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Abstract

In the first chapter we consider two types of models: (i) a rational inattention problem
and (ii) a conformity game, in which fully informed players find it costly to deviate from
average behavior. We show that these problems are equivalent to each other, both from
the perspective of the participant and the outside observer: each individual faces identical
trade-offs in both situations, and an observer would not be able to distinguish the two
models from the choice data they generate. We also establish when individual behavior
in the conformity game maximizes welfare.

The second chapter shows that the principal can strictly benefit from delegating a
decision to an agent whose opinion differs from that of the principal. We consider
a “delegated expertise” problem in which the agent has an advantage in information
acquisition relative to the principal, rather than having preexisting private information.
When the principal is ex ante predisposed towards some action, it is optimal for her to
hire an agent who is predisposed towards the same action, but to a lesser extent, since
such an agent would acquire more information, which outweighs the bias stemming from
misalignment. We show that belief misalignment between an agent and a principal is a
viable instrument in delegation, performing on par with contracting and communication
in a class of problems.

The third chapter extends the classical search framework and allows the decision-
maker to choose information endogenously and flexibly. We consider a problem in which
the manager chooses the best among two ex ante identical candidates. The manager
learns the qualities of candidates sequentially and can choose the information structure
by herself. We show that the manager may learn different information about candidates,
but this does not lead to discrimination against a candidate: she chooses them uniformly
on average. We connect our findings with the serial-position effect from the psychological
literature. Also, we show that our results extend to a more general framework with two
candidates. Including an additional candidate in our model creates discrimination against
the last candidate.
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Introduction

The unifying theme of these three chapters is analysis of problems with endogenous

information acquisition. The idea that people cannot absorb all available information and

pay attention only to parts of it dates back at least to Simon et al. (1971). Rather than

being fully myopic, people use their ability to perceive information as scarce resource and

choose second-best solutions given the degree of friction present. The theory of rational

inattention, which was pioneered by Sims (2003), brought this idea to economics. The

main assumption of the theory is that, before making a choice, a person optimally chooses

an information structure herself, incurring greater costs for a more informative structure.

In the modern world, this assumption is very natural in various settings.

In this dissertation, I use stylized models to study the implications of endogenous

information acquisition on choice. In the first chapter, we analyze the structure of

the stochastic choice that endogenous information acquisition leads to. The second

chapter focuses on the role of the flexibility of information. The third chapter studies

the intertemporal tradeoff generated by endogenous information acquisition in a search

problem.

In the first paper, “An Equivalence Between Rational Inattention Problems and Complete-

Information Conformity Games” (joint work with Ole Jann), which was published in

Economic Letters, we explore the structure of the stochastic choice resulting from rationally

inattentive behavior with an entropy cost function. We consider a conformity game in

which a person finds it costly to deviate from the average behavior. We show that the

choice data in both problems is indistinguishable from an outside observer’s point of view.
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Using the entropy function’s proneness property, we show that strategic externalities

cancel themselves out in the conformity game. Additionally, we argue that the entropy-

based cost is a unique function in the additively separable class for our result to hold.

In the second paper, “Optimally Biased Expertise” (joint work with Andrei Matveenko,

Maxim Senkov, and Egor Starkov), we consider a stylized model of a delegation problem.

The principal delegates a decision under uncertainty to an agent who has access to

information technology and is rationally inattentive. We focus on the situation in which

the principal and agents to whom she can delegate a decision share the same preferences,

but differ in prior beliefs. Because of the difference in prior beliefs, all agents choose

different information structures. When choosing an agent, the principal must balance

the amount and the direction of information an agent learns. We show that, when the

principal does not internalize the cost of learning, she chooses an agent who is predisposed

towards the same action, but to a lesser extent. We compare several delegating tools and

show that a biased prior belief is among the most beneficial for a particular class of

preferences. Our results hold irrespective of who makes a decision, the principal or an

agent.

The third paper “Is it Better to be First? Search with Endogenous Information

Acquisition” extends the classical search framework and allows the decision-maker to

choose endogenous and flexible information about available alternatives. We consider a

stylized model of optimal interview design, in which the manager sequentially inspects

candidates and has to choose the best one. We study the effect of the order of inspection

on information acquisition and choice discrimination and focus on a framework with two

ex ante identical candidates and quadratic costs of learning. We identify the special

intertemporal role of information: in the solution, the manager incurs a fixed amount

of costs and uses information between periods as perfect substitutes. We find a no-

discrimination result: with two candidates, the manager chooses them uniformly on

average. Our results hold in a slightly more general setting with two candidates; however,

adding a new candidate discriminates against the one the manager considers last. Additionally,

we connect our results with findings from the psychological literature.

2



Chapter 1

An Equivalence Between
Rational Inattention Problems and Complete-
Information Conformity Games

Co-authored with Ole Jann (CERGE-EI).

1.1 Introduction

Models of rational inattention (RI) have become a standard tool of economic analysis. In

such models, an individual chooses among a set of options, about whose properties she

has imperfect information. She can acquire this information at a cost that depends on the

reduction in her uncertainty, usually measured by the entropy of her beliefs. Hence, she

faces a trade-off between acquiring information that allows her to make better decisions,

and the cost of acquiring this information.

The RI framework is commonly understood as a model of cognitive and informational

phenomena: Individuals cannot choose optimally because they lack knowledge about

themselves or the world around them. The barriers they face are different, both in origin

and in effect, from external or physical barriers.

We show that the standard RI model is consequentially and observationally equivalent

to a complete-information game that we call “conformity game”. In this game, perfectly-

informed players decide between a set of options, but are punished for deviating from the

average choice of all players. This cost of non-conformity is given by the Kullback-Leibler

3



divergence between individual behavior and population average.

Our result has three economic implications. On an individual level, it shows that

informational and non-informational barriers, despite originating from entirely different

causes, can lead to equivalent decision problems with mathematically indistinguishable

trade-offs. This opens the possibilities for further investigations into how individuals may

trade off these different constraints against each other. For example, how will they decide

to reduce their uncertainty if this means introducing further external constraints on their

behavior?

On a population level, our result can be applied to the problem of an analyst trying

to infer underlying parameters from observed choice data. We establish an observational

indistinguishability: Without further evidence, the analyst would be unable to determine

whether “conformist” behavior is, in fact, due to conformist pressures on the decision

makers, or whether it results from a lack of information that they have to overcome by

costly information acquisition. This indistinguishability holds as long as different agents

in the RI model access uncorrelated sources of information.

Finally, in deriving our result, we establish a property of the class of conformity games

that we consider in this paper: Individual behavior will only maximize welfare in such

games if the cost of divergence is given by the Kullback-Leibler function.

A brief intuition. Consider that, on an abstract level, both models concern the

behavior of individuals as part of a population. In the RI model, an agent does not

know the state of the world when she makes a decision; she only knows that she lives

in one of many possible states of the world, whose respective probability is given by her

prior beliefs. She therefore acts as the social planner of a hypothetical population of

agents corresponding to all possible states of the world.

In the conformity game, by contrast, each agent is part of an actual population

of players who exert an externality on each other, since their choice determines the

population average from which deviation is costly. However, as we show in proposition

1, if deviation is punished according to the Kullback-Leibler cost function, each player in

the conformity game acts as if she was trying to maximize welfare. Hence, agents in both

models act as social planners of a population of agents that represents all possible types.

In both cases, if costs (of learning or divergence) are high, agents will default to a kind

of population average: If learning is costly, agents will mostly choose the options that

4



are optimal under the prior, regardless of the state of the world. If divergence is costly

in the conformity game, players will, in equilibrium, stick close to the average choice of

other agents, regardless of what their individual preferences are.

Relationship to other research. This paper connects two strands of research. On

one side, there is the literature on rational inattention, which was started by Sims (2003).

Matějka and McKay (2015) describe the general solution of a static discrete-choice model

with entropy cost; Caplin et al. (2022) generalize the cost functions and introduce the

notion of posterior separable cost functions.

The other side consists of studies on social norms and conformity, in particular

preference-based conformity (as opposed to the belief-based conformity that informational

cascades induce). Bernheim and Exley (2015) discuss different mechanisms of conformity;

in this paper we focus on what they describe as preference mechanism and not on the

signaling effect of Bernheim (1994) or other inference-based theories. In our model, the

norm from which it is costly to deviate is endogenous. This is a natural assumption (since

norms are constructed by the society in which they exist) that has e.g. also been used

by Lindbeck et al. (1999) in their study of social norms and unemployment.

In section 1.3.1, we formulate conditions under which individually optimal behavior

maximizes welfare in the conformity game we analyze. Flynn and Sastry (2020) study

strategic mistakes in large games and derive a similar condition for equilibrium efficiency

in their setting – though without explicitly relying on the properness property of the

Kullback-Leibler divergence that we use here.

1.2 Model

We first describe the basic setup that is common to the different models we consider. We

then describe the specific assumptions of each model.

1.2.1 The Basic Setup

Each individual has to choose from a finite set of alternatives I = {1, 2, . . . , I}. Each

individual has a type j ∈ J = {1, 2, . . . , J}; each type occurs with frequency µj where
J∑︁

j=1

µj = 1. For each agent of type j, option i has payoff uj
i . We will consider mixed as well

as pure choices, so that a choice is a vector of choice frequencies pj = (pj1, . . . , p
j
I) ∈ ∆(I)

5



that gives an expected payoff of

πj(pj) =
I∑︂

i=1

pjiu
j
i .

The models that we analyze only differ in whether agents must first learn about j (and

pay a cost for that) or whether they know their type j when making their choice (and

then pay some cost for diverging from average choices).

1.2.2 The Rational Inattention Problem

In this type of model, which is close to standard models of rational inattention, we assume

that individuals do not know their own type j and are hence unsure about their vector of

payoffs uj =
(︁
uj
1, . . . , u

j
I

)︁
. They can acquire information about uj at a cost that depends

linearly on the reduction in entropy of their information – this is the “mutual information”

cost function, cf. Matějka and McKay (2015) and Caplin et al. (2019).

If we write θ for an agent’s type, we can write Pj,i = P (θ = j|a = i) for the conditional

probability with which an agent who chooses option i will be of type j – this value

changes as an agent gathers information. Let Pi = (P1,i, . . . , PJ,i) be the posterior belief

of the agent after she has acquired information; it describes the posterior probabilities of

different types given that she has found action i optimal. The cost of information is then

given by the mutual information of the prior belief µ and the vector of posterior beliefs P .

Since cost is given by reduction in entropy, we can express it using the Kullback-Leibler

divergence1

C(P ,µ) = Ei [DKL(Pi∥µ)] =
I∑︂

i=1

p̄i

J∑︂
j=1

Pj,i log

(︃
Pj,i

µj

)︃

where we write p̄i =
J∑︁

j=1

µjPi,j for the marginal probability of action i.

The expected payoff for one agent is then given by

I∑︂
i=1

p̄i

J∑︂
j=1

(︃
Pj,iu

j
i − Pj,i log

(︃
Pj,i

µj

)︃)︃
.

1We use the usual conventions 0 log 0 = 0, p log p
0 = −∞ and 0 log 0

0 = 0.

6



1.2.3 The Conformity Game

Now consider a game that has the structure described in 1.2.1 and in which each agent

perfectly knows their own payoffs, i.e., an agent of type j knows that their type is j

and their payoffs are uj = (uj
1, . . . , u

j
I). There is a continuum of agents and each type j

continues to occur with proportion µj. In the absence of further constraints, the agent

would simply choose the options with the highest uj
i with probability 1. We assume,

however, that the agent faces a cost of deviation from the average choice frequency

p̄ =
∑︁J

j=1 µ
jpj. This cost is given by the Kullback-Leibler divergence between individual

and average choice frequence, DKL(p
j∥p̄) =

I∑︁
i=1

pji log
(︂

pji
p̄i

)︂
.

The agent’s payoff is hence

πj(pj) =
I∑︂

i=1

[︄
pjiu

j
i − pji log

(︄
pji
p̄i

)︄]︄

We are agnostic about the origin of the deviation cost that the agent faces. It could be

an intrinsic taste for conformity (as described by Bernheim and Exley (2015) as preference

mechanism) or an external cost that is levied by some institution or society itself.

1.3 Equivalence Between the Models

1.3.1 Individual Choice and Welfare Maximization in the Conformity

Game

When making their choice pj in the conformity game, individuals influence the average

choice p̄ and hence exert an externality on others. We can show, however, that this

externality does not distort behavior away from the welfare-maximizing set of choices,

due to the properness property of the Kullback-Leibler cost function.

The statement holds for interior equilibria – each conformity game also has a (large) set

of equilibria in which all players choose some options with probability zero and deviation

from this probability is punished with infinite cost. Such equilibria, however, are neither

welfare-maximizing nor trembling-hand stable.

Proposition 1. Nash Equilibrium behavior maximizes welfare in the conformity game.

Proof. Our argument is based on showing that the systems of first-order conditions in

the individual problem and in the welfare maximization problem have the same set

7



of solutions. Since the Kullback-Leibler divergence is concave in both arguments and

we consider only interior equilibria, this is sufficient to show that the two optimization

problems (individual and welfare) are equivalent.

Consider the Lagrangian for the problem of maximizing welfare:

L(p, ξ) =
J∑︂

j=1

µj

(︄
I∑︂

i=1

pjiu
j
i −DKL(p

j∥p̄)

)︄
−

J∑︂
j=1

ξj(
I∑︂

i=1

pji − 1). (1.1)

We can rearrange the first-order condition for pji as

µj
(︂
uj
i −

∂DKL(p
j∥p̄)

∂pji
−

J∑︂
k=1

µk ∂DKL(p
k∥p̄)

∂p̄i

)︂
− ξj = 0

⇔ uj
i −

∂DKL(p
j∥p̄)

∂pji⏞ ⏟⏟ ⏞
primary effect

=
ξj

µj
+

J∑︂
k=1

µk ∂DKL(p
k∥p̄)

∂p̄i⏞ ⏟⏟ ⏞
externality effect

(1.2)

The primary effect is the effect of an agent’s action on their own payoff. In the

individual problem of the agent j, it equals the Lagrange multiplier. Hence, if we can

show that the right-hand side of equation (1.2) depends only on j, then we can simply

rescale the Lagrange multiplier to transform one system of equations into the other. For

this we need to show that the externality effect is invariant in i.

Consider, for a moment, an auxiliary optimization problem in which the social planner

takes all pj as given, but can replace p̄ in the cost function with any other vector in order

to minimize total cost. This is equivalent to finding the q that solves the problem

argmin
q∈∆(I)

J∑︂
j=1

µj

I∑︂
i=1

pji log

(︄
pji
qi

)︄
(1.3)

or

argmin
q∈∆(I)

I∑︂
i=1

p̄i log qi.

This expression is minimized exactly by q = p̄ due to the properness property of

entropy.2 Now consider the externality effect in expression (1.2), which is the effect of

p̄i on the total cost at the point p̄. But if p̄ is already optimal, that must mean all

2For previous economic applications of this properness property, cf. the proof of lemma 2 in Steiner
et al. (2017).
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p̄i have the same marginal effect, and hence the externality effect is the same for all

i. This means we can transform the individual maximization problem into the welfare

maximization problem and vice versa, and completes the proof.

Note that for I > 2, it follows from the result of Aczél and Pfanzagl (1967) that the

Kullback-Leibler divergence is the only additively separable cost function for which this

proposition is true.

1.3.2 Equivalence

We are now ready to show our main result: the equivalence between rational inattention

problems, as described in section 1.2.2 and complete-information conformity games, as

described in section 1.2.3.

Proposition 2 (Equivalence). Consider a rational inattention problem with a finite

number of options and entropy cost of information. Then there exists a conformity

game in which deviation cost is given by the Kullback-Leibler divergence and which has

equivalent payoffs, trade-offs and equilibrium behavior, and vice versa.

Proof. We will show that the individual maximization problem of the RI model and the

welfare maximization problem of the conformity game can be transformed into each other.

The result then follows in combination with proposition 1.

We exploit that Pj,i

µj =
pji
p̄i

(Bayes’ rule), the fact that P (a = i) = p̄i (by definition)

and the martingale property of expectations to transform:

I∑︂
i=1

p̄i

J∑︂
j=1

[︃
Pj,iu

j
i − Pj,i log

(︃
Pj,i

µj

)︃]︃
=

I∑︂
i=1

p̄i

J∑︂
j=1

[︄
pjiµ

j

p̄i
uj
i −

pjiµ
j

p̄i
log

(︄
pji
p̄i

)︄]︄

=
J∑︂

j=1

µj

I∑︂
i=1

[︄
pjiu

j
i − pji log

(︄
pji
p̄i

)︄]︄

where the first expression is the individual maximization problem in the RI problem and

the last is welfare in the conformity game.

Formally, we exploit that the Kullback-Leibler divergence is a function of the ratio of

two probabilities. This allows us to use Bayes’ rule to transform conditional probabilities

of one type (how likely a state of the world is for a given action) into conditional

probabilities of another type (how likely an action is for a given type).
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Note that this technique is not limited to Kullback-Leibler cost functions. It would

apply for any f-divergence cost function (Rényi, 1961). However, for other f-divergence

cost functions, proposition 1 does not apply; hence there is only an equivalence between

an individual RI problem and the social planner problem of a conformity game, but not

between the individual problems of the two models.
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1.A The Necessity of Kullback-Leiber Costs

We will sketch a proof showing that our result in proposition 1 is limited to conformity

games with Kullback-Leibler cost functions (among the set of additively separable cost

functions).

Proposition 3. For I ≥ 3, the result from proposition 1 is not true for any other

additively separable cost function than the Kullback-Leibler divergence (and its linear

transformations).

Proof. In the proof of proposition 1, we have exploited that p̄ is the minimizer of total

cost. Now assume that instead of the Kullback-Leibler function, we were to work with a

general additively separable cost function C(pj,µ) =
I∑︁

i=1

pji (f(p
j
i )− f(qi)) where f f is a

continuously differentiable function. Then expression (1.3) becomes

argmin
q∈∆(I)

{︂ J∑︂
j=1

µj

I∑︂
i=1

pji (f(p
j
i )− f(qi))

}︂
= argmax

q∈∆(I)

{︂ J∑︂
j=1

µj

I∑︂
i=1

pjif(qi)
}︂

= argmax
q∈∆(I)

I∑︂
i=1

p̄if(qi).

(Aczél and Pfanzagl, 1967) show that for I ≥ 3, this has the solution qi = p̄i (under

the constraint that
I∑︁

i=1

qi = 1) if and only if f(qi) = c1 + c2 log qi. Hence, if the cost

function C were to take a form that is not a linear transformation of DKL, then pji would

have an indirect as well as a direct effect on the welfare maximization problem (1.1),

and the welfare-maximizing choice profile of the conformity game would not be a Nash

Equilibrium.
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Chapter 2
Optimally Biased Expertise

Co-authored with Andrei Matveenko (University of Mannheim, Department of Economics),

Maxim Senkov (CERGE-EI), Egor Starkov (University of Copenhagen, Department of

Economics)

2.1 Introduction

Delegation is a valuable management tool widely used in business structures, political

organizations, and other economic contexts. Firm owners delegate operational decisions

to managers, politicians delegate to their advisors, grant funders delegate award decisions

to experts in the field, and people rely on advice from financial and tax advisors. It is

also true that in many of these scenarios, the experts do not have much preexisting

knowledge about the case they consider, but rather use their expertise to more easily

acquire additional information to make the best decision.1

What happens if the preferences or the beliefs about the fundamentals are not fully

aligned between the principal and the agent? The common wisdom (see, e.g., Holmström

[1980]) suggests that this leads to a conflict, since from the principal’s point of view,

the agent then makes suboptimal decisions.2 However, in this paper we show that
1E.g., Graham et al. (2015) show that delegation tends to be used when the decision-making demands

more evidence that the delegatee can provide. Alternatively, the choice to delegate a decision is often
associated with a volatile environment that a delegator faces (Foss and Laursen, 2005; Ekinci and
Theodoropoulos, 2021), so any knowledge quickly becomes obsolete.

2This is supported by the empirical evidence: e.g., Hoffman et al. (2018) find that inefficiencies in HR
managers’ hiring decisions can be a result of their biased preferences. Kennedy (2016) presents evidence
that the principals take the conflict of interest into account when selecting the expert.
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when the agent has to actively acquire information, as opposed to having a preexisting

informational advantage, there is more to this story. In particular, such a misalignment

can then benefit the principal by encouraging the agent to acquire more information than

an aligned agent would.

We consider a delegation model in which the payoffs from different actions depend on

the unknown state of the world, and the principal (she) and the agent (he) have misaligned

beliefs about the state of the world. The agent initially has no private information about

the state, but can acquire costly information about it, which would improve the quality

of the decision made (this setting has been labeled by Demski and Sappington [1987] as

“delegated expertise”). The agent’s cost of learning is not internalized by the principal,

and her own cost of learning is prohibitively high.

We show that the principal benefits the most from delegating to an agent who ex ante

is more uncertain than she is about what the best course of action is (shown in different

contexts by Propositions 4, 5, and 6). This is because the more uncertain the agent

is, the more he learns about the state, and the better his action fits the state – which

benefits the principal. This, however, has to be balanced against the channel described

above: any kind of misalignment between the principal and the agent leads to a bias

in the agent’s decisions, compared to what the principal would prefer. Therefore, the

principal ends up hiring an agent who is more uncertain than she is and thus conducts

a more thorough investigation than an aligned agent would, – but who still shares her

action predispositions to some extent (i.e., favors the same action ex ante). This result

holds regardless of who has the final decision rights: the optimal delegation strategy is the

same whether the principal delegates the decision rights to the agent or merely expects

a recommendation on the optimal course of action (Proposition 13).

The presence of the principal’s trade-off between the amount of information acquired

by an agent and the bias in his resulting decisions (Section 2.4) relies upon the flexible

information acquisition technology. We use the Shannon model of discrete rational

inattention (see, e.g., Matějka and McKay [2015], and Caplin et al. [2019]) to provide

this dimension of richness. According to the Shannon model, an agent can choose any

signal structure but has to pay a cost proportional to the expected entropy reduction.3

3The entropy parametrization leads to information cost being dependent on the prior belief, even
keeping the signal structure constant. This has been one of the critiques of the Shannon model (see
Mensch [2018]). Such a cost function has, however, been rationalized in both information theory as a
cost function arising from the optimal encoding problem (see Cover and Thomas [2012]), and decision
theory as arising naturally from Wald’s sequential sampling model (see Hébert and Woodford [2019]). In
turn, the Shannon model has been shown to work as a microfoundation of the logit choice rule commonly
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The choice of the signal in this model depends on the agent’s prior belief: an agent whose

prior is skewed towards some state of the world chooses a signal which is relatively more

informative regarding that state and thus allows him to make a better decision in that

state. This dimension of flexibility is what leads to bias in the final decisions when the

agent’s prior belief is not aligned with the principal’s.

