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Ph.D.

Study programme: Physics
Study branch: Theoretical Physics

Prague 2023



I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In Prague, May 4, 2023 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Author’s signature

i
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Introduction
In this thesis, we construct a simple model of coherent electron dynamics in

molecules, mainly focusing on the process of its decoherence. Exposing a molecule
to an ultrashort laser pulse that ionizes it leads to a superposition of several
cationic states. This process is called photoionization. Under certain conditions,
the coherence manifests itself in the oscillation of physical quantities, e.g., the
charge density – this phenomenon is called charge migration. The energies of the
electronic states depend on the configuration of the molecule, and this dependence
is different for the individual states. This coupling of the electronic state to the
configuration of the nuclei leads to different nuclear wave packet dynamics in
each electronic state, which causes electronic decoherence – the initially coherent
superposition transforms into an incoherent mixture.

In the first chapter, we discuss the phenomena we want to reproduce in our
model. We describe the coherent electron dynamics and the impact of nuclear
dynamics in the simplest possible terms. Two fundamentally different approaches
to separating the molecular system into its electronic and nuclear parts are com-
pared. We describe three mechanisms of decoherence and introduce the quantities
that can be used to quantify it. We then comment on the photoionization pro-
cess itself and the importance of the ultrashort timescale of the laser pulses in
producing the coherent superpositions.

The second chapter describes our model of the coupled electron-nuclear dy-
namics and the approach to solving it. Our two-dimensional model comprises
a harmonic potential well in the “nuclear coordinate” and a combination of two
such wells in the “electronic coordinate”, with parameters depending on the nu-
clear configuration. We use a specific basis to evaluate the matrix elements of
all relevant operators and find the system’s eigenstates via the diagonalization of
the complete Hamiltonian. This allows us to evolve the system from its initial
state to an arbitrary time.

The center point of this thesis is the third chapter, with our results and their
discussion. This chapter is divided into three parts. In the first part, we ver-
ify that our model yields coherent electronic behaviour in the case of uncoupled
electron and nuclear dynamics. Then, we present three primary cases of coupled
electron-nuclear dynamics defined by different parameters of the electronic poten-
tial depending on the nuclear coordinate. We use the geometric and momentum
overlap of the nuclear wave packets to interpret the decoherence. We find the
Wigner quasiprobability distribution to be a helpful tool. In the final part, we
apply the model to approximate the evolution of a superposition of states of
an H2O+ cation.

Unless specified otherwise, we use the Hartree atomic units throughout this
thesis. These are defined by the following physical constants being dimension-
less and their numerical value being 1: reduced Planck constant ℏ, elementary
charge e, Bohr radius a0, and electron rest mass me.
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1. Theory

1.1 Coherent electron dynamics in atoms
This first section presents the general theory of coherent electron dynamics in

atoms (and in molecules in the approximation of fixed nuclei). We will follow the
approach from [1].

Let Ĥe be the Hamiltonian for the electronic system and let |ψi⟩ be its eigen-
states with corresponding eigenenergies Ei. The evolution of the state of the
system |Ψ(t)⟩ is given by the time-dependent Schrödinger equation [2, p. 223]

i
d
dt |Ψ(t)⟩ = Ĥe |Ψ(t)⟩ , (1.1)

with the initial condition

|Ψ(t = 0)⟩ = |Ψ0⟩ . (1.2)

We can express the initial state of the system as a linear combination of the
eigenstates of the Hamiltonian

|Ψ0⟩ =
∑︂

i

αi |ψi⟩ ,
∑︂

i

|αi|2 = 1. (1.3)

The second equality is the consequence of the usual normalization ⟨Ψ0|Ψ0⟩ = 1
and orthonormality of the eigenbasis. Thanks to the Hamiltonian Ĥe being time-
independent, we can integrate the equation (1.1), obtaining

|Ψ(t)⟩ =
∑︂

i

αie−iEit |ψi⟩ . (1.4)

We can trivially see that the populations Pi of the individual eigenstates do not
change,

Pi = |⟨ψi|Ψ(t)⟩|2 = |αi|2. (1.5)

Now, we want to proceed to calculate the time-dependent electronic density
corresponding to the evolution of the state |Ψ(t)⟩. In an atom with N electrons,
we have a collection of N three-dimensional coordinate spaces describing the
position of all the electrons. We can integrate over 3N −3 of the coordinates and
obtain a density in a single three-dimensional space. Let us denote r a coordinate
in this space and r the collection of N such coordinates. The electronic density
is defined as

ρ(r, t) =
∫︂

dN−1r |⟨r|Ψ(t)⟩|2. (1.6)

This can be manipulated into the following form:

ρ(r, t) = Tr
(︂
ρ̂(t)T̂ (r)

)︂
, (1.7)

ρ̂(t) = |Ψ(t)⟩ ⟨Ψ(t)| , (1.8)

T̂ (r) =
∫︂

dN−1r |r⟩ ⟨r| , (1.9)
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where ρ̂(t) is the density operator (see ,e.g., [2, Complement EIII]) corresponding
to the state of the system and T̂ (r) is the reduced transition density operator. We
can write the three above expressions in the basis of eigenstates of the Hamiltonian
as follows:

ρ(r, t) =
∑︂
ij

ρij(t)Tji(r), (1.10)

ρij(t) ≡ ⟨ψi|Ψ(t)⟩ ⟨Ψ(t)|ψj⟩ = αiα
∗
je−i(Ei−Ej)t, (1.11)

Tji(r) ≡
∫︂

dN−1r ⟨ψj|r⟩ ⟨r|ψi⟩ =
∫︂

dN−1r ψ∗
j (r)ψi(r). (1.12)

The density matrix ρij(t) contains information about the evolution of the system
and is constructed from the coefficients of the initial superposition (1.3) and the
energies of the eigenstates. The transition density Tji(r) contains information
on the spatial distribution of the electronic density and is constructed from the
coordinate representation of the eigenstates. We usually choose the (bound)
eigenstates to be real functions in the coordinate representation, making the
transition density matrix elements real. We can rewrite the electronic density
one more time in a form more suitable for the analysis of the properties of the
evolution,

ρ(r, t) =
∑︂

i

|αi|2Tii(r) + 2
∑︂
i>j

|αi||αj| cos(∆Eijt+ ∆φij)Tij(r), (1.13)

where we denoted

∆Eij = Ei − Ej, ∆φij = φj − φi, αi = |αi|eiφi .

The second term of the expression on the right side of (1.13) contains the non-
trivial part of the evolution. It consists of the transition density Tij(r) and a time-
dependent prefactor – the sum of the two corresponding off-diagonal elements of
the density matrix, that we denote

Cij(t) ≡ ρij(t) + ρji(t) = 2|αi||αj| cos(∆Eijt+ ∆φij) (1.14)

and call electronic coherence between the i-th and j-th eigenstate.
For simplicity, we can now think of the case where only two eigenstates are

present in the initial superposition

Pi = 0, i = 3, . . . (1.15)

The coherence manifests itself in the cosine oscillatory behaviour of the evolution
of the electronic density. Angular frequency is given by (in other than atomic units
proportional to) the difference of the energies of the two considered eigenstates.
Two conditions have to be met for these oscillations to be present. The two
populated eigenstates have to have different energies, and both eigenstates must
have non-zero populations. There is one additional condition for the oscillations
to be visible – the relevant transition density matrix element must be non-zero.
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1.2 The density operator formalism in the con-
text of molecules

Let us take a step aside and summarize the basics of solving the molecular
problem. We denote R the collection of the coordinates of the nuclei. The system
is described by a molecular Hamiltonian in the following form (see, e.g., [3])

Ĥ(r,R) = T̂N(R) + Ĥe(r,R)
= T̂N(R) + T̂ e(r) + V̂ e−e(r) + V̂ N−e(r,R) + V̂ N−N(R), (1.16)

where T̂N is the kinetic energy operator of the nuclei and Ĥe is the electronic
Hamiltonian consisting of the kinetic energy operator of the electrons T̂ e and the
potentials of the interactions between two electrons V̂ e−e, an electron and a nu-
cleus V̂ N−e, and two nuclei V̂ N−N. The last term is sometimes not included in the
electronic Hamiltonian. In order to solve the time-dependent Schrödinger equa-
tion generated by this Hamiltonian, we usually start by finding the eigenstates
of the electronic Hamiltonian

Ĥe(r; R)ψi(r; R) = Ei(R)ψi(r; R), (1.17)

where we used the coordinate representation. The electronic time-independent
Schrödinger equation is solved with respect to the electronic variables r and is
parametrized by the nuclear configuration R, which is denoted by the semicolon.
These r- and R-dependent electronic states are called adiabatic states, and the
R-dependent energies are called adiabatic potential energy surfaces (PESs).

In terms of these states, the complete time-dependent wave function can be
written as

Φ(r,R, t) =
∑︂

i

χi(R, t)ψi(r; R), (1.18)

where the functions χ(R, t) are called nuclear wave packets and the expansion
is called adiabatic representation. The adiabatic states are coupled together and
with the nuclear wave packets via the nuclear kinetic energy operator. When the
PESs corresponding to two given electronic states are not very close to each other
at the geometry where their nuclear wave packets are non-zero, the equation for
the nuclear wave packets decouples and yields

i
∂

∂t
χi(R, t) =

(︂
T̂N(R) + Ei(R)

)︂
χi(R, t). (1.19)

This is called the Born-Oppenheimer1 approximation.
This approximation breaks down in the vicinity of the so-called conical in-

tersections (CIs) and avoided crossings, and the equations for the corresponding
χi(R, t) become coupled. In such a case, one can perform the so-called diabatic
transformation. It essentially transforms the (usually two) coupled electronic adi-
abatic states with an R-dependent unitary transformation so that the resulting

1Strictly speaking, it is the adiabatic Born-Oppenheimer approximation because
we neglected all electronic matrix elements of the nuclear kinetic energy operator,
⟨ψi(r; R)|T̂N(R)|ψj(r; R)⟩ = 0, ∀i, j. In the Born-Oppenheimer approximation, only the off-
diagonal terms, i ̸= j, are neglected.
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states diagonalize the nuclear kinetic energy operator. The coupling is transferred
into additional potential energy terms.

Alternatively, we can solve the electronic eigenproblem (1.17) for one fixed
geometry R0 and use the resulting R-independent functions for expansion of the
full time-dependent wave function

Φ(r,R, t) =
∑︂

i

χ̃i(R, t)ψi(r; R0). (1.20)

This is called the strictly diabatic representation, and the states ψi(r; R0) are
called strictly diabatic states. The dynamic equation for the corresponding nuclear
wave packet is

i
∂

∂t
χ̃i(R, t) =

(︄
T̂N(R) +

∑︂
i

Wij(R)
)︄
χ̃i(R, t), (1.21)

where

Wij(R) =
∫︂

dr ψ∗
j (r; R0)Ĥe(r,R)ψi(r; R0). (1.22)

The equations for various χ̃i(R) are therefore inherently coupled. We have not
used the Born-Oppenheimer approximation, nor would it help us. The equations
are strictly decoupled only at the geometry R0. The diagonal elements of the W
matrix are called the diabatic potential energy surfaces.

Let us repeat once more the two representations introduced above and rewrite
them in the abstract Dirac formalism,

Φ(r,R, t) =
∑︂

i

χi(R, t)ψi(r; R) ←→ |Φ(t)⟩ =
∑︂

i

|χi(t)⟩ |ψi⟩ , (1.23)

Φ(r,R, t) =
∑︂

i

χ̃i(R, t)ψi(r; R0) ←→ |Φ(t)⟩ =
∑︂

i

|χ̃i(t)⟩ |ψĩ⟩ . (1.24)

This shows that using these two representations, we have two different separations
of the molecule to electronic and nuclear subsystems. Of course, the strictly
diabatic states ψi(r; R0) are probably not physically relevant. On the other
hand, the diabatic states generated by the diabatic transformation are useful –
they are similar to the adiabatic ones when far from an avoided crossing and in the
region of avoided crossings often provide more intuitive picture of the dynamical
evolution.

When we construct electronic or nuclear observables, we must remember that
they will be different in these two separations. For example, if we want to con-
struct electronic/nuclear densities by integrating over all nuclear/electronic co-
ordinates and all but one electronic/nuclear coordinates, this corresponds to the
diabatic separation. In general, if we want to work in the coordinate repre-
sentation and the adiabatic separation, the purely electronic quantities will be
geometry-dependent.

To illustrate the discussed nuances, let us present the electronic density in
four different cases – two different separations and two different definitions of the
quantity. The results are gathered in Table 1.1. We can see that for diabatic sep-
aration, both definitions of the electronic density (cases A and B) yield the same
result. This happens because, in diabatic separation, the electronic subsystem is
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given by functions of only electronic coordinates, and the nuclear subsystem com-
prises functions of only nuclear coordinates. For adiabatic separation, the results
differ. When we sum over the basis of the nuclear subsystem (case D), we obtain
R-dependent electronic density. In all but case C, we can interpret the result as
a trace of a product of two matrices, where the matrix given by the integral over
R is the reduced electronic density matrix (defined below in (1.28)) of the system
and the matrix given by the integral over all but one electronic coordinates is an
observable on the electronic subsystem. Therefore, we have a form of (1.10) in
these three cases – an analogy to the fixed nuclei case. In case C, however, the
integral over R spans the whole formula, and we cannot interpret it as a partial
trace of the density operator. The whole formula does not represent a trace of
a product of two matrices.

