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ABSTRAKT  

 

Fototerapie (PT) modrozeleným světlem (420-490 nm) se řadí mezi standardní léčbu těžké novorozenecké 

žloutenky, která brání  toxickému působení bilirubinu (BR) u kojenců. Vystavením se modrozelenému světlu je BR 

přeměněn na polárnější fotoizomer (PI) lumirubin (LR) a další oxidační produkty (mono-, di-, tripyrroly), které lze 

snadněji vyloučit z těla močí a/nebo žlučí. Ačkoli je PT považována za bezpečnou, je doprovázena zvýšeným rizikem 

různých patofyziologických stavů (zánětlivých procesů, alergií, cukrovky i některých typů rakoviny), zejména u 

novorozenců s extrémně nízkou porodní hmotností. Účelem této práce bylo pochopení mechanizmu vylučování BR v 

různých tkáních i buněčných liniích a zkoumání bioaktivních vlastností BR i jeho hlavního fotooxidačního produktu 

LR. 

Nejprve jsme se zaměřili na detekci BR v žluči a stolici hyperbilirubinemických potkanů Gunn. Současně 

jsme testovali antioxidační a prooxidační účinky nekonjugovaného BR u lidských hepatoblastomových (HepG2), 

proximálních tubulárních (HK2), neuroblastomových (SH-SY5Y) a myších endotelových (H5V) buněk, jejich 

vystavením postupně se zvyšujícím koncentracím BR. Pro porovnání účinků BR a LR na markery metabolismu a 

oxidačního stresu byly biologické aktivity zkoumány in vitro na buňkách lidského hepatoblastomu (HepG2), 

fibroblastu (MRC5) a myších makrofázích (RAW 264.7). Zaměřili jsme se také na proliferaci, morfologii, expresi 

specifických genů i proteinů a diferenciaci neurálních kmenových buněk (NSC). 

 

Naše experimenty potvrdily, že souvislost mezi regulací transintestinálního vylučování cholesterolu a 

plazmatickými koncentracemi nekonjugovaného BR u potkanů Gunn není přítomna. U všech studovaných buněčných 

linií jsme zjistili, že nízké koncentrace BR vedly k antioxidačním účinkům, zatímco vyšší koncentrace k prooxidačním 

nebo cytotoxickým účinkům, čím se potvrzuje, že každý typ buněk má jiný práh pro BR. Při porovnání s LR, jsme 

sledovali výrazně nižší toxicitu a zachování antioxidační kapacity v séru. LR také potlačil aktivitu vedoucí k produkci 

mitochondriálního superoxidu, avšak byl méně účinný v prevenci lipoperoxidace. Naše data také potvrdily vliv BR a 

LR na časnou fázi diferenciace NCS a schopnost LR ovlivňovat polaritu a identitu NSC během časného vývoje 

lidského neuronu, což může mít klinický význam, protože buněčná polarita hraje významnou roli během vývoje CNS. 

 

Klíčová slova: Metabolismus hemu, bilirubin, fotooxidační produkty, novorozenecká žloutenka 
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ABSTRACT  

 
Phototherapy (PT) with blue-green light (420-490 nm) is the standard treatment for severe neonatal jaundice 

to prevent infants from toxic bilirubin (BR). Upon blue-green light exposure, BR is converted to more polar 

photoisomer (PI) lumirubin (LR) and the other oxidation products (mono-, di-, tripyrrols) which can be more easily 

disposed of the body via urine and/or bile. Although generally considered to be safe, PT is accompanied by an 

increased risk of various pathophysiological conditions (inflammatory processes, allergies, diabetes, and some types 

of cancer), in extremely low-birth-weight newborns. Thus, to account for these consequences, our study aimed to 

understand the mechanism of BR secretion in different tissues and cell lines and investigate the bioactive properties 

of BR and its main photooxidation product LR. 

 

At first, we focused on the detection of BR in the bile and feces of hyperbilirubinemic Gunn rats. 

Simultaneously, we tested the antioxidant and pro-oxidant effects of unconjugated BR in human hepatoblastoma 

(HepG2), proximal tubular (HK2), neuroblastoma (SH-SY5Y), and murine endothelial (H5V) cells by exposing them 

to progressively increasing concentrations of BR. To compare the BR and LR effects on metabolic and oxidative stress 

markers, the biological activities were investigated in vitro on human hepatoblastoma (HepG2), fibroblast (MRC5), 

and murine macrophage (RAW 264.7) cells. We also focused on proliferation, morphology, expression of specific 

genes and proteins, and differentiation of neural stem cells (NSC). 

 

Our experiments confirmed no link between the regulation of transintestinal cholesterol excretion and plasma 

concentrations of unconjugated BR in Gunn rats. We observed in all studied cell lines, that low concentrations of BR 

exhibit antioxidant effects, whereas higher concentrations exhibit a prooxidant or cytotoxic effect, confirming that 

each cell type has a different threshold for BR. When compared to LR, significantly lower toxicity and maintenance 

of antioxidant capacity in serum were observed. LR also suppressed the activity leading to mitochondrial superoxide 

production but was less effective in preventing lipoperoxidation. Our data also confirmed the effect of BR and LR on 

the early phase of NCS differentiation and the ability of LR to influence the polarity and identity of NSCs during early 

human neuronal development, which may have clinical relevance since cell polarity has an important role during CNS 

development. 

 

Key words: Haem metabolism, bilirubin, photo-oxidation products, neonatal jaundice  
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1   INTRODUCTION  

 

1.1 Heme catabolism  

 

Heme is an important iron-containing cyclic tetrapyrrolic molecule expressed ubiquitously in organisms 

which  serves as a prosthetic group for a variety of hemoproteins including hemoglobin, myoglobin, cytochrome P-

450, catalase, peroxidase, tryptophan pyrrolase, cytochrome b5, and mitochondrial cytochromes which are implicated 

in multiple cellular functions including oxygen transport, energy generation, defence against increased oxidative stress 

or cell signalling (Vitek & Ostrow, 2009) (Jayanti et al., 2020) (B. Wu et al., 2019). Due to 65-75 % of the iron pool 

in the human body being derived from heme, this molecule also acts as a major storage of bioavailable iron (Korolnek 

& Hamza, 2014) (Schultz et al., 2010).  After its release from red blood cells, heme is bound to hemopexin or 

haptoglobin and recycled or transported back to the splenic sinusoids in reticuloendothelial system where its 

degradation process occurs  (Schultz et al., 2010).  

 

 The mammalian heme degradation pathway (Fig. 1) consists of two enzymatic steps, which are mediated by 

heme oxygenase (HMOX) and biliverdin reductase (BLVR) (Maines, 2005). HMOX is the enzyme classified as 

oxidoreductase crucial for the first step of the heme degradation. HMOX system consists of HMOX and NADPH–

cytochrome P450 reductase with the protective effect of cells against heme-induced oxidative stimuli (B. Wu et al., 

2019). The process of heme degradation is initiated when HMOX catalyses the opening of the heme ring at α -carbon 

bridge to yield equimolar quantities of non-toxic polar biliverdin (BV) with tetrapyrrole structure, carbon monoxide 

(CO) and free iron with the consumption of three molecules of oxygen (O2) and the reducing equivalent of NADPH 

(Otterbein & Choi, 2000). After this cleavage, BV is directly converted by reduction of the middle -CH= bridge into 

non-polar unconjugated BR mainly by the cytosolic enzyme BVR with a unique feature which increases the production 

of bilirubin and thus enhancing defence against oxidative stress (Tenhunen et al., 1972) (Salim et al., 2001). 

 

 

Fig.1. Heme degradation pathway. Conversion of heme molecule generates an equimolar amount of CO, ferrous ion 

(Fe2+), and biliverdin which is subsequently reduced by biliverdin reductase to non-polar unconjugated bilirubin IXα 

– 4Z, 15Z. Modified from (Nocentini et al., 2022). 
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The presence of unconjugated BR produced entirely from the degradation of heme and heme proteins is 4.4 

± 0.7 mg/kg (Berk et al., 1974) accounting for an average of 300 – 375 mg of daily de novo unconjugated BR 

production (Salehi et al., 2014). Of this amount, 75% to 80% of unconjugated BR derives from hemoglobin released 

during destruction of senescent red blood cells in the reticuloendothelial system (Salehi et al., 2014). The remaining 

25% of unconjugated BR synthesis  is derived from non-hemoglobin heme proteins in the liver, from accelerated 

destruction in the spleen of immature or defectively formed red cells, and the bone marrow from heme formed in 

excess of globin (Vitek & Ostrow, 2009). 

 

1.2 Bilirubin metabolism   

 

Unconjugated BR was discovered in 1847 by Dr. Virchow. Its chemical tetrapyrrolic structure was defined by Fischer 

and Orth in 1937 (Tschesche, 1938) and in 1942 its successful synthesis was reported (Fisher H. & Plieninger H., 

1942). 

 

1.2.1 Bilirubin structure  

 

The natural bilirubin in humans is the unconjugated BR IXα 4Z,15Z molecule and its other isoforms include 

IIIα and XIIIα isomers formed by a nonenzymatic process so called molecular scrambling, in which unconjugated BR 

IXα is split into two halves which then randomly re-assemble (Fig. 2) (Vitek & Ostrow, 2009).  

