain

lim sup
t→∞

∫︁ t
0

⃓⃓⃓(︂
Q 1

2
)︂∗

V XU0(s)
⃓⃓⃓
H

ds

t

⎛⎝−c2 +
∫︁ t

0

⟨︂
V XU0(s−), dL(s)

⟩︂
H

⟨
∫︁ ·

0 ⟨V XU0(s−), dL(s)⟩H⟩t

⎞⎠ ≤ 0, a.s.

Therefore by Lemma 18 we arrive at

c1 lim sup
t→∞

∫︁ t
0

⃓⃓⃓
XU0(s)

⃓⃓⃓2
H

ds

t

≤ Tr(V Q) − lim inf
t→∞

⟨︂
XU0(s), V XU0(s)

⟩︂
H

t
≤ Tr(V Q), a.s.,

which completes the proof since V is non-negative.

Lemma 21. We have that⟨︂
XU0(t), V XU0(t)

⟩︂
H

t
→ 0, t → ∞, a.s. (5.20)

Proof. In virtue of Lemma 11, positivity of Q and R−1 and boundedness of V ,
we obtain for all t ≥ 0:⟨︂

XU0(t), V XU0(t)
⟩︂
H

−
⟨︂
XU0(r), V XU0(r)

⟩︂
H

= 2
∫︂ t

r

⟨︂
B∗V XU0(s), (K(s) − K0)XU0(s)

⟩︂
Y

ds −
∫︂ t

r

⟨︂
XU0(s), QXU0(s)

⟩︂
H

ds

−
∫︂ t

r

⟨︂
B∗V XU0(s), R−1B∗V XU0(s)

⟩︂
Y

ds + tT r(V Q)

+
⎛⎝∑︂

s≤t

⃓⃓⃓
V

1
2 ∆L(s)

⃓⃓⃓2
H

− tT r(V Q)
⎞⎠

+
∫︂ t

r

⟨︂
V XU0(s−), dL(s)

⟩︂
H

≤
∫︂ t

r

(︂
−c1 + c2|K(s) − K0|L(Y,H)

)︂
|XU0(s)|2Hds + c3(t − r) + Mr(t)

≤ −c3

∫︂ t

r

⟨︂
XU0(s), V XU0(s)

⟩︂
H

ds + c3(t − r) + Mr(t),

r ≥ t0, for some t0 > 0, where

Mr(t) =
∑︂

r≤s≤t

⃓⃓⃓
V

1
2 ∆L(s)

⃓⃓⃓2
H

− (t − r)Tr(V Q) +
∫︂ t

r

⟨︂
V XU0(s−), dL(s)

⟩︂
H

, t ≥ t0,
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has càdlàg trajectories, c1, c2, c3, c4 > 0. We fix ω ∈ Ω0 where

Ω0 =
{︄

ω ∈ Ω; lim
t→∞

Mt0(t)(ω)
t

= 0
}︄

(5.21)

(note that due to Lemmas 20, 17 and 18 we have that P(Ω0) = 1) and define

yω(t) =
⟨︂
XU0(t)(ω), V XU0(t)(ω)

⟩︂
H

for t ≥ t0. By (5.21), we can prove similarly as in [5] that

lim
t→∞

yω(t)
t

= 0

and (5.20) follows.

Lemma 22. We have that (5.14) holds.

Proof. As
K0 = −R−1B∗V,

we obtain by Lemma 11 and (3.9):⟨︂
XU0(s), V XU0(s)

⟩︂
H

− ⟨x, V x⟩H
t

= 2
∫︁ t

0

⟨︂
B∗V XU0(s), K(s)XU0(s)

⟩︂
Y

ds

t

−
∫︁ t

0

⟨︂
XU0(s), QXU0(s)

⟩︂
H

ds +
∫︁ t

0 ⟨K(s)X(s), RK(s)X(s)⟩Y ds

t

+
∫︁ t

0

⟨︂
K(s)XU0(s), RK(s)XU0(s)(s)

⟩︂
Y

ds

t
+
∫︁ t

0

⟨︂
K0X

U0(s), RK0X
U0(s)(s)