Table 1.1: The four discussed cases of the separation of the molecular system and
the definition of electronic density.

Definition
Separation

Diabatic Adiabatic
∫︁

dN−1r
∫︁

dR Case A Case C∫︁
dN−1r

∑︁
nuc.bas. Case B Case D

ρA(r, t) =
∑︂
ij

(︃∫︂
dR χ̃i(R, t)χ̃∗

j(R, t)
)︃(︃∫︂

dN−1r ψi(r,R0)ψ∗
j (r,R0)

)︃

ρB(r, t) =
∑︂
ij

(︃∫︂
dR χ̃i(R, t)χ̃∗

j(R, t)
)︃(︃∫︂

dN−1r ψi(r,R0)ψ∗
j (r,R0)

)︃

ρC(r, t) =
∑︂
ij

(︃∫︂
dRχi(R, t)χ∗

j(R, t)
∫︂

dN−1r ψi(r,R)ψ∗
j (r,R)

)︃

ρD(r,R, t) =
∑︂
ij

(︃∫︂
dRχi(R, t)χ∗

j(R, t)
)︃(︃∫︂

dN−1r ψi(r,R)ψ∗
j (r,R)

)︃

Which of these pictures is correct is not apparent, and various groups study-
ing the electronic decoherence effect choose different approaches. For example, in
Refs. [4] or [5], the diabatic separation is used. More specifically, the strictly dia-
batic states are used in the former, and the general diabatic states in the latter.
The authors of Ref. [6] use the adiabatic separation and the definition of electronic
quantities through the sum over the basis of the nuclear subsystem, making them
R-dependent. Then they argue that if their electronic operator and the adiabatic
states depend only weakly on the nuclear coordinates, they approximately obtain
the separation and R-independence as in the case of diabatic separation. Finally,
the authors of Ref. [1], the book we followed in the first section, use the adiabatic
separation and then, incorrectly or at least with not explicitly mentioned approx-
imations, calculate the electronic density as a trace of a product of the reduced
electronic density matrix and the R-independent electronic transition density.
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1.3 Mechanisms of decoherence
After the detour in the previous section, we shall return to the introduction

of Ref. [1], albeit in a more general sense than presented in the book. Let us
suppose that the evolution of the state of the system is described in the abstract
formalism as

|Φ(t)⟩ =
∑︂

i

|χi(t)⟩ |ψi⟩ , (1.25)

where {|ψi⟩} is the electronic basis whose exact character (i.e., adiabatic or dia-
batic) we do not specify, and {|χi(t)⟩} are the corresponding nuclear wave packets.
We shall investigate the evolution of the expectation value of an arbitrary elec-
tronic observable Âe. Using once again the density operator formalism, we obtain
the following:

Ae(t) ≡ ⟨Ae(t)⟩ = Tr
(︂
ρ̂(t)Âe

)︂
= Tr

(︂
ρ̂e(t)Âe

)︂
, (1.26)

ρ̂(t) = |Φ(t)⟩ ⟨Φ(t)| , (1.27)
ρ̂e = TrN(ρ̂(t)), (1.28)

where the last equality defines the electronic reduced density operator as a partial
trace over the nuclear subsystem denoted by TrN. Similarly to the first section,
we can express the operators as matrices in the electronic basis representation:

Ae(t) =
∑︂
ij

ρe,ij(t)Ae,ji, (1.29)

ρe,ij(t) = ⟨χj(t)|χi(t)⟩ , (1.30)
Ae,ji = ⟨ψj|Âe|ψi⟩ . (1.31)

Let us assume that the matrix elements Ae,ij are real. Again, we usually choose
the electronic basis to consist of real functions in the coordinate representation,
making our assumption valid for any electronic operator Âe that can be written as
a function of the position operator and even powers of the momentum operator.
We can then rewrite the evolution of the expectation value in a form analogous
to (1.13),

Ae(t) =
∑︂

i

⟨χi(t)|χi(t)⟩Ae,ii + 2
∑︂
i>j

Re(⟨χi(t)|χj(t)⟩)Ae,ij. (1.32)

In this case, the coherence between any two states reads

Cij(t) = 2 Re(⟨χi(t)|χj(t)⟩), (1.33)

and the populations of the electronic states are time-dependent,

Pi(t) = |⟨ψi|Φ(t)⟩|2 = ⟨χi(t)|χi(t)⟩ . (1.34)

Let us again consider a particular case where only two electronic states are
present (1.15). In Ref. [1], a measure of coherence Mcoh is defined as

Mcoh(t) = ρe,12(t)ρe,21(t) + ρe,21(t)ρe,12(t) = 2|⟨χ1(t)|χ2(t)⟩|2. (1.35)
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By comparison with the electronic coherence (1.33), we see that

2Mcoh(t) ≥ C2
12(t), ∀t. (1.36)

We can notice that using the Cauchy-Schwarz inequality on the last expression
of (1.35), we obtain

Mcoh ≤ 2 ⟨χ1(t)|χ1(t)⟩ ⟨χ2(t)|χ2(t)⟩ = 2P1(t)P2(t). (1.37)

Furthermore, the normalization of the total wave function (1.25),

P1(t) + P2(t) = 1, (1.38)

provides us with the inequality

Mcoh(t) ≤ 1
2 . (1.39)

The quantity Mcoh is maximal for equal populations,

P1(t) = P2(t) = 1
2 , (1.40)

and the more the populations differ from being equal, the smaller is the upper
estimate ofMcoh. If one of the populations is zero, the upper estimate ofMcoh is
zero, therefore, the value itself is zero (it is non-negative, as can be seen directly
from (1.35)), resulting in the coherence being also zero. Essentially, if only one
state is populated, we cannot speak of any coherence – there is nothing for the
populated state to be coherent with. This gives us the first decoherence mecha-
nism – “changes in electronic state populations due to non-adiabatic transitions”
[1, p. 279]. We can see the schematic picture in Figure 1.1a.

If we write the (1.35) in the coordinate representation, we obtain

Mcoh(t) = 2
⃓⃓⃓⃓∫︂

dRχ∗
1(R, t)χ2(R, t)

⃓⃓⃓⃓2
≤ 2

⃓⃓⃓⃓∫︂
dR |χ1(R, t)||χ2(R, t)|

⃓⃓⃓⃓2
. (1.41)

We will call the integral in the last expression the geometric overlap. From this
inequality, we can see the second decoherence mechanism – “relative motion of the
nuclear wave packets on the different electronic states” [1, p. 279]. The schematic
picture can be found in Figure 1.1b. If the geometric overlap of the states is zero,
then the integrand |χ1(R, t)||χ2(R, t)|must be zero for (almost) all configurations
R, i.e., there is at most one state “present” in any geometry, therefore, we again
cannot speak of any coherence.

By introducing the absolute values into the integrand of (1.41), we neglected
the relative R- and t-dependent phase of the two states. Its effect is the third
mechanism of decoherence – “an overall dephasing with time of the oscillations
from the different wave packet components” [1, p. 279]. We will later see that the
dephasing can be partially attributed to an effect similar to the second mechanism
– loss of wave packet overlap in the momentum space. The schematic picture can
be seen in Figure 1.1c.
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(a) Non-adiabatic transitions.
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(b) Relative motion.
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(c) Dephasing.

Figure 1.1: The three mechanisms of decoherence.
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1.3.1 More on dephasing
The dephasing mechanism deserves more attention than what it was granted

above. In Ref. [7], coherence and decoherence in a general context are discussed.
The authors consider a system (the electrons, in our case) semiclassically inter-
acting with a bath (the nuclei), predict decoherence and discuss the mechanisms
causing it. They divide the system into two paths, only one of which is exposed
to the bath, and then investigate the coherence between the two paths after the
interaction. They approximate all the states with Gaussian wave packets and
let them evolve using semiclassical perturbation theory equations, which allow
for the separation of the motion of the wave packets and the phase they acquire
during the interaction. The dephasing is then specified by the average of the
phase factors over the bath states.

For illustration, let us present a schematic picture of the dephasing, somewhat
similar to the one presented in [8]. Consider a one-dimensional nuclear coordinate
space and two electronic states with their corresponding potential energy curves
(PECs), E1(R) and E2(R), both populated with the same Gaussian nuclear wave
packet,

χ1,2(R) = 1
4
√︂

2πσ2
R

exp
(︄
−(R−R0)2

4σ2
R

)︄
. (1.42)

To isolate the dephasing mechanism, we fix these two wave packets in space
by enforcing the stationary evolution given by the corresponding R-dependent
energies E1(R), E2(R)

χ1,2(R, t) = e−iE1,2(R)tχ1,2(R). (1.43)

We also expand the energies up to first order in the distance from the center of
the wave packet R0,

Ei(R) = Ei − Fi(R−R0) +O
(︂
(R−R0)2

)︂
, (1.44)

∆E(R) ≡ ∆E −∆F (R−R0) +O
(︂
(R−R0)2

)︂
. (1.45)

Let us now evaluate the L2 product of the two functions, which is the core of
both the coherence C12(t) (1.14) and the Mcoh quantity (1.35),

∫︂
dRχ∗

1(R, t)χ2(R, t) = 1√︂
2πσ2

R

∫︂
dR e−i(∆E−∆F (R−R0))te

− (R−R0)2

2σ2
R

= e−i(∆E+∆F R0)teiR0∆F te− (∆F tσR)2
2 = e−i∆Ete−

∆F 2t2σ2
R

2 .
(1.46)

This simple picture predicts that dephasing causes ≈ exp(−t2) decoherence. If
we wanted to suppress the effect that dephasing has on decoherence, we would
have to make ∆F and σR as small as possible. This means making the PECs
parallel and making the wave packet narrow. Parallel PECs also ensure that the
wave packets move in the same way, therefore, this condition also suppresses the
relative motion decoherence mechanism.
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1.4 Measures of coherence
In this section, we summarize the already defined measures of coherence, add

two more, and provide their mutual relations. Various groups studying the topic
prefer different quantities to characterize coherence.

The first quantity is the above-defined (1.14) electronic coherence Cij(t). Let
us repeat here the definition for convenience,

Cij(t) ≡ ρe,ij(t) + ρe,ji(t). (1.47)

It is given by the sum of two mutually symmetrically adjoint matrix elements of
the electronic density operator, and as such, it is inherently basis-dependent. We
use it to measure coherence manifested in time-oscillations of electronic observ-
ables, therefore, we represent the density operator in the basis of eigenstates of
the electronic Hamiltonian. There is still the ambiguity of whether to use the di-
abatic or adiabatic basis that was discussed above. It is not widely used because
if the state is coherent, it oscillates between −1 and 1, and as the state decoheres,
the amplitude of the oscillations decreases, and the frequency may change. The
preferred measures of coherence stay at a constant value for a coherent state and
decrease to zero as the state decoheres. Nevertheless, Cij is used, e.g., in [9].

A not yet mentioned measure is the degree of coherence, defined as

Dij(t) ≡
|ρe,ij(t)|√︂

ρe,ii(t)ρe,jj(t)
= |ρe,ij(t)|√︂

Pi(t)Pj(t)
. (1.48)

It is also basis-dependent and takes on values between 0 for an incoherent mixture
and 1 for a coherent superposition. Thanks to the denominator, it is normalized
to the populations of the two considered states which is useful especially when
these change – in case of transitions between the electronic states. It is utilized,
for example, in Refs. [10] or [11].

A very frequently used measure of coherence is the purity of the electronic
reduced density operator

Tr ρ̂2
e(t). (1.49)

Unlike the previous two quantities, purity is basis-independent. Its values range
from 0 to 1. Although it is widely used, it is not, strictly speaking, a measure
of coherence – it reaches its maximal value if the density operator represents
a pure state. If this state is an eigenstate of the electronic Hamiltonian, we
do not observe any coherent behaviour, both coherence and degree of coherence
are 0, yet the purity is 1. On the other hand, one of its advantages is that it
describes the whole electronic subsystem, unlike the two previous quantities that
were defined for a combination of two states. Let us mention Refs. [12] and [4]
that use purity to quantify coherence.

Lastly, let us repeat the definition of the Mcoh quantity

Mcoh,ij(t) = ρe,ij(t)ρe,ji(t) + ρe,ji(t)ρe,ij(t). (1.50)

It is again defined for a combination of two electronic states and, therefore, it is
basis-dependent. We already discussed its properties (1.37), (1.39), and relation
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to coherence (1.36). It is also tightly connected with purity. Suppose we only
have two electronic states. In that case, the purity reads

Tr ρ̂2
e(t) = ρe,11(t)ρe,11(t) + ρe,12(t)ρe,21(t) + ρe,21(t)ρe,12(t) + ρe,22(t)ρe,22(t).

(1.51)

TheMcoh,12, therefore, gathers the coherence-relevant terms of the purity, fixing
its main drawback that we discussed above – Mcoh,12 is zero for a system in its
eigenstate. Apart from being defined in Ref. [1], it is used, e.g., in [7] – the
already mentioned article about coherence and decoherence in a general context.

1.5 Molecular photoionization
In order to observe coherent electron dynamics in molecules, we need to create

a superposition of states of the molecule, and we need to create it as quickly as
possible to make sure that the observed phenomena are related to the coherent
dynamics and not the interaction with the superposition-creating system2. Pho-
toionization by an ultrashort laser pulse is used to fulfill both of these conditions.
By making the pulse as short as possible, we ensure that the interaction time
is very short and also broaden the spectral bandwidth to the order of electron-
volts, which is the typical difference of energies of the nearest excited states in
molecules. We also assume that the process of ionization does not change the
configuration of the molecule; this is called vertical ionization.