 

 

Fig.2. Formation of bilirubin IXα, the dominant bilirubin molecule in the circulation, and its 

constitutional isomers IIIα and XIIIα formed by dipyrrole exchange reaction. Modified from 

(Itoh et al., 2017). 
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The structure of unconjugated BR IXα 4Z,15Z molecule is nearly symmetrical and composed of two planar 

dipyrrole units (rings A-B and C-D) joined to each other by a central methylene group (-CH2-). In each dipyrrolic 

half, the two monopyrroles are linked by an unsaturated (double-bonded) methene group (-CH=) and lie in the same 

plane. Each outer pyrrole rings (A & D) have a polar lactam (-CO-NH-) group, while each central pyrrole ring (B & 

C) carries a carboxyethyl sidechain (-CH2-CH2-COOH), which can ionize by loss of the terminal proton. The 

remaining sites on the pyrrole rings are occupied by ethyl (-CH3) and vinyl (-CH=CH2) substituents; these are 

asymmetrically arranged in the A and D rings, giving to unconjugated BR optical activity (Fig. 3) (Vitek & Ostrow, 

2009). 

 

Fig. 3. Bilirubin-IX α molecule and its nomenclature (A) with visualization of an internal hydrogen bonds in its 

molecular configuration (B). Modified from (Itoh et al., 2017) (Kou & Wang, 2022). 

 

Due to an internal hydrogen bonding of its polar groups hidden from interaction with water molecules (Fig. 

3B), unconjugated BR appears to have very low solubility in aqueous media - ranging from 7 to 100 nM (the solubility 

threshold in plasma is 70 nM) at a pH of 7.4 and temperature of 37°C (Gazzin et al., 2017) (Levitt & Levitt, 2014). 

Transport of non-polar unconjugated BR in the plasma is provided mainly (90%) by bounding to human serum 

albumin (HSA) and secondary (10%) to the apolipoprotein D found primarily in the high density (HDL) (Jacobsen, 

1969) (Suzuki et al., 1988) (Goessling & Zucker, 2000) or by high-affinity bilirubin transporter α1-fetoprotein in the 

fetus and early neonates (Aoyagi et al., 1979). Only < 0.1% of the concentration of unconjugated BR in plasma is not 

bound to any carrier molecule and is termed as „free unconjugated bilirubin“ (Bf) which represent a fraction with the 

ability to diffuse into tissues leading to cytotoxicity (Calligaris et al., 2007). 

 

1.2.2 Transport and excretion of bilirubin  

 

HSA with the primary high-affinity site binds one mol of unconjugated BR dianion through ionic bonds of 

its -COO- groups with the terminal -NH+ groups of two lysine residues in an otherwise hydrophobic pocket (Gazzin 

et al., 2017).  Binding with albumin keeps BR dissolved in the circulation and prevents excessive amounts of Bf from 
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passing through membranes when accumulating in cells with the exertion of cytotoxic effects (Lauff et al., 1983). 

Unbound unconjugated BR and its albumin enter the hepatocyte complex predominantly via passive diffusion across 

the porous sinusoidal endothelium to reach the basolateral membrane of the hepatocytes (Cui et al., 2001) (Briz et al., 

2006). The conjugation of unconjugated BR in hepatocytes occurs when one or both -COOH groups are modified by 

covalent attachment of 1- 2 molecules of glucuronic acid by the action of the UDP- glucuronosyl transferase 1A1 

isoform (UGT1A1), resulting information of conjugated bilirubin (Fig. 4) (Gazzin et al., 2017). Substantial fraction 

of bilirubin conjugates might be transported by the multidrug resistance-associated protein MRP3 at the sinusoidal 

membrane into the blood, from where is subsequently reuptaken by sinusoidal membrane-bound organic anion 

transporting polypeptides (OATP) 1B1 and 1B3 of downstream hepatocyte to prevent oversaturation of canalicular 

excretion mechanism in periportal hepatocytes (Sticova, 2013a). The activity of UGT1A1 is under hormonal control 

enhancing progesterone and inhibiting testosterone activity (Muraca & Fevery, 1984). In the following step, the 

excretion of conjugated BR into bile through the bile canaliculi is mediated by an ATP-dependent transporter 

identified as the multidrug resistance-associated protein MRP2/cMOAT and, to a lesser extent, also by ATP-binding 

cassette (ABC) efflux transporter ABCG2 (Sticova, 2013a). The absence of functionally active MRP2 prevents the 

secretion of conjugated BR into the bile and redirects this conjugate into sinusoidal blood (Gartung & Matern, 1997). 

Due to differences in the expression of the transporters OATP1B1/3 at the sinusoidal face which increases from the 

portal to the centrilobular space intralobular transport system (the sinusoidal liver- to-  blood loop) is formed with the 

possible protecting function of the periportal hepatocytes from the excessive bilirubin and xenobiotics accumulation 

(Gazzin et al., 2017) (Sticova, 2013b).  

 

 

 

Fig. 4. Intracellular and extracellular metabolism of bilirubin. Modified from (Gazzin et al., 

2017) and (Stevenson DK et al., 2012). 
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The vast majority of conjugated BR absorbed in the small intestine is deconjugated to unconjugated BR by 

the action of β-glucuronidases and reduced by the coliform bacteria to urobilinogen and stercobilinogen (Fig. 5). 

However, a part is excreted as unconjugated BR (Vítek et al., 2000) (Morelli, 2008) (Gritz & Bhandari, 2015). Most 

of the urobilinogen undergoes oxidation and feces excretion. Only a tiny fraction is filtered by the kidney and excreted 

in the urine due to enterohepatic / enterosystemic circulation. Under certain conditions, a small amount of 

unconjugated BR can also undergo these reabsorption processes. However, the reabsorption of a small amount of 

unconjugated BR occurs in the colon when delivered by portal circulation back to the liver (Vítek et al., 2000) (Tiribelli 

& Ostrow, 2005). 

 

 

 

Fig. 5. Reduction of UCB by intestinal microflora showing the chemical structure of its formed products. 

Modified from (Vitek & Ostrow, 2009). 

 

1. 3 Biological properties of bilirubin  

 

Our understanding of bilirubin, originally considered only as a waste substance associated with liver disease, 

has rapidly changed during the recent fifty years of active in vivo and in vitro research. BR is now regarded as a 

molecule with many intricate biological functions from cell signalling (behaving almost like a “real” hormonal 
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substance), and modulation of metabolism, to immune regulation, affecting biological activities with apparent clinical 

and even therapeutic consequences. These may indicate the lower incidence of civilization diseases such as diabetes, 

obesity, cardiovascular diseases, arterial hypertension, metabolic syndrome, certain cancers, and autoimmune or 

neurodegenerative diseases observed in individuals with chronic mild unconjugated hyperbilirubinemia. Meanwhile, 

high concentrations of bilirubin are associated with the opposite effect when becomes toxic (Vítek & Tiribelli, 2021). 

 

1.3.1 Positive effects of bilirubin  

 

As early as the 1950s, research shows the protection effects of BR against lipid oxidation such as vitamin A 

or linoleic acid (Pranty et al., 2022) but intensive research of its antioxidant effects began later on in 1987 with a 

ground-breaking study of Roland Stocker found the ability of BR to inhibit fatty acid oxidation (Stocker, Yamamoto, 

et al., 1987a). In the research of Wu et al. was confirmed and demonstrated 20 times more effective antioxidant effect 

of BR than a vitamin E analogue Trolox (T.-W. Wu et al., 1994). These antioxidant effects are mainly due to the 

presence of the tetrapyrrole C-10 methylene group which provides an electron to reactive oxygen species (ROS) and 

serves as a free radical scavenger. However, when compared with the other antioxidants, BR physiological 

concentrations in the human body are relatively low and not sufficient to provide such intensive protection that has 

been observed in many clinical and experimental studies in relation to BR (Jansen & Daiber, 2012), (Gazzin et al., 

2016), (DiNicolantonio et al., 2018). 

 

A possible explanation is the existence of the so-called called biliverdin-bilirubin redox cycle (Fig. 1.) when 

BR is oxidized by ROS (hydrogen peroxide, lipid peroxide, or peroxyl radicals) back to BV and later on enzymatically 

regenerated back to BR (Greenberg, 2002), (Sedlak et al., 2009). In addition, BR enhances its antioxidant effect by 

inhibition of the common isoforms of the NADPH-oxidase enzyme which represent the superoxide-releasing 

complexes in the cells (Lanone et al., 2005), prevent peroxidation of proteins (Stocker & Ames, 1987), phospholipids 

(Sedlak et al., 2009), or LDL protein (T.-W. Wu et al., 1994) and reduce protein carbonylation. BR also reduces 

oxidative liver damage induced by the accumulation of bile acids during cholestasis (Muchova et al., 2011) and 

counteracts the harmful effects of pro-oxidants including bile acids in vitro and in vivo (Zelenka et al., 2012). The 

association between BR concentration and total serum antioxidant capacity is affecting the development of coronary 

heart disease (Schwertner et al., 1994) specifically, in middle-aged individuals with Gilbert's syndrome, when the 

incidence of coronary heart disease was 2% compared to the general population in the same age group, where this risk 

was up to 12% (Sedlak & Snyder, 2004). Another function of BR as an antioxidant is present in human vascular 

endothelial cells (Ziberna et al., 2016), and at low concentrations protects neuronal cells from oxidative stress (Doré 

et al., 1999). 

