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Preface 
 

In this habilitation thesis I present a collection of 15 papers with my co-

authorship, which were published in international impacted journals during the years 

2015-2021. These papers are cited in the text as references [A1-A15] (full 

bibliographic information is attached in Appendix: Collection of publications). The 

works are focused on the experimental and theoretical research of the stimulated 

inelastic interaction between electrons freely propagating in vacuum and coherent 

optical fields of femtosecond laser pulses. The aims of the research are to control the 

electron beams on time scales of attoseconds (1 as=10-18 s) and to accelerate the 

electrons to high energies using optical evanescent fields and optical ponderomotive 

forces. The presented results were obtained during my postdoctoral fellowship at 

Friedrich-Alexander-Universität Erlangen-Nürnberg in Germany in the time period 

2015-2017 and at the Faculty of Mathematics and Physics of Charles University in 

2018-2021, where I started to build an independent research group focused on the 

topics presented in this thesis and on ultrafast strong-field phenomena in solids driven 

by few-cycle laser pulses. I am the first and corresponding author of 11 papers of this 

collection and a sole author of 4 of them. I was involved in all the parts of these works 

including proposing the research directions, designing the experiments, their 

accomplishment, interpretation, numerical simulations and writing the manuscripts. 

The details of my contribution to these publications can be found in the Statement of 

the author´s contribution to the publications, which is attached to this thesis.  

The thesis is organized as follows: In chapter 1. I describe the motivation of 

the research together with a brief introduction. In chapter 2. I discuss the classical and 

quantum mechanical description of the inelastic interaction between free electrons and 

light fields in vacuum. In this chapter I also explain the principle of attosecond control 

of electrons and electron pulse compression to pulse durations below 1 femtosecond. 

In chapter 3. I describe the experimental setups and discuss the obtained results. In the 

final chapter 4. I present a conclusion and a brief outlook for future directions in this 

research field. 

This work would not be possible without a number of collaborators and 

colleagues. In particular I would like to thank prof. Petr Malý, doc. František Trojánek, 

prof. Petr Němec and other colleagues from the Department of Chemical Physics and 

Optics for their help, support and for creating nice and inspirative atmosphere. Further 

I would like to thank my postdoctoral adviser prof. Peter Hommelhoff from Friedrich-

Alexander-Universität Erlangen-Nürnberg, who gave me a lot of freedom and great 

support during my postdoctoral fellowship in his group, where I spent 3 wonderful 

years. Some of the selected publications were produced in close collaboration with 

international partners, from which I list groups of R. L. Byer and J. S. Harris from 

Stanford University, US and the group of I. Hartel from DESY in Hamburg, Germany. 

Also a number of PhD and master students have been involved in the laboratory work. 

I would also like to thank the grant agencies, namely to Gordon and Betty Moore 

Foundation, which supported the project ACHIP at which I took part during my 

postdoctoral fellowship, to Czech Science Foundation for the support of my junior 

research project “Ultrafast processes in solids controlled by few-cycle laser pulses” 

and to Charles University for the support via project PRIMUS with the title 

“Attosecond phenomena in solids”.  
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Finally I also want to express my deepest thanks to my wife Petra and my whole family 

for their patience and great support. 
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1. Introduction: Motivation of the presented research 
 

Physical and chemical properties of atoms and molecules are governed by the 

Coulomb interaction between fundamental constituents of matter protons and 

electrons, which both carry electrical charge of opposite sign. Coulomb interaction 

together with quantum mechanical laws determine the shapes of atomic orbitals, 

electron energy structure and the interactions of atoms with the environment. The 

outermost electrons in the valence orbitals, which are relatively weekly bound, are 

responsible for chemical bonds and optical properties of matter. Therefore the 

possibility to directly observe valence electron orbitals and to take movies of electron 

wavepackets in motion is tempting and has many potential applications in the field of 

development of novel materials, chemistry or biophysics.  

However, the spatial and temporal scales at which such dynamics occur, are 

extremally challenging to capture. When we consider a wavepacket generated as a 

coherent superposition of two stationary electronic states of a quantum system, its time 

evolution can be written as ( ) ( ) ( ) ( ) ( )1 1 2 2, exp expt iE t ћ iE t ћ  = − + −r r r , where 

E1 and E2 are the energies of the two stationary states ( )1 r  and ( )2 r . The probability 

of finding a quantum particle in a given point in space is determined as the square 

modulus of the wave function. This probability for the wavepacket reads 

( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2 2

1 2 1 2 2 1, , exp . .t t i E E t ћ c c     = = + + − − +  r r r r r r  

Assuming absence of dephasing, the wavepacket is characterized by harmonic 

oscillatory motion with the time period of 2 12T ћ E E= − . This characteristic time 

depends on the typical energy scale for the given quantum system. For molecular 

vibrations, the energies are of the order of 1-100 meV corresponding to oscillation 

periods of 20 fs - 2 ps. However, the energies of valence electronic states are of the 

order of 1-10 eV, which corresponds to time scales of about 200 as – 2 fs (1 fs=10−15 

s, 1 as=10−18 s). Moreover, the spatial extent of the wave function of valence electron 

orbitals is several tens of picometers (1 pm=10−12 m), which sets a stringent 

requirement for the spatial resolution needed to visualize the wavepackets. 

The first motivation of the research presented in this habilitation thesis is to 

develop experimental techniques allowing to image the coherent dynamics of valence 

electrons in solids illuminated by light waves and the dynamics of the associated 

electromagnetic fields (optical near-fields, polarization waves, plasmons, etc.) with 

atomic spatial and sub-femtosecond temporal resolutions. Our approach is to use 

electrons to probe the electromagnetic fields using new schemes of time-resolved 

electron microscopy, which has been developed during the last 20 years. In standard 

electron microscopy, continuous beam of spatially coherent electrons accelerated to 

kinetic energies of many keV (typically 1-300 keV corresponding to de Broglie 

wavelengths of 2-40 pm) is used to illuminate the sample. While propagating through 

the sample, Lorentz force generated by the electrostatic fields of individual atoms in 

the sample is acting on the electrons and causes intensity and phase contrast in the 

electron wave, which can then be imaged with extremely high magnification on the 

detector. The record spatial resolution of less than 50 pm [1] allows to resolve 

individual atoms in a crystal lattice.  

An extremely high spatial resolution of electron microscopes can be combined 

with time resolution by using pulsed electron beams, whose emission from a 

photocathode is controlled by short light pulses incident on the cathode surface. When 

an ultraviolet (UV) pulse with photon energy higher than the material workfunction 
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arrives to a metallic or semiconductor cathode in a microscope (typically tungsten, 

tungsten/ZrO or LaB6), the temporal distribution of photoemitted electrons 

corresponds to the UV pulse envelope. The electrons are subsequently accelerated by 

the applied electrostatic field in the cathode region to the final kinetic energy of many 

keV. The generated electron pulses may serve for probing dynamical processes, which 

are typically triggered in the studied sample by excitation laser pulses coming in 

advance with a controlled time difference. After the interaction with the sample, the 

electrons form either a direct image, then we talk about ultrafast electron microscopy, 

or a diffraction pattern in so-called ultrafast electron diffraction. These techniques have 

been applied to study the dynamics of chemical reactions [2], phase transitions [3] or 

magnetic field dynamics in nanostructures [4]. However, the best temporal resolution, 

which can be obtained in these experiments, is limited by the shortest achievable 

duration of the electron pulses at the location of the sample. The lowest pulse duration 

of electrons photoemitted by femtosecond laser pulses, which are not further 

compressed (the possibilities of post-compression are discussed in chapter 2.4.), is 

approximately 100 fs due to dispersive propagation of the electrons during their 

acceleration by the static electric field applied in the electron gun. Because the natural 

length and time scales of electron wave packet dynamics in atoms, molecules, and 

solids are picometers and attoseconds, ultrafast electron microscopy cannot resolve 

these dynamics nowadays. Our goals are to overcome this barrier and to compress the 

electron pulses to attosecond durations using the inelastic interaction with 

electromagnetic fields of femtosecond laser pulses. Such precisely controlled electron 

flashes may serve for experiments, in which the combination of extreme spatial and 

temporal resolutions is required. Besides the control in the classical regime of the 

interaction, the electron matter waves can also be controlled in the quantum-coherent 

regime leading to generation of superposition of energy states separated by the photon 

energy of the driving light [5–8]. The quantum control of free electrons allows to study 

new types of coherent interactions between free electrons and matter [9] or using the 

free electrons as qubits for quantum simulations [10]. The complex spatio-temporal 

shaping of electron wavefunction by light may bring novel techniques and 

functionalities in electron microscopy and holography [11,12]. 

The second motivating factor for our research was to investigate a possibility 

to accelerate the electrons to high energies by light fields of low- or moderate 

intensities, which can be readily achieved in university-scale laboratories using 

amplified femtosecond laser systems. Such laser-driven electron accelerators may 

enable generation of coherent X-ray photons using free-electron laser (X-FEL) 

schemes in much simpler and cheaper setups compared to the contemporary X-FEL 

facilities with hundreds of meters long accelerating structures. It can also outperform 

the laser-driven plasma wakefield acceleration scheme [13], which requires extreme 

light intensities available only to large laser facilities [14]. The limiting factor of 

classical radio-frequency (RF) electron accelerators and the main reason, why their 

size cannot be easily reduced, is the maximum achievable energy gain of the electrons 

per unit length of the accelerating structure. This so-called accelerating gradient is 

physically limited to approx. 100 MeV/m by the maximum field, which can be applied 

to the internal surface of the RF cavities due to the electric breakdown phenomena. 