1.5.1 Schematic description of the monochromatic and di-
chromatic photoionization

We start by schematically describing the photoionization by monochromatic
and dichromatic light. By schematically, we mean that we shall only concern
ourselves with energy conservation. We will see that it is impossible to prepare
a coherent superposition of states by monochromatic light.

Let us consider a neutral molecule in a ground electronic state |E0⟩ and a pho-
ton in a state |ω⟩. Denoting |χ⟩ the nuclear wave packet describing the ground
vibrational state of the neutral molecule, the system before the photoionization is
described by |χ⟩ |E0⟩ |ω⟩. Let the ionized molecule possess two bound electronic
states |E∗

i ⟩, i ∈ {1, 2} such that they satisfy the inequality

E0 + ω − E∗
i ≡ εi > 0 (1.52)

at the equilibrium geometry of the neutral molecule – the Franck-Condon point.
Therefore, the following photoionization channels are open:

|χ⟩ |E0⟩ |ω⟩ → |χ⟩ |E∗
i ⟩ |εi⟩ .

The |εi⟩ (εi > 0) denotes the photoelectron. We can see the schematic picture of
the energy conservation in Figure 1.2a. The process, therefore, leads to a super-

2Furthermore, in Ref. [4], it is indicated that long laser pulses could lead to population of
incoherent mixtures of electronic states, albeit in the case of photoexcitation.

13



position

|ψ⟩ = |χ⟩
2∑︂

i=1
αi |E∗

i ⟩ |εi⟩ ,
2∑︂

i=1
|αi|2 = 1. (1.53)

The PESs associated with the cationic states |E∗
i ⟩ are in general different from

each other and from the PES of the original state |E0⟩ which leads to the non-
trivial coupled nuclear-electron dynamics described in previous sections.

We want to focus on the dynamics of the molecule, so the restriction on
this subsystem is desirable. The formalism of the density operator is convenient
for this purpose. Let us denote ρ̂ the density operator corresponding to the
superposition (1.53) and calculate the reduced density operator of the cationic
subsystem ρionˆ ,

ρ̂ = |χ⟩ ⟨χ| ( |α1|2 |E∗
1⟩ |ε1⟩ ⟨E∗

1 | ⟨ε1|+ |α2|2 |E∗
2⟩ |ε2⟩ ⟨E∗

2 | ⟨ε2|
+ α1α

∗
2 |E∗

1⟩ |ε1⟩ ⟨E∗
2 | ⟨ε2|+ h.c. ) , (1.54)

ρionˆ = Trphotoelectron ρ̂ = |χ⟩ ⟨χ|
(︂
|α1|2 |E∗

1⟩ ⟨E∗
1 |+ |α2|2 |E∗

2⟩ ⟨E∗
2 |
)︂
. (1.55)

We can express the density operator on the subspace of the molecular Hilbert
space generated by the states |χ⟩ |E∗

1⟩ and |χ⟩ |E∗
2⟩ in the basis of these two states

as the density matrix

ρion =
(︄
|α1|2 0

0 |α2|2
)︄
. (1.56)

Note that the two states |χ⟩ |E∗
1⟩ and |χ⟩ |E∗

2⟩ are orthonormal thanks to the or-
thonormality of the electronic part, they are eigenstates of the electronic Hamilto-
nian, but they are not eigenstates of the molecular Hamiltonian. We see that the
density matrix is diagonal, therefore, we can interpret it as a statistical mixture
of the states |χ⟩ |E∗

1⟩ and |χ⟩ |E∗
2⟩ populated with probabilities |α1|2 and |α2|2,

respectively. This does not lead to the coherent behaviour of the cation described
in Section 1.1 that we would like to observe.

Now let us move to the dichromatic case. Consider two frequencies ω1 and ω2
such that both allow the transition to the two states of the cation via energy con-
servation (1.52). The corresponding photoelectron energies are generally different
for the two photon frequencies, so the final superposition contains photoelectron
states with four different energies. Let us assume that

ω1 − E∗
1 = ω2 − E∗

2 , (1.57)

which effectively fixes two of the photoelectron energies to be equal. The schema-
tic picture of the energy conservation with this condition is in Figure 1.2b. We
thus populate the following state

|ψ⟩ = |χ⟩ (β11 |E∗
1⟩ |ε1⟩+ β12 |E∗

1⟩ |ε2⟩+ β22 |E∗
2⟩ |ε2⟩+ β23 |E∗

2⟩ |ε3⟩) . (1.58)

The corresponding reduced cationic density operator is

ρ̂ion = Trphotoelectron |ψ⟩ ⟨ψ| = (1.59)
= |χ⟩ ⟨χ| ( (|β11|2 + |β12|2) |E∗

1⟩ ⟨E∗
1 |+ (|β23|2 + |β22|2) |E∗

2⟩ ⟨E∗
2 | (1.60)

+ β12β
∗
22 |E∗

1⟩ ⟨E∗
2 |+ h.c ) , (1.61)
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(a) Monochromatic photoionization.
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(b) Dichromatic photoionization.

Figure 1.2: The conservation of energy for the two described photoionization
schemes.

or, on the same Hilbert subspace and in the same basis as in the monochromatic
case above,

ρion =
(︄
|β11|2 + |β12|2 β12β

∗
22

β∗
12β22 |β23|2 + |β22|2

)︄
. (1.62)

In this case, we can see that in general, we have non-zero off-diagonal terms which
can provide us with the desired coherent behaviour. Notice that these correspond
to the terms of the populated state (1.58), which contain the photoelectron of
the same energy ε2. This observation becomes more evident when we set β11 and
β23 equal to zero. In this case, the diagonal terms of the density matrix simplify.
We can easily evaluate the purity of the cationic reduced density matrix

Tr ρ2
ion = |β12|4 + 2|β12|2|β22|2 + |β22|4 =

(︂
|β12|2 + |β22|2

)︂2
= 1, (1.63)

where the last equality follows from the normalization of the superposition (1.58).
Therefore, we have a pure state containing, two electronic eigenstates; hence it
has to be their fully coherent superposition if both β12 and β22 are non-zero.

We can relate the above discussion to the relationship between the entangle-
ment of the photoelectron and the cation and the coherence within the cation.
Looking at the populated state (1.58), we see that the two systems are the more
entangled, the larger |β11|2 + |β23|2 is. If this value is equal to 1, the systems are
fully entangled, and both β12 and β22 are equal to 0, which effectively reduces the
state to the same form as in the case of monochromatic photoionization (1.53).
The cation is in an incoherent statistical mixture of states. If, on the other hand,
|β11|2+|β23|2 = 0, i.e., the photoelectron and cation subsystems are not entangled,
yielding a pure cationic state as we showed above, in (1.63).
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1.5.2 Further aspects of photoionization
The electronic dynamics in molecules takes place on the attosecond timescale

(1 as = 10−18 s). Laser pulses with duration on a similar timescale are used to
prepare states that lead to the coherent dynamics. Generation of sub-femtosecond
(1 fs = 10−15 s) laser pulses became possible only recently; 43 as laser pulse is
the shortest one created to this day [13]. The time-energy uncertainty principle
∆E∆t ≥ ℏ, where in SI ℏ ≈ 10−34 J s, implies that any laser pulse with duration
∆t ≲ 10−15 s will have spectral bandwidth ∆E ≳ 10−19 J ≈ 1 eV which is the
scale of the energy gaps between molecular electronic states.

By satisfying the condition on the duration of the laser pulse in order to not
interfere with the observed electron dynamics (or with configuration changes), we
simultaneously satisfy the other condition on populating a coherent superposition
of a few electronic states. If we were to use even shorter laser pulses (once they are
available), we would produce even broader bandwidths, resulting in a coherent
population of many of cationic states, making it more challenging to interpret
the results.

An interesting paper that studies the process of attosecond photoionization in
more detail is [11]. They use the time-dependent configuration-interaction singles
method to study the degree of coherence between ionic states in atomic xenon.
They show that the coupling of the ionization channels enhances entanglement
between the photoelectron and the cation, resulting in reduced cationic coher-
ence. We already commented on the relationship between the entanglement of
the cation and the photoelectron and the coherence within the cation. The reduc-
tion of the cationic coherence can be decreased by increasing the kinetic energy of
the photoelectron, which can be regulated by controlling the mean photon energy.

This thesis focuses on the coupled electron-nuclear dynamics initiated by pho-
toionization. In our model, we will populate directly the superposition or statis-
tical mixture of electronic states of the cation, the evolution of which we want to
study. We will not take the photoelectron into account. In Figure 1.3, we can see
a schematic picture of the photoionization process. In practice, controlling the
superposition/mixture produced by photoionization is challenging and requires
cutting-edge laser technology to control the parameters of the laser pulses.
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Figure 1.3: The schematic picture of photoionization from a ground state of the
neutral molecule into a superposition of two states of the cation.
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2. The model and numerical
methods

In the previous chapter, we have introduced the topic of electronic decoher-
ence. In this chapter, we shall formulate the model of molecular dynamics that
we use to investigate the phenomenon. We also describe our approach to solving
the coupled nuclear-electron dynamics within the model and mention the main
utilized numerical methods.

2.1 The general approach
We consider a (1+1)D system described by the following Hamiltonian (in the

coordinate representation)

Ĥtot(r, R) = − 1
2m

∂2

∂R2 −
1
2
∂2

∂r2 + VN−e(r, R) + VN(R), (2.1)

where r is the electronic coordinate, R is the nuclear coordinate, VN(R) is the
potential of the nuclear subsystem, VN−e(r, R) is the R-dependent potential of
the electronic subsystem, and m is the reduced mass of the nuclear subsystem.
The shape of the potentials is specified below. Note that the Hamiltonian terms
resemble the terms of the molecular Hamiltonian (1.16), only the electron-electron
interaction is missing. This is expected because, in our model, we only have one
electron1. For convenience, let us also split the Hamiltonian into two parts,

T̂N(R) = − 1
2m

∂2

∂R2 , (2.2)

Ĥe(r, R) = −1
2
∂2

∂r2 + VN−e(r, R) + VN(R), (2.3)

the nuclear kinetic energy T̂N(R) and the electronic Hamiltonian Ĥe(r, R).
Our approach is to solve the time-independent Schrödinger equation

Ĥtot(r, R)Φj(r, R) = EjΦj(r, R), (2.4)

express the initial state in terms of the eigenstates

Φinit(r, R) =
∑︂

j

αjΦj(r, R), (2.5)

and then determine the state of the system at an arbitrary time t as

Φ(r, R, t) =
∑︂

j

αje−iEjtΦj(r, R). (2.6)

Then, we can trivially construct the corresponding density matrix

ρ(r, R, r′, R′, t) = Φ(r, R, t)Φ∗(r′, R′, t). (2.7)
1We could also consider the electronic part of the system to represent a hole, which would be

more sensible in making analogies between our model and a cation, but it is otherwise irrelevant.
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If we wish to compare the evolution of a coherent initial state with the evolu-
tion of an incoherent statistical mixture of initial states, we evolve each of them
separately and then combine them into the density matrix

ρmix(r, R, r′, R′, t) =
∑︂

i

piΦi(r, R, t)Φ∗
i (r′, R′, t), (2.8)

where pi is the probability of the initial state being Φinit,i(r, R). From the density
matrix, we obtain the reduced electronic (or nuclear) density matrix by evaluating
the partial trace over the nuclear (or electronic) subsystem. From the reduced
density matrices, we can evaluate all the measures of coherence introduced in the
first chapter and any other observable of the given subsystem.

2.2 The strictly diabatic representation
In Section 1.2, we discussed the adiabatic and the strictly diabatic represen-

tations in the context of solving the time-dependent Schrödinger equation cor-
responding to a general molecular Hamiltonian (1.16). The same ideas apply to
the time-independent Schrödinger equation as well.

We want to continue without any approximations, and for this purpose, we
find the strictly diabatic representation more convenient. When we introduce the
basis and the potentials below, we will see that to obtain all the necessary matrix
elements in this representation, we only need analytical derivatives and analyti-
cal and numerical quadratures. In the adiabatic representation, we would need
analytical and numerical derivatives and analytical and numerical quadratures.
The need for numerical derivatives would arise from the R-dependence of the
electronic adiabatic eigenstates ψi(r, R) and the nuclear kinetic energy operator
T̂N acting on them.

Let us summarize the strictly diabatic representation approach in the present
context. We start with the expansion

Φi(r, R) =
∑︂

k

ψ̃k(r)χ̃ik(R), (2.9)

where ψ̃k(r) is the solution of the electronic Schrödinger equation at a fixed value
of nuclear coordinate ˜︁R which may or may not be the equilibrium configuration,

Ĥe(r, ˜︁R)ψ̃k(r) = Ekψ̃k(r), (2.10)
and χ̃ik(R) are the solutions of the following equations

T̂Nχ̃il(R) +
∑︂

k

∫︂
dr ψ̃∗

l (r)Ĥe(r, R)ψ̃k(r)χ̃ik(R) = Eiχ̃il(R). (2.11)

The expansion (2.9) is infinite and exact.
In the diabatic representation, the matrix

(Ĥe(R))kl =
∫︂

dr ψ̃∗
l (r)Ĥe(r, R)ψ̃k(r) (2.12)

is non-diagonal and is a local potential energy operator acting on the R-dependent
functions, and the matrix

(T̂N(R))kl =
∫︂

dr ψ̃∗
l (r)T̂N(R)ψ̃k(r) = δklT̂N(R) (2.13)

is a diagonal differential operator acting on the R-dependent functions. The
diagonal elements (He(R))kk are the diabatic PECs.
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2.3 Finding the eigenstates in a specific basis
We choose N orthonormal functions

{Xα(R)}N
α=1 (2.14)

as the basis of the nuclear degree of freedom and, similarly, M orthonormal
functions

{Ψβ(r)}M
β=1 (2.15)

as the basis of the electronic degree of freedom. These two sets of functions form
the direct product basis of the 2D space of the total Hamiltonian

{Xα(R)Ψβ(r)}N,M
α=1,β=1. (2.16)

Let us call the above-defined bases the primary nuclear basis, the primary elec-
tronic basis, and the primary (total) basis, respectively.

