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Introduction

Quantum graphs, not always necessarily known under this name, have been used
since the 1930s as models in various fields of physics, mathematics, chemistry
and engineering. Only since the end of the 1980s, however, the concept has been
gradually transformed into a coherent, and more widely studied, subject - we can
account this growth to the relevance of quantum graphs as simplified models
in mentioned scientific areas anytime one considers wave propagation through
systems at a wide range of scales, from macroscopic to nanostructures. Those
include for example quantum wires, photonic crystals or carbon nanostructures.
Beyond their use as models of specific systems, quantum graphs provide a testing
ground to study fundamental properties of quantum dynamics, for instance, man-
ifestations of quantum chaos. Altogether, this is a field full of exciting challenges
inviting multidisciplinary approaches; for its broad survey we refer to the mono-
graph [BK13].

In the article [SK15] (see also [SV23]), techniques of quantum graphs were
used to model the anomalous Hall effect. Their results prompted further research
into time-reversal non-invariant graphs, because in order to derive an expression
for Hall voltage, their model involves only atomic orbitals with a specific orienta-
tion. This is hardly justifiable from the first principles. The needed violation of
the time-reversal invariance can be, however, achieved by an appropriate choice
of the vertex coupling conditions. The first example of that type was presented
in the paper [ET1S8|, where they have shown how spectral properties of quan-
tum graphs heavily depend on their topology, in particular, on the vertex-degree
parity. The same effect was also observed in spectra of other periodic system
investigated in [BET21].

The matrices describing such vertex coupling belong to the circulant class,
together with many others like those characterizing the well-known & or ¢ cou-
plings. In contrast to the 'rotational coupling’, those are invariant with respect
to the time reversal. Despite this difference, such couplings have a common
property: in planar graphs they exhibit a PT-symmetry. This concept is usual-
ly associated with non-selfadjointness of the Hamiltonian [ET21], but here one
has an unitary evolution invariant with respect to the combined transformations,
as demonstrated in the paper [ET21].

The aim of this thesis is to examine graphs with circulant vertex couplings
from a broader point of view. In the examples to be analyzed, we will pay par-
ticular attention to the dependence on the parameters of the models. Examples
can be found in previous works: in [BET22|, the effects of graph edge lengths
modifications were considered, and in [ETT18|, an interpolation between differ-
ent vertex couplings was considered. We intend to perform an analogous analysis
in combination and greater detail.

Let us briefly describe the structure of this thesis. The first chapter introduces
the concept of quantum graph in a mathematically rigorous way, as a preliminary
to the presentation of the results in the following chapters. Here we will also
introduce circulant matrices and derive some of their properties which will be
needed further. At the end of the chapter, we recall how one describes symmetries
in the context of quantum graphs.



The second chapter is devoted to the simplest situation when the graph
has a single vertex being of the star form. We determine here the number
and the functional form of graph Hamiltonian eigenvalues in dependence on
the vertex condition, introduce the associated scattering matrix and compute
its general form, and finally, we inspect its behaviour for low and high energies.

The third chapter deals with spectral properties of a periodic quantum graph
in the form of a rectangular lattice. After deriving the corresponding spectral
condition for the general circulant matrix, we focus on the case of lattices with
coupling belonging to the class of permutation-invariant ones and describe com-
pletely their spectral structure.

Finally, the fourth chapter is concerned with another periodic quantum graph,
this time a one-dimensional quantum chain. This model was previously studied
for different length configurations and vertex conditions, for example, in [BET22]
or [DETO08]. Here we combine it with the interpolating coupling proposed in
[ETT18], and by means of the techniques used in the previous chapter, we examine
the spectrum as a function of the parameters in full generality.



1. Preliminaries

1.1 Quantum graphs

A quantum graph, as a mathematical object, consists of three components -
a metric graph U; a differential operator H; and vertex conditions. The following
definitions of those components are taken or paraphrased from [BK13|, and be-
cause this thesis is not necessarily about the most general aspects of the graph
theory, it will only feature the concepts required to understand our reasoning
and results; a detailed exposition of the theory the reader can find in the afore-
mentioned book.

1.1.1 Metric graphs
Definition 1.1 (Graph). A graph T' consists of

e a set of vertices {v;} = v; the number of its elements finite or countably
infinite;

o and a set of edges {e;} connecting (some or all of) them.

As we can see, the basic notion of a graph does not have additional structures,
for example, it is not equipped with a metric, which is important for quantum
graphs.

The symbol v; € e; means that the vertex v; is an endpoint of the edge e;.
Vertices u and v are adjacent, denoted u~w, if there is an edge connecting them.
The topology of a graph is specified by |v| x |v| adjacency matriz Ar ., generally

defined as
1 ifu~
AF uv s U’.
' 0 otherwise.

The degree d, of a vertex u is the number of edges emanating from given u, and it

holds that
dy = Z AF,uv-
vEV

The edges can be undirected (without specified direction), or directed (each
edge has assigned one origin and one terminal vertex). Directed edges are called
bonds, and if all edges of a graph are bonds, the graph is then called direct-
ed graph or digraph. With respect to vertices, bonds can be either incoming
or outgoing. One can convert a non-oriented graph to a digraph by exchanging
each edge for a pair of bonds b and b with opposite directions - bond b is then
called reversal to b (and vice versa). Analogously, a directed graph can be made
undirected - through natural projection that maps mutually reversal bonds into
a single edge - but only if it is possible for all connections between vertices.

Graphs, where one treats edges only as relations between vertices, are al-
so called discrete or combinatorial. On the other hand, if we consider edges
as individual one-dimensional objects on their own, then we call those graphs
complexes. Metric graphs are complexes, and as such we require more from their
edges - namely we want to describe their character in greater detail.



Definition 1.2 (Metric graph). A graph I' is a metric graph if it satisfies Defi-
nition (1.1)) with these additional conditions:

1. a length L, € (0,00) is assigned to each bond b. If an edge has infinite
length, it will have only one vertex (at its beginning) and will be called lead;

2. the lengths of the bonds that are mutually reversal are assumed to be equal,
Ly = Ly. Therefore, length of an edge e is also defined, L = Ly;

3. a coordinate xp € (0, Ly) is assigned to each bond, increasing in the direction
of the bond;

4. the relation x; = Ly — a3 holds for coordinates on mutually reversed bonds.
If all edges are of equal length, the metric graph I' is then called equilateral.

The suggestiveness of the name tells us that each metric graph can be equipped
with a natural metric - a sequence of edges {e;} 1, between vertices v and w (al-
so called path) has length ij\il L;, and distance p(v,w) between said vertices
is then the minimal length of the path connecting them. Here we implicitly as-
sume that loops (single edge with both ends connected to one vertex) or multiple
edges between any two vertices are not present, as they can be broken into indi-
vidual pieces through the introduction of new, so-called "dummy”, vertices with
d, = 2. And since there is the coordinate x on each edge, it is not problematic
to define the distance between two arbitrary points belonging to the graph.

It should be noted that for quantum graphs (or any metric graph for that
matter) it is usually assumed that the degree of each vertex is finite and positive
(this, for example, means that vertices not connected to any edge are prohibited).

Definition 1.3. A connected metric graph I" is called infinite if it has infinitely
many vertices, otherwise it is called finite. A finite graph with all edges of finite
length is called compact.

While here we will deal with both finite and infinite graphs, they will always
be undirected.

One last note regarding metric graphs - vertices are obviously their points,
but the same is true for all points x on the edge e. So when we speak about func-
tions on metric graph I', we are able to define them also along the edges. More-
over, the coordinates living on them then enable the definition of the Lebesgue
measure dr on the graph. This in turn enables the definition of some standard
function spaces on I'. Let us recall the notation typically used for Sobolev spaces,
in a scope sufficient for our research (in particular, we define it only in one di-
mension).

Definition 1.4 (Weak derivative, Sobolev space). Suppose that 2 is an open
subinterval of R. Let f be a function locally integrable on Q, f € L}.(Q).
The function f has a weak derivative of order k € Ny if there exist a function

9 € Li,(Q) satisfying

/f )" () /g



for all ¢ € CX(Q), i.e. infinitely differentiable functions with compact support.
Suppose k € Ny, 1 < p < oco. Then the Sobolev space W*P(Q) consists
of equivalence classes of functions f satisfying

WEP(Q) = {f € LP(Q) : Vn € No,n < k, 0"f € LP(Q)},

where the derivative is taken in a weak sense. The standard norm on these spaces
is defined as

: :
sy = (X fl0°47) " fort << o

£ 1w (@) = maxsup |0 f] forp = 0.
= Q

We usually denote H*(Q) := Wk2,

In particular, H°(Q2) = L*(Q). Extending these to quantum graphs is then
quite straightforward.