 

Moderately elevated concentrations of BR are considered to be protective and directly associated with 

reduced atherosclerotic plaque formation in carotid arteries, which decreases the risk of stroke (Ishizaka et al., 2001) 

and reduction of developing atherosclerosis in the general population (Novotný & Vítek, 2003). On contrary, the 



13 

 

concentration of BR below 7 μmol/L increased risk of developing systemic diseases associated with higher oxidative 

stress (Wagner et al., 2015), including systemic lupus erythematosus (Vítek et al., 2010), multiple sclerosis (Peng et 

al., 2011), asthma (Horsfall et al., 2014), diabetes (Abbasi et al., 2015), hypertension (L. Wang & Bautista, 2015), and 

obesity (DiNicolantonio et al., 2018) or certain forms of cancer such as colon cancer (Temme et al., 2001). 

 

Other important data were brought in experimental and clinical studies focused on the anti-inflammatory 

effects of BR with the first consistent evidence seen almost 80 years ago in patients with rheumatoid arthritis, who 

experienced a surprising alleviation of symptoms as a result of the development of liver disease due to increased BR 

concentrations (Sidel & Abrams, 1934) (Hench, 1938). Later on, in 2010, a large epidemiological study demonstrated 

a direct association between a reduced risk of developing rheumatoid arthritis and higher total serum BR 

concentrations (Fischman, 2010). When comparing the patients with ulcerative colitis or primary sclerosing 

cholangitis and hyperbilirubinemia when a higher concentration of BR was observed milder colitis occurred 

(Papatheodoridis et al., 1998). Likewise with Gilbert's syndrome when BR is naturally increased, individuals have a 

reduced predisposition for the development of inflammatory bowel disease (Crohn's disease) (Leníček et al., 2014) 

(Jangi et al., 2013).  

 

1.3.2 Toxicity of bilirubin 

 

Excessively elevated concentrations of BR are toxic due to the binding capacity of albumin being exceeded 

and Bf permeates the plasma membrane into the intracellular space which has the ability to interfere with the 

respiratory chain by inhibiting mitochondrial enzymes (Diamond, 1970) (Mancuso, 2017) resulting in the release and 

accumulation of cytochrome c into the cytosol, decrease in mitochondrial membrane potential with disruption of lipid 

or protein membrane structure and finally to the induction of apoptosis (Rodrigues, Solá, & Brites, 2002a). Bf has 

many other negative effects on the cell including inhibition of protein kinases like cAMP, cGMP, or Ca2+ dependent 

kinase affecting cellular phosphorylation (Hansen et al., 1996), inhibition of DNA synthesis (Yamada et al., 1977), or 

neuronal proteins (Gurba & Zand, 1974). High concentrations of BR lead to the inhibition of ion exchange and water 

transport in renal cells (Dennery et al., 2001). Due to its affinity for membrane phospholipids, BR inhibits also tyrosine 

uptake (Amato et al., 1994) and in the auditory nerve may disrupt neuroexcitation signals (Dennery et al., 2001). When 

focused on in vivo experiments, the toxicity of BR in the central nervous system (CNS) was observed in the brainstem, 

cerebral cortex, hippocampus, basal ganglia, and Purkinje cells (Ahdab-Barmada & Moossy, 1984) (Ahlfors & 

Shapiro, 2001) (Watchko, 2006) (Ye et al., 2019). Observations of high concentrations of BR in vitro reveal toxicity 

in astrocytes (Deliktaş et al., 2019), neurons (Grojean et al., 2000), and organotypic brain sections (Dani et al., 2019). 

 

1.3.3 Hyperbilirubinemia 

 
Physiological total serum bilirubin concentration varies within the range of 0.2- 1 mg/dL (3.4-17.1 μmol/L) 

(Gazzin et al., 2017). Elevated concentrations above 17 μmol/L so called hyperbilirubinemia are related to impaired 
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BR metabolism (Strassburg, 2010). Once bilirubin levels in the circulation rise above its physiological concentrations, 

icteric discoloration of sclera, mucosal surfaces and skin is observed. Much more severe hyperbilirubinemias (usually 

above 340 μmol/L) could be accompanied with deleterious bilirubin effects, among them bilirubin-induced 

neurological dysfunction and kernicterus being the worst and most dangerous complications (Watchko & Tiribelli, 

2013).   

 

Hyperbilirubinemias can be classified into conjugated (postmicrosomal), unconjugated (premicrosomal), and 

mixed hyperbilirubinemias (van Dijk et al., 2015). Conjugated hyperbilirubinemias are caused mainly by extrahepatic 

cholestasis (biliary obstruction), intrahepatic cholestasis (viral and alcoholic hepatitis, steatohepatitis, intrahepatic 

cholestasis of pregnancy, posttransplant conditions, etc.), when compared with mixed hyperbilirubinemias caused by 

hepatocellular damage (toxic, infectious, immunological, systemic damage, neoplasms, etc.) (Krige, 2001) (Stratta et 

al., 1989) (Brumbaugh & Mack, 2012) (Mendenhall et al., 1984). Unconjugated hyperbilirubinemias are caused 

mainly by following pathophysiological mechanisms: BR overproduction (intra/extravascular hemolysis, erythrocyte 

phagocytosis during extravasation, defective haemoglobin synthesis, impaired uptake of BR by the hepatocyte (during 

the administration of drugs such as certain antibiotics, etc.) and by impaired bilirubin conjugation due to UGT1A1 

activity such as in Gilbert syndrome, Crigler-Najjar syndrome type I and II or due to its inhibition by specific drugs 

such as  antibiotics, antivirotic atazanavir or irinotecan (Robinson et al., 1962) (Kenwright & Levi, 1974) (Bosma, 

2003) (Muchová et al., 2004) (Dhawan et al., 2005) (Strassburg, 2010). 

 

 

Fig. 6. Differential diagnostic approach to hyperbilirubinemia. Modified from (Strassburg, 2010). 

 

1.3.4 Neonatal jaundice 

 

Neonatal jaundice, one of the most common clinical conditions in the newborn period, is defined as the 

elevation of a total serum bilirubin concentration above 85 μmol/L (Stevenson DK et al., 2012). Nearly 60% of term 
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and 80% of preterm infants develop jaundice in the first week of life, and 10% of breastfed infants remain jaundiced 

until 1 month of age (Olusanya et al., 2014) (Battersby et al., 2017). Neonatal jaundice has multifactorial pathogenesis 

due to an imbalance between the production and excretion of bilirubin after birth (Hakan et al., 2015). The most 

important factors involved in its manifestation include immaturity of the blood-brain barrier, which is, therefore, more 

permeable to Bf, and immaturity of hepatic transporters and glucuronosylation mechanisms, where the body is unable 

to rapidly adapt to BR overproduction shortly after birth (Shapiro et al., 2006). 

Mild to moderate neonatal jaundice is associated with protection from the development of various oxidative 

stress-mediated diseases and resolves spontaneously within a few days after birth. However, other risk factors such as 

low birth weight, ABO and rhesus blood group incompatibility, glucose-6-phosphate dehydrogenase (G6PD) 

deficiency, neonatal immaturity, sepsis, or breastfeeding are all prerequisites for the manifestation of severe neonatal 

hyperbilirubinemia with bilirubin concentrations above 342 μmol/L which could lead to accumulation of bilirubin in 

the basal ganglia and brainstem nuclei, resulting in acute or chronic bilirubin neurotoxicity and the risk of subsequent 

kernicterus which may result in acute bilirubin encephalopathy with clinical significance (MacDonald, 1995) 

(Dennery et al., 2001) (Watchko, 2003) (Ostrow et al., 2004) (Shapiro et al., 2006). 

 

Many therapeutic approaches have been attempted in the past for the treatment of severe neonatal jaundice. 

To reduce the toxic effects of BR is still commonly used as the golden standard phototherapy (PT) with blue-green 

light (450-510 nm) in which BR is converted into more polar photoisomers that can be easily disposed of the body 

(McDonagh et al., 2009). 

 

1.5 Phototherapy 

 

During the neonatal period and 5–10% of them require treatment by phototherapy with visible light for which 

the range of wavelengths between 450 and 510 nm is the most effective (Bhutani & Johnson-Hamerman, 2015).  