At first, we will search for the solutions of the electronic time-independent
Schrödinger equation as linear combinations of the primary electronic basis

ψ̃k(r) =
M∑︂

α=1
cα

k Ψα(r). (2.17)

Plugging this ansatz into (2.10) leads to the following equation
M∑︂

α=1
(He|˜︁R)βαc

α
k = Ekc

β
k , (2.18)

He|˜︁Rck = Ekck, (2.19)

where

(He|˜︁R)βα =
∫︂

drΨ∗
β(r)Ĥe(r, ˜︁R)Ψα(r). (2.20)

Equation (2.19) is a standard matrix diagonalization problem. The matrix He|˜︁R
is Hermitian guaranteeing the existence of an orthonormal set {ck}M

k=1. We,
therefore, constructed an orthonormal set of functions {ψ̃k(r)}M

k=1. Moreover, if
we choose the primary basis to be real, the matrix He|˜︁R and its eigenvectors are
also real, and we obtained an orthonormal set of real functions.

We continue with the evaluation of the χ̃ik(R) functions by an analogous
ansatz

χ̃ik(R) =
N∑︂

α=1
dα

ik Xα(R). (2.21)

Let us now introduce the multi-index notation γ = (l, β), δ = (k, α), with trans-
lation to a single index given by γ = l + (β − 1)M , analogously for δ. Plugging
Eq. (2.21) into Eq. (2.11) yields

MN∑︂
γ=1

(Htot)γδd
γ
i = Eid

δ
i , (2.22)

Htotdi = Eidi, (2.23)
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where

(Htot)γδ = δkl

∫︂
dRX∗

β(R)T̂N(R)Xα(R)

+
∫︂∫︂

dR drX∗
β(R)ψ̃∗

l (r)Ĥe(r, R)Xα(R)ψ̃k(r). (2.24)

Equation (2.23) is again a standard matrix diagonalization. Following the same
arguments as above, we acquire a set of orthonormal eigenvectors {di}MN

i=1 , which
are real if both the original bases are real.

Gathering the results, we obtained the solutions of the time-independent
Schrödinger equation (2.4) in the following form

Φi(r, R) =
M∑︂

k=1

N∑︂
α=1

dα
ikψ̃k(r)Xα(R). (2.25)

It is a set of orthonormal functions {Φi(r, R)}MN
i=1 , which are real if the primary

bases are chosen real. In other words, we introduced an intermediate (total) basis
of the 2D space,

{Xα(R)ψ̃k(r)}N,M
α=1,k=1. (2.26)

Alternatively, we could search for the eigenstates of Ĥtot using a direct ansatz in
terms of the primary (total) basis (2.16). The reason for the intermediate step
will be discussed later on.

2.4 The design of the potentials
We may want our model to represent a certain normal mode of molecular

vibrations. In general, normal modes are found by expanding the molecular PES
up to second order around the equilibrium geometry Req ≡ 0

Ĥ = −
∑︂

i

1
2mi

∂2

∂R2
i

+
∑︂
ij

1
2VijRiRj, (2.27)

where we set the zero-order term to zero because it is a trivial energy offset.
Then, introducing the mass-weighted coordinates

qi = √miRi, (2.28)

Ĥ = −
∑︂

i

1
2
∂2

∂q2
i

+
∑︂
ij

1
2Bijqiqj, (2.29)

and diagonalizing the expanded potential, the Hamiltonian reduces to a system
of non-interacting harmonic oscillators and the eigenvectors Q define the sought-
after normal modes,

Ĥ =
∑︂

i

(︄
−1

2
∂2

∂Q2
i

+ 1
2ωiQ

2
i

)︄
. (2.30)

For details, see, e.g. [14], or [15]. Then, we may recast (2.1) into

Ĥtot(r,Q) = −1
2
∂2

∂Q2 −
1
2
∂2

∂r2 + ˜︁VN−e(r,Q) + ˜︁VN(Q). (2.31)
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Now we specify the two potentials VN(R) and VN−e(r, R) in the model Hamilto-
nian (2.1). The above discussion of the normal modes justifies the model nuclear
potential being a harmonic well

VN(R) = 1
2mω

2
N(R−R0)2 + EN, (2.32)

where m is the nuclear reduced mass, ω is the angular frequency of the harmonic
oscillator, R0 is the equilibrium value of the nuclear coordinate, and EN is an
arbitrary energy offset.

The electronic potential is supposed to imitate two centers (nuclei) on which
the electron density concentrates. To achieve this, we choose it to comprise two
harmonic wells sewn together at the point of intersection, i.e.,

VL(r, R) = 1
2ω

2
L(R)

(︄
r + r0(R)

2

)︄2

+ EL(R), (2.33)

VR(r, R) = 1
2ω

2
R(R)

(︄
r − r0(R)

2

)︄2

+ ER(R), (2.34)

VN−e(r, R) =

⎧⎨⎩VL(r, R), r < r̃(R),
VR(r, R), r ≥ r̃(R),

(2.35)

where VL(r, R) and VR(r, R) are two harmonic potential wells analogous to the
nuclear one and their parameters are in general R-dependent; r̃(R) is the point
of intersection of VL(r, R) and VR(r, R). The electronic potential, along with its
parameters, is schematically depicted in Figure 2.1.

For completeness, we present the formulae for the point of intersection r̃(R).
If both the harmonic wells have the same width ωL(R) = ωR(R) ≡ ω(R), we get

r̃(R) = ER(R)− EL(R)
ω2(R)r0(R) . (2.36)

If, on the other hand, ωL(R) ̸= ωR(R), the condition of intersection leads to
a quadratic equation with the discriminant

D(R) = 4r2
0(R)ω2

L(R)ω2
R(R)− 8

(︂
ω2

L(R)− ω2
R(R)

)︂
(EL(R)− ER(R)) . (2.37)

If D(R) < 0, there is no point of intersection and one of the parabolas is “above”
the other. This case is not of our interest. If D(R) = 0, we obtain one point of
intersection

r̃(R) = − ω2
L(R) + ω2

R(R)
2 (ω2

L(R)− ω2
R(R))r0(R). (2.38)

Lastly, if D(R) > 0, there are two points of intersection,

r̃(R) =
− (ω2

L(R) + ω2
R(R)) r0(R)±

√︂
D(R)

2 (ω2
L(R)− ω2

R(R)) . (2.39)

The last remaining ambiguity of the model is the R-dependence of the param-
eters of the quadratic functions constituting the electronic potential r0(R), ωL(R),
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Figure 2.1: Schematic picture of the electronic potential Ve(r) consisting of the
left VL(r) and right VR(r) part with the parameters r0, ωL, ωR, EL, and ER (see
text for details) and the point of intersection r̃ of the two parts. The picture also
shows the first three energies of the harmonic potentials VL(r) and VR(r) and two
of their eigenfunctions ΨL,i(r), resp. ΨR,i(r).

ωR(R), EL(R), and ER(R). We want these parameters to smoothly monotonously
vary between two extremal values (which are both positive). The following func-
tional form has been chosen

f(R) = fmax − fmin

π
arctan(a(R−R0)) + fmax + fmin

2 . (2.40)

It is depicted in Figure 2.2, where we can see that in the vicinity of R0, it is
approximately a linear function with the slope given by the derivative

f ′(R)|R0 = fmax − fmin

π
a. (2.41)

2.5 The choice of the basis
Now that we have chosen the potentials, we can adjust our bases to them.

More specifically, we adapt the nuclear basis (2.14) to the nuclear potential (2.32)
and the electronic basis (2.15) to the electronic potential (2.35) with the nuclear
coordinate fixed at a specific value ˜︁R.

Since we are dealing with harmonic potentials, we present the essential over-
view of information on their eigenfunctions. For a Hamiltonian

Ĥ = p̂2

2m + 1
2mω

2x̂2, (2.42)
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Figure 2.2: Schematic picture of the electronic adjusting function f(R) with its
asymptotes and a line approximating it at the point R0.

the eigenenergies are

En = ω
(︃
n+ 1

2

)︃
, n ∈ N0 (2.43)

and the eigenfunctions

ψn(x) = 1√
2nn!

(︃
mω

π

)︃ 1
4

e− mωx2
2 Hn(

√
mω x), (2.44)

where Hn(x) are the Hermite polynomials. The functions ψn(x) are called the
Hermite functions. Two useful identities for the Hermite functions can be derived
from the properties of the Hermite polynomials, see, e.g., Ref. [16]

√
mω xψn(x) =

√︃
n

2 ψn−1(x) +
√︄
n+ 1

2 ψn+1(x), (2.45)

1√
mω

ψ′
n(x) =

√︃
n

2 ψn−1(x)−
√︄
n+ 1

2 ψn+1(x). (2.46)

The first one is the recurrence relation we use to generate the functions, and the
other is convenient for evaluating their derivatives. To start the recurrence, we
also need the first two Hermite functions

ψ0(x) =
(︃
mω

π

)︃ 1
4

e− mωx2
2 , (2.47)

ψ1(x) = 1√
2

(︃
mω

π

)︃ 1
4

e− mωx2
2 2
√
mω x. (2.48)

Let us also mention the following inequality, see Ref. [17, p. 787]

|ψn(x)| ≤ 0.816. (2.49)

As the nuclear basis, the first N Hermite functions are used (with the ap-
propriate parameters m, ωN, and offset to R0). Note that the index of the first

24



Hermite function is 0, whereas we started indexing the bases from 1. We choose
the electronic basis to consist of two parts – the first ML Hermite functions
adjusted to VL(r, ˜︁R) and the first MR Hermite functions adjusted to VR(r, ˜︁R);
M = ML + MR basis functions in total. The ML and MR are chosen so that
we “cover” the energies of VL(r, ˜︁R) and VR(r, ˜︁R) from their ground value up to
a common threshold. This yields

ML =
[︄
ωRM + 1

2(ωL − ωR) + ER − EL

ωL + ωR

]︄
, (2.50)

MR = M −ML, (2.51)

where the square brackets denote rounding to the nearest integer. Let us denote
the two parts of the basis as follows

{Ψα(r)}M
α=1 = {ΨL,α(r)}ML

α=1 ∪ {ΨR,α(r)}MR
α=1. (2.52)

2.5.1 Symmetric orthogonalization
There is a slight problem with the above choice of the electronic basis – it is

not precisely orthonormal. The reason can be seen in Figure 2.1 – the functions
of the two parts of the basis overlap. We need to generate a set of M mutually
orthogonal eigenfunctions of the electronic Hamiltonian from a set of M linearly
independent functions.

The appropriate method is called Löwdin’s symmetric orthogonalization (see
the original paper [18]). Using the ansatz (2.17), we obtain the following varia-
tions of (2.18) and (2.19)

M∑︂
α=1

(He|˜︁R)βα c
α
k = Ek

M∑︂
α=1

Sβα c
α
k , (2.53)

He ck = EkS ck, (2.54)

where (He|˜︁R)βα is given by (2.20), and

Sβα =
∫︂

drΨ∗
β(r)Ψα(r). (2.55)

The overlap matrix S is Hermitian, therefore, its eigenvectors form an orthonor-
mal basis, and we can write

S = UΛUT, (2.56)

where Λ = diag(λ1, . . . , λM), λi are the eigenvalues, and U contains the eigenvec-
tors as its columns. Using this decomposition, we can calculate any function of
the overlap matrix, namely, 1/

√
S will be of use. We multiply (2.54) by it from

the left and obtain
1√
S
He

1√
S

√
S ck = Ek

√
S ck ⇐⇒ ˜︁He c̃k = Ekc̃k. (2.57)

The last equation is the standard eigenvalue problem of a Hermitian matrix ˜︁He.
From its eigenvectors, we can evaluate the solutions of (2.54) as

ck = 1√
S

c̃k. (2.58)
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Another problem arising when we make the primary electronic basis large is
that it becomes numerically linearly dependent. This manifests in the eigenval-
ues of S being close to zero, which complicates the evaluation of 1/

√
S. This

problem can be treated by using the pseudoinverse approach. First, we order the
eigenvalues of S from largest to smallest (they are non-negative), reordering the
columns of U correspondingly. We can write out the decomposition (2.56) as

S =
(︂
u1 · · · u ˜︁M · · · uM

)︂
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1
. . . 0

λ ˜︁M0 . . .
λM

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

uT
1
...

uT˜︁M...
uT

M

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.59)

where all λi, i > ˜︂M are lower than our chosen deletion threshold λcutoff . By
discarding these eigenvalues, we effectively obtain

S = ˜︁U˜︁Λ˜︁UT (2.60)

S =
(︂
u1 · · · u ˜︁M)︂

⎛⎜⎜⎝
λ1 0

. . .
0 λ ˜︁M

⎞⎟⎟⎠
⎛⎜⎜⎝

uT
1
...

uT˜︁M

⎞⎟⎟⎠ . (2.61)

Using the above, we can multiply (2.54) by
(︂˜︁Λ)︂−1/2

UT from the right and rewrite
it as

1√︂˜︁Λ ˜︁UTHe
˜︁U 1√︂˜︁Λ

√︂˜︁Λ ˜︁UTck = Ek

√︂˜︁Λ ˜︁UTck ⇐⇒ ˜︁He c̃k = Ekc̃k. (2.62)

The last equation is again a standard eigenvalue problem. Solving it yields ˜︂M
vectors from whom we can obtain ˜︂M solutions of (2.54) as

ck = U
1√︂˜︁Λ c̃k. (2.63)

We have reduced the electronic basis by M − ˜︂M and the 2D basis (2.26)
by (M − ˜︂M)N functions. This reduction is the primary reason for the above-
discussed intermediate step in the process of finding the eigenstates of the total
Hamiltonian Ĥtot.

