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Bc. Kateřina Mladá
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Introduction
Imagine a physical system. For different physicist this image would be different
– in the sixteenth century it might have been a wheel rolling down a hill, while
in modern cosmology it might be something as complex as the whole universe.
However, across all physics we are always talking about systems, which follow
certain rules that we are trying to uncover and each system has scales on which
these rules apply. There is an assumption, implicit or explicit, that by approach-
ing a physical system, certain rules are at place on the time and space scale that
we are observing – in other words, we assume that there is actually something to
be observed.

Statistical physics looks at the problem of scales and transition between them:
from the microscopic deterministic reversible dynamics governed by the most fun-
damental equations of motions, over stochastic Langevin dynamics on the nano
scale, to the macroscopic irreversible but deterministic dynamics in thermody-
namics. This transition requires us to decide, which variables are still relevant on
larger scales and which ones are negligible. Such a choice of variables not only
isn’t unique, but also isn’t the only decision made by the physicist. Most of the
time when encountering a problem in a given system, there are also additional
decision of what to neglect or even in what manner the system behaves – all
these things are often being postulated, in order to gain comprehensible knowl-
edge. Statistical physics is attempting to find more systematical techniques of
approaching the problem of scale transition, which would justify these intuitive
postulates. In this thesis, two such techniques will be studied and applied on the
problem of the Kac-Zwanzig model.

The thesis will be organised as follows. The first chapter is an introduction
to three theories: first of them being the Mori-Zwanzig projection formalism,
second the GENERIC formalism and the third is Bruce Turkington’s lack-of-fit
reduction within the context of GENERIC. In the second chapter we apply the
theory on the Kac-Zwanzig (heat bath) model. The application allows us to study
specific problems, which arise throughout the calculations as well as compare the
results of the theories. This comparison is done in the third and last chapter
using numerical simulations.
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1. Methods
The first chapter introduces methods of transition between levels of description.
This theoretical introduction is not fully general in nature. Instead it focuses on
formulations, which are going to be used in Chapter 2.

1.1 The Mori Zwanzig Formalism
Let us first focus on the Mori-Zwanzig formalism, which is also called the projec-
tion formalism, first studied in [1, 2], later work we will be referring to is [3, 4, 5].
It is a technique of transition between physical scales, which uses a projection
operator to reduce the number of dimensions of the phase space – the original,
detailed, space is split into subspace of some chosen, resolved, variables and the
complement. The choice of the resolved variables is not unique. However, it can
be guided by the system itself. For example, when a large separation of time scales
is present, the natural choice for the resolved variables is linked to the longer time
scales. The Mori-Zwanzig formalism introduced here is a method of construct-
ing projectors onto these subspaces and finding the governing equations on these
subspaces. Throughout this section, we will closely follow the introduction done
in [3].

The formalism has effectively two steps, one of them being the construction
of a projector P and the other is the use of the projector to split the evolution
equations into the resolved and unresolved component. We will start with the
evolution equations.

Let us consider a system of equations in the form:

ż(t) = Lz(t), (1.1)
where L is a linear operator and z are variables. An example of such linear
operator is the canonical Poisson bracket with the Hamiltonian. This operator is
used in classical systems, wherein the variables are positions and momenta. The
solutions of these equations are trajectories in the phase space Ω (z ∈ Ω) and
an initial condition z (0) = z0 gives a unique solution, which corresponds to a
trajectory φ(z0, t). It is possible to describe the motion along such a trajectory
using an evolution operator St acting on the initial condition z0. This operator
is given by the equation:

∂

∂t
S
tz0 = LS

tz0, S
0z0 = z0. (1.2)

This is the evolution on the full phase space Ω. We will now move to the descrip-
tion on the two subspaces of Ω. One of the subspaces is created by the projection
P and we will be calling it the resolved subspace, the other will be created by the
orthogonal projection (1−P) and will be called the orthogonal subspace. Let us
split the linear operator on the right hand side:

L = PL + (1 − P)L,
where the orthogonal part (1 − P)L can define the orthogonal evolution S

t
⊥ [3,

4, 6]:
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∂

∂t
S
t
⊥g = (1 − P)LSt⊥g, S

0
⊥g = S

0
g = g. (1.3)

With this definition, the operator St⊥ keeps functions g from the orthogonal space
within this space, throughout the whole evolution1. Therefore, any evolution
within the orthogonal space is by definition (1.3) governed solely through S

t
⊥.

The full evolution on the other hand has both terms, which move only within the
resolved subspace as well as terms, which seep away to the orthogonal subspace.
This can be formalised using the Dyson formula for the operators St and St⊥ [3]:

S
t
f = S

t
⊥ +

t

∫
0

S
t−sPLSs⊥dsf. (1.4)

The Dyson formula holds at time t=0, where both evolution operators act as
unity (1.3) and by using the evolution equation (1.2) and the definition of the
orthogonal operator (1.3) we may show that it propagates through time:

LS
t
f =

∂

∂t
S
t
f =

∂

∂t

⎛
⎜⎜
⎝
S
t
⊥f +

t

∫
0

S
t−sPLSs⊥fds

⎞
⎟⎟
⎠
= (1 − P)LSt⊥f + PLSt⊥f+

+

t

∫
0

∂

∂t
S
t−sPLSs⊥fds = L

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
S
t
⊥ +

t

∫
0

S
t−sPLSs⊥ds

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
f

and thus holds for any given time t ≥ 0. The evolution operator St has the linear
operator L as a semigroup generator (from the defining equation (1.2)) and as a
consequence StL = LS

t. Using this property we can write:

LS
t
f = S

t
Lf = S

tPLf + S
t(1 − P)Lf = S

tPLf + S
t
F ,

where F = (1 − P)Lf . Combining this adjustment with Equation (1.4), we
finally arrive at the main evolution equation of the Mori-Zwanzig formalism:

∂

∂t
S
t
f = S

tPLf +

t

∫
0

S
t−sPLSs⊥Fds + S

t
⊥F. (1.5)

First term is the projected evolution, second term represents the memory of the
system and the last term is the noise from the degrees of freedom we lost through
the projection or in other words a random force.

Let us now focus on the projectors. As was said above, the projector is chosen
based on what are the relevant degrees of freedom. In Chapter 2 we study the
Kac-Zwanzig model, which is a model with N small particles and additional
distinguished particle in a potential field. We start on the phase space of these
N + 1 particles, described by their positions Q,qi and momenta P,pi. There is
several choices of projection operators. Since we will be working with particles in a

1Let g = (1 − P)g, then ∂
∂t

((1 − P)St
⊥g) = (1 − P) ∂

∂t
S

t
⊥g = (1 − P)(1 − P)LS

t
⊥g = (1 −

P)LS
t
⊥g =

∂
∂t

S
t
⊥g and so S

t
⊥g = (1−P)St

⊥g, i.e. g is orthogonal throughout the whole evolution.
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temperature reservoir with a constant temperatur T , the small particles will have
initial conditions pulled from the canonical probability distribution ρ =

1
Z
e
−βH

with H being the microscopic hamiltonian. This means that when we decide on
the resolved degrees Q,P the other particles are from this probability distribution
and the projection operator has the form [3]:

Pf =
∫ fe−βHd[qj]d[pi]
∫ e−βHd[qi]d[pi]

. (1.6)

Our second choice of resolved variables will be (Q,P, s), with the variable s
defined as s =

1
N
∑j(qj −Q). This is analogous to the case of the microcanonical

ensemble [3, 1] with the difference that instead of the surface of constant energy
we will work with the surface given by δ ( 1

N
∑j(qj − Q) − s). Consequently, the

conditional projector is of the form:

Pf =

∫ fe−βHδ ( 1
N
∑j(qj − Q) − s) d[qj]d[pi]

∫ e−βHδ ( 1
N
∑j(qj − Q) − s) d[qi]d[pi]

. (1.7)

The final equations (1.5) are in an integro-differential form, which is ideal
neither for numerical solutions nor for interpretation and further use. These is-
sues will be confronted in the following section since the GENERIC formalism
approaches the multiscale transition in a manner, which only operates with dif-
ferential equations.

1.2 GENERIC
Another method of transition between levels of description (or rather transition
between any key variables even on the same scale) is the GENERIC formal-
ism (General Equation for Non-Equilibrium Reversible-Irreversible Coupling) [7].
This method combines two areas of mathematics for the evolution equations –
the reversible dynamics, which is given by a poisson bracket with energy and the
irreversible dynamics, which is described using a dissipation potential connected
to entropy. In order to understand GENERIC, these two branches need to be
elaborated on.

The main equation in GENERIC has the form [7]:

Ȧ = {A,E} + ⟨∂A
∂x ,

∂Ξ
∂x∗

»»»»»»»»»»x∗
=Sx

⟩ , (1.8)

where {, } is a Poisson bracket, ⟨, ⟩ is a duality pairing, x∗
= Sx =

∂S

∂x are conjugate
variables, E(x) energy of the system and Ξ = Ξ(x,x∗) is a dissipation potential.

In the special case of the state variables, Equation (1.8) gives:

ẋ
i
= L

ij ∂E

∂xj
+
∂Ξ
∂x∗i

»»»»»»»»»»x∗
=Sx

. (1.9)

On the left-hand side, there is the time derivative of the state variable x, e.g.
position and momentum in the case of a canonical Hamiltonian systems, density
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and velocity fields in the continuum mechanics or distribution density function if
we want to reach the Liouville equation. On the right-hand side, the first term is
the Poisson bracket of x with the energy of the system E. The Poisson bracket
is written using the Poisson bivector, which is given as:

L
ij
= {xi, xj}

and together with the energy is the main ingredient for the description of the
reversible dynamics. The second term is the gradient of dissipation potential as a
function of conjugate variables, which are calculated as derivatives of entropy. For
that reason, the second (irreversible) term requires the knowledge of the entropy
as well as a dissipation potential of the studied system.

The poisson bracket builds on the geometric formulation of Hamiltonian me-
chanics. Since it represents the reversible evolution, the vanishment of the Pois-
son bracket means conservation in the reversible evolution. The Poisson bracket
has four key properties: bilinearity, skew-symmetry, Leibniz rule and the Jacobi
identity.

Skew-symmetry ({A,B} = − {B,A}) of the bivector ensures the conservation
of energy:

{E,E} = − {E,E} = 0.
Both bilinearity and Leibniz rule mean that the bivector behaves as a derivative:

{x,E + c} = {x,E} , c = const.,

i.e. a constant shift of energy does not change the reversible evolution. The
Jacobi identity states:

{A, {B,C}} + {B, {C,A}} + {C, {A,B}} = 0
and warrants the conservation of the Poisson bracket throughout the reversible
evolution as well as represents self-consistency of the evolution [7].

The irreversible dynamics stands fully on the dissipation potential Ξ. We
expect it to satisfy three conditions.

First: the dissipation of total energy E has to be zero:

⟨∂E
∂x ,

∂Ξ
∂x∗

»»»»»»»»»»x∗
=Sx

⟩ = 0.

This carries the information, that GENERIC is a theory of closed systems. Any
flows over the boundaries are delt with through boundary conditions.

Second: Ξ should be convex near x∗
= 0 for the dissipation to run towards

the equilibrium at maximal entropy.
The third and last condition is the inequality:

x∗ ∂Ξ
∂x∗i

»»»»»»»»»»x∗
=Sx

≥ 0.

A sufficient condition is convexity of the dissipation potential. This inequality is
one of the conditions for the second law of thermodynamics to hold within the
formalism:
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Ṡ = {S,E} + ⟨∂S
∂x ,

∂Ξ
∂x∗

»»»»»»»»»»x∗
=Sx

⟩ = 0 + ⟨x∗
,
∂Ξ
∂x∗

»»»»»»»»»»x∗
=Sx

⟩ ≥ 0. (1.10)

The first equality is using the evolution equation (1.8), the second equality notes
that the entropy is a Casimir of the Poisson bracket (i.e. {S, ⋅} = 0) and the
inequality is the third condition imposed on the dissipation potential.

As was mentioned before, the dissipation potential is a function of the con-
jugate variables x∗ as well as the main variables x. The relation between the
variables x and the conjugate x∗ is through the Legendre transform of entropy:

∂

∂xi
(−S + x

j
x
∗
j ) = 0, x

∗
i =

∂S

∂xi
, x = x(x∗). (1.11)

The use of differential geometry to describe the reversible evolution allows
a simple transition between variables and thus also between different Poisson
brackets:

L̃
kl(z) = ∂z

k

∂xi
L
ij ∂z

l

∂xj
. (1.12)

An example of such transition is given in Section 2.4.
The transition between variables can be done even if it is between different

levels of description. Within the GENERIC formalism there is a convention to
call the more detailed description ”upper” (denoted by ↑) and the less detailed
description ”lower” (denoted by ↓). When the transition goes from more upper
to lower level of description, as was the case in the Mori-Zwanzig formalism,
this transition leads to a loss of information. This loss does not intervene with
Equation (1.12), that is to say the reversible evolution still undergoes the same
transform. However, loss of information leads to change of entropy and change
in the irreversible evolution. Finding the lower-level entropy is done through a
static reduction – through the maximisation over the space of detailed variables
(MaxEnt):

∂

∂xi
(−↑

S + y
a(x)y∗a ) = 0, ∂

↑
S

∂xi
= y

∗
a

∂π
a

∂xi

»»»»»»»»x(y∗)
, x = x(y∗), (1.13)

where ya(x) = π
a(x) is a projection of the detailed variables on the less detailed

ones. The function x(y∗) is the submanifold of the manifold of the detailed
variables, on which the upper entropy ↑

S is maximised. An outcome of the
MaxEnt procedure is the lower entropy as a function of the lower variables ↓

S(y)
as well as the entropy as a function of the conjugate lower variables ↓

S
∗(y).