We also show that the principal can equivalently use the misalignment in preferences

rather than the misalignment in beliefs (see Theorem 1). Namely, Proposition 8 states

that the best delegation outcome can be implemented by hiring an agent with either

optimally misaligned beliefs, or optimally misaligned preferences (or, equivalently, offering

action-contingent compensation). This result has a mirror implication for the empirical

literature estimating discrete choice models: Theorem 1 implies that the observed choice

probabilities alone do not allow an external observer to jointly identify the decision

maker’s beliefs and preferences in our setting.

The main conclusion of our paper is that delegation to an agent with misaligned

beliefs is an instrument that is available – and valuable – to the principal. Not only that,

but in our setting this instrument can perform as well as action-contingent payments,

while bearing no cost for the principal (Proposition 8), and cannot be improved on

by using outcome-contingent payments (Proposition 10). Further, this instrument is

typically better than restricting the agent’s choice set (Proposition 11). This benefit of

misalignment challenges the opinion that disagreement between the principal and the

agent inevitably leads to a conflict, and thus the principal should seek to hire an agent

who is most aligned with her preferences and beliefs (see Holmström [1980]; Crawford

and Sobel [1982]; Prendergast [1993]; Alonso and Matouschek [2008]; Egorov and Sonin

[2011]; Che et al. [2013] for some examples of such a message).

Our paper mainly connects to the literature on delegation, mainly to the problems

of “delegated expertise”, in which delegation takes place not to an agent with some

preexisting private information, but rather to an agent whose goal is to acquire relevant

information. The assumption is that the agent’s expertise allows him to gather information

at a lower cost than what the principal would have to incur. The seminal paper in the

field is by Demski and Sappington (1987), who explore a contracting problem in a setting

in which the agent chooses between a finite number of signal structures. Lindbeck and

Weibull (2020) extend this analysis to a rationally inattentive agent (who can acquire any

information, subject to entropy costs). Szalay (2005) shows that restricting the agent’s

used in choice estimation ((Matějka and McKay, 2015)).
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action set could be a useful tool in such a setting, since banning an ex ante optimal “safe”

action can nudge the agent to acquire more information about which of the risky actions

is the best. Our grand message is similar: the principal is willing to sacrifice something

in exchange for the agent acquiring more information, but we present a different channel

through which the principal can achieve this.

The closest to our paper is contemporary work by Ball and Gao (2021). They consider

a model of delegated expertise and demonstrate a result similar to that of Szalay (2005):

that banning the ex ante safe actions can lead to more information acquisition by the

agent, which benefits the principal. However, where Szalay (2005) looks at the scenario in

which the principal’s and the agent’s preferences coincide ex post (i.e., net of information

costs), Ball and Gao (2021) explore a model with misaligned preferences and show that the

principal may benefit from some misalignment between her preferences and those of the

agent. In their setting, this is due to divergence between the principal’s and the agent’s

ex ante optimal actions (due to preference misalignment), which makes banning the ex

ante agent-preferred action less costly for the principal. Our paper suggests a different

channel through which misalignment may incentivize the agent’s information acquisition:

we show, using a flexible information acquisition framework, that misalignment can lead

to more information acquisition by the mere virtue of the agent being more uncertain

about what the optimal action is.

The misalignment in prior beliefs is also studied by Che and Kartik (2009). They

analyze a delegated expertise game in which the principal retains the decision rights:

i.e., after acquiring the relevant information, the agent must communicate it to the

principal, who then makes a decision she believes is optimal. They show that the need to

communicate may also incentivize an agent with misaligned preferences to acquire more

information, in order to more effectively persuade the principal about which action needs

to be taken. Their conclusion does, however, rely on an inflexible information acquisition

structure (the agent’s probability of observing the true state of the world is increasing

in his effort). It appears likely that in a more flexible model, a misaligned agent would

acquire not more, but rather different information in order to be persuasive.

The remainder of the paper is organized as follows: we present a simple example that

demonstrates the main effect in Section 2.2. Section 2.3 formulates the main model, which

is then analyzed in Section 2.4 for the special case of binary states and actions, while

Section 2.5 analyzes the general problem. Section 2.6 compares misaligned beliefs as a

delegation tool to other tools, such as misaligned preferences, payments, and restricting
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the action set. Section 2.7 explores a number of extensions of the baseline model, and

Section 2.8 concludes.

2.2 An Illustrative Example

This section presents a simple example with inflexible learning and demonstrates how a

misalignment in beliefs between a principal and an agent may benefit the principal. The

full model is introduced in Section 2.3.

Consider a president (a principal, she) who needs to appoint a minister or a head of

a government agency (an agent/expert, he) to solve a particular policy issue, e.g., “the

green transition” policy, or the antitrust policy regarding large tech companies. Suppose

that there are two policies to choose from: a ∈ {L,R}.4 Which policy is optimal depends

on the state of the world ω ∈ {l, r}, which is initially unknown to both the principal and

the agent(s). Suppose further that the principal and the agent have a common interest in

implementing the correct policy.5 In particular, the utility u(a, ω) all players derive from

policy a in state ω is given by u(L, l) = u(R, r) = 1 and u(L, r) = u(R, l) = 0. We denote

the probability that the principal’s prior belief assigns to state ω = r as µp ∈ [0, 1]. The

agent can choose whether to learn the state at cost c < 1/2 or not, and we assume that

this cost is neither internalized, nor compensated for by the principal.

The principal’s problem is to select the best agent to delegate the decision to. There

are many experts available to the principal, who differ in their prior beliefs about the

state of the world: µ ∈ [0, 1]. For example, she can delegate a decision to an expert who is

certain that ω = r (i.e., µ = 1), or to an agent who has the same opinion as her (µ = µp),

or to the most uncertain agent (µ = 1/2). The expert’s prior belief is observable by the

principal, which could be due to him having an established reputation for having a certain

position on the question at hand. We assume that the principal cannot use monetary

transfers and/or restrict the set of actions available to the agent (see Section 2.3 for a

discussion of this assumption).

The timing is as follows: the principal chooses an agent based on his prior belief µ

from a pool of agents M = [0, 1]; then the agent chooses whether to learn the state ω

at cost c, and subsequently implements policy a∗ preferred given his prior belief and the

4This binary model is common in the delegation literature, see e.g. Li and Suen (2004) with a slightly
different informal story.

5In this example we focus on misalignment in beliefs; see Section 2.6.1 for the discussion of
misalignment in preferences.
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acquired signal.

The agent’s expected utility when he learns the state and when he does not is given

by, respectively:

E[u(a∗, ω)|µ]− c = 1− c,

E[u(a∗, ω)|µ] = max{µ, 1− µ}.

Hence the willingness to pay for information of an agent with prior belief µ is given by

1− c⏞ ⏟⏟ ⏞
with info

−max{µ, 1− µ}.⏞ ⏟⏟ ⏞
without info

Since this amount is decreasing in µ when µ ≥ 1/2 and increasing when µ ≤ 1/2, it is

maximized at µ = 1/2. Namely, the most uncertain agent is willing to pay the most for

information: if an agent with some prior µ chooses to obtain information, then an agent

with prior µ = 1/2 would also choose to learn the state. Therefore, the principal (weakly)

prefers to delegate to the most uncertain agent, since such an agent acquires the most

information. The next simple proposition formalizes the result, with the argument above

serving as its proof.

Proposition 4. In the equilibrium of the described model, it is (weakly) optimal for the

principal to delegate the decision to the most uncertain agent: µ∗ = 1/2.

More specifically, the principal is indifferent between all agents with µ ∈ [c, 1−c], since

all such agents learn the state, and strictly prefers them to any agent with µ /∈ [c, 1− c],

since the latter simply take their ex ante preferred action without learning the state.

Hence if the principal’s prior belief is µp < c or µp > 1 − c, it is strictly worse for the

principal to hire an aligned agent than to hire a more uncertain agent with µ ∈ [c, 1− c].

The restricted setting of this example, however, cannot illustrate the bias introduced

in the agent’s decisions by the misalignment. In the next section, we proceed to the full

model, which demonstrates that there also exists a countervailing preference for a less

misaligned agent due to the bias in actions that this misalignment introduces. Such a

preference arises due to the agent being able to acquire information flexibly.
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2.3 Model

2.3.1 Concepts and Definitions

Consider a principal (she) who would like to implement an optimal decision that depends

on the unknown state of the world. To choose the best course of action, the principal

delegates the decision to an expert (an agent, he), who can acquire information about

what the optimal decision is.6 There are many experts available to the principal, and

all experts have a common interest with the principal, but differ in their opinions on the

issue.7 Experts with different initial opinions would acquire different information, and

thus possibly make different final decisions. The principal is thus concerned with finding

the best agent for the job.8

The above can be modeled as a game played between a principal and a population

of agents. In particular, let A denote the set of actions with a typical element a, and

Ω denote the set of states with a typical element ω. The principal has a prior belief

µp ∈ ∆(Ω), where ∆(Ω) denotes the set of all probability distributions on Ω. Every agent

in the population has some prior belief µ ∈ ∆(Ω), which is observable and verifiable,

e.g., due to the reputation concerns (i.e., agents needing to publicly establish a particular

stance on a broad policy question for sake of earning, and subsequently capitalizing on, a

specific reputation).9 In what follows, we refer to an agent according to his prior belief.

Let M ⊆ ∆(Ω) denote the set of prior beliefs of all agents in the population.10,

The terminal payoff that both the principal and the agent selected by the principal

6An alternative would be to ask the agent to learn about the state and report the findings to the
principal, who then makes the decision. This version is explored in Section 2.7.2, which demonstrates
that communication is equivalent to delegation in our setting (barring the equilibrium multiplicity).

7In the “green transition” policy example, the experts would differ in their stance on the severity of
the climate threat.

8Our results can, alternatively, be interpreted as comparative statics for a game between a principal
and a given agent with some fixed misalignment, w.r.t. the degree of misalignment.

9To clarify, we work with a model of non-common prior beliefs about ω, and we take this assumption
at face value. Such settings are not uncommon in economic theory (see Morris [1995]; Alonso and Câmara
[2016]; Che and Kartik [2009] for some examples). It is well known (see Aumann (1976) and Bonanno
and Nehring (1997)) that agents starting with a common prior can not commonly know that they hold
differing beliefs. We allow the agents to have heterogeneous prior beliefs, and thus to “agree to disagree”.
While it may be possible to replicate our results in a common-prior model with asymmetric information,
where an agent’s ex ante belief is affected by some private information not observed by the principal,
such a model would feature signaling concerns (e.g., an agent learning something about the principal’s
information about the state from the fact that he was chosen for the job, and the principal then exploiting
this inference channel). We prefer to abstract from such signaling and simply assume non-common priors
from the start.

10For most of the results we assume that the population of agents is rich enough to represent the whole
spectrum of viewpoints: M = ∆(Ω).
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receive when action a is chosen in the state ω is given by u(a, ω). Prior to making the

decision, the selected agent can acquire additional information about the realized state.

We assume that the agent can choose any signal structure defined by the respective

conditional probability system ϕ : Ω → ∆(S), which prescribes a distribution over signals

s ∈ S for all states ω ∈ Ω, where S is arbitrarily rich. The information is costly: when

choosing a signal structure ϕ, the agent must incur cost c(ϕ, µ) that may depend on the

informativeness of the signal and the agent’s prior belief µ.11

The cost function we consider is the Shannon entropy cost function used in rational

inattention models (Matějka and McKay, 2015). In this specification, the cost is proportional

to the expected reduction in the entropy of the agent’s belief resulting from receiving the

signal. Namely, let η : S → ∆(Ω) denote the agent’s posterior belief system, obtained

from µ and ϕ using the Bayes’ rule. The cost can be defined as

c(ϕ, µ) ≡ λ

(︄
−
∑︂
ω∈Ω

µ(ω) lnµ(ω)+

+
∑︂
ω∈Ω

∑︂
s∈S

(︄∑︂
ω′∈Ω

µ(ω′)ϕ(s|ω′)

)︄
η(ω|s) ln η(ω|s)

)︄
, (2.1)

where λ ∈ R++ is a cost parameter.12 We assume that the principal does not internalize

the cost of learning, and the agent fully bears this cost. The main interpretation (shared

by, e.g., Lipnowski et al. [2020]) of this assumption is that the cost reflects the cognitive

process of the agent. Information acquisition costs thus lead to moral hazard, with the

agent potentially not willing to acquire the amount of information desired by the principal.

This is the main conflict between the two parties in our model.

In line with the delegation literature, we assume that the principal cannot use monetary

or other kinds of transfers to manage the agent’s incentives. This is primarily because

learning is non-contractible in most settings – indeed, it is difficult to think of a setting,

in which a learning-based contract could be enforceable, i.e., either the principal or the

agent could demonstrate beyond reasonable doubt exactly how much effort the agent has

put into learning the relevant information, and what kind of conclusions he has arrived

at. A simpler justification of the no-transfer assumption could be that such transfers are

11Similar to, e.g., Alonso and Câmara (2016), we assume that the agent and the principal share the
understanding of the signal structure. Combined with them having different (subjective) prior beliefs
over states, this implies they would also have different (subjective) posterior beliefs if both observed the
signal realization.

12We also follow the standard convention and let 0 ln 0 = 0.
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institutionally prohibited in some settings.13 We do allow for some classes of transfers in

Section 2.7 and show that even in those settings where contracting is feasible, it does not

necessarily perform better than hiring an agent with a misaligned belief.

The game proceeds as follows. In the first stage, the principal selects an agent from

the population based on the agent’s prior belief µ. In the second stage, the selected agent

chooses signal structure ϕ and pays cost c(ϕ, µ). In the third stage, the agent receives

signal s according to the chosen ϕ and selects action a given s. Payoffs u(a, ω) are then

realized for the principal and the agent.

The following subsections describe the respective optimization problems faced by the

principal and her selected agent, and define the equilibrium concept.

2.3.2 The Agent’s Problem

The agent selected by the principal chooses a signal structure ϕ : Ω → ∆(S) and a choice

rule σ : S → A to maximize his expected payoff net of the information costs. The agent’s

objective function is

E[u(a, ω)|µ]− c(ϕ, µ) =
∑︂
ω∈Ω

µ(ω)
∑︂
s∈S

ϕ(s|ω)u(σ(s), ω)− c(ϕ, µ),

The agent’s problem can then be written down as

max
ϕ,σ

{︄∑︂
ω∈Ω

µ(ω)
∑︂
s∈S

ϕ(s|ω)u(σ(s), ω)− c(ϕ, µ)

}︄
. (2.2)

Lemma 1 in Matějka and McKay (2015) shows that problem (2.2) with entropy cost

function can be reframed as a problem of selecting a collection of conditional choice

probabilities. This reformulation is presented in Section 2.3.5.

2.3.3 The Principal’s Problem

The principal’s problem is to choose an agent based on his prior belief µ ∈ M in order

to maximize her expected utility from the action eventually chosen by the agent (where

13See Laffont and Triole (1990); Armstrong and Sappington (2007); Alonso and Matouschek (2008)
for some examples and discussion of such settings.
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Ep denotes the expectation w.r.t. the principal’s belief µp). Her objective function is

E[u(a, ω)|µp] =
∑︂
ω∈Ω

µp(ω)
∑︂
s∈S

ϕ(s|ω)u(σ(s), ω),

so her optimization problem can be written down as

max
µ

{︄∑︂
ω∈Ω

µp(ω)
∑︂
s∈S

ϕµ(s|ω)u(σµ(s), ω)

}︄
,

s.t. (ϕµ, σµ) solves (2.2) given µ.

(2.3)

where the choice of agent µ affects the signal structure ϕµ and the choice rule σµ chosen

by the agent. Therefore, the principal’s problem is effectively that of choosing a pair

(ϕ, σ) from a menu given by the agents’ equilibrium strategies.

2.3.4 Definition of Equilibrium

We now present the equilibrium notion used throughout the paper; the discussion follows.

Definition 1 (Equilibrium). An equilibrium of the game is given by (µ∗, {ϕ∗
µ, σ

∗
µ}µ∈M):

the principal’s choice µ∗ ∈ M of the agent who the task is delegated to and a collection of

the agents’ information acquisition strategies ϕ∗
µ : Ω → ∆(S) and choice rules σ∗

µ : S → A
for all µ ∈ M, such that:

1. ϕ∗
µ and σ∗

µ constitute a solution to (2.2) for every µ ∈ M;

2. µ∗ is a solution to (2.3) given (ϕ∗
µ, σ

∗
µ).

Note that the above effectively defines a Subgame-Perfect Nash Equilibrium. While

our game features incomplete information (about the state of the world chosen by Nature),

and the players’ beliefs play a central role in the analysis, problem formulations (2.2)

and (2.3) allow us to treat these beliefs as just some exogenous functions entering the

terminal payoff functions. This is primarily because one player’s actions do not affect

another player’s beliefs in this game, hence a belief consistency requirement is not needed

(however, we do require internal consistency in that the agent’s posterior belief η is

obtained by updating his prior belief µ via Bayes’ rule given his requested signal structure

ϕ).
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2.3.5 Preliminary Analysis

Matějka and McKay (2015) show that with entropy costs, the agent’s problem of choosing

the information structure and choice rule can be reduced to the problem of choosing

the conditional action probabilities. Namely, the maximization problem of the agent

can be rewritten as that of choosing a decision rule π : Ω → ∆(A) (which is a single

state-contingent action distribution, as opposed to the combination of a signal strategy

ϕ : Ω → ∆(S) and a choice rule σ : S → A):

max
π

{︄∑︂
ω∈Ω

µ(ω)

(︄∑︂
a∈A

π(a|ω)u(a, ω)

)︄
− c(π, µ)

}︄
, (2.4)

where c(π, µ) denotes, with abuse of notation, the information cost induced by the

action distribution π.14 Lemma 2 in the online appendix of Matějka and McKay (2015)

implies that the agent’s problem has a unique solution in either formulation (up to signal

labels). Let β(ai) denote the respective unconditional probability of choosing alternative

ai (calculated using the agent’s own prior belief µ):

β(a) ≡
∑︂
ω∈Ω

µ(ω)π(a|ω). (2.5)

The principal’s problem can then be rewritten as choosing µ ∈ M that solves

max
µ

{︄∑︂
ω∈Ω

µp(ω)

(︄∑︂
a∈A

πµ(a|ω)u(a, ω)

)︄}︄
s.t. πµ solves (2.4) given µ.

(2.6)

In what follows, we refer to problem (2.6) as the principal’s full problem. Our main

interest in what follows lies in the properties of the solution µ∗ of the full problem and

the chosen agent’s optimal strategy πµ∗ .

We now proceed to analyze the model described above.

14Cost c(π, µ) is calculated as the cost c(ϕ, µ) of the cheapest strategy (ϕ, σ) that generates π. The
choice rule in such a strategy is deterministic, and the signal strategy prescribes at most one signal per
action (Matějka and McKay, 2015, Lemma 1). Given this, we have that

c(π, µ) = λ

(︄∑︂
ω∈Ω

µ(ω)

(︄∑︂
a∈A

π(a|ω) lnπ(a|ω)

)︄
−
∑︂
a∈A

β(a) lnβ(a)

)︄
.
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2.4 The Binary Case

We start by looking at the binary-state, binary-action version of the model, since the

results can be articulated more clearly in such a setting. This version differs from the

example in Section 2.2 in that the agent has flexibility in his learning technology (as

opposed to binary all-or-nothing learning). We show that with the entropy cost function,

the principal has to balance off the amount of information acquired against the nature of

information acquired – since agents with different prior beliefs bias their learning towards

different states. This makes the principal favor agents who are somewhat more uncertain

than her regarding the state, but who do not necessarily have a uniform prior belief

(Proposition 5).

To remind, Section 2.2 assumed that the state space is Ω = {l, r}, the action set

is A = {L,R}, and the common utility function net of information costs is such that

u(L|l) = u(R|r) = 1 and u(L|r) = u(R|l) = 0. We proceed by the backward induction,

looking at the agent’s problem first, and then using the agent’s optimal behavior to solve

the principal’s problem of choosing the best agent.

The agent is allowed to choose any informational structure (Blackwell experiment) he

wants, paying the cost which is proportional to the expected reduction of the Shannon

entropy of his belief. Using the result presented in Section 2.3.5, the agent’s problem can

be reformulated as the problem of choosing a stochastic decision rule π : Ω → ∆(A),

which solves

max
π

{︂
µπ(R|r) + (1− µ)π(L|l)− c(π, µ)

}︂
. (2.7)

The solution to this problem can be summarized by the two precisions {π(R|r), π(L|l)}
or, alternatively, the two unconditional probabilities {β(R), β(L)}. Using Theorem 1 in

Matějka and McKay (2015), we get that

π(L|l) = β(L)e
1
λ

β(L)e
1
λ + β(R)

, π(R|r) = β(R)e
1
λ

β(L)e
1
λ + β(R)

, (2.8)

and their Corollary 2 then adds the conditions

µ

β(L) + β(R)e
1
λ

+
(1− µ)e

1
λ

β(L)e
1
λ + β(R)

= 1, (2.9)
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Figure 2.1: Solution of problem (2.7) for different prior beliefs µ.

µe
1
λ

β(L) + β(R)e
1
λ

+
(1− µ)

β(L)e
1
λ + β(R)

= 1. (2.10)

Combining (2.8)–(2.10), we get that the solution to problem (2.7) is given by15

π(R|r) =

(︂
µe

1
λ − (1− µ)

)︂
e

1
λ(︂

e
2
λ − 1

)︂
µ

,

π(L|l) =

(︂
(1− µ)e

1
λ − µ

)︂
e

1
λ(︂

e
2
λ − 1

)︂
(1− µ)

,

(2.11)

cropped to [0, 1]. Figure 2.1 demonstrates how the agent’s action precisions choice

depends on his prior belief.