⟩︂
Y

ds

t

+Tr(V Q) +

(︃∑︁
s≤t

⃓⃓⃓
V

1
2 ∆L(s)

⃓⃓⃓2
H

− tT r(V Q)
)︃

t

+2
∫︁ t

0

⟨︂
V XU0(s−), dL(s)

⟩︂
H

t

= −J(U0, t)
t

+ Tr(V Q)

+
∫︁ t

0 ⟨(K(s) − K0)X(s), R(K(s) − K0)X(s)⟩Y ds

t

+
∑︁

s≤t

⃓⃓⃓
V

1
2 ∆L(s)

⃓⃓⃓2
H

− tT r(V Q)
t

+2
∫︁ t

0

⟨︂
V XU0(s−), dL(s)

⟩︂
H

t
.

We can simply prove that
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lim t → ∞
∫︁ t

0

⟨︂
(K(s) − K0)XU0(s), R(K(s) − K0)XU0(s)

⟩︂
Y

ds

t

≤ c1 lim t → ∞
∫︁ t

0 |K(s) − K0|2L(H,Y)

⃓⃓⃓
XU0(s)

⃓⃓⃓2
H

ds

t
= 0.

Due to Lemma 21 left-hand side of the equality tends to zero a.s. as t → ∞.
Similarly, the last two terms on the right-hand side converge to zero in virtue of
Lemmas 20, 17 and 18, and (5.13) follows.

Remark. This section is focused on the square integrable Lévy proces. If we
assume the Lévy proces with finite p-th moments, p > 2, we can extend the
path-wise result in Theorem 16 to the equations with ϵ ∈ (1

p
, 1] in the assumption

(A2) on the operator B. But the optimality is achieved on the smaller set of
admissible controls which are in addition in Lp,loc(R+,Y).

More precisely, as in Theorem 16 assume (A1**), (A2)-(A3) and (A4**).
Moreover suppose that L has finite p-th moments, p > 2, and replace the as-
sumptions (A2)-(A3) of Theorem 16 by the assumptions

(A2***) B : D(B) ⊂ Y → D(A∗)′, the dual of D(A∗) with respect to the
topology of H, and (βI − A)ϵ−1B ∈ L(Y,H), for a given ϵ ∈ (1

p
, 1].

(A3***) We have that
U ∈ Lp,loc

F (R+,Y),

where Lp,loc
F (R+,Y) is the space of all F -progressively measurable processes

from Lp,loc(R+,Y) , where
Lp,loc(R+,Y)

=
{︃

Y : R+ × Ω → Y measurable; ∀t > 0 : E
∫︂ t

0
|Y (s)|pYds < ∞

}︃
.

and denote Up = Lp,loc
F (R+,Y) the space of admissible controls.

Then the feedback control U0(t) = KX(t), t ≥ 0, is an optimal control for the
ergodic problem (3.7), (3.8) in the class of all controls from the space Up satisfying

lim
t→∞

sup
∫︁ t

0

⃓⃓⃓
XU(s)

⃓⃓⃓2
H

ds

t
< ∞, a.s. (5.22)

and ⟨︂
V XU(t), XU(t)

⟩︂
H

t
→ 0, t → ∞, a.s. (5.23)

The optimal cost is D = Tr(V Q).
Indeed, following the steps of the proof of Lemma 2.1. in [5] and applying the

assumptions ((A2***)) and ((A3***)), we obtain∫︂ t

0
S(t − r)BU(r)dr ∈ Lp,loc

F (R+,H).

46



Furthermore, we can prove for the Lp Lévy proces L that∫︂ t

0
S(t − r)dL(r) ∈ Lp,loc

F (R+,H).

Therefore,
XU ∈ Lp,loc

F (R+,H).
Then we can repeat the steps of the proof of Theorem 16.

5.3 Path-wise adaptive control
In this section, we apply the above path-wise control result to adaptive control
of parameter-dependent systems with an unknown parameter α ∈ K, where K is
a compact metric space. We assume that we have

α̂ = (α̂(t), t ≥ 0) ⊂ K,

a strongly consistent family of estimators of α = α0 ∈ K, that is, a K-valued
progressive process such that

lim
t→∞

α̂(t) = α0, a.s.