Definition 1.5. 1. The space L*(T') on T' consists of equivalence classes of
measurable and square-integrable functions on each edge e in a way that

2 2
12wy = D [1f 72 < oo
ec{e}

2. The Sobolev space HY(T') on T’ consist of equivalence classes of continuous
functions belonging to H'(e) on each edge e in a way that

2 2
1 ey = 22 Il < oo
ec{e}

The requirement of continuity is a natural condition for f from H*(T"), because
then f assumes the same value on all edges adjacent to a particular v, and f(v)
is uniquely defined for all vertices. There is then a clear similarity to traditional
one-dimensional setting, in which H' functions are continuous.

In contrast, there is no such condition, and therefore no natural definition
of H*(I'), for k > 1, because we do not necessarily know what should functions
satisfy at the graph vertices. This freedom of choice largely influences how our
studied system behaves, as will be seen later. Until specified, we require at least
smoothness of functions along the edges, and for our later examples, it is prefer-
able to consider this weaker condition even for H!.

Definition 1.6. By f{k(l“), k € N, we denote space

YD) = e{a} H*(e),

in which all functions f living on T belong to the Sobolev space H*(e) on each
edge and

2
1y = 3 1y < oo
ec{e}



1.1.2 Differential operator

The leap from a metric to a quantum graph is made by assigning a differen-
tial (or even more general) operator on I'. In our setting, but also commonly
in physical applications, we will call this operator the Hamiltonian, as we consid-
er a quantum particle "living” on the graph - the graph acts as a configuration
space for said particle. Hamiltonian can be interpreted as an operator of the total
energy of the system and is usually required to be self-adjoint. The most studied
operator assigns to function f(x.) its negative second derivative on each edge:

& f

2
dz?

fxe) = (we)- (1.1)

More generally, the Schrodinger operator might be used; its action is described
as
d*f

Cdr2?
dzx?

where V() is called an electric potential.

fze) = () + V() f(e),

Remark. We understand the term ’electric potential’ as a potential related to
all non-magnetic forces. It usually stems from the interaction of charge with
an external field, but can correspond to any other force, for example gravitational.

Both of these two operators do not contain first-order derivatives or terms
proportional to them, therefore they might be used on undirected metric graphs
(their edges respectively). This is not the case of a magnetic Schrodinger operator

Fa) o> (” - A(xw) Fas) + V() flan),

1 de‘b

with a magnetic potential A(x), which is (one-dimensional) vector field. Here
we need to specify individual bonds and their direction - but it can be shown
that these problems can be solved, or rather circumvented, by slight change
to the structure of the graph [BK13, Section 2.6]. Overall, in this thesis we
will restrict ourselves only to (|1.1)).

An operator cannot be properly defined without a description of its domain,
which should also include information about the smoothness of functions on
the edges and conditions at the vertices. Additional conditions are imposed if we
also require it to be self-adjoint - Hamiltonian then represents an observable quan-
tity. When we consider operator (or more general one with "nice” enough
potentials), it is satisfactory for functions f to be in Sobolev space H?(e) on each
edge e. Then we must "just” find the self-adjoint extensions through boundary
conditions; this procedure is explained in detail in [BK13, Section 1.4.1].

1.1.3 Vertex conditions

Once we assume that the domain of the operator is in Sobolev space H?(e) on each
edge e, we can use Sobolev trace theorem to show that functions f and their first
derivatives are correctly defined at the endpoints (vertices) of edges in question as
the appropriate one-sided limits. Thus, the vertex boundary condition may only
contain data from boundary values of f and df /dz. In this work we assume that

7



studied graphs only have local vertex conditions - for a fixed vertex v, its condition
takes values only from functions and their derivatives at the vertex v - as these are
the simplest and physically natural vertex conditions. It can be shown that non-
local conditions can be transformed into a local one living inside a single vertex
by modifying the topology of the graph [BK13, Section 1.4.6], even though this
might not preserve their type.

Our operator acts as a second-order operator, therefore the ODE theory
tells us we need to establish two conditions for each edge to acquire the solution.
The number of conditions at every vertex then must be equal to its degree d,.
The most general (homogeneous) condition can be written as

A,F(v)+ B,F'(v) =0,

where F(v) is a d, dimensional vector of functions, each living on its own edge
incident to vertex v, evaluated at the said v; similarly with F’(v) as a vector
of first derivatives; and A, and B, are d,xd, matrices. To have the correct
number of independent conditions means that rank of d,x2d, matrix (A,, B,)
must be full, i.e. d,.

As the proof of the following theorem takes several pages and an additional
lemma to complete, it will not be shown here and we will rather focus on its
results - how should we choose vertex condition in order to achieve self-adjoint
Hamiltonian; the interested reader can find it in [BK13) Section 1.4.1].

Theorem 1.1. Let I" be a metric graph with finitely many edges. Consider the op-

erator acting as —327{ on each edge e with the domain consisting of functions

that belong to fIQ(F) and satisfying some local vertex conditions involving vertex
values of functions and their derivatives. The operator is self-adjoint if and on-
ly if the vertex conditions can be written in one of the following ways:

1. For every vertex v of degree d, there exist d,xd, matrices A, and B, such
that the d,x2d, matriz (A,, B,) has the maximal rank, the matriz A,B}
(where B} denotes Hermitian adjoint of B, ) is self-adjoint and the boundary
values of f satisfy

A F(v) + B F'(v) = 0

2. For every vertexr v of degree d, there exist a unitary d,xd, matriz U, such
that the boundary values of f satisfy

(U, — )F(v) + (U, + I)F'(v) = 0,
where I is a d,xd, identity matrix.

3. For every vertex v of degree d,, there are three mutually orthogonal projec-
tors Pp,, Py, and Pr,, = I — Pp, — Py, acting in C%, and an in-
vertible self-adjoint operator A,, acting in the subspace Pg,C%, such that
the boundary values of [ satisfy

PD,UF(U>
PN’UF/(U)
PRJ)F/(”U)

0
0
AUPRJ)F('U)

8



As it is obvious from the assumptions, Theorem is valid for finite graphs
only. Similar results, whose proofs are present in [BK13|, Section 1.4.4], can be
obtained for (countably) infinite graphs if we assume lengths of all edges uniformly
bounded from below (0 < Ly < L. < 00), with additional specifics on the domain
of the Hamiltonian - mainly we require that 3, || f ||§12(e) < oo and the third
type of condition from Theorem is satisfied for all v. While it is possible
to consider quantum graphs without restrictions on the lengths of their edges,
ie.inf L, = Lo > 0 is not satisfied, the problem of self-adjointness becomes
much more complicated, see [EKMNIS].

Here we list some examples of common vertex conditions (compare with stan-
dard terminology used with regards to differential equations), and their repre-
sentations as unitary matrices U, - here we denote d, x d, unit matrix as [
and d, X d, matrix with 1 in all entries as J:

Dirichlet vertex condition

f(z) is continuous at v,
f(v) =0,
U, =-1.

Kirchhoff vertex condition (also called Neumann, standard or free)

f(z) is continuous at v,
e do (1) =0,
U,=1.

0-type vertex condition

f(zx) is continuous at v,

Ye o-(v) = @ f(v), a, €R, (1.2)
Uv - du—fiav J—1.

And while written explicitly above, they can be summarized into

f(z) is continuous at v,

c08(70) Lo 4 (v) = sin() f(v),
2

Uv = srmencyd — L W #7/2

where 7y, = 0 corresponds to Kirchhoff, v, = 7/2 to Dirichlet, and all other values
between to J-type condition (and only for this type is the U, matrix formula
present usable).