 

PT for unconjugated hyperbilirubinemia was discovered in 1958 by the team of Cremer et al. (Cremer et al., 

1958) and later on in 1968 the first studies focused on the evaluation of the efficacy and safety were performed by the 

Lucey and co-workers (Lucey et al., 1968). The principle of this therapy has been based on the photoconversion of 

bilirubin to its more polar structural photo-isomers  and photo-oxidative products easily excreted from the body by 

urine and/or bile (Fig. 7.) (McDonagh, 2001). Considering the fact that bilirubin concentrations in neonates can change 

within hours, it is quite difficult to determine the appropriate phototherapeutic treatment and its recommendations are 

constantly being updated (Porter & Dennis, 2002) (Hansen et al., 2020). The guidelines for clinics that use the 

definitions for quality of evidence and balance of benefits and harms established by the AAP Steering Committee on 

Quality Improvement Management when PT used for infants at age 25 - 48 hours with bilirubin levels above 256 

μmol/L, infants at age 49 - 72 hours with levels 308 μmol/L, and infants older than 72 hours with bilirubin levels 

above 342 μmol/L (Porter & Dennis, 2002) (Kemper et al., 2022). 
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Fig. 7. The principle of phototherapeutic treatment. Modified from (Maisels & McDonagh, 2008). 

  

Even though PT is worldwide used as the golden standard, is accompanied with side effects such as 

development of a bronze baby syndrome, water loss, impairment of thermoregulation, damage to unprotected eyes, 

and/or hypocalcaemia (Stevenson DK et al., 2012) (Khan et al., 2016). Surprisingly, recent studies suggest that PT 

might also be associated with an increased risk of ileus (Raghavan et al., 2005), allergic diseases (Wei et al., 2015), 

type 1 diabetes (McNamee et al., 2012), cancer (Wickremasinghe et al., 2016) (Cnattingius et al., 1995), and even 

mortality (Arnold et al., 2014; Morris et al., 2008) especially in extremely low birthweight (ELBW) neonates. The 

principle of the whole process is to reduce serum bilirubin concentrations and thus the toxic effects by transformation 

of unconjugated BR into easily excreted photoproducts (McDonagh et al., 2009).  

 

1.5.1 Bilirubin photoisomers  

 

During the therapeutic approach, BR is transformed by the action of blue or blue-green light (within the 

wavelength range 450 - 510 nm, close to the absorption maximum of BR) into its structural BR photoisomers (PI) 

(Maisels & McDonagh, 2008). Exact structures of PI were established by McDonagh et al. and Onishi et al. 

(McDonagh et al.1982) (McDonagh & Assisi, 1972) (Onishi et al., 1984) (McDonagh et al., 2009b). Configurational 

isomerization of BR leads to the fast and reversible formation of ZE- and EZ-bilirubin when compared to structural 

isomerization that leads to an irreversible change of BR into the most important PI E- and Z-lumirubin (Fig. 8.) (Onishi 

et al., 1984). 
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Fig. 8. Linear 2-dimensional representations of the chemical structures of bilirubin IX and its major PI lumirubin 

with photochemical interconversion pathways. Modified from (McDonagh et al., 2009). 

 

Bilirubin PI could be detected by HPLC and LCMS/MS in bile, serum, and urine but none of these methods 

has been used in clinical practice. In 1982, McDonagh and co-workers focused on the LR determination, but this 

method has limited resolution of the separated PI (McDonagh, Palma, Trull, et al., 1982). Later on, another method 

based on the correction of the HPLC chromatogram peak areas according to the different relative molar absorption 

coefficients of bilirubin PI was established, but this method was not tested on the clinical samples (Itoh et al., 1999). 

Latest research from Jašprová and co-workers established a sensitive LC-MS/MS method for simultaneous 

determination of LR in HSA spiked with BR when exposed to continuous PT and in the serum of neonates that 

undergoes PT to understand the kinetics of bilirubin PI. Surprisingly, very low concentrations of LR 6.4 ± 2.9 μmol/L 

were observed in the serum of neonates, despite a dramatic decrease in unconjugated BR concentrations. When 

compared to the spiked HSA, LR was produced at a 24% yield from unconjugated BR, giving LR concentrations of 

75 μmol/L and the sum of the LR with unconjugated BR molar concentrations accounted only for 43% of the initial 

unconjugated BR concentration. After 6h of irradiation LR concentrations decreased to only 3 μmol/L and the mass 

balance changed dramatically (Jašprová et al., 2020). The possible main factors accounting for the low concentration 

of LR in clinical samples are certainly the increased excretion of LR and bilirubin photoproducts via the urine and bile 

(McDonagh, 1985) and the efficient degradation to the secondary photoproducts (most likely tri-, di-, and 

monopyrroles) (Jašprová et al., 2020). However, no quantitative data focused on the efficiency of LR photoproduction, 

distribution  among different biological compartments, or even its transfer across the blood-brain barrier exist. 

Difficulties in establishing such an analytical methods are most importantly related to the low stability of bile pigments 

and their photodegradation products, resulting in both preanalytical as well as analytical problems. 
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Another studies from Jašprová and co-workers (Jasprova et al., 2016) (Jašprová et al., 2018) focused on in 

vitro effects of bilirubin photo-oxidative products on cell viability using three CNC models (SH-SY5Y a human 

neuroblastoma line, U-87 a human glioblastoma line, and HMC3 a human microglial line) did not result to any 

negative effect on the cell viability even when a high concentration of LR (25 μmol/L) was used. A similar observation 

was explored when performed in vivo studies using organotypic rat hippocampal slices, which is more representative 

of the complex physiologic multicellular environment. Moreover, these findings are consistent with the early studies 

of Silberberg and co-workers who did not detect any toxic effects of photo-irradiated bilirubin on myelinating 

cerebellum cultures (Silberberg et al., 1970). Surprisingly, when Jašprová and co-workers focused on the effect of LR 

on the expression of pro-inflammatory genes (TNF-α, IL-1β, IL-6, and cyclooxygenase-2 (COX-2)), increasing 

expression of all studied pro-inflammatory genes was observed. LR, although not affecting the viability of neuronal 

cells (Falcão et al., 2006), can produce pro-inflammatory cytokines (Jašprová et al., 2018a). Collectively, all viability 

studies demonstrated that short-term exposure to LR did not lead to cell damage or apoptosis. 

 

1.5.2 Bilirubin oxidation products 

 

Photochemical reactions of bilirubin occurring during light exposure lead to the formation of more polar 

bilirubin oxidative metabolites (Jašprová et al., 2018). Although these photodegradation products are generally 

regarded as being benign (Stevenson DK et al., 2012), potential biological effects have never been properly 

investigated. These metabolites are divided into tripyrrolic, dipyrrolic, and monopyrrolic degradation products.  

 

 The first group of BR oxidation products are tripyrrolic biopyrrins firstly discovered and studied by 

Yamaguchi and co-workers in 1994 as diazo-negative pigments. They identified by mass spectroscopy (MS) and 

nuclear magnetic resonance (NMR) the structure of two metabolites 1,14,15,17-tetrahydro-2,7,13-trimethyl-1,14-

dioxo-3vinyl-16H-tripyrrin-8,12-dipropionic acid (biopyrrin a) and1,14,15,17-tetrahydro-3,7,13-trimethyl-1,14-

dioxo-2-vinyl-16H-tripyrrin-8,12-dipropionic acid (biopyrrin b) (Fig. 9.) from the urine of healthy people using anti-

bilirubin monoclonal antibody 24G7 (Yamaguchi et al., 1994). 

 

 Biopyrrins were observed in higher concentrations in the urine of the patients who underwent laparotomy 

(Yamaguchi et al., 1994), after acute myocardial infarction (KUNII et al., 2009) and in the urine of mice exposed to 

social stress (Miyashita et al., 2006). The higher levels of biopyrrins were also found in patients with schizophrenia 

(Yasukawa et al., 2007) and during pregnancy were related to the smoking of mothers (Matsuzaki et al., 2014). 

Biopyrrins levels were studied by Vítek and co-workers in subjects with Gilbert syndrome (GS) who demonstrated 

that mild hyperbilirubinemia protecting from oxidative stress is associated with decreased urinary biopyrrin excretion 

(Vítek et al., 2007). Moreover, tripyrrols were also confirmed as markers of increased oxidative stress in rats subjected 

to endotoxin treatment (Yamaguchi et al., 1995) (Yamaguchi et al., 1997) or fenofibrate treatment (Kobayashi et al., 

2003), as well as in the hepatic ischemia-reperfusion model in the rat (Yamaguchi et al., 1996). 
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Fig. 9. Structure of biopyrrin a (A) and biopyrrin b (B). Modified from (Jašprová et al., 2018). 

 

The second group of BR oxidation products are dipyrrolic propentdyopents, products of oxidative 

degradation of BR (Fig. 10.) firstly discovered by Stokvis and co-workers in 1870 by alkalization of icteral urine 

when its red coloration was observed and in 1934 by Bengold and co-workers (Dolphin, 1978). In 1957 was described 

a chromatographic and electrophoretic method to characterize propentdyopents by Heikel and co-workers (Heikel, 

1958). Propentdyopents can be possibly determined by Stokvis reaction spectrometrically at 525 nm (Ostrow et al., 

1961), and the first discovery of their in vitro formation was reported in 1972 (Lightner & Quistad, 1972). Lightner 

and co-workers observed the production of these dipyrrols in the urine of newborn undergoing PT (Lightner et al., 

1984) and the same results were demonstrated by Kunikata and co-workers when also oxidation of BR to 

propentdyopents during PT in neonates was observed (Kunikata et al., 2000). The latest research from Joerk and co-

workers performed experiments when propentdyopents have been considered potential additional effectors in the 

development of arterial vasoconstriction and are present in the cerebrospinal fluid of patients with subarachnoid 

hemorrhage (SAH) (Joerk et al., 2019). 