We prove that the path-wise adaptive control corresponding to α̂ is optimal.
The controlled stochastic evolution equation dependends on α ∈ K, that is

dXU
α (t) =

(︂
AαXU

α (t) + BαU(t)
)︂

dt + dL(t), XU
α (0) = x, (5.24)

where x ∈ H, α ∈ K. Aα, α ∈ K, are the infinitesimal generators of analytic
semigroups Sα on H. For some β > 0 the operators −Aα +βI, α ∈ K, are strictly
positive (in the sequel, β > 0 is fixed).

As in the previous section, we suppose (A1**), (A3), (A4**). Moreover, we
add the assumptions

(B1) For each α ∈ K: B : D(Bα) ⊂ Y → D(A∗
α)′, the dual of D(A∗

α) with respect
to the topology of H, and (βI − Aα)ϵ−1Bα ∈ L(Y,H), for a given ϵ ∈ (1

2 , 1].

(B2) For each α1, α2 ∈ K: D(Aα1) = D(Aα2), Dγ
Aα1

= Dγ
Aα2

and D1−ϵ
A∗

α1
= D1−ϵ

A∗
α2

.

Similarly as in the Chapter 2, we set

J(U, t) =
∫︂ T

0

(︂⟨︂
QXU

α (s), XU
α (s)

⟩︂
H

+ ⟨RU(s), U(s)⟩Y
)︂

ds, (5.25)

where T > 0, XU
α is the solution of (5.24), Q ∈ L(H) and R ∈ L(Y) are symmetric

positive definite operators, i. e.

⟨Ry, y⟩ ≥ r|y|2, y > 0, (5.26)

⟨Qy, y⟩ ≥ r|y|2, y > 0, (5.27)

holds for a constant r > 0.
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The corresponding Riccati equation takes the form

⟨a, A∗
αVαb⟩H + ⟨A∗

αVαa, b⟩H + ⟨Qa, b⟩H −
⟨︂
R−1B∗

αVαa, B∗
αVαb

⟩︂
H

= 0, (5.28)

a, b ∈ D(A∗
α).

For a fixed d > 0 we consider the adaptive feedback control in the form
Uα̂(t) = Kα̂(t)X(t), t > 0, where

Kα̂(t) = −R−1B∗
α̂(t−d)Vα̂(t−d)I[t>d], t > 0, (5.29)

The result for such adaptive control follows:

Theorem 23. Assume (A1**), (A3), (A4**), (B1), (B2) and stabilizability
and detectability for all α ∈ K. Let

lim
α→α0,α∈K

⃓⃓⃓
B∗

α − B∗
α0

⃓⃓⃓
L
(︂
D1−ϵ

Aα0
,Y
)︂ = 0, (5.30)

lim
α→α0,α∈K

|Sα(t) − Sα0(t)|
L
(︂
Dϵ−1

Aα0
,H
)︂ = 0 (5.31)

for all t > 0. Then

lim
t→∞

|Kα̂(t) − Kα0|L(H,Y) = 0, a.s., (5.32)

where Kα0 = −R−1B∗
α0Vα0, and

lim
t→∞

Jα0(Uα̂, t)
t

= Tr(Vα0Q), a.s. (5.33)

Proof. Applying the Lemma 5.3 in [5], we obtain from (5.30) and (5.31) that

lim
α→α0,α∈K

|Vα − Vα0|
L
(︂
H,D1−ϵ

Aα0

)︂ = 0. (5.34)

If we combine (5.34) with (5.30), we obtain (5.32). Therefore, we can apply the
Theorem 22 with A = Aα0 , B = Bα0 and

K(t) = Kα̂(t), t > 0.

Remark. Similarly as in the Remark 5.2 in the previous section, we can consider
Lp-Lévy process in H, p > 2, and we can extend the path-wise result in Theorem
23 for the equations with ϵ ∈ (1

p
, 1] in the assumption (B1) on the operator B.