Similar to d-type condition is § -type condition, with roles of functions and
their derivatives switched:

values of %(v) are independent of e adjacent to the v,
e fe(v) = av%(v)ﬂ)‘v €R, (1.3)
Uy= 5= +1.

dy—tiowy

These are all examples of permutation-invariant vertex conditions. Their name
comes from the fact that the vertex condition stays the same after any permuta-
tion of edges adjacent to the vertex, and they can be generally written as

U=rJ+sl, (1.4)

9



where {r, s} € C. We will closely examine the spectral properties of a rectangular
lattice equipped with this condition in Section

1.1.4 Periodic graphs

A larger part of this thesis regards infinite graphs, but all of them will be peri-
odic. As was shown in [BK13], this allows us to solve relevant equations inside
the elementary cell, also called fundamental domain, and then extend the solution
on the whole graph.

Definition 1.7 (Periodic graph). An infinite combinatorial, metric, or quantum
graph T is said to be periodic (or Z™-periodic) if there is a free abelian group
G = 7" and mapping (g,z) € G x I' — gx € T with following properties:

1. Group action:
e Forany g € G, the mapping x — gx is a bijection of I'.
e O0x == for every x € ', with 0 € G being the neutral element.
o (9i9j)x = gi(g;x) for any g;,g9; € G,x € I.

2. Continuity: For any g € G, the mapping x — gx is continuous.

3. Faithfulness: If gx = x for some x € I, then g = 0.

4. Discreteness: For any x € I, there is a neighbourhood U of x such that
gr ¢ U for g # 0.

5. Co-compactness: The space of orbits T'/G is compact, i. e. the T can be
obtained by G-shifts of a compact subset.

6. Structure preservation:

e gu ~ gv if and only if u ~ v. Specifically, G acts bijectively on edges.

e In the case of a metric or quantum graph, the action preserves lengths
of edges: Ly = Le.

o For quantum graphs, the action commutes with the Hamiltonian H
and preserves the vertexr conditions.

Definition 1.8 (Fundamental domain). If there exist a compact part Q of T’
satisfying:

o the union of all G-shifts of () covers the I’

UeQ=T;

geG

o differently shifted copies of Q) have only finitely many common parts, none
of which are vertices;

then the @ is called fundamental domain of I'. This Q) is not uniquely defined.

10



1.1.5 Floquet-Bloch theory

Definition 1.9 (Character). Character of the group G is a homomorphism s :
G — C\ {0}, with C\ {0} being considered as a group with respect to multipli-
cation. Therefore

s(e) = 1, where e is the unit of G,
<(9i9;) = <(9i)s(g5) for any gi, 9; € G.

Lemma 1.1. Every character of G = Z" can be represented by a vector § € C":
(9)=¢",g€q.
This character is unitary (maps G into the unit circle) if and only if 0 € R™.

Vectors 6 are in physics known as quasi-momenta. Characters represented
as such are 2m-periodic with respect to (individual components of) 6. If we
consider only real quasi-momenta, we can restrict their values to any fundamental
domain B of the action of 27Z". B is usually chosen as the cube

B={(—mm",

which is in quantum theory called Brillouin zone.
If we factor out group action and 2m-periodicity, we get a complex vector with
non-zero components

0

2= = (e, ... )

called Flogquet multipliers.

Definition 1.10 (Floquet transform). Floquet transform of the function f is
defined as

f(0) = Floz) = 3 flgv)=?,

gEL™

where g acts on verter v and z is a Floquet multiplier.

The Floquet transform on a quantum graph reduces the Hamiltonian H
to a set of differential operators H(z) on fundamental domain @ [BK13]. We
choose this domain conveniently in a way that there are no original vertices on
the domain boundary. Additional vertices of degree one then automatically ap-
pear on the edges in the points crossing our chosen boundary, with their respective
vertex condition (continuation of the function on the edge). Concrete examples
of this technique will be shown in the following chapters.

1.1.6 Spectral properties

The spectrum o(H) of the operator H in L*(T') is the union of the closed finite
intervals of eigenvalue ranges,

I; ={h;(z):z € B}
called spectral bands. Band-gap structure is then the name for the representation

U(H)ZUIJ‘;

11



some of the intervals in question might be only points.

With a periodic self-adjoint Hamiltonian H, its spectrum can contain only
absolutely continuous or pure point parts [BK13, Section 4.3.2]. Additionally,
bound states and compactly supported eigenfunctions may appear due to the
failure of the uniqueness of continuation principle for relevant equations [BK13|
Section 3.4] - corresponding eigenvalues are infinitely degenerated and in physics
they are called flat bands.

1.2 Circulant matrices

We have seen that vertex conditions are specified by d, xd, matrices. Our atten-
tion will now be focused on a special class of the said matrices.

Definition 1.11 (Circulant matrix). Let ¢ be general vector (generating vec-
tor) in the form ¢ = (01,02,03,...,Cn)T, where ¢ € C for alll = 1,...,n.
Then the nxn circulant matriz C' is given as follows:

C1 Cy C3 ce Cn

c, C1 Cy ... Cp1
C=1|: ¢ «c

C3 ... e T Co

Co C3 ... Cp C1

In other words, element Cy; is given as Cij = Cj_i11 (mod n)-

We shall make and prove (or at least give the general idea of the proof) several
claims about properties of circulant matrices, which will be useful later on.

Proposition 1.1 (Eigenvectors and eigenvalues). The normalized eigenvectors
of circulant matrices are independent of the choice of the vector ¢. They have
the form ¢, = f(l whw?, L wTINT where w o= €™/, Furthermore,

eigenvalues \; can be written in the form \j = 3>0_, cawt@1),

Proof. When we multiply the supposed eigenvector ¢; by circulant matrix from
the left, the first entry of the resulting vector is

1 n
(a=1) _ . l(a—1
Z CqW n agl CqW

The second entry is then

an e an jwHa™2) an ),

where we used the same a as the summation index after the second equality,
for the values, over which we sum, are same due to mod n nature of ¢, and w.
The m-th entry is

n Hm=1)

Z Ca— m—i—lw

12



From that we can conclude that ¢; is the sought eigenvector, and the eigenvalues
are indeed in the form A\, = Y7 caw'@ 1 there cannot be more than n eigen-
values (excluding multiplicity).

]

Proposition 1.2 (Commutativity). Any two given circulant matrices commute,

i.e. CC =CC.

Proof. The demanded property follows from the set of equations, whose relevance
we will comment on later. First, let us denote W = C'C'. Then (in all calculations
we work in mod n arithmetic, if needed):

n n
VVij = Z CiaCaj = Z Ca—i+1Cj—a+1
a=1 a=1
n
Cat1Cj—i—at+1 = Z Ca+j+1C—i—a+1
a=1

I
NE

S
—_

n

Ci—(n—a)+14+nCn—i—a+1 = Z Cj—(n—a)+1C(n—a)—i+1
a=1

n
Cj—a+15a—z‘+1 = Z OiaCaj

a=1

I
[M]=

2
Il
—_

I
[M]=

e
Il
—

The first equality is expression of a general element of W from matrix multiplica-
tion, the second then uses the property of circulant matrices from Definition [T.11]
The third and fourth use different forms of values from the sum - specifically,
we use shifted summation indices throughout those steps, but we can rename
them back to a, similarly to Proposition [1.1} The fifth one then uses modu-
lar property of defining vector ¢, c_; = ¢,—;. The sixth just regroups index a,
the seventh uses renaming, and finally the eighth one is just expression of matrix
multiplication C'C.

[

Proposition 1.3 (Diagonalization, expression of ¢;). Circulant matrices are di-
agonalizable by the discrete Fourier transform, i.e. D = VCV™*, where C is
a circulant matriz, D is a diagonal matrix with circulant matriz’s eigenvalues
on its diagonal and V is an unitary DFT matriz, where

1 1 1 1 e 1
1 wt w2 w3 o w0
— 1|1 w2 w? w6 o w2
V — \/E )
1 w1 201  ,=3(n-1) wf(nfl)z
The coefficients ¢; can be cast as ¢; = % 1 Agw 1),

Sketch of proof. Because of Proposition|1.2 any circulant matrix is also a normal
matrix, i.e. [C,C*] = 0, because the Hermitian adjoint of a circulant matrix
is also circulant. Thus is C' unitary diagonalizable from the spectral theorem,
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which tells us that an operator on a finite-dimensional vector space is normal
if and only if it is unitarily diagonalizable. The fact that V' is indeed the sought
unitary transformation matrix can be verified by direct computation, same as
the form of numbers on the diagonal. Expression of the coefficients ¢; follows
from inverse discrete Fourier transformation, i.e. C' = V*DV, where it should be
noted that Dy = A\i_1 (mod n) With A; defined in Proposition .