The goal of laser driven particle accelerators based on optical near-fields is to increase 

the driving frequency by a factor of 105-106 and in the same time to shrink down the 

size of the accelerating structure by the same factor. Together with using periodic 

dielectric structures instead of metallic resonant cavities, this allows to increase the 
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accelerating gradients to 1-10 GeV/m, which might potentially lead to reduction of the 

size of electron accelerators by a factor of 100x. 

The first proposal of electron acceleration using optical near-fields (evanescent 

waves) has been published shortly after invention of laser [15,16]. In [16] the authors 

proposed to use a metallic grating with light incident perpendicular to the grating 

surface to accelerate electrons propagating along the direction of the grating vector. 

When the grating period is smaller than the wavelength of the incident light, classical 

diffraction of light in the far-field is not possible and the distribution of 

electromagnetic fields close to the grating surface can be written as a superposition of 

evanescent waves propagating along the surface. If the phase velocity of one of these 

waves is synchronized with the electron´s propagation velocity, the electron gains or 

losses energy dependent on its phase relative to the synchronous wave. The 

experimental realization of this principle has waited until 2013, when two independent 

groups of researchers led by Prof. Byer at Stanford University [17] and Prof. 

Hommelhoff at Friedrich-Alexander-Universität Erlangen-Nürnberg [18] 

demonstrated its feasibility. Starting from these proof-of-principle experiments, the 

research in this field has focused to various aspects of the future laser-driven 

accelerators, which are the electron source [A2,A11], development of nanostructures 

with efficient coupling of light energy to the acceleration mode [A5,A12], use of novel 

materials [A14], steering and focusing electron optics driven by lasers [A4,A9] and 

electron diagnostics [A3]. In contrast to RF accelerators, the laser-driven particle 

accelerators have a disadvantage in the small effective volume of the accelerating 

fields. The evanescent nature of the optical near-fields leads to sub-wavelength decay 

length of the amplitude of the synchronous mode [19]. Moreover, the advantage of RF 

accelerators is that the electrons reach MeV energies corresponding to the velocity 

close to the speed of light c (v>99% of c) within the first few periods of the accelerating 

structure, typically even in the electron gun. In contrast, the maximum energy gain per 

one period of the accelerating structure of optical near-field-based accelerators is about 

few hundreds of eV, which means that approximately 104 periods are needed to reach 

1 MeV electron energy. Together with the small transverse size of the fields and the 

presence of transverse forces with similar amplitude as the accelerating forces, this 

makes the electron dynamics in the optical near-field very complicated and prevents 

to reach high average electron currents by this acceleration principle. The possible 

applications thus cover mainly the field of time- and spatially-resolved imaging 

experiments with electrons, where sub-femtosecond temporal resolution may be 

reached [A4 ,5,20–23]. 

Besides the interaction of free electrons and light waves in vacuum, my 

research interests span over the field of nonlinear light-matter interaction in solid-state 

systems. The motivation of this research is to transfer concepts from attosecond 

physics in atoms to solids and to investigate novel schemes allowing to control 

electronic excitations in matter on sub-femtosecond time scales. This research field 

was born around year 2000 after the development of the technology for stabilization 

of carrier-envelope phase of ultrashort laser pulses [24]. In the strong-field regime of 

electron excitation, an electron bound in an atom can tunnel through a barrier formed 

by the superposition of the binding potential and the electromagnetic potential of the 

laser field. The timing of such excitation can be controlled on time scales much shorter 

than the period of the driving light wave [25,26]. Many fascinating experiments 

demonstrating dynamical electronic processes occurring on time scales of hundreds of 

attoseconds have been carried out in the last 20 years [27–33]. However, a practical 

application of such ultrafast processes in solids is lacking and requires to solve several 
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physical problems, which prevent to develop electronics working at optical 

frequencies. The main problem is energy dissipation during nonlinear light-matter 

interaction, which arises from real population of excited state carriers generated in the 

conduction and valence bands of the material. One dissipation channel is carrier 

relaxation via phonon emission, the other is nonradiative recombination, which is also 

accompanied by transferring the energy to the crystal lattice. Therefore it is important 

to discover nonresonant processes, which lead to minimum excited state population 

but allow to control the optical properties of solids on time scales of few femtoseconds 

or faster [34,35]. During the last 4 years I developed a unique setup generating mid-

infrared few-cycle laser pulses with stabilized carrier-envelope phase [36], which now 

serves for the research of strong-field optical phenomena in solids and high harmonic 

generation. Due to the fact that our research of this topic is still in its initial stage (8 

publications in impacted journals in 2018-2021), I decided not to include the recent 

results from this research field in the thesis.  
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2. Stimulated inelastic scattering of electrons at optical 

fields 
 

2.1. Introduction 
 

In this chapter I summarize the fundamental principles and the theoretical 

description of inelastic synchronous interaction between free electrons and optical 

fields in vacuum.  

In the classical picture we assume an electron as a point charged particle, which 

is moving through electromagnetic fields oscillating at optical frequencies. In the case 

of the interaction with an optical plane wave, the electron acceleration/deceleration is 

prohibited by the so-called Lawson-Woodward´s theorem [37,38]. This theorem 

assumes that: i) the interaction region is spatially infinite, ii) the electromagnetic waves 

are propagating in vacuum with no boundaries present, iii) the electron is highly 

relativistic (v≈c along the acceleration path, where c is light speed in vacuum), iv) no 

static electric or magnetic fields are present, and v) nonlinear effects (e.g., 

ponderomotive and radiation reaction forces) can be neglected. When all these 

assumptions are valid, the electron oscillates in the real and momentum spaces, but the 

net energy change after an integer number of field oscillations is zero. To make the 

inelastic interaction possible, the system has to violate one of the assumptions of 

Lawson-Woodward´s theorem. In this thesis I will discuss two approaches, namely the 

violation of the condition ii) by using optical near-fields in the vicinity of dielectric 

structures and the violation of v) by employing optical ponderomotive forces. In all 

discussed cases, also the condition iii) is not met because we study the interaction of 

light fields with sub-relativistic electrons with v<<c. 

In the first case of the interaction of electrons with optical near-fields, the 

electron propagates close to an object illuminated by a coherent light wave. In general, 

the optical near-field is generated when a plane wave scatters off an object with 

complex refractive index 0n n , where n0 is the refractive index of a homogenous 

surrounding medium. The polarization induced by the object acts as a source of waves 

which interfere with the incident plane wave. When the object´s dimensions are much 

smaller than the wavelength of the wave, it behaves similar to a small oscillating 

dipole, for which the amplitude of the field decreases as 1/ r , where r is the distance 

of the observer from the dipole. The superposition of the dipole field with the field of 

the plane wave leads to a localized spatial modulation of the amplitude and phase of 

the electromagnetic wave. In general, the optical near-field can be written as a 

superposition of evanescent optical modes, which are characterized by phase velocity

pv c  that can be matched to the electron propagation velocity. 

When using an isolated nanostructure, the effective length of the interaction of 

the electron with the field is limited to the near-field region. This length can be 

significantly increased by propagating the electrons along a flat structure with periodic 

modulation of the surface depth or by using evanescent waves generated at a flat 

dielectric surface by total internal reflection [A5]. In such case, the interaction is only 

efficient when fulfilling a synchronicity condition between the electron propagation 

velocity and the phase velocity of the evanescent wave. For periodic structures, this 

condition arises from the spatial periodicity of the structure and the temporal symmetry 

of the optical wave. The electron has to interact with the same phase of the periodic 

optical field at each period of the nanostructure leading to a condition ( )0v c m=  , 



 8 

where c is speed of light in vacuum, Λ is the period of the nanostructure, λ is the 

wavelength of the light wave and m=1,2,... is integer number associated with the 

particular spatial harmonics of the periodic near-field. In Fig. 1 I show the comparison 

of the classical interaction between an electron propagating at velocity v0 and optical 

fields of (a) an optical plane wave and (b) a synchronous optical near-field of a periodic 

nanostructure. Fig. 1a) and b) show the snapshots of the electric field component along 

the electron´s trajectory Ez for two times t=0 and t=T/2, where T is the period of the 

driving wave. In the case of the interaction with the plane wave, the field which the 

electron experiences along its trajectory is symmetric in time leading to zero net energy 

gain after an integer number of periods (black curve in Fig. 1c)). However, in the 

optical near-field of a nanostructure, the time symmetry of the Lorentz force acting on 

the electron is broken leading to a change of its kinetic energy after an integer number 

of optical periods. The details of the electron scattering at optical near-fields are 

discussed in chapter 2.1. 

In the second type of interaction, which we studied both theoretically and 

experimentally, the electrons scatter at the ponderomotive potential of an optical 

travelling wave (Fig. 1d), violation of the condition v) of the Lawson-Woodward´s 

theorem). The ponderomotive potential ( )
22 2

p 4U e m= E  corresponds to the time-

averaged kinetic energy of the electron in an oscillating electromagnetic field [39]. 