Transition between the two is through a full Legendre transform. An example of
MaxEnt would be done in Section 2.2.

Even though in the GENERIC formalism the change of variables and the
following transformation of the Poisson bivector are straightforward, finding the
adequate dissipative potential is quite cumbersome. For that reason, we move to
another form of multiscale transition – the lack-of-fit reduction.
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1.3 The Lack-of-fit Reduction
The lack-of-fit reduction (or the optimal closure method) is another method of
transition between detailed and resolved evolution. The method was first devel-
oped by Bruce Turkington [8, 9]. Since its creation up until now, the theory is
still changing significantly. The core idea is staying unchanged – the relevant
outcome of the optimal closure method is finding dissipative evolution for a given
choice of resolved variables, which builds solely on the negligence of information
from the underlying microscopic dynamics. In [9], this is studied for the case of
Hamiltonian microscopic dynamics and both on the upper and lower level uses
distribution functions – looking for ”trial densities” as functions of the resolved
variables. In its structure, the outcome resembles the GENERIC formalism intro-
duced in the previous section. In [10], this resemblance is studied and formalised,
using the lack-of-fit reduction in a generalised form. As the title of the article
[10] suggests, the procedure starts with a GENERIC evolution (evolution with
generalised reversible part and dissipation) and leads towards evolution again in
GENERIC. Accordingly, we will use the same notation as in the previous section.

As was mentioned above, GENERIC is a formalism well equipped for the
transition between levels of description, owing to its geometric structure (1.12).
However, the maximisation of entropy does not give a satisfactory resolved evo-
lution. It can be considered a static reduction, finding the correct conjugate
variables and entropy on the less detailed level of description. For the evolution
to transform correctly, a dynamical reduction is needed, which can project not
only the detailed manifold to the resolved one, but also the tangent spaces of
these manifolds [10]. The lack-of-fit reduction can be one of the methods for
the dynamical reductions. It builds a lack-of-fit Lagrangian, which compares the
upper with the lower evolution. The action created from this Lagrangian as an
integral over time is then minimised over possible trajectories. Let us describe
the process in more detail.

We will start with a GENERIC evolution (1.9) on the upper-level of descrip-
tion – the Poisson bivector ↑

L
ij (or written as a bracket ↑{⋅, ⋅}), detailed variables

x
i, the detailed dissipation potential ↑Ξ, the detailed energy ↑

E and the detailed
entropy ↑

S are known, together forming the upper evolution (1.9):

ẋ
i
=

↑{xi, ↑E} + ∂
↑Ξ
∂x∗i

»»»»»»»»»»x∗
=

∂↑S
∂x

. (1.14)

Afterwards, we choose the resolved variables y. The relation of y to the
detailed manifold is prescribed by a projection y = π(x). When looking for the
lower evolution in the form (1.9), we require the projections to be linear in x.

The resolved variables act as constraints for the maximalisation of the detailed
entropy over the phase space of detailed variables – this is the static reduction
outlined in Section 1.2. It leads to the lower level entropy ↓

S(y) together with
the lower level conjugate variables y∗.

Our goal is the minimisation of information lost through the reduction. In
other words, we aim to find the best approximation of the detailed evolution
within the space of the lower variables. To find the information loss over the
whole trajectory, we will first find the loss at specific time instance t. The lack-
of-fit Lagrangian carries precisely this information. It is an entropy metric of
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a residuum [10]. The entropy metric is the Hessian of upper entropy and the
residuum is the difference between the upper and lower evolution:

R
i
= ẋ

i
−
∂x

i

∂y∗a
ẏ
∗
a .

An important element of the residuum is the description of the microscopic evolu-
tion ẋi. The residuum should lead us to the rate of the loss of information caused
by the model reduction along the trajectory. In [9], the residuum is built on infor-
mation theory and the Kullback-Leibler divergence, comparing a trial distribution
to a distribution, which is an outcome of the Liouville equation, i.e. is a solu-
tion of the microscopic dynamics. Similarly to that, in [10] detailed GENERIC
evolution is used and in that evolution instead of detailed energy (which would
be a function of detailed variables) the apparent upper-level energy is used. It is
found through a string of transitions between manifolds [10]:

↑
E(x) def

==
↓
E (↓π(x)) = ↑

E(x(y∗(y(x)))). (1.15)

Because the MaxEnt transition loses information, the mapping x(y∗(y(x))) is
not simply equal to x and therefore ↑

E(x) ≠ ↑
E(x).

Having the upper evolution built as a flow given by the energy ↑
E, i.e. ẋi =

↑{xi,↑E} =↑
L
ij ∂

↑
E

∂xj + ∂
↑Ξ
∂x∗i

»»»»»»»»»»x∗
=

∂↑S
∂x

, allows us to write the residuum as a function of

y∗. This is an important motivation for the energy to have the form (1.15). The
residuum therefore is:

R
i(x(y∗)) =↑

L
ij ∂

↑
E

∂xj
+
∂
↑Ξ
∂x∗i

»»»»»»»»»»x∗
=

∂↑S
∂x

−
∂x

i

∂y∗a
ẏ
∗
a . (1.16)

However, to be able to find the final evolution in the GENERIC form, we
cannot simply make a Euclidean norm, as we will see later. This leads to the
use of the aforementioned entropy metric. Another reason to use the entropy
metric is the comparison to [9] and the expansion done within. Therefore, while
searching for the lower GENERIC evolution we will use the lack-of-fit Lagrangian
defined as:

L(y∗
, ẏ∗) = −

1
2 (Ri∂

2(↑S)
∂xi∂xj

R
j) . (1.17)

Note that the matrix of second derivatives of entropy has to be negative definite,
otherwise the entropy is not the correct entropy of the system. The negative
definiteness of entropy leads to the convexity of the Lagrangian.

Finally, we formulate the optimisation principle [10, 9, 8]:

ψ(t0,y∗
0) = min

y∗(t0)=y∗
0

t1

∫
t0

dtL(t,y∗(t), ẏ∗(t)), (1.18)

where the fixed final state (at time t1 → ∞) is thought to be the equilibrium.
This is a variational problem for free starting point and can be written as the
Hamilton-Jacobi partial differential equation [11, 10]:
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−
∂ψ

∂y∗ =
∂L
∂ẏ∗ ⇔ ẏ∗

= ẏ∗ (y∗
,
∂

∂y∗) , (1.19a)

∂ψ

∂t
= H (t,y∗

,
∂ψ

∂y∗) = −L (t,y∗
, ẏ∗ (y∗

,
∂

∂y∗)) −
∂ψ

∂y∗ ẏ∗ (y∗
,
∂

∂y∗) . (1.19b)

We will expect the explicit dependence of ψ on t to disappear (∂ψ
∂t

= 0), thus
placing the right-hand side of (1.19b) to zero. This corresponds to the expectation
of large time scale separation between lower and upper variables [10].

Equation (1.19a) will lead to the lower evolution ẏ and (1.19b) has the function
ψ as a solution. In order to find the evolution ẏ, we require several intermediate
steps. From (2.39) and (1.17):

∂L
∂ẏ∗a

=
∂L
∂Ri

∂R
i

∂ẏ∗a
=
∂

2(↑S)
∂xi∂xj

R
j ∂x

i

∂y∗a
= (↑

L
jk ∂

↑
E

∂xk
+
∂
↑Ξ
∂x∗j

»»»»»»»»»»x∗
=
↑Sx

−
∂x

j

∂y∗b
ẏ
∗
b )

∂
2(↑S)
∂xi∂xj

∂x
i

∂y∗a
,

where we denoted ∂
↑
S

∂x ≡
↑
Sx.

Our goal is to formulate the evolution equation of y in a GENERIC form (1.9).
There are three terms on the right-hand side of the equation above: the first term
has the upper Liouville bivector and will become the reversible evolution, the
second term will be an additional dissipative term caused by dissipation already
present on the detailed level and the last term will be ẏ itself. The lower level
dissipation potential as a solution of the Hamilton-Jacobi equation is on the left-
hand side.

Using Equation (1.13), we may rewrite the first term as:

↑
L
jk ∂

↑
E

∂xk
∂

2(↑S)
∂xi∂xj

∂x
i

∂y∗a
=
∂
↓
E

∂yb
∂y

b

∂xk
↑
L
jk ∂

∂y∗a
(y∗b

∂y
b

∂xj
) ,

∂

∂y∗a

⎛
⎜
⎝
y
∗
b

∂y
b

∂xj

»»»»»»»»»»x(y∗)

⎞
⎟
⎠
=
∂y

a

∂xj
+ y

∗
b

∂y
b

∂y∗a∂y
∗
c

∂y
∗
c

∂xj
,

we require the mapping πa(x) = y
a to be linear, in order for the second term here

to be zero. We arrive at:

∂
↓
E

∂yb
∂y

b

∂xk
↑
L
jk ∂y

a

∂xj
≡
↓
L
ab∂

↓
E

∂yb
=

↓{ya, ↓E}.

Proceeding with the second term:

∂
↑Ξ
∂x∗j

»»»»»»»»»»x∗
=
↑Sx

∂
2(↑S)
∂xi∂xj

∂x
i

∂y∗a
=
∂
↑Ξ
∂x∗j

»»»»»»»»»»x∗
=
↑Sx

∂x
∗
j

∂xi
∂x

i

∂y∗a
=
∂
↑Ξ
∂x∗j

»»»»»»»»»»x∗
=
↑Sx

∂x
∗
j

∂y∗a

and finally the third term:

∂x
j

∂y∗b
ẏ
∗
b

∂
2(↑S)
∂xi∂xj

∂x
i

∂y∗a
= ẏ

∗
b

∂
2(↓S∗)
∂y∗a∂y

∗
b

=
dy

∗
b

dt

∂y
a

∂y∗b
= ẏ

a
.
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Using these adjustments, we can write the lower evolution equation from (1.19a):

ẏ
a
=

↓{ya, ↓E} + ∂

∂y∗a
[↑Ξ (x∗(y∗),x(y)) + ψ(y∗)] . (1.20)

We are writing here ↑Ξ (x∗(y∗),x(y)) since the GENERIC formalism, unlike the
lack-of-fit reduction, works with a dissipation potential dependent in general on
both x∗ and x.

Before reviewing the whole process of the optimal closure method, we will first
make a review of one of the approaches to solving the Hamilton-Jacobi equation.

1.3.1 The Riccati Equation
For a quadratic Hamiltonian, a quadratic ansatz ψ =

1
2y∗My∗ leads to a Riccati

type of equation. In this section, we will focus on finding the solutions of the
Riccati equation and its behaviour, using [12] as our source for the definitions
and theorems. We will assume that M is not a function of time and the Ricatti
equation is, therefore, an algebraic equation for the matrix M:

0 = −MPM +MB + BTM +Q. (1.21)

Following [12], we will also be working with the matrix P in a form P = AAT and
similarly with the matrix Q in a form Q = CCT .

One of the properties of the dissipation potential is convexity (1.10) and for
that reason we are searching for a non-negative solution of the Riccati equation.
The properties of such solution are summarised in [12] and we will be using only
the results found therein.

Definition 1 (Unobservable eigenvalue). It is said to be unobservable eigenvalue
of the pair the pair (C,B) if there exists a nontrivial right eigenvector z of B with
the eigenvalue λ such that it lies in the kernel of C, i.e. Bz = λz and Cz = 0.

Definition 2. The pair (B,A) is said to be stabilazable if a matrix over R exists
such that B + AL is stable (i.e., all its eigenvalues have negative real parts).

Definition 3. The pair (C,B) is said to be detectable if the unstable eigenvalues
of (C,B) are observable.

The existence and uniqueness of stabilising solutions abide by the following
theorems [12].

Theorem 1. The stabilising solution of (1.21) exists if and only if (B ,A) is
stabilizable and the real part of all eigenvalues of M is different from zero.

Theorem 2. The stabilising solution is the only nonnegative solution of (1.21)
if and only if (C, B) is detectable.

The proofs of these theorems can be found in [12].
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1.3.2 The Lack-of-fit Procedure
After this technical detour, let us give a short summary – a step-by-step procedure
of the optimal closure method:

1. Formulate the upper evolution (1.14), i.e. variables x, detailed energy ↑
E,

Poisson bivector ↑
L, dissipation potential ↑Ξ and the detailed entropy ↑

S.

2. State the projection to the lower-level variables π(x) = y, in other words
choose the resolved variables as functions of x.

3. Do the static reduction (1.13), i.e. maximise the entropy ↑
S over the space

of detailed variables x with the resolved variables ya acting as constraints.

4. Find the apperent upper-level energy ↑
E from (1.15).

5. Find the residuum R from (2.39).

6. Find the Lagrangian L from (1.17).

7. Obtain ẏ∗ as a function of y∗ and ∂ψ

∂y∗ from (1.19a).

8. Write the Hamiltonian H, formulate the Hamilton-Jacobi equations for ψ
and solve (1.19b).

9. Formulate the evolution ẏ from (1.20).

1.4 Summary
We have introduced two methods of transition between physical scales. The first
was the Mori-Zwanzig formalism in Section 1.1 and the second was the lack-of-fit
reduction in Section 1.3, formulated within the GENERIC formalism, reviewed
in Section 1.2.

The Mori-Zwanzig formalism starts with a set of differential equations and
uses a projector to reduce the number of equations to only a set of evolution equa-
tions, which correspond to some resolved variables. The evolution of the resolved
variables is described by integro-differential equations. These equations carry
the same information as the detailed differential equations we began with. How-
ever, the integro-differential equations can be further simplified through various
approximations. They are therefore a stepping stone for a dimensional reduction.