O
As will be seen later on, the form of vertex condition we will be using is a variant
of the second one from Theorem [I.1] so circulant matrices used in them also need
to be unitary.

Proposition 1.4 (Unitarity). For any circulant matriz C to be unitary requires
following conditions to be met:

{231 eal? =1

> 1 CCarp =0 for b=1,....,.n—1

Proof.  Because Proposition holds, we need to check only that CC* = I.
Direct calculation and matching of respective matrix entries then gives us the first
condition from calculating diagonal terms and the second from calculating off-

diagonal ones.
O

Remark. There are alternative ways how one can approach these problems -
for example Proposition [1.3| can be proven without the help of Proposition (1.2,
and Proposition [1.2] would then be immediately obvious, because any pair of cir-
culant matrices is simultaneously diagonalizable.

1.3 Symmetries

In quantum mechanics, any transformation of the system can be described by
an unitary or an antiunitary operator Ot : H — H, where H is associated Hilbert
space of quantum states; under this transformation, quantum states and operators
behave as

¥ =010 and O =0500r.

An operator is then said to be symmetric, or invariant, under this transformation
if O = O, which means that

{[@T, O] =0 for discrete symmetries, or

[G,0] =0 for continuous symmetries,

where G is a generator of said symmetry.

In our case we are interested in Hamiltonian H of the system described by
and its (non-)invariance with respect to time-reversal and parity transformations,
and how can these transformations be represented as unitary (or antiunitary)
operators. In particular, because the action of is real and not dependent
on the edge orientation, self-adjointness of H, which we need, is determined by
a boundary condition. We employ the second part of Theorem [I.1], and require

14



the condition to be satisfied for all ©1F (v); symmetry of such Hamiltonian can
then be checked by requiring

01rU,0r = 07'U,0r1 = U,,.

The first transformation of those listed above is easier to obtain: time inversion
must be antilinear, because

where X and P are operators of position and momentum, respectively. Note that
this relation holds only if the operators are applied to sufficiently regular func-
tions; otherwise we have to resort to the Weyl form of the canonical commutation
relation. When we are working in our quantum graph setting, we do not consider
the internal degrees of freedom of the particles involved, and use x representa-
tion; therefore ©; must be just the complex conjugation operator. When acting
as an operator transformation, it behaves as

e;'U,0, =6,U,0, =U", (1.5)

because

0=1i(U, — 1)OF(v) + (Uy + 1)O:F"(v),

0=—i0U, — I)F(v) 4+ 6,(U, + I)F'(v),

0= —i(U, — )F(v) + (U, + I)F'(v),

0=—i(I —UNF)+ (I+UNF'(v),

0=i(U — F()+ U+ 1)F'(v),
where we used unitarity relations U/U, = 1. Therefore H is time-reversal

symmetric if and only if its coupling matrix is transpose-symmetric.

A quantum graph is PT-symmetric if it is symmetric under joint parity
and time-reversal transformation. Our knowledge of the form of the latter then
implies

©,'U,0,=0,U,0,=U],
just imagine both sides of the equation transformed under time-reversal transfor-
mation as in ([1.5]). To gain additional insight we remember that a diagonal matrix
is already equal to its transpose and that U, is a circulant matrix - we know how
D =VU,V* from Proposition [1.3] and substituting leads us to

0,V*DVe,=VI'DV

resulting in condition

0, =V"V,
and thus
1 00 000
000 . 0 01
000 010
0, = :
0 0 1 0 00
010 0 00
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A priori there is no need to have a quantum graph embedded in any ambient
space, even though this embedding naturally exists in some applications (for ex-
ample quantum wire circuits) [BK13, Section 1.3], but parity transformations are
intrinsically linked with mirroring in the Euclidean space. Considering quantum
graph as planar, we see that ©, has sought properties, because, under given trans-

formation, it preserves edge e; (or possibly eryq as well, if n = 2k) and switches
edge e; with e,+o_; [ET21].
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2. Star graph

2.1 Basic properties

Let us consider the so-called quantum star graph - one central vertex connecting
n semi-infinite edges. The associated Hilbert space of states is @ _ ; L*(R,)
with elements W = {¢;}, while the Hamiltonian of the system is the aforemen-
tioned negative Laplacian provided we employ the atomic units, h = 2m = 1,
which we always do in this thesis: H{¢y} = {—,}. The vertex boundary
conditions making the Laplacian a self-adjoint operator on the graph are given
by Theorem [I.1] We will write them in the form

(U—-DV+4i(U+1V =0, (2.1)

where U is an unitary nxn circulant matrix and [ is an unit nxn matrix; it is
obtained from the second one presented by replacing U, with U,;. Needless to say,
U, and U, are unitary circulant simultaneously. Even at this stage we can draw

Figure 2.1: An example of a star graph with n = 6.

some conclusions about the bound states of a given Hamiltonian. The essential
spectrum of any such operator is (0,00), as it follows from [Weil2, Theorem 8.19],
because any pair referring to different matrices U has a common symmetric re-
striction of deficiency indices at most (n,n), including the case on n disconnected
half-lines, where the property is obvious. The question about the number of
bound states, that is, the negative eigenvalues, was addressed in [BET22, Theo-
rem 2.6]; we will prove this claim in a slightly different way.

Proposition 2.1 (Bound states of a star graph). For a star graph equipped with
the Hamiltonian H{xp;} = {—,}, the number of its bound states (eigenvalues
of the Hamiltonian) is equal to the number of eigenvalues of the unitary matriz
U, which specifies the boundary condition , in the upper complex plane.

Proof. 'When looking for eigenvalues of the Hamiltonian, one solves the following
equation

Hipy = —k*
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for all [. With H specified above, its solution can be written as
U= die™",

where we, without the loss of generality, assume x > 0 (as we require ¢, €
L*(R,)). Solutions must also satisfy the indicated boundary condition. That,
after the substitution, means

(U—-1d—-ir(U+1)d =0,
which can then be recast as ,
_ 1+ik
1—ik

ud d.

We can clearly see that ﬁ—zg is an eigenvalue of U, and after explicitly retrieving
its real and imaginary part,

141k 1 — K2 21K

1—ik 1+/£2+1—|—/£2’

we have one-to-one correspondence between x (consequently x?) and eigenvalues
of U in the upper complex plane, because the imaginary part of the eigenvalues
is greater than 0.

0
Simple algebraic manipulations then give
A —1
K= —1—0,
: AN+ 1

where ); are eigenvalues of U in the upper complex plane, and after recalling
Proposition , we can rewrite values of eigenenergies (in atomic units) in terms
of circulant coefficients ¢, as

s =D\ -1
I WIS Tp v
2 2R
BPET0Y

- 1— %( =1 cawl(ail))
1+ R(E, cuwilaD)’

where R denotes the real part of a complex number.

2.2 Scattering properties

In general, the scattering vertex matrix can be expressed as [BK13, Lemma 2.1.3.]

(k) = (k—1I+(k+1)U
C(k+ DI+ (k—1)U’
where £ is the momentum of a plane wave in the used units. While this notation

may not be necessarily clear from the point of the order of multiplication, as both
the numerator and the denominator contain matrices, we should note that all

(2.2)
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matrices present are circulant, thus their sum with respective coefficients is also

circulant, and, recalling Proposition [1.2] we can write the expression in this way

interpreting the right-hand side as a function of a single unitary operator in

the sense of the functional calculus. If U is circulant, S(k) is circulant as well.
If we define a new variable n := 21 we can rewrite as

k417
nl +U

S(k) = : 2.3
0 =10 23)

Let us denote U := I + nU. This circulant matrix is defined by vector

c= (617 C~27 C~3, cey E’r-;)—r = (1 =+ nci, Nca, 1C3, - . '77]Cn)—|—7
and its eigenvalues, after we recall Proposition [1.1], are

N= Gl (2.4)

a=1

Its inverse U~! then has eigenvalues inverse to those in Equation (2.4), and,
consequently due to Proposition [1.3] is defined by vector with entries

¢ Z)\ Lymal=D), (2.5)

Equation ({2.3)) can be rewritten as
S(k)y =nU~' +U'U,

so, taking information from ([2.5)), its general element is given as
/ n /
Sij = nei iyt Z Ca—i+1Cj—d+1
d=1

=1 Z)\ L™= 4 = ZZAI w CJ d+1-

1=

(2.6)

If we do the summation over d first, Equation (2.6)) can be substantially simplified.
That is because

n n n
—l(d—i) _ —U(d—i+j+1) _ , l(i—j I(—d=1) _ y l(i—j
ch_de ( )_Zc_dw (d—itj+1) — U J)Zc_dw( S VL2

d=1 d=1

where we used modular properties of ¢; and w, and the expression of eigenvalues
;. Substituting into Equation (2.6)), we have the final expression

Zwl“ D4+ AN (2.7)

l 1

or, equivalently, in terms of coefficients of circulant matrices,

Ly mp E X ca'* 7Y

n ~ l(b—1
ni= Spy Gt

Sy = (2.8)
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2.3 High and low energy limit

Now we take a look into the properties of S matrix in high energy limit & — oo
and low energy limit & — 0, which is equivalent to n — 1 and n — —1,
respectively. But to do so, we will need the following lemma:

Lemma 2.1. Y7, '@ Y =0 foralll=1,...,n— 1.