5.4 Examples
Example (bundary control for stochastic heat equation). We consider the equation

bt(t, x) = ∆xb(t, x) + l(t, x), (t, x) ∈ R+ × G, (5.35)

bv(t, x) + h(x)b(t, x) = u(t, x), (t, x) ∈ R+ × ∂G,
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b(0, x) = b0(x), x ∈ G,

where bv(t, x) is normal derivative of b in (t, x) ∈ R+ × ∂G in direction v, v
being the outward normal to ∂G, ∆x is the Laplace operator, ∂G denotes the
boundary of the set G, G ⊂ Rn is an open bounded domain with C∞ boundary,
h ∈ C∞(∂G), h ≥ 0 and l formally represents Lévy noise on L2(∂G).

Set H = L2(G), Y = L2(∂G), A = ∆x on the domain

D(A) =
{︂
f ∈ H2(G) : fv(x) + h(x)f(x) = 0, x ∈ ∂G

}︂
,

where H2(G) denotes the Sobolev space. As well known, A generates an analytic
semigroup and there exists β ≥ 0 such that (A−βI) is strictly negative. To obtain
the infinite-dimensional form (2.1) of the system (5.35) we follow the lines of the
standard approach developed for deterministic equations in [2] (see also [23], [9]
for various modifications in stochastic cases). Consider the elliptic problem

∆xz − βz = 0

on G and
zv + hz = −g

on ∂G. The solution map M : g ↦→ −z belongs to L(L2(∂G),Dϵ
A) for ϵ < 3

4 . The
operator B is obtained as the composition B = ÂM , where Â is the isomorphic
extension of the operator A into Dϵ

A.
Then B ∈ L(Y,Dϵ−1

A ), ϵ ∈ (1
2 , 3

4), and the pairs (A, B), (A, Q) satisfy the
stabilizability and detectability considions, respectively. Therefore, all conditions
of Theorems 12 and 16 are satisfied for ϵ ∈ (1

2 , 3
4) and the optimal mean value as

well as path-wise ergodic control may be obtained following these Theorems. If
we take into account Remark 5.2, we have the path-wise result for ϵ ∈ (1

p
, 3

4).
Now consider the equation (5.35) dependent on a parameter α in a compact

set K ⊂ R+:

bt(t, x) = α∆xb(t, x) + l(t, x), (t, x) ∈ R+ × G, (5.36)

bv(t, x) + h(x)b(t, x) = u(t, x), (t, x) ∈ R+ × ∂G,

b(0, x) = b0(x), x ∈ G,

where α ∈ K, K ⊂ R+ is compact, G ⊂ Rn is an open bounded domain with C∞

boundary, h ≥ 0, l formally represents Lévy noise on L2(∂G).
In this case H = L2(G), Y = L2(∂G), Aα = α∆x, α ∈ K, on the domain

D(Aα) =
{︂
f ∈ H2(G) : h(x) = fv(x) + h(x)f(x) = 0, x ∈ ∂G

}︂
,

which does not depend on α ∈ K. Also, Bα, α ∈ K, are obtained from Aα, α ∈ K,
by the same approach as above for ϵ < 3

4 .
Then

Bα ∈ L(Y,Dϵ−1
Aα

) = L(Y,Dϵ−1
Aα0

)

and all conditions of Theorem 23 are satisfied for ϵ ∈ (1
2 , 3

4). Therefore, the
adaptive feedback control defined by (5.29) is optimal. We have the path-wise
result for ϵ ∈ (1

p
, 3

4) applying Remark 5.3.
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Example (ergodic point control of stochastic plate equation with structural damp-
ing). Consider the problem

ptt(t, x) − ∆xpt(t, x) + ∆2
xp(t, x) = Ix=x0u(t) + l(t, x), (t, x) ∈ R+ × G, (5.37)

p(0, x) = p0, pt(0, x) = p1, x ∈ G,

p(t, x) = pt(t, x) = 0, (t, x) ∈ R+ × ∂G,

where G ⊂ Rn is an open and bounded domain with a sufficiently smooth bound-
ary ∂G, n ∈ {1, 2, 3}, x0 ∈ G, l formally represents a (space-dependent) Lévy
noise. Define the cost functional

J(u, T ) =
∫︂ T

0
(|p(t)|2H2(G) + |pt(t)|2L(G) + |u(t)|2)dt,

where H2 denotes the Sobolev space {y ∈ L2(G) : Dαy ∈ L2(G), |α| ≤ 2}.
The deterministic case (l ≡ 0) is analyzed in [3] and [20]. Let A = ∆2

x on the
domain

D(A) =
{︂
h ∈ H4(G) : h(x) = ∆xh(x) = 0, x ∈ ∂G

}︂
.