 

 

 

Fig. 10. Structure of propentdyopents. Modified from (Ritter et al., 2016). 



20 

 

 

The third group of BR oxidation products are mono-pyrrolic BOXes A-D (Fig. 11.). BOX A, 2-(4-methyl-

5-oxo-3-vinyl-1,5-dihydro-2H-pyrrol-2-ylidene)acetamide and BOX B, 2-(3-methyl-5-oxo-4-vinyl-1,5-dihydro-2H-

pyrrol-2-ylidene)acetamide were identified as first in the cerebrospinal fluid of patients after SAH with developed 

cerebral vasospasm (Kranc et al., 2000).  Later in 2008 a significant production of BOXes, malondialdehyde, and 

superoxide dismutase, indicating a potent oxidizing environment was observed by Clark and co-workers in hematomas 

from the porcine model of intracerebral hemorrhage (ICH). To confirm the formation of bioactive molecules such as 

BOX-es by oxidation of UCB, Clark and co-workers synthesized in vitro BOX-es by oxidation of UCB at room 

temperature with a large excess of hydrogen peroxide. These results suggest potent oxidation processes in hematoma 

when the conversion of bilirubin to BOX-es is associated with a biochemical state that may cause or contribute to 

pathological sequelae after ICH (Clark et al., 2008). 

 

 

Fig. 11. The structure of bilirubin oxidation end products (BOX A-D) via intermediately formed di-pyrrolic 

propentdyopents (PDP) depicted in frames. Modified from (Schulze et al., 2019). 

 

Total synthesis and characterization of BOX A and BOX B were performed by Seidel and co-workers via a 

five-step de novo synthesis (Seidel et al., 2014), and determination of these compounds in HSA was performed by 

LC-MS/MS one year later (Seidel et al., 2015). The total synthesis with NMR characterization of the BR oxidation 

end product BOX C (Z)-3-(5-(2-amino-2-oxoethylidene)-4-methyl-2-oxo-2,5-dihydro-1H-pyrrol-3-yl)propanoic acid  

and its isomeric form BOX D (Z)-3-(2-(2-amino-2-oxoethylidene)-4-methyl-5-oxo-2,5-dihydro-1H-pyrrol-3-

yl)propanoic acid which might not be a direct product of oxidative degradation of BR but could derive from heme 

were performed by Schulze and co-workers (Schulze et al., 2019). Jašprová and co-workers demonstrated that BOX 

A and B are toxic in vitro only in very high, non-physiological concentrations contrasting to data published in SAH 

patients (Jašprová et al., 2018). 
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2   AIMS  

 

The aim of this thesis was to study the biological properties of BR and its most common photoisomer LR. Specifically, 

our aims were: 

 

• Isolation of LR for in vitro studies in cell lines. 

 

• Determination of the BR excretion in different tissues and cell populations.  

 

• Establishment of the intracellular unconjugated BR concentrations thresholds differentiating between anti- 

and pro-oxidant effects in different cell populations. 

 

• Determination of the BR and LR stability and its effects on metabolic and oxidative stress markers in different 

cell populations. 

 

• Determination of the effect of BR and LR on the proliferation, morphology, specific gene and protein 

expression, and differentiation of self-renewing neural stem cells (NSC) derived from human pluripotent 

stem cells (hPSC) 

 

• Visualization of predicted morphological and genomic changes of NSC by 3D super-resolution microscopy. 
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3   METHODS  

 

Following list represents the methods used in the submitted dissertation thesis by author. Detail description 

and other information about particular methods are listed in publications related to this thesis in section “Materials 

and Methods”. 

 

• Cultivation of immortalized cell lines (HEPG2, SH-SY5Y, MRC5, RAW 264.7) 

• Cultivation and differentiation of neurons (CoMo-NSC derived from ESI-017) 

• Preparation and purification of BR and LR 

• Stability and detection of BR and LR (LC-MS/MS) 

• Detection of LR fragments (LC-MS/MS) 

• Quantification of TNFα and FGF21 proteins (ELISA) 

• Analysis of intracellular metabolites of the TCA Cycle (GC-MS) 

• Viability/cytotoxicity measurement (MTT Assay) 

• Determination if the glycolytic reserve (Oxygen Consumption Rate - OCR Seahorse) 

• Cell cycle analyses (Flow cytometry) 

• RNA isolation and Real-Time qPCR 

• Western blot analyses 

• DNA damage analyses (Comet Assay) 

• Immunofluorescence and 3D Cell Imaging (fluorescent microscopy) 

• Statistical analyses  
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4   RESULTS  

 

The results of this thesis are presented in the form of four original manuscripts focused on BR and LR 

metabolism. Each publication is separately discussed in the context with current literature. 

 

1  BLANKESTIJN, Maike, Ivo P. VAN DE PEPPEL, Aleš DVOŘÁK, Nikola CAPKOVÁ, Libor VÍTEK, Johan W. 

JONKER & Henkjan J. VERKADE.  

Induction of fecal cholesterol excretion is not effective for the treatment of hyperbilirubinemia in Gunn rats.2021, 

Pediatric Research 89, 510–517.  

 

2 BIANCO, Annalisa, Aleš DVOŘÁK, Nikola CAPKOVÁ, Camille GIRONDE, Claudio TIRIBELLI, Christophe 

FURGER, Libor VITEK, and Cristina BELLAROSA.   

The extent of intracellular accumulation of bilirubin determines its anti- or pro-oxidant effect. 2021, International 

Journal of Molecular Sciences 21, no. 21: 8101.  

 

3  DVOŘÁK, Aleš, Kateřina POSPÍŠILOVÁ, Kateřina ŽÍŽALOVÁ, Nikola CAPKOVÁ, Lucie MUCHOVÁ, Marek 

VECKA, Nikola VRZÁČKOVÁ, Jana KŘÍŽOVÁ, Jaroslav ZELENKA, Libor VÍTEK.  

The effects of bilirubin and lumirubin on metabolic and oxidative stress markers. 2021, Frontiers Pharmacology 12, 

567001. 

 

4  CAPKOVÁ, Nikola, Veronika POSPÍŠILOVÁ, Veronika FEDOROVÁ, Jan RAŠKA, Kateřina POSPÍŠILOVÁ, 

Matteo DAL BEN, Aleš DVOŘÁK, Jitka VIKTOROVÁ, Dáša BOHAČIAKOVÁ, and Libor VÍTEK.  

The effects of bilirubin and lumirubin on the differentiation of human pluripotent cell-derived neural stem cells. 2021, 

Antioxidants 10, no. 10: 1532.  
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5   DISCUSSION 

 

The research of a presented thesis was focused on the understanding of the fecal cholesterol excretion related 

to the treatment of the hyperbilirubinemia in Gunn rats and to the biological properties of BR and its photo-oxidation 

products, which might have clinical relevance in phototherapy-treated hyperbilirubinemic neonates. 

 

During the last decades, BR was determined as an important bioactive molecule, with substantial toxic effects 

when accumulated in high concentrations within the human body (Watchko & Tiribelli, 2013). However, mildly 

elevated systemic BR concentrations (such as in Gilbert syndrome) may protect against various oxidative stress-

mediated and metabolic diseases including type 2 diabetes, cardiovascular diseases, or metabolic syndrome (Bosma 

et al., 1995) (Vítek, 2012). To understand the mechanism of BR excretion in different tissues and cells that can give 

us important data and information for possible therapeutic lowering of hyperbilirubinemia we tested the hypothesis 

that stimulation of fecal neutral sterol (FNS) excretion lowers total plasma bilirubin (TB) in hyperbilirubinemic Gunn 

rats in vivo in our paper “Induction of fecal cholesterol excretion is not effective for the treatment of 

hyperbilirubinemia in Gunn rats“. Gunn rats are a mutant strain of Wistar rats that due to the deficiency of UGT1A1 

activity exhibit lifelong nonhemolytic unconjugated hyperbilirubinemia inherited as an autosomal recessive trait. 

These rats are used as only natural mutant model for the studies that could provide important information on BR 

toxicity and have helped in developing new therapeutic modalities for hyperbilirubinemia, including cell 

transplantation and gene therapies (Roy-Chowdhury et al., 2020). In Gunn rats, around 2 - 15% of intestinal 

unconjugated BR originates from biliary disposal, while 85 - 98% is derived from transintestinal unconjugated BR 

excretion, which is stimulated by enhancement of the fecal fatty acid excretion, which makes transintestinal bilirubin 

excretion the major route of unconjugated BR disposal in Gunn rats (Kotal et al., 1997) (Nishioka et al., 2003) 

(Cuperus et al., 2009). However, the underlying mechanism of these processes is not fully understood.  