Proof. By Proposition[1.1] the given sum is equivalent to the expression of eigen-
values of circulant matrix defined by a vector consisting of ones in all its positions.
But this matrix has trivially rank one, so all but one eigenvalues are equal to zero,
and the only non-zero one corresponds to d = n and is equal to n.

O
For the high energy limit, we need to distinguish between two cases - when ma-
trix U has —1 in its spectrum, and when it has not. When —1 ¢ o(U), we have
from Equation ([2.7))

n -1
lim S,; = Zw (1 + o + Z cqw' @~ D) <1 +a+ ) cawl(a1)> . (2.9)

ko0 a=2 a=2

where we used specific values of \; and S\l_l in given limit. From that, using
Lemma [2.1}, we can clearly see how

kh_}rglo S(k) =1, (2.10)
as diagonal values will sum to 1 and off-diagonal values will be 0 due to the fact
that ¢ — j can be maximally equal to n — 1 (mod n). Note that there is an alter-
native way to get this result: under our assumption regarding the spectrum of U,
the operator I 4+ U is invertible and claim ([2.10)) follows from ({2.3]) by functional
calculus.

When —1 € o(U), part of the term, corresponding to this eigenvalue, from
the sum (2.7)), denoted by specific [, will be

n+ X" cuwtet n—1

= —1.
L+nY" cuwlle=D) 1 —p

The previously observed behaviour in the limit & — oo is disturbed, as I 4+ U is
no longer invertible. Specific values of S;; must be calculated directly and depend
on the defining vector c of circulant matrix U, respectively on position of —1 in
o(U) given by index number [ - after substituting into Equation (2.8]) we have

. l( dieg 1+ZZ | Ca d(a—l)
N

db—1
n Sh_ Cpudd=1)

Y

which can be in the limit, now similarly to Equation (2.9)), rewritten as

+ — Zw’J

gz

lim S;; =
k—o0 4
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Finally, we distinguish between diagonal and off-diagonal terms:
1 n—-1 n-2
_|_ J—

lim Sy = —— = ,
k n n n
Wi-j) 1 » 1(i—j)

w w
lim S;; = — - d(i=j) _
Jim ;5 — dzzjlw - (2.11)

20Mi=7)

—

where we employed Lemma[2.1]for off-diagonal terms. We implicitly assumed that
algebraic multiplicity of eigenvalue —1 is one - generalization to a case where —1
has multiplicity p4 is straightforward, as

pa | M= a2

k—o0 n n n
=) 1 & o WHi=9)
hm Sz’j:_z +*de(z_])— Z
ko0 lem na4 e M (212)
l(i—7)
= -2 d ,
lem

where M is a set of all [ corresponding to —1 in o(U) with cardinality of z4.
On the other hand, in the low energy limit, we need to be cautious about
the presence of 1 in ¢(U). If 1 is not in the spectrum of U, analogical calculation
leads to
lim S(k) = -1, (2.13)

k—0
while the other case gives

_Ma m—pa 204 —n

11:12(1) Sis = n 0 n
1(i—j) 1 o I(i—j)
w w
li e - d(i—j)
A S lg]\:/[ n n dZ::lw * g]\:/[ n (2.14)
I(i—j)
w
=9 Z ,
lem

where M and p4 now regards 1.

Let us test these formulae in specific examples. Consider defining vector ¢ with
¢ = 1 and other coefficients equal to 0 in dimension n = 4. Spectrum of respective
U, given by Proposition , is (remembering that in this case w = €*>™/4 = ¢m/2)

A = cow'®D = =4,
Ao =w?=—1,

A3 = w® = —i,

M =wt=1.

Here we have —1 with [ = 2 and 1 with | = 4 in o(U), both with multiplicity
s = 1. In the high energy limit, individual terms, as by Equation (2.11]), are

A, S =
_ WD) (1))
fm Sy = ey = ey
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We can see that if (i — j) is even, the corresponding term is equal to —1/2,
while if (i — 7) is odd, matrix entries will be 1/2. Because S is a circulant matrix
regardless of the limit used, we need to compute (for example) the first row only,
and finally, we get

1 1 -1 1
1 1 1 -1
; 1
JmS=31_7 1 1 1
1 -1 1 1
For the low energy limit, we have
) 1
Ilﬂlil% Sii = Ty
_ wi(i=3) 10—
My =5 = g
and thus
-1 1 1 1
1 -1 1 1
; 1
mS=z17 1 -1 1
1 1 1 -1

Both of these are the same as the results obtained in [ET18]| for this particular
choice of U.

If we choose ¢ with ¢c; = —1 and other coefficients 0 again, with dimension
n = 3, spectrum of U, with w = ¢*™/3, will be

)\1 = —Ww,
)\2 = w2,
Az =—1

The low energy limit then trivially goes to —I because 1 ¢ o(U), and the high
energy limit can be written as

1 -2 -2
Jim =g (-2 1 -2},
o -2 -2 1

which are again results obtained in [ET21].

Let us sum up what we have obtained so far - we proved that the number
of star graph’s bound states is equal to the number of matrix U’s eigenvalues
in the upper complex plane, and numerical values of eigenenergies are given by

1= R)
—K] = —71_{_%()\1).

We calculated the general form of scattering vertex matrix, given by Equation
(2.8), and found its limit for & — oo and k£ — 0 in dependence on the spectrum

of U, given by Equations (2.12)) and (2.14)) respectively.
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3. Rectangular graph

3.1 Basic properties

Following the results obtained for a star graph, we now consider the first example
of a graph with a periodic lattice structure, specifically in the form of a rect-
angular lattice, whose edges have lengths [; and ls. The Hamiltonian acting on
cach edge is still the same as was in the case of a star graph, H{i,} = {—;}.
The periodicity assumption means that the (general) circulant vertex conditions
are the same at every vertex, where present matrices now have dimensions
4x4. According to Section the spectral analysis can be reduced to the in-
vestigation of the operator on the fundamental domain sketched in Figure |3.1],
which contains a single vertex with the coordinate z = 0, and we assume the edge
coordinates increase in the upward and right directions.

Figure 3.1: A periodic rectangular graph with its elementary cell (fundamental
domain) highlighted.

The system is solvable by writing the Ansatz for wave functions on edges as

| | l
V1(2) = are™ + bye i, v e (0,2)
$o(2) = 026" + bye=ike, ve(0,2)

| | . (3.1)
Us(r) = (e 4 b)) g e (7o)
Ui(x) = walape ™) 4 by ), e (-2 o)

where the Floquet multipliers, or Bloch phase factors, e, j = 1,2 are denoted
as wj. The fact that
a3 = (llezkll, b3 = ble_’kll,

ay = age™ by = bye ™2
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comes from the conditions we impose at the elementary cell boundary,

w(“

(=

)wl()

‘2> wal2).