Here e and m are the electron charge and mass, E is the amplitude of electric field of 

the optical wave and ω its angular frequency. If the field amplitude is spatially 

modulated, the gradient of the potential generates a force p pU= −F  pushing the 

particle out of the regions of high intensity. The highest intensity gradient is reached 

when two optical waves interfere and form an optical standing wave with a period 

corresponding to half of the wavelength of both waves. The interaction of electrons 

with such optical standing wave was proposed already in 1933 by Pyotr Kapitsa and 

Paul Dirac, who considered coherent electron diffraction at such periodic structure 

made of light [40]. Because of its extremely low probability when using incoherent 

light sources, its first observation waited until the development of pulsed lasers with 

high peak intensities. The effect was first observed with atoms [41] due to the resonant 

enhancement of the ponderomotive interaction and later also with electrons [42,43], as 

originally proposed. This process can be understood as stimulated Compton scattering 

in which the electron absorbs a photon from one wave and in the same time emits a 

photon to the other wave. When interacting with standing wave formed by photons 

with the same photon energy, only the transverse momentum component of the 

electrons changes but the kinetic energy of the electrons does not change. The 

manipulation with the kinetic energy and the longitudinal momentum component of 

the electron is possible via the interaction with an optical beat wave prepared by 

intersecting two light waves at different frequencies [44,45]. When the light beams 

cross the electron trajectory under specific angles, the ponderomotive force has the 

only component in the direction along the electron´s trajectory and the velocity of the 

wave matches the initial velocity of the electrons [A7] (see Fig. 1). In such case, only 

the longitudinal component of the electron momentum and in turn its kinetic energy 

are modulated. 
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Fig. 1. An electron propagating from left to right interacts with the a) optical plane 

wave and b) optical near-field of a periodic nanostructure (silicon rectangular grating 

with period Λ). The two snapshots of the distribution of optical fields in times t=0 and 

t=T/2 are shown (T is the temporal period of the optical wave). c) Electron kinetic 

energy as a function of time in the field of a plane wave (black curve) and synchronous 

optical near-field (red curve). d) Visualization of the interaction of electrons with the 

ponderomotive potential of an optical travelling wave. The snapshot of the potential 

in the rest frame of the wave is shown (red color scale) together with the magnitude of 

the z-component of the ponderomotive force Fp (black curve) acting on the electrons 

in the direction of their propagation. 

 

 

The conditions for an efficient momentum transfer between photon and 

electron can be in both cases obtained in the particle picture by considering the 

momentum and energy conservation laws during an inelastic scattering event. Here we 

neglect Compton scattering, which produces negligible change of the energy of the 

incident photon [46] and has very low probability at visible or infrared 

wavelengths [47]. When looking to dispersion curves (energy vs. momentum) of an 

electron and a photon in vacuum, we find that the slope is different for any electron 

energy (see Fig. 2a)). While the electron dispersion curve (black curve in Fig. 2) is 

described by ( ) ( )
22 2

0E pc m c= + , the photon dispersion E pc=  is linear (red line 

in Fig. 2). This means that the energy and momentum conservation cannot be fulfilled 

in the same time for any electron energy and plane-wave photons cannot be absorbed 

by a free electron. In the case of optical near-fields, due to the spatial localization of 

the photons at scales Δz smaller than the wavelength, the momentum distribution 

Δpz=ћΔkz ( 2k  =  is the wavevector and kz is its z component) broadens due to 

Heisenberg uncertainty principle and the interaction of the electron with a retarded 

photon (blue line in Fig. 2) becomes possible. In the case of the ponderomotive 
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interaction with an optical travelling wave, the potential is generated by two light 

waves at different frequencies propagating in different directions. For simplicity we 

assume here that the two waves propagate opposite to each other and one of them is 

propagating in the direction parallel to the electron´s velocity. A single scattering event 

can be described by simultaneous absorption of a photon from one wave and 

stimulated emission of a photon in the second wave (see the lower inset of Fig. 2). 

Such stimulated Compton scattering allows both the energy and momentum to be 

conserved when the electron energy shift 1 2E   = −  and the momentum change  

( ) ( )1 2 1 2p c c    = − − = +     fulfill the relation: 

   

( ) ( )

2

0

22 2

0 0

p cE dE

p dp
p c m c


= =


+

 ,    (1) 

where p0 is the initial electron momentum. 

 

 
Fig. 2. Dispersion relations of a free electron (dark grey curve), free photon (red line) 

and a retarded photon (blue line). Upper inset: Conservation of energy and momentum 

during inelastic interaction of the electron with optical near-field. Spatial localization 

of the field causes its delocalization in the momentum space (grey ellipse) and allows 

to conserve the energy and momentum. Lower inset: The interaction of the electron 

with ponderomotive potential of an optical travelling wave formed by two counter-

propagating light waves at different frequencies. One photon is absorbed from one 

wave while other photon is emitted to the other wave in a stimulated manner. For this 

reason, the electron energy shift after a single scattering event equals to the photon 

energy difference but the momentum change equals to the sum of the absolute values 

of the momenta of the two photons. 

 

 

In the following two sections I discuss the theory of stimulated inelastic 

scattering of electrons at optical near-fields and at the ponderomotive potential of 

optical travelling waves in more detail. In general, the interaction can be described 

within three different approximations depending on the interaction regime: 

 

1) Fully classical description using point particle approximation of the electron, 

which interacts with the light fields via Lorentz force. This approximation neglects 

the quantum nature of the electrons, but can successfully describe experiments with 
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electron beams with limited coherence and also strong interaction regime, in which 

the electron dynamics during the interaction plays role. 

2) Semiclassical approximation, in which the Schrödinger equation for an electron 

wavepacket is solved with the interaction Hamiltonian with classical vector 

potential describing the light field. This approximation is required if the coherence 

time of the electrons is longer than the period of the driving light. In this case, the 

periodic phase modulation of the electron wavepacket leads to peaks in the electron 

spectrum corresponding to coherent absorption and emission of integer number of 

photons. 

3) Fully quantum theory – typically not necessary because the driving light has a 

form of a coherent wave containing many photons in the same mode (typically 1010 

or more) and absorption/emission of a small number of photons by the electron is 

not observable in the transmitted or reflected light. 

 

In the following I focus on the classical and semi-classical description of the 

interaction. 

 

 

2.2. Interaction of free electrons with optical near-fields 
 

The interactions of swift electrons with matter can be divided to two categories, 

spontaneous and stimulated. Spontaneous interaction corresponds to a case in which 

no external electromagnetic fields are present. The electron propagating close to a 

material generate various excitations (plasmons, plasmon-polaritons, phonons) via the 

coupling of the evanescent field of the moving charge with polarization of the 

material [48]. The electron energy loss spectroscopy (EELS) of inelastically scattered 

electrons then serves for local probing of these excitation with sub-nanometer spatial 

resolution. Besides generating the real excitations, the electron can lose its energy via 

coherent or incoherent cathodoluminescence. Spectroscopy of cathodoluminescence 

photons carries information about, e.g., the density of localized plasmonic states of the 

sample [48]. Stimulated interactions involve external light in a form of a coherent 

wave illuminating the material through (around) which the electron propagates. The 

electron then interacts with the electromagnetic fields and coherent polarization in the 

material generated by this wave. When the electron does not propagate through the 

material but only in its vicinity, the effect of the stimulated interaction is typically 

much stronger than the spontaneous energy loss and the spontaneous effects can be 

neglected [49]. 

The first problem which has to be solved to describe the interaction of electrons 

with coherent optical near-fields is to find the expression for the spatial distribution of 

electric and magnetic fields in the vicinity of the illuminated nanostructure. This can 

be done analytically for a few basic shapes of the structures [48,50], but it is usually 

obtained by numerical solution of Maxwell´s equations using boundary-element 

method [51] or finite-difference time domain (FDTD) method [52] for a nanostructure 

with a general shape. FDTD method is based on discretization of space and time 

coordinates. The initial conditions of the calculation are the spatial distribution of the 

complex dielectric constant defined by the shape of the nanostructure and its material 

and the initial spatial distribution of electromagnetic fields and their sources 

distributed on the discrete spatial mesh. The fields are then propagated in time by 

integrating Maxwell´s equations with respect to time using some form of Yee´s 

algorithm [53]. By using physical constraints it is possible to optimize the geometrical 



 12 

shape of the nanostructures used for generation of the optical near-fields to provide 

optimal coupling of the incident light to the evanescent wave synchronous to the 

electrons. Such optimization using a commercial software Lumerical FDTD [54] was 

used to design the structures described in publications [A3,A6, A9,A11,A12]. 

The physics of the interaction of a charged particle (in our case an electron) 

with optical near-fields generated in a vicinity of a nanostructure has been discussed 

elsewhere [48,55]. In this work I focus mainly on periodic nanostructures which allow 

to enhance the coupling between light and electrons by extending the interaction 

distance. In the geometry assumed here (shown in Fig. 3a)), a periodic nanostructure 

is illuminated by coherent optical fields in a form of a plane wave. The k-vector of the 

driving light wave is typically perpendicular to the trajectory of the electron and the 

polarization of its electric field is parallel to the electron´s propagation direction. The 

near-field distribution in the vicinity of the nanostructure is periodically modulated in 

space due to the contrast of dielectric constants of vacuum and the material used for 

the nanostructure fabrication. It is advantageous to describe the spatial distribution of 

the electric field amplitude in the optical near-field region using spatial Fourier 

transform as a superposition of infinite number of evanescent modes (spatial 

harmonics with integer index m) propagating along the surface of the nanostructure 

with the phase velocities ( ) ( )pv c m=  , where Λ is the spatial period of the 

nanostructure, λ is the wavelength of the driving light and m is the integer number 

index of the harmonics. Because the evanescent modes have to obey Maxwell´s 

equations in vacuum, the transverse component of the wave vector is complex and the 

amplitudes of the synchronous waves decay exponentially with the distance from the 

nanostructure surface with a decay length of ( )2 2

p2 1c v  = −  [19] (see Fig. 3b)). 