 

Since transintestinal excretion route is present for both cholesterol (TICE) and unconjugated BR (Kotal et 

al., 1997) (de Boer et al., 2018) (Hafkamp et al., 2006) we assumed that TICE - stimulated treatment could affect 

unconjugated BR excretion. Earlier studies showed that plasma unconjugated BR decreased by administration of a 

high-fat diet (HFD) and/or the lipase inhibitor orlistat in Gunn rats (Nishioka et al., 2003) (Cuperus et al., 2011) and 

the increase in fecal fat excretion was correlated to the decrease in plasma unconjugated BR levels (Hafkamp et al., 

2005) (Hafkamp et al., 2006). By use of radiolabelled BR, the decrease of unconjugated BR upon orlistat was observed 

due to an increase in transintestinal excretion (Hafkamp et al., 2006) and feeding HFD to mice enhanced TICE, 

resulting in increased fecal neural sterol (FNS) excretion (van der Velde et al., 2008). Therefore, a possible increase 

in fecal unconjugated BR and subsequent decrease in plasma unconjugated BR levels upon higher intestinal fat 

concentrations could be the results of unconjugated BR “capturing” by fatty acids, meaning that the reabsorption of 

unconjugated BR is decreased upon its association with non-absorbed fat in the intestinal lumen (Nishioka et al., 2003) 

(Bulmer et al., 2013). However, our results showed that the transintestinal excretion pathways for cholesterol and for 

unconjugated BR are not quantitatively linked.  
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Since liver X receptor (LXR) and farnesoid X receptor (FXR) are involved in the regulation of the hepatic 

and intestinal cholesterol metabolism we inhibited intestinal cholesterol absorption by its inhibitor ezetimibe (EZE) 

and stimulated TICE via LXR and FXR. However, our observation resulted in the conclusion that neither stimulation 

of FNS excretion nor LXR or FXR stimulation exerts hypobilirubinemic effects in Gunn rats, however, fecal 

unconjugated BR excretion was increased. The fecal unconjugated BR excretion only accounts for an estimated ~ 

50% of TB turnover (van der Veere et al., 1996) and we cannot definitively determine whether the increase was caused 

by increased transintestinal unconjugated BR secretion, decreased transintestinal unconjugated BR reabsorption, or 

decreased intraluminal (microbial) unconjugated BR degradation due to not proper quantitative estimation of 

unconjugated BR turnover. When compared to the Gunn rats treated with a FXR agonist obeticholic acid (OCA) with 

or without EZE, the lower biliary bile acid concentrations and a more hydrophilic profile since hydrophilic muricholic 

bile acids inhibit intestinal cholesterol absorption, and promote FNS excretion. These observations support another 

previous study when the underlying mechanism by which OCA increases FNS excretion in mice has been suggested 

to be mediated by a smaller and more hydrophilic bile acid pool (de Boer et al., 2017). Moreover, simultaneous 

treatment with OCA and EZE slightly increased net intestinal cholesterol excretion further than either treatment alone. 

Therefore, most of the OCA effects are mediated through decreased cholesterol absorption in Gunn rats, a small part 

of the effects could be due to direct stimulation of TICE.  

 

Interesting data were observed while Gunn rats treated with the liver X receptor agonist T0901317 (T09), 

resulting to increased bilirubin and severely increased triglycerides (TG) levels in plasma followed by optical yellow 

- coloured and turbid appearance. The possible effect should be explained by the data from another study when has 

been demonstrated that plasma TG levels > 12 mmol/L increase hemolysis, possibly due to increased membrane 

instability of erythrocytes (Dimeski et al., 2005) since BR is a degradation product of heme metabolism and the 

presence of increased hemolysis due to hypertriglyceridemia upon T09 treatment is supported by decreased plasma-

free haptoglobin concentrations which is a marker for intravascular hemolysis (Shih et al., 2014). However, we did 

not have proper samples to perform another red blood cell analyses to determine whether hemolysis had been induced. 

Collectively, our data suggest that FNS excretion, LXR, or FXR activation do not result in a hypobilirubinemic effect 

in Gunn rats and the link between the regulation of transintestinal excretion of cholesterol and plasma unconjugated 

BR concentrations is not present. 

 

In our second paper “The extent of intracellular accumulation of bilirubin determines its anti- or pro-

oxidant effect“ we aimed to establish the intracellular unconjugated BR concentrations thresholds differentiating 

between anti- and pro-oxidant effects in vitro on the cells derived from the normal human kidney (HK2), murine 

endothelium (H5V), human hepatoblastoma (HepG2) and human neuroblastoma (SH-SY5Y) since intracellular 

unconjugated BR concentration was found to be cell-specific due to several factors including the extent of uptake, 

excretion, and metabolic transformation, with each of these steps differing in various organs. Our results showed that 

HepG2 cells have the lowest concentrations, while the SH-SY5Y are the most sensitive. As expected, the HepG2 cell 
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line was less sensitive to unconjugated BR toxicity, even at the highest concentration. Conversely, the neuronal cells 

appeared the most sensitive since cytotoxicity started at the lowest unconjugated BR concentration while HK2 and 

H5V showed an intermediate behaviour.  

 

Since cells developed multiple systems (such as enzymes with antioxidant actions including catalase and 

superoxide dismutase (SOD) which together convert superoxide to water) to protect against ROS, the principal 

endogenous intracellular antioxidant cytoprotective molecule is regarded as Glutathione (GSH). However, BR has 

been demonstrated to be a powerful antioxidant substance in in vitro studies (Gopinathan et al., 1994) (Farrera et al., 

1994) (Marilena, 1997), suppressing oxidation more strongly than many other antioxidants, (Stocker, Yamamoto, et 

al., 1987b) (Stocker, Glazer, et al., 1987) (T.-W. Wu et al., 1991). In vitro studies focused on cells while depletion of 

GSH or bilirubin indicate that bilirubin is of comparable importance to GSH in cytoprotection (Barañano et al., 2002) 

(Gopinathan et al., 1994). Since bilirubin has the most potent superoxide and peroxide radical scavenger activities 

(Farrera et al., 1994) its potent physiological antioxidant action is further amplified by its oxidation to biliverdin and 

then recyclate by BVR back to BR (Barañano et al., 2002). Doré and Snyder with co-workers reported the maximal 

neuroprotective effects of BR in hippocampal cultures when reached at nanomolar concentrations (10–50 nM), while 

at higher concentrations the prooxidant effects of BR were observed (Dore & Snyder, 1999) and almost similar effect 

was reported by Liu and co-workers in the primary cultures of oligodendrocytes (Liu et al., 2003). Latest research by 

Zelenka and co-workers present data focused on long-term, mildly elevated BR concentrations resulting to protection 

of mitochondria and the respiratory chain, with a concomitant decrease of ROS and pro-inflammatory cytokine 

production (Zelenka et al., 2016). These observations are consistent with another in vitro and in vivo study, 

demonstrating the anti-inflammatory effects of BR (Valaskova et al., 2019). However, the exact concentration 

thresholds between pro- and anti-oxidant effects of BR remain still unclear (Gazzin et al., 2012).  

 

To test the pro-oxidant ability of unconjugated BR, we measured intracellular ROS induction by H2O2 when 

unconjugated BR did not result in any significant increase in intracellular ROS production in HepG2 cells even at 

higher concentration. On the contrary, in SH-SY5Y cells resulted in a threefold increase in intracellular ROS 

production and in H5V cells and HK2 cells doubled the intracellular ROS concentration. These data clearly indicates 

that each cell type has a different BR threshold switching between beneficial or toxic effects and expand the previous 

studies by Dore and co-workers with Liu and co-workers (Dore & Snyder, 1999) (Liu et al., 2003). Another experiment 

focused on the anti-oxidant effect of UCB revealed direct antioxidant activity of lower concentrations of unconjugated 

BR in all four live cell lines. For HepG2 cells, the dose effect was measured at higher concentrations while for SH-

SY5Y cells at the lowest concentrations, whereas in H5V and HK2 cells the antioxidant effect occurred at intermediate 

lower unconjugated BR concentration. No cytotoxic effect was observed on HepG2 and HK2 cells while it was present 

at low concentrations on SH-SY5Y and at very high concentrations on H5V cells. Since the cells use multiple systems 

to protect against ROS overproduction, we measured the total reduced GSH concentrations and SOD activity. While 

previously observed by Giraudi and co-workers that unconjugated BR modulated the GSH concentration in 

neuroblastoma cells through the induction of the System Xc-increasing cysteine uptake and intracellular GSH content 
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(Giraudi et al., 2011) our results confirmed no effect of unconjugated BR on GSH concentration except in SH-SY5Y 

cells where the concentration increased upon a lower UCB treatment. In addition, the induction of SOD activity was 

observed in the H5V, HK2, and SH-SY5Y cells at its unconjugated BR pro-oxidant/cytotoxic concentrations while in 

HepG2 cell line was not affected. 

 

While a mild elevation of BR concentration is associated with anti-oxidant effects, severe hyperbilirubinemia 

can cause a permanent neurological damage in neonates. Although, PT is worldwide used as the golden standard for 

the treatment of neonatal jaundice, the biological properties of BR photoisomers and their oxidation products have not 

properly been investigated. However, the still scarce data obtained until now suggests some biological activity of these 

products (Jašprová et al., 2018), there is still a lack of complex data and research focused on these molecules. The 

main reason should be the stability of these photo-sensitive molecules and the difficulty in the preparation processes 

of bilirubin PI in their pure forms. 