In turn, the principal’s problem is the same as in Section 2.2:

max
µ

{µpπµ(R|r) + (1− µp)πµ(L|l)}

s.t. πµ solves problem (2.7) given µ.
(2.12)

It is easy to see by comparing the payoffs in (2.7) and (2.12) that the principal benefits

from higher precisions π(R|r) and π(L|l), the same as the agent. However, the relative

weights the principal and the agent assign to these precisions depend on their respective

priors µp and µ, and hence differ between the two. Hence, in order to understand the

15This solution takes the form of the so-called rational inattention (RI) logit. In comparison to the
standard logit behavior, under RI-logit the decision-maker (the agent in our case) has a stronger tendency
to select the ex ante optimal alternatives more frequently.
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trade-offs that the principal faces in hiring agents with different priors, we need to explore

how the agent’s optimal strategy (2.11) depends on his prior belief µ.

Solving the problem (2.7), the agent faces a trade-off between increasing the precision

of his decisions, π(R|r) and π(L|l), and the cost of information. With the flexible

acquisition technology, the agent prefers to learn more about the more probable event.

Namely, the higher is the probability that the agent’s prior belief assigns to ω = r,

the more important is precision π(R|r) for his payoff, compared to π(L|l). Therefore,

two agents with different beliefs would acquire different information, leading to different

precisions π(R|r) and π(L|l).16 At the same time, the closer is the prior belief µ to the

extremes (µ = 0 or µ = 1), the more confident is the agent about what the state is,

and the less relevant is the precision in the other state for him, leading to such an agent

acquiring less information in total.

To summarize, the agent’s belief µ affects his optimal decision precisions in two ways:

a more uncertain agent acquires more information (and hence makes a better decision

on average) than an agent who believes one state is more likely. However, the latter is

more concerned with choosing the correct action in the ex ante more likely state, while

neglecting the other state.

The principal prefers, ceteris paribus, to hire an agent who acquires more information

and hence makes better choices – i.e., a more uncertain agent (µ close to 0.5). However,

if she believes that, e.g., state r is ex ante more likely (µp > 0.5), then she, for all the

same reasons as the agent, cares more about the agent choosing the optimal action in

state r than in state l. The latter leads her to prefer an agent who is not completely

uncertain (µ ̸= 0.5), favoring those who agree with her in terms of which state is more

likely (µ > 0.5). Balancing the two issues leads to the principal optimally hiring an agent

who has a belief different from hers: µ ̸= µp, yet who fundamentally agrees with her on

the ex ante optimal action: µ ≥ 0.5 ⇐⇒ µp ≥ 0.5.

Figure 2.2 plots the principal’s expected utility from hiring an agent as a function of

the agent’s belief µ when µp = 0.7. We can see the principal with a prior belief µp = 0.7

would prefer to hire an agent with a prior belief µ ≈ 0.6. Note that the graph is flat for

very high and very low µ, which corresponds to the agents who do not learn anything, and

simply always choose the ex ante optimal action. Further, agents with low µ ∼ (0.15, 0.2)

16This feature of the flexible information acquisition model was analyzed in the application to belief
polarization by Nimark and Sundaresan (2019), as well as in the marketing literature (see Jerath and
Ren [2021]).
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Figure 2.2: Expected utility of principal with prior belief µp = 0.7 as a function of the
agent’s prior belief µ.

acquire non-trivial information, but hiring them is worse for the principal than taking

the ex ante optimal action (equivalent to hiring an agent with µ = 1). In other words,

if an agent is too biased, the information he acquires does not benefit the principal due

to the bias in the agent’s actions introduced by the agent’s prior belief being also biased

(from the principal’s standpoint).

Proposition 5 below formalizes this intuition and provides a closed-form solution for

the optimal delegation strategy given the principal’s prior belief µp. Figure 2.3 visualizes

the optimal delegation strategy as a function of µp.

Proposition 5. If M = [0, 1], then the principal’s optimal delegation strategy is given

by

µ∗ =

√
µp

√
µp +

√︁
1− µp

. (2.13)

Therefore, if µp ∈
(︁
1
2
, 1
)︁
, the principal optimally delegates to an agent with belief µA ∈(︁

1
2
, µp

)︁
.

One thing to note about Proposition 5 is that the optimal delegation strategy (2.13)

does not depend on the agent’s information cost factor, λ. While it is immediate that the

higher is λ, the less information the agent with any given prior µ collects, Proposition 5

serves to show that the trade-off between the quantity of information and the bias in the

decisions does not depend on the absolute quantity of information the agent acquires.

Figure 2.4 demonstrates the difference in the action precisions between delegating

to a perfectly aligned agent (µ = µp) and the optimally misaligned agent as given by

(2.13). Optimal delegation leads to the agent consuming more information, lowers the
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Figure 2.3: The optimal delegation strategy µ∗ as a function of the principal’s prior
belief µp.
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Figure 2.4: Action precisions under optimal delegation and delegating to the aligned
agent.

probability of correctly matching the ex ante more likely (according to the principal’s

belief µp) state, π(R|r), and increases π(L|l), thereby bringing the two closer together.

Overall, under the optimal delegation, the ex ante less attractive option (as seen by both

the principal and the agent) is implemented relatively more frequently as compared to

the case of the aligned delegation. The principal’s benefit from a higher π(L|l) under

optimal delegation outweighs her loss from a lower π(R|r) than under aligned delegation.

Here, an interesting connection can be made to prospect theory (see Barberis [2013]

for a review). In particular, Tversky and Kahneman (1992) suggest that in problems

of choice under risk, individual decision-makers tend to succumb to cognitive biases

such as overweighing small probabilities and underweighing large probabilities. They
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propose a probability weighting function that decision-makers unconsciously use, which

is reminiscent of our optimal delegation strategy (2.13), with µp being the objective

probability and µ∗ being the decision-maker’s perceived probability. Our result can

thus be interpreted as one possible evolutionary explanation of the probability weighting

functions. Namely, suppose that “Nature” (evolutionary pressure) is the principal and

“Human” is the agent. They both have common utility function u(a, ω) representing

the survival probability of the individual/population, but natural selection is indifferent

towards the human’s cognitive costs c(ϕ, µ) involved in the decision-making process. In

this setting, natural selection would lead humans to develop probabilistic misperceptions

according to (2.13), since these maximize the survival probability.17

In the next section, we generalize the binary model, assuming more available alternatives,

while keeping the structure of the payoffs the same.

2.5 The General Case

In this section, we extend the analysis to a general problem of finding the best alternative,

allowing for N > 2 actions and states. We show that the principal’s optimal delegation

strategy is qualitatively the same as in the binary case, i.e., it is optimal to hire a

“more uncertain” agent who investigates more actions in search of the best one than a

fully aligned agent. Further, we characterize the whole set of decision rules that can be

achieved by selecting the agent’s prior belief and show that it coincides with what can be

achieved by selecting action-contingent subsidies for the agent.

We are now looking at the model with A ≡ {a1, ..., aN} and Ω ≡ {ω1, ..., ωN} for some

N , and the preferences are given by u(ai, ωi) = 1 and u(ai, ωj) = 0 if i ̸= j. Without

loss of generality, we assume that the principal’s belief µp is such that µp(ω1) ≥ µp(ω2) ≥
. . . ≥ µp(ωN) (otherwise relabel states and actions as necessary). As before, the results

from Section 2.3.5 apply, meaning that the agent’s problem is equivalent to choosing the

action distribution π : Ω → ∆(A) to maximize (2.4), and the principal selects an agent

according to his prior µ ∈ M to maximize (2.6). We do not restrict the choice of agents

and let M = ∆(Ω) (i.e., for any probability distribution µ ∈ ∆(Ω), the principal can find

and hire an agent with prior belief µ).

17Steiner and Stewart (2016) suggest an alternative explanation of probabilistic misperceptions using
a similar nature-as-a-principal approach, but a different source of conflict between Nature and Human.
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2.5.1 The Agent’s Problem

Proceeding by backward induction, we start by looking at the problem of an agent with

some prior belief µ. Invoking Theorem 1 from Matějka and McKay (2015), as we did in

the binary case, we obtain that the agent’s optimal decision rule satisfies:

π(ai|ωj) =
β(ai)e

u(ai,ωj)

λ∑︁N
k=1 β(ak)e

u(ak,ωj)

λ

, (2.14)

where β(ai), defined in (2.5), is the unconditional choice probability according to the

agent’s prior belief µ, and itself depends on {π(ai|ωj)}Nj=1. While (2.14) does not provide

a closed-form solution for the decision rule π(ai|ωj), it implies that the conditional choice

probabilities π are unambiguously determined given the unconditional choice probabilities

β, and this mapping depends solely on the agent’s payoffs and not on his prior belief.

In what follows, we use the implication that a collection of the unconditional choice

probabilities β pins down the whole decision rule π and use β to summarize the agent’s

chosen decision rule.

The above is not to say that closed-form expressions cannot be obtained. Caplin et al.

(2019) show (see their Theorem 1) that an agent with a prior belief µ optimally chooses

a decision rule that generates unconditional choice probabilities

β(ai) = max

⎧⎪⎨⎪⎩0,
1

δ

⎛⎜⎝(K(β) + δ)µ(ωi)∑︁
j∈C(β)

µ(ωj)
− 1

⎞⎟⎠
⎫⎪⎬⎪⎭ , (2.15)

where C(β) ≡ {i ∈ {1, ..., N} : β(ai) > 0} denotes the consideration set, i.e., the set of

actions that are chosen with strictly positive probabilities, and K(β) ≡ |C(β)| denotes

the power (number of actions in) this set.

2.5.2 The Principal’s Relaxed Problem

As mentioned previously, (2.14) implies that a collection of the unconditional choice

probabilities β pins down the whole decision rule π. Let us then consider a relaxed

problem for the principal, in which instead of choosing the agent’s prior µ, she is free
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to select the unconditional choice probabilities β ∈ ∆(A) directly:

max
β

{︄
N∑︂
j=1

µp(ωj)

(︄
N∑︂
i=1

β(ai)e
u(ai,ωj)

λ∑︁N
k=1 β(ak)e

u(ak,ωj)

λ

u(ai, ωj)

)︄}︄
. (2.16)

In the above, we used (2.14) to represent the conditional probabilities π(ai|ωj) in (2.6) in

terms of the unconditional probabilities β(ai). In Section 2.5.3 we show that the solution

to this relaxed problem is implementable in the full problem – i.e., that there exists an

agent’s belief µ that generates the principal-optimal choice probabilities β.

Note that β(ai) in the above represents the probability with which an agent expects to

select action ai. The principal’s expected probability of ai being selected,
∑︁N

j=1 µp(ωj)π(ai|ωj),

would generically be different, since her prior belief µp is different. Despite the potential

confusion this enables, analyzing the principal’s problem through the prism of choosing

β is the most convenient approach due to the RI-logit structure of the solution to the

agent’s problem.

Given the state-matching preferences u(aj, ωj) = 1, u(ai, ωj) = 0 if i ̸= j, we can

simplify (2.16) to

max
β

{︄
N∑︂
j=1

µp(ωj)
β(aj)e

1
λ

1 + δβ(aj)

}︄
, (2.17)

where δ ≡ e
1
λ − 1. We can now state the solution to the principal’s problem as follows.

Lemma 1. The solution to the principal’s relaxed problem (2.17) is given by

β∗(ai) = max

⎧⎪⎨⎪⎩0,
1

δ

⎛⎜⎝(K(β∗) + δ)
√︁

µp(ωi)∑︁
j∈C(β∗)

√︁
µp(ωj)

− 1

⎞⎟⎠
⎫⎪⎬⎪⎭ ,

where δ ≡ e
1
λ − 1.

Lemma 1 describes the solution in terms of the action choice probabilities, which do

not necessarily give the reader a good idea of its features and the intuition behind this

solution. We explore these in more detail in Section 2.5.4. Before that, however, we need

to ensure that this solution is attainable in the principal’s full problem, which is done in

the following section.
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2.5.3 The Principal’s Full Problem

The question this section explores is: can the principal generate choice probabilities β∗

by appropriately choosing the agent’s prior belief µ? In the binary case, the answer was

trivially “yes”: due to continuity of the agent’s strategy, by varying the agent’s belief µ(r)

between 0 and 1, the principal could induce any unconditional probability β(R). In the

multidimensional case, this is not immediate. However, the following theorem shows that

the result still holds with N actions and states under state-matching preferences.

Theorem 1. In the principal’s full problem (2.6), any vector β ∈ ∆(A) of unconditional

choice probabilities is implementable: there exists a prior belief µ ∈ ∆(Ω) such that

β(ai) =
∑︁N

j=1 µ(ωj)π
∗
µ(ai|ωj), where π∗

µ solves the agent’s problem (2.4) given µ.

The theorem states that if M = ∆(Ω), then the principal can generate any vector of

unconditional action probabilities. Note that this does not imply that she is able to select

any decision rule π(ai|ωj) – if this were the case, under the state-matching preferences she

would simply choose to have π(ai|ωi) = 1 for all i. However, Theorem 1 does imply that

the choice probabilities described in Lemma 1 – those that solve the principal’s relaxed

problem, – are implementable and thus also solve her full problem.

The result does, however, rely on the state-matching preferences: we show in Section

2.6.1 that it does not hold for arbitrary payoffs.

2.5.4 The Properties of the Optimal Delegation Strategy

While Lemma 1 presents the solution of the principal’s problem in terms of the unconditional

choice probabilities, this representation is not the most visual. We now demonstrate

some implications of this solution in terms of other variables. Namely, Proposition 6

extends Proposition 5 and shows how the chosen agent’s prior belief relates to that of

the principal. Proposition 7 then compares actions taken under optimal delegation vs

aligned delegation.

We begin by looking at the optimal agent choice in terms of the agent’s belief µ∗.

Proposition 6. The principal’s equilibrium delegation strategy µ∗ is such that for all

i, j ∈ {1, ..., N}:

µ∗(ωi)

µ∗(ωj)
=

√︁
µp(ωi)√︁
µp(ωj)

.
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In particular, µ∗(ω1) ≥ ... ≥ µ∗(ωN). Further, µ∗(ω1) ≤ µp(ω1) and µ∗(ωN) ≥ µp(ωN),

with equalities if and only if µp(ω1) = ... = µp(ωj).

The intuition behind the proposition above is the same as that behind Proposition

5: the optimally chosen agent is more uncertain than the principal between any given

pair of states. To see this, note that if µp(ωi) > µp(ωj) then 1 < µ∗(ωi)
µ∗(ωj)

< µp(ωi)

µp(ωj)
– i.e.,

the agent believes state ωi is ex ante more likely than ωj, as the principal does, but

he assigns relatively less weight to ωi. This applies to any pair of states. Thus, the

implication is that the optimal agent must assign a lower ex ante probability to ω1, the

most likely state according to the principal, than she does, and vice versa for ωN . Note

further that the result in Proposition 6 is again independent of λ, implying that the

optimal delegation strategy is determined by the relative trade-off between the quantity

of information acquired and the bias introduced in actions by the misalignment in beliefs,

but the absolute quantity of information acquired is irrelevant. In particular, hiring an

agent with µ∗ is optimal even when he acquires no information, and another agent µ is

available, who would be willing to invest effort in learning ω (since such a µ-agent would

be too biased relative to the principal).

We now switch to comparing the choices made under optimal delegation to those

that would arise under aligned delegation – i.e., if the principal selected an agent with

µ = µp. Let β̄ denote the choice probabilities that would be generated under aligned

delegation. Caplin et al. (2019) show that these probabilities β̄, as a function of the

agent’s prior µ, are given by (see their Theorem 1)

β̄(ai) = max

⎧⎪⎨⎪⎩0,
1

δ

⎛⎜⎝(K(β̄) + δ)µ(ωi)∑︁
j∈C(β̄)

µ(ωj)
− 1

⎞⎟⎠
⎫⎪⎬⎪⎭ . (2.18)

Since µp(ω1) > ... > µp(ωN), the consideration set in the aligned problem is then simply

C(β̄) = {1, ..., K̄}, and its size K̄ ≡ K(β̄) is the unique solution of

µp(ωK̄) >
1

K̄ + δ

K̄∑︂
j=1

µp(ωj) ≥ µp(ωK̄+1). (2.19)

In turn, we can see from Lemma 1 that under optimal delegation, size K∗ = K(β∗) of
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the consideration set under optimal choice is

√︂
µp(ωK∗) >

1

K∗ + δ

K∗∑︂
j=1

√︂
µp(ωj) ≥

√︂
µp(ωK∗+1). (2.20)

These two conditions allow us to compare K∗ and K̄ directly, which is done by the

following proposition.

Proposition 7. Optimal delegation weakly expands the consideration set relative to aligned

delegation:

K(β∗) ≥ K(β̄).

In other words, delegating to an optimally misaligned agent leads to a wider variety

of actions played in equilibrium. This is a direct consequence of delegation to a more

uncertain agent – since he is less sure than the principal of what the optimal action is

ex ante, he considers more actions worth investigating. Every action has some positive

probability of actually being optimal, and thus a more uncertain agent plays a wider

range of different actions ex post. We could already see this effect at play in the binary

case, where if µp is extreme, then an aligned agent takes the ex ante optimal action

without acquiring any additional information, whereas the optimally chosen agent could

investigate both actions.

2.6 Misaligned Beliefs Versus Other Instruments

The preceding analysis above explored the problem of selecting an agent according to

their prior belief. It provided grounds for using misaligned beliefs as an instrument

in delegation, but it is still worth studying how this instrument compares to the other

instruments, such as contracting or restricting the delegation set. In this section, we draw

this comparison. We keep the overall structure of the problem the same as in Section 2.5,

but now we consider three separate versions in which the principal has different tools at

her disposal, and we compare outcomes to those in the baseline problem of choosing the

agent’s beliefs.
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2.6.1 Contracting on Actions/Misaligned Preferences

The most basic delegation tool is contracting: if the principal could offer the agent a

contract that specifies contingent payments, this would be the most direct way to provide

incentives.18 We can think of two main options here: contracting on outcomes (where

“outcome” is understood in the sense of “was the agent’s action correct?”) and contracting

on actions. The former requires that both outcomes are contractible (i.e., observable and

verifiable), the latter imposes such requirement on actions. Both options require that the

principal has the freedom to design the payments, which is a strong assumption in itself.

We begin by exploring contracting on actions in our framework, in which the principal

must design a payment schedule τ : A → R to be paid to the agent. We assume that

all agents and the principal have a common prior belief µp, all players’ preferences are

quasilinear in payments, and the principal’s marginal utility of money is ρ, and the

agent’s marginal utility of money is 1. For some results, we additionally impose the

limited liability assumption (τ(ai) ≥ 0 for all i).19

Note that instead of contracting, we can interpret this setup as a problem of selecting

an agent with misaligned preferences by setting ρ = 0. Schedule τ then represents an

agent’s “biases”, i.e., inherent preferences towards certain actions on top of the “unbiased”

utility u(a, ω). Such a problem of selecting an agent with optimally misaligned preferences

is a natural counterpart to our baseline problem of selecting an agent with optimally

misaligned beliefs.

The agent’s problem (again using the equivalence presented in 2.3.5) is then given by

max
π

{︄
N∑︂
j=1

µp(ωj)
N∑︂
i=1

π(ai|ωj)
(︁
u(ai, ωj) + τ(ai)

)︁
− c(ϕ, µp)

}︄
, (2.21)

given τ , and the principal’s contracting problem is

max
τ

{︄
N∑︂
j=1

µp(ωj)
N∑︂
i=1

π(ai|ωj)
(︁
u(ai, ωj)− ρτ(ai)

)︁}︄
, (2.22)

subject to π solving (2.21) given τ .

18See Laffont and Martimort (2009) for many examples.
19In line with the baseline problem, we do not impose any participation constraints on the agent. The

implicit assumption here is that the agent is being paid some non-negotiable unconditional salary if he
is hired, which is sufficient to ensure participation. Payments {τ(ai)} should then be treated as premia,
with the limited liability assumption implying they must be non-negative.
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Instead of providing a closed-form solution to this problem, we appeal to Theorem 1 to

argue that regardless of ρ, the principal cannot obtain higher expected utility than in the

baseline problem of choosing an agent with a misaligned belief µ. In particular, Theorem 1

implies that any unconditional choice probabilities β ∈ ∆(A) generated by an agent, who

is incentivized by payments or misaligned preferences, can also be obtained by selecting

an agent with appropriately misaligned beliefs. Moreover, if we relax limited liability

and allow negative payments, then by using the results of Matveenko and Mikhalishchev

(2021) we can also show the converse – that any decision rule achievable with misaligned

beliefs can be replicated with payments τ (or by setting the quotas – i.e., imposing specific

unconditional choice probabilities for a different action). These results are formalized in

the following proposition.20

Proposition 8. The principal’s problem of contracting on actions (2.22) is equivalent to

her full (delegation) problem (2.6):

1. For any vector τ : A → R of payments/biases and a corresponding β : Ω → ∆(A)

that solves (2.21) given τ , there exists a prior belief µ ∈ ∆(Ω) such that β also

solves (2.4) given µ.

2. For any µ ∈ ∆(Ω) and the corresponding β : Ω → ∆(A) that solves (2.4) given µ,

there exist payments τ : A → R such that β also solves (2.21) given τ .

The proposition above directly implies that neither of the two instruments (contracting

on actions or searching for an agent with stronger/weaker preferences for specific actions)

can yield better results than hiring an agent with an optimally misaligned belief. If limited

liability is in place (τ(ai) ≥ 0 for all i), then contracting on actions is strictly worse, since

it cannot yield a better decision rule, but requires payments from the principal – payments

which are avoidable if she instead hires an agent who is intrinsically motivated by his

beliefs over states or preferences towards specific actions.

Further, Theorem 1 and the results of Matveenko and Mikhalishchev (2021) also

imply that if we fix u(a, ωi) − u(a, ωj) for all a, ωi, ωj and vary the rest of the agent’s

preferences and beliefs arbitrarily, the resulting set of distributions β ∈ ∆(A) can be fully

covered by only varying one of the two. This implies that no combination of misaligned

beliefs, misaligned preferences, and payments for actions can perform better than any

20The result regarding quotas is not included in the proposition, yet it follows immediately from Lemma
1 of Matveenko and Mikhalishchev (2021).
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individual instrument. Moreover, it also implies that suboptimal misalignment along any

dimension can be amended using other instruments. That is, if a given agent holds a

non-optimal prior belief (that does not coincide with the principal’s either), the optimal

behavior might be induced via action-contingent transfers. Conversely, if all agents are

biased towards certain actions, this misalignment can be compensated for by selecting an

agent with the right prior belief. The following proposition presents one example of such

equivalence, in the context of a model with N = 2.