Before outlying the second method of dimensional reduction, we introduced
the GENERIC formalism in Section 1.2. It is a geometric way of system descrip-
tion, wherein the evolution is split into a time-reversible and time-irreversible
term. The reversible term is result of a Poisson bracket with energy of the sys-
tem and the irreversible term is a duality pairing with a gradient of dissipation
potential. In other words, the reversible evolution is governed by the total energy
of the system and the geometry of the Poisson bracket, whereas the irreversible
part is governed by the entropy and the dissipation in the system.

When transitioning from upper (detailed) to less lower (detailed) level of de-
scription, a dissipation potential needs to be found.The lack-of-fit reduction (or
the optimal closure method) introduced in Section 1.3 is an attempt to do as

12



such. When applied on upper evolution formulated using GENERIC, it leads
to a set of differential equations, again in a GENERIC form, with a dissipation
potential as a result of the procedure. These lower evolution equations are an out-
come of minimisation of the lack-of-fit Lagrangian. The lack-of-fit Lagrangian is
built from an entropy metric (the Hessian of the upper entropy) and a residuum.
The residuum is the difference between detailed evolution, formulated in entropy
conjugate lower variables (y∗

=
∂
↓
S

∂y ), and the lower evolution again within the
conjugate variables. This minimisation leads to the Hamilton-Jacobi equation
for the sought-after dissipation potential and also the evolution of the lower vari-
ables. In the last subsection, we outlined steps to be followed when using the
lack-of-fit reduction.
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2. The Kac-Zwanzig Model
The Kac-Zwanzig model represents a particle inside a heat bath and as such it is
a system of N+1 classical particles without further inner dimensions of freedom.
Closer study of this system was done already in [13]. The particles are separated
into two groups – one distinguished particle with mass M and N small particles
with masses mi. We will also refer to the small particles as ”the cloud”. The
cloud is connected to the distinguished particle with springs, i.e. the harmonic
potential. Each spring can have different stiffness parameter ki. For simplicity
we will assume stiffness γ

N
for all particles of the cloud. For growing number

of particles in the cloud, the stiffness will decrease and thus the energy will be
somehow bounded. Furthermore, the distinguished particle can be influenced by
an outside potential V (Q). The Hamiltonian of such system therefore is:

H =
P

2

2M + V (Q) +
N

∑
i=1

[ p
2
i

2mi
+

γ

2N (qi − Q)2] , (2.1)

where Q,P is the position and momentum of the distinguished particle and
{qi,pi}Ni=1 are positions and momenta of the undistinguished particles. The vec-
tors of positions and momenta can have an arbitrary dimension d and therefore
the detailed phase space is Rd(N+1). The detailed manifold can also be the space
of the distribution functions, as will be the case in Chapter 2.2.

Throughout this chapter we will be using different notations, depending on
convenience of the calculations. We will be consistent in the following definitions:

s ≡
1
N

N

∑
i=1

qi − Q, ω
2
i =

γ

miN
, dqidpi, = di, d1...dN = d[j].

2.1 The Mori-Zwanzig Formalism
We will now apply the Mori Zwanzig formalism on the Kac-Zwanzig model. As
was suggested during the introduction of the projectors, we will consider two
choices of resolved variables: position and momentum of the distinguished particle
(Q,P) and in the second choice above the two also the mean distance from the
cloud (Q,P, s).

To describe the evolution we require the Liouvillian L of the system and a
projector P . The Liouvillian is independent on the choice of the resolved variables
since it exists on the detailed manifold:

L =
P
M

∂

∂Q − [V ′(Q) − γs] ∂

∂P +
N

∑
i=1

[ pi
mi

∂

∂qi
−
γ

N
(qi − Q) ∂

∂pi
] . (2.2)

The Liouvillian acts on the positions and momenta of all (N + 1) particles in the
following manner:
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LQ =
P
M
, LP = −V

′
+ γs, (2.3a)

Lqi =
pi
mi
, Lpi = −

γ

N
(qi − Q). (2.3b)

The projectors are dependent on our choice of the resolved variables: in the
case (Q, P) we will be using the form written in Equation (1.6) and for (Q, P,
s) we will use the form from Equation (1.7).

First let us focus on the resolved variables (Q, P). From the evolution equa-
tions (1.3) and (1.5), we see that the relevant projections are PQ, PP, Pqi and
Ppi. For any f = f(Q,P), the projector is:

Pf(Q,P) =
∫ fe−βHd[i]
∫ e−βHd[i]

= f
∫ e−βHd[i]
∫ e−βHd[i]

= f,

as is expected since these variables are what we project on. The projection Ppi
gives zero for all i, because the Hamiltonian is even in pi. Pqi can be calculated
using the fact, that the Hamiltonian is even in (qi − Q) and the projector P is
linear:

P(qi − Q) = 0 ⟺ Pqi = PQ = Q.
To project on Q,P and s, we will use the projector (1.7) and denote it as Ps.

The key projections are PsQ, PsP, Psqi, Pspi and also Ps ( 1
N
∑j(qj − Q)) = Pss.

Similarly as before, any function f = f(Q,P, s) projects onto itself and Pspi =
0. The last projector to be calculated is Psqi. For that we need to calculate two
very similar integrals (the nominator and denominator of Ps). We will calculate
them together and colour-code the additional qi in the numerator with red. All
multiplicative factors that can be canceled out, will be first colour-coded blue
and then omitted. With that, let us calculate the projection:

∫ qie
−β[ P

2

2M
+ V (Q)+

N

∑
j=1

p
2
j

2mj
+ γ

2N
(qj−Q)2]

δ ( 1
N

∑
j

(qj − Q) − s) d[j],

∫ qie
−β

N

∑
j=1

γ
2N

(qj−Q)2

δ ( 1
N

∑
j

(qj − Q) − s) d[qj].

We can integrate over one of the particles, i.e. over some qk, k ≠ i and therefore
make use of the delta function δ ( 1

N
∑j(qj − Q) − s):

1
N

∑
j

(qj − Q) − s = 0 ⟺ qk − Q = Ns −∑
j≠k

(qj − Q),

∫ qie
− βγ

2N

⎡⎢⎢⎢⎢⎢⎢⎢⎣
N

2s2−2Ns ∑
j≠k

(qj−Q)+( ∑
j≠k

(qj−Q))
2

+ ∑
j≠k

(qj−Q)2
⎤⎥⎥⎥⎥⎥⎥⎥⎦d[qj]j≠k ∝

∝ ∫ qie
− βγ

2N
[−2Ns ∑

j≠k

(qj−Q)+ ∑
j≠k

(qj−Q)2]
exp

⎛
⎜
⎝
−

1
2 (

√
βγ

N
∑
j≠k

(qj − Q))
2⎞
⎟
⎠

d[qj]j≠k.
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Using the Hubbard-Stratonovich formula [14]:

exp (−1
2x2) =

1√
2π

∞

∫
−∞

exp(−y
2

2 − ix ⋅ y) dy,

we proceed with the calculations

∫ qie
− βγ

2N
[ ∑

j≠k

(qj−Q)2+2(−Ns+iy
√

N
βγ

)⋅ ∑
j≠k

(qj−Q)]
e
− y

2

2 d[qj]j≠kdy =

∫ qie
− βγ

2N
∑

j≠k

[qj−Q−Ns+iy
√

N
βγ

]
2

e
− y

2

2 +βγ(N−1)
2N

(−Ns+iy
√

N
βγ

)
2

d[qj]j≠kdy ∝

∝ ∫ qie
− βγ

2N
∑

j≠k

[qj−Q−Ns+iy
√

N
βγ

]
2

e
−N

2 (y+i(N−1)
√

βγ
N

s)
2

d[qj]j≠kdy .

We will now substitute ∆y = y + i(N − 1)
√

βγ

N
s, ∆j = qj − Q − s + i∆y

√
N

βγ
and

the exponential of sum will change to a product of exponentials:

∫
⎛
⎜
⎝
∆j + Q + s − i∆y

√
N

βγ

⎞
⎟
⎠
∏
j≠k

e
− βγ

2N
∆2

je
−N

2 ∆2
yd[∆j]j≠kd∆y .

Terms (∆j − i∆y

√
N

βγ
) give zero (integrating an odd function over the whole

space) and (Q + s) are constant under the integration, thus the Gassian integrals
give only a factor which will cancel in the projector. This leads us to the result:

Psqi = Q + s .

To sum up, the projectors are:

Pf(Q,P) = f(Q,P), Pqi = Q, Ppi = 0, (2.4a)
Psf(Q,P, s) = f(Q,P, s), Psqi = Q + s, Pspi = 0. (2.4b)

Using this result, we write the orthogonal evolution equation (1.3) for the two
different choices of projections:

∂

∂t
S
t
⊥Q = 0, (2.5a)

∂

∂t
S
t
⊥P =

γ

N
∑
j

(St⊥qj − S
t
⊥Q) , (2.5b)

∂

∂t
S
t
⊥qi =

S
t
⊥pi
mi

, (2.5c)
∂

∂t
S
t
⊥pi = −

γ

N
(St⊥qi − S

t
⊥Q) , (2.5d)
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∂

∂t
S
t
⊥Q = 0, (2.6a)

∂

∂t
S
t
⊥P = 0, (2.6b)

∂

∂t
S
t
⊥qi =

S
t
⊥pi
mi

, (2.6c)
∂

∂t
S
t
⊥pi = −

γ

N
(St⊥qi − S

t
⊥Q − S

t
⊥s) , (2.6d)

∂

∂t
S
t
⊥s =

1
N

N

∑
i=1

S
t
⊥pi
mi

. (2.6e)

In Equation (2.5) is the orthogonal evolution with projection onto Q and P, in
Equation (2.6) is the orthogonal evolution with the projection onto Q, P and s.

For the final evolution equation (1.5), it is necessary to calculate the orthogo-
nal evolution of the function, which was denoted by F. When looking for evolution
of (Q,P), this function consists of the right-hand side of equations (2.5a) and
(2.5b), first of which is zero. Therefore only the orthogonal evolution of Q and
qi,∀i needs to be calculated.

Equation (2.5a) states, that for the orthogonal evolution the variable Q is
constant and equal to the initial condition:

S
t
⊥Q = Q.

Equation (2.5c) and (2.5d) are a set of d ⋅N equations for decoupled harmonic
oscillators with intrinsic frequencies ωi:

S
t
⊥qi =

piωiN
γ sin (ωit) + (qi − Q) cos (ωit) + Q.

The coefficients in front of the goniometric functions are calculated from the
initial conditions. As a result, the function of the force St⊥F is:

S
t
⊥F =

N

∑
i=1

(ωipi sin (ωit) +
γ

N
(qi − Q) cos (ωit)) (2.7)

and the memory-kernel function is:

PLSt⊥F = −
γ

NM

N

∑
i=1

cos (ωit)P. (2.8)

For the resolved variables (Q,P, s), the random force F will consist of the
right-hand side of Equation (2.6a), (2.6b) and (2.6e). We only need the orthogonal
evolution St⊥pi,∀i because the right hand sides of Equation (2.6a) and (2.6b) are
zero. A straight forward calculation gives:

S
t
⊥Q = Q, S

t
⊥ (s −

1
N

N

∑
j=1

qj) = s −
1
N

N

∑
j=1

qj = −Q,

but every other step in finding the necessary evolution requires the solution of a
non-trivial system of differential equations, albeit with constant coefficients. The
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following subsection will contain detailed calculation of the orthogonal evolution
1
N

N

∑
i=1

S
t
⊥pi

mi
. Subsection 2.1.2 will summarise the final evolution equations for both

choices of resolved variables.

2.1.1 Computational Intermezzo
Equation (2.6c) and (2.6d) can be reformulated as a system of second order ODEs
(Ordinary Differential Equations):

∂
2

∂t2
S
t
⊥pi = −S

t
⊥(ω2

i pi) +
1
N

N

∑
j=1

S
t
⊥(ω2

jpj).

For the calculations done in this subsection, we will write St⊥pi = pi(t) since
we will not be using any different evolution operator. The initial conditions will
be denoted by the subscript 0, i.e. p0i. Thus we may write pi(t) = pi and

p̈i = −ω
2
i pi +

1
N

N

∑
j=1

ω
2
jpj.

By applying the Laplace transform Lpi = p̂i(ω), we acquire from Equation
(2.6) a set of algebraic equations for p̂i:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ω
2 + ω

2
1 −

ω
2
1
N

−ω
2
2
N

⋯ −ω
2
N

N

−ω
2
1
N

ω
2 + ω

2
2 −

ω
2
2
N

⋯ −ω
2
N

N

⋮ ⋮ ⋱ ⋮

−ω
2
1
N

−ω
2
2
N

⋯ ω
2 + ω

2
N − ω

2
N

N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜
⎝

p̂1
p̂2
⋮

p̂N

⎞
⎟⎟⎟⎟⎟⎟
⎠
=

⎛
⎜⎜⎜⎜⎜⎜
⎝

b1
b2
⋮

bN

⎞
⎟⎟⎟⎟⎟⎟
⎠
, (2.9)

with bi = ωp0i −
γ

N
(q0i − s0 − Q0) since ṗi

»»»»»»t=0
= − γ

N
(q0i − s0 − Q0). Note that

we have in general d ⋅ N equations, even though at no point we will require to
focus on any specific element of a single vector pi. This leads us to write e.g.
ω

2 +ω2
1 −

ω
2
1
N

instead of (ω2 +ω2
1 −

ω
2
1
N
)I, with I being the identity matrix in Rd×d.

We can add up all the rows, which will give us an equation

1
N

N

∑
j=1

p̂j =

1
N

N

∑
j=1

p0j

ω , (2.10)

in other words this is the conservation of momentum in the orthogonal evolution
(since L−1( 1

ω
) = 1, t ≥ 0).

For easier manipulation, let us denote

Ωi ≡ ω
2
+ ω

2
i , p0 ≡

1
N

N

∑
j=1

p0j, x0j ≡ ωp0j −
γ

N
q0j. (2.11)

Furthermore, we may order the random frequencies so that ω2
1 ≥ ω

2
2 ≥ ... ≥ ω

2
N .
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To find the solution, we will use the observation that the difference of any two
rows is:

Ωjp̂j − Ωip̂i = x0j − x0i.