If we assume synchronous interaction (the phase velocity of a particular evanescent 

mode vp is equal to the initial velocity of the electron v0) and subrelativistic electrons 

with energies 1-100 keV, the decay length δ is much smaller than the wavelength of 

the driving light λ. This fact significantly limits the transverse spatial acceptance of the 

accelerating structures based on this principle to several hundreds of nanometers for 

optical drivers, which in turn limits the maximum achievable current of accelerated 

electrons. 
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Fig. 3. a) Typical geometry used for inelastic electron interaction with optical near-

field of a periodic nanostructure. b) The color scale shows the snapshot of z-component 

of the electric field of the synchronous evanescent wave generated by light with 

wavelength 1.93 μm synchronous with the electrons propagating at velocity v0=0.32c, 

which causes electron acceleration/deceleration. The arrows indicate the magnitude 

and direction of the electron´s momentum change after the interaction as a function of 

its position with respect to the synchronous wave. c) A more complex geometry in 

which the grating vector is not parallel to the electron beam leading to generation of 

transverse forces in the plane of the nanostructure surface. d) Experimental geometry 

demonstrating the transverse streaking of the electrons [A4,A9]. 

 

We start with the classical description and assume that the electron propagates 

with velocity 0(0,0, )v=v  along the z-coordinate. If the relative change of the 

electron´s velocity during the interaction is small (Δv<<v0) and the electron propagates 

parallel to the synchronous evanescent mode, the electron feels a constant amplitude 

and phase of the field of the synchronous mode over the whole interaction. The final 

kinetic energy of the electron can be calculated as: 

( ) ( ) ( )k k0 k0 0, , , , ,z zE E F x y z t dz E ev f t E x y z dt

 

− −

= + = −  ,  (2) 

where 
2

k0 0 01 2E m v=  is the initial kinetic energy of the electron, 

( ) ( ) ( )0, , exp sin(2 )zE x y z E x y z  = −   is the z-component of the oscillating part 

of the electric field (component along the electron trajectory) of the synchronous 

evanescent wave in the electron rest frame characterized by Galilean transformation 

0 , , ,z z v t x x y y t t   = − = = =  and ( )f t  is the time envelope of the electric field given 

by the pulsed nature of the driving light. The amplitude of the synchronous mode 

( )0E x  is obtained numerically and depends on the material and shape of the 
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nanostructure. The magnetic part of the Lorentz force ( )L q= + F E v B  can be 

neglected as it acts in the direction perpendicular to the electron´s velocity and thus 

causes a negligible change of the electron´s kinetic energy. Because the electric field 

of the synchronous wave is stationary in the rest frame of the electron, the spatial 

dependence of the kinetic energy modulation has the same form as Ez. By transforming 

back to the laboratory frame using 0z z v t= +  we find that the kinetic energy of a beam 

consisting of moving electrons randomly distributed in the direction of their 

propagation is harmonically modulated in time. The final electron energy and 

momentum change is determined by the injection phase to the synchronous wave 

(initial electron position in the rest frame z´), as shown in Fig. 3b). If a continuous 

stream of electrons is injected to such accelerator, the electron spectrum broadens 

because the electrons scan all the phases of the driving field [17,18]. The measured 

spectrum of electrons interacting with optical near-field generated by mid-infrared 

femtosecond laser pulses at the surface of silicon nanograting is shown in Fig. 4 (red 

curve) together with numerical simulation (black dashed curve). The simulated 

spectrum was obtained using an ensemble of 105 electrons with Gaussian distributions 

in space and time domains corresponding to the experimental conditions [A11]. 

 

 
Fig. 4. Measured energy spectra of electrons propagating close to a periodic silicon 

nanograting with (red curve) and without (grey curve) the presence of driving laser 

fields. The pulsed electron beam with pulse duration of τ=410 fs (full-width at half 

maximum) was focused to a spot size of w0=50 nm (1/e2 radius) and its center was 100 

nm above the grating surface. The interaction was driven by laser pulses with duration 

of approx. 100 fs and center wavelength of 1930 nm. Part of the electron distribution 

does not interact with the laser pulse due to limited temporal overlap of the electron 

and laser pulses (for details see [A11]). 

 

When a device should provide only acceleration, the electron injection 

time/position with respect to the phase of the accelerating optical field have to be 

precisely controlled (the position in the rest frame is connected to the time in the 

laboratory frame via the Galilean transform). However, due to the typical time period 

of electromagnetic fields at optical frequencies of few femtoseconds, the time window 

for electron acceleration is only few hundreds of attoseconds within each optical period 

of the synchronous mode. This is one of the drawbacks of the proposed accelerators 

based on optical near-fields. To allow acceleration of a significant fraction of the 

incident continuous electron beam, the electrons have first to be compressed in time 

domain (the compression principle is explained in chapter 2.4). 
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Besides the force acting on the electrons in the direction of their propagation, 

there are also transverse components of the Lorentz force, which cause the deflection 

of the electrons. The transverse momentum transferred to the electron by the 

synchronous near-field can be calculated as ( )L t dt


⊥ ⊥

−
 = p F  , where ( )L t⊥

F  is the 

vector containing only the components of the Lorentz force perpendicular to the 

electron propagation direction. These forces exist naturally in any optical near-field 

due to the fact that the amplitudes of the electric and magnetic fields are modulated at 

shorter distances than the wavelength of the driving light. In the standard geometry 

shown in Fig. 3a), the only nonzero transverse component of the force is Fy because 

the structure is virtually infinite in the x-direction. In the case of a more general 

interaction scheme shown in Fig. 3c), there are also nonzero x-components of the 

Lorentz force [19], which can be used to streak [A4] or focus [A9] the electron beam. 

In the case of a large change of the electron´s energy already during the 

interaction (the approximation of the small velocity change is not valid), the full 

electron dynamics has to be described numerically by integrating the relativistic 

equation of motion with the Lorentz force ( ) ( )0d m dt q = + v E v B , where 

1
22

1 c

−

= − v  is the relativistic Lorentz factor, v is electron velocity, m0 is the rest 

mass of electron, c is speed of light and E and B are the space- and time-dependent 

amplitudes of the electric and magnetic fields, respectively. 

The semiclassical description of the interaction in the approximation of 

negligible velocity change of the electrons and no recoil (absorption of photons from 

the driving wave can be neglected) can be formulated using path integral 

representation of the wave function, where the quantum mechanical phase acquired by 

the electron along a classical trajectory can be written as [56]: 

( ) ( )
0

int

1
, ,

t

t

t H r t t dt
ћ

   = −   r ,    (3) 

where Hint is the interaction Hamiltonian ( )
2

int 0
ˆ 2H e m= +p A  and ( )r t  is the 

classical electron trajectory. Here A is the vector potential of the electromagnetic field, 

which in Coulomb gauge fulfils the calibration condition . 0 =A  and which is related 

to the electric field by t= − E A , and p̂  is momentum operator. In the case of the 

interaction of the electron with electromagnetic fields in vacuum (without a presence 

of a nanostructure), the part of the interaction Hamiltonian linear in the field cancels 

out due to the mismatch of the propagation velocity of the electron and the phase 

velocity of light. In the first order perturbation, the phase changes of the wave function 

acquired during the positive and negative parts of the field oscillations exactly cancel 

out. However, when a synchronous evanescent wave is present, the interaction 

Hamiltonian for harmonic driving wave can be approximated (we neglect quadratic 

terms in the electric field) as ( )int 0
ˆ ,H e t m= pA r  and the phase of the electron wave 

function is harmonically modulated at the frequency of the driving light. The phase 

modulation of the electron wave function can be described by evaluating Eq. (3) as: 

   ( ) ( )0, 2 sin argt g z v g  = +  r .    (4) 



 16 

Here ( ) 02 , ,
i z v

zg e ћ E x y z e dz




−

−

=   describes the strength of the electron-light 

interaction. When assuming the initial wave function in the form of a plane wave, the 

final state with the harmonic phase modulation can be written as a superposition of 

plane-waves as [5,23,50]: 

( ) ( ) ( )out 0 k0, 2 exp arg( )n

n

i nћ
x y,z,t J g p z E nћ t in g

ћ c






=−

   
 = + − + + −   

   
 , (5) 

where nJ  is the n-th order Bessel function of the first kind and 0 0 0p m v=  is the initial 

electron momentum. The resulting electron wave function consists of states shifted in 

energy by the photon energy of the driving wave ћ . The probability of transition to 

the n-th state is given by ( )
2

2n nP J g= . The probability is thus oscillatory function 

of the interaction strength g leading to oscillating populations of individual photon 

sidebands as a function of the field strength of the driving light observed in the 

quantum coherent regime of the interaction [5]. 

If the approximations of no recoil and of negligible change of the electron 

momentum during the interaction are not met, the interaction has to be described using 

numerical solution of the Schrödinger equation [57]. 