Proposition 9. Consider the binary setting of Section 2.4. Consider the principal’s

problem of contracting on actions (2.22), where ρ = 0 and the agent holds prior belief

µ ̸= µp. Then:

1. for any µ, there exist payments/biases {τ ∗(L), τ ∗(R)} that implement the optimal

conditional choice probabilities from Section 2.4;

2. these payments/biases are such that21

τ ∗(R) ≥ τ ∗(L) ⇐⇒ µ ≤ µ∗ =

√
µp

√
µp +

√︁
1− µp

.

It is easy to see the intuition behind the proposition: if the agent’s prior belief µ

assigns lower probability to state ω = r compared to the principal-optimal prior µ∗ given

in Proposition 5, such an agent is ex ante too biased towards action L for the principal’s

taste, even though he potentially acquires more information than an agent with belief µ∗.

Therefore, the principal can nudge the agent towards action R by offering higher payment

if he selects R (or find an agent whose preference bias towards R offsets his belief bias

towards state l).

2.6.2 Contracting on Outcomes

We now turn to contracting on outcomes. The outcome in our model is effectively binary:

whether a correct action was chosen (a = aj when ω = ωj) or not. We thus let the

principal select payments τ̄ , τ that the agent receives, so that τ(ai, ωi) = τ̄ and τ(ai, ωj) =

τ if i ̸= j.22 We again assume limited liability (τ̄ , τ ≥ 0), preferences that are quasilinear
21The closed-form expressions are available in the proof in the Appendix.
22If the principal could contract on both actions and outcomes, she would have the freedom to select

any payment schedule {τ(ai, ωj)}. Lindbeck and Weibull (2020) study such a problem with N states
and two actions.
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in payments for all agents, and let the agent’s marginal utility of money to be 1, and the

principal’s marginal utility of money to be ρ.

The agent’s problem is then choosing π : Ω → ∆(A) that solves23

max
π

{︄
N∑︂
j=1

µ(ωj)
N∑︂
i=1

π(ai|ωj)
(︁
u(ai, ωj) + τ(ai, ωj)

)︁
− c(ϕ, µ)

}︄
, (2.23)

and the principal’s contracting problem is

max
τ̄ ,τ

{︄
N∑︂
j=1

µp(ωj)
N∑︂
i=1

π(ai|ωj)
(︁
u(ai, ωj)− ρτ(ai, ωj)

)︁}︄
, (2.24)

s.t. τ(ai, ωi) = τ̄ for all i,

τ(ai, ωj) = τ for all i, j ̸= i,

and subject to β corresponding to a solution of (2.23) given τ̄ , τ .

It is trivially optimal for the principal to set τ = 0, since her objective is to provide

incentives for the agent to match the state. Then, however, the agent’s (ex post) payoff

net of information cost becomes u(ai, ωj)+τ(ai, ωj) = (1+ τ̄)u(ai, ωj), and the principal’s

payoff is u(ai, ωj)−τ(ai, ωj) = (1−ρτ̄)u(ai, ωj). In other words, by increasing the incentive

payment τ̄ , the principal effectively lowers the relative cost of information for the agent,

at the cost of decreasing her own payoff. It then appears like an instrument that could

be universally useful for the principal – even when she chooses an agent with the optimal

prior belief, she could still benefit from reducing the agent’s information cost, which would

result in him acquiring more information. The following proposition shows, however, that

this is not the case: while contracting on outcomes may be a useful instrument, it cannot

improve on delegating to the optimally biased agent when payments are costly to the

principal.

Proposition 10. Consider the principal’s contracting problem (2.24) in the binary setting

of Section 2.4 and suppose ρ = 1 and µp > 1/2. Then there exist µ̄1, µ̄2: µ̄1 < µ∗ < µp <

µ̄2 (where µ∗ is as in Proposition 5), such that if either 1

1+e
1
λ
≤ µ ≤ µ̄1, or µ̄2 ≤ µ ≤ e

1
λ

1+e
1
λ
,

then τ̄ > 0 solves (2.24).

23While it is more common in the literature to consider an agent who yields no intrinsic utility from
actions and is motivated exclusively via payments, for sake of consistency, we maintain the assumption
that the agent enjoys the same intrinsic utility u(a, ω) as the principal, albeit possibly to a different
magnitude.
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The proposition states that the principal uses the incentive payments, τ̄ > 0, when

there is an intermediate degree of misalignment in opinions with the agent. If the

agent has a very extreme prior belief and acquires no information on his own, it may

be too costly for the principal to incentivize such an agent to acquire any information.

The requirements that 1

1+e
1
λ

≤ µ ≤ e
1
λ

1+e
1
λ

ensure that the agent acquires information

voluntarily so that this problem does not arise.24 On the other hand, if there is too little

misalignment (µ̄1 < µ < µ̄2), then the agent’s information acquisition choice is already in

line with the principal’s wishes, and any further payments would not have a significant

enough effect on the agent’s incentives to justify the cost they incur on the principal.

2.6.3 Restricting the Delegation Set

Another instrument commonly explored in the delegation literature is restricting the

delegation set – i.e., the set of actions that the agent may take (see, e.g., Holmström

[1980]). In particular, in the context of “delegated expertise” problems, Szalay (2005)

and Ball and Gao (2021) show that it may be optimal to rule out an ex ante optimal

action in order to force the agent to exert effort and learn which of the ex post optimal

(but ex ante risky) actions is best. Lipnowski et al. (2020) show a similar result in a

Bayesian Persuasion setting in which the receiver is rationally inattentive to the sender’s

message.

In our setting, however, there are no “safe” actions that the principal could rule out,

as Propostion 7 suggests. Assuming that the principal and the agent hold the same prior

belief µp, and µp(ω1) > ... > µp(ωN), action a1 is the “safest” in the sense of being the

most likely ex ante to be optimal. However, it would be trivially suboptimal for the

principal to ban a1 – since, indeed, this is the action that is ex ante most likely to be

ex post optimal! In other words, while excluding a1 from the delegation set would lead

the agent to acquire more information, it would also lead to larger ex post losses due

to the agent being unable to select action a1 in cases in which it is optimal to do so.

Thus while the general idea of the principal being willing to nudge the agent to acquire

more information/information about ex ante suboptimal actions holds true in our setting,

restricting the delegation set is not an instrument that lends any value to the principal.

24Note that there may still be µ outside of this interval for which offering positive incentive payments is
optimal for the principal. In that sense, Proposition 10 only provides a condition on µ that is sufficient for
τ̄ > 0. A necessary and sufficient condition would look similarly, but feature different outer boundaries
for µ.
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Proposition 11 below summarizes this logic. Consider the agent’s problem as given

by

max
π

{︄
N∑︂
j=1

µp(ωj)
N∑︂
i=1

π(ai|ωj)u(ai, ωj)− c(ϕ, µp)

}︄
, (2.25)

given A∗ ⊆ A (and the maximization is w.r.t. a mapping π : Ω → ∆(A∗)), and the

principal’s restriction problem

max
A∗

{︄
N∑︂
j=1

µp(ωj)
N∑︂
i=1

π(ai|ωj)u(ai, ωj)

}︄
, (2.26)

subject to π : Ω → ∆(A∗) solving (2.25) given A∗. Then we can state the result as

follows.

Proposition 11. The unrestricted delegation set A∗ = A is always a solution to the

principal’s restriction problem (2.26).

2.7 Extensions

2.7.1 Alternative Preference Specifications

The analysis in Sections 2.5 and 2.6.1 is heavily reliant on state-matching preferences

that we assume are shared by both the principal and the agent(s). It is reasonable to

ask whether our conclusions hold under other preference specifications. Since the utility

function u(a, ω) is shared by both the principal and the agent, it is reasonable to generalize

one at a time.

We begin by generalizing the principal’s utility function up(a, ω) while maintaining

the agent’s intrinsic preference for matching the state: uA(ai, ωi) = 1, uA(ai, ωj) = 0 if

i ̸= j. Naturally, the specific functional forms of the optimal delegation strategies (such

as those presented in Propositions 5 and 6, and Lemma 1) depend on the specific form of

the principal’s utility function. However, Theorem 1 only depends on the agent’s utility

function, meaning that Proposition 8 still holds: any outcome that can be achieved by

contracting on actions or hiring an agent with the misaligned intrinsic preferences, can

also be achieved by hiring an agent with misaligned beliefs (and vice versa). Meaning

that regardless of the principal’s objective function, hiring an agent with state-matching
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preferences and a suitable belief is as good as hiring an agent with aligned prior belief,

state-matching preferences, and either some additional preference over actions, or action-

contingent payments on top of that.

The above does, however, hinge on the agent having state-matching preferences as a

baseline. Once we allow arbitrary preferences for the agent – even if they align with the

principal’s preferences net of the information cost – the equivalence stated in Proposition

8 breaks down. In such a general case, finding an agent with optimally misaligned

preferences may yield strictly better results for the principal than hiring an agent with

an optimally misaligned belief, and hence contracting on actions may, in principle, yield

better results too. An example (for misaligned preferences) is presented in the proof of

the following proposition.

Proposition 12. There exists a utility function u(ai, ωj) with u(ai, ωi) = max
k

{u(ak, ωi)}
such that the solution to the principal’s relaxed problem (2.17) cannot be attained as a

solution to the full problem (2.6).

The optimal decision rule is never in the relative interior, since mixing between two

options dominates using mixing from three. However, according to Proposition 3 and

Lemma 1 from Matveenko and Mikhalishchev (2021), the principal may implement the

optimal solution via action-contingent payments/biased preferences.

2.7.2 Communication

In this section, we consider the importance of decision rights in our model with misaligned

beliefs. In particular, we juxtapose the delegation scheme explored so far, under which

the agent has the power to make the final decision, to communication, where an agent

must instead communicate his findings to the principal, who then chooses the action.

A large literature in organizational economics is devoted to comparing delegation and

communication in various settings (see Dessein [2002]; Alonso et al. [2008], and Rantakari

(2008) for some examples). We show that in our setting, communication performs as

well as delegation – i.e., the principal will always find it optimal to follow the agent’s

recommendation. This is perhaps unsuprising since Holmström (1980) showed that

communication is equivalent to restricting the agent’s action set, and this latter problem

was shown in Section 2.6.3 to be an irrelevant instrument in our setting, as long as the

principal can select an agent with the prior belief she prefers.
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Although the principal and an agent have the same preferences, it is generally unclear

whether it is optimal for the principal to follow a recommendation of an agent due to

the misalignment in their beliefs. Namely, since the principal and the agent start from

different prior beliefs, the same is true for posteriors: if the principal could observe the

information that the agent obtained, her posterior belief would be different from that of

the agent. This implies that ex post, the principal could prefer an action different from

the agent’s choice, and could benefit ex post from overruling the agent’s decision if she

had the power to do so. However, this would mean that the agent’s incentives to acquire

information are different from the baseline model, and could lead to the agent acquiring

either more or less information than in the baseline, with the principal having some

influence over the agent’s learning strategy via her final choice rule.25 We show below

that, in the end, none of these effects comes into play, and there exists a communication

equilibrium that replicates the delegation equilibrium.

The setup follows the baseline model from Section 2.3, with the exception that the

final stage (“agent selecting action a ∈ A”) is replaced by two. First, after observing signal

s ∈ S generated by his signal structure ϕ, the agent selects a recommendation (message)

ã ∈ A to the principal. After that, the principal observes the recommendation ã, uses

it to update her belief µp(ω|ã) about the state of the world, and then selects an action

a ∈ A that determines both parties’ payoffs.26 The equilibrium of the communication

game is then defined as follows.

Definition 2 (Communication Equilibrium). An equilibrium of the cheap talk game is

characterized by (µ∗, {ϕ∗
µ, σ̃

∗
µ}µ∈M, σ∗, µp), which consists of the following:

1. the principal’s posterior beliefs µp : A → ∆(Ω) that are consistent with (ϕ∗
µ, σ

∗
µ)

(i.e., satisfy Bayes’ rule on the equilibrium path);

2. the principal’s choice rule σ∗ : A → A, which solves the following for every ã ∈ A,

given the posterior µp:

max
σ(ã)

{︄∑︂
ω∈Ω

µp(ω|ã)u(σ(ã)|ω)

}︄
;

25Argenziano et al. (2016) provide one example of how the principal can manipulate the agent’s
information acquisition incentives under cheap talk communication.

26For simplicity, we assume that the principal only observes the recommendation made by the agent,
and not the signal he received or the signal structure he requested. These appear to be reasonable, yet
substantial assumptions, and the results would be different if we assumed the principal could observe
either the learning strategy, or the realized signal.

42



3. a collection of the agents’ information acquisition strategies ϕ∗
µ : Ω → ∆(S) and

communication strategies σ̃∗
µ : S → A that solve the following given σ for every

µ ∈ M:

max
ϕ,σ̃

{︄∑︂
ω∈Ω

µ(ω)
∑︂
s∈S

ϕ(s|ω)u(σ(σ̃(s)), ω)− c(ϕ, µ)

}︄
;

4. the principal’s choice µ∗ ∈ M of the agent to whom the task is delegated, which

solves the following given (ϕ∗
µ, σ

∗
µ), σ∗, and µp:

max
µ

{︄∑︂
ω∈Ω

µp(ω)
∑︂
s∈S

ϕ(s|ω)u(σ(σ̃(s)), ω)

}︄
.

We can then state the result as follows.

Proposition 13. There exists a communication equilibrium that is outcome-equivalent

to the equilibrium of the original game, in the sense that (µ∗, ϕ∗
µ∗ , σ̃∗

µ∗) are the same in

both equilibria, and σ∗ is an identity mapping.

This result, however, is subject to a few caveats. First, cheap talk models are plagued

by equilibrium multiplicity: for any informative equilibrium, there exist equilibria with

less informative communication, up to completely uninformative (babbling) equilibria.

In our setting, this means that, in addition to the equilibrium outlined in Proposition 13

above, there also exists a babbling equilibrium in which the agent acquires no information

and makes a random recommendation, and the principal always ignores it and selects the

ex ante optimal action.27 There would also likely exist multiple equilibria of intermediate

informativeness – e.g., equilibria with a limited vocabulary, where only some actions

Ã ⊂ A are recommended on the equilibrium path. In practice, this means that, under

communication, there is a risk of miscoordination on uninformative equilibria, whereas

under delegation the equilibrium is unique. The same force may also work the other

way, and there may be equilibria that are preferred by the principal to the delegation

equilibrium, that can only be sustained under cheap talk (see Argenziano et al. [2016]

for an example of how such equilibria may arise). However, the question of whether such

equilibria exist is beyond the scope of this paper.
27If an agent makes uninformed recommendations, it is optimal for the principal to ignore it. If the

principal ignores the recommendation, it is optimal for the agent to not acquire any information. Neither
agent in this situation can unilaterally deviate to informative communication.
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The second caveat lies in the fact that Proposition 13 relies on the state-matching

preferences. In our setting (with the exception of Section 2.7.1), any action is either

“right” or “wrong”, without any degrees of correctness. The misalignment of beliefs across

the principal and the agent is thus small enough to not warrant the principal overriding

the agent’s suggested action. In contrast, in a uniform-quadratic framework, both states

and actions lie in a continuum, and the principal’s loss is proportional to the distance

between the realized state and the chosen action. In such a setting, any misalignment

(be it in preferences or beliefs) between the principal and the agent would lead to the

principal being willing to override the agent’s recommendation, leading to the delegation

equilibrium being no longer directly sustainable under communication.

2.8 Conclusion

We show that hiring an agent with beliefs that are misaligned with those of the principal

can be beneficial for the principal, contrary to popular belief. In particular, if the

agent needs to acquire information to make a decision, delegation to an agent who is

ex ante more uncertain about what the best action is but shares some of the principal’s

predispositions is optimal for her. This is mainly due to a more uncertain agent being

willing to acquire more information about the state, which enables more efficient actions

to be taken. We show that exploiting belief misalignment can be a valid instrument that

the principal can use in delegation, which in some settings is on par with or better than

state-contingent transfers or restriction of the action set from which the agent can choose.

In the analysis, we use the workhorse rational inattention model for discrete choice,

the Shannon model. It allows us to provide a richer demonstration of the consequences of

delegation to a biased agent by allowing the agent to acquire information flexibly, which

introduces additional bias into the decisions of an agent with misaligned beliefs. We

show that misaligned delegation is optimal despite the bias introduced by this flexibility.

Hence, while the exact trade-offs do, obviously, depend on the particular cost function

specification, the main takeaways would persist regardless of the form of the costs of

information.

Our analysis focuses on misalignment and away from contracting. A potentially

fruitful avenue for further research would be to consider more carefully the contracting

problem in a setting in which the principal and the agent have misaligned beliefs and/or

preferences, and to investigate how contracting can build upon the inherent benefits of
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misalignment.

Further, due to the added complexity of rational inattention models, we confine our

exploration to a discrete state-matching model, which strays away from the continuous

models more commonly used in delegation problems. In a model with continuous actions,

the scope for an agent to manifest his bias is much larger, and hence the trade-off between

the agent’s information acquisition and biased decision-making would again be different.

Exploration of the effects of misalignment in a continuous model of delegated expertise

could be an interesting direction for further research as well.

Yet another assumption that may feel excessively strong in our analysis is the common

knowledge of all agents’ and the principal’s prior beliefs. It may be more reasonable to

assume that agents are strategic in presenting their viewpoints to the principal, as well as

making inferences from the fact that they were chosen for the job. Such signaling concerns

could yield an economically meaningful effect, yet we abstract from them completely in

our paper. A more careful investigation is in order.
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2.A Main Proofs

2.A.1 Proof of Proposition 4

Proved in the text preceding the proposition.

2.A.2 Proof of Proposition 5

Throughout this proof, we will refer to the delegation rule under consideration,

µ∗ =

√
µp

√
µp +

√︁
1− µp

,

as the candidate rule. It is straightforward that under the candidate rule, if µp > 1
2

then µ∗ ∈
(︁
1
2
, µp

)︁
, since

µ∗

1− µ∗ =

√
µp√︁

1− µp

<
µp

1− µp

when µp > 1
2
, so µ∗ < µp, and also √

µp >
√︁
1− µp in that case, so µ∗ > 1

2
. It thus

remains to show that the candidate rule is indeed optimal for the principal. While a

shorter proof exists that invokes Lemma 1 that derives an optimal strategy for the case

of N states and actions, we choose to present a more direct, albeit a somewhat longer,

proof.

Plugging the solution to the agent’s problem (2.11) (assuming this solution is interior

for now) into the principal’s problem (2.12), we get that the principal’s payoff looks as

follows:

µpπ(R|r) + (1− µp)π(L|l) = µp

(︂
µe

1
λ − (1− µ)

)︂
e

1
λ(︂

e
2
λ − 1

)︂
µ

+ (1− µp)

(︂
(1− µ)e

1
λ − µ

)︂
e

1
λ(︂

e
2
λ − 1

)︂
(1− µ)

=
e

1
λ

e
2
λ − 1

[︃
µp

(︃
e

1
λ − 1− µ

µ

)︃
+ (1− µp)

(︃
e

1
λ − µ

1− µ

)︃]︃
∝ e

1
λ − µp

1− µ

µ
− (1− µp)

µ

1− µ
.

The FOC for the principal’s maximization problem above w.r.t. µ is

µp

µ2
− 1− µp

(1− µp)2
= 0
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⇐⇒ µ

1− µ
=

√
µp√︁

1− µp

. (2.27)

It is trivial to verify that the second-order condition holds as well, hence as long as (2.27)

yields an interior solution (i.e., the probabilities in (2.11) are in [0, 1]), the candidate

solution is indeed optimal among all such interior solutions.

We now check for which µ the solution (2.11) is interior. Using the expressions (2.11),

one can easily verify that π(R|r) ≥ 0 ⇐⇒ µ
1−µ

≥ e−
1
λ and π(R|r) ≤ 1 ⇐⇒ µ

1−µ
≤ e

1
λ ,

and the conditions π(L|l) ∈ [0, 1] yield the same two interiority conditions. This implies

that if µ
1−µ

∈
[︂
e−

1
λ , e

1
λ

]︂
, then the agent acquires some information and selects both actions

with positive probabilities, and otherwise (π(R|r), π(L|l)) ∈ {(1, 0), (0, 1)}, meaning that

the agent simply chooses the ex ante optimal action for sure without acquiring any

information about the state.

The candidate rule then suggests that the principal delegates to a learning agent iff
µp

1−µp
∈
[︂
e−

2
λ , e

2
λ

]︂
, and otherwise delegates to an agent who plays the ex ante optimal

action. We have shown that the candidate rule selects the optimal among the learning

agents; it is left to verify that such a criterion for choosing between learning and non-

learning agents is optimal for the principal.

Consider µp ≥ 1
2
; then among the non-learning agents, the principal would obviously

choose the one who plays a = R (rather than a = L), and such a choice yields the

principal expected payoff µp ·1+(1−µp) ·0 = µp. Optimal delegation to a learning agent

yields (by plugging the candidate rule into the principal’s payoff obtained above)

e
1
λ

e
2
λ − 1

[︃
e

1
λ − µp

1− µ∗

µ∗ − (1− µp)
µ∗

1− µ∗

]︃
=

e
1
λ

e
2
λ − 1

[︃
e

1
λ − 2

√︂
µp(1− µp)

]︃
. (2.28)

Taking the difference between (2.28) and µp, the payoff from delegating to a non-learning

agent, let us find belief µp of a principal who would be indifferent between the two:

e
1
λ

e
2
λ − 1

[︃
e

1
λ − 2

√︂
µp(1− µp)

]︃
− µp = 0

⇐⇒ e
2
λ − 2e

1
λ

√︂
µp(1− µp) = µpe

2
λ − µp

⇐⇒
(︂
e

1
λ

√︁
1− µp −

√
µp

)︂2
= 0

⇐⇒
√
µp√︁

1− µp

= e
1
λ .
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Hence, the principal prefers a learning agent when
√
µp√
1−µp

< e
1
λ and a non-learning agent

when
√
µp√
1−µp

> e
1
λ . Therefore, the candidate rule is indeed optimal for µp ≥ 1

2
. A mirror

argument can be used to establish optimality for µp ≤ 1
2
. This concludes the proof of

Proposition 5.

2.A.3 Proof of Lemma 1

The goal is to find the optimal choice probabilities β∗ ∈ ∆(A) which maximize the

principal’s expected utility (2.17). First, let us rewrite expression (2.17) using δ ≡ e
1
λ −1:

N∑︂
j=1

µp(ωj)
β(aj)e

1
λ

1 + δβ(aj)
=
∑︂

j∈C(β)

e
1
λ

µp(ωj)

δ
(1 + δβ(aj))− µp(ωj)

δ

1 + δβ(aj)

=
∑︂

j∈C(β)

e
1
λ

(︃
µp(ωj)

δ
− µp(ωj)

δ (1 + δβ(aj))

)︃
.