 

In our paper “The effects of bilirubin and lumirubin on metabolic and oxidative stress markers“ we 

aimed to compare the effects of BR and LR, the major BR photo-oxidation product, on metabolic and oxidative stress 

markers. The biological activities of these pigments were investigated on human neuroblastoma SH-SY5Y cells, 

human hepatoblastoma HepG2 cells, fibroblast-like MRC5 cells from human lung tissue, and murine macrophage-

like RAW 264.7 cells with a focus on mitochondrial respiration, substrate metabolism, ROS production, and the 

overall effects on cell viability. The stability of LR and BR in HSA and standard medium were tested before any 

experiments with the biological samples. The results showed relatively fast degradation of LR in both relevant 

biological matrices and the remaining LR level after the experiment in medium and in HSA. In contrast, BR was stable 

during the entire experiment. Due to the remaining concentrations of  LR from previous experiment, we focused on 

its stability under different oxygen conditions (normoxia 21% O2 and hypoxia 1% O2) when the presence of oxygen 

contributed to LR degradation beginning only early after the start of incubation. The rate of degradation during this 

time was much faster under normoxic conditions and these results suggest that the degradation of LR can be triggered 

by higher oxygen concentration.  

 

When focused on the effect of LR and BR on cell viability, LR was found to be much less toxic and had no 

effect on the viability in all four cell lines even in the highest concentrations, while all the BR concentrations were 

negatively correlated with cell viability. Cytotoxicity of BR was compromised by the cellular glycolytic reserve, which 

indicates the capability of a cell to respond to an energetic demand as well as how close the glycolytic function is to 

the cell's theoretical maximum. The results showed that the most affected cell line was HepG2 (Annex 3 – Fig. 6F). 

Production of mitochondrial superoxide was measured for both lower and higher concentrations of BR and LR since 

the highest concentration was too apoptotic and cell debris interfered with the determination of mitochondrial 

superoxide. Only the higher concentrations of LR or BR caused a significant drop in superoxide production in HepG2 

and SH-SY5Y cells while in MRC5 cells, even the lower concentrations were significantly efficient. Therefore, both 

LR and BR were almost equally capable of scavenging mitochondrial superoxide.  
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Since previous studies had demonstrated an inhibitory role of BR on mitochondrial respiration (Mustafa et 

al., 1969) (Noir et al., 1972), (Almeida & Rezende, 1981) (Rodrigues, Solá, & Brites, 2002) we focused on the effects 

of LR in comparison to BR on mitochondrial respiration in our cell lines incubated overnight with BR and LR. We 

observed no changes in respiration except for the higher concentrations of BR which decreased both basal as well as 

maximal respiration and indicated an overall depression of mitochondrial respiration. The ratio of maximal to basal 

respiration, corresponding to the respiratory capacity (Brand & Nicholls, 2011), differed for each cell line with no 

significant changes between the controls and treated cells. Under the serum – free conditions in HepG2 and SH-SY5Y 

cell lines no effect on the basal and maximal respiration was observed.  

An important finding was observed for the LR effect on oxidative stress since BR is known to be one of the 

most potent endogenous antioxidants (Stocker, Yamamoto, et al., 1987). The anti-oxidant capacity (AOX) was tested 

in the different biological matrices in the following experiments. First, BR and LR capability to scavenge peroxyl 

radicals in HSA with increasing concentrations was tested. Interestingly, LR had the same AOX as BR despite its 

degradation compared to vitamin E analog – Trolox in the same concentration. Since LR instability, the AOX of LR 

solutions with its spontaneous degradation was also tested and resulting in the decrease of AOX after 24 h 

approximately to 50% of the initial value. Moreover, substantial antioxidant effect of LR was observed in our cell 

models despite its marked degradation, suggesting a marked ROS - scavenging activity of LR degradation products. 

Nevertheless, in preventing lipoperoxidation, LR was much less efficient most likely due to its lower lipophilicity.  

 

Since BR has impact on mitochondrial metabolism, we focused also on the possible effects of LR and BR on 

the production of intracellular metabolites of the TCA cycle well known for their ability to affect energy balance and 

to modulate multiple cellular functions as well being linked to oxidative phosphorylation (Martínez-Reyes & Chandel, 

2020). Both BR/LR did not have any marked effect at lower concentrations in MRC5 and HepG2 cells; while in SH-

SY5Y cells the concentrations significantly decreased in the presence of both compounds. A different response was 

observed with BR at higher concentration when most of the metabolites were significantly reduced in all cell lines; 

whereas virtually no effect was observed in cells exposed to LR (Annex 3 – Fig. 10.). These data are consistent with 

the previous reports of the impact of BR on the mitochondrial metabolism and morphology demonstrated mostly in 

brain cells (Mustafa et al., 1969) (Almeida & Rezende, 1981) (Rodrigues, Solá, & Brites, 2002b) while no harmful 

effect present for LR. However, these effects on mitochondrial metabolism were beneficial in the other tissues such 

hearth and liver (Mustafa et al., 1967) (Stumpf et al., 1985), same for the effect of BR on the mitochondrial function 

in adipocytes (Gordon et al., 2020). These data suggest the complex cell-specific and concentration-dependent effects 

of BR and its derivates in specific conditions.  

 

Additionally, we observed that BR behave as a pro-inflammatory molecule in the macrophage-like 

RAW264.7 cells, while only a mild and insignificant effect was observed for LR. This contrasts with a study performed 

by Jašprová and co-workers on different cell models of CNS origin indicating substantial cell viability of BR/LR-

induced pro-inflammatory effects (Jašprová et al., 2018). The possible explanation for this observation may be linked 

to the BR-induced TCA cycle dysregulation known to affect the inflammatory status, NO production, as well as post-
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translational acetylation (Williams & O’Neill, 2018), since both treatments lead to a decrease in NO availability. Since 

BR is known for its ability to scavenge NO by forming N-nitroso derivatives (Barone et al., 2009), the same might 

also be possible for LR. Moreover, BR inhibits inducible NO synthase to prevent cells from its production of large 

amount of NO (Zucker et al., 2015), while LR may also act in a similar manner. 

 

Based on the recent observations by Jašprová and co-workers who demonstrated the striking upregulation of 

proinflammatory cytokines in organotypic rat hippocampal slices after short-term exposure to LR (Jašprová et al., 

2018), we hypothesized that photoproducts of BR could possibly affect early human neurodevelopment. In our paper 

“The effects of bilirubin and lumirubin on the differentiation of human pluripotent cell-derived neural stem 

cells“ we aimed to compare the effects of BR and LR on the proliferation, differentiation, morphology, and specific 

gene and protein expressions of self-renewing neural stem cells (NSC) derived from human pluripotent stem cells 

(hPSC) which has the ability to self-renew and terminally differentiate into neurons and glia, and thus they represent 

a biologically and developmentally relevant surrogate human model to study the influence of the potentially 

biologically active compounds on these processes. In the initial phase of our studies, we focused to assess the possible 

cytotoxic effects of both BR and its major photoisomer LR. We observed significant decrease in the viability/metabolic 

activity of the cells exposed to BR within the whole range of tested concentrations. Compared to LR, the effect was 

much lower, and only visible at the highest concentration indicating the much higher toxicity of BR on NSC, thus its 

cytotoxic effect on the CNS when severe neonatal hyperbilirubinemia occurs in neonates. Previous studies by Genc 

and co-workers shown that exposure to increasing concentrations of unconjugated BR is cytotoxic to rat 

oligodendrocytes and increase its apoptosis in vitro (Genc et al., 2003). Several additional studies have shown the 

cytotoxic and pro-apoptotic effects of BR on neuronal cultures (Rodrigues, Solá, & Brites, 2002b) (Silva et al., 2002) 

(Rodrigues, Solá, Silva, et al., 2002) (Kumral et al., 2005). Although under our study conditions no significant changes 

in DNA damage were observed, while only a negligible modulation of the cell cycle of treated NSC exposed to BR 

was present.  