 

 

2.3. Interaction of free electrons with the ponderomotive potential of a 

travelling optical wave 
 

The second approach allowing to modulate the kinetic energy of electrons by 

light discussed in this thesis is based on the interaction, which was proposed already 

during the early stages of quantum mechanics. Kapitsa and Dirac suggested that if an 

electron matter wave propagates through an optical standing wave formed by two 

counterpropagating optical beams, the electron wavepacket would coherently 

diffract [40]. The interaction is mediated by the so-called ponderomotive potential 

which arises from the fact that a charged particle in oscillating electromagnetic fields 

acquires additional kinetic energy due to its oscillatory motion. If we assume that a 

charged particle is initially in rest, the force induced by a harmonic electromagnetic 

wave can be expressed as ( )cosF qE t=  (we neglect the magnetic part as it is usually 

sufficiently weak for initial electron velocity v0=0), where q is the electric charge of 

the particle, E and ω are the amplitude and frequency of the optical field. After 

integrating the equation of motion one obtains the velocity of the particle 

( ) 0sinv qE t m =  and the instantaneous kinetic energy can be written as 

( ) ( )2 2 2 2

0sin 2kE q E t m = , where m0 is the particle mass. The ponderomotive 

energy thus can be expressed as the time average of the kinetic energy as 

( ) ( )2 2 2 2 2

p 0 0 04 2kU E q E m q I cm  = = = , where I is the intensity of the incident 

light and ε0 is the vacuum permittivity. When the light intensity is constant in space, 

the ponderomotive potential is also constant and there is no associated force acting on 

the particle. However, when the intensity is spatially modulated, the ponderomotive 

force ( )
2 2 2

p 04U q m = − = −F E  pushes the particle out of the high intensity 
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regions. An interesting property of this force is the fact that due to the quadratic 

dependence on the electric charge it acts on the particles with both signs of the charge 

in the same way. 

 

 
Fig. 5. a) Geometry of the generation of optical travelling wave propagating 

synchronously to an electron (circle) moving from left to right. b) Electron spectrum 

after the interaction point with laser beams off (grey curve) and on (red curve). c) 

Measured (squares) and calculated (dashed line) final spectral width of the electron 

distribution after the interaction as a function of pulse energies of each of the two 

driving pulses. 

 

To generate a constant force acting on moving electrons along their trajectory, 

we need to create a gradient of light intensity, which is not stationary but has a form 

of a travelling wave. Such wave can be generated by two electromagnetic waves at 

different frequencies ω1 and ω2, which are intersected with the electrons under angles 

α and β (see the scheme in Fig. 5a)) [A7]. The total electric field is obtained as 

superposition of the two fields and the ponderomotive potential can be written as: 

( ) ( ) ( )

2

p

0 1 2

2 2

10 20

10 20 1 2 1 2 1 2

2

cos cos cos sin sin

e
U

m

E E

z y
E E i t

c c



         

= 

 + +
 

   
+ − − − − − −   

   

, 

           (6) 

Here E10 and E20 are the amplitudes of the two optical waves. We assume that both 

polarizations are perpendicular to the plane defined by the two optical beams and the 

electron beam. Eq. (6) does not take into account relativistic effects and is valid only 

for Lorentz factor γ≈1. The velocity of the wave in the laboratory frame is 

( ) ( )w 1 2 1 2cos cosv c     = − −  [A7]. When an electron propagates through the 

optical wave with the same velocity, the potential becomes stationary in the rest frame 
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of the electron. When we again assume the condition of negligible velocity change 

during the interaction, the final kinetic energy can be expressed as: 

( ) ( )k k0 p , ,zE E f t U x y z dt



−

= −  ,    (7) 

where wz z v t = −  is the coordinate in the rest frame of the wave after Galilean 

transform. The resulting energy modulation is a harmonic function of z  similar to the 

case of optical near-fields. However, there is one significant difference between these 

two types of interactions which lies in the absence of transverse forces acting on the 

electrons in the case of the ponderomotive interaction. When the electrons are injected 

with random phases with respect to the travelling wave (their initial distribution in z

-coordinate is random), the electron spectrum after the interaction becomes broadened. 

This is shown in Fig. 5b), where we show a comparison of the electron spectrum 

with/without the presence of the optical travelling wave. The measurements were 

obtained using the time-resolved electron microscope setup, which is described in 

detail in chapter 3.1. 

The semi-classical description of the interaction can be done similarly to the 

case of the interaction with optical near-fields. The quantum mechanical phase 

accumulated along a classical electron trajectory due to the presence of the optical 

fields can be expressed using Eq. (3) using the interaction Hamiltonian 

( )
2

int
ˆ 2H e m= +p A . In the case of the interaction of the electron with 

electromagnetic fields in vacuum, the part of the interaction Hamiltonian linear in the 

field cancels out due to the mismatch of the propagation velocity of the electron and 

the phase velocity of light. In the first order perturbation, the phase changes of the 

wave function acquired during the positive and negative parts of the field oscillations 

exactly cancel out. The only term leading to nonzero phase modulation is quadratic in 

the field and is caused by the ponderomotive potential of the optical waves. The 

interaction Hamiltonian averaged over one period of the oscillating field has a form: 

2 2 2
2 2 2

int 22 4 4

e e e
H

m m m
= = =A A E .   (8) 

If we assume the light fields in the form of couter-propagating plane waves 

with the temporal envelope functions g(t) (generalization to nonzero angles of 

incidence α and β can be obtained numerically [A7]), the modulated part of the 

ponderomotive potential of two counterpropagating beams generating a travelling 

wave synchronous to the electrons can be expressed as: 

2 2

0 0 0 1 2
p

1 2

exp . .
4

e E v vz z
U g t t g t t i z c c

m c c c c c

 



  +     
= − − + + +     

    
  (9) 

The electron wave function after the interaction obtains harmonic phase 

modulation (Fig. 6b)). Similar to Eq. (5) it can be written as a superposition of states 

with kinetic energy shifted from the initial state by nħ(ω1-ω2), where n is integer 

number. The interaction thus acts as a coherent beamsplitter, which splits the initial 

electron state to a coherent superposition of states with different momenta (see Fig. 

6c)). Such coherently prepared superposition of free electron states may find 

applications in new types of holographic imaging with electrons [58] or in quantum-

optical experiments with electron wavepackets [7,9,10,21,59]. 
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To observe the quantum signatures of the interaction, the spectral width of the 

initial electron distribution has to be smaller than the energy difference between the 

two neighbouring photon orders ħ(ω1-ω2). This condition can also be expressed using 

the coherence time of the electrons, which has to be longer than the time period of the 

modulation ( )1 22T   = − . When this condition is met, the interaction can be described 

as diffraction in time domain, during which parts of the electron wavepacket interacting with 

subsequent periods of the optical wave interfere. The constructive interference of waves with 
particular de Broglie wavelength leads to the peaks in the final electron spectrum. 

 

 
Fig. 6. a) Layout of the experiment for quantum-coherent modulation of electron 

waves by ponderomotive potential of an optical travelling wave in vacuum. b) 

Schematic picture of the electron phase modulation induced by the ponderomotive 

interaction with the modulated optical intensity, which is stationary in the electron rest 

frame. c) Resulting electron spectrum after the interaction, which contains peaks 

separated in energy by difference of the photon energies of the two light waves ħω= 

ħ(ω1-ω2). 

 

 

2.4. Compression of electron pulses to attosecond durations 
 

In this chapter I show that besides electron acceleration, the interaction with 

optical fields allows precise control of the temporal structure of the electron 

distribution and the arrival time of electron pulses to the experiment on sub-

femtosecond time scales. 

Compression of electron pulses, similar to optical pulses, is a two-step process. 

First, a time-correlated energy modulation is imprinted to the pulse. In optics this is 

typically reached by self-phase modulation of an optical pulse propagating through a 

medium with third-order optical nonlinearity [60]. In the case of electrons, the energy 

modulation is a consequence of the interaction with light waves. The second step in 

optical pulse compression is compensation of dispersion using prism or grating 

compressors [61] or chirped mirrors [62], which allow to adjust all the frequency 

components of the pulse to be in phase. Because of a narrow relative energy spread of 

electron pulses after the interaction with light fields (typically ΔE/E∼10-2-10-3), 

vacuum dispersion of the electrons in such a narrow window can be approximated as 

linear. The energy modulation of the electrons is harmonic function of time. However, 

for a fraction of the electron distribution, the harmonic function can be approximated 
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by  linear dependence (velocity linearly increasing with time, see red dashed line in 

Fig. 7) with slower electrons at the leading edge and faster electrons at the trailing 

edge. This part of the electron distribution becomes compressed and forms a short 

pulse [A8]. The compression factor depends on the initial energy spread and the 

amount of chirp introduced to the electrons. For compression using radiofrequency 

(RF) or terahertz (THz) fields, the minimum pulse durations demonstrated 

experimentally are 
RF

FWHM 10 fs =  [63] and 
THz

FWHM 75 fs =  [64]. However, the 

electronics generating the RF fields for the compression brings additional timing jitter, 

which is of the order of few femtoseconds. For reaching attosecond pulse durations, 

all-optical schemes have to be applied. Here the timing jitter is much lower (attosecond 

level) because the relative time difference between the pulses is stabilized 

mechanically by optical path lengths of different laser beams in the experiment. 

Because light needs 3.3 attoseconds to pass a distance of 1 nm, mechanical vibrations 

have to be minimized to reach this level of precision.  