The first term in the brackets above is independent of β, so the principal’s maximization

problem is equivalent to

min
β

∑︂
j∈C(β)

µp(ωj)

1 + δβ(aj)
. (2.29)

Let ξ denote the Lagrange multiplier corresponding to the constraint
N∑︁
j=1

β(aj) = 1. Then

the first-order condition for β(ai) with i ∈ C(β) is

(1 + δβ(ai))
2 = −µp(ωi)

ξ
. (2.30)

Summing up these equalities over all j ∈ C(β), we get that

∑︂
j∈C(β)

(1 + δβ(aj))
2 = −

∑︁
j∈C(β) µp(ωj)

ξ
(2.31)

Combining (2.30) and (2.31):

1 + δβ(ai) =

√︁
µp(ωi)√︂∑︁

j∈C(β) µp(ωj)

√︄ ∑︂
j∈C(β)

(1 + δβ(aj))2 (2.32)
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Once again summing up these equalities over all j ∈ C(β), we get that

K(β) + δ =

∑︁
j∈C(β)

√︁
µp(ωj)√︂∑︁

j∈C(β) µp(ωj)

√︄ ∑︂
j∈C(β)

(1 + δβ(aj))2.

Expressing
√︂∑︁

j∈C(β)(1 + δβ(aj))2 from this expression and plugging it into (2.32) allows

us to express β(ai) (for i ∈ C(β)) in closed form as

β(ai) =
1

δ

(︄
(K(β) + δ)

√︁
µp(ωi)∑︁

j∈C(β)

√︁
µp(ωj)

− 1

)︄
. (2.33)

The necessary condition for option i to be in a consideration set (i ∈ C(β)) is β(ai) ≥ 0

or, equivalently, √︂
µp(ωi) >

1

K(β) + δ

∑︂
j∈C(β)

√︂
µp(ωj).

Now let ξk denote the Lagrange multiplier for the constraint β(ak) ≥ 0. Then the

first-order condition for an alternative k /∈ C(β) that is not chosen is

µp(ωk) = −ξ − ξk ⇒ µp(ωk) ≤ −ξ.

Plugging in ξ from (2.30) into the inequality above yields

µp(ωk) ≤
∑︁

j∈C(β) µp(ωj)∑︁
j∈C(β)(1 + δβ(aj))2

⇔
√︂
µp(ωk) ≤

1

K(β) + δ

∑︂
j∈C(β)

√︂
µp(ωj)

for all k /∈ C(β).

Since the minimization problem has a convex objective function and linear constraints,

the Kuhn-Tucker conditions are necessary and sufficient. Thus the necessary and sufficient

conditions that the solution β∗ must satisfy are given by:⎧⎪⎪⎨⎪⎪⎩
√︁

µp(ωi) >
1

K(β∗)+δ

∑︁
j∈C(β∗)

√︁
µp(ωj) for all i ∈ C(β∗),√︁

µp(ωk) ≤ 1
K(β∗)+δ

∑︁
j∈C(β∗)

√︁
µp(ωj) for all k /∈ C(β∗).

Recall that we assumed, without loss of generality, that µp(ω1) ≥ µp(ω2) ≥ . . . ≥
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µp(ωN). Suppose that the solution β∗ is such that K(β∗) = K ′. Clearly then, in the

optimum, the consideration set C(β∗) will consist of the first K ′ alternatives.

Denote ∆L ≡ (L+ δ)
√︁

µp(ωL)−
L∑︁

j=1

√︁
µp(ωj). Notice that for all L > 1:

∆L ≡(L+ δ)
√︂

µp(ωL)−
L∑︂

j=1

√︂
µp(ωj)

=(L− 1 + δ)
√︂

µp(ωL−1)−
L−1∑︂
j=1

√︂
µp(ωj)−

√︂
µp(ωL)

− (L− 1 + δ)
√︂

µp(ωL−1) + (L+ δ)
√︂
µp(ωL)

=∆L−1 − (L− 1 + δ)

(︃√︂
µp(ωL−1)−

√︂
µp(ωL)

)︃
.

Therefore, ∆L decreases in L. Since ∆1 > 0, there either exists unique K ′ such that

∆K′ > 0 and ∆K′+1 ≤ 0, or ∆L > 0 for all L. In the former case, K(β∗) = K ′, and in

the latter case, K(β∗) = N .

In the end, the solution to the principal’s problem is given by β∗(ai) as in (2.33) if

i ∈ C(β∗), β∗(ai) = 0 if i /∈ C(β∗), and C(β∗) = 1, ..., K(β∗), where K(β∗) is as described

above.

2.A.4 Proof of Theorem 1

Corollary 2 from Matějka and McKay (2015) shows that a vector of the unconditional

choice probabilities β ∈ ∆(A) solves (2.14) only if it solves the system of equations given

by

N∑︂
j=1

µ(ωj)
e

u(ai,ωj)

λ∑︁N
k=1 β(ak)e

u(ak,ωj)

λ

= 1, (2.34)

for every i ∈ {1, ..., N} such that β(ai) > 0.

The question then is: given a vector β ∈ ∆(A) of unconditional choice probabilities,

can we find µ ∈ RN
+ that solves the following system:

⎧⎪⎪⎨⎪⎪⎩
µ(ω1) + µ(ω2) + . . .+ µ(ωN) = 1,
N∑︁
j=1

µ(ωj)
e
u(ai,ωj)

λ

N∑︁
k=1

β(ak)e
u(ak,ωj)

λ

= 1 ∀i ∈ C(β).
(2.35)
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The system above is a linear system of K(β) + 1 equations with N unknowns. To prove

the solution exists, we use the Farkas’ lemma (see, e.g., Corollary 5.85 in Aliprantis and

Border (2006)). It states that given some matrix A ∈ Rm×n and a vector b ∈ Rm, the

linear system Ax = b has a non-negative root x ∈ Rn
+ if and only if there exists no vector

y ∈ Rm such that A′y ≥ 0 with b′y < 0. The two latter inequalities applied to our case

form the following system:⎧⎪⎪⎪⎨⎪⎪⎪⎩
y0

(︃
N∑︁
k=1

β(ak)e
u(ak,ωj)

λ

)︃
+

(︄ ∑︁
i∈C(β)

yie
u(ai,ωj)

λ

)︄
≥ 0 ∀j ∈ {1, ..., N},

y0 +
∑︁

i∈C(β)

yi < 0.

(2.36)

We need to show there exists no y ∈ RK(β)+1 that solves the system above. Let us define

zi ≡ yi + y0β(ai) for i ∈ C(β). Then, recalling that e
u(ai,ωi)

λ = e
1
λ and e

u(ai,ωj)

λ = 1 for

i ̸= j, system (2.36) transforms to⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

zje
1
λ +

∑︁
i∈C(β)\{j}

zi ≥ 0 ∀j ∈ C(β),∑︁
i∈C(β)

zi ≥ 0 ∀j ∈ {1, ..., N}\C(β),∑︁
i∈C(β)

zi < 0.

(2.37)

System (2.37) above does not have a solution. Indeed, if C(β) ⊊ {1, ..., N}, then the

middle set of inequalities directly contradicts the latter inequality. If C(β) = {1, ..., N},
then subtracting the latter inequality from the former, for a given j ∈ C(β), yields

zjδ ≥ 0 ⇐⇒ zj ≥ 0. Since this must hold for all j ∈ C(β), we obtain a contradiction

with the latter inequality,
∑︁

i∈C(β)

zi < 0.

By the Farkas’ lemma, we then conclude that for any vector β ∈ ∆(A) there exists a

belief µ ∈ ∆(Ω) that solves system (2.35). This concludes the proof.

2.A.5 Proof of Proposition 6

This proof proceeds in two parts. First, we show that the delegation strategy introduced

in the proposition (hereinafter referred to as “the candidate strategy”) is optimal for the

principal. Then we establish that it does indeed possess the stated properties.
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Consider an agent with a prior belief

µ(ωi) =

√︁
µp(ωi)

N∑︁
j=1

√︁
µp(ωj)

. (2.38)

It is trivial to verify that prior belief µ defined this way satisfies the candidate strategy in

the statement of the proposition, and hence represents the candidate strategy. Consider

an agent hired in accordance with the candidate rule. Substituting (2.38) into (2.15)

yields

β(ai) = max

⎧⎪⎨⎪⎩0,
1

δ

⎛⎜⎝(K(β∗) + δ)
√︁

µp(ωi)∑︁
j∈C(β∗)

√︁
µp(ωj)

− 1

⎞⎟⎠
⎫⎪⎬⎪⎭ , (2.39)

which are exactly the probabilities stated in Lemma 1. Therefore, an agent hired according

to the candidate strategy makes decisions in such a way that generates the principal-

optimal unconditional choice probabilities. Therefore, delegation according to the candidate

strategy is indeed optimal for the principal.

Now we show that the candidate strategy satisfies the properties stated in the proposition.

Firstly, it follows clearly from (2.38) that µ∗(ω1) ≥ µ∗(ω2) ≥ . . . ≥ µ∗(ωN). It remains to

show that µ∗(ω1) ≤ µp(ω1) and µ∗(ωN) ≥ µp(ωN). The former inequality can be shown

as follows:

µ∗(ω1) ≤ µp(ω1)

⇐⇒
√︁

µp(ωi)
N∑︁
j=1

√︁
µp(ωj)

≤ µp(ω1)

⇐⇒ 1 ≤
√︂

µp(ω1) ·

(︄
N∑︂
j=1

√︂
µp(ωj)

)︄

⇐⇒ 1 ≤ µp(ω1) +
√︂

µp(ω1)µp(ω2) + ...+
√︂

µp(ω1)µp(ωN),

and the latter inequality holds because µp(ω1) + ... + µp(ωN) = 1 and
√︁

µp(ω1)µp(ωj) ≥
µp(ωj) for all j ∈ {1, ..., N}, since µp(ω1) ≥ µp(ωj). Note that µ∗(ω1) = µp(ω1) only if

µp(ω1) = ... = µp(ωN).
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Similarly, the inequality µ∗(ωN) ≥ µp(ωN) is equivalent to

1 ≥
√︂

µp(ω1)µp(ωN) + ...+
√︂

µp(ωN−1)µp(ωN) + µp(ωN),

which holds because
√︁

µp(ωj)µp(ωN) ≤ µp(ωj) for all j ∈ {1, ..., N}, with equalities only

if µp(ω1) = ... = µp(ωN). This concludes the proof of Proposition 6.

2.A.6 Proof of Proposition 7

It follows from (2.19) that the size of the consideration set in the aligned problem, K̄, is

such that

K̄∑︂
j=1

µp(ωj)

µp(ωK̄)
< K̄ + δ ≤

K̄∑︂
j=1

µp(ωj)

µp(ωK̄+1)

Since µp(ωi)

µp(ωK̄)
> 1 for all i < K̄, we have that µp(ωi)

µp(ωK̄)
>

√
µp(ωi)√
µp(ωK̄)

> 1 holds for all i < K.

Therefore,

K̄∑︂
j=1

√︁
µp(ωj)√︁
µp(ωK̄)

< K̄ + δ. (2.40)

From (2.20), K∗ is the unique solution of

K∗∑︂
j=1

√︁
µp(ωj)√︁
µp(ωK∗)

< K∗ + δ ≤
K∗∑︂
j=1

√︁
µp(ωj)√︁

µp(ωK∗+1)
. (2.41)

Two cases are possible, depending on whether

K̄ + δ ⋛
K̄∑︂
j=1

√︁
µp(ωj)√︁

µp(ωK̄+1)
. (2.42)

If K̄ + δ ≤ RHS in (2.42) (where RHS refers to the right-hand side), then together with

(2.40) this implies that K̄ solves (2.41), and thus K̄ = K∗, which satisfies that statement

of the proposition.

If, however, K̄ + δ > RHS in (2.42), then K̄ does not solve (2.41). In this case, note

that going from K by K + 1 increases the LHS of (2.42) by 1 and increases the RHS

by the amount strictly greater than 1, since a new term
√

µp(ωK+1)√
µp(ωK+2)

> 1 is added to the
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sum, and all existing terms increase because µp(ωK+1) < µp(ωK). This holds for all K,

meaning that if K̄ + δ > RHS in (2.42), then K + δ >
K∑︁
j=1

√
µp(ωj)√

µp(ωK+1)
for all K < K̄.

Therefore, the unique solution K∗ of (2.41) must be such that KM > K̄. This concludes

the proof.

2.A.7 Proof of Proposition 8

Part 2 of the statement follows immediately from Proposition 3 of Matveenko and Mikhalishchev

(2021).

To show part 1, we invoke Theorem 1 from Matějka and McKay (2015) stated in

(2.14), which claims that in the contracting problem, the β : Ω → ∆(A) that solves the

agent’s problem (2.21) is given by

π(ai|ωj) =
β(ai)e

u(ai,ωj)+τ(ai)

λ∑︁N
k=1 β(ak)e

u(ak,ωj)+τ(ak)

λ

=
β′(ai)e

u(ai,ωj)

λ∑︁N
k=1 β

′(ak)e
u(ak,ωj)

λ

, (2.43)

where β(ai) =
N∑︂
j=1

µ(ωj)π(ai|ωj).

and β′(ai) ≡
β(ai)e

τ(ai)

λ∑︁N
k=1 β(ak)e

τ(ak)

λ

.

Since β′ is a valid probability distribution on A, representation (2.43) together with

(2.14) imply that such a collection of conditional probabilities π is a valid solution to the

agent’s problem (2.4) when the agent’s preferences net of information costs are given by

u(ai, ωj). That is, the principal can implement the desired conditional choice probabilities

π by choosing an agent with unbiased preferences and some belief µ, such that the

unconditional choice probabilities selected by this agent are given by β′. Theorem 1

implies that such a belief µ ∈ ∆(Ω) does indeed exist.
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2.A.8 Proof of Proposition 9

Plugging (2.13) in (2.11) yields the optimal conditional choice probabilities for the binary

model, given by

π∗(R|r) =
(︂
e

2
λ − 1

)︂−1

e
1
λ

(︄
e

1
λ −

√︄
1− µp

µp

)︄
,

π∗(L|l) =
(︂
e

2
λ − 1

)︂−1

e
1
λ

(︃
e

1
λ −

√︃
µp

1− µp

)︃
,

(2.44)

cropped to [0, 1].

The agent’s preferences only depend on the difference τ(R) − τ(L). Assuming all

τ(R) ∈ R are available to the principal (no limited liability), it is without loss to set

τ(L) = 0. The agent’s problem is given by (2.21). Solving it given τ = (τ(R), 0) yields

π(R|r) = 1− e
2
λ (1− µ)− e

1+τ(R)
λ + µ(︂

e
2
λ − 1

)︂(︂
e

1+τ(R)
λ − 1

)︂
µ
,

π(L|l) =
e

1
λ

(︂
e

2
λ (1− µ)− e

1+τ(R)
λ + µ

)︂
(︂
e

2
λ − 1

)︂(︂
e

1
λ − e

τ(R)
λ

)︂
(1− µ)

,

(2.45)

cropped to [0, 1].

The principal’s contracting problem (2.22) in the binary setting with ρ = 0 is similar

to (2.12):
max
τ(R)

{µpπ(R|r) + (1− µp) π(L|l)}

s.t. π(R|r), π(L|l) are given by (2.45).
(2.46)

Assuming the probabilities in (2.45) are interior, the F.O.C. for (2.46) yields the candidate

solution τ(R) given by

τ ∗(R) = λ ln

⎡⎣ 1−µ
µ
e

1
λ +

√︂
1−µp

µp

1−µ
µ

+ e
1
λ

√︂
1−µp

µp

⎤⎦ , (2.47)

where the expression under the ln(·) is non-negative for any λ, µp, µ, and thus the candidate

τ(R) exists for any µ that yields interior probabilities (2.45).

Plugging (2.47) into (2.45) yields, after some routine manipulations, the conditional

choice probabilities that coincide with (2.44) (hence, the probabilities (2.45) are interior

given µ and τ ∗(R) if and only if the probabilities (2.44) are interior). Thus, the condition
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(2.47) is not only necessary, but also sufficient. Hence, for any µp for which (2.44) are

interior, τ ∗(R) as given by (2.47) solves the principal’s problem (2.46), and this solution

exists for any µ.

If λ and µp are such that probabilities (2.44) are not interior, then the principal would

like the agent to take the ex ante (principal-)preferred action (it can be verified that the

expressions in (2.44) are such that π∗(R|r) ≥ 1 ⇐⇒ π∗(L|l) ≤ 0 and vice versa). The

candidate transfers (2.47) yield exactly such non-interior probabilities (when plugged into

(2.45)), and hence they still solve the principal’s problem (2.46) for any respective µ.28

This concludes the proof of part 1 of the proposition.

To show part 2, consider (2.47) as a function of µ. It is strictly decreasing in µ on

[0, 1], and the equation τ ∗(R)(µ) = 0 has a unique root in [0, 1] equal to

µ∗ =

√
µp

√
µp +

√︁
1− µp

,

meaning that τ(R) ≥ 0 ⇐⇒ µ ≤ µ∗.

2.A.9 Proof of Proposition 10

Proceeding analogously to Section 2.4, we obtain that the agent’s problem (2.23) given

incentive payment τ̄ (assuming τ = 0) is solved by

π (R|r) =
e

1+τ̄
λ

(︂
e

1+τ̄
λ µ− (1− µ)

)︂
(︂
e

2(1+τ̄)
λ − 1

)︂
µ

=
e

1+τ̄
λ

e
2(1+τ̄)

λ − 1

(︃
e

1+τ̄
λ − 1− µ

µ

)︃
,

π (L|l) =
e

1+τ̄
λ

(︂
e

1+τ̄
λ (1− µ)− µ

)︂
(︂
e

2(1+τ̄)
λ − 1

)︂
(1− µ)

=
e

1+τ̄
λ

e
2(1+τ̄)

λ − 1

(︃
e

1+τ̄
λ − µ

1− µ

)︃
,

(2.48)

each cropped to [0, 1].

The principal’s problem (2.24) can be rewritten as

max
τ̄

{(1− τ̄) (µpπ(R|r) + (1− µp)π(L|l))} ,

s.t. π(R|r), π(L|l) are given by (2.48).
(2.49)

28Note that τ∗(R) is not the unique solution in this case. If π∗(R|r) = 1, π∗(L|l) = 0, then any
τ(R) ≥ λ ln

(︂
µ+ (1− µ)e

2
λ

)︂
− 1 yields the optimal choice probabilities, and if π∗(R|r) = 0, π∗(L|l) = 1,

then any τ(R) ≤ 1− λ ln
(︂
µe

2
λ + (1− µ)

)︂
solves the principal’s problem.
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To begin with, note that the principal would never choose τ̄ < 0 (due to limited

liability) or τ̄ ≥ 1 (since this would render the principal’s payoff negative). Further, if

the solution (2.48) yields values outside [0, 1] for some τ̄ > 0, then such a τ̄ is clearly

suboptimal for the principal, as she can then reduce her costs without decreasing the

precision of the agent’s choice. Thus, in the optimum, if τ̄ > 0, then the probabilities

(2.48) are interior. Assuming the latter and plugging (2.48) into the principal’s problem

(2.49), the F.O.C. of this problem is given by

µp
1− µ

µ
+ (1− µp)

µ

1− µ
= e

1+τ̄
λ ·

λ
(︂
e2

1+τ̄
λ − 1

)︂
+ 2(1− τ̄)

λ
(︂
e2

1+τ̄
λ − 1

)︂
+
(︂
e2

1+τ̄
λ + 1

)︂
(1− τ̄)

. (2.50)

Let γ(µ, µp) denote the LHS and χ(τ̄ , λ) the RHS of (2.50), respectively. Then the

necessary condition for an interior τ̄ to be optimal is γ(µ, µp) = χ(τ̄ , λ). Note that

γ(µ, µp) is minimized for a given µp by µ = µ∗(µp) given by (2.13), and γ(µ∗(µp), µp) =

2
√︁

µp (1− µp) < 1. Further, it can be shown that χ(τ̄ , λ) is continuous and increasing in

τ̄ for all λ. This means that a solution to (2.50) exists for a given µ, µp, λ if and only if

χ(0, λ) ≤ γ(µ, µp) ≤ χ(1, λ) (where the “only if” part follows from the intermediate value

theorem). Since χ(τ̄ , λ) is increasing in τ̄ , the second-order condition holds, meaning that

any τ̄ that solves (2.50) is a local maximizer of (2.49); further, there is at most one local

maximizer.

Suppose µ < µ∗(µp). As 1 ≤ χ(0, λ) < +∞ for all λ > 0, γ(0, µp) = +∞,

γ(µ∗(µp), µp) < 1, and γ(µ, µp) is continuous in µ ∈ (0, 1), there exists µ̄1 < µ∗(µp)

such that γ(µ̄1, µp) = χ(0, λ). As χ(1, λ) = e
2
λ > 1, there also exists µ̃1 < µ∗(µp) such

that γ(µ̃1, µp) = χ(1, λ). As χ(0, µ) < χ(1, λ) for all λ, it follows that µ̃1 < µ̄1. By a

mirror argument, there also exist µ̃2 > µ̄2 > µ∗(µp) that satisfy the analogous properties.

Further, γ (µp, µp) = 1, so that µ̄2 > µp. In the end, χ(0, λ) ≤ γ(µ, µp) ≤ χ(1, λ) and,

hence, a solution τ̄ to (2.50) exists (and thus constitutes a local maximum of (2.49)) if

and only if

µ ∈ [µ̃1, µ̄1] ∪ [µ̄2, µ̃2]. (2.51)

If µ does not satisfy (2.51) (which is the case in the “aligned” case, µ = µp), no interior

solution exists to (2.49), hence τ̄ = 0 is optimal. On the other hand, if µ satisfies (2.51),

then the optimal τ̄ (that solves (2.49)) can be given by either the solution to (2.50), or the

corner solution τ̄ = 0. As argued previously, the latter can only be a candidate solution if
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the probabilities (2.48) are non-interior given τ̄ = 1, which is the case if µ /∈
[︂

1

1+e
1
λ
, e

1
λ

1+e
1
λ

]︂
.