Substituting p̂j in Equation (2.10) will give us the solution for p̂i:

p̂i =

p0
ω
− 1

N

N

∑
j=1

x0j−x0i

Ωj

1
N

N

∑
j=1

Ωi

Ωj

=
p0
ω

1
1
N

N

∑
j=1

Ωi

Ωj

−

1
N

N

∑
j=1

x0j

Ωj

1
N

N

∑
j=1

Ωi

Ωj

+
x0i
Ωi
. (2.12)

Next step is to find the inverse Laplace transform of p̂i. It is useful to rewrite
the equality (2.12) using Âk;j given by:

Âk;j =
ω
k

Ωj

1
1
N

N

∑
i=1

1
Ωi

=
ω
k

(ω2 + ω2
j )

N

∏
i=1

(ω2 + ω
2
i )

Q(ω2) , k = −1, 0, 1,

where Q(ω2) is a polynomial with N − 1 roots. The roots will be denoted by
(iωQl)2

= −(ωQl)2, i.e.

Q(ω2) ≡ 1
N

N

∑
j=1

N

∏
i=1

(ω2 + ω
2
i )

ω2 + ω2
j

=

N−1

∏
l=1

(ω2
+ ω

2
Ql).

As a consequence of our definition, the following equality holds

N

∑
j=1

Âk;j = Nω
k (2.13)

and we arrive at the solution in the Laplace picture:

p̂i =
ωp0i −

γ

N
q0i

ω2 + ω2
i

+ p0Â−1;i −
1
N

N

∑
j=1

p0jÂ1;i −
γ

N
q0jÂ0;i

ω2 + ω2
j

.

All terms are rational functions of ω, with higher order polynomials in the nu-
merator. The inverse Laplace transform of such rational functions is found as
[15]:

L−1(F ) =
n

∑
i=1

resai
[F (ω)eωt]

with n being the number of poles.
In our case the F has several different forms.
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The first form is F =
ωp0i−

γ
N

q0i

ω2+ω2
i

:

L−1(F ) = p0i cos (ωit) −
γ

N
q0i

sin (ωit)
ωi

.

The second term is F = p0Â−1;i and using

Â−1;iω

»»»»»»»»»»ω=0

=
1

1
N

N

∑
j=1

(ω2+ω2
i )

(ω2+ω2
j )

»»»»»»»»»»ω=0

=
1
ω2
i

1
1
N

N

∑
j=1

1
ω2

j

=
γ

ω2
iN

1
m
,

with m =
1
N

N

∑
j=1

mj, we calculate the inverse as:

L−1(F ) = p0

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

mi

m
−

N−1

∑
l=1

N

∏
k

(ω2
k − ω

2
Ql)

(ω2
i − ω2

Ql)
N−1
∏
k≠l

(ω2
Qk − ω2

Ql)

cos (ωQlt)
ω2
Ql

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

.

The third form is F =
Â1;i

ω2+ω2
j

with two types of solutions depending on i,
for (i ≠ j):

L−1(F ) =
N−1

∑
l=1

N

∏
k

(ω2
k − ω

2
Ql)

(ω2
i − ω2

Ql)(ω2
j − ω2

Ql)
N−1
∏
k≠l

(ω2
Qk − ω2

Ql)
cos (ωQlt)

and for (i = j), by using the identityQ(−ω2
i ) = 1

N

N

∑
j=1

N

∏
k≠j

(ω2
k − ω

2
i ) = 1

N

N

∏
k≠i

(ω2
k − ω

2
i )

we obtain:

L−1(F ) =

N

∏
k≠i

(ω2
k − ω

2
i )

Q(−ω2
i )

cos (ωit) +
N−1

∑
l=1

N

∏
k

(ω2
k − ω

2
Ql)

(ω2
i − ω2

Ql)2
N−1
∏
k≠l

(ω2
Qk − ω2

Ql)
cos (ωQlt) =

= N cos (ωit) +
N−1

∑
l=1

N

∏
k

(ω2
k − ω

2
Ql)

(ω2
i − ω2

Ql)2
N−1
∏
k≠l

(ω2
Qk − ω2

Ql)
cos (ωQlt).

And finally F =
Â0;i

ω2+ω2
j
, again with two solutions,

for (i ≠ j):

L−1(F ) =
N−1

∑
l=1

N

∏
k

(ω2
k − ω

2
Ql)

(ω2
i − ω2

Ql)(ω2
j − ω2

Ql)
N−1
∏
k≠l

(ω2
Qk − ω2

Ql)

sin (ωQlt)
ωQl
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and for (i = j):

L−1(F ) = N
sin (ωit)

ωi
+

N−1

∑
l=1

N

∏
k

(ω2
k − ω

2
Ql)

(ω2
i − ω2

Ql)2
N−1
∏
k≠l

(ω2
Qk − ω2

Ql)

sin (ωQlt)
ωQl

.

Let us now write the resulting inverse transform L−1(p̂i)(t), denoting the constant

coefficient Kil ≡

N

∏
k

(ω2
k−ω

2
Ql)

(ω2
i −ω

2
Ql)

N−1
∏
k≠l

(ω2
Qk−ω

2
Ql)

:

pi = p0i cos (ωit)−
γq0i
N

sin (ωit)
ωi

+p0 {
γ

ω2
iN

1
m

−
N−1

∑
l=1

Kil cos (ωQlt)
ω2
Ql

}−p0i cos (ωit)

+
γq0i
N

sin (ωit)
ωi

−
1
N

N

∑
j=1

N−1

∑
l=1

Kil

ω2
j − ω2

Ql

(p0j cos (ωQlt) −
γq0j

N

sin (ωQlt)
ωQl

)

and after subtracting the terms with cos (ωit) and sin (ωit):

pi = p0 [
mi

m
−

N−1

∑
l=1

Kil cos (ωQlt)
ω2
Ql

] −
N

∑
j

N−1

∑
l=1

Kil (p0j cos (ωQlt) − γq0j

N

sin (ωQlt)
ωQl

)

N (ω2
j − ω2

Ql)
.

(2.14)
With this results we can calculate the sum 1

N
∑i ω

2
i pi needed in Equation

(2.18). Using the equalities

N

∑
j=1

Kjl = Q(−ω2
Ql) = 0,

N

∑
j=1

ω
2
jKjl = N

N

∏
k

(ω2
k − ω

2
Ql)

N−1
∏
k≠l

(ω2
Qk − ω2

Ql)
,

we write:

1
N

∑
i

ω
2
i pi = p0[

γ

Nm
−

N−1

∑
l=1

N

∏
k

(ω2
k − ω

2
Ql)

N−1
∏
k≠l

(ω2
Qk − ω2

Ql)

cos (ωQlt)
ω2
Ql

]−

−
1
N

N

∑
j

N−1

∑
l=1

N

∏
k≠j

(ω2
k − ω

2
Ql)

N−1
∏
k≠l

(ω2
Qk − ω2

Ql)
(p0j cos (ωQlt) −

γ

N
q0j

sin (ωQlt)
ωQl

).

We can further simplify this result by combining the cosine terms:
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N−1

∑
l=1

N

∏
k≠j

(ω2
k − ω

2
Ql)

N−1
∏
k≠l

(ω2
Qk − ω2

Ql)
( p0

ω2
Ql

+
1
N

N

∑
j

pj
ω2
j − ω2

Ql

) cos (ωQlt),

where the bracket gives:

p0

ω2
Ql

+
1
N

N

∑
j

pj(ω2
Ql − ω

2
j + ω

2
j )

(ω2
j − ω2

Ql)ω2
Ql

=
1
N

N

∑
j

pjω
2
j

(ω2
j − ω2

Ql)ω2
Ql

.

Returning to the notation pi(t) = S
t
⊥pi, p0i ≡ pi, denoting the large multi-

plications Πjl =

N

∏
k≠j

(ω2
k−ω

2
Ql)

N−1
∏
k≠l

(ω2
Qk−ω

2
Ql)

and ω
2
j =

γ

Nmj
, we arrive at the random force:

S
t
⊥Fs = ∑

i

S
t
⊥

ω
2
i

γ pi =
p
m

−
1
N

N

∑
j

N−1

∑
l=1

Πjl(
pj
mj

cos (ωQlt)
ω2
Ql

− qj
sin (ωQlt)

ωQl
) (2.15)

and the term in the memory kernel:

−Ks(t)s = PsLS
t
⊥Fs = −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ

Nm
−

N

∑
l=1

∏
k

(ω2
k − ω

2
Ql)

ω2
Ql∏

k≠l

(ω2
Qk − ω2

Ql)
cos (ωQlt)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
s. (2.16)

This concludes the tedious intermezzo.

2.1.2 Summary of the Mori-Zwanzig Evolution Equations
The fruit of our labor are the final evolution equations. For the resolved variables
(Q,P) the final equations are:

∂

∂t
S
tQ = S

t P
M
, (2.17a)

∂

∂t
S
tP = −S

t
V

′(Q) −
t

∫
0

K(u)St−u P
M

du + F(t), (2.17b)

where K(s) is from the equation for the memory kernel (2.8) and F(t) is the
random force caused by the small particles, which is described by Equation (2.7).

The evolution equations for the resolved variables (Q,P, s) are

∂

∂t
S
tQ = S

t P
M
, (2.18a)

∂

∂t
S
tP = −S

t (V ′(Q) − γs) , (2.18b)

∂

∂t
S
ts = −S

t P
M

−

t

∫
0

Ks(u)St−usdu + Fs(t), (2.18c)
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where Ks(u) is from Equation (2.16) and Fs(t) is given by Equation (2.15).
Let us compare the two evolutions. The memory kernels are:

K(t, u) =K(u)St−u P
M
,

Ks(t, u) =Ks(u)St−us,
K(u) =∑

j

γ

N
cos (ωju),

Ks(u) =
γ

Nm
−

N

∑
l=1

∏
k

(ω2
k − ω

2
Ql)

ω2
Ql∏

k≠l

(ω2
Qk − ω2

Ql)
cos (ωQlt),

and the random forces are

F (t) =∑
j=1

γ

N
[(qj − Q) cos (ωjt) +

pj
ωjmi

sin (ωjt)] ,

Fs(t) =
p
m

−
1
N

N

∑
j=1

N−1

∑
l=1

N

∏
k≠j

(ω2
k − ω

2
Ql)

N−1
∏
k≠l

(ω2
Qk − ω2

Ql)
(

pj
mj

cos (ωQlt)
ω2
Ql

− qj
sin (ωQlt)

ωQl
).

Equation (2.17a) and (2.18a) are the same. However, random force and mem-
ory kernel are in one case in the evolution of P (2.17b), whereas in the other in
the evolution of the additional variable s (2.18c). The structure of these terms is
then similar, with a difference in frequencies and additional constant term in Ks
and Fs.

2.1.3 Limit for N → ∞

Our approach tried to find a differential form through a choice of variables
(Q,P, s). This choice was motivated by a different approach shown in [16],
wherein a limit of Equation (2.17) for N → ∞ is computed in the case of a
Cauchy distribution of the frequencies ωi. In this limit, the equations can be
formulated as a set of stochastic differential equations from [16]. We will make a
quick review of the derivation of the stochastic equations. Detailed computation
is done in [16, 17].

Rewriting the equations from (2.17) in a form of a second order ODE:

Q̈ + V
′(Q) +

t

∫
0

K(t − u)Q̇(u)du = F (t), (2.20)

with K(t − u) and F (t) from (2.17b) (i.e. K(t) = ∑
j

γ

N
cos (ωjt),

F (t) = ∑j
γ

N
[(qj − Q) cos (ωjt) + pj

ωjmj
sin (ωjt)]).

The goal is to find the limit of N going to infinity. This limit is heavily depen-
dent on the distribution of the frequencies ωi. There are previous works done for
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both random distributions [18, 19, 16, 17] as well as deterministic distribution of
frequencies, which leads to solutions relying on Fourier series [20]. Here we have
specific outcome in mind and will therefore further follow [16] with the choice of
frequency distribution:

p(ω) = {
2ω∗

π

1
ω2
∗+ω2 if ω ≥ 0

0 otherwise
, (2.21)

for which the limit of the memory kernel is (using the strong law of large numbers):

lim
N→∞

∑
j

γ

N
cos (ωjt) = γ lim

N→∞

1
N

∑
j

cos (ωjt) = γ ⟨cos (ωt)⟩ =

= γ

∞

∫
0

2ω∗

π
cos (ωt)
ω2
∗ + ω2 dω = γe

−∣tω∗∣.

To find the limit of the force on the right hand side, we will first focus on
the initial distributions of pi and qi. The values are pulled from a canonical
distribution with the Hamiltonian (2.1), thus initial conditions for each pi and
qi is independent and Gaussian. For pi the Gaussian has the mean 0 and the
variance mi

β
and for qi the mean is Q and the variance N

γβ
. We will transition to

random variables hi, gi with zero mean and unit variance:

hi =
√

β
mi

pi, gi =
√
βγ

N
(qi − Q),

F (t) =
√

γ

Nβ
∑
j

[gj cos (ωjt) + hj sin (ωjt)] .

In [17], it is shown that in the limit N → ∞, ξ(t) ≡

√
βF (t) is a Gaussian

process with zero mean and covariance:

⟨ξ(t)ξ(t′)⟩ = γ

∞

∫
0

p(ω) cos (ω(t − t
′))dω = K(t − t

′) = γe
−∣(t−t′)ω∗∣.