2.6 The matrix elements
Now, let us summarize the matrix elements that we have to evaluate. We

start with the electronic equation (2.53). We need the overlap matrix S defined
by (2.55) and the matrix of the Hamiltonian (2.20), which can be separated into
three terms,

(He|˜︁R)αβ =
∫︂

drΨ∗
α(r)

(︄
−1

2
∂2

∂r2 + VN−e(r, ˜︁R) + VN( ˜︁R)
)︄

Ψβ(r)

= (Te)αβ + (VN−e|˜︁R)αβ + VN( ˜︁R)Sαβ. (2.64)
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The required matrix elements are gathered in Tab. 2.1, along with the methods of
their evaluation. The analytical formula for the elements of Te satisfying A = B
(see Tab. 2.1) is

(Te)AA,αβ = ωA

4

(︃
(2α+ 1)δαβ −

√︂
α(α− 1) δα−1,β+1 +

√︂
(α+ 1)(α+ 2) δα+1,β−1

)︃
.

(2.65)

For the second step, we need the matrix elements of the total Hamiltonian
defined by (2.24). We can separate it into four terms

(Htot)γδ = δkl

∫︂
dRX∗

α(R)T̂N(R)Xβ(R)

+
∫︂∫︂

dR drX∗
α(R)ψ̃∗

k(r)
(︄
−1

2
∂2

∂r2 + VN−e(r, R) + VN(R)
)︄

Xβ(R)ψ̃l(r)

= δkl(TN)αβ + δkl(VN)αβ + δαβ( ˜︁Te)kl + (VN−e)αk,βl, (2.66)

where we used the orthonormality of {Xα(R)} and {ψk̃(r)}. The first two terms
can be combined into the purely nuclear Hamiltonian

(HN)αβ ≡ (TN)αβ + (VN)αβ. (2.67)

The required matrix elements are gathered in Tab. 2.2, along with the methods
of their evaluation. The analytical formula for elements of HN is

δαβ

(︃
ωN

(︃
α + 1

2

)︃
+ EN

)︃
. (2.68)

Table 2.1: The required matrix elements of the electronic operators in the primary
electronic basis and their evaluation methods. We denote A,B ∈ {L,R}.

matrix definition of the matrix element evaluation

S
∫︂

drΨ∗
A,α(r)ΨB,β(r)

⎧⎪⎨⎪⎩= δαβ, A = B,

numerically, A ̸= B,

Te −1
2

∫︂
drΨ∗

A,α(r) ∂
2

∂r2 ΨB,β(r)

⎧⎪⎨⎪⎩analytically, Eq. (2.65), A = B,

numerically, A ̸= B,

VN−e

∫︂
drΨ∗

A,α(r)VN−e(r, ˜︁R)ΨB,β(r) numerically

2.7 Numerical quadrature
The numerical quadrature of our choice is the composite Gauss-Legendre for-

mula. Let us briefly summarize its definition (see Ref. [16]). For a given set of
quadrature nodes {xk}n

k=1, we define a general interpolatory quadrature rule as∫︂ b

a
f(x)w(x) dx =

n∑︂
k=1

wkf(xk) + En(f), (2.69)
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Table 2.2: The required matrix elements of the total Hamiltonian terms in the
intermediate total basis and their evaluation methods.

matrix definition of the matrix element evaluation
HN

∫︂
dRX∗

α(R)
(︂
T̂N(R) + VN(R)

)︂
Xβ(R) analytically, Eq. (2.68)

˜︁Te −1
2

∫︂
dr ψ̃∗

k

∂2

∂r2 ψ̃l(r) transformation of Te

VN−e

∫︂∫︂
dR drX∗

α(R)ψ̃∗
k(r)VN−e(r, R)Xβ(R)ψ̃l(r) numerically

with the condition En(f) = 0 for all f polynomials of degree ≤ 2n − 1. We call
w(x) the weight function, {wk}n

k=1 the quadrature weights and En(f) the error
term.

Consider a set of monic polynomials {pn} orthogonal with respect to a positive
weight function w(x) on an interval (a, b). The set {xk}n

k=1 of roots of such
a polynomial pn defines the so-called Gauss quadrature whose weights and error
term are as follows

wk =
∫︂ b

a

pn(x)
(x− xk)p′

n(xk)w(x) dx , (2.70)

En(f) = γn
f (2n)(ξ)
(2n)! , (2.71)

where ξ ∈ (a, b) (specific but unknown), and

γn =
∫︂ b

a
p2

n(x)w(x) dx . (2.72)

The quadrature is exact for polynomials of degree ≤ 2n − 1. In general, we can
estimate the error by

En(f) ≤ γn

max
(a,b)
|f (2n)|

(2n)! . (2.73)

Specifically, if {pn} are the monic Legendre polynomials, we have the Gauss-
Legendre quadrature

(a, b) = (−1, 1), w(x) = 1, γn = 22n+1

2n+ 1
(n!)4

((2n)!)2 . (2.74)

The quadrature can be naturally rescaled to a general interval (a, b)

xk → x̃k = (b− a)xk + a+ b

2 , (2.75)

wk → w̃k = wk
b− a

2 . (2.76)

γn → γ̃n = γn

(︄
b− a

2

)︄2n+1

. (2.77)
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The final step is the composite Gauss-Legendre quadrature, see, e.g., Ref. [19].
If we split the quadrature interval (a, b) into N subintervals of equal length h =
(b− a)/N , we obtain the error estimate

EN,n(f) ≤ γn

N2n

(︄
b− a

2

)︄2n+1 max
(a,b)
|f (2n)|

(2n)! . (2.78)

If we require integral precision EN,n(f) ≤ εprec, then for a composite n-point
Gauss-Legendre quadrature, we need at least

N =

⎡⎢⎢⎢⎢⎢
⎛⎜⎝ γn

εprec

(︄
b− a

2

)︄(2n+1) max
(a,b)
|f (2n)|

(2n)!

⎞⎟⎠
1

2n
⎤⎥⎥⎥⎥⎥ (2.79)

subintervals.
We adjust our quadrature rules to the integrals constituting the S, Te, and

Ve matrices (see Tab. 2.1) for the r-quadrature and the HN matrix for the R-
quadrature (see Tab. 2.2). The determination of the quadrature parameters comes
in two steps. First, we determine the quadrature interval (a, b) so that the integral
over (−∞, a) ∪ (b,∞) is ≤ εprec. Second, we use (2.79) to minimize the total
number N × n of quadrature nodes for optimal efficiency. In both steps, we use
the fact that the integrands are products of Hermite functions, their derivatives,
and polynomials, and apply the recurrence relation (2.45), the identity for the
derivative (2.46), and the inequality (2.49) for Hermite functions. We use the
same quadrature rules for the integrals comprising the VN−e matrix (see Tab. 2.2).
Adapting the quadrature to these integrals would be more complicated because
of the non-polynomial R-dependence of VN−e(r, R).
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3. Results and discussion
We shall now discuss the results provided by the model described in Chapter

1. We will start with the uncoupled electron and nuclear dynamics that preserves
electronic coherence. Then we will discuss three fundamental cases of coupled dy-
namics characterized by one of the parameters of the coupling potential VN−e(r, R)
being R-dependent. Finally, we apply our model to describe the three normal
modes of vibration of the H2O molecule.

Before we begin with the discussion, let us make a few notes. In Table 1.1,
we defined the electronic density ρ(r, t) in four different ways. In what follows,
we will use the definition

ρ(r, t) =
∫︂

dRρ(r, R, r, R, t), (3.1)

where ρ(r, R, r′, R′, t) is the full time-dependent density matrix in coordinate
representation. Speaking in terms of Table 1.1, this corresponds to either Case A
or Case C, depending on the used separation of the system (diabatic or adiabatic,
respectively). Let us similarly define the nuclear density

ρ(R, t) =
∫︂

dr ρ(r, R, r, R, t). (3.2)

In this chapter, we shall, for brevity, denote the strictly diabatic states in coor-
dinate representation as ψi(r), instead of ψi(r;R0) or ψ̃i(r).

3.1 Uncoupled electron and nuclear dynamics
First, let us investigate the uncoupled electron and nuclear dynamics, i.e., the

case where the coupling potential VN−e(r, R) (see Section 2.4) is R-independent,
reducing to VN−e(r). In this case, electrons (r) and nuclei (R) are separate non-
interacting systems.

We start with a model defined in Figure 3.1. In panel (a), we see the electronic
potential VN−e(r) and its two lowest eigenstates. Note that the adiabatic and
(strictly) diabatic states are identical in the uncoupled case. In panel (b), we
can see the PECs of this model (again, the adiabatic ones are identical to the
diabatic ones). The adiabatic PECs correspond simply to the nuclear potential
VN(R) offset by the eigenvalues Ei of the electronic potential VN−e(r),

PECi(R) = VN(R) + Ei. (3.3)

In Figure 3.2, we can see the evolution of the four measures of electronic co-
herence defined in Section 1.4 for four different initial conditions (see the caption
for details). We see that the evolution, in fact, does not depend on the geom-
etry at which we populate the nuclear wave packet. If we populate a coherent
superposition, the electronic subsystem stays coherent. All the measures indicate
full coherence; the purity Tr ρ2

e is 1, as well as the degree of coherence D12. The
coherence C12 oscillates between −1 and 1, and Mcoh,12 is 1/2, indicating that
both states are equally populated (see equation (1.37) and the following text). If
we populate a statistical mixture, it stays a mixture. The degree of coherence,
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Figure 3.1: (a) A potential VN−e(r) with the following parameters (all given in
atomic units): R0 = 0, ωN = 0.02, m = 1000, EN = 0, r0 = 4, ωL = 1,
ωR = 1, EL = 0, and ER = 0.2. The eigenstates (solid lines) with the two lowest
energies (dashed lines): E1 ≈ 0.49554 a.u., E2 ≈ 0.69764 a.u., are also shown. (b)
Two lowest PECs in this model. Black and green dots indicate the states whose
evolution we study.

C1,2, andMcoh,12 are 0, and the purity is 1/2, which agrees with the fact that for
a completely incoherent mixture of N states, the purity is

Tr ρ̂2 = 1
N
. (3.4)

Figure 3.3 shows the evolution of the electronic ρ(r, t) and the nuclear ρ(R, t)
densities. Again, we can observe the uncoupled behaviour. The evolution of the
nuclear density is given solely by the populated nuclear wave packet. It does
not depend on whether we populate a coherent superposition or an incoherent
mixture of electronic states. Analogously, the evolution of the electronic density
is given by the coherent character of the initial state. We also see that if we
populate the nuclear wave packet in the nuclear potential VN(R) equilibrium,
it stays there and does not move. In contrast, if we populate it at a different
position, it oscillates around the equilibrium. As the nuclear wave packet moves
in a harmonic potential, the period of oscillations is given by

Tnuc = 2π
ωN

= 100π a.u. ≈ 314 a.u., (3.5)

which agrees with the corresponding panels of Figure 3.3. The evolution of the
electronic density is trivial for a statistical mixture. For a coherent superposition,
we observe oscillations with a period of Tele ≈ 32 a.u., which corresponds to the
angular frequency

ω = 2π
Tele
≈ 0.2 a.u. (3.6)

The oscillations are caused by the energy gap between the two states, E2−E1 ≈
0.2 a.u.
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Figure 3.2: Evolution of measures of coherence in a model defined in Figure 3.1
and with different initial conditions. (a) A coherent superposition at equilibrium
geometry R = 0 a.u. (b) An incoherent mixture at equilibrium geometry R =
0 a.u. (c) A coherent superposition at R = 1 a.u. (d) An incoherent mixture at
R = 1 a.u. Note that in panels (a) and (c), the data lines corresponding to Tr(ρ2

e)
and D12 are identical, and in panels (b) and (c), the data lines corresponding
to Mcoh,12, C12, and D12 are identical. Both superpositions and mixtures are
populated with equal weights 1/

√
2 and 1/2, respectively.
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Figure 3.3: Evolution of electronic ρ(r, t) (left panels) and nuclear ρ(R, t) (right
panels) densities in the model defined in Figure 3.1 and with different initial
conditions. (a) Coherent superposition at equilibrium geometry R = 0 a.u. (b)
Incoherent mixture at equilibrium geometry R = 0 a.u. (c) Coherent superposi-
tion at R = 1 a.u. (d) Incoherent mixture at R = 1 a.u. Both superpositions and
mixtures are populated with equal weights 1/

√
2 and 1/2, respectively.
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Figure 3.4: Evolution of (a) electronic density ρ(r, t) and (b) measures of co-
herence in the model defined in Figure 3.1. A superposition of the two lowest
electronic states was populated, with the coefficients

√︂
2/3 and 1/

√
3. A Gaussian

wave packet at R = 1 a.u. was populated in the nuclear degree of freedom. Note
that in panel (b), the data lines corresponding to Tr(ρ2

e) and D12 are identical.