Plugging values W(0) and ¥'(0), where (in contrast to the star graph of the pre-
vious chapter) we choose to take the first derivative in the direction of the edge
coordinate, into leads to a homogeneous linear system of equations for co-
efficients a;, b;. Its solvability is equivalent to the following determinant being
Zero

—c1n + cgwrp — 1 c1 —c3nwipt +n —Can + cawav Co — C4NwalV
—cyqMn + Cowi Cq4 — CoNW1 L —c1n + cswar — 1 c1 — Cc3Nwal + 1N
—C3N + Wi+ Nwip €3 — CINWii — Wil —Ca + CowaV cq — canwol |’
—C21N + cywip C2 — CaMwWifl —C3N + Cuwal + Nwal €3 — C1NWal — Wal/
where we use u = e*1, p = ¢*2 and n = m for the sake of brevity. Evaluat-

ing the determinant in terms of the original momentum variable £ instead of 7,
we arrive at the spectral condition

4et i(01+62)
(k+14ZKF 0. (3.2)

It is rather long, if written fully, as both coefficients K; and functions F; differ
in their nature, as polynomials of different order in coefficients ¢ from circulant
matrix and variable k, or parametric dependence, as functions of [; and [y; they
can be found explicitly in Appendix [A.1]

Nevertheless, it becomes particularly simple for the ’extremal’ rotationally
symmetric coupling,
010
0 01
00 0 ) (3.3)

on the square lattice, [y = lo; the final spectral condition will be identical to that
explicitly derived earlier in [ET1S].

3.2 Permutation-invariant vertex condition

Permutation-invariant vertex condition ([1.4]) is a natural class of vertex couplings
that directly generalises both the § and ¢ condition. In comparison with the gen-
eral circulant matrix from Definition [I.11] it is much simpler being characterized
by only two parameters; in particular, the spectral condition simplifies sig-
nificantly. As we mentioned before, the matrix U specifying vertex condition
must be unitary, with the following implication for the parameters:

Lemma 3.1. Matriz U = rJ + sI, where I is a n X n identity matriz and J is a
matriz of the same dimensions with 1 in all of its entries, is unitary if and only
if |s|]=1A|s+nrl=1.
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Proof. For the implication from the left to the right, the sufficient condition is
obtained by substituting the given form of U into Proposition [1.1}in conjunction
with Lemma [2.1] From these the matrix U has n—1 times degenerated eigenvalue
s and one eigenvalue s + nr. Both conditions regarding r and s then follow from
evaluating unitarity condition UU* = U*U = I in the basis set where U is
diagonal.

The implication from the right to the left follows from (after a simple manip-
ulation) expressing the unitarity conditions stated in Proposition .

O

If we use this type of condition for our rectangular lattice, i.e. ¢ = r + s,
o = c3 = ¢4 = 1, spectral condition is reduced to

—ei(91+92)(l€_;41y1{4rik[(s —1)% + k*(s + 1)%](cos 0 sin kl; + cos 6 sin kly)
+2ik[(s — 1)*(4rs +2r + 5% — 1)
+E (s + 1)%(4rs — 2r + 8% — 1)]sink(ly + Iy)
+8rk*(s — 1)(s + 1)(cos B, cos kly + cos 0y cos k)
+4k*(s — 1)(s + 1)(4rs + s* — 1) cos kl; cos kly
—[2k*(s — 1)(s + 1)(4rs +s* — 1)
+E s+ 1) (4r + s+ 1)
+(s —1)*(4r + s — 1)] sin kly sinkly} = 0.
(3.4)

Let us look into some specific examples. One of the most common permutation-
invariant vertex conditions is §-condition (|1.2)) - substituting

r

T aeR, s (3.5)

gives us the left-hand side of Equation (3.4]) as
2k(sin k(1 + lo) — cos By sin kly — cos 01 sin kly) + asin kly sin kls.

. . i o1(01+02) . .
Here we omitted the numerical prefactor (6416 and for convenience, we will

k+1)%(4+ia)”
continue to do so in other examples as well (with generally different prefactors) -
in other words, we display only the part relevant to vanishing of the determinant.

Similarly, we have ¢ -condition (T.3]) with values

r = . acR, s=1, (3.6)

4 —ia
which leads to the left-hand side being
2(sin k(1 + lg) 4 cos 0y sin kly + cos 0y sin kly) — kasin kly sin kis.
Both of these results are the same as the ones obtained in [EG96] and [Exn96].

3.3 Spectral properties

Let us examine spectral condition (3.4) in more detail. It is useful to parametrize

coeflicients s and r such that

0

s=¢e" =costY +isintd and

r = |r|e"” = |r|(cosy + isin 7).
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As for s, we see that unitarity condition regarding U from Lemma [3.1]is satisfied
automatically; the second condition then gives

|cos ¥ + n|r|cosy + i(sin® + n|r|siny)| = 1.
It can be simplified, using |s| = 1, to
2n|r|(cos ¥ cosy + sin¥siny) + n?r|* = 0,

leading to either the trivial case of |r| = r = 0, or the condition

2
i —9) =
2 cos (3 — ) = I
which for n = 4 in a rectangular lattice case reads
1
—gcos(y —9) =|r].

This, in particular, means that ) can be treated as a free parameter chosen from

interval (0,27), while v is without loss of generality restricted to subinterval

(Z,2r), including r = 0 case. It does not mean that other values of  from (0, 27)

are prohibited per se, they just give the same results - if we choose some " from

(—%,Z), we can treat it in the same way as y — m with v € (3, %), and

’ / . 7 2 / / /
r =|r|e” =——(cosvy +isinvy)cos(y — 1)
n

2

= ——[cos(y—m) +isin(y—m)]cos(y—19—m)
n
2

= —— (cosy + isiny) cos (y — V) = 7.
n

Substituting our parametrized coefficients into Equation gives, discarding
irrelevant prefactors, the spectral condition
kcos (y — ) [(cos ¥ — 1) + k*(cos ¥ + 1)](cos b sin kl; + cos 0 sin kl,)
+k{[—2cosy + cos ) cos (y — ) + cos (7 + V)]
+ k*[2cosy — cos ¥ cos (7 — V) + cos (7 + V)] } sin k(I + 15)
+2k? sin 1) cos (7 — 1) (cos O cos kly + cos 0, cos kly)
+4k% sin 9 cos v cos kly cos kly
—{2k*sin 1) cos~y
+k*2sin vy (cos ¥ 4 1) — sin ¥ (cosy + cos (v — 9) )]
+[2siny (cos — 1) — sind (cosy — cos (7 — ) )]} sin kl; sinkly = 0,

(3.7)

or, in a form simplified for further purposes,
k(A; + k*Ay)(cos By sin kly + cos 0, sin kly)
+k(As 4+ k2 Ay) sink(ly + 1y)
+k%As(cos B, cos kly + cos 0 cos kly) (3.8)
+k%Ag cos kly cos kls
+(k*A; + k*Ag + Ag) sinkly sinkly, = 0

(All of A; are again written explicitly in the Appendix [A.2)).
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High energy spectrum

Because the structure of spectral bands at high energies is an important charac-
teristic of transport properties of a quantum graph, consider limit & — oo at first.
At the leading order, condition (3.8 reads

k*Agsin ki sin kly + O(K*) = 0,

provided that Ag # 0. This can happen only if —1 is not part of the vertex matrix
spectrum. Indeed, we have

Ag = —2sin+y (cos ¥ + 1) + sin ) (cosy + cos (y — 9) ),

and —1 € o(U) means either s = —1, then necessarily cos? = —1 with sin? = 0,
and subsequently Ag = 0, or s+ 4r = —1, where we can simultaneously solve for
the real and imaginary part of this expression, from there get

cos = cos2y and sind = sin 27, (3.9)
then finally substituting into Ag

Ag = —2siny (cos 2y + 1) 4 sin 27y (cos y + cos 7y cos 2y + sin y sin 2)
= 2siny (—siny? + 1 — cosy* — siny? cos 7?)

= 2sin v [—cos v* + (1 — siny?) cos 7? = 0.