With this knowledge, we may observe that the force is a stationary Ornstein-
Uhlenbeck process ( dWt is a ”differential” of the Wiener process):

dξ = −ω∗ξdt +
√

2γω∗dWt

and thanks to the exponential kernel we may rewrite Equation (2.20):

Q̈ + V
′(Q) +

t

∫
0

K(t − u)Q̇(u)du = F (t)

Q̈ + V
′(Q) +

t

∫
0

γe
−(t−u)ω∗Q̇(u)du =

1√
β
ξ,
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Q̈ + V
′(Q) − γs = 0,

with

s = −

t

∫
0

e
−ω∗(t−τ)Q̇(τ)dτ + 1

γ
√
β
ξ

and for differential of s we will use the equation for dξ:

ds = −Q̇(t) + ω∗

t

∫
0

e
−ω∗(t−τ)P(τ)

M
dτ + 1

γ
√
β
dξ =

= −Q̇ + ω∗

⎛
⎜⎜
⎝

t

∫
0

e
−ω∗(t−τ)P(τ)

M
dτ − 1

γ
√
β
ξdt

⎞
⎟⎟
⎠
+

√
2ω∗

γβ
dWt

ds = −Q̇ − ω∗s +

√
2ω∗

γβ
dWt.

This in turn means that we can write the evolution as a system of stochastic
differential equations in the Ito sense:

Q̇ =
P
M
, (2.22a)

Ṗ = −V
′(Q) + γs, (2.22b)

ṡ = −
P
M

− ω∗s +

√
2ω∗

βγ
Ẇ (2.22c)

with initial conditions denoting (Q0,P0, s0 =
1

γ
√
β
ξ0). Unlike in the original paper,

here we are using a general frequency parameter ω∗. The similarity of Equation
(2.22) to Equation (2.18) motivates us to focus in the following section on the
resolved variables (Q, P, s).

2.2 The Lack-of-fit Reduction
We will follow the steps outlined in Section 1.3.2. For simplicity, the Kac-Zwanzig
model will be in one dimension and the potential V (Q) will be harmonic, i.e.
V (Q) = αQ

2

2 .
The first step is formulating the upper evolution (from Equation (1.14)).

The detailed evolution is reversible and as such has zero dissipation potential ↑Ξ.
However, we will need to maximise the upper entropy of the system ↑

S. This
leads us to abandon the exact canonical description, used in the previous section,
and instead use normalised distribution functions f as our upper variables. The
distribution functions have continuous parameters Q,P, q1, p1, ...qN , pN , i.e. posi-
tions and momenta of (N+1) particles. The microscopic evolution is found using
the Liouville equation:

25



∂f

∂t
= {f, E}(f) = N !

N

∑
i=0

[ ∂f
∂pi

∂Ef
∂qi

−
∂f

∂qi

∂Ef
∂pi

] , (2.23)

where q0 = Q, p0 = P and Ef =
δE

δf
. This evolution corresponds to the Poisson

bivector, which acts on A,B as functions of the distribution f :

{A,B}(f) = N !∫ ...∫ dQdPd[i]f
N

∑
i=0

[ ∂

∂qi
(δA
δf

) ∂

∂pi
(δB
δf

)−

−
∂

∂qi
(δB
δf

) ∂

∂pi
(δA
δf

) ].
(2.24)

The microscopic entropy has the form:

↑
S = −

kB
N ! ∫ ∫ ...∫ f ln (h(N+1)

f) dQdPd[i] (2.25)

and the total energy of the system is

↑
E(f) = E(f) = 1

N ! ∫ ∫ ...∫ fe dQdPd[i], (2.26)

where e = 1
2M P

2 + αQ
2

2 +
N

∑
i=1

[ p
2
i

2mi
+ γ

2N (qi −Q)2].
The second step is the formulation of the lower variables, i.e. the projection

on the lower variables. The macroscopic variables will be (Q,P, s), as was the
second case in the previous section. Since the microscopic description are the
distribution functions, our projection will be the mean values:

Q(f) = 1
N ! ∫ ∫ ...∫ fQ dQdPd[i], (2.27a)

P (f) = 1
N ! ∫ ∫ ...∫ fP dQdPd[i], (2.27b)

s(f) = 1
N ! ∫ ∫ ...∫ f ( 1

N

N

∑
i=1

qi −Q) dQdPd[i]. (2.27c)

Above that we need to control the temperature of the system and therefore the
fourth variable will be the energy of the system E. Together we write the lower
variables y = (Q,P , s, E).

The third step is the static reduction, i.e. entropy ↑
S is maximised with

constrains corresponding to the lower variables (Q,P , s, E) and also to the nor-
malisation of the distribution function:

δ

δf
[−↑

S(f) +QQ
∗
+ PP

∗
+ ss

∗
+ EE

∗
+ ν

∗
⋅ 1] = 0. (2.28)

The functional derivatives are calculated from the defining equations (2.27), (2.25)
and (2.26):
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δQ

δf
=
Q

N ! ,
δP

δf
=
P

N ! ,
δs

δf
=

s

N ! , (2.29)

δ
↑
S

δf
= −

kB
N ! (ln (h(N+1)

f) + 1) , δ
↑
E

δf
=

e

N ! . (2.30)

The extremal distribution is calculated as:

f̃ =
1

hN+1 exp (−ν
∗

kB
− 1) exp (−QQ

∗

kB
) exp (−PP

∗

kB
) exp (−ss

∗

kB
) exp (−eE

∗

kB
).

(2.31)
The conjugate variables are (Q∗

, P
∗
, s

∗
, E

∗
, ν

∗). Before further calculations of
the conjugate variables as functions of the desired macroscopic evolution, we will
determine the normalisation ν

∗(Q∗
, P

∗
, s

∗
, E

∗):

I

N ! ≡
1
N ! ∫ dQ∫ dP ∫ dq1 ∫ dp1...∫ dqN ∫ dpN f̃ !

= 1.

The integral I can be calculated in two parts, first for the momenta and second
for the positions. The integral over the space of momenta is:

∫ dPe
− 1

2kB
(E∗ P

2
M

+2PP∗) N

∏
i=1

∫ dpie
−E

∗

kB

p
2
i

2mi = (2πkB
E∗ )

N+1
2 √

M [∏
i

√
mi] e

M(P∗)2
2kBE∗ ,

which is calculated using the Gaussian integration. The integral over positions
is calculated as multivariate normal distribution, i.e. Gaussian integration for
matrices:

IQqi
= ∫ dQ∫ d[qi]e−

E
∗

2kB
(2qT ⋅b+qT Ãq)

= ∫ dQ∫ d[qi]e
− 1

2(2
√

E∗

kB
qT ⋅b+qT

Aq)
,

A =

⎛
⎜⎜
⎝

(α + γ) − γ

N
...

− γ

N

γ

N
I

...

⎞
⎟⎟
⎠
,b = (Q

∗−s∗

E∗ , s
∗

E∗N
...) ,

where A is the inverse of the covariance matrix and with b we would calculate
the mean values. Finally we write

IQqi
= (2πkB

E∗ )
N+1

2 e
− E

∗

2kB
bT

A
−1b

√
detA

= (2πkB
E∗ )

N+1
2 1√

α
[∏

i

√
N
γ ] e

(Q∗)2
α +

(s∗)2
γ

2kBE∗ .

Putting the calculations together gives:

I

N ! =
e
− ν

∗

kB
−1

hN+1N !
(2πkB
E∗ )

N+1
√
M
α [∏

i

√
miN
γ ] exp

(Q∗)2

α
+ (s∗)2

γ
+M(P∗)2

2kBE∗
!
= 1
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and as a result we write the normalisation:

ν
∗(y∗) = Σ

E∗ − (N + 1)kB ln (E
∗
h̷

kB
) − kB ln (N !) − kB+

+
kB
2 ln (Mα ) + kB

2

N

∑
i=1

ln (miN
γ ),

where y∗
= (Q∗

, P
∗
, s

∗
, E

∗) will be from now on the vector of the conjugate
lower variables. We denote for brevity

Σ =
(Q∗)2

2α +
(s∗)2

2γ +
M(P∗)2

2 . (2.32)

From Equation (2.27) and (2.26), we will find the conjugate variables as func-
tions of the resolved variables y = (Q,P , s, E). A useful observation is

yi = −
kB
N !

∂I

∂y∗
i

»»»»»»»»»»ν∗=const.
,

from which we get the functions y(y∗):

y = (− Q
∗

αE∗ ,−
MP

∗

E∗ ,−
s
∗

γE∗ ,
1
E∗ (kB(N + 1) + Σ

E∗)) , (2.33)

as well as the conjugate variables y∗(y):

y∗
= (−αQE∗

,−
P

M
E

∗
,−γsE

∗
,
kB(N + 1)

U
) , (2.34)

where U = E − 1
2 (αQ

2
+ P

2

M
+ γs

2).
From Equation 2.28 we get the entropy ↓

S
∗(y∗) and by a full Legendre trans-

form we arrive at the lower entropy:

↓
S(y) = kB(N + 1) ln U

h̷
+ S0, (2.35)

with the constant S0 given by:

S0 = kB (1
2 [ln (Mα ) −

N

∑
i=1

ln (miN
γ )] − lnN ! − (N + 1) (ln(N + 1) − 1)) .

The fourth step is the calculation of the apparent lower-level energy from
Equation (2.56), calculated as ↑

E(f(y∗(y(f)))):

↑
E(f) = 1

2 (αQ2(f) + P
2(f)
M

+ γs
2(f)) + h̷ exp

↓
S(y(f)) − S0

kB(N + 1) . (2.36)

In step five, the residuum (defined in Equation (2.39)) will introduce ẏ∗
=

(Q̇∗
, Ṗ

∗
, ṡ

∗
, Ė

∗) as our new variables. The residuum also parametrically depends
on (Q,P, qi, pi) vie the maximal distribution f̃ :
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R = {f̃ ,↑E}(f) − ∂ f̃
∂y∗

a
ẏ∗
a .

We will use the Liouville equation (2.23) for the first term {f,↑E}(f):

δ
↑
E

δf
= −Q

∗ Q

E∗N ! − P
∗ P

E∗N ! − s
∗ s

E∗N ! + h̷
e

↓
S(y(f))−S0
kB(N+1)

kB(N + 1)
δ
↓
S(y(f))
δf

.

For convenience, we denote ♠ ≡ h̷ exp
↓
S(y(f))−S0
kB(N+1) and from the MaxEnt equation

(2.28) we have

δ
↓
S(y(f))
δf

=
1
N ! (eE

∗
+QQ

∗
+ PP

∗
+ ss

∗) .

The necessary derivatives are:

−
∂ f̃
∂Q

=

f̃ [Q∗ − s
∗ + ∂e

∂Q
E

∗]
kB

,
∂
↑
Ef

∂P
=

1
N ! (−

P
∗

E∗ +♠ (P ∗
+ E

∗ ∂e

∂P
)) ,

∂ f̃
∂P

= −
f̃
kB

[P ∗
+
∂e

∂P
E

∗] ,
∂
↑
Ef

∂Q
=

1
N !(

s
∗ −Q

∗

E∗ +

+♠ (Q∗
− s

∗
+ E

∗ ∂e

∂Q
) ),

−
∂ f̃
∂qi

=
f̃
kB

[s
∗

N
+
∂e

∂qi
E

∗] ,
∂
↑
Ef

∂pi
=

♠
N !

∂e

∂pi
E

∗
,

∂ f̃
∂pi

= −
E

∗

kB

∂e

∂pi
f̃ ,

∂
↑
Ef

∂qi
=

1
N ! (

s
∗

N
+♠

∂e

∂qi
E

∗) .

The second term ∂f

∂y∗
a
ẏ∗
a requires further derivatives:

∂ f̃
∂Q∗ = −

f̃
kB

(Q +
Q

∗

E∗α
) ,

∂ f̃
∂P ∗ = −

f̃
kB

(P +
MP

∗

E∗ ) ,

∂ f̃
∂s∗

= −
f̃
kB

(s + s
∗

E∗γ
) ,

∂ f̃
∂E∗ = −

f̃
kB

(E −
1
E∗ ( Σ

E∗ + kB(N + 1))) .

Thus we arrive at the residuum:

R =
f

kB
[(y∗T

, ẏ∗T )V − ẏ∗Ty(y∗)] , (2.39)

where the dependence on the parameters (Q,P, qi, pi) is only in the vector V:
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VT
= ( P

M
, γs − αQ,−

P

M
+

1
N

∑
i

pi
mi
, 0, Q, P, s, e).

In step six Lagrangian is calculated from the defining equation (1.17) using
the residuum (2.39):

L = −
1
2 ∫ dQ′ ∫ dQ∫ dP′ ∫ dP...∫ dp′

N ∫ dpNR(f ′)δ
2(↑S)
δf ′δf

R(f).

The summation over discrete indices in Equation (1.17) is replaced by integration
over the parametric space of f . Using Equation (2.30), the Hessian of the upper
entropy is:

δ
2(↑S)
δf ′δf

= −
kB
N !

1
f
δ(Q −Q

′)δ(P − P
′)δ(1 − 1′)...δ(N −N

′).

The Dirac functions will cancel out half of the integrals and the rest will result
in mean values ⟨⋅⟩, arriving at the Lagrangian:

L =
1
2(y

∗T
, ẏ∗T ) ( A B

BT C) (
y∗

ẏ∗) , A = AT
∈ R4×4

, B ∈ R4×4
, C = CT

∈ R4×4
.