The principle of compression of electron pulses and generation of attosecond 

spikes in the temporal probability distribution in the classical regime of the interaction 

is shown in Fig. 7. The initial electron distribution in time and momentum spaces is 

shown in the left two panels. Right after the interaction with optical fields, the velocity 

of the electrons acquire sinusoidal modulation in time reflecting the shape of the 

interaction potential, but the density distribution does not change (in the approximation 

Δv<<v0). After propagating by a distance ft corresponding to temporal focal length, the 

electron distribution in momentum space rotates due to the dispersive propagation in 

vacuum and forms vertical lines. The temporal density of the electrons at this point in 

space contains short spikes with sub-femtosecond durations, which are regularly 

spaced by the temporal period of the driving wave. The spikes are formed by the 

electrons with approximately linear velocity chirp ( /zv t konst  = ). The compressed 

electrons thus contain only about 30% of the electrons from the initial distribution. The 

rest of the particles is distributed around the peak and forms a background, which 

complicates the experiments with the compressed electron pulses.  

 

 
Fig. 7. Principle of electron pulse compression. The upper panels show the velocity of 

the electrons as a function of time while the lower panels show the electron density in 

three different spatial locations along the electron beam path, namely before the 

interaction with optical fields, right after the interaction and after propagation over a 

drift distance required for ideal temporal focusing. The time displayed on x-axis refers 

to the time delay with respect to the center of the electron distribution. 
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The propagation distance ft needed for ideal electron compression can be 

expressed using the initial electron velocity v0 and the magnitude of the linear energy 

chirp imprinted to the electrons ( )k max 1 2d d ( )E t E t  = =  −  as 3 3

0 0tf m v =  

[A8]. The coefficient κ characterizes the strength of the light-electron interaction and 

can be controlled by the intensity of the light wave modulating the electron energy and 

other experimental parameters.  

This compression principle works similarly for all the possible types of 

inelastic electron scattering induced by light fields, namely the interaction with optical 

near-fields [20], with semi-infinite fields of thin membranes [22] and with the 

ponderomotive potential of optical travelling waves [A8]. However, different schemes 

have different advantages and disadvantages for potential applications of the 

compressed electron pulse trains. In the case of optical near-fields, the strongest 

disadvantage is the sub-wavelength transverse spatial decay of the accelerating fields 

and the presence of phase-shifted transverse forces acting on the electrons during the 

modulation. This puts extremely high requirements for the quality of the electron 

beam, which has to be focused ideally to single nanometer spot sizes. The advantage 

of this interaction is very strong coupling of incident light with the electrons, which 

can be reached by optimized nanostructures with extended interaction distances [65] 

or by using resonant photonic cavities [66,67]. In the case of semi-infinite fields 

generated at dielectric or metallic membranes [22,68], the electrons have to propagate 

through the material of the membrane leading to electron scattering and loss of the 

beam current. Both the optical near-fields and semi-infinite fields are generated at a 

nanostructure, which needs to be illuminated by high-power light. The illumination by 

light with high peak intensity together with the impact of the electron beam usually 

leads to slow degradation of the structure. These problems are not present in the third 

interaction scheme with the ponderomotive potential of a travelling optical wave. Here 

the interaction occurs in vacuum and no structure is required. Another advantage is the 

possibility to completely avoid transverse forces causing the electron deflection. On 

the other hand, the ponderomotive interaction is weak due to its dependence on the 

second power of the field and in general requires higher peak intensities of the driving 

light. 

The electron pulses compressed using optical fields were recently applied to 

study the attosecond dynamics during electron diffraction at a sample illuminated by 

a light wave, which is coherent with the wave used for electron energy 

modulation [22]. By this method it is in principle possible to reach attosecond temporal 

and sub-nanometer spatial resolution in the ultrafast imaging experiments. 
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3. Studies of free electron-light interaction 
 

3.1. Experimental setups 
 

One of the motivating factors of our research is to develop new schemes allowing 

to accelerate electrons to high energies via the interaction with optical near-fields. 

Because the transverse decay of the field amplitude is shorter than the wavelength of 

the driving light, the experiments require tightly focused electron beams to make sure 

that the electrons are spatially overlapped with the optical near-fields. This is the main 

reason why all the experiments with slow electrons (30-100 keV) have been performed 

with an electron microscope column as a source of the electrons to be accelerated. The 

proof-of-concept experiments with sub-relativistic [18] and relativistic [17] electrons 

demonstrated that the maximum energy gain per single interaction can be of the order 

of 0.1-100 keV depending on the initial electron energy. The maximum values of 

acceleration gradient (energy gain per unit of propagation distance) obtained in the 

first experiments were g=25 MeV/m [18] and g=300 MeV/m [17], respectively. 

To increase the efficiency of the acceleration process we extended the interaction 

distance and increased the coupling efficiency of the driving light to the accelerating 

near-field mode. These two goals we reached by modification of several experimental 

parameters. First significant change was the shift of the central wavelength of the 

driving femtosecond laser pulses from 800 nm which was used in the proof-of-concept 

experiments (typical wavelength for Ti:sapphire lasers) to the mid-infrared spectral 

region around 2000 nm (thulium or holmium-doped fiber lasers). The change of the 

central wavelength of the driving field was motivated by two reasons. The first is the 

decay length of the optical near-fields, which scales linearly with the wavelength. By 

increasing the wavelength 2.5-times, the decay length of the synchronous near-field 

for 30 keV electrons changed from 40 nm to approx. 100 nm, which relaxes the 

requirements for the transverse dimensions and divergence angle of the electron beam 

used in the experiments. The second important technological reason is that in the case 

of mid-infrared light, also semiconductors with high refractive index such as silicon 

can be used for fabrication of the periodic nanostructures used for the optical near-

field generation. These high-index materials enhance the efficiency of coupling of the 

incident light to the synchronous evanescent field. This is not possible with the central 

wavelength of 800 nm, which corresponds to photon energy of 1.55 eV and is therefore 

strongly absorbed in semiconductor materials with band gap width Eg<1.55 eV. Due 

to the linear absorption, the threshold light intensity of laser-induced damage decreases 

significantly for 800 nm light in silicon. 

To drive the photonic accelerators, femtosecond pulses with high amplitude of 

electric field are required. However, there had been no femtosecond laser oscillators 

or amplifiers available in the spectral region around 2 μm until recently, when the 

active media based on thulium or holmium-doped glasses have been 

developed [69,70]. These active media can be directly pumped by laser diodes and can 

be prepared in a form of an optical fiber, which brings an advantages in the form of 

compactness and robustness of the oscillator and amplifier designs. Fiber lasers based 

on these two materials have typical pulse durations of τ>500 fs and their peak pulse 

energy can be scaled up to several tens of μJ while maintaining high repetition rate of 

the laser of frep≥1 MHz. This makes these sources ideal for generating the optical near-

fields for electron acceleration experiments. 
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Our experiments focused on different aspects of the interaction between electrons 

and optical fields were performed in two distinct experimental setups. The first setup, 

which is shown schematically in Fig. 8, is described in detail in [71]. The core of the 

setup was developed by Dr. J. Breuer, a former PhD student of P. Hommelhoff, and it 

served for the proof-of-concept experiments with sub-relativistic electrons [18,71]. 

During my postdoctoral fellowship, the setup was reconstructed and we added features 

allowing to study the spatial distribution of the electrons after the interaction with 

optical fields and to perform time-resolved experiments. The setup uses a DC electron 

with the maximum kinetic energy of the electrons of 30 keV, which is generated in a 

thermoemission electron gun of a scanning electron microscope column (Hitachi S-

570). The beam is focused close to the surface of the nanostructure, which is placed 

on a 5D stage allowing to control the spatial overlap of the optical near-fields with the 

electron beam with precision of several nanometers. The near-field are excited in a 

geometry, in which the laser beam is focused perpendicular to the electron propagation 

direction. The laser beam is imaged on a CCD camera (two-photon absorption of 2 μm 

femtosecond pulses is used) by a combination of microscope objective and focusing 

lens. The spatial alignment of the overlap between electron beam and optical near-

fields was performed by identifying the position of both beams at the surface of the 

nanostructure in both the optical and electron microscope images.  

After the interaction with optical fields, the electron spectrum is characterized 

using a retarding-field spectrometer [72], which serves as a high pass filter for the 

electrons, and a microchannel plate (MCP) detector. The energy resolution of the setup 

is ≈10 eV at the electron energy of 30 keV. To obtain the full spectrum we change the 

retardation voltage applied to the spectrometer and measure the transmitted electron 

current. The signal from X-rays generated in the microscope column is filtered out by 

using a coil to bend the electron beam in front of the detector. X-ray radiation is 

blocked using a metallic sheet.  

Because the optical near-fields at the nanostructure are excited using a femtosecond 

laser (in this case it is an experimental fiber oscillator+amplifier system from Menlo 

Lasers based on thulium-doped fiber, pulse duration τ=500 fs, pulse energy up to 1 μJ, 

repetition rate 1 MHz) with the duty cycle of only 10-7, only a small fraction of the 

electrons from the DC electron beam could interact with the optical near-fields. To 

detect these electrons, the time-resolved electronic signal from the MCP is measured 

and correlated to the signal from a fast photodiode (avalanche photodiode), which 

detects the arrival time of each laser pulse. The two electronic signals are processed 

by a time-to-digital converter (TDC) unit, which measures the time delay between the 

start signal obtained from the MCP and the signal from the subsequent laser pulse 

generated at the avalanche photodiode. The measured time delays are plotted as a 

histogram showing the number of detected above-threshold events per unit of the time 

delay. The interacting electrons form a peak, which is surrounded by the background 

caused by the signal from dark current of the MCP and the electrons scattered in the 

vacuum chamber, which can eventually reach the MCP. The experiments were 

performed under UHV conditions at pressures below 10-6 mbar. 
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Fig. 8. The layout of the experimental setup used for investigation of the interaction 

between free electrons and optical near-fields of nanostructures (adopted from [71]). 