If —1 is not an eigenvalue, i.e. Dirichlet part of the matrix eigenspace is not
present, the high energy spectrum is dominated by gaps, as bands can be formed
only in the vicinity of points

kmﬂ-:%, j=12 and meN

We consider the next-to-leading order and rewrite condition (3.8) in the asymp-
totic form,

Aysink(ly 4 o) + Aa(cos Oy sin kly + cos 0y sin kls)

Ag sin kll sin k’lz + L = O(k_Q)a
(3.10)

and we introduce -
k=—490, meN. (3.11)

i
As a general rule for this thesis, although we shall always specify them beforehand,
we use the expansions

l; i 0% i 33 l;
sin kl; = sin o dl; cos KA N AL A L GLL O(5%)
L L, 2 I, 6 L
l; li 6% i 3 l;
cos kl; = cos M dl; sin M 00 s 00 4 00 gy T O(5%)
L, I, 2 L, 6 L

(3.12)
every time there is a need to get a better understanding of the said bands. In these
expansions, we stick to the notation introduced in (3.11]), where [; is an arbitrary
length relevant to the given problem.
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Because the following procedure is practically the same for both j, we now
focus only on 7 = 1, whereas for j = 2 we will present only the final results.
Expanding functions around k,, ; gives us

37.3
sinkly = (—1)™ (511 0 él )

§%15* l §31,° l
sin kly = (1 — 22 ) sin l—2m7r + (512 — 2 ) cos 2mm
1

sink(l; + 1) = (_1)771[(1 _ 52(l12+l2)2> .y

3 3
N (% _ 5<l+l2>> lzml

6 [y
and substituting into Equation ([3.10]), with k=1 = % +O(m™?), we get
[ [
—L A4 (—1)™ + Ay cos 6] sin —m
mm I
+0{Ag(—1)"1; sin l—2m7r + l—l[(A4(—1)m(l1 + ly) 4+ Asly cosbq) cos l—zmw
Il mm b
+ Azl (—1)™ cos 6o]}
! ! I+ 1y)° 2 l
+62{ Ag(—1)™115 cos imﬂ — m17T[A4(—1)m(1+22) + Az% cos 0] sin imw}

+0(8%) = 0.

Here we want to express 0 as a function of the other parameters, gaining thus
an insight into its behaviour. Our strategy revolves around the fact that first,
we want to include some O(1) terms (with respect to m), as in the end we work
in the limit m — oo, and secondly, we want to do it through the lowest order of
0 as possible. Now, for example, it is sufficient to take the terms proportional to
the first order in 9, and including limit m — oo we have

—[A4(=1)™ + Ag cos 6] sin %mﬂ

5(61) = +O(m™2).

Ag(—1)™mm sin %mﬂ
Here we face two possible situations:

o If % is irrational, sin %mﬁ for large m € N is never 0, we can cancel it

in both the numerator and the denominator, and
—[A4 + AQ(—]_)m COS 91]

Agm

6(6h) =

o If % is some rational number, sin %mﬁ is periodic as a function of m,

and is in particular equal to 0 for m = m/%, m' € N. For such m we
must go up to the second order of § to be able to express it, and then

l
5<0 ) 1 A4(l1 + 12) + Ag[lg(—l)m(1+%) COS 91 + ll COSs 92]
V== ;

l
mm Agly (=)™

otherwise asymptotic expression of §(f;) stays the same as in the irrational
case.

28



In the asymptotic regime we generally define the dispersion function branch E,, ()

around k£ = ’7—;, dependent on an arbitrary Bloch factor, as
En(6) = K2, ,(0) = (?)2 +27%6(0) + O(m"); (3.13)
J J

we drop the subscript j because the length [; is usually not the only relevant
length parameter, and we are mostly interested in dependence on m (i. e. higher
energies). The corresponding energy band width AE,, is then expressed as

AE, = |k'r2n](0) - kzn](ﬁ)’
mm
~ 2 T!é(O) — ().

J

(3.14)

The sought energy F,,(0;) as a function of the Bloch parameter is now

mmy2 Ay + Ay(—1)" cos by 1
E,0)=(—) —2 O ,
6) = (%) Yo +0(m™)
while the band width itself is
41As
AE,, = —|— -1
L7, +O(m™)

As for the particular case of rational %, the energy has the same expression with
corresponding 4, and the band width is

AEm _ 4([1 + lz) A2
lhla

i +O(m™); (3.15)

while we do not necessarily know the value of (—1)m(1+%), 0y is the first com-
ponent of the quasimomentum, and we can always choose a combination of 6
and 6, at the border of the Brillouin zone leading to a maximum difference be-
tween boundaries of said energy band(s).

The calculation for [; = [, leads to similar results, as

» for 2 ¢ Q
5(6,) = —[As+ fﬁ:;ﬂ;)m cos 0]
o for % €Q
5(0,) = 1 Ayl + D) + Agflycos by + L (1)) o 02];

l
mm Asly(=1)"
it m = m/%, otherwise ¢ stays the same as for the irrational case,

and from that




for irrational and some cases of a rational fraction of lengths, or band widths given

by Equation (3.15)) for specific instances of a rational case where sin %mw = 0.

However, as we have seen before, if —1 is part of the matrix spectrum, Ag =0
and the asymptotic band-gap structure changes. If s = —1, then v = T,

and in limit £ — oo we have

Ay (cos 0y sin kly + cos 6 sin kly) + Assin k(I +Ip) + O(k™)
=2 cos 7 (cos Oy sin kly + cos O sinkly — sink(l; + 1) ) + O(k™!

) =0,
where everything except the error term is annulated by setting
0 =kli +2nmt AN Oy =kls+2mm, n,m € Z.
If s 4+ 4r = —1, for large k condition reads
Ay (cos 0y sin kly + cos 0y sin kly) + Agsink(ly + 1) + O(k™) = 0,

but using previously established relations between ¥ and v we get

2 cos > (cos By sin kly + cos 0y sin kly + sin k(l; +15)) + O(k™) =0,
satisfied, up to the error term, by

Oh=kli+2n+1)m AN Oy=klya+2m+1)m, n,meZ,

so both possibilities lead to the high energy spectrum of our graph being domi-
nated by bands, while gaps vanish in the order O(k~!), which at the energy scale
means their width is asymptotically bounded.

Low energy spectrum

Next, we consider spectral structure around the point £ = 0. We choose k = ¢
as a small parameter and use Taylor expansions

(o0°* | (61)°

sinklzél—T—l— S
N GO
cos kl =1 — 51 e

where [ denotes [, I, or (1 + 1), depending on the specific circumstances. Con-

dition (3.8 transforms into

[Ag + Az(l1 + I2) + Aglyly + Ai(lycos O + lscos b1) + As(cos by + cos 6)]
9 As o oy Azl 2 1o
+0°[As(ly + 12) — 7@1 + 1) — 7(? + 117l + Ll + ?)

A
+ A7l1l2 — %l1l2<l12 + l22) + Ag(ll(?OS 92 + lQCOS 91)

A A
— 75(Z12COS 0y + ly%cos 6;) — Fl(ll?’cos 0y + ly3cos 1)) + O(6*) = 0.
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The plan is to get terms with cos 8, and cos 65 to one side of the equation, and be-
cause both of these individually range from —1 to 1, we can rewrite our condition
in the form of inequality, which will be easier to evaluate. For general expression,
it means that

A
[Ay+Adh+h)+Adﬂﬂ+5%@Uy+by—Eﬂﬁ+£)

As I, 2, B Ag 9 | 12 A
- ZE B 0B+ D) + Aty — 20 + B) + O

= — Ay(lycos by + lscos 01) — As(cos 0y + cos ;)
A A
+ 52[75@%008 0y + l5cos61) + El(li’cos 0y + l5cos 6,)

— Ay(lycos By + lycos 0)] + O(6%)
= — [(Alll + A5> COS 92 + <A1l2 + A5) COS Ql]

+ 52[(12513 + félli’ — Agly) cos Oy + (’2515 + féllg’ — Agly) cos 0] + O(6*).
(3.16)
Because we investigate the asymptotic regime o — 0, the terms proportional to
at least 6 in Equation do not need to be taken into account as long as
O(1) terms are not equal for a particular choice of 6; and ;. Our condition then
becomes

Aﬁ + Ag(ll + 12) + Aglll2 = —[(Alll + A5) COS 92 + (A1l2 + A5) COS ‘91] (317)
Let us examine its right-hand side in more detail. It is of the form
to cos 61 + tq cos By,

and if our goal is to transform Equation (3.17) into an inequality, we need to
find its maximum and minimum with respect to #; and #,. After differentiation
the possible stationary points are

These points form two pairs (the first with the second and the third with the
fourth), each containing maximum and minimum, depending on whether ¢; and ¢,
have the same sign or not.