In Figure 3.4, we see the evolution of electronic density and measures of co-
herence for an initial condition given by a coherent superposition with non-equal
populations. We observe oscillations in the electronic density, which is more con-
centrated in the more populated state. The purity and the degree of coherence are
1, supporting their convenience for the cases where population dynamics occurs.
The C12 andMcoh,12 measures are slightly suppressed. In general, we would need
additional information to decipher whether the superposition is not fully coherent
or the populations are not equal.

Lastly, in Figure 3.5, we can see a coherent model with different parameters.
The corresponding evolution of the coherence measures and the two densities
for a coherent superposition is shown in respective panels. The measures of
coherence indicate coherent behaviour, but we do not observe any oscillations in
the electronic density. Recall the discussion from the end of Section 1.1, where
we have shown that for the coherent behaviour to be visible in electronic density
oscillations, the transition density (1.12) must be non-zero. In this case, the
corresponding transition density matrix element reduces to

T12(r) = ψ∗
1(r)ψ2(r). (3.7)

Looking at panel (a) of Figure 3.5, we see that the two states do not overlap,
which explains the non-oscillatory behaviour of electronic density. One can also
check that in the previous case (Figure 3.1), the overlap was non-trivial.

In Figure 3.5, we populated the nuclear degree of freedom with a ground state
of a harmonic potential with ω = 0.01 a.u. This state is wider than an eigenstate
of the nuclear potential VN within the model. In the evolution of nuclear density
in panel (d), we can see that it periodically narrows and broadens with the same
period with which it moves in the coordinate space. This is a well-known feature
of Gaussian wave packet dynamics in the harmonic potential.

This concludes the discussion of the non-coupled electron and nuclear dynam-
ics, which preserves the coherence of the initial condition. We have not seen
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Figure 3.5: (a) A potential VN−e(r) with parameters (in atomic units): r0 = 8,
ωL = 1, ωR = 1, EL = 0 and ER = 0.2. It is accompanied by the nuclear
potential VN(R) with parameters (in atomic units): R0 = 0, ωN = 0.02, m =
1000, and EN = 0. We populate a coherent superposition of the two shown
electronic eigenstates, both with coefficients 1/

√
2. (b) Evolution of the measures

of coherence. Note that the data lines corresponding to Tr(ρ2
e) and D12 are

identical. (c) Evolution of the electronic density ρ(r, t). (d) Evolution of the
nuclear density ρ(R, t). We populated a nuclear wave packet centered at R =
1 a.u.
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anything surprising; the system behaves as expected. The primary purpose was
to lay the ground for comparisons with the coupled cases.

3.2 Basic modes of electron-nuclear coupling
Let us now discuss three basic modes of electron-nuclear coupling that our

model can describe. They are given by the R-dependence of individual parameters
of VN−e(r, R) (see Section 2.4), while all the others are fixed. The three distinct
options are r0(R), EL(R), and ωL(R).

3.2.1 Variable distance of the wells
At first, we investigate the case where the distance of the minima of the two

potential wells comprising VN−e(r, R) is R-dependent, and the other parameters
are fixed. The specific values are given in the caption of Figure 3.6. Panel (a)
shows the adiabatic PECs of this model, and panels (b)–(d) show R-cuts of the
potential and the respective adiabatic states. We see a strongR-dependence of the
adiabatic states, not only in their r-position but also in their shape – they become
delocalized if the two harmonic wells are close to each other (see panel (b)).
The adiabatic states are significantly different from the strictly diabatic ones.
This indicates that we should use the adiabatic separation (see Section 1.2) of
the density matrix for the evaluation of the measures of electronic coherence.
Essentially, when the nuclear wave packet is at a particular geometry ˜︁R, we
want the electronic states whose coherence we measure to be the ones that are
the solutions of the electronic problem at that geometry ˜︁R. This is because
we expect the electrons to “follow” the movement of the nuclei. If we used
the diabatic separation, we would see an emergence of significant population of
the strictly diabatic states that we have not initially populated. This would
complicate using the coherence measures Cij, Dij, and Mcal,12, because they
are defined for a combination of two electronic states. In conclusion, using the
diabatic representation would complicate the interpretation of the results.

Since we have chosen the adiabatic separation, we will also use the electronic
adiabatic states for the initial superposition. If we used the diabatic ones, more
adiabatic states would be present in the expression in terms of the adiabatically
separated total wave function. The ratio of the “unwanted” admixture would be
the larger, the wider the initial nuclear wave packet. Moreover, we could even
observe that the initial state does not have full electronic coherence because we
would use a different definition of the electronic subsystem than the one in which
the initial electronic state is coherent.

To summarize, we use the adiabatic representation and populate a superposi-
tion of adiabatic electronic states. More specifically, we populate an equal-weight
superposition of the two lowest adiabatic states and the nuclear wave packet cor-
responding to the ground state of the nuclear potential VN(R) offset to R0 = 1 a.u.

Panels (e) and (f) of Figure 3.6 show the evolution of the coherence measures.
Panel (e) shows that the electronic subsystem is coherent until t ≈ 140 a.u., then
the coherence decreases, and from t ≈ 300 a.u., it is an incoherent mixture. We
also observe a significant partial coherence revival in 2000 a.u. ≲ t ≲ 2400 a.u.
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Panels (g) and (h) of Figure 3.6 show the electronic and nuclear density evo-
lution, respectively. Initially, there are no visible oscillations of the electronic
density due to negligible overlap of the two states caused by relatively large inter-
well distance r0. The overlap increases as the wells move closer, and we start to
observe the oscillations. At the same time, decoherence ensues and dampens the
oscillations. We see that the nuclear wave packet splits into two parts. Intu-
itively, we can attribute them to the two adiabatic PECs. Their turning points
are R1 ≈ 1.8 a.u. and R2 ≈ 0.9 a.u., which agrees with the classical turning points
of the adiabatic PECs in panel (a).

Recall the end of Section 1.3.1, where we discussed that to suppress decoher-
ence, we need to make the PECs parallel at the point where the nuclear wave
packet is populated. The PECs are parallel for R ≳ 0 a.u. This is the reason for
the decoherence not to set in immediately. Looking at the evolution of nuclear
density, we see that the wave packet reaches R ≈ 0 a.u. at t ≈ 150 a.u., which is
when decoherence begins.

We now want to determine which decoherence mechanisms play a role in this
case. Before we do that, we remind the quantities that will allow us to do so.
We will investigate the population dynamics by the populations Pi(t) themselves
and use the degree of coherence Dij(t) to measure the decoherence caused by the
other mechanisms. Let us properly define the geometric overlap mentioned in
Section 1.3,

OR,ij(t) =
∫︂

dR |χ∗
i (R, t)||χj(R, t)|. (3.8)

An analogous quantity, the momentum overlap, can be defined as

OP,ij(t) =
∫︂

dP |ˆ︁χ∗
i (P, t)||ˆ︁χj(P, t)|, (3.9)

where ˆ︁χi(P, t) is the Fourier transform of χi(R, t) and P denotes the momen-
tum. For better comparison with the degree of coherence, we also introduce the
normalized geometric (momentum) overlap as

˜︁OR,ij(t) = OR,ij(t)√︂
Pi(t)Pj(t)

, (3.10)

˜︁OP,ij(t) = OP,ij(t)√︂
Pi(t)Pj(t)

. (3.11)

Using the definition (1.48) of the degree of coherence Dij, yields the following
inequalities

Dij ≤ ˜︁OR,ij, Dij ≤ ˜︁OP,ij, Dij ≤
√︂ ˜︁OR,ij

˜︁OP,ij ≡ ˜︁ORP,ij. (3.12)

The momentum overlap and its product with geometric overlap were used to
characterize the decoherence mechanisms in [10].

In Figure 3.7, we can see the evolution of the quantities essential for under-
standing the decoherence mechanisms. Panel (a) shows the population dynamics.
We can see that the populations stay at approximately 1/2. There are fluctu-
ations of relative magnitude of 3 % in three moments of the displayed time in-
terval. These fluctuations do not disappear upon increasing the size of the used
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Figure 3.6: (a) Adiabatic (solid lines) and diabatic (dashed lines) PECs for
a model with the following parameters (in atomic units): R0 = 0, ωN = 0.01,
m = 1000, EN = 0, r0,min = 0, r0,max = 8, ar0 = 0.5, ωL = 1, ωR = 1, EL = 0, and
ER = 0.2. The magenta dots indicate the initial state whose evolution we study,
coherent superposition (of adiabatic states) with equal weights 1/

√
2 was popu-

lated. Adiabatic separation is used. The black, green, and magenta dashed lines
indicate the geometries at which the R-cuts of the electronic adiabatic states in
panels (b), (c), and (d), respectively, are calculated. (e) Evolution of the measures
of coherence of the system. Coherence C12 is not shown because its oscillations
are too fast for this range on the time axis. (f) A closer look at the initial de-
coherence. (g) Evolution of the electronic density ρ(r, t). (h) Evolution of the
nuclear density ρ(R, t).
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basis, therefore, they are not a numerical artifact but rather indicate a weak non-
adiabatic coupling. Due to the small magnitude, however, it is not a significant
cause of decoherence.

The evolution of the above-defined overlaps for the studied case can be seen
in panel (b) of Figure 3.7, along with the degree of coherence. We can see that all
inequalities (3.12) are satisfied. According to the definitions of the mechanisms
of decoherence introduced in Section 1.3, the decrease of ˜︁OR,12 is considered the
second decoherence mechanism – relative motion of the nuclear wave packets
on different PECs. The difference between ˜︁OR,12 and D12 would be called the
dephasing. In panel (b), we see a lot of “overlap revivals” (the peaks of ˜︁OR,12), but
they do not manifest in coherence revivals. The dephasing somehow compensates
for the overlap revivals. We can also notice that the ˜︁OP,12 behaves similarly as˜︁OR,12, only offset in time. This motivates the usage of the square root of their
product, which gives a tighter estimate of the degree of coherence. This way, we
attributed a part of the dephasing to the relative motion in momentum space.

Panels (c) and (d) of Figure 3.7 show the evolution of the probability densities
of the nuclear wave packets populated in the two adiabatic electronic states.
The right vertical dashed line serves to check that the first peak of ˜︁OR,12 indeed
corresponds to the moment of crossing of the two nuclear wave packets. The left
line denotes the first peak of ˜︁OP,12. At this moment, both the wave packets are
moving in the positive R direction. Both are near the turning point, and have
a relatively low momentum.

Let us look at the partial revival at t ≈ 2200 a.u. Neither the geometric nor the
momentum overlap reach the maximal value of 1. This is caused by χ̃i(R, t) being
slightly displaced and no more Gaussian. The reason lies in the anharmonicities
of the corresponding PECs. Those are visible in panel (a) of Figure 3.6. The
effect is more pronounced for χ̃1(R, t), whose corresponding PEC seems “more
anharmonic;” there is a plateau at −1 a.u. ≲ R ≲ 0 a.u.

This case exhibits initially coherent behaviour, followed by fast decoherence.
The reason for the suppression of early-time decoherence is the PECs being par-
allel at the Franck-Condon point, as we discussed in Section 1.3.1. We compared
the degree of coherence with the overlaps of amplitudes of the nuclear wave pack-
ets in position and momentum representations. We have seen that both these
overlaps must be significant to allow for significant coherence. We have also seen
a strong partial revival of coherence.

3.2.2 Variable energy offset of one well
Let us move to the case of EL carrying the R-dependence of the coupling

potential. The definition of the model is in the caption and panels (a)–(d) of
Figure 3.8. We see an avoided crossing of the adiabatic PECs. Since the R-
dependence of the electronic Hamiltonian is given by an energy offset of one of
the wells, the R-dependence of the adiabatic states is insignificant when not close
to the avoided crossing. When passing through the crossing, the two correspond-
ing states delocalize and then switch positions (see panels (b)–(d)). Thanks to
this, the strictly diabatic states are a good approximation to the diabatic states
obtained via the diabatic transformation. We will use the diabatic separation
of the density matrix and populate an equal-weight superposition of the strictly
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Figure 3.7: (a) Evolution of populations. (b) Evolution of the degree of coherence
and the overlaps. (c)–(d) The evolution of the probability densities corresponding
to the two nuclear wave packets χ1(R, t) and χ2(R, t) present in the first and
second adiabatic states.
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diabatic states. The nuclear wave packet will be populated at R ≈ 1 a.u.
In panel (e), we can observe the population dynamics caused by the couplings

of the diabatic states. The difference |P1−P2| maximizes (within the plotted in-
terval) at t ≈ 380 a.u. at the value of ≈ 0.2. Panel (f) shows the evolution of the
measures of coherence. After an initial decoherence, we observe two revivals: at
t ≈ 90 a.u. and t ≈ 280 a.u. They do not seem to correlate with the behaviour of
the populations. In panels (g) and (h), we can see the evolution of the electronic
and nuclear densities. At the initial time and the time of the second (and more
pronounced) revival, we can see the coherent oscillations of the electronic density.
When the system is in a statistical mixture, the electronic density directly corre-
sponds to the population of the states. For example, at t ≈ 380 a.u., the density
is significantly larger in the right well centered around R = 2 a.u. Looking at
panel (d), we see that the strictly diabatic state located in this well is ψ1(r), and
its population P1 ≈ 0.6 is larger at the considered time. The evolution of nuclear
density is complicated and could be described as corresponding to several wave
packets moving on each of the two diabatic PECs, generated at different times
and with different momenta via the non-adiabatic transfer between the electronic
states.