Electron beam (blue) propagating from left to the right is focused to the interaction 

region close to the surface of a dielectric grating, which is illuminated by the 

femtosecond laser beam (red). After the interaction, the electrons propagate through a 

retarding-field spectrometer to the MCP detector. Time-resolved electronic signal 

from MCP is used as a start signal for TDC unit, which measures the time delay of the 

subsequent laser pulse and plot the individual events to the histogram (bottom right), 

which shows a background and a single peak corresponding to accelerated electrons. 

  

The second experimenal setup (see Fig. 9a)) was developed by me during my 

postdoctoral research fellowship at FAU Erlangen-Nürnberg in the group of P. 

Hommelhoff. The electron source is based on a laser-triggered scanning electron 

microscope column with Schottky-type electron source [73] (FEI XL 30 FEG), which 

produces femtosecond electron pulses that can be focused by electron optics to spot 

sizes of several nanometers. The electron emission is controlled by ultraviolet 

femtosecond laser pulses with duration of ≈100 fs focused to the surface of the 

tungsten tip, which in classical DC operation of the microscope serves for field-

emission of electrons in the gun. When the surface is illuminated by photons with 

photon energy ħω≥W, where W is the work function of the surface, the electrons are 

emitted via photoeffect. The work function is reduced by ZrOx deposited to the tip 

surface from the reservoir placed at the heated supporting wire and also by the applied 

electric field between the tip and extractor anode.  

When the tip temperature decreases below a certain temperature, the electric field 

at the tip surface is below the field emission threshold and no DC electron emission 

occurs. However, when the tip is heated to a high temperature by electric current sent 

through a supporting wire, the DC field emission becomes possible. This offers a 

convenient mechanism allowing to switch between the laser-driven pulsed 

photoemission regime with lower heating of the tip and a standard continuous electron 

beam, which is used for imaging of the structures and during alignment of the 

experiments. Controlling the time envelope of the electron pulses allows us to reach a 
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regime, in which almost all the electrons interact with the optical fields generated by 

the same pulsed laser which triggers the electron emission.  

The electron spectrum after the interaction is characterized using a single prism 

Elbek-type magnetic spectrometer [74] and an MCP detector. The spatially resolved 

images from the MCP allow to characterize the full electron spectrum in one 

measurement while for the previous setup it was necessary to scan the voltage applied 

to the retarding-field spectrometer to measure the electron energy spectra. The 

properties and performance of the laser-triggered SEM are discussed in detail in [A11]. 

Here I only mention the shortest measured electron pulse duration of τ=460 fs 

(FWHM) in the regime of less than 1 electron per pulse on average emitted from the 

tip. We typically used this regime for the presented measurements because the electron 

pulse duration and spot size in focus are not influenced by Coulomb repulsion, which 

occurs for multielectron pulses in short times after emission from the tip.  

 

 

Fig. 9. a) Layout of the ultrafast scanning electron microscope (USEM) experimental 

setup [A11]. The pulsed UV laser beam (violet) is focused by an achromatic lens 

(ACL) to the USEM Schottky tip, where the electrons are photoemitted. The pulsed 

electron beam (grey) is transmitted through the objective aperture (OA) and is focused 

to the interaction region to the vicinity of the surface of a periodic dielectric 

nanostructure. The pulsed IR laser beam (red), which is used for optical near-field 

generation, is delayed by an optical delay line (Δt) and dispersed by a diffraction 

grating (G), whose surface is imaged by a cylindrical lens (CL) and an aspherical lens 

(ASL) to the surface of the nanostructure in the USEM vacuum chamber. Electron 

spectra are measured by an electromagnetic spectrometer and a micro-channel plate 

detector (MCP). b) Interaction between an electron propagating downwards along the 

surface of a silicon grating and optical near-fields generated by a pulse-front-tilted 

laser beam propagating horizontally from the left to the right. 

 

To extend the effective interaction distance/time we introduced a pulse-front 

tilt [75] to the infrared laser pulses generating the optical near-fields. In the pulse-

front-tilted state, the surfaces of constant phase and constant intensity of the optical 

pulses are not parallel (see Fig. 9b)). The group velocity of the envelope of the 

synchronous near-field in the direction of electron propagation is matched to its phase 

velocity. This is reached by imaging the surface of the reflective diffraction grating 

(element G in Fig. 9a)) using a cylindrical and spherical lenses. By adjusting the 
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angular dispersion of the grating and focal distances of the imaging setup it is possible 

to control the pulse-front tilt angle θPFT. 

The same experimental setup was also used to study the inelastic electron 

interaction with ponderomotive potential of optical travelling waves [A7,A8]. Here the 

optical part was modified. By using two optical beam paths and two independent 

focusing lenses we intersected the two laser pulses at different frequencies with the 

pulsed electron beam (details can be found in ref. [A7] and its Supplementary 

Information). 

Besides the experiments demonstrating the photon-electron interaction, the pulsed 

electron microscope setup can serve also for time-resolved experiments, in which a 

laser pulse is used to excite dynamics in the studied sample and an electron pulse serves 

as a probe and image the dynamics after the optical excitation with high spatial 

resolution. The time-resolved experiments with single-electron pulses are then 

typically performed in a stroboscopic manner, in which many subsequent 

measurements are done with the same time delay between the electron and laser pulses 

to allow image formation. This process is repeated for different time delays and allows 

to monitor the dynamical changes induced in the sample. This stroboscopic imaging 

has one important pre-requisite. The studied sample has to get back to the initial state 

before the next excitation pulse comes. This limits the variety of the studied dynamics 

to carrier relaxation, recombination or diffusion in semiconductors. Ultrafast scanning 

electron microscopy was applied e.g. to study the excited carrier dynamics in a p-n 

junction [76] or to image diffusing carriers in semiconductors [77]. 

 

 

3.2. Overview of the results 
 

The experimental setups described in the previous chapter were used to perform 

various experiments focused on the research of the inelastic electron interaction with 

light fields. Besides the experiments, several publications attached to this thesis are 

focused on theory and numerical simulations. The publications can be divided to two 

cathegories according to the type of the interaction which is investigated.  

In the first cathegory we studied electron scattering at optical near-fields with 

several goals: 

1) Enhancement of the coupling efficiency of light to the accelerating mode by 

using different light wavelengths, optimized nanostructures fabricated from 

high-index and high damage-threshold materials, development of new type of 

enhancement based on distributed Bragg mirrors [A12,A14] 

2) Demonstration of the sub-cycle structure of electron energy modulation, which 

allows to generate attosecond electron pulses [A4] 

3) Acceleration of the electrons to the highest possible energies [A9,A11] 

4) Demonstration of new types of coupling of the light waves to the evanescent 

accelerating mode [A5] 

5) Studies of various aspects of electron acceleration by optical near-fields 

[A2,A3,A6,A9,A11] 

 

These four goals were motivated by the proof-of-concept experiments [17,18], 

which showed only the basic properties of the interaction. This type of experiments is 

nontrivial as it combines several distinct areas of physics, namely femtosecond laser 

optics, electron emission physics and optics and nanofabrication, which is required to 

obtain the key components for the experiments, the nanostructures for generation of 
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near-fields. In our case, the structures were fabricated using standard nanofabrication 

techniques. First the design of each structure was optimized using FDTD simulations 

and then it was patterned in a photoresist, which was deposited to a flat surface of a 

crystalline substrate (most often silicon). For patterning we used electron beam 

lithography or UV lithography for larger details of the structures. After this step, the 

illuminated resist was washed away and the structure was etched using reactive ion 

etching. The nanofabrication for most of the publications included in this thesis 

[A3,A4,A5,A6,A9,A11] was performed by our collaborators at Stanford University 

(groups of prof. Harris and prof. Byer). The same nanofabrication process was also 

used by our PhD student P. Yousefi at Max-Planck Institute in Erlangen, where the 

structures with DBR were prepared [A12]. 

To enhance the efficiency of coupling of light to the synchronous optical mode 

interacting with the electrons we performed several modifications of the experimental 

setup to allow mid-infrared driving wavelength of about 2 micrometers. This allowed 

us to use silicon nanostructures with two advantages compared to SiO2 structures used 

for the initial experiments. First advantage is the technology of nanofabrication, which 

is well developed for silicon and allows to fabricate complex structures with various 

shapes with high precision. Second advantage is very large refractive index of silicon 

of n=3.4, which helps to increase the coupling of light to slow evanescencent modes 

significantly. In publication [A12] we developed a new type of structure, which uses 

rows of nanopillars to generate the synchronous optical near-field instead of 

rectangular grating. This structure was inspired by our colleagues at Stanford 

University [78]. To enhance the coupling efficiency even more and to generate almost 

symmetric transverse field profile we added two features, namely the spatial offset of 

the pillars and the Bragg reflector, which emulates the illumination of the structrure 

from opposite direction. As we showed in [A12], such Bragg reflector increases the 

efficiency of synchronous mode excitation approximately by 60%. 