Further, it can be shown that µ̃1 <
1

1+e
1
λ

and e
1
λ

1+e
1
λ
< µ̃2. Thus, we conclude that if

µ ∈
[︃

1

1 + e
1
λ

, µ̄1

]︃
∪

[︄
µ̄2,

e
1
λ

1 + e
1
λ

]︄
, (2.52)

then a τ̄ ∈ (0, 1) that solves (2.50) is a global maximizer of (2.49), which proves the

statement of the proposition. It is, however, worth noting that (2.52) is only a sufficient

condition and not a necessary one. Further, one of the invervals in (2.52) may be empty

for extreme enough µp.

2.A.10 Proof of Proposition 11

Using Theorem 1 of Caplin et al. (2019), the agent’s problem (2.25) given some restriction

set A∗ is solved by π such that the corresponding β ∈ ∆(A∗) satisfies (2.18) for all ai ∈ A∗.

Further, recall from Section 2.5 that π and β are connected in the optimum by relation

(2.14) (where we set π(ai|ωj) ≡ β(ai) ≡ 0 for all ai /∈ A∗ and all ωj ∈ Ω). Then by

plugging (2.14) and the state-matching utility into the principal’s expected payoff, it can

be rewritten as in (2.17):

N∑︂
i=1

µp(ωi)
β(ai)e

1
λ

1 + δβ(ai)
=
∑︂

i∈C(β)

µp(ωi)
(1 + δ)β(ai)

1 + δβ(ai)
.

Plugging in (2.18) for β in the expression above transforms it to

∑︂
i∈C(β)

1+δ
δ
µp(ωi)

[︄
(K(β) + δ)µp(ωi)−

∑︁
j∈C(β)

µ(ωj)

]︄
(K(β) + δ)µp(ωi)

=
1 + δ

δ

⎡⎢⎣ ∑︂
i∈C(β)

µp(ωi)−
∑︂

i∈C(β)

∑︁
j∈C(β)

µ(ωj)

(K(β) + δ)

⎤⎥⎦
=

1 + δ

K(β) + δ

∑︂
i∈C(β)

µp(ωi). (2.53)

To prove the proposition statement, we proceed by induction. Consider some arbitrary

action set A− ⊂ A such that ak /∈ A− for some k ∈ {1, ..., N} and another action set
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A+ ≡ A− ∪ {ak}. Let β+ denote the unconditional choice probabilities corresponding to

the solution of (2.25) given A+, let C+ ≡ C(β+) and K+ ≡ K(β+), and define β−, C−, K−

analogously given A−.

Our goal is to show that that selecting A∗ = A+ is weakly better for the principal than

A∗ = A−. If ak /∈ C+, then the payoffs in the two cases are equal, and the statement is

trivially true. Otherwise, using (2.53) for the principal’s expected payoff, the statement

amounts to:

0 ≤

⎛⎝ 1 + δ

K+ + δ

∑︂
i∈C+

µp(ωi)

⎞⎠−

⎛⎝ 1 + δ

K− + δ

∑︂
i∈C−

µp(ωi)

⎞⎠
⇐⇒ 0 ≤

⎛⎝(K− + δ)
∑︂
i∈C+

µp(ωi)

⎞⎠−

⎛⎝(K+ + δ)
∑︂
i∈C−

µp(ωi)

⎞⎠
⇐⇒ 0 ≤(K− + δ)µp(ωk)−

⎛⎝∑︂
i∈C−

µp(ωi)

⎞⎠ . (2.54)

Since ak ∈ C+ by assumption, β+(ak) > 0, which, from (2.18), implies that

0 <
(K(β̄) + δ)µ(ωi)∑︁

j∈C(β̄)

µ(ωj)
− 1

⇐⇒ 0 <(K+ + δ)µp(ωk)−

⎛⎝∑︂
i∈C+

µp(ωi)

⎞⎠
⇐⇒ 0 <(K− + 1 + δ)µp(ωk)−

⎛⎝∑︂
i∈C−

µp(ωi) + µp(ωk)

⎞⎠
⇐⇒ 0 <(K− + δ)µp(ωk)−

⎛⎝∑︂
i∈C−

µp(ωi)

⎞⎠ ,

which immediately implies that (2.54) holds. Therefore, it is indeed better for the

principal to choose A+ over A−. Since A− was arbitrary, this proves by induction that

allowing a larger action set is always weakly better for the principal, and hence proves

the original proposition.
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2.A.11 Proof of Proposition 12

We provide an example for N = 3. We use the same version of the Farkas’ Lemma as in

the proof of Theorem 1. To show that there is no prior belief that solves the system of

the first-order conditions for the problem, it is sufficient to show that there is a solution

to the following dual inequality system⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

z1e
u(a1,ω1)

λ + z2e
u(a1,ω2)

λ + z3e
u(a1,ω3)

λ ≥ 0,

z1e
u(a2,ω1)

λ + z2e
u(a2,ω2)

λ + z3e
u(a2,ω3)

λ ≥ 0,

z1e
u(a3,ω1)

λ + z2e
u(a3,ω2)

λ + z3e
u(a3,ω3)

λ ≥ 0,

z1 + z2 + z3 < 0.

(2.55)

Let us normalize λ = 1 and consider payoffs given by the following matrix:⎛⎜⎜⎝
u(a1, ω1) u(a2, ω1) u(a3, ω1)

u(a1, ω2) u(a2, ω2) u(a3, ω2)

u(a1, ω3) u(a2, ω3) u(a3, ω3)

⎞⎟⎟⎠ =

⎛⎜⎜⎝
ln 3 0 ln(2 + ε)

0 ln 3 ln(2 + ε)

0 0 ln(2 + ε)

⎞⎟⎟⎠
Notice that vector (z1, z2, z3) = (−1 − δ,−1 − δ, 2) for small enough δ, ε ≥ 0 solves

system (2.55): the two latter inequalities hold trivially for all such z, and the two former

inequalities hold if ε ≥ 3
1+δ
2 − 2. Therefore, there exists no µ that solves system (2.35)

given β ∈ ∆(Θ).

2.A.12 Proof of Proposition 13

We first show that there exists an equilibrium in the communication game that replicates

the deletation equilibrium: the optimal agent acquires the same information, makes a

truthful action recommendation, and the principal follows the recommendation.

Suppose that under delegation, the optimally chosen agent follows a decision rule β∗

that yields a consideration set C(β∗) = {1, ..., K∗}. By Lemma 1, we have that

√︁
µ(ωK∗) ≥ 1

K∗ + δ

K∗∑︂
i=1

√︁
µ(ωi)

⇐⇒ δ
√︁
µ(ωK∗) ≥

K∗−1∑︂
i=1

(︂√︁
µ(ωi)−

√︁
µ(ωK∗)

)︂
(2.56)
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Suppose the agent reports truthfully. Given the state-matching payoffs, for the principal

to follow recommendation ã = ãK∗ whenever it is issued, it must hold that

µp(ωK∗|ãK∗) = max
i

µp(ωi|ãK∗), (2.57)

where µp(ω|ã) is the probability that the principal’s posterior belief assigns to state ω

after hearing recommendation ã from the agent. In equilibrium, the principal’s posterior

µp(ωK∗|ãK∗) must satisfy Bayes’ rule:

µp(ωK∗|ãK∗) =
π(aK∗ |ωK∗)µp(ωK∗)∑︁N
i=1 µp(ωi)π(aK∗|ωi)

=
β(aK∗)e

1
λ

β(a1) + ...+ β(aK∗−1) + β(aK∗)e
1
λ

· µp(ωK∗)∑︁N
i=1 µp(ωi)π(aK∗|ωi)

=
β(aK∗)e

1
λ

1 + δβ(aK∗)
· µp(ωK∗)∑︁N

i=1 µp(ωi)π(aK∗|ωi)

=

∑︁K∗

i=1

√︁
µp(ωi)

K∗ + δ
· β(aK∗)e

1
λ ·

√︁
µ(ωK∗)∑︁N

i=1 µp(ωi)π(aK∗|ωi)
,

Where the last line is obtained by plugging the expression for β(aK∗) from Lemma 1 in

the denominator of the preceding line. Similarly, we can calculate the probability that

the principal’s posterior assigns to any other state ωj:

µp(ωj|ãK∗) =

⎧⎪⎨⎪⎩
∑︁K∗

i=1

√
µp(ωi)

K∗+δ
· β(aK∗)e

1
λ ·

√
µ(ωj)∑︁N

i=1 µp(ωi)π(aK∗ |ωi)
if j < K∗,

0 if j > K∗.

For condition (2.57) to hold, it is then enough for

e
1
λ

√︁
µ(ωK∗) ≥

√︁
µ(ω1) ⇐⇒ δ

√︁
µ(ωK∗) ≥

√︁
µ(ω1)−

√︁
µ(ωK∗), (2.58)

to be satisfied. Note, however, that it is strictly weaker than (2.56), since

√︁
µ(ω1)−

√︁
µ(ωK∗) <

K∗−1∑︂
i=1

(︂√︁
µ(ωi)−

√︁
µ(ωK∗)

)︂
.

Therefore, we conclude that (2.58) holds, and thus it is optimal for the principal to choose

action aK∗ when the agent with prior belief µ∗ recommends it.

Following the same argument, we can show the same for any other recommendation
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ãi for i ∈ C(β∗): the necessary and sufficient condition for the principal to find it optimal

to follow the recommendation would be

e
1
λ

√︁
µ(ωi) ≥

√︁
µ(ω1),

which is implied by (2.57), since µ(ωi) ≥ µ(ωK∗) for i ∈ C(β∗). This concludes the proof.
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Chapter 3
Is it Better to be First? Search with

Endogenous Information Acquisition

3.1 Introduction

Search theory is the classical approach to modeling information acquisition, and has been

widely used in several fields of economics. The main focus of economic analysis has been

the impact of search frictions.1 However, only a little attention has been paid to the

order effect in the search theory. Usually, the inspection’s order effect plays rather an

instrumental role in the analysis. For example, in the most common application of the

search model, an oligopoly market, the order of product inspection is used to study how

a firm may use order strategically to discriminate against an agent. In turn, an agent

searches mostly mechanically, choosing only the optimal order of inspection and when to

stop a search procedure.

The standard assumption in such search models is that binary technology resolves

uncertainty. That is, an agent can obtain only full information about the quality of

an alternative by paying the fixed cost. This assumption substantially simplifies the

analysis of the search problem but makes an agent’s strategy more passive. In this paper,

we relax the binary technology assumption and allow our agent to choose the nature

of information about an alternative herself. Therefore, our agent can engage in a more

active search strategy: she can endogenously choose the amount and the structure of

information at every stage, and the information may be history-dependent. In this case,
1See, e.g., Kamenica (2017) for the discussion.
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the order of alternatives influences her choice through the new endogenous information

channel.

The endogenous information assumption is realistic in several search settings. For

example, when the manager wants to choose the best candidate from several job interviews,

interview timeslots for candidates are usually prespecified. However, clearly, the manager

may not obtain the same information during an interview with different candidates. The

manager can endogenously select questions during an interview and thereby learn different

information about candidates. In many settings, an agent may choose to learn different

information even when the alternatives are ex ante similar, and the information depends

on the path of inspections.

Psychologists study the relation between the order and information in search problems

in detail. The presence of a serial-position effect has been widely documented: see,

e.g., Feigenbaum and Simon (1962). Their main insight is that a person who inspects

items sequentially recalls different pieces of information about the items in relation to

the order in which she inspected them. People tend to remember the first and last

observations most strongly. The primacy effect presents when a person remembers more

first inspections, and the recency effect is when she remembers the last. In our analysis,

we use the amount of information a manager learns about alternatives as a proxy for

the information a person recalls about alternatives. Simply, if a person learns more

about an alternative, it is plausible that she will remember more information about it.

We say that the serial-position effect presents if the manager chooses to learn different

information about different alternatives. In the analysis, we mainly compare the amount

of information the manager obtains in different periods.

The main aim of our paper is twofold. First, we connect search theory with findings

from psychological literature, and investigate the presense of the serial-position effect.

Second, we study how order may discriminate an alternative in the agent’s choice; how a

particular order influences the probability of choice through the endogenous information

channel. For this, we build a variant of the sequential model of the optimal interview

design. We focus on the order effect and assume identical ex ante available alternatives.

In our model, the manager must choose one candidate for a job. She obtains information

about identical ex ante candidates sequentially and may learn different information about

different candidates. We say there is discrimination in choice if the probability of choice

is not uniform.

There is controversial evidence from psychological literature about the influence of
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order in search problems on the probability of choice. Depending on the particular

problem and the ex ante attractiveness of an alternative, discrimination in favor of the

first or the last alternatives may present; see, e.g., Mantonakis et al. (2009), Li and Epley

(2009), and Newell and Shanks (2014). There is also anecdotal evidence of interest in

how order influences choice discrimination in public internet forums. For example, in the

popular internet forum reddit.com many people ask for advice about which interview

timeslot from those available they should ideally take. Usually, there is no universal

advice from the audience on which position favors discrimination. However, the leading

instruction supports basic common sense and can be summarized as “Just come in and

do a good interview”, suggesting that the order does not cause discrimination in choice.2

This paper focuses mainly on a setup with two identical candidates. Our main result

supports basic naive common sense, and we find no discrimination in the aggregate,

unconditional probability of choice. The manager chooses both candidates with equal

probability. However, the amount of information the manager chooses to learn in different

stages may differ, and the primacy or recency effect may present. Nevertheless, perhaps

surprisingly, the effect does not influence the average probability of the manager’s choice.

Intuitively the no-discrimination result can be explained by the special intertemporal role

of information in the solution. In the optimum, the information is a perfect substitute

between periods. The manager obtains a fixed amount of information in two periods, but

she may acquire more in the first period, and so the primacy effect takes place, or in the

second, when the recency effect occurs.3

Our analysis allows for flexibility of the information the manager can acquire. We

assume that the manager is rationally inattentive. She may choose any information she

wants, and pays some costs for it. To make the problem tractable, we model the quality

of a candidate as a simple binary random variable, which takes values 0 and 1 with low

and high quality interpretation. As in the theory of discrete rational inattention (Caplin

et al. (2022)), we model information acquisition strategy as a conditional distribution

over signal realizations. We use the posterior approach with backward induction and

concavification technique to solve the problem.

2https://www.reddit.com/r/ITCareerQuestions/comments/3nk7o4/which_interview_slot_
is_best_to_take/

3Although the serial-position effect in our model does not influence the unconditional probability of
choice, it affects conditional probabilities. This findings creates strategic incentives for a candidate if he
has additional information about his quality. However, in this paper, we focus only on the order effect in
the manager’s problem, and our candidates are passive. We abstract from the all strategic considerations
the order effect may cause.

65

reddit.com
https://www.reddit.com/r/ITCareerQuestions/comments/3nk7o4/which_interview_slot_is_best_to_take/
https://www.reddit.com/r/ITCareerQuestions/comments/3nk7o4/which_interview_slot_is_best_to_take/


For tractability, we assume a quadratic information cost function form. This cost

function falls into the class of the posterior-separable cost functions (Caplin et al. (2022))

and has been used previously in the rational inattention literature, see, e.g., Wei (2021),

and Lipnowski et al. (2022). Our results are sensitive to the quadratic cost specification;

this functional form mainly causes perfect substitutability of information between periods.

Technically, the manager’s value function in the first period is linear in the posterior

realization in the interval around the prior belief. This finding generates non-uniqueness

of the learning strategy in the first period. For example, the manager is indifferent

between not learning at all and having posterior realizations on the boundaries of the

linear region. In the first case, the primacy effect is present, and in the latter, the

recency effect is present.4

Our main findings hold in a more generalized setup. In the two-alternative model

with different expected qualities, the result of the substitutability of information persists.

If one agent is ex ante better, then the manager chooses him more often. However, at

optimum, she acquires a fixed amount of information in two periods but may learn more

or less in the first period. Due to this role taken by information, it is perhaps, surprising

that the manager is indifferent between inspecting the better or worse candidate first.

This is not true in the classical search theory model with binary information technology

(Weitzman (1979)). Our numerical results for a different cost function suggest that the

no-discrimination result may hold in the setting with a more general cost function but

not the substitutability of the information result.

Including an additional candidate in our model also breaks the substitutability of the

information result. The value function is non-linear in posterior belief, and the optimal

learning strategy is unique. We compare the manager’s behavior in the second and third

periods and find that the primacy effect is present, which is supported by the experimental

evidence, e.g., Mantonakis et al. (2009). In the optimum, the manager chooses a candidate

given high posterior realization and continues the search otherwise. The manager chooses

the second candidate more often on average, and she engages in “cherry-picking” behavior:

values of high posterior beliefs decrease in the order of candidates.

Endogenous information acquisition is a natural assumption in many search settings,

4In the paper we focus only on the interior learning strategy. Because the derivative of the cost
function is bounded on the boundaries, full learning, in general, may be optimal. We show that it is
possible to eliminate full learning case by restricting the set of parameters. In general, full learning
strategy can be seen as the result of the optimization with active constraint and therefore can create
non-trivial intertemporal effects. We found this case analytically intractable.
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and we contribute to this relatively small but growing literature. The closest paper to

ours is Jain and Whitmeyer (2021). They consider a search model in which an agent

can also learn flexibly, paying quadratic costs. However, they focus on the strategic

incentives in the oligopolistic setting and market outcomes. Liu et al. (2022) consider

a search model in which an agent may reduce the noise of her item evaluation. They

mainly focus on comparing their model with classical search result, and they do not

allow flexibility of information. In Dogan and Hu (2022), similarly to us, an agent has

a flexible learning technology, but they study an equilibrium, in which an agent faces a

stationary environment of search. Literature on experimentation and sequential learning

is also related to our model, e.g., Fershtman and Pavan (2022), Gossner et al. (2021),

however, their modeling assumptions are quite different from ours.

Our model is a variant of the dynamic discrete rational inattention problem. Steiner

et al. (2017) solve this type of problem using stochastic choices, and Miao and Xing (2020)

consider a posterior approach. There is a substantial difference in our model. In both

Steiner et al. (2017) and Miao and Xing (2020), an agent at every stage may learn any

information about the payoff-relevant state. However, in our setup, an agent in stage i

can learn only about alternative i. Posterior belief about the alternative enters into the

next period agent’s rewards, which does not happen in Steiner et al. (2017) and Miao

and Xing (2020). For this reason, their results do not apply in our setup.

The rest of the paper is organized as follows: we formulate the main two-period

benchmark model with ex ante identical candidates in Section 3.2. We analyze the model

in Section 3.3. In Section 3.4 we explore the generalization of the results of the main

model and consider several extensions, including different expected qualities, discounting,

more candidates, and an alternative cost function. Section 3.5 concludes.

3.2 Two-Period Model with Identical Candidates

There is a decision maker (manager, she) and two alternatives (candidates, he) indexed

by i. A candidate i has a binary type θi = {0, 1} and the manager’s prior belief is

P(θi = 1) = µ. Types are independently distributed.

The manager must choose one candidate, there is no outside option. Before making

a decision, she may learn about the candidates’ types. Learning is costly and sequential.

In stage i the manager inspects candidate i. We assume no discounting between periods

and therefore the total costs in the problem for the manager is simply the sum of costs
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in each period i.5The manager’s payoff in the problem equals the difference between the

expected value of the chosen candidate and total costs.

Learning in stage i proceeds as follows. The manager chooses a Blackwell experiment,

which generates information about θi. This experiment is a mapping from the state space

{0, 1} to a probability measure over some compact set of signal realizations. Each signal

realization is associated with posterior belief distribution on {0, 1} and an experiment

induces a distribution over posterior beliefs. Because we consider a binary random

variable, we identify a posterior belief distribution with a belief about θi = 1. It is

commonly known from the literature on rational inattention (e.g., Caplin and Dean

(2013)), that instead of considering the set of Blackwell experiments, one can consider the

set of distribution of posterior beliefs, in which the mean equals prior. In our analysis,

we apply the posterior approach.

Formally, the manager chooses distribution pi, which satisfies Bayesian plausibility

condition:

pi ∈ ∆[0, 1] :

∫︂
[0,1]

xdpi(x) = µ.

Below we refer to a posterior distribution that satisfies this condition as a feasible

distribution. A choice of pi is costly. We assume quadratic cost specification, that is, if

k is a marginal cost of information then the total cost of information is

C(pi) = k

∫︂
[0,1]

(x− µ)2dpi(x)

This cost specification falls into the class of the posterior-separable cost function, the most

commonly used function in the rational inattention literature (Caplin et al. (2022)).6This

cost specification is proportional to the variance of the posterior belief and possesses a

standard property: that the cost increases if x moves closer to the certainty from prior

µ.

Because the manager’s problem is sequential, it is convenient to introduce the payoffs

5We allow the manager to not learn and to spend zero costs in stages i. For example, let the manager
incur some positive cost in the first period and suppose that her evaluation of the candidate exceeds µ. If
she incurs zero cost in the second period, we interpret this to mean that the manager knowingly chose a
candidate in the first period and in the second period simply she consumes no informative signals about
a candidate.

6This specification is for binary random variable θi. It can be easily extended for a random variable
with more realizations, such as C(pi) = k

∫︁
[0,1]

||x− µ||dpi(x) as e.g., in Lipnowski et al. (2022)
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sequentially. We fix a first-period learning strategy p1. After the first period, the manager

obtains a posterior belief x1 about the quality of the first candidate. This value plays the

role of the outside option in the second period.

We define the net utility function in the second period given x1 and posterior belief

about the second candidate x2 as

u2(x1, x2) = max{x1, x2} − k(x2 − µ)2

The expected utility of the manager in the second period is therefore the expectation

over posterior realizations x2. Thus the manager’s problem is choosing the best feasible

posterior distribution:

max
p2∈∆[0,1]

∫︂
[0,1]

u2(x1, x)dp2(x) (3.1)

We denote the maximum attained value of the problem as V(x1). Similarly to the

second period, we define net utility in the first period as a function of posterior belief x1,

anticipating optimal behavior in the second period

u1(x1) = V(x1)− k(x1 − µ)2

Therefore the manager’s maximization problem in the two-period framework can be

formalized using net utilities as follows

max
p1∈∆[0,1]

∫︂
[0,1]

u1(x)dp1(x),

s.t. V(x) = max
p2∈∆[0,1]

∫︂
[0,1]

u2(x, y)dp2(y).

(3.2)

3.3 Solution for the Two-Period Model

3.3.1 Solution for the Second Period

We solve the two-period model using backward induction, first solving the second-period

problem (3.1). This problem is a variant of the binary Matejka-McKay model with outside

option with a different cost function (Matějka and McKay (2015)). Therefore, we claim

that support of optimal distribution p2 has at most two points.