(2.40)
The matrices A,B and C are:

A =
1
E∗

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
M

0 − 1
M

0
0 α + γ 0 0

− 1
M

0 1
M

+ ω2

γ
0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠
, (2.41)

where ω2
=

1
N
∑
i

ω
2
i ,

B =
1
E∗

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 −P
∗

E∗

−1 0 1 Q
∗−s∗

E∗

0 −1 0 P
∗

E∗

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠
, (2.42)

C =
1
E∗

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
α

0 0 − Q
∗

E∗α

0 M 0 −MP
∗

E∗

0 0 1
γ

− s
∗

E∗γ

− Q
∗

E∗α
−MP

∗

E∗ − s
∗

E∗γ

kBE
∗(N+1)+2Σ
(E∗)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(2.43)

with Σ from Equation 2.32.
Step seven is computing the Legendre transform of the Lagrangian:

H = −L + zaẏ∗
a(y

∗
, z), (2.44)

where za = − ∂ψ

∂y∗
a
=

∂L
∂ẏ∗

a
. The inverse transformation ẏ∗(y∗

, z) is found from:
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z = BTy∗
+ Cẏ∗

and therefore is:

ẏ∗
= C−1 (z − BTy∗) . (2.45)

From calculations, we get the inverse matrix C−1:

C−1
= E

∗diag (α, 1
M
, γ, 0) + 1

kB(N + 1)

⎛
⎜⎜⎜⎜⎜⎜
⎝

Q
∗

P
∗

s
∗

E
∗

⎞
⎟⎟⎟⎟⎟⎟
⎠
(Q∗

, P
∗
, s

∗
, E

∗) .

(2.46)

The eight step is formulating and solving the Hamilton-Jacobi equation for
ψ in the form given by Equation (1.19). Placing H = 0 and z ≡ − ∂ψ

∂y∗ leads to
the key partial differential equation and since C−1

= (C−1)T , we can write:

0 =
1
2 [−y∗TAy∗

+ ( ∂ψ
∂y∗

T

+ y∗TB)C−1 ( ∂ψ
∂y∗ + BTy∗)] . (2.47)

Few simplifications will be made in order to solve this equation:
The first simplification is that E∗, as an inverse temperature, is constant (we

are working in an isothermal system) and we will neglect the dependence of ψ
on E

∗. Therefore, instead of E∗ we will write from now on 1
T

and replace four
by four matrices by matrices three by three, crossing out the fourth column and
row. The second simplification is the negligence of higher orders of the conjugate
variables Q∗

, P
∗ and s

∗. Combining the two simplifications gives the matrices
A,B and C−1 in the form:

A = T

⎛
⎜⎜⎜⎜
⎝

1
M

0 − 1
M

0 α + γ 0
− 1
M

0 1
M

+ ω2

γ

⎞
⎟⎟⎟⎟
⎠
, B = T

⎛
⎜⎜
⎝

0 1 0
−1 0 1
0 −1 0

⎞
⎟⎟
⎠

C−1
=

1
T

⎛
⎜⎜
⎝

α 0 0
0 1

M
0

0 0 γ

⎞
⎟⎟
⎠
.

The third simplification is taking a near-equilibrium system, for which ψ =

T

2 y∗TMy∗ with M being a symmetric three by three matrix.
Derivative of the dissipation potential is ∂ψ

∂y∗ = TMy∗ and the Hamilton-Jacobi
partial differential equation is now a set of algebraic equations:

y∗TAy∗
= (y∗TB + Ty∗TM)C−1 (BTy∗

+ TMy∗)
and after multiplying the matrices, we arrive at:

−MC−1M −MC−1BT − BC−1M + A − BC−1BT = 0, (2.48)

where matrices are written without the coefficient T . Equation (2.47) then be-
comes a set of 6 equations for 6 unknown elements of the matrix M. Thus we
have is the regulator problem of a Riccati equation. We can readily use theorems
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about existence and uniqueness of solutions from [12], outlined in Section 1.3.1.
Since we are describing a dissipative solution, the matrix needs to be convex
(the property written in equation (1.10)). This solution is then called stabilising
solution. The theorems build on the properties of matrices C−1BT :

C−1BT =

⎛
⎜⎜
⎝

0 −α 0
1
M

0 − 1
M

0 γ 0

⎞
⎟⎟
⎠

G ≡ (A − BC−1BT):

G =

⎛
⎜⎜⎜
⎝

0 0 0
0 0 0
0 0 ω2

γ

⎞
⎟⎟⎟
⎠

and C−1. In the theorems from Subsection 1.3.1, the matrices G and C−1 are in
the form of a multiplication between some matrix and its transpose. However,
both G and C−1 are diagonal and thus this split is a trivial square root of the
diagonal terms and so we can use in the theorems the original forms G and C−1

instead of the square root.
In Theorem 1, the necessary and sufficient condition for existence of the sta-

bilising solution is that the pair (C−1BT , C−1) is stabilizable (Definition 2) and
Reλ ≠ 0 for all eigenvalues λ of M. The first condition holds since C−1 is diagonal
and finding the matrix L from the theorem, i.e. such that non diagonal elements
are zero and diagonal is negative, is trivial.

In Theorem 2 the necessary and sufficient condition for uniqueness of such
solution is that the pair (G, C−1BT ) is detectable (Definition 3). For that we
need to find the eigenvalues of C−1BT :

C−1BT =

⎛
⎜⎜
⎝

0 −α 0
1
M

0 − 1
M

0 γ 0

⎞
⎟⎟
⎠
, λ0 = 0, λ± = ±i

√
α + γ

M
,v0 =

⎛
⎜⎜
⎝

1
0
1

⎞
⎟⎟
⎠
,v± =

⎛
⎜⎜⎜
⎝

−α

±i
√
α+γ
M

γ

⎞
⎟⎟⎟
⎠
.

None of the eigenvectors lies within the kernel of the matrix G and thus the
Theorem 2 holds.

With this knowledge, we may find the nonnegative real solution of the equa-
tions. First, we will make an ansatz inspired by the results a numerical cal-
culation done using the programming language Julia, using the package Ma-
trixEquations.jl [21]. Let us approximate the values of the matrix elements
m13 ≈ m̃13,m23 = −1 + m̃23, so that m̃2

13 ≈ 0, m̃2
23 ≈ 0 and m̃23m̃13 ≈ 0. The

tilde denotes small perturbations from the approximate value. This leads to the
decoupling of the six equations (2.48) to two sets with three equations each. The
first set is for the matrix elements m11,m12 and m22:

αm
2
11 +

1
M
m

2
12 +

2m12
M

= 0,

αm
2
12 +

1
M
m

2
22 − 2αm12 + γ = 0,
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αm11m12 +
1
M
m12m22 − αm11 +

m22
M

= 0.

The solution can be found using the software Mathematica [22]. There are two
sets of solutions, two of the solutions are purely real, two purely imaginary and
each pair has the same absolute value:

m11 = ±

√
γ − 4αm12
αγM

, m12 =
2α − γ − 2

√
α(α − γ)

γ ,

m22 =M
√
α(α − γ)m11,

m11 = ±

√
γ − 4αm12
αγM

, m12 =
2α − γ + 2

√
α(α − γ)

γ ,

m22 = −M
√
α(α − γ)m11.

(2.49)

The second set uses these solutions to calculate the other three elements,
without imposing the approximation:

αm
2
13 +

1
M
m

2
23 + γm

2
33 +

2m23
M

=
ω2

γ ,

αm11m13 +
1
M
m12m23 + γm13m33 +

m12 −m23
M

= 0,

αm12m13 +
1
M
m22m23 + γm23m33 + αm13 +

m22
M

− γm33 = 0.

This set of equations can again be solved using Mathematica, but the final form
is rather long and would not fit on the page, so we will not be writing it here.
All three are approximately constant m13 ≈ 0,m23 ≈ −1,m33 ≈

√
ω2

γ
. Overall,

when taking into account that the matrix M is positive definite, the results are
approximately:

m11 =

√
γ − 4αm12
αγM

, m12 =
2α − γ − 2

√
α(α − γ)

γ , m13 = 0, (2.50a)

m22 =M
√
α(α − γ)m11, m23 = −1, m33 =

√
ω2

γ , (2.50b)

where we can see that the values m13 and m23 are in accordance with our ap-
proximation.

The Riccati equation can be solved numerically using the programming lan-
guage Julia, as was said above. Comparing the approximate but analytical so-
lution found through Mathematica with this numerical solution for some given
parameters α, γ, ω2 and M shows similar results. However, the approximation can
be used only for some set of parameters α, γ,M and ω2. In Chapter 3, we will
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numerically compare the values calculated in (2.50) with the numerical values.
With the solution, we found the dissipation potential, which has the form:

ψ =
T
2 y∗TMy∗

≈
T
2 y∗T

⎛
⎜⎜⎜⎜
⎝

m11 m12 0
m12 m22 −1

0 −1
√
ω2

γ

⎞
⎟⎟⎟⎟
⎠

y∗ (2.51)

For the final equations, a transition of the Poisson bracket is needed as well.
This will be done by the change of variables in Equation (2.24), i.e. starting from
this equation, we expect the functions to be A = A(Q,P , s), B = B(Q,P , s). By
chain rule, we have

δA

δf
=
∂A

∂ya
δy

a

δf

Using Equation (2.29) and denoting ∂A

∂ya = Aya , we have:

{A,B}(f) = N !∫ ...∫ dQ...dNf [ ∂

∂Q
(AQ

δQ

δf
+ As

δs

δf
) ∂

∂P
(BP

δP

δf
) − ..]

Since none of the differentials from Equation (2.29) is dependent on pi, all the
terms with derivatives of the unresolved particles drop out. The final result is

∂A

∂ya
↓
L
ab ∂B

∂yb
=

↓{A,B} = (AQ − As)BP − (BQ −Bs)AP . (2.52)

We can now, in step nine of the procedure, write the evolution equations
for Q,P and s, using the energy given in Equation (2.36) and the lower Poisson
bivector 2.52. The detailed evolution can be also found simply by writing y∗(y)
in Equation (2.45). These two roads lead to the same endpoint (as was shown
in Equation (1.20)) and thus we verified the accuracy of our calculations. The
evolution equations are:

Q̇ =
P

M
−m11αQ −m12

P

M
−m13γs, (2.53a)

Ṗ = γs − αQ −m12αQ −m22
P

M
−m23γs, (2.53b)

ṡ = −
P

M
−m13αQ −m23

P

M
−m33γs. (2.53c)

When we apply the approximate solution (2.50) on Equation (2.53), we have:

Q̇ = (1 −m12)
P

M
−m11αQ, (2.54a)

Ṗ = −(1 +m12)αQ −m22
P

M
+ 2γs, (2.54b)

ṡ = −
√
ω2s. (2.54c)

Before concluding this chapter, we will study the other choice of variables.
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2.2.1 Solution for the Lower Variables (Q,P)
The calculations for the choice (Q,P ) are very similar to the calculations done
in the previous subsection. Therefore, we can only review the results.

Step one is the same detailed evolution, i.e. the Liouville equation (2.23).
Step two are projections for Q and P given in the equations (2.27 a,b)

respectively and the energy given in Equation (2.26).
Step three gives the distribution function:

f̃ =
1

hN+1 exp−
ν
∗

kB
− 1 exp−

QQ
∗

kB
exp−

PP
∗

kB
exp−

eE
∗

kB
, (2.55)

with the normalisation constant, denoting

ΣQP =
(Q∗)2

2α +
M (P ∗)2

2 ,

we write the normalisation constant:

ν
∗(y∗) =

ΣQP

E∗ − (N + 1)kB ln (E
∗
h̷

kB
) − kB ln (N !) − kB+

+
kB
2 ln (Mα ) + kB

2

N

∑
i=1

ln (miN
γ )

and the entropy:

↓
S(y) = kB(N + 1) ln U

h̷
+ S0 (2.56)

where U = E − 1
2 (αQ

2
+ P

M
) and S0 is given as

S0 = kB (1
2 [ln (Mα ) −

N

∑
i=1

ln (miN
γ )] − lnN ! − (N + 1) (ln(N + 1) − 1)) .

Step four is the apparent lower-level energy:

↑
E(f) = 1

2 (αQ2(f) + P
2(f)
M

) + h̷ exp
↓
S(y(f)) − S0

kB(N + 1) . (2.57)

Step five gives the residuum:

R =
f

kB
[(y∗T

, ẏ∗T )V − ẏ∗Ty(y∗)] ,

VT
= ( P

M
,−αQ −

γ

N
∑
i

(Q − qi) , 0,Q,P, e).

In step six, the Lagrangian starts deviating a bit more from the previous
calculations:

L =
1
2(y

∗T
, ẏ∗T ) ( A B

BT C) (
y∗

ẏ∗) , A = AT
∈ R4×4

, B ∈ R4×4
, C = CT

∈ R4×4
.

(2.58)
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A =
1
E∗

⎛
⎜⎜
⎝

1
M

0 0
0 α + γ 0
0 0 0

⎞
⎟⎟
⎠
,B =

1
E∗

⎛
⎜⎜⎜
⎝

0 1 −P
∗

E∗

−1 0 Q
∗

E∗

0 0 0

⎞
⎟⎟⎟
⎠
, (2.59)

C =
1
E∗

⎛
⎜⎜⎜⎜⎜
⎝

1
α

0 − Q
∗

E∗α

0 M −MP
∗

E∗

− Q
∗

E∗α
−MP

∗

E∗

kBE
∗(N+1)+2ΣQP

(E∗)2

⎞
⎟⎟⎟⎟⎟
⎠
. (2.60)

Step seven is the same as before, but C−1 takes the form:

C−1
= E

∗diag (α, 1
M
, 0) + 1

kB(N + 1)
⎛
⎜⎜
⎝

Q
∗

P
∗

E
∗

⎞
⎟⎟
⎠
(Q∗

, P
∗
, E

∗) . (2.61)

Step eight will again require the same approximations as in the previous
section (i.e. constant temperature, neglecting higher orders of Q∗

, P
∗ and the

near equilibrium ansatz) and the solution of the Riccati equation, which gives a
positive definite matrix, is:

m11 =

√
γ + 4αm12
αγM

, m12 =
−2α − γ + 2

√
α(α + γ)

γ ,

m22 =M
√
α(α + γ)m11,

(2.62)

which is almost the same as in Equation (2.50). The resulting dissipation poten-
tial is:

ψ =
T
2 y∗T (

√
γ+4αm12
αγM

m12

m12 M
√
α(α + γ)m11

)y∗ (2.63)

In Step nine, the final set of differential equations is:

Q̇ =
P

M
−m11αQ −m12

P

M
, (2.64a)

Ṗ = −αQ −m12αQ −m22
P

M
. (2.64b)

With this choice of variables, there is no longer any dependence on the distribution
of the frequencies ωi. Both solutions suggests, that as a result of the lack of fit,
the potential changes into an effective potential and the same happens for the
mass, owing to the terms proportional to Q and P .
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2.3 Summary
In this chapter, we have applied the methods studied in Chapter 1 on the Kac-
Zwanzig model. The Kac-Zwanzig model is a system of N+1 particles, with N
of the particles being considered an undistinguishable. Above that the system is
connected to a heat bath with constant temperature T , making the system an
isothermal one.