Next interesting topic was to demonstrate the sub-optical cycle modulation of 

the kinetic energy of electrons after the interaction with optical near-fields. If the 

concept of time-to-energy mapping can be transferred to free electrons, it would enable 

streaking-based metrology and control of electron beams on attosecond time scales 

[A4]. To study the sub-cycle modulation we let the electrons interact with two 

subsequent synchronous waves, which were phase-locked to each other. These two 

waves were generated in a Michelson interferometer and focused to two spatially 

separated spots on a single silicon grating. By changing the relative phase between the 

two optical waves with which the electrons interacted we were able to modulate the 

final energy spectrum [A4]. When the two waves act in phase, the spectral modulation 

was enhanced while the out of phase operation led to suppression of the energy 

modulation. We also showed for the first time that the optical near-fields can cause 

transverse streaking of the electrons depending on their arrival time to the second 

interaction [A4]. The numerical simulations show a possibility to reach time resolution 

of about 10 attoseconds in streaking-based characterization of electron pulses. 

One of the motivations of our research was to construct a light-driven electron 

accelerator based on synchronous optical near-fields. However, when the energy gain 

of slow electrons (kinetic energy of 1-30 keV) overcomes approx. 1 keV, the 

propagation velocity of the electrons changes significantly and it is no longer 

synchronous to the optical near-fields. A solution of this problem is to create an 

accelerating evanescent wave with the propagation velocity changing along the 

electron beam path. Two possibilities how to generate such accelerating wave are to 

use chirped laser pulses to drive the interaction or to create a chirped quasiperiodic 
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structure, at which the spatial period changes along the electron propagation direction. 

Such chirped structures alowed us to increase the maximum energy gain of electrons 

with the initial kinetic energy of 28 keV by 2.6 keV (almost 10% relative change of 

the electron energy, which is still highest reached value of the relative energy gain for 

this type of electron acceleration) [A9]. Besides the acceleration, the electrons in any 

accelerator structure have to be guided by transverse forces. As I discussed in chapter 

2.2, the phase-shifted transverse forces are naturally present during the interaction with 

optical near-fields. In [A9] we showed that by special design of the nanostructures, the 

transverse forces can be controlled to some extent and can guide or focus the electron 

beam. 

To further explore different possibilities of light coupling to the evanescent 

near-field we studied a case, in which no nanostructure is required. The evanescent 

optical waves appear already in basic courses of wave optics during a phenomenon of 

total internal reflection of light when incident at the flat boundary between higher and 

lower refractive index materials [79]. When the angle of incidence is larger than the 

critical angle, the wave becomes totally reflected. This effect is accompanied by 

generation of an evanescent wave in the lower-index material, which propagates along 

the boundary. When the first material is a dielectric and the second material is vacuum, 

the electrons can propagate along the boundary and synchronously interact with the 

evanescent wave. We introduced and studied this coupling mechanism both 

theoretically and experimentally [A5]. It has already found interesting applications for 

pulsed [8,80] or continuous [66,67] electron phase modulation in transmission 

electron microscopes or in advanced schemes for photonic electron accelerators [81]. 

Further we investigated various other aspects of the electron-light interaction, 

such as the possibility to drive the interaction with extremely short laser pulses [A6] 

or a possibility to use the optical near-fields as a beam position monitor with high 

spatial and temporal resolutions [A3]. 

In the second cathegory of papers we investigated both theoretically and 

experimentally the interaction of electrons with the ponderomotive potential of optical 

fields in vacuum. We performed the proof-of-principle experiments demonstrating the 

inelastic electron scattering at the ponderomotive potential of an optical travelling 

wave [A7] and generation and detection of attosecond electron pulses by this technique 

[A8]. We showed that using the ponderomotive potential it is possible to reach an 

effective field of 2.5 GV/m and accelerate the electrons from initial kinetic energy of 

30 keV by more than 10 keV. When taking into account the photon energy of the 

driving photons of about 0.5 eV, this corresponds to absorption and simultaneous 

emission of more than 10.000 photons by the electron during the interaction time of 

only ≈50 fs.  

As described in chapters 2.3. and 2.4., this interaction leads to harmonic 

modulation of electron energy as a function of time, which in turn causes compression 

of the electrons and formation of attosecond-long spikes in the electron probability 

density. In [A8] we proved that the compression really takes place and that it is 

possible to control the dynamics of the electrons in longitudinal phase space using the 

strength of the interaction. We created two spatially-separated interaction regions, in 

which the optical travelling waves generating the ponderomotive potential were phase-

locked. From the spectrograms of the electrons (measured spectra as a function of the 

relative phase difference between the two optical waves) we were able to identify the 

conditions for optimal electron compression. By comparison with numerical 

simulations, the duration of individual electron pulse from the train was determined to 

be ≈300 attoseconds [A8]. The paper also shows that it is possible to reach long-term 



 29 

stability, which is sufficient for performing imaging experiments with the electrons 

with sub-femtosecond time resolution. 

Besides the experimental studies I investigated several novel aspects of the 

electron-light interaction in vacuum. Using numerical simulations I described how the 

chirped laser pulses can serve for efficient electron acceleration from rest to high 

energies [A1], I studied the possibility to generate isolated attosecond electron pulses 

using the interaction with three pulsed laser beams [A13], I proposed generation of 

electron vortex states via inelastic scattering at optical ponderomotive potential [A15] 

and I theoretically studied higher-order nonlinear inelastic scattering of electrons at 

optical standing waves [A10]. 

The real applications of the phenomena introduced and studied in the collection 

of papers of this thesis require as high current of electrons as possible. However, to 

reach high enough amplitudes of the electric field to modulate the electron beam 

energy, the driving optical waves have to be pulsed with very short pulse durations of 

the order of hundreds of femtoseconds to picoseconds. The limitation thus arrises from 

the fact that the electrons are fermions and cannot be all prepared to identical quantum 

state such as photons in a coherent light wave. The maximum current density and peak 

brightness of an electron beam is limited by Coulomb interaction between the 

electrons. For the experiments with optical near-fields, the beam has to be compressed 

in all three dimensions due to a sharp spatial decay of the evanescent wave amplitude. 

It can be shown that it is not possible to propagate high density of sub-relativistic 

electrons in a bunch with nanometric dimensions over extended distanced. For this 

reason, most of the experiments have to be done in a repetitive manner with high 

repetition rate femtosecond laser systems, which allow to increase the average current 

of electrons interacting with the optical fields to picoampere level. This is already 

enough for formation of real of diffraction images within reasonable acquisition time 

of few seconds. 

Further details of all the performed experiments, theory and numerical 

modelling can be found in the papers attached to this thesis and their supplementary 

materials. 
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4. Conclusion & outlook 

 

The research presented in this thesis is focused on different aspects of 

stimulated inelastic interactions between electrons freely propagating in vacuum and 

light fields. We proposed and demonstrated several important advancements in this 

research field. The most important finding and experimental achievement is the 

possibility to control the electrons by the electromagnetic fields of light waves on sub-

femtosecond time scales, which were not reached previously. The possible 

applications of electron beams compressed to attosecond durations span from phase-

resolved imaging of optical and plasmonic near-fields to the control of electron 

injection to laser-driven electron accelerators. However, there are also interesting 

quantum mechanical aspects of the interaction, which we plan to study in the near 

future. 

As shown in chapter 2, the electron wavepacket interacting with synchronous 

optical field obtains a phase modulation at the optical frequency. An unresolved 

question of fundamental importance is whether the optical coherence imprinted to a 

single electron wavepacket by a coherent light wave can be transferred to other types 

of electronic excitations and/or to photons generated via cathodoluminescence (Smith-

Purcell [82], coherent transition radiation [83] or other types of coherent emission 

processes). This question is related to a long-lasting controversy between the two 

possible interpretations of a free massive particle and its interactions. The first 

interpretation consider the square modulus of the wavefunction as the probability 

distribution of finding a point-like particle in a particular state (position, 

momentum) [84] while the second interpretation connects it with the continuous 

charge density represented by a spreading wavepacket. The difference has implications 

for the radiation emitted by the electrons while propagating in periodic fields [85], 

close to refractive materials [59] or for the possible resonant interaction with two-level 

quantum systems [9]. The transfer of coherence has been theoretically considered only 

recently, but it has never been observed. Combined with the atomic resolution of 

electron microscopes, such process would enable to address and coherently control 

quantum states of a single atom in an ensemble (solids state material, molecule, etc.) 

or to coherently drive photon emission from a selected two-level system, thus going 

significantly beyond the state of the art in the field of quantum control and metrology. 

Besides low-energy excitations and photon emission, the attosecond time structure of 

the electron wavepackets may be applied in future for time-resolved studies of 

correlated inner-shell electron dynamics such as Auger decay in atoms, which typically 

occurs on single femtosecond time scales [86]. 

Another possible application of quantum coherent optically modulated electron 

waves is a new type of electron holography, in which the electron waves are shifted in 

the time domain (along the beam propagation direction). The first interaction would 

serve as a coherent beamsplitter and the momentum shifted electron states would 

interfere in a second interaction with the optical near-fields of the sample to be studied. 

This type of time domain electron holography may enable phase-resolved imaging of 

optical and plasmonic near-fields and to study their generation and propagation with 

unprecedented combination of attosecond temporal and nanometer spatial resolutions. 

With this being said, this research field provides a lot of different directions for future 

research and many new avenues to be explored in next few years.   
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