We rewrite the equation (5.37) in the form (2.1),

dXU(t) =
(︂
AXU(t) + BU(t)

)︂
dt + dL(t), XU(0) = x.

Here
H = D

(︂
A

1
2
)︂

× L2(G) =
(︂
H2(G) ∩ H1

0 (G)
)︂

× L2(G), Y = R,

A =
(︄

0 I
−A A 1

2

)︄
,

Bu =
(︄

0
Ix=x0u

)︄
,

Q
1
2 =

(︄
0 0
0 Φ1

)︄
,

R = Q = I,

where Φ1 ∈ L(L2(G)) is Hilbert-Schmidt, X0 = (v0, v1)T and L is a cylindrical
Lévy proces on H.

It is well known ([3]) that A generates an exponentially stable analytic semi-
group. In [20] it is shown that B ∈ L(Y,Dϵ−1

A ) for ϵ ∈ (0, 1 − n
4 ). In the case

of n = 1, all conditions of the Theorems 12 and 16 are satisfied for ϵ ∈ (1
2 , 3

4)
and the optimal mean value as well as path-wise ergodic control may be obtained
following these theorems. In the case of n = 2 we may choose ϵ ∈ (1

p
, 1

2), and
follow Remark 5.2 to find the path-wise ergodic control. Moreover, if we assume
p > 4 in Remark 5.2, we obtain the path-wise result for n = 3 by the choice
ϵ ∈ (1

p
, 1

4).
Consider parameter dependent equation (5.37). That is:

ptt(t, x) − α∆xp(t, x) + ∆2
xp(t, x) = Ix=x0u(t) + l(t, x), (t, x) ∈ R+ × G, (5.38)

p(0, x) = p0, pt(0, x) = p1, x ∈ G,
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p(t, x) = pt(t, x) = 0, (t, x) ∈ R+ × ∂G,

where α ∈ K, K ⊂ R+ is compact, G ⊂ Rn is an open and bounded domain with
a sufficiently smooth boundary ∂G, n ∈ {1, 2, 3}, x0 ∈ G, l formally represents a
(space-dependent) Lévy noise.

Now for all α ∈ K

dXU
α (t) =

(︂
AαXU

α (t) + BαU(t)
)︂

dt + dL(t)

=
(︂
AαXU

α (t) + BU(t)
)︂

dt + dL(t), XU(0) = x,

where

H = D
(︂
A

1
2
)︂

× L2(G) =
(︂
H2(G) ∩ H1

0 (G)
)︂

× L2(G), Y = R,

Aα =
(︄

0 I
−A αA 1

2

)︄
,

Bαu = Bu =
(︄

0
Ix=x0u

)︄
,

Q
1
2 =

(︄
0 0
0 Φ1

)︄
,

where Φ1 ∈ L(L2(G)) is Hilbert-Schmidt, X0 = (v0, v1)T and L is a cylindrical
Lévy proces on H.

For all α ∈ K, is well known ([3]) that Aα generates a stable analytic semi-
group. As above