In Section 2.1, we applied the Mori-Zwanzig formalism for two choices of
projections – first of them is the position and momentum of the distinguished

particle (Q,P) and the second choice is (Q,P,s), where s =
1
N

N

∑
i=1
qi − Q. We

made a detailed derivation of the orthogonal evolution for the choice of resolved
variables (Q, P, s). The solution of (Q, P) was straightforward and required
no such thing. In the end, we arrived at two sets of equations, each of them
having only one equation with memory kernel and a random force. The evolution
equations for (Q, P, s) are an original result of this thesis.

Before proceeding to the second method, we reviewed results presented in [16]
of a limit as N → ∞ for the projection (Q,P). This led to a set of stochastic
differential equations, which resembled the equations for projection (Q, P, s).
This resemblence was the motivation for the choice of resolved variables (Q,P,s)
in the first place.

In Section 2.2. , we went through the algorithm of the lack-of-fit reduction out-
lined in the subsection 1.3.2. On the upper level we opted for a description with
distribution functions f . The lower variables were the mean values (Q,P , s, E)
as well as (Q,P ,E), with energy being a variable in order to introduce tempera-
ture to the system. For (Q,P , s) we went through all the calculations needed in
detail, whereas for (Q,P ) only results were given. When solving the Hamilton-
Jacobi equation, we set the temperature constant and made a near-equilibrium
quadratic ansatz of the dissipation potential. This gave us the Riccati equation
and in turn the final evolution equations. In contrast to our theory, the dis-
sipation potential has both reversible and irreversible terms. This suggests an
appearance of effective potentials and masses. The calculations done in Section
2.2 with the resulting evolution equations are an original work, which tests the
lack-of-fit theory as formulated in [10].

The following section will examine the comparison of the equations we ob-
tained in this chapter with the help of numerical experiments.
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3. Comparison through
Numerical Experiments
In this last section, we will examine how the theoretical methods correspond to
a numerical experiment as well as to each other. In the numerical simulation,
we model the stochastic differential equations (2.22) and the ordinary differential
equations (2.64) and (2.53). Both simulations are done in the programming lan-
guage Julia. The ODE integrator is chosen by the programming language itself,
as is recommended in the official documentation for the package DifferentialE-
quation.jl [21]. An argument ”alg hints=[:stiff]” was used to ensure small error
in case the problem was stiff. Our stochastic differential equation (SDE) is an
Itô problem [23] and therefore the SDE integrator is chosen by recommendation
to be SOSRI with an adaptive step [21]. The SOSRI integrator was tested for
several decreasingly small step sizes and the results matched the adaptive step.
These choices of integrators thus should be sufficient on the studied time scales.

Before the numerical experiments, we will first compare the form of the evo-
lution equations.

3.1 Comparison of the Equations
We will study the comparison of the evolution equations resulting from the Mori-
Zwanzig formalism (2.17) and (2.18), with the lower-level evolution equations
given by the lack-of-fit reduction (2.64) and (2.53). The lack-of-fit reduction
was done in the one-dimensional case and with the harmonic potential, therefore
we will impose this on the Mori-Zwanzig equations as well. Furthermore, the
comparison can be done only after finding the mean values of the equations with
respect to the distributions f̃ . For the resolved variables (Q,P ), the extremal
distribution is a multivariate normal distribution with the means

(µQ, µqi, µP , µpi) = (Q,Q, P , 0)

and the covariance matrix

Σ = (Σq 0
0 Σp

) ,Σq =
1
β

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1
α

1
α

1
α

...
1
α

1
α
+ N

γ

1
α

...
1
α

1
α

1
α
+ N

γ
...

...

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠
,Σp =

1
β

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1
M

0 0 ...

0 1
m1

0 0 ...

0 0 1
m2

0 ...

...

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠
.

For the resolved variables (Q,P, s), the extremal distribution is a multivariate
normal distribution with the mean values

(µQ, µqi, µP , µpi) = (Q,Q + s, P , 0)

and the same covariance matrix Σ.
Both forces F and Fs have a zero mean and when using the harmonic po-

tential, the equations (2.17) and (2.18) are linear in all initial conditions. As a
consequence, we have the equations for (Q,P , s):
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∂

∂t
S
t
Q = S

t ( P
M

) , (3.1a)

∂

∂t
S
t
P = −S

t(αQ) + S
t(γs), (3.1b)

∂

∂t
S
t
s = −S

t P

M
−

t

∫
0

Ks(u)St−usdu, (3.1c)

and also for (Q,P ):

∂

∂t
S
t
Q = S

t ( P
M

) , (3.2a)

∂

∂t
S
t
P = −S

t(αQ) −
t

∫
0

K(u)St−u P
M

du. (3.2b)

The reversible part of the evolutions is the same as the parts corresponding to the
Poisson bracket in equations (2.53) and (2.64). However, the lack-of-fit reduction
has additional terms from the dissipation potential. Further analysis requires
either closer examination of the dissipation matrices M or moving to the limit
N → ∞, where the equations (2.17) become a system of stochastic differential
equations (2.22).

We will first focus more on the lack-of-fit solutions. The solution for resolved
variables (Q,P, s) is a matrix exponential of the matrix Sol:

Sol =
⎛
⎜⎜
⎝

−αm11
1
M

(1 −m12) −m13γ

−α (1 +m12) −m22
M

(1 −m23) γ
−m13α − 1

M
(1 +m23) −m33γ

⎞
⎟⎟
⎠
.

By the Gershgorin circle theorem [24] the eigenvalues are within circles in the
imaginary plane:

∣λ + αm11∣ ≤ α (∣m13∣ + ∣1 +m12∣) , (3.3a)

∣λ + αm11∣ ≤
1
M

∣1 −m12∣ + γ∣m13∣, (3.3b)
»»»»»»λ +

m22
M

»»»»»» ≤
1
M

(∣1 −m12∣ + ∣1 +m23∣) , (3.3c)
»»»»»»λ +

m22
M

»»»»»» ≤ α ∣1 +m12∣ + γ ∣1 −m23∣ , (3.3d)

∣λ +m33γ∣ ≤ γ (∣1 −m23∣ + ∣m13∣) , (3.3e)

∣λ +m33γ∣ ≤ α∣m13∣ +
1
M

∣1 +m23∣ . (3.3f)

We may expect that for large m33γ (i.e. large second moment of the distribution
of the frequencies) the circle defined in (3.3e,f) is disjoint from the other two. We
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may also expect one of the eigenvalues to be λ = −m33γ ≈ −ω2, which would give
us a time scale of damping. Let us examine the numerical solutions for different
parameters, which will give us a better notion of the results and how they align
with our approximate solutions (2.50). In each of the figures 3.1-3.3, we show
nine contour plots: three of them (displayed in the first column) correspond to the
numerical values of m11,m12 and m22, another three (second column) show the
difference Rij, i, j ∈ {1, 2} between these numerical values and the corresponding
approximate solutions (2.50) and the last three show the difference from the
approximate solution for the last three matrix elements R13 = m13, R23 = m23+1
and R33 = m33 −

ω2

γ
. Note that in the previous section R13 and R23 were denoted

m̃13, m̃23.
With larger ω2 (as well as with larger M) the precision of the approximation

of the elements m13,m23 and m33 grows. The rift in the values of R12, R11 and
R22 is caused by the fact that for certain values our approximation is no longer
sufficient and gives purely imaginary results. Thus, we search for an absolute
value under the square root, even though perhaps different root from 2.49 would
give better results.

Now we can compare the results with the equation (3.1). The first equation
(3.1a) is the same as in the lack-of-fit evolution if m1i were 0,∀i. In the figures we
see that with larger M and ω2, m13 is almost zero. Large M will also decrease the
influence of the element m12. The term m11 would then require larger values of γ
so that we may choose smaller α. The equation for s in this case would be almost
precisely corresponding to the evolution equation (2.54c) and therefore would be
different from the equation (3.1c). This would disrupt the similarities between
the solutions from the Mori-Zwanzig formalism and the lack of fit reduction. As
such, the lack-of-fit reduction has more prominent damping terms.

The comparison of the equations for the variables (Q,P ) is more straight
forward, but similar in nature. In the solution of M, the value of m22, which we
expect to stand in place of the memory kernel, is directly proportional to m11,
which is zero in the Mori-Zwanzig equations.

The comparison of the SDE (2.22) and the two sets of ODEs from the lack-
of-fit procedure (2.53), (2.64) is troublesome. To reach the equations (2.22), we
needed to have the frequencies ωi from the Cauchy distribution. However, the
second moment of the Cauchy distribution, necessary for the calculations of M,
is infinit. Nevertheless, we will compare the equations numerically and opt for a
large value of the second moment.

3.2 Numerical comparison of lack-of-fit and SDE

In the first comparison, we will fix α = 10, β = 300, ω2
= 108, initial conditions

(Q0, P0, s0) = (1, 0, 0) and observe the behaviour of the solutions for different
M and γ. The comparison starts with larger set of values for M within each
figure and different choice of γ for the different figures, thus placing focus on the
dependence on M . The results are ploted in Figures 3.4, 3.5 and 3.6
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Figure 3.1: Numerical values of the elements of the dissipation matrix M and the
differences Rij from the calculated approximate values (2.50).We fixed M = 50,
ω2

= 102, α ∈ (0.1, 250) and γ ∈ (0.5, 550). The approximate values of the
elements (m13,m23,m33) are given as (0,−1, ω2

γ
) and only the difference Rij from

the numerical value is plotted. The values of the matrix elements displayed on
the colorbars are scaled as is stated in above the colour bars.
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Figure 3.2: Numerical values of the elements of the dissipation matrix M and the
differences Rij from the calculated approximate values (2.50).We fixed M = 50,
ω2

= 108, α ∈ (0.1, 250) and γ ∈ (0.5, 550). The approximate values of the
elements (m13,m23,m33) are given as (0,−1, ω2

γ
) and only the difference Rij from

the numerical value is plotted. The values of the matrix elements displayed on
the colorbars are scaled as is stated in above the colour bars.
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Figure 3.3: Numerical values of the elements of the dissipation matrix M and the
differences Rij from the calculated approximate values (2.50).We fixed M = 5,
ω2

= 108, α ∈ (0.1, 250) and γ ∈ (0.5, 550). The approximate values of the
elements (m13,m23,m33) are given as (0,−1, ω2

γ
) and only the difference Rij from

the numerical value is plotted. The values of the matrix elements displayed on
the colorbars are scaled as is stated in above the colour bars.
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Figure 3.4: The time evolution of variables Q,P and s. Yellow and red lines are
indistinguishable and correspond to the lack-of-fit reduction, where s is the mean
distance of the cloud from the distinguished particle. Grayscale lines correspond
to the limit SDE, where s was variable, which replaced an exponential memory
kernel. Different hues from lighter to darker correspond to M ∈ {1, 6, 11, 16, 21}.
The SDE is a mean value of 400 runs.

Figure 3.5: The time evolution of variables Q,P and s. Yellow and red lines are
indistinguishable and correspond to the lack-of-fit reduction, where s is the mean
distance of the cloud from the distinguished particle. Grayscale lines correspond
to the limit SDE, where s was variable, which replaced an exponential memory
kernel. Different hues from lighter to darker correspond to M ∈ {1, 6, 11, 16, 21}.
The SDE is a mean value of 400 runs.
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Figure 3.6: The time evolution of variables Q,P and s. Yellow and red lines are
indistinguishable and correspond to the lack-of-fit reduction, where s is the mean
distance of the cloud from the distinguished particle. Grayscale lines correspond
to the limit SDE, where s was variable, which replaced an exponential memory
kernel. Different hues from lighter to darker correspond to M ∈ {1, 6, 11, 16, 21}.
The SDE is a mean value of 800 runs.

In these three figures, darker hues correspond to larger M , where M has five
values, M ∈ {1, 6, 11, 16, 21}. Additionally, each figure has different γ from the
set of values {1, 50, 500}, thus studying two degrees of freedom in the parameters.

In Figure 3.4, the spring constant γ is equal to 1. For all masses M , the
lack-of-fit solution dampens faster. Above that, with the initial condition s0 = 0,
the s has negligible value compared to the evolution of s from the SDE. The
damping changes only slightly in the chosen range of values, only the lowest mass
M = 1 shows significant difference on the chosen time interval. More significant
change happens with the oscillation frequency of both evolution. In the lightest
hues, we may also observe that the frequency of all the evolution coincides. In
the evolution of s for larger values of M , the stochasticity is more noticeable.

In Figure 3.5, we see that with γ = 50 the damping is more pronounced. The
lack-of-fit evolutions become overdamped, i.e. they no longer have oscillations.
The stochastic evolution is still underdamped for all M except for M = 1.