One substantial difference in our setup is the possibility of full learning. Because the
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derivative of the cost function is bounded on the boundaries, full learning, in general, may

be optimal. However, our analysis focuses on the interior posterior distribution. We show

that it is possible to eliminate full learning behavior by restricting the set of parameters.

Lemma 2. If the prior belief of the manager is not too extreme, µ ∈ [ 1
2k
, 1− 1

2k
] for k > 1

2

then a full learning posterior belief x2 ∈ {0, 1} cannot be a part of the solution to problem

(3.1).

In the analysis, we consider the value of marginal cost k such that the interval for

prior belief [ 1
2k
, 1− 1

2k
] is substantively large.

We solve the problem (3.1) using the concavification technique. We use standard

tangency conditions for the net utility at posterior realizations. Net utility depends on

the prior belief and therefore optimal posteriors may also depend on the prior, which

can complicate analysis. We show that, with quadratic cost this is not the case and,

moreover, that this cost function specification allows us to find optimal posteriors and

learning regions in closed form. The next proposition identifies optimal posteriors for all

possible values of outside option x1.7

Proposition 14. If the value of the outside option (posterior realization from the first

period) is too low, x1 ≤ µ − 1
4k

or too high, x1 ≥ µ + 1
4k

the manager does not learn

(in the second period) and chooses the second candidate in the former case and the first

candidate in the latter case.

If x1 ∈ (µ− 1
4k
, µ+ 1

4k
) it is optimal to have a distribution p2 with two posterior beliefs,

xL
2 = x1 − 1

4k
and xH

2 = x1 +
1
4k

.

The solution has interval structure that is standard in the rational inattention literature.

When the value of the outside option is too extreme with respect to the expected quality

of a candidate µ, learning is too expensive, the manager does not consume any informative

signals and chooses either the outside option or a candidate. In other cases, the manager

learns and chooses an option depending on the realization of a signal.

Putting all variables together, we obtain a tractable expression for value function

V(x1) , which is needed for the net utility in the second period. From the simple algebra

we calculate that the value function in the learning region equals

V(x1) = kx2
1 + ax1 + b,

7This result is not entirely new. A variant of it has appeared in prior literature: see e.g. Jain and
Whitmeyer (2021) and Wei (2021)
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where a = 1
2
− 2kµ, b = k(µ + 1

4k
)2. The optimal posterior belief in the second period is

linear in x1, therefore, the function V(x1) by construction is a cubic polynomial, however,

the third-degree terms cancel each other. Obviously V(x1) = µ if x1 ≤ µ − 1
4k

and

V(x1) = x1 if x1 ≥ µ+ 1
4k

. The function V(x1) is clearly continuous on [0, 1], and simple

algebra shows that it is also continuously differentiable.

3.3.2 Solution for the First Period

Having identified the function form for V(x1) analysis of problem (3.2) is straightforward.

Because function V(x1) is constant and linear on intervals [0, µ − 1
4k
] and [µ + 1

4k
, 1]

correspondingly, net utility u1(x1) is a concave quadratic polynomial on these intervals.

Surprisingly, on the interval [µ− 1
4k
, µ+ 1

4k
] net utility is linear because quadratic terms

cancel out.

Because the function V(x1) is continuously differentiable, the net utility u1(x1) is

also continuously differentiable. Therefore, the net utility is weakly concave on the [0, 1]

and its concavification coincides with the function itself. The prior belief µ lies on the

linear region [µ − 1
4k
, µ + 1

4k
] therefore, the solution to the problem is not unique. The

necessary and sufficient condition for optimal feasible posterior beliefs is for what to lie

inside interval [µ − 1
4k
, µ + 1

4k
]. For convenience, we formalize our result with posterior

distribution, which has at most two posterior beliefs.

Theorem 2. Suppose that the posterior distribution p1 has at most two posterior realizations.

In the solution to problem (3.2) in the first period, it is optimal either not to learn

anything or to have posterior distribution p1 with two posterior beliefs, xL
1 ∈ [µ − 1

4k
, µ)

and xH
1 ∈ (µ, µ+ 1

4k
].

The recommendation lemma, which suggests one-to-one mapping between posterior

belief and action, does not hold in our setup. The main argument for the recommendation

lemma is the linearity of the value function concerning the posterior belief. In our case,

function V(x1) is clearly non-linear in x1. In the solution to problem (3.2), any non-

degenerate posterior belief x1 leads to learning in the second period. Therefore the

manager chooses both candidates with positive probabilities given any optimal first-period

posterior belief x1.

To show the intertemporal effect of the information, we consider how unconditional

choice probabilities change with changing learning strategy. We fix symmetric first period

posteriors x1
L = µ −∆, x1

H = µ + ∆ and allow the manager to obtain more precise high
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posterior belief x1
H = µ+∆+ ε. The manager chooses the first candidate if she receives

a low signal in the second period. In the second period given the value of the outside

option equals x1 the manager chooses the first candidate with probability 1
2
+2k(x1−µ).

Therefore, the unconditional probability of choosing the first candidate equals

P (choose 1) =
(︂1
2
− 2k∆

)︂ ∆+ ε

2∆ + ε
+
(︂1
2
+ 2k(∆ + ε)

)︂ ∆

2∆+ ε
=

1

2
.

Because the posterior x1
H increases, the manager chooses the first candidate in the second

period more often, given a high signal. However, the probability of obtaining a high

signal in the first period decreases, to maintain Bayesian plausibility condition. These

two effects cancel each other out. Therefore, the manager will choose one or the other

candidate with equal probabilities.

Clearly, in the solution, the manager can learn differently in different periods. For

example, Theorem 2 suggests that the strategy in which the manager does not learn in

one period and chooses a posterior distribution with xL = µ− 1
4k
, xH = µ+ 1

4k
in another

is optimal. Obviously, in aggregate, the manager incurs the same cost of learning in the

two strategies. This observation holds for any optimal learning strategy. We show that,

in an optimum strategy, the manager always obtains a fixed amount of information c̄.

She may incur any positive cost below c̄ in the first period and the rest in the second.

Therefore the manager perfectly substitutes information between periods. The following

corollary describes the properties of the solution to the problem (3.2).

Corollary 1. In the solution to problem (3.2) the manager chooses candidates with equal

unconditional probabilities. The manager always incurs the fixed aggregate cost of learning

c̄, she may incur any non-negative amount of cost in the first period and the rest in the

second.

The manager does not discriminate against a candidate on average. However, clearly,

the manager may discriminate against a candidate conditionally. For example, although

she chooses both candidates with equal probabilities, if she learns only in the first period,

she chooses the first candidate conditional on him being a high type more often.

The manager may learn more in the first period or the second, and therefore the

primacy or recency effect may present. The exact conditions for a serial-position effect

are not identifiable. The manager is free to incur any amount of cost below c̄ in the first

period.
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3.4 Extensions

In this section, we study simple generalizations of our main model. We study the

robustness of our results if candidates differ in terms of expected quality; when more

candidates are available. We also introduce discounting and consider different cost

function specifications. In all generalizations we consider the case µ ∈ [ 1
2k
, 1− 1

2k
].

3.4.1 Different Agents

We start with a setup in which candidates have different expected qualities. We consider

problem (3.2) and assume that the first candidate has expected quality µ1 and the second

has µ2. Our main argument in Theorem 2 deals with the behavior of the marginal utility

therefore, unsurprisingly, a similar result holds in this setting.

Lemma 3. If |µ1 − µ2| ≤ 1
4k

then it is optimal in the first period either not to learn

anything or to have posterior distribution p1 with two posterior beliefs, xL
1 ∈ [µ2 − 1

4k
, µ1)

and xH
1 ∈ (µ1, µ2 +

1
4k
].

As in Theorem 2, for simplicity, we formulate our result with posterior distribution,

which has at most two posterior beliefs. One additional requirement is needed for Lemma

3 to hold. Candidates should not differ much in their expected qualities. Technically, in

this case, the prior belief in the first periods belongs to the learning region.

If the candidates do not differ much in their expected qualities, the manager uses

information between periods as a perfect substitute. Clearly, because candidates are

different ex ante, the manager does not choose them uniformly. However, as with identical

candidates, the unconditional probabilities are constant across all learning strategies.

Corollary 2. Fix µ1 > µ2. The manager chooses the first agent with unconditional

probability 1
2
+2k(µ1−µ2) and the second agent with unconditional probability 1

2
+2k(µ2−

µ1). The manager always incurs the fixed aggregate cost of learning c̄− k(µ1 − µ2)
2, she

may incur any non-negative amount of cost in the first period and the rest in the second.

Obviously, in this scenario, the manager chooses the better candidate more often.

Additionally, in the current setup, she incurs less cost on aggregate. This is intuitively

true because the information is most valuable in the least certain environment, which is

the formulation with identical candidates.
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We finish the analysis of the model with different agents with the optimal order

question. Because the candidates differ, the manager may benefit from the particular

inspection order. For example, in Weitzman (1979) suggests that the manager should

start her inspection with the better candidate. We show that, in our case, the manager is

indifferent between different orders due to the special intertemporal role of the information.

Proposition 15. If |µ1 − µ2| ≤ 1
4k

then the manager obtains the same value in the

problem no matter which candidate she inspects first.

3.4.2 Discounting

To fully capture the sequential effect of the problem in our prior analysis, we assumed

that the manager valued information to the same degree in different periods. This is

clearly an essential simplifying assumption, but we relax it in this section. The most

natural way is by introducing discounting, because it is widely documented that people

value present events more than future ones.

In this section we assume that the manager discounts only the information but not the

expected value of the candidate. There are two main reasons for this. Firstly, our goal

is to identify the interaction only between discounting of information and the sequential

nature of the problem. Secondly, the expected value of the candidate can be seen as his

long-run average productivity and, therefore, should not be discounted.

We consider a two-period problem (3.1) with discounting. That is, we assume that the

marginal cost of information differs in different periods, k1 = tk2, t > 1. Basic intuition

suggests that with discounting, the information in the second period becomes cheaper,

and the intertemporal role of the information should change. We show that the basic

intuition holds. Moreover, the manager learns only in the second period.

Proposition 16. In the solution to problem (3.2) with different marginal costs of information

k1 < k2 the manager does not learn in the first period. In the second period she chooses

p2 such that xL
2 = µ− 1

4k
, xH

2 = µ+ 1
4k

.

Discounting does not essentially change the results of Theorem 2. The manager does

not discriminate between candidates and chooses them uniformly, on average. Moreover,

the manager incurs the same amount of the cost as in the setup without discounting.

Because the information is more expensive in the first period, the manager simply obtains

it only in the second period, and the recency effect takes place. She chooses the second

candidate more often, given that he is a high-quality candidate.
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3.4.3 An Additional Alternative

In this section, we consider a slightly richer model and investigate the role of an additional

alternative. We analyze a model in which the manager inspects three identical candidates

sequentially. We define the manager’s problem formally, and similarly to the two-period

problem, we introduce the manager’s problem sequentially.

We fix the first and second-period learning strategies and denote them as p1, p2. After

the first two periods, the manager obtains posterior beliefs x1, x2 about the qualities of

the candidates. These realizations serve as the outside options of the manager. We define

the net utility function in the third period given x1, x2 and the manager’s posterior belief

about the third candidate x3 as

u3(x1, x2, x3) = max{x1, x2, x3} − k(x3 − µ)2

Therefore the third period problem is

max
p3∈∆[0,1]

∫︂
[0,1]

u3(x1, x2, x)dp3(x). (3.3)

for feasible distribution p3. We denote the maximum attained value in the problem as

V3(x1, x2). For the second period, we similarly define net utility as a function of posterior

belief x1, anticipating optimal behavior in the third period

u2(x1, x2) = V3(x1, x2)− k(x2 − µ)2

Therefore the second period problem of the manager is

max
p2∈∆[0,1]

∫︂
[0,1]

u2(x1, x)dp2(x),

s.t. V3(x1, x) = max
p3∈∆[0,1]

∫︂
[0,1]

u3(x1, x, y)dp3(y).

(3.4)

Finally, if the maximum attained value in the problem above equals V2(x1) then the first

period net utility equals

u1(x1) = V2(x1)− k(x1 − µ)2
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and the manager’s problem in the three-period setup can be formalized as

max
p1∈∆[0,1]

∫︂
[0,1]

u1(x)dp1(x),

s.t. V2(x) = max
p2∈∆[0,1]

∫︂
[0,1]

u2(x, y)dp2(y).

(3.5)

Solution to the Model With Three Alternatives

Denoting x1,2 = max{x1, x2} it is clear that the problem in the third period (3.3) is

equivalent to the second-period problem (3.1) with posterior belief x1,2 after the first

period. Therefore the solution to problem (3.3) follows from Proposition 14.

Problem (3.4) differs from problem (3.2) due to the presence of the outside option

from the first period x1. We discuss the properties of the solution to the problem (3.4)

in the appendix. The value function V2(x) has an interval structure as in problem (3.2)

but is non-linear in the intermediate region. Because of this non-linearity, the solution

to the three-alternative problem may seem complicated. However, we show that it has a

simple structure.

Theorem 3. In the model with three alternatives, at stage i, it is optimal either to

have a distribution pi with two posterior beliefs xL
i , x

H
i or not to consume any informative

signals. The manager does not consume informative signals at stage i given high posterior

realization in previous stages and chooses pi otherwise. If the manager receives high

posterior realization in stage i, she chooses candidate i. If the manager does not receive

any high posterior realizations, she chooses the first candidate. Additionally, inequalities

xL
3 < xL

2 < xL
1 < xH

3 < xH
2 < xH

1

hold.

The manager continues an active search only if she receives a low signal and chooses

an alternative otherwise. This pattern resembles the behavior from the classical model

of satisfaction Simon (1955). However, our framework creates a generalization of the

satisfying behavior. Unlike Simon (1955), in our model, the satisfaction threshold decreases

over time. Interestingly, this result is driven only by the presence of endogenous information

but not, for example, by discounting. Decreasing threshold behavior is optimal in a

variant of the “secretary problem” (Gilbert and Mosteller (1966)). In the “secretary
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problem”, the decision maker samples i.i.d. items and decides when to stop searching and

to choose an option. In the “secretary problem”, the search is costless and without recall,

therefore the driver of our result is different.

In this section, we compare the unconditional probabilities of the choice of the second

and the third candidates. There are two main reasons for this comparison. First, in

our analysis above, we investigated order effects in the framework with two candidates.

Therefore, the natural interpretation of the first candidate in the current framework is

an endogenous outside option. Second, we find conditions for the optimal information

in the first period and the first agent’s choice probabilities to be generally analytically

intractable.

To investigate the impact of the additional candidate on the second and the third

candidates, we analyze problem (3.4) with an outside option xL
1 . From the proof of

Theorem 3 the inequality for the low posterior belief xL
1 ∈ (µ − 1

4k
, µ) holds. Therefore,

it is worth studying how the solution to problem (3.4) changes for different values of xL
1

on the interval [µ− 1
4k
, µ]. Our analysis of the problem is based on the proof of Theorem

3, which appears in the appendix.

If the value of an outside option is too low x1 = µ− 1
4k

, it does not make a difference

to the manager’s choice, and the solution to problem (3.4) is the same as in the model

with two candidates. For greater values of xL
1 , net utility u2(x

L
1 , x2) is non-linear in x2

for the whole interval [0, 1]; therefore, perfect substitutability of the information result

does not hold in this case. Also, for greater values of xL
1 , all three candidates are more

equivalent ex ante; thus, information becomes more important.

To balance information gains in periods, the manager wants to postpone information

acquisition more to the third stage because, with a positive probability, she will not

consume any informative signals in the third stage. We show that inequality C(p3) >

C(p2) indeed holds. On aggregate, the amount of information in the third period is lower

because the manager chooses p3 only given xL
2 realization. We show that the second effect

dominates, and on average, the manager obtains more information in the second period,

so the primacy effect is present. Intuitively, this should lead to discrimination against

the third candidate, and the manager should choose the second candidate more often

unconditionally. The next corollary confirms this intuition.

Corollary 3. In the model with three alternatives, the manager, on aggregate, incurs

greater cost in the second period than in the third. Also, the manager chooses the second
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candidate unconditionally more often than the third one.

Our result supports the primacy effect of the order on choice, as in, for example,

Mantonakis et al. (2009). The optimal learning strategy also has an interesting interpretation.

If we relate an interview to a test with a binary outcome, the manager designs a harder

test for the second interview than for the third one. It is easier for the manager to

construct the test in the second period, but the test is less informative about the quality

of the second candidate than it is about the candidate in the third period. Because

xH
2 > xH

3 the manager engages in “cherry-picking” behavior. Bartoš et al. (2016) find

such behavior in their field experiment in an environment with information acquisition.

3.4.4 Different Cost Function

Technically, our results depend heavily on the quadratic cost function, therefore it is

important to consider different cost specifications. In this section, we keep the power

functional form assumption and consider costs to be equal

C̃(p) = k

∫︂
[0,1]

(x− µ)4dp(x)

for the chosen distribution p. The function C̃(p) is also the posterior-separable cost

function. Additionally, the net cost of posterior belief x is the concave transformation

of the quadratic cost from the main model, therefore, any non-degenerate posterior

distribution p is cheaper with cost C̃(p).

We found the model with cost function C̃(p) analytically intractable so, we primarily

discuss whether our main results extend using numerical computations. For this, we

vary the marginal cost of learning and prior belief. Our analyses suggest that the no-

discrimination result holds in the current setting, but the perfect substitutability of

information does not. In the figure below, we present an example of the presence of

the primacy effect for particular values of the prior belief.

If the manager becomes more uncertain about the quality of a candidate, she incurs

costs more equally between periods. Our results suggest that the no-discrimination in

the choice result holds in more general settings, and we leave the investigation of this for

future research.
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Figure 3.1: Difference in the aggregate cost of learning between the first and second
periods.

3.5 Conclusion

We consider a stylized model of interview design in which a manager learns about

candidates sequentially and flexibly. In the basic setup with two candidates and quadratic

cost of learning, we find that the serial-position effect may take place, and the manager

may learn more about either the first or the second candidate. However, this effect does

not influence the probability of choice. The manager always chooses candidates uniformly

on average.

Although we show that our results with two candidates extend to a slightly more

general framework, generalization of the cost function in our main model is a natural

direction for future research. We chose the quadratic cost mostly for tractability, and

our numerical results with a different cost function suggest that the no-discrimination

result holds for the general class of cost functions. Additionally, it would be interesting

to identify which property of the cost function leads to the primacy and recency effects.

Another important extension of our model worth developing is expanding the number

of candidates. Our analysis with three candidates is rather preliminary. The bottleneck

of this research direction is finding an analytically tractable setup that allows study of a

serial-position effect and discrimination against candidates. It is interesting to identify

whether a more general framework preserves the primacy effect and “cherry-picking”

behavior of the manager.
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3.A Proofs

3.A.1 Proof of Proposition 14

To solve the problem, we use concavification analysis, as in, e.g., Caplin and Dean (2013).

We consider net utility u2(x1, x2) as a function of x2 and find its concave closure. Because

x2 is a posterior belief, x2 ∈ [0, 1] holds. We first consider the function on the whole real

line and find its concave closure. The function is concave on intervals (−∞, x1) and

(x1,∞), but not jointly because the lim
x2→x1−0

∂u2(x1,x2)
∂x2

< lim
x2→x1+0

∂u2(x1,x2)
∂x2

.

To obtain the concave closure of function u2(x1, x2) we need to connect the part below

x1 and above x1 with a straight line. Because the function is differentiable, the tangency

condition holds. We denote these tangency points as z′ and z′′. The concave closure

equals u2(x1, x2) on intervals (−∞, z′) and (z′′,∞), and equals a straight line, which

connects points (z′, u2(x1, z
′)) and (z′′, u2(x1, z

′′)) on interval [z′, z′′] .

This approach leads to the concave closure by the standard arguments: the function

is concave by construction; it lies weakly above function u2(x1, x2) because a concave

function lies below its tangent line; and the resulting function is clearly the minimal

concave function.

Clearly, if z′, z′′ ∈ [0, 1], then these points are optimal two posterior beliefs. We denote

them as xL
2 , x

H
2 , where xL

2 < x1 and xH
2 > x1. Two necessary and sufficient conditions for

these points: the concave closure has the same slope at points xL
2 , xH

2 ; this slope equals

the ratio between u2(x1, x
H
2 )− u2(x1, x

L
2 ) and xH

2 − xL
2 .

The first condition results in:

∂u2(x1, x
H
2 )

∂x2

=
∂u2(x1, x

L
2 )

∂x2

⇔ 1− 2k(xH
2 − µ) = −2k(xL

2 − µ) ⇔ xH
2 − xL

2 =
1

2k
.

The second condition results in:

∂u2(x1, x
L
2 )

∂x2

=
u(x1, x

H
2 )− u(x1, x

L
2 )

xH
2 − xL

2

Because

u(x1, x
H
2 )− u(x1, x

L
2 ) = µ− x1 +

1

4k

the second condition becomes

−2k(xL
2 − µ) = 2k(µ− x1 +

1

4k
) ⇔ xL

2 = x1 −
1

4k
, xH

2 = x1 +
1

4k
.
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If

µ < xL
2 ⇔ x1 > µ+

1

4k

then point (µ, u2(x1, µ)) lies in the concave region, the manager does not learn, and choose

the first candidate. If

µ > xH
2 ⇔ x1 < µ− 1

4k

then point (µ, u2(x1, µ)) lies in the concave region, the manager does not learn, and choose

the second candidate. If

µ ∈ [xL
2 , x

H
2 ] ⇔ x1 ∈ [µ− 1

4k
, µ+

1

4k
]

then then manager learns and chooses posterior distribution with posterior beliefs xL
2 and

xH
2 .

3.A.2 Proof of Lemma 2

We analyze problem (3.1) for such values x1 and k that optimal interior posteriors do not

lie inside the [0, 1] interval.

Clearly, if x1 is close to 0 or 1, optimal interior posteriors x1 − 1
4k
, x1 +

1
4k

do not lie

in the [0, 1]. The necessary condition for two interior posteriors to lie in [0, 1] is to hold

x1 −
1

4k
> 0, x1 +

1

4k
< 1,

where x1 =
1
4k

+ ε for small enough ε. The inequalities above result in inequality k > 1
2
.