 

To explore the possible effects on the protein expressions of the apoptotic or DNA damage-related markers 

we analysed NSC treated with both pigments. While BR exposure induced apoptotic and DNA damage markers, LR 

exposure in clinically relevant concentrations exerted protective effects against these changes. During the testing of 

toxicity, we noticed a significantly changed undifferentiated arrangement and acquired a different phenotype with 

increasing concentrations of LR. The neuroepithelium forming the neural tube represents the first polarized single-

cell layer with a central lumen and cells displaying apicobasal polarity during the onset of neural differentiation 

(Wilson & Stice, 2006). These processes are mimicked under in vitro conditions by the radially organized 

neuroepithelial cells differentiated from hPSC so-called neural rosettes, a flower like structures, that represent the 

niche from which NSC are isolated (Wilson & Stice, 2006) (Banda et al., 2015) (Grabiec et al., 2016) (Fedorova et 

al., 2019). Such polarity ensures a different distribution of signalling molecules as well as of junction proteins 

(Miyamoto et al., 2015) (Banda et al., 2015) (Grabiec et al., 2016). When focused to Western blot analysis of 

transcription factors including those expressed upon differentiation of hPSC towards neuroectoderm and signalling 
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pathway important for neural cell differentiation from NSC we observed interesting data in expressions of NSC-

specific markers upon exposure to LR (Annex 4 – Fig. 3.). These data strongly suggested that LR-treated self-

renewing NSC acquire a significantly different morphology reminiscent of immature rosettes, with apically localized 

cell polarity proteins. Surprisingly, our study demonstrated for the first time that LR induces NSC to repolarize and 

that this induction is dose-dependent. Moreover, these repolarized NSC cultures, expressed higher amounts of 

phosphorylated ERK, important for the process of neurogenesis (possibly as a positive feedback mechanism), as well 

as showing an altered expression of NSC-specific. These data suggest that the potential to affect the identity and 

polarity of NCS during early human neural development by LR resulting to possible clinical relevance while 

aggressive PT used on preterm neonates is often accompanied by serious adverse effects (J. Wang et al., 2021) and 

the processes of neurogenesis and neurodevelopment are impaired in these neonates (Rice & Barone, 2000), which 

may even be exacerbated by BR photo-oxidation products generated during PT.  

 

Lastly, we assessed the capacity of BR or LR to affect the terminal differentiation of NSC since previous 

studies by Brites and co-workers have shown that moderate to severe hyperbilirubinemia could induce neurological 

dysfunction and potentially impair brain myelination with long-term sequelae, particularly in preterm infants (Brites 

& Fernandes, 2015) and no possible effects of LR or other BR photo-oxidation products have been reported yet. We 

focused on the gene expression of selected differentiation-associated markers. The expression of NSC had gradually 

increased for glial markers as well as neuronal markers while there were no changes in the expression of the neural 

stem cells (Annex 4 – Figure 4.).  However, we did not observe any significant changes in the expression after the 

treatment with BR and LR which is a notable observation since just a short-term exposure led to significant changes 

in these markers.  
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6   SUMMARY  

 

Bilirubin has been for a long time considered only as a toxic waste product. But recent findings well 

documented this bioactive molecule as a powerful endogenous antioxidant with immunomodulatory, anti-

inflammatory, antiproliferative and cell-signalling properties. 

 

In the presented thesis, we investigated the kinetics and biological properties of BR compared to its photo-

oxidation products, which might have clinical relevance in hyperbilirubinemic neonates treated by intensive 

phototherapy with blue-green light. 

 

In Gunn rats, which represent the natural in vivo model for severe unconjugated hyperbilirubinemia, it is well 

known that only a tiny fraction of intestinal unconjugated BR originates from biliary disposal. At the same time, the 

biggest part is derived from transintestinal unconjugated BR excretion, which is stimulated by enhancing fecal fatty 

acid excretion, which makes transintestinal bilirubin excretion the major route of unconjugated BR disposal. Since 

transintestinal excretion also occurs for cholesterol, we hypothesized that increasing fecal cholesterol excretion and/or 

transintestinal excretion could also enhance fecal unconjugated BR disposal and subsequently lower plasma 

unconjugated BR concentrations. However, our data do not support the regulation of transintestinal excretion of 

cholesterol and bilirubin. Moreover, the FNS excretion, liver X receptor or farnesoid X receptor activation do not 

results in a hypobilirubinemic effect and has no potential for the therapy of unconjugated hyperbilirubinemia. 

 

Unconjugated BR has the ability to diffuse into any cell while in mildly elevated concentrations is protective 

from various oxidative stress-mediated diseases. Hence, each cell has to maintain its intracellular concentration of 

unconjugated BR below the toxic threshold which is regulated by its intracellular metabolism. To understand these 

processes we performed an in vitro study using different human and murine cell lines exposed to increasing 

unconjugated BR concentration to find the thresholds differentiating between pro-oxidant and anti-oxidant effects 

while finding that a low concentration of unconjugated BR resulted in anti-oxidant effect while higher concentrations 

resulted to the pro-oxidant or cytotoxic effects in all studied cell lines. Our results expand and better substantiate that 

each cell type has a different bilirubin threshold switching between the beneficial and toxic effects of bilirubin. Total 

unconjugated BR concentration treatment is an uncertain predictor of its biological effects because intracellular levels 

of unconjugated BR are modulated by its oxidation, conjugation, and export from the cells by membrane ABC 

transporters. The ability to measure real unconjugated BR concentration in the cells helps to better understand 

cytotoxicity induced by unconjugated BR as well as its protective effects. 

 

While a mild elevation of BR concentration is associated with anti-oxidant effects, severe hyperbilirubinemia 

can cause permanent neurological damage in neonates. Although, the golden standard of the treatment of severe 

unconjugated hyperbilirubinemia, the biological properties of BR photo-oxidation products remain still unknown. 

Since intracellular metabolic impact of BR photoisomers has never been properly investigated, although our previous 
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data suggest their biological importance we compared BR and its major photo-oxidation product LR on the metabolic 

and oxidative stress markers resulting in the data when LR was found to be much less toxic while still maintaining a 

similar anti-oxidant capacity in the serum as well as suppressing activity leading to the mitochondrial superoxide 

production. However, LR was less efficient in preventing lipoperoxidation due to its lower lipophilicity. Additionally, 

BR was found to behave as a pro-inflammatory molecule while only a mild and insignificant effect was observed for 

LR. Nevertheless, our data point to the biological effects of BR and its photo-oxidation products, which seem to have 

clinical relevance in phototherapy-treated hyperbilirubinemic neonates and adult patients. 

 

Since aggressive PT used on preterm neonates is often accompanied by serious adverse effects and the 

processes of neurogenesis and/or neurodevelopment are impaired in these neonates we aimed to understand the 

possible impact of BR and LR on these processes using an in vitro model of neural stem cells. When compared to BR, 

LR exerted lower cytotoxicity on self-renewing neuronal stem cells. This dose-dependent effect was accompanied by 

mildly elevated pro-apoptotic markers for BR. Another interesting dose-dependent effect was observed for the 

morphology inducing cells to form highly polarized structures with lower expressions of some NSC-specific markers 

when treated by LR. Our data clearly indicate that BR and LR play a role in the earlier phases of differentiation, an 

influence which, however, was later lost and despite visible changes in the morphology, at the level of the terminal 

differentiation, no major changes can be detected toward neuronal and glial cell types. However, LR has the potential 

to affect the polarity and identity of NSC during early human neural development. This observation may be of clinical 

importance since cellular polarity plays a significant role during the development of the CNS. 
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8   LIST OF ABBREVIATIONS  

 

ABC   ATP-binding cassete 

ABCG5/8  ATP-binding cassette (ABC) transporters G5 (ABCG5) and G8 (ABCG8) 

AOX   anti-oxidant capacity 

Bf   free unconjugated bilirubin 

BR   bilirubin 

BV   biliverdin 

BVR   biliverdin reductase 

Ca2+   calcium ions 

cAMP   cyclic adenosine monophosphate 

CNS   central nervous system 

CO   carbon monoxide 

DNA   deoxyribonucleic acid 

EZE   ezetimibe 

Fe2+   ferrous ion 

FNS   fecal neutral sterol 

FXR   farnesoid X receptor 

G6PD   glucose-6-phosphate dehydrogenase 

GSH    glutathione 

H5V   hearth endothelial cells 

HDL   high density lipoprotein 

HepG2   hepatic cells 

HFD   high fat diet 

HK2   kidney tubular cells 

HO   heme oxygenase 

HPLC   high-performance liquid chromatography 

hPSC   human pluripotent stem cells 

HSA   human serum albumin 

ICH   intracerebral hemorrhage 

IL-1β   interleukin 1 beta 

IL-6   interleukin 6 

iUCB   intracellular unconjugated bilirubin 

LC-MS/MS  liquid chromartography – mass spectrometry 

LDL   low density lipoprotein 

LR   lumirubin 

LXR   liver X receptor 
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MRC5    fibroblast-like cells 

MRP   multidrug resistance-associated protein 

MS   mass spectroscopy 

NADPH  nicotinamide adenine dinucleotide phosphate 

NMR   nuclear magnetic resonance 

NO   nitric oxide 

NPC1L1  Niemann-Pick C1-Like 1 

NSC   neural stem cells 

O    oxygen 

OATP   organic anion transporting polypeptides 

OCA   obeticholic acid 

PI   photoisomer 

PT    phototherapy 

RAW 264.7  murine macrophage-like cells 

ROS   reactive oxigen species 

SAH   subarachnoid hemorrhage 

SOD   superoxide dismutase 

SY5Y   neuronal cells 

T09   liver X receptor agonist T0901317 (T09) 

TB   total bilirubin 

TCA   tricarboxylic Acid Cycle 

TG   triglycerides 

TICE   Transintestinal cholesterol excretion 

TNF- α   tumor necrosis factor alpha 

UGT1A1  UDP- glucuronosyl transferase  1A1  isoform   

 

 

 

 

 

 
 