In Figure 3.6, the parameter was fixed to the value γ = 500 and all the evo-
lutions are overdamped. The speed of the damping differs dramatically between
the ordinary and stochastic equations even at time zero. The SDE has visibly
zero derivative of Q. On the other hand, the lack-of-fit equations, owing to the
term −αm11Q, have negative derivative and the damping is sped up. In this
figure it is especially clear. The source of the difference is likely linked to the fact
that the lack-of-fit reduction assumes free initial conditions and long time limit
t→ ∞. Future work should take this into account, building on the work done in
[25, 26, 27].

By comparing the figures 3.4 - 3.6, we observe several effects. First is that

45



with growing γ, the evolution is more damped for all methods. Furthermore,
with growing M both the oscillation and the damping slow down. Above that, we
might link the change of M mainly to the change of timescale of these phenomena.
We may expect the oscillation frequency to be connected to the natural frequency
Ω ≡

α

M
. Another observation is that since s = 0 for all times, the evolutions of

lack-of-fit solutions for (Q,P, s) and (Q,P ) are almost identical in the variables
Q and P in all figures.

From these observations we are lead to another set of parameter choices:
changing values of γ and α for a fixed Ω (Figure 3.7,3.8 and 3.12) and changes in
the initial condition of s (Figure 3.13).

Figure 3.7: The time evolution of variables Q,P and s. Yellow and red lines are
indistinguishable and correspond to the lack-of-fit reduction, where s is the mean
distance of undistinguished particles from the distinguished one. Grayscale lines
correspond to the limit SDE, where s was variable, which replaced an exponential
memory kernel. Different hues from lighter to darker correspond to γ ∈ {i}9

i=1
and the SDE is a mean value of 800 runs.

In Figure 3.7, all evolutions are around the transition between an under-
damped and overdamped system. Figure 3.8 visibly shows, that γ only changes
the speed of damping and has no effect on the frequency of oscillations. In the
following figure, 3.9, we observe that the damping of lack-of-fit evolution grows
faster with increasing γ than for the SDE. The SDE in the chosen time frame is
almost undamped for all γ.

In Figure 3.10, α is taken from the set of values {1, 6, 11, 16, 21} and since
Ω = 2 the value of mass M is also changed for each evolution, given by α as
{0.5, 3, 5.5, 8, 10.5}. An apt comparison is between the pairs of figures 3.4, 3.10
and 3.6 3.12. Let us note that the natural frequencies Ω in the figures 3.4-3.6
were approximately {10, 1.7, 0.9, 0.6, 0.5}. In Figure 3.4, we only saw the change
of frequency for any larger M than 1 and even for M = 1 only the SDE had faster
decline. On the other hand,the damping of the lack-of-fit solution in Figure 3.10
of Q is visibly decreasing with larger α and the grayscale SDE damps only for
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Figure 3.8: The time evolution of variables Q,P and s. Yellow and red lines are
indistinguishable and correspond to the lack-of-fit reduction, where s is the mean
distance of undistinguished particles from the distinguished one. Grayscale lines
correspond to the limit SDE, where s was variable, which replaced an exponential
memory kernel. Different hues from lighter to darker correspond to γ ∈ {i}9

i=1
and the SDE is a mean value of 800 runs.

Figure 3.9: The time evolution of variables Q,P and s. Yellow and red lines are
indistinguishable and correspond to the lack-of-fit reduction, where s is the mean
distance of undistinguished particles from the distinguished one. Grayscale lines
correspond to the limit SDE, where s was variable, which replaced an exponential
memory kernel. Different hues from lighter to darker correspond to γ ∈ {i}9

i=1
and the SDE is a mean value of 1000 runs.
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Figure 3.10: The time evolution of variables Q,P and s. Yellow and red lines
are indistinguishable and correspond to the lack-of-fit reduction, where s is the
mean distance of undistinguished particles from the distinguished one. Grayscale
lines correspond to the limit SDE, where s was variable, which replaced an ex-
ponential memory kernel. Different hues from lighter to darker correspond to
α ∈ {1, 6, 11, 16, 21} and the SDE is a mean value of 800 runs.

Figure 3.11: The time evolution of variables Q,P and s. Yellow and red lines
are indistinguishable and correspond to the lack-of-fit reduction, where s is the
mean distance of undistinguished particles from the distinguished one. Grayscale
lines correspond to the limit SDE, where s was variable, which replaced an ex-
ponential memory kernel. Different hues from lighter to darker correspond to
α ∈ {1, 6, 11, 16, 21} and the SDE is a mean value of 800 runs.
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Figure 3.12: The time evolution of variables Q,P and s. Yellow and red lines
are indistinguishable and correspond to the lack-of-fit reduction, where s is the
mean distance of undistinguished particles from the distinguished one. Grayscale
lines correspond to the limit SDE, where s was variable, which replaced an ex-
ponential memory kernel. Different hues from lighter to darker correspond to
α ∈ {1, 6, 11, 16, 21} and the SDE is a mean value of 800 runs.

Figure 3.13: The evolution of position Q and momentum P the distinguished
particle and the evolution of s. Yellow and red lines correspond to the lack-of-fit
reduction with resolved variables (Q,P ) and (Q,P, s) respectively. Here s is the
mean distance of undistinguished particles from the distinguished one. Grey and
black lines correspond to the limit SDE, where s was variable, which replaced an
exponential memory kernel. Different hues from lighter to darker correspond to
the initial condition of s ∈ {0, 10, 20} and the SDE is a mean value of 800 runs.

49



the smallest M = 0.5, α = 1. In figures 3.6 and 3.12, we see this more clearly –
change of M for fixed α changes the damping of the lack-of-fit solution and does
not change the SDE, whereas change in both M and α for fixed Ω changes the
SDE damping but does not alter the lack-of-fit evolution.

Last figure 3.14 shows the independence of all the evolutions on the second
moment ω2.

Figure 3.14: The evolution of position Q and momentum P the distinguished
particle and the evolution of s. Yellow and red lines correspond to the lack-of-fit
reduction with resolved variables (Q,P ) and (Q,P, s) respectively. Here s is the
mean distance of undistinguished particles from the distinguished one. Grey and
black lines correspond to the limit SDE, where s was variable, which replaced an
exponential memory kernel. Different hues from lighter to darker correspond to
ω2

∈ {102
, 105

, 108} and the SDE is a mean value of 400 runs.

From these figures we are lead to several key results. First is that for both
equations we have the same natural frequency, owing to the harmonic potential.
Damping in both cases is influenced by the spring constant γ. There are no
other significant similarities between the evolutions. The most important result
is that the choice of additional variable s in the system does not correspond to
the variable created from the exponential memory kernel in the SDE. Another
important result is that the lack-of-fit reduction has faster damping for any choice
of variables and the results are almost independent on the parameter ω2 as long
as its large. No further relation on ω2 is not studied since the comparison between
the SDE and the lack-of-fit evolutions loses any meaning for small ω2. This could
have been concluded already from the Gershgorin circles written in the equation
(3.3e, f). The origin of one of the circles is precisely this second moment and when
it is large, it is disjoint from all the other circles. This, yet again, clearly shows the
differences between the results of the lack-of-fit reduction and the Mori-Zwanzig
formalism.
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3.3 Summary
In the last Chapter, we focused on the comparison of the results given in Chapter
2. In Section 3.1, we compared the forms of the evolution equations resulting
from the two methods applied in Chapter 2. This involved finding the mean
value of the Mori-Zwanzig equations with respect to the maximising distribution
function f̃ . Afterwards, we took a closer look at the solution of the Riccati
equation for lower variables (Q,P, s), using numerical solution. The solutions
were plotted as contour plots with axes α and γ, for two different values of
M ∈ {5, 50} and two different values of the second moment of the distribution
of the frequencies ωi, ω2

∈ {102
, 108}. We observed that with growing M and

ω2 the values of m13,m23, γm33 go to 0,−1 and ω2 respectively. This leads to an
important incompatibility of the lack-of-fit solution with the solution given by
the Mori-Zwanzig formalism. Similar incompatibility appears for the choice of
resolved variables (Q,P).

In Section 3.2, we approached the comparison from the perspective of a nu-
merical experiment. The evolution from the lack-of-fit equations were compared
to the evolution given by the stochastic differential equations, which resulted
from the limit of N → ∞ in Section 1.2.2. The simulations were done for several
different sets of parameters. We discovered that the difference between lack-of-fit
evolutions for the two choices of resolved variables (Q,P) and (Q,P,s) was neg-
ligible for large values of ω2 and initial conditions s0 near zero. Above that, in
Chapter 2 we noted that the choice of variables (Q, P, s) was done based on the
stochastic equation, but in the simulations we observed that s in each of these
equations behaves rather differently. Overall, we yet again conclude that the two
descriptions do not match up.
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Conclusion
In the first chapter, we introduced two methods for dimensional reduction, which
lead to the appearance of dissipative terms in the evolution. Each of the methods
has its own set of problems. The main problem of the Mori-Zwanzig formalism is
that the final equations are in an integro-differential form. Without further sim-
plification, the integro-differential form is hard to analyse both analytically and
numerically. Even within this thesis this leads to the inability to thoroughly com-
pare the two choices of resolved variables. The lack-of-fit reduction, on the other
hand, gives the evolution as a closed set of ordinary differential equations. How-
ever, in the procedure we require the solution of the Hamilton-Jacobi equation,
which is a partial differential equation. Furthermore, the resulting dissipation
potential is (by construction) a function of only the conjugated variables y∗. In
comparison, within the GENERIC formalism the dependence of the dissipation
potential on the lower variables y is not only possible, but also quite common
– especially when it comes to temperature. Above that, the generalisation from
the original work [9] required few steps (such as constriction only on linear pro-
jections, using the entropy norm and using the apparent-upper energy) to reach
the final equations in GENERIC form. These steps are introduced as postulates,
motivated mainly by the requirement of the specific form of equations and as
such need a better explanation or generalisation in the future.

In Chapter 2, we apply the methods on the Kac-Zwanzig model. The results of
the two methods significantly differ in form. As a consequence, there are several
conclusions to be drawn, most of which would require further work to be done for
a more robust interpretation of these results. When it comes to the Mori-Zwanzig
formalism, we mainly reviewed work, which was already done [3, 16, 17, 18]. To
our knowledge, the choice of variables (Q,P, s), with s being the mean distance of
the heat bath particles from the distinguished particle, have not been done before
and is our original contribution. The addition of the third variable hoped to give
another degree of freedom and thus lead to a more detailed description, ideally one
that in a limit would give a system of ODEs. Contrary to this ambition, we arrive
yet again at a system of integro-differential equations and within this work we
did not succeed at finding the desired limiting ODEs. There are still techniques
we have not deployed. The probability distribution of the implicit frequencies
ωQl can be further studied as well as the case for deterministic distribution of
ωi (e.g. ωi = i, which for the resolved variables (Q,P) leads to a Fourier series
[20]). Theories of random matrices might also be helpful, to better understand
the problem and mean values with respect to the distribution of ωi could have
been found. Such closer inspection of the behaviour of s in the Mori-Zwanzig
theory would then be helpful in the comparison to the results of the lack-of-fit
reduction.

The main focus of the thesis was on the lack-of-fit reduction and its applica-
bility. Here it is necessary to conclude that in the current form, the theory has
many weak points. Some of them were mentioned when summarising the theory,
other arose throughout the calculations. We limited the calculations only to the
one dimensional case and the harmonic potential. In addition, the Hamilton-
Jacobi equation was only solved for another set of approximations. From the
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numerical results, we expect that some approximation to be too strong because
of the speed of the damping. The sources of the damping are thought to be the
free initial conditions, long time limit t→ ∞ the near-equilibrium ansatz (giving
us the Riccati equation) and the time-scale separation (placing ∂ψ

∂t
= 0). Future

work should take this into account and may refer to [25, 26, 27], where similar
issues are discussed. A different approach to the solution of the Hamilton-Jacobi
equation would be using NeuralODEs [28, 29], which is a type of deep neural
networks. This would simplify the solution of the most troublesome element of
the procedure.

In the third chapter, we made a numerical comparison of the final evolution
equations. The results are compared only on the lower level of description, i.e.
the comparison is done between the limit N → ∞ of the results given by the Mori-
Zwanzig formalism and the two sets of ODEs given by the lack-of-fit reduction.
The lack-of-fit evolutions are almost identical for any choice of parameters α,M, γ

and ω2. On the other hand, the two methods have a very low correspondence for
most chosen values. Since the numerical simulation was conducted only on the
lower level of description, a simulation which would reliably compare the results
of detailed evolution to the resolved evolution would be desirable.
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[7] Michal Pavelka, Václav Klika, and Miroslav Grmela. Multiscale Thermo-
Dynamics: Introduction to GENERIC. De Gruyter, 2018.

[8] Bruce Turkington. An optimization principle for deriving nonequilibrium
statistical models of Hamiltonian dynamics. Journal of Statistical Physics,
152(3):569–597, 2013.

[9] Jonathan Maack and Bruce Turkington. Reduced models of point vortex
systems. Entropy, 20(12), 2018.
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3.13 The evolution of position Q and momentum P the distinguished
particle and the evolution of s. Yellow and red lines correspond to
the lack-of-fit reduction with resolved variables (Q,P ) and (Q,P, s)
respectively. Here s is the mean distance of undistinguished parti-
cles from the distinguished one. Grey and black lines correspond to
the limit SDE, where s was variable, which replaced an exponential
memory kernel. Different hues from lighter to darker correspond
to the initial condition of s ∈ {0, 10, 20} and the SDE is a mean
value of 800 runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.14 The evolution of position Q and momentum P the distinguished
particle and the evolution of s. Yellow and red lines correspond to
the lack-of-fit reduction with resolved variables (Q,P ) and (Q,P, s)
respectively. Here s is the mean distance of undistinguished parti-
cles from the distinguished one. Grey and black lines correspond to
the limit SDE, where s was variable, which replaced an exponential
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