Explicitly written, the right-hand side of Equation (3.17)) is

—cos(y — ¥) {[(cos ¥ — 1)l; + 2sin ] cos Oy + [(cos ¥ — 1)ly + 2sin ] cos 1 }

=ty cos by + ty cosby;

here we, without the loss of generality, assume [ > [; > 0. Sign of a particular ¢;
can be determined from inequality

. 2sin v 9 cot
i > =2cot _;
1 — cos?d 2
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if both [; and I do (or do not) satisfy it, Equation (3.17)) can be finally rewritten
into

|A6 -+ Ag(ll + lg) + Aglllg‘ < ’ — Al(ll + lg) — 2A5’, (318)
then if [y does satisfy it, but /; does not, Equation (3.17)) becomes

|A6 -+ Ag(ll -+ lg) + Aglﬂg’ < | — A1<l2 — ll)| (319)

If these inequalities, in their particular setting of lengths, are satisfied, then there

10 -

Figure 3.2: 2(301;% on interval (0, 27) with lines Iy = 5 and [, = 2; red horizontal
line on ¢ axis corresponds to interval where condition (3.19) is valid.

exists a positive band connected to the zero.

Should the left and the right side of (3.18)) or (3.19) become equal, it does
not mean that the positive spectrum is necessarily separated from zero, but we
need to go to higher orders in the § expansion. While we once again start from
condition ([3.16)) generally, both of the sides are always equal specifically if 1 is
a part of the vertex matrix eigenvalues. If s =1,

A= A3 = A5 = Ag = A7 = Ay = (,
and we must go up to the O(6*) terms in condition (3.8)) around 0; it then reads
A4(l1 + lg) + Ag(ll(ZOS 02 + ZQCOS 91)

3

Ay 13 l A
‘H;Z[_?Ll(gl + Bl + L3 + é) — Fz(lif cos Oy + 13 cos 0)) + Aglily] = 0.

Similarly to the previous case, we separate terms containing cos ¢, and cos ), from
the others, and we also explicitly evaluate

Ay = Ay =2cosy and Ag= —4sin~,
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which leads to

82[4siny lyly + cosy (I3ly + 113)]

=2cos [l1(1 4 cos ) + l3(1 + cos b)]
2T [112(1 4 cos B) + 1o°(1 + cos 0,)] (3.20)

3
6213 6213
=cosvy[l1(2 — ?)(1 + cosby) +15(2 — 7)(1 + cos 6y)].

On the right-hand side, the §? term can be omitted because ¢ is arbitrarily small,
and not only is its sign determined by O(1) terms, but the right-hand side will
inevitably be larger than the left-hand side. Additionally, (1 + cos#;) € (0,2),
and can be rewritten as

0 S (52(4l1l2 tanv + l12l2 + l1l22) S 4([1 + l2>

From the middle term, we can factor l;l, out, and because we are interested
in small values of 9, the final condition under which the band is connected to zero
reads

0<4tanvy+ly+1;. (3.21)
The case tany = —142 is included - when plugged into original condition (3.8)),
it can be rewritten as

(cos @y + cos kly + ]{;2 sin kly) sin kl; + (cos 6y + cos kly + kél sin kly) sin kly = 0,

which is around 0 always solvable by specific choice of #; and 65 due to the fact
that .
1> cosx + Esinx

near the zero. Obviously, this procedure does not apply when cosvy = 0, but in
that case r = 0, as ¥ = 0, and that reduces original condition (3.4) to

sin kll sin le = O,

which means that the whole spectrum would consist only of two types of flat
bands around points

k=%% and k=7% m=0,1,2,...
1 2

On the other hand, if s + 4r = 1, then sin? = —sin2v and cos? = — cos 27,
therefore

A9 =0,

Ag = —8sinycos? 7,

Az = —2cos’ 7, (3.22)

A; =2cos®y, and
As = 4sin~y cos?® 7.

The condition of connection to the zero then reads

| — 8sinycos®y — 2(I; + ly) cos® v| < | — 2(l; + I5) cos® ¥ — 8sin~y cos® 7|, (3.23)
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if taken from (3.18]), or
|4 tan’y + (ll + lz)‘ < (lg - ll), (324)

if taken from ; final arrangement for this case once again excludes cosvy = 0,
but this choice would inadvertently lead to cos? = 1, which we already men-
tioned. While it might not be immediately clear whether or when are both sides
equal in (3.24)) in contrast to , let us remember that, due to the relations
between ¥ and ~, tany = —COtg follows immediately, and from assumptions
leading to , tany € <—l52, — %) Furthermore, 4tan~y + (1 4 l3) is a lin-
ear function of tan~y, so on the given interval it may reach maximum (or mini-
mum) only at its endpoints, which are now —%2 and —%, both leading to equality
in (3.24). Otherwise it is satisfied, and in other words, if Iy # [, s + 4r = 1,
and ¥ € (2arctan %, 2arctan %) (illustrated for example by the red line in Figure
, the positive spectrum is always connected to the point k = 0.

As was mentioned before, if it is appropriate to use , we need to use
higher orders in § expansion, so plugging additionally with

Ay = —2sin’ v cos 7,
Ay = 65sin? vy cos 7,
A7 = 4sin~ycos®,

into (3.16) (or (3.23]) respectively), we get

| — 8sinycos?y — 2(I; + ) cos® y
+ 6%[6(1y + Iy) sin? y cos y 4+ 4(11% 4 15%) sin y cos®
I’ lr”
+ (1? + 1% + L+ %) cos® v + 41,1y sin y cos® 7|
<| —8sinycos® vy — 2(I; + ) cos®
3
+ 62[2(1% + 15?) siny cos® y + (I1° + l;’)COST7
+ 2(1y + Iy) sin® y cos v]|.
Effectively, we are in the situation
[z +y| <z,
where
y = 8°[4(ly + Iy) sin® y cos 7y + 2(IF + 13) sin 7y cos® y
4 (ly + 1113) cos® y + 41,1y sin y cos® 7]

= 0%2(1 + Iy) cos® y [2tan? v + (I; + I5) tan y + ll;],

x = —2cos®y[4dtany + (1 + [y))]

(5 +1)

+ 6%2cos® v [(I + 13) tany + 5

+ (I + 1) tan®4].

Because the expression y is O(§?) and z is in the highest order O(1), it is only

important whether z and y have the same sign; 7 is now taken from (7, 37”),
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therefore cos® v < 0 and sign of y is determined by

2tan® v + (I + ly) tany + l12l2, (3.25)
while sign of z is determined by
dtany + (I +12).
Solving quadratic equation for tan~ gives us two solutions

l l
tan’y:—gl and tan’y:—é;

between them is ([3.25)) negative, but values from this interval already correspond

to so for our current purposes is (3.25)) always positive, and y is always
negatlve for tany outside of (—2, —4) (the solutions of (3.2F)) itself will be dealt

with later). The prefactor before the relevant O(1) part of x is always positive,
therefore the final condition ensuring the existence of spectral band connected
to zero is

0 <4tany + (L + o).

Note that here tany = % cannot occur as —% is the average between
ll and —2, so it must definitely lie between those two values, and now we are
worklng out81de of the mentioned interval.
There are two particular cases

tany =
)

solving ([3.25)). In both of them y = 0, so we must once again go to higher order
terms, effectively solving the inequality

lz+ 2| < |z + 2],

where

A Ag
64 13+ 3(131y + 121) + I3] + ﬂ(z4 + 61212 +13)

As
+ 1—20[15 + 511y + 131y) + 10(B13 4+ 1313) + 03]
A

+ Aglyly — %(li{% + lgll)}

2 =0~

N2y
= 20*cos? 7{ [l3 +3(Bly + 53L) + 3] — t6(l4 + 60305 + 15)

— EO[l5 + 5(l4l2 + 1) + 10(5312 + B312) + 1]

+ 21112tan37—%(l352 +130)},

A
2B+ + (14 +13) +

A 5 5
- CL@ )]

120

7(l:erlz) + T<l4+l4)

2

t
= 25%cos’y | an 1+ 15)]

120<
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Now if tany = —%, then under our assumptions x > 0 holds, and because §
is arbitrarily small, it is sufficient to have 2’ > z. After substitution and factoring
out I3, where we denote p = %, we can transform it into

2p° — 10p* + 10p® — 5p® 4+ 35p + 7 > 0.

This polynomial is on the interval (1,00) (because Iy > [;) always positive,
and therefore our condition is always satisfied and the positive spectrum is con-
nected to zero.

On the other hand, if tany = —%2, we have x < 0 and 2z’ < z must be true.
Again, after substitution we have

—7p° — 35p* + 5p — 10p? 4+ 10p — 2 > 0,

but this polynomial is on (1