In Figure 3.9, we can see a more detailed look at the population dynamics,
the comparison of the degree of coherence D12 with the overlaps ˜︁OX,12, and the
momentum space probability density of the nuclear wave packets occupying the
two diabatic states. We can see that the early-time decoherence is caused by what
we defined as the third decoherence mechanism – the dephasing. This behaviour
has been predicted for actual molecules in Ref. [9]. More precisely, it can be
attributed to the decrease in momentum overlap ˜︁OP,12. It describes decoherence
correctly up to t ≈ 40 a.u. We can also attribute the first revival to a realignment
of the wave packets in the momentum space. In the second revival, a dominant
role is played by the dephasing effects not connected with the momentum overlap.

Let us now comment on the reason for the increase in momentum overlap
at the time of the first revival. Panels (c) and (d) in Figure 3.9 showing the
probability densities in momentum space will be handy. The nuclear wave packets
start moving toward the crossing from the initial position. The upper diabatic
PEC has a more steep slope, its wave packet χ2(R, t), therefore, reaches the
crossing earlier, and the couplings cause part of the wave packet to move onto
the other PEC. From the population dynamics, we can see that, indeed, in this
first stage P2(t) decreases. It occurs at t ≈ 65 a.u., marked by the left dashed
vertical line. At this time, the nuclear density of ˆ︁χ1(P, t) starts to “emerge” at
P ≈ −25 a.u. This momentum is slightly lower than the momentum of the density
corresponding to ˆ︁χ2(P, t) – the wave packet lost some momentum during the
transition to the other state. The momentum of the transferred part of ˆ︁χ1(P, t)
is closer to the momentum of ˆ︁χ2(P, t) than the momentum of the original part
of ˆ︁χ1(P, t); therefore, this transfer increases the momentum overlap. The same
effect applies slightly later, when ˆ︁χ1(P, t) arrives at the crossing, and a part of
it transfers into ˆ︁χ2(P, t). Both these transitions increase the momentum overlap
until it peaks at t ≈ 80 a.u., denoted by the right vertical dashed line. The
following momentum overlap decrease has the same cause as the original one –
relative motion of the two nuclear wave packets on different PECs.

In this case, we have seen the evolution of nuclear wave packets on two cross-
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Figure 3.8: (a) Adiabatic (solid lines) and diabatic (dashed lines) PECs for
a model with the following parameters (in atomic units): R0 = 0, ωN = 0.02,
m = 1000, EN = 0, r0 = 4, ωL = 1, ωR = 1, EL,min = 0, EL,max = 1, aEL = 1,
and ER = 0.5. The magenta dots indicate the initial state whose evolution we
study – coherent superposition (of strictly diabatic states at ˜︁R = 1 a.u.) with
equal weights 1/

√
2 was populated. Strictly diabatic separation is used. The

black, green, and magenta dashed lines indicate the geometries at which the R-
cuts of the electronic adiabatic states in panels (b), (c), and (d), respectively, are
calculated. (e) Evolution of populations of the first two strictly diabatic states
and their sum. (f) Evolution of the measures of coherence of the system. (g)
Evolution of the electronic density ρ(r, t). (h) Evolution of the nuclear density
ρ(R, t).
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Figure 3.9: (a) Evolution of populations. (b) Evolution of the degree of coherence
and the overlaps. (c)–(d) The evolution of the probability densities corresponding
to the two nuclear wave packets in the momentum representation ˆ︁χ̃1(P, t) andˆ︁χ̃2(P, t), respectively, present in the first and second diabatic states.
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ing diabatic PECs. We observed population dynamics. We interpreted the first
coherence revival using the coupling of the PECs but not the population dy-
namics itself. We have also seen that in the early-time decoherence is caused by
the dephasing mechanism, more specifically, the relative motion of nuclear wave
packets in momentum space.

3.2.3 Variable width of one well
The last fundamental case of coupled electron-nuclear dynamics is defined by

the R-dependent width of one of the wells. The specific values of the variables
are in the caption of Figure 3.10. The PECs and two R-cuts of the coupling
potential VN−e(r, R) with the corresponding strictly diabatic states are shown
in panels (a)–(c) of Figure 3.10. We are varying the width of the left well. Its
adiabatic state is slightly R-dependent which results in a small difference between
the corresponding adiabatic and diabatic PEC. We use the adiabatic separation
and populate an equal-weight superposition of adiabatic states with the nuclear
wave packet centered at R = 1 a.u.

In panels (d) and (e), we can see the evolution of the coherence measures.
We observe gradual decoherence with periodic dampened partial revivals. The
oscillations of electronic coherence C12 change their frequency. It is visible in
panel (e) that at the initial time and the time of the first revival t ≈ 300 a.u.
the frequency is smaller than in the local minimum of C12 at t ≈ 150 a.u. This
change in frequency is also visible in panel (f), which shows the evolution of
the electronic density. The reason is the varying energy gap between the two
PECs. The larger the energy gap, the faster the oscillations. At the initial time
and at the time of the first revival, both nuclear wave packets are at their right
classical turning point (see panel (g) of Figure 3.10), where the energy gap is the
smallest. Conversely, at the time of the first local minimum of coherence, the
nuclear wave packets are at their left turning point, where the energy gap is the
largest. Moreover, the left turning point is slightly offset for the two PECs, which
is the primary cause of decoherence.

In Figure 3.11, we can see the evolution of the two nuclear wave packets’ pop-
ulations, overlaps, and probability densities. As expected, populations remain
within a 1 % margin at their initial values. As mentioned above, there are two
features to the degree of coherence evolution. We hinted that the periodic deco-
herence and revivals could be attributed to the offset of the left classical turning
points of the PECs. This is well visible for the first period of this behaviour.
In panel (b), we can see that the minimum of the degree of coherence occurs
when the geometric overlap is minimal. The momentum overlap is, at that time,
maximal, reaching almost the value of 1. Both wave packets are standing still
(changing the direction of motion), but they are at different positions (see pan-
els (c) and (d)). All revivals happen when the nuclear wave packets are around
their initial position, and all coherence minima happen when both are around the
opposite turning point.

Another interesting feature is the gradual decrease of coherence and damping
of the revivals. We will show that this is caused by different periods of motion of
the nuclear wave packets on their PECs. The nuclear wave packets are reaching
the turning points at increasingly different times. Therefore, when they “meet”
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Figure 3.10: (a) Adiabatic (solid lines) and diabatic (dashed lines) PECs for
a model with the following parameters (in atomic units): R0 = 0, ωN = 0.02,
m = 1000, EN = 0, r0 = 4, ωL,min = 0.7, ωL,max = 1.3, aωL = 1, ωR = 1, EL = 0,
and ER = 0.2. Note that the adiabatic and diabatic PECs are almost identical.
The magenta dots indicate the initial state whose evolution we study – a coherent
superposition of adiabatic states with equal weights 1/

√
2 and the nuclear wave

packet at R = 1 a.u. Adiabatic separation is used. The black and magenta dashed
lines indicate the geometries at which the R-cuts of electronic adiabatic states in
panels (b) and (c), respectively, are calculated. (d) Evolution of the measures of
coherence of the system. Coherence C12 is not shown because its oscillations are
too fast for this range on the time axis. (e) A closer look at the initial decoherence
and the first revival. (f) Evolution of the electronic density ρ(r, t). (g) Evolution
of the nuclear density ρ(R, t).
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Figure 3.11: (a) Evolution of populations. (b) Evolution of the degree of coher-
ence and the overlaps. (c)–(d) The evolution of the probability densities corre-
sponding to the two nuclear wave packets χ1(R, t) and χ2(R, t) present in the
first and second adiabatic states.

in the position space, they have different momenta (opposite direction of motion)
and vice versa. One could call this effect the dephasing of molecular vibrations.
Notice that the profile of the revivals also changes; the increase in the degree
of coherence tends to be faster than the decrease. The reason resides in the
evolution of the nuclear wave packet χ1(R, t). We see that the probability density
tends to peak slightly before reaching the turning point. This is an effect of the
anharmonicity of the ground adiabatic PEC caused by the variation of the width
of the harmonic well in which the corresponding electronic state resides.

Above, we treated the evolution of geometric and momentum overlaps of nu-
clear wave packets separately. A valuable tool for combining these two approaches
is the Wigner quasiprobability distribution (see the original paper in Ref. [20]). It
is a phase space function; generally, it is not non-negative, hence the quasiproba-
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bility attribute. In our context and formalism, it is defined as

WN(R,P, t) = 1
π

∫︂ +∞

−∞
dR′ ρN(R−R′, R +R′, t) e2iP R′

, (3.13)

where ρN(R,R′, t) is the reduced nuclear density matrix in position representation.
Thanks to the orthonormality of adiabatic electronic states, it holds

ρN(R,R′, t) =
∑︂

i

χi(R, t)χ∗
i (R′, t). (3.14)

This yields

WN(R,P, t) =
∑︂

i

Wi(R,P, t), (3.15)

where Wi(R,P, t) is the time-dependent Wigner distribution corresponding to
a pure state χi(R, t). Moreover, the overlap of two states can be expressed as

| ⟨χi(t)|χj(t)⟩ |2 = 2π
∫︂ +∞

−∞
dR

∫︂ +∞

−∞
dP Wi(R,P, t)Wj(R,P, t). (3.16)

Recall that

⟨χi(t)|χi(t)⟩ = Pi(t). (3.17)

The Wigner distribution corresponding to a normalized state χi(R, t) is then

˜︂Wi(R,P, t) = 1
Pi(t)

Wi(R,P, t). (3.18)

Finally, it follows that

D2
ij = 2π

∫︂ +∞

−∞
dR

∫︂ +∞

−∞
dP ˜︂Wi(R,P, t)˜︂Wj(R,P, t). (3.19)

The phase space overlap of the Wigner distributions of the normalized nuclear
wave packets is the square of the degree of coherence between two correspond-
ing electronic states. In this paragraph, we used the adiabatic representation.
Analogous formulae hold in the diabatic representation as well.

We can now return to the evolution of the studied case. Figure 3.12 shows
six snapshots of the evolution of the Wigner distribution of the nuclear wave
packet. In the top panels, the times correspond to the initial state and maxima
of two revivals. The bottom panels show the consequent minima of Dij. The
two contours indicate the positions of Wigner distributions of the two individual
nuclear wave packets. We can see all of the above-discussed behaviour. The initial
decoherence is caused by the offset of the left turning point of the two PECs. We
can see that the degree of coherence minimizes before the nuclear wave packets
reach their turning points – their momenta are still negative.

As time progresses, the nuclear wave packet corresponding to χ1(R, t) gets
ahead of the other in terms of the accumulated phase by its phase space trajectory
(note that the way our phase space axes are oriented, the motion is counter-
clockwise). This decreases the overlap of the two Wigner distributions. Above, we
called this effect the dephasing of molecular vibrations. Furthermore, we observe

47



R
[a
.u
.]

-0.4

0.0

0.4

0.8

1.2

(a) t = 0 a.u.

R
[a
.u
.]

P [a.u.]

-2.0

-1.6

-1.2

-0.8

-0.4

0.0

-25 -15 -5 5 15 25

(b) t = 150 a.u.

(c) t = 1510 a.u.

P [a.u.]
-25 -15 -5 5 15 25

(d) t = 1690 a.u.

(e) t = 2770 a.u.

P [a.u.]
-25 -15 -5 5 15 25

(f) t = 2950 a.u.

Figure 3.12: Snapshots of the evolution of the Wigner quasiprobability distribu-
tion of the reduced nuclear density matrix. The regions where the distribution is
negative are shown in white. The white and green contours indicate the isolines
of the Wigner distributions corresponding to the individual nuclear wave packets
χ1(R, t) and χ2(R, t), respectively.

48



that the Wigner distribution of the wave packet χ1(R, t) with time progressively
deviates from the initial Gaussian shape. We even see the appearance of regions
of negative values of the Wigner distribution.

To summarize, we have seen a case with periodic, gradually dampened re-
vivals. We used the geometric and momentum overlaps to interpret the decoher-
ence mechanism. We also demonstrated the power of the Wigner distribution to
visualize and better understand the nature of the dephasing mechanism.

3.3 The normal modes of the H2O+ cation
In this final section, we present our model’s approximation of H2O+ and com-

pare it with the previously published study of decoherence in this cation. The
water molecule has three normal vibrational modes: the asymmetric stretch, the
symmetric stretch, and the bending mode, with the corresponding frequencies [12]
ω = 3756 cm−1, ω = 3657 cm−1, and ω = 1595 cm−1, respectively.