Bα = B ∈ L(Y,Dϵ−1
Aα0

)

for ϵ ∈ (0, 1 − n
4 ). In the case of n = 1, all conditions of the Theorem 23 are

satisfied for ϵ ∈ (1
2 , 3

4) and the adaptive feedback control defined by (5.29) is
optimal. For n = 2 and n = 3 we again may follow Remark 5.3 and take p large
enough so that ϵ ∈ (1

p
, 1 − n

4 ).
Example (ergodic point control of stochastic Kelvin-Voigt plate equation). Con-
sider the problem

wtt(t, x) + ∆2
xw(t, x) + ρ∆2

xwt(t, x) = Ix=x0u(t) + l(t, x), (t, x) ∈ R+ × G,
(5.39)

w(0, x) = w0, wt(0, x) = w1, x ∈ G,

∆xw(t, x) + (1 − µ)B1w(t, x) = ∂∆xw(t, x)
∂ν

+ (1 − µ)B1w(t, x) = 0,

(t, x) ∈ R+ × ∂G,

where µ ∈ (0, 1
2), ρ > 0, x0 ∈ G ⊂ Rn, n ≤ 2. Note that the boundary operators

B1 and B2 are given by

1. In the case of n = 1: B1 = B2 = 0,
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2. In the case of n = 2:

B1w = 2ν1ν2wx,y − ν2
1wy,y − ν2

2wx,x,

B2w = ∂

∂τ

(︂
ν2

1 − ν2
2

)︂
wx,y + ν1ν2(wy,y − wx,x),

where ∂
∂τ

is tangential derivative.

l formally represents a (space-dependent) Lévy noise. Define the cost functional

J(u, T ) =
∫︂ T

0

(︂
|w(t)|2H2(G) + |wt(t)|2L(G) + |u(t)|2

)︂
dt,

where H2 denotes the Sobolev space {y ∈ L2(G) : Dαy ∈ L2(G), |α| ≤ 2}.
The deterministic case (l ≡ 0) is analyzed in [20]. Let A = ∆2

x on the domain

D(A) = {h ∈ H4(G) :

h(x) + (1 − µ)B1h(x) = ∂∆xh(x)
∂ν

+ (1 − µ)B1h(x) = 0, x ∈ ∂G}.

We rewrite the equation (5.39) in the form (2.1),

dXU(t) =
(︂
AXU(t) + BU(t)

)︂
dt + dL(t), XU(0) = x.

Here
H = D

(︂
A

1
2
)︂

× L2(G) =
(︂
H2(G) ∩ H1

0 (G)
)︂

× L2(G), Y = R,

A =
(︄

0 I
−A −νA

)︄
,

Bu =
(︄

0
Ix=x0u

)︄
,

Q
1
2 =

(︄
0 0
0 Φ1

)︄
,

R = Q = I,

where Φ1 ∈ L(L2(G)) is Hilbert-Schmidt, X0 = (w0, w1)T and L is a cylindrical
Lévy proces on H.

It is well known that A generates an exponentially stable analytic semigroup.
In [20] it is shown that B ∈ L(Y,Dϵ−1

A ) for ϵ ∈ [1
2 , 1 − n

8 ), n ≤ 3. Thus all
conditions imposed in the paper are satisfied and the optimal ergodic control
may be obtained following Theorems 12 and 16.
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Conclusion
In the Thesis, we are focused on the optimal ergodic control of processes in the
Hilbert space H described by the controlled stochastic evolution equation

dXU(t) =
(︂
AXU(t) + BU(t)

)︂
dt + ΦdL(t), XU(0) = x, (5.40)

x ∈ H, where A is the infinitesimal generator of an analytic semigroup S on
H. The control of the equation (5.40) was set up by the control process U on
(Ω, A, P) in the Hilbert space Y with the coefficient operator B acting from Y
to H. As results related to ergodic control were already known in the case of the
continuous Gaussian noise, we assumed L(t) in (5.40) to be a pure jump noise
(Ω, A, P) in H. The coefficient Φ is assumed to be, in general, a bounded linear
operator on H. The optimality is defined by asymptotics of the cost in the form

J(U, t) =
∫︂ T

0

(︂⟨︂
QXU(s), XU(s)

⟩︂
H

+ ⟨RU(s), U(s)⟩Y
)︂

ds (5.41)

giving the weights to the value of the controlled process XU as well as to the
control process U by the operators Q ∈ L(H) and R ∈ L(Y). Roughly speaking,
the aim was to find the solution to the optimal control problem with the following
two particular goals:

1. Optimal control as the control process U in the set of the admissible controls
which minimize the asymptotic cost functional.