Therefore if k ≤ 1
2
, then for any posterior value x1, interior learning in the second period

is not possible. We eliminate this possibility in our analysis and will always consider a

case with k > 1
2
.

If k > 1
2

then at least one interior posterior lies inside [0, 1]. This holds because in

this case two inequalities x1 <
1
4k

and x1 > 1− 1
4k

cannot hold jointly.

We start with the case in which the low posterior lies outside of the [0, 1] interval:

x1 − 1
4k

< 0 and x1 +
1
4k

< 1.

We claim that the concave closure is a straight line that connects points (0, u2(x1, 0))

and (z′′, u2(x1, z
′′)), which is tangent to u2(x1, x2) at point (z′′, u2(x1, z

′′)), and equals

u2(x1, x2) on interval [z′′, 1]. Intuitively, the manager wants to learn more about state

θ2 = 0 but faces the boundary constraint.
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We denote a straight line from above as y = αx2+β. From the analysis above xL
2 = 0

and three conditions for xH
2 are⎧⎪⎪⎨⎪⎪⎩

α = 1− 2k(xH
2 − µ),

β = x1 − kµ2,

xH
2 − k(xH

2 − µ)2 = αxH
2 + β

Simple algebra shows that the high posterior is xH
2 =

√︁
x1

k
.

The constructed function is the concave closure by standard arguments. It is concave

by construction. Because inequality
√︁

x1

k
< µ + 1

4k
holds, inequality ∂u2(x1,0)

∂x2
< α also

holds. Therefore the constructed function is weakly greater than u1(x1, x2) on all x2 ∈
[0, 1]. It is also clearly the minimal concave function.

We continue the analysis with the case in which only the high interior posterior lies

outside of the [0, 1] interval: x1 − 1
4k

> 0 and x1 +
1
4k

> 1.

The analysis is very similar to the previous case. From the same arguments as above

the concave closure on the [0, z′] interval equals function u2(x1, x2), and on the (z′, 1] the

closure is a straight line that connects points (z′, u2(x1, z
′)) and (1, u2(x1, 1)). Intuitively,

the manager wants to learn more about state θ2 = 1 but faces the boundary restriction.

We denote a straight line from concave closure as y = αx2 + β. From the analysis

above, three conditions for xL
2 are⎧⎪⎪⎨⎪⎪⎩

α = −2k(xL
2 − µ),

α + β = 1− k(1− µ)2,

x1 − k(xL
2 − µ)2 = αxL

2 + β

Simple algebra shows that the low posterior is xL
2 = 1−

√︂
1−x1

k
.

Therefore, full learning posterior belief x2 ∈ {0, 1} is a part of the solution only in

two cases: if the outside option and prior belief are low enough x1 < 1
4k
, µ <

√︁
x1

k
or if

the outside option and prior belief are high enough x1 > 1 − 1
4k
, µ > 1 −

√︂
1−x1

k
. Thus,

if µ belongs either [0, 1
2k
] or [1 − 1

2k
, 1] then the full learning posterior may be optimal.

Therefore, if µ ∈ ( 1
2k
, 1− 1

2k
) then a full learning posterior can not be a part of the solution

to problem (14).
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3.A.3 Proof of Corollary 1

The proof of the corollary mostly follows from simple algebra.

We denote posteriors in the first periods as xL
1 and xH

1 . The probability to choose the

second agent equals

P (choose 2) =
xH
1 − µ

xH
1 − xL

1

2k(xL
1 +

1

4k
− µ) +

µ− xL
1

xH
1 − xL

1

2k(xH
1 +

1

4k
− µ).

From the simple algebra above equals 1
2
.

Given a posterior distribution p2 with two posteriors realizations x1
2 < x2

2 the cost of

learning equals

C(p2) = k
(︂ x2

2 − µ

x2
2 − x1

2

(µ− x1
2)

2 +
µ− x2

2

x2
2 − x1

2

(µ− x2
2)

2
)︂
= k(x2

2 − µ)(µ− x1
2).

Therefore given the posterior belief in the first period, x1 cost of optimal learning in the

second period equals

C(p2(x1)) = k(x1 +
1

4k
− µ)(µ− x1 +

1

4k
) = −k(x1 − µ)2 +

1

16k

Given the optimal posterior distribution p1 with two posterior realizations x1
1 < x2

2 the

aggregate cost of learning in the second period equals

C2(p1) =
x2
2 − µ

x2
2 − x1

2

C(p2(x
1
2)) +

µ− x1
2

x2
2 − x1

2

C(p2(x
2
2))

From the simple algebra

C2(p1) = −C(p1) +
1

16k
.

holds. If the manager does not learn in the first period, then in the second, she chooses

xL
2 = µ− 1

4k
, xH

2 = µ+ 1
4k

and obtains 1
16k

amount of information in the second period. If

the manager obtains the most information in the first period 1
16k

and chooses p1 such that

xL
1 = µ − 1

4k
, xH

1 = µ + 1
4k

then she does not learn in the second period. If the manager

chooses p1 optimally such that C(p1) ∈ (0, 1
16k

) then she chooses p2 optimally such that

C2(p1) =
1

16k
− C(p1).
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3.A.4 Proof of Lemma 3

The proof is based on the proof of Theorem 2. In the solution to problem (3.1), the

optimal posteriors do not depend on the prior belief. Therefore the only condition that

is needed for interior posteriors in the optimum is µ2 ∈ ( 1
2k
, 1− 1

2k
).

In problem (3.2) with different prior beliefs, function u1(x1) is concave by construction

and is linear in the intermediate region if x1 ∈ [µ2− 1
4k
, µ2+

1
4k
]. Therefore the optimality

condition is simply µ1 ∈ [µ2 − 1
4k
, µ2 +

1
4k
]. This condition is equivalent to |µ1 −µ2| ≤ 1

4k
.

3.A.5 Proof of Corollary 2

The proof is identical to the proof of Corollary 1. It follows from the simple algebra

replacing the value of the prior belief in different periods as µ1 and µ2.

3.A.6 Proof of Proposition 15

The proof follows from the simple algebra. We denote the value to problem (3.2) as

F (µi, µj) if in the first period the prior equals µi and in the second equals µj.

From the simple algebra

F (µ1, µ2) = µ1(
1

2
− 2k(−µ1 + µ2)) + k(µ2 +

1

4k
)2 − kµ2

1

holds. Taking the difference leads to

F (µ1, µ2)− F (µ2, µ1) = 0.

Thus the manager reaches the same maximum level of utility irrespectively of the candidate’s

order.

84



3.A.7 Proof of Proposition 16

The proof is based on the proof of Theorem 2. We need to analyze the derivative of the

function u1(x). Simple algebra show that

u′
1(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2k1(µ− x) if x < µ− 1
4k2

2(k2 − k1)x+ 1
2
− 2k2µ+ 2k1µ if x ∈ [µ− 1

4k2
, µ+ 1

4k2
]

1 + 2k1(µ− x) if x > µ+ 1
4k2

holds. Function u′
1(x) decreases from 2k1µ to k1

2k2
on [0, µ − 1

4k2
); decreases from k1

2k2
to

1 − k1
2k2

on [µ − 1
4k2

, µ + 1
4k2

]; decreases from 1 − k1
2k2

to 1 + 2k1(µ − 1) on (µ + 1
4k2

, 1].

Therefore u′
1(x) decreases on [0, 1] and function u1(x) is concave. Therefore, the manager

does not consume informative signals in the first period.

3.A.8 Proof of Theorem 3

Third period

We denote x1,2 = max{x1, x2}. The maximum value of the problem is a piecewise

function, depending on whether x1,2 belongs to the learning region.

V3(x1,2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

µ if x1,2 ∈ [0, µ− 1
4k
);

kx2
1,2 + ax1,2 + b if x1,2 ∈ [µ− 1

4k
, µ+ 1

4k
]

x1,2 if x1,2 ∈ (µ+ 1
4k
, 1];

Function V3(x1,2) is basically a value function of the static problem with outside option

x1,2.

Second period

We consider several cases with different values of x1.

1. Case x1 < µ− 1
4k
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In this case V3(x1,2) = V3(x2) simply by the construction. Therefore, u2(x1, x2) =

V3(x2) − k(x2 − µ)2. The solution is identical to the two-period problem, thus

V2(x1) = µ+ 1
16k

2. Case x1 > µ+ 1
4k

In this case

V3(x1,2) =

⎧⎪⎪⎨⎪⎪⎩
x1 if x1 < x2;

x2 if x2 ≥ x1

Therefore

u2(x1, x2) =

⎧⎪⎪⎨⎪⎪⎩
x1 − k(x2 − µ)2 if x1 < x2;

x2 − k(x2 − µ)2 if x2 ≥ x1

In this case, the problem is static with outside option x1. Because x1 > µ+ 1
4k

the

manager simply chooses the first candidate and V2(x1) = x1.

3. Case x1 ∈ [µ− 1
4k
, µ+ 1

4k
]

We denote g(x) = kx2 + a+ b. Therefore, in this case

V3(x1,2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

g(x1) if x2 < x1;

g(x2) if x2 ∈ [x1, µ+ 1
4k
]

x2 if x2 ∈ (µ+ 1
4k
, 1];

Therefore

u2(x1, x2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

g(x1)− k(x2 − µ)2 if x2 < x1;

g(x2)− k(x2 − µ)2 if x2 ∈ [x1, µ+ 1
4k
]

x2 − k(x2 − µ)2 if x2 ∈ (µ+ 1
4k
, 1];

We claim that the optimal posterior distribution p2 has two posterior beliefs xL
2 =
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g(x1)− 1
4k

and xH
2 = g(x1) +

1
4k

.

Posterior distribution p2 from above is the solution to static problem (3.1) with

outside option g(x1). Therefore the concave closure for the static problem with with

outside option g(x1) equals function u2(x1, x2) if x2 ∈ [0, xL
2 ) and x2 ∈ (xH

2 , 1] and is

equal to the straight line that connects points (xL
2 , u2(x1, x

L
2 )) and (xH

2 , u2(x1, x
H
2 )).

We denote this concave closure as w2(x2). We show that function w2(x2) also is a

concave closure in our problem.

Function w2(x2) is concave by construction. Inequality w2(x2) ≥ u2(x1, x2) holds.

Simply by the construction w2(x2) = u2(x1, x2) if x2 ∈ [0, xL
2 ] and x2 ∈ [xH

2 , 1].

Therefore w2(x2) > u2(x1, x2) if x2 ∈ (xL
2 , x1] and x2 ∈ (µ + 1

4k
, xH

2 ] hold because

the concave function lies below the tangent line. The line, that connects points

(x1, u2(x1, x1)), (µ + 1
4k
, u2(x1, µ + 1

4k
)) is tangent to function u2(x1, x2) at point

x2 = µ + 1
4k

; the line, that connects points (xL
2 , u2(x1, x

L
2 )), (xH

2 , u2(x1, x
H
2 )) is

tangent to function u2(x1, x2) at point x2 = xH
2 . Because function u2(x1, x2) is

concave in x2 on x2 ∈ (µ + 1
4k
, xH

2 ) inequality w(x2) > u2(x1, x2) holds on x2 ∈
(x1, µ+ 1

4k
) also holds.

We assume that concave function w̃2(x2) exists such that w̃2(x2) ≥ u1(x1, x2) for

all x2 and point x̃2 exists such that w2(x̃2) > w̃2(x̃2). Clearly x̃2 ∈ (xL
2 , x

H
2 ) holds.

Consider the line f̃(x2) = α̃x2 + β̃ such that it equals w̃2(x2) at x2 = x̃2 and is

larger than w̃2(x2) if x2 ̸= x̃2. Consider also the line that is tangent to w2(x2) at

x2 = x̃2. We denote the line as f(x) = αx2 + β. Because f̃(xH
2 ) ≥ f(xH

2 ) inequality

α̃ > α holds. Additionally, because f̃(xL
2 ) ≥ f(xH

2 ) inequality α̃ < α also holds,

which leads to the contradiction, and therefore function w2(x2) also is a concave

closure in our problem.

In this case equality V2(x1) = g(g(x1)) holds, therefore, the value of the problem is

the same because it is the same as in the static problem with outside option g(x1).
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First period

From the analysis above, the net utility in the first period equals

u1(x1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

µ+ 1
16k

− k(x1 − µ)2 if x1 < µ− 1
4k
;

g(g(x1))− k(x1 − µ)2 if x1 ∈ [µ− 1
4k
, µ+ 1

4k
]

x1 − k(x1 − µ)2 if x2 ∈ (µ+ 1
4k
, 1];

We claim that the optimal distribution p1 has two posterior beliefs xL
1 , x

H
1 such that

xL
1 ∈ (µ − 1

4k
, µ) and xH

1 ∈ (µ + 1
4k
, 1). Moreover the straight line that connects points

(xL
1 , u(x

L
1 )) and (xH

1 , u(x
H
1 )) is tangent to function u1(x1) at points x1 = xL

1 and x1 =

xH
1 .We consider function w1(x1) which equals u1(x1) if x1 ̸= (xL

1 , x
H
1 ) and equals to the

straight line that connects points (xL
1 , u(x

L
1 )) and (xH

1 , u(x
H
1 )). We show that w1(x1) is a

concave closure of u1(x1).

We first show that function w1(x1) exists. To show this, we need to show that there

is a common tangent line to function u1(x1) on the intervals (µ− 1
4k
, µ) and (µ+ 1

4k
, 1).

To analyze tangent lines to function u1(x1), we find the behavior of the first and the

second derivative of the function.

Function u1(x1) is continuously differentiable because simple algebra shows that [g(g(µ−
1
4k
))]′ = 0 and [g(g(µ + 1

4k
))]′ = 1. Simple algebra also shows that the second derivative

of g(g(x1)) is

[g(g(x1))]
′′ = 12k(k2(x− µ)2 +

k

2
(x− µ) +

7

48
)

Therefore u′′(x1) = 12k(k2(x− µ)2 + k
2
(x− µ))− 1

4
k.

The minimum of the second derivative is at point x1 = µ− 1
4k

. Because of inequalities

[g(g(µ))]′′ < 0 and [g(g(µ+ 1
4k
))]′′ > 0 the second derivative has a root x̂1 on the interval

(µ, µ+ 1
4k
). Therefore, g′′(g(x1)) < 0 is negative on (µ− 1

4k
, x̂1) and positive on (x̂1, µ+

1
4k
).

Thus, u′
1(x1) decreases and u1(x1) is concave on (µ− 1

4k
, x̂1); u′

1(x1) increases and u1(x1)

is convex on (x̂1, µ+ 1
4k
).

We observe that u′(µ− 1
4
) = u′(µ+ 1

4
) = 1

2
. Additionally, u′(µ) = 5

16
holds and point

x̃1 = µ + 11
32k

∈ (µ + 1
4k
, 1) exists, such that u′(x̃1) = 5

16
. Because function u′(x1) is

decreasing on (µ − 1
4k
, µ) this function is a one-to-one function on this interval. Every

value of u′(x1) is associated with the intercept of the tangent line to function u1(x1) at
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point x1. We denote the slope of the tangent line to u(x1) on interval [µ − 1
4k
, µ] as α.

Because u′(x1) is a one-to-one function on x1 ∈ [µ− 1
4k
, µ], an implicit mapping β(α) that

defines the value of the intercept given the α is a function. Moreover, because function

u1(x1) is continuously differentiable, function β(α) is continuous. Similarly, we denote

the slope of the tangent line to u(x1) on interval [µ+ 1
4k
, x̃1] as α̃. Analogously, implicit

mapping β̃(α̃) is also a continuous function.

Because u′(µ− 1
4
) = u′(µ+ 1

4
) and u′(µ) = u′(x̃1) hold, slopes β and β̃ take the same

values on intervals x1 ∈ [µ − 1
4
, µ] and x1 ∈ [µ + 1

4
, x̃1]. Therefore, we can consider a

function β̄(ᾱ) = β(ᾱ) − β̃(ᾱ), where ᾱ ∈ [1
2
, 5
16
]. Function β̄(ᾱ) is continuous because

functions β(α) and β̃(α)̃ are continuous. We observe that β̄(1
2
) = 1

16k
> 0. We claim

that β̄( 5
16
) < 0. The intercept at point x1 = x̃1 equals β̃( 5

16
) = 11

16
µ + 121

1024k
. The

value of the tangent line at point x̃1 if x = µ equals µ + 121
1024k

. Because of the equality

g(g(µ)) = µ + 100
1024k

the tangent line at points x̃1 lies above function u1(x1) at point

x1 = µ. Because u′
1(µ) = u′

1(x̃1) inequality β(µ) < β̃(x̃) holds and therefore β̄( 5
16
) < 0.

Function β̄ is continuous on [1
2
, 5
16
] and inequality β̄(1

2
)β̄( 5

16
) < 0 holds. Therefore,

point α′ ∈ (1
2
, 5
16
) exists, such that β̄(α′) = 0. The line y = α′x + β(α′) is the common

tangent line to function u1(x1) on intervals (µ − 1
4k
, µ) and (µ + 1

4k
, 1). We denote x1

such that u′
1(x1) = α′ on interval (µ− 1

4k
, µ) as xL

1 , and on interval (µ+ 1
4k
, 1) as xH

1 and

therefore function w1(x1) exists.

Function w1(x1) is concave by construction. Because of inequality xL
1 < µ, inequality

xL
1 < x̂1 holds. Inequality w1(x1) ≥ u1(x1) holds on intervals [xL

1 , x̂1] and [µ + 1
4k
, xH

1 ]

because function u1(x1) is concave on them. Function w1(x1) is larger than function

u1(x̂1) on the boundaries of interval (x̂1, µ + 1
4k
). Because function u1(x̂1) is convex

on this interval, inequality w1(x1) > u1(x̂1) holds for all x1 ∈ (x̂1, µ + 1
4k
). Therefore,

inequality w1(x1) ≥ u1(x̂1) holds for all x1 ∈ [0, 1]. The proof that function w1(x1) is

the minimal concave function is identical to the proof for the second period above for

function w(x)2. Therefore w1(x1) is the concave closure of u1(x1).

Solution to the problem

From the analysis above in the solution to the problem the manager chooses p1 with two

posteriors xL
1 ∈ (µ− 1

4k
, µ), xH

1 ∈ (µ+ 1
4k
, 1). After high posterior realization, the manager

does not consume informative signals about candidates in later stages and chooses the first

candidate. After low posterior realization, the manager chooses p2 with two posteriors
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xL
2 = g(xL

1 ) − 1
4k
, xH

2 = g(xL
1 ) +

1
4k

. Because function g(x) increases when x > µ − 1
4k

inequalities g(µ − 1
4k
) < g(xL

1 ) < g(µ) hold. Because g(µ − 1
4k
) = µ, g(µ) = µ + 1

16k

inequalities

xL
2 ∈ (µ− 1

4k
, µ− 3

16k
); xH

2 ∈ (µ+
1

4k
, µ+

5

16k
)

hold. Therefore, after realization xH
2 the manager does not consume informative signals

about the third candidate and chooses the second candidate.

Simple algebra shows that equality g(x)−x− 1
4k

= k(x− (µ+ 3
4k
))(x− (µ− 1

4k
)) holds.

Therefore, on interval x ∈ (µ− 1
4k
, µ) inequality x > g(x)− 1

4k
holds. Thus, xL

1 > xL
2 .

In the third period the manager chooses p3 with two posteriors xL
3 = xL

1 − 1
4k
, xH

3 =

xL
1 + 1

4k
. After high posterior realization the manager chooses the third candidate. After

low posterior realization the manager chooses the first candidate.

By the construction of function g(x) inequality g(x) > x holds if x ∈ (µ− 1
4k
, µ+ 1

4k
).

Therefore inequalities xL
3 < xL

2 , x
H
3 < xH

2 hold. We claim that inequality xH
1 > xH

2 holds.

We compare the slopes of the straight lines that belong to functions w1(x1) and w2(x2).

We show that the slope of a line that is tangent to w2(x2) is greater than a line tangent

to w1(x1). Because w1(x) = w2(x) if x ∈ (µ+ 1
4k
, 1) and function w1(x) is concave on this

interval, inequalities of the slopes imply that xH
1 > xH

2 .

The slope of the straight line that belongs to function w1(x1) equals g′(g(xL
1 )g

′(xL
1 );

the slope of the straight lines, that belong to function w2(x2) equals −2k(xL
2 −µ). Simple

algebra shows that g′(g(x)g′(x)+2k(g(x)− 1
4k
−µ) = 4k3(x− (µ− 3

4k
))(x− (µ− 1

4k
))(x−

(µ+ 1
4k
)). Therefore, inequality g′(g(x)g′(x) < −2k(x− µ) holds if x ∈ (µ− 1

4k
, µ+ 1

4k
).

Thus, inequality g′(g(xL
1 )g

′(xL
1 ) < −2k(xL

1 − µ) holds and xH
1 > xH

2 . From the analysis

above the linear order on the optimal posterior beliefs is

xL
3 < xL

2 < xL
1 < xH

3 < xH
2 < xH

1 .

3.A.9 Proof of Corollary 3

The manager can choose the second or the third candidate only if she receives the low

signal in the first period. This event enters into the formula for both unconditional

probabilities of choice, making it redundant for comparison. In later calculations, we

omit the probability of the event. By the Bayes rule, the unconditional probability of
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choosing the second agent equals

P (choose 2) =
1

2
+2k(µ−g(xL

1 )); P(choose 3) =
(︂1
2
−2k(µ−g(xL

1 ))
)︂(︂1

2
+2k(µ−xL

1 )
)︂
.

Simple algebra shows that P (choose 2)−P (choose 3) = 4k3(x− (µ+ 1
4k
))2(x− (µ− 1

4k
)).

Because xL
1 > µ− 1

4k
inequality P (choose 2) > P (choose 3) holds.

By the Bayes rule and the proof of Corollary 1, the average learning costs in the

second and the third periods equal

C2(p2) = −k
(︂
g(xL

1 )−µ
)︂2

+
1

16k
; C3(p3) =

(︂1
2
−2k(µ−g(xL

1 ))
)︂(︂

−k
(︂
xL
1 −µ

)︂2
+

1

16k

)︂
Simple algebra shows that C2(p2)− C3(p3) = k3

(︂
x− (µ+ 1

4k
)
)︂2(︂

(x− (µ− 1
4k
))2 + 1

4k2

)︂
.

Therefore, C2(p2) > C3(p3).

Because inequality g(xL
1 ) > xL

1 holds, the amount of information that the manager

obtains in the third period, conditional on the manager being and choosing informative

signals in the third period, is larger than the amount she obtains in the second period.
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