In Ref. [12], the authors study the evolution of an initial superposition of
the four lowest electronic states up to t = 5 fs1. They treated the normal modes
separately and found that the electronic subsystem remains coherent for the asym-
metric stretch; its purity does not drop below 0.9. The symmetric stretch causes
the purity to drop immediately to ≈ 2/3 at t ≈ 1 fs. A slow increase of purity
follows until it peaks at the value of ≈ 0.95 at t ≈ 4 fs. After that, purity drops
similarly as at the beginning. Finally, the bending mode causes purity to drop to
≈ 1/2 within the first femtosecond, from where it slowly decreases to 1/4, which
it reaches at t ≈ 5 fs.

For simplicity, we will use only the first three electronic states. The ab initio
PECs of the three normal modes of vibrations of the water cation are shown in
panels (a)–(c) of Figure 3.13. They were calculated using cc-pVTZ basis [21] on
the O and both H atoms. The ground state of the neutral molecule was calcu-
lated using the second-order many-body perturbation theory (MBPT2), as it is
implemented in the MOLCAS software [22]. A second-order algebraic diagrammatic
construction, ADC(2)x [23], was used to calculate the H2O+ potentials [24].

We fitted the parameters of the nuclear potential VN(R) to the ab initio PECs
of the ground state of the neutral molecule. The parameters of the coupling
potential VN−e(r, R) were fitted so that the first three adiabatic PECs resemble
the ab initio ones as best as possible. Due to the large number of parameters
and their complicated relationship with the PECs (through numerical matrix
diagonalization), this fitting was done “by hand.” The parameters used for the
individual modes are summarized in Table 3.1. The approximations of individual
modes within our model are shown in Figure 3.13 as well. We use the adiabatic
separation and adiabatic electronic states in the initial superposition.

Panel (d) shows the evolution of electronic purity yielded by the model. We
immediately see that the evolution qualitatively fits the one from Ref. [12] with
three fundamental differences. First, our “incoherent” value of purity is 1/3 – of
course, we used three electronic states instead of four (and the evolution does not
populate any more states). The second significant difference is that our model
seems to have “rescaled” the time by a factor of two. It may be caused by

1For clarity, we will use femtoseconds as well in this section.
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our model being very simple and our approximations of the PECs being crude
(especially for the symmetric stretch). On the other hand, in Ref. [12], a harmonic
approximation of the ab initio PECs at the Franck-Condon point is used for the
nuclear dynamics performed using the multiconfiguration time-dependent Hartree
method (MCTDH). This is also a rather crude approximation, especially at later
times, when the nuclear wave packets are no longer in the Franck-Condon region.
The third difference is that we obtained a small revival of purity for the bending
mode between t ≈ 7 fs and t ≈ 12 fs. We will return to this last issue later.

There are other minor differences. Our approximation of the asymmetric
stretch preserves purity at the maximal value almost exactly. We obtained a com-
plete revival for the symmetric stretch instead of a partial one (but still significant)
seen in Ref. [12]. However, concerning the simplicity of our model and the fact
that we used only three electronic states instead of four, we consider obtaining
the qualitative agreement to be more than acceptable.

Now, let us briefly discuss the decoherence mechanisms that play a role in
the evolution of the above-described approximation of the normal modes. First,
the asymmetric stretch does not decohere at all. The Franck-Condon point is at
the equilibrium of all three PECs; the nuclear wave packet stays at the initial
position. The PECs are not non-adiabatically coupled, so the populations also
remain unchanged.

The PECs of the symmetric stretch are not non-adiabatically coupled either.
Their main feature (both ab initio and model) is that the first two are parallel
with each other, while the third is not. Thus, the first two states should remain
coherent while the third should decohere and become a statistical admixture. We
see that the value of the purity in the first minimum at t ≈ 4 fs is ≈ 2/3. The
purity of a statistical mixture of two states with populations P1 = 2/3, P2 = 1/3
is 5/9. Panel (a) of Figure 3.14 shows a snapshot of the Wigner distribution
at t = 4 fs. Positions of the wave packets in individual electronic states are
highlighted. Indeed, the nuclear wave packets in the first two states (the white
and green isolines) are relatively close together, while the third (the blue isoline)
is further away.

Finally, let us comment on the fastest decohering case – the bending mode.
The reason for the abrupt decrease of purity is evident from the shape of the
PECs. We expect vastly different dynamics of the three nuclear wave packets:
χ1(R, t) is in the vicinity of the equilibrium of its PEC, it will move slowly to the
left; χ2(R, t) will move rapidly to the right; and χ3(R, t) will move to the left,
faster than χ1(R, t). A snapshot of the Wigner distribution at t = 5 fs is shown
in panel (b) Figure 3.14. It documents the discussed relative motion of the wave
packets.

The evolution of the nuclear density is shown in panel (c). The contributions of
the three nuclear wave packets can be distinguished by the direction and velocity
of their movement and the positions of their turning points. The white horizontal
line marks the position of the crossing of the second and third PECs. We can see
that χ3(R, t) crosses it and then returns. The population dynamics can be seen
in panel (d) of Figure 3.14. The sum of populations of the first three electronic
states remains at the value of 1 within the margin of 2 %. The population of the
third state partially migrates to the second one. This occurs from t ≈ 5 fs and
peaks at t = 9.5 fs. This correlates with the partial purity revival. The purity of
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a system occupied by n states with populations Pi has a minimal value of ∑︁n
i=1 P

2
i

if the states are incoherently mixed. This lower estimate of the purity is plotted
in panel (d) of Figure 3.13 with the magenta dashed line. We have found the
cause of the partial revival of purity in our model of the bending mode.

Let us now address the reason for the population dynamics. Panels (e) and
(f) of Figure 3.14 show how the adiabatic states differ on the two sides of the
crossing. We see that ψ2(r) and ψ3(r) are switching their roles. Note that since
our electronic Hamiltonian is one-parametric (R), its PECs can never actually
cross; all crossings are avoided. When the nuclear wave packet χ3(R, t) reaches
the point of the crossing, the corresponding electronic state is located in the
right well. When it advances further left, the electronic state does not change
its shape; it remains in the right well, causing the “name” of the electronic state
to change to |ψ2⟩, effectively changing the nuclear wave packet to χ2(R, t). The
non-adiabatic coupling is such that the nuclear wave packet moves on its diabatic
PEC without “feeling” any effect of the other one.

What happens in a real H2O+ cation? Table 3.2 describes the symmetry of
the water cation and its electronic states. We see that the second and third elec-
tronic states along the bending mode cut of their PESs have different symmetries.
Therefore, they are not non-adiabatically coupled and cross each other2. This is
the reason for the partial revival not appearing in Ref. [12]. In our model, the
dynamics was essentially correct, but it “switched” the meaning of two PECs in
a certain part of the R-space, which resulted in an artificial revival. Using the
diabatic separation fixes this problem; see the black dashed line in panel (d) of
Figure 3.13.

Table 3.1: Specification of parameters of the potentials VN(R) and VN−e(r, T )
that approximate the normal modes of vibrations of the H2O+ cation. If a single
value is given, the parameter has a fixed value. If a range and one more number
are given, the parameter is R-dependent according to (2.40), the range specifies
fmin and fmax, and the additional number is the value of the parameter a. All
values are given in atomic units. In all cases: R0 = 0 and m = 1836.

The parameter Asymmetric stretch Symmetric stretch Bending
ωN 0.0180 0.0175 0.0075
EN −76.33 −76.33 −76.33
r0 0.0–12.0, 0.1 12.0 12.0
ωL 0.24 0.20–0.40, −1.0 0.10–0.38, 0.5
ωR 0.24 0.40 0.26
EL 0.29–0.34, −0.2 −0.75–1.25, −0.3 0.31
ER 0.36–0.42, 0.1 −0.71–1.29, −0.3 0.31–0.51, −1.5

2The states could actually be coupled via the asymmetric stretch, which reduces the sym-
metry to Cs, where the reduction of both A1 and B2 is A′.
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Figure 3.13: Cuts of the PESs of H2O+ cation along the normal mode coordinates:
(a) asymmetric stretch, (b) symmetric stretch, and (c) bending mode. The panels
also show the adiabatic PECs of the model that approximate the ab initio ones.
The magenta dots indicate the initial state – an equal-weight superposition of
the three lowest electronic states at the Franck-Condon geometry. We populate
a wave packet corresponding to the ground state of the used nuclear potential
VN(R), approximating the ground vibrational state of the neutral H2O molecule
for the concerning normal mode. Adiabatic separation and adiabatic electronic
states are used. Panel (d) shows the evolution of purity in our model. The
magenta line denotes ∑︁3

i=1 P
2
i (see text for details). The black dashed line shows

the purity evolution in the bending mode model with diabatic separation. Note
that we use femtoseconds instead of the atomic units of time.
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Figure 3.14: The Wigner distribution of the nuclear part of the wave function in
our approximation of (a) the symmetric stretch at t = 4 fs and (b) the bending
mode at t = 5 fs. The white, green, and blue contours indicate the isolines of
the Wigner distributions corresponding to the individual nuclear wave packets
χ1(R, t), χ2(R, t), and χ3(R, t), respectively. In white are the regions where the
Wigner distribution is negative. (c) The evolution of the nuclear density in our
approximation of the bending mode. The white line is at the position of the
crossing of the second and third PECs. (d) The evolution of populations of the
three lowest electronic states in our approximation of the bending mode. The last
two panels show R-cuts of the coupling potential VN−e(r, R) and the first three
electronic adiabatic states in the vicinity of the avoided crossing of the second and
the third PECs (see Figure 3.13) at (e) R = −1.10 a.u. and (f) R = −1.05 a.u.
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Table 3.2: The header shows the three vibrational modes of H2O+, whose symme-
try point group is C2v. In brackets, the irreducible representation of the normal
mode (within C2v) and the general symmetry of the cation upon offsetting the
molecule from equilibrium in the direction of the normal mode are given. The
table then shows the irreducible representations corresponding to the first three
electronic states within the corresponding point groups.

The state Asym. str. (B2, Cs) Sym. str. (A1, C2v) Bend (A1, C2v)
First A′′ B1 B1

Second A′ A1 A1

Third A′ B1 B1
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Conclusion
We have constructed a two-dimensional model of coupled electron-nuclear

dynamics in molecules based on a harmonic nuclear potential and a combination
of two harmonic wells as the potential “felt” by the electrons. The latter depends
parametrically on the nuclear coordinate, coupling the two systems together. The
model’s simplicity enabled a numerically exact solution of the time-independent
Schrödinger equation. We used the simple form of the eigenstates’ evolution to
study the dynamics of an initially coherent superposition of the electronic states.
Our goal was to observe the decoherence of the electronic system caused by the
coupling to the nuclei and understand the mechanisms that play a role in the
process.

In the first chapter, we introduced the theoretical background of the stud-
ied phenomena, defined the quantities that measure coherence in the electronic
subsystem, and described the mechanisms causing decoherence – the population
dynamics, the relative motion of the nuclear wave packets, and all the other effects
are gathered under the term dephasing. The second chapter defined the model
in detail and described the approach to solving it. The third chapter contains
an overview of the coherent results in the case of uncoupled electron and nuclear
dynamics, a detailed study of three special cases of the coupled dynamics, and
an application of our model to the normal modes of the H2O+ cation.

Varying the model’s parameters, we simulated qualitatively different situa-
tions with different shapes of the system’s PECs. This enabled us to demonstrate
and study the decoherence mechanisms discussed in the theoretical part. In the
case of non-crossing PECs with different periods of oscillations, we demonstrated
that the loss of overlap in the momentum space contributes dominantly to the
dephasing mechanism. Furthermore, it is responsible for the initial decoherence,
which can be suppressed by making the PECs parallel in the Franck-Condon
point.

We used the Wigner quasiprobability distribution to visualize the nuclear wave
packets in the phase space. It offers valuable insight into the evolution of geomet-
ric and momentum overlaps and their interplay. We proposed a new decoherence
mechanism, the dephasing of molecular vibrations, caused by different periods of
motion of the wave packets’ Wigner distributions in the phase space. We have
also seen that anharmonicities of the PECs cause the wave packets to deviate
from their initial Gaussian shape. This also contributes to decoherence.

In the case of strong non-adiabatic coupling, we demonstrated the usefulness
of the strictly diabatic states. The couplings of these states enabled coherence
revivals by increasing the momentum overlaps by the transfer of the nuclear wave
packets between the electronic states.

We have shown that electronic coherence Cij is not the most convenient mea-
sure of coherence due to its oscillatory behaviour. A more suitable quantity is
the degree of coherence Dij. It is population-normalized, so it cannot describe
population dynamics, but it is convenient for the other mechanisms. Both these
measures are defined for a combination of two electronic states only. This is fixed
by the electronic purity Tr ρ̂2

e. The purity has its drawback, too, because it is
not equivalent to coherence (for details, see Section 1.4). We conclude that the
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degree of coherence (when only two electronic states are present) or the purity,
combined with time-dependent populations, are the best quantities to fully char-
acterize coherence. We also confirmed the requirement for the two populated
electronic states to overlap for the coherent charge migration to appear.

Finally, we applied our model to the H2O+ cation. We compared our results
with Ref. [12]. Qualitatively, we obtained the same behaviour. The asymmetric
stretch does not cause electronic decoherence. The symmetric stretch causes
partial decoherence and a revival at a later time. The bending mode causes
quick, complete decoherence.

The simplicity of the model gives us flexibility in fine-tuning the PECs and
the coherent dynamics. An interesting extension could be done by implementing
a second dimension for the nuclei. With this, the interplay between the normal
modes could be studied.
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