2. Optimal cost as the formula for the minimal value of the asymptotic cost
functional.

An important part of the work was the proof of the Itô formula and as the
consequence, the assumptions on the coefficients were driven by the assumptions
needed for proving the Itô formula.

We found two sets of meaningful assumptions for the ergodic control problem
and we found the optimal control as well as the optimal cost for both of them.

In both cases, we were able to cover the point and boundary control problems.
This means that the assumptions on the operator B in (5.40) are the same:

(A2) B : D(B) ⊂ Y → D(A∗)′, the dual of D(A∗) with respect to the topology
of H, and (βI − A)ϵ−1B ∈ L(Y,H), for a given ϵ ∈ (0, 1].

In both cases, the coefficiens Q in (5.41) was needed to be positive semi-definite
and the coefficient R in (5.41) was needed to be positive definite. In both cases,
the set of admissible controls has to be the subset of Lp,loc

F (R+,Y).

The case of cylindrical Lévy processes
In the case of setting L in (5.40) as the cylindrical Lévy processes, we had to
consider the ergodic cost functional as the ”mean average cost per time unit in
long run”, that is

J̃E(U) = lim
t→∞

inf EJ(U, t)
t

. (5.42)
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We were not able to prove the path-wise version of the Itô formula as the diffusion
parts in the proof did not converge path-wise in the case of the cylindrical Lévy
processes. Therefore, we were not able to work with the path-wise version of
the ergodic cost functional. Note that the problematic diffusion part disappeared
in the case of the mean value versions of the ergodic cost functional and the
corresponding Itô formula.

Moreover, we had to add the following assumption on the diffusion coefficient
Φ in (5.40) and on the coefficient Q in (5.41):

1. There exists δ ∈ (0, 1
2 ] such that Φ∗(−A∗ + βI)− 1

2 +δ is Hilbert-Schmidt.

The set of the admissible controls is the set of U ∈ L2,loc
F (R+,Y) such that

E
⟨︂
V XU

t , XU
t

⟩︂
H

t
→ 0, t → ∞. (5.43)

For the cylindrical Lévy processes and ergodic control functional in the form
(5.42) with the added assumptions on Φ and Q mentioned above, we proved that
(on the given set of the admissible controls):

1. The optimal cost equals to Π given by the formula

Π = lim
λ→∞

Tr
(︂
V R2(λ)ΦΦ∗

(︂
R2(λ)

)︂∗)︂
.

2. The optimal control is every feedback control process U(t) = K(t)X(t),
t ∈ R+, such that K(t) → −R−1B∗V , t → ∞, is deterministic.

The case of the square integrable Lévy processes
When we wanted to consider the path-wise ”average cost per time unit in long
run”, we had to strengthen the assumptions on L in (5.40) to have the square
integrable Lévy processes as the noise or, equivalently, the assumptions on Φ in
(5.40) to have the Hilbert-Schmidt diffusion operator. The path-wise ”average
cost per time unit in long run” is defined as

J̃(U) = lim
t→∞

inf J(U, t)
t

. (5.44)

We had to strengthen the assumptions to have Q in (5.41) positive definite. The
set of the admissible controls is the set of U ∈ L2,loc

F (R+,Y) such that

⟨V XU
t , XU

t ⟩H
t

→ 0, t → ∞, a.s., (5.45)

and

lim
t→∞

sup
∫︁ t

0

⃓⃓⃓
XU

s

⃓⃓⃓2
H

ds

t
< ∞ a.s. (5.46)
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List of Abbreviations
a.s. almost surely with respect to the given probability measure 8
P-a.s. almost surely with respect to the probability measure P 8
B(S) Borel σ-algebra of the space S 9
C(V, B) cylindrical subsets given by borel sets B and finit set of vectors V 13
cadlag ”continue a droite, limite a gauche” 9
corlol ”continuous on (the) right, limit on (the) left” 9
C set of complex numbers 6
C∞(S) infinitely differentiable functions on S 49
C1(S) space of continuously differentiable functions on S 20
D domain of operator or function 4
Dα

A domain of (−A + βI)α 17
∆f(t) f(t) − f(t−) 9
∆x Laplacian operator 49
ex exponencial function 6
EX Expected value of the random variable X 9
E[X|G] conditional expected value 8
Γ Gamma function 7
H space of L2 predictable stochastic process of HS operators 13
|Y |H norm of L2 predictable stochastic process of HS operators 13
H l

k Sobolev space 49
HS Hilbert-Schmidt 13
| · |HS Hilbert-Schmidt (HS) norm 13
IS identity operator of the space S 4
IA(x) 1 if x ∈ A else 0 10
J(u, T ) cost functional 23
log natural logarithm 10
L0(Ω, A) set of real valued random variables 13
L0 set of real valued random variables 13
Lp(H) space of random variables in H with finite p moment 15
Lp space of random variables in given space with finite p moment 15
L(H) space of bounded linear operators on H 4
LHS(H) space of random Hilbert-Schmidt operators 15
Lp,loc

F (R,Y)space of progressively measurable locally p-integrable processes 46
Lp,loc(R,Y)space of locally p-integrable processes 46
N(t, A) Poisson random measure 9
N positive integers 2
N normal (Gaussian) distribution 2
N(µ, V ) normal (Gaussian) distribution with mean µ and covariance V 2
ν Intensity jump measure 9
ϕ characteristic function 10
∂S boundary of S 49
R real numbers 4
R range of operator or function 7
RCLL ”right continuous with left limits” 9
R(λ) λR(λ, A) for a given operator A 25
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R(λ, A) resolvent of the operator A 7
Rn Eukleidean space 9
R+ non-negative real numbers 4
ρ(A) resolvent set of the operator A 6
SHS(H) space of the simple random Hilbert-Schmidt operators 15
S space of the simple random operator processes 13
SEE stochastic evolution equation 17
Tr trace of an operator 25
bv(t, x) normal derivative of b in (t, x) in direction v 49
·α fractional power of the operator 7
·∗ adjoint operator 14
·′ dual space 46
f(t−) left limit of the function f in t 9
⟨Z, u⟩ Z(u) for a cylindrical random variable Z 14
⟨·⟩S scalar product in the space S 9
∼ Q has distribution Q 9
·̄ closure of the set 5
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A. Stochastic Fubini theorem
In this Appendix, we state the Stochastic Fubini Theorem for the case of the
stochastic integration with respect to the Cylindrical Lévy process L. This The-
orem was proved in [19] for more general integrators than we need, for so called
regulated functions. Therefore, we start with the definition of the regulated func-
tions.

We say that the function g on [0, T ] in H, T ≥ 0, is regulated if g has only
discontinuities of the first kind. We denote the space of all regulated functions
on [0, T ] in H as R([0, T ],H).

Theorem 24. We assume a finite µ-measure space (M, M, µ), a Bochner space
L2

µ(M,H) and T ≥ 0. Let g be a function from M × [0, T ] to H such that

1. g is measureble with respect to M × B,

2. for µ-almost all x ∈ M , g(x, ·) is regulated,

3. g ∈ R([0, T ], L2
µ(M,H)).

Then

1.
∫︁

M g(x, ·)dµ(x) is regulated,

2.
∫︁ T

0 g(·, t)dL(t) is a random variable in L2
µ(M,R),

3. we have P-a.s.∫︂
M

∫︂ T

0
g(x, t)dL(t)dµ(s) =

∫︂ T

0

∫︂
M

g(x, t)dµ(s)dL(t).

Proof. This theorem is proved in [19].
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B. Regular modification
In this Appendix, we state the regular modification theorem for the case of the
contraction semi-group in the integrand. This theorem in [25] is more general as
it is proved for integrals with respect to square integrable martingales.

Theorem 25. We assume

1. S is a strongly continuous semi-group of contractions,

2. Φ is L(H)-valued process such that Φ(·)z is F-predictable H-valued process
for each z ∈ H,

3. M is a square integrable martingale with the martingale covariance Q,

4.
E
∫︂ t

0
|Φ(s)Q(s)|2HSds < ∞, t ≥ 0.

Then the process ∫︂ ·

0
S(t − s)Φ(s)dM(s)

has a càdlàg version in H.

Proof. This theorem is proved in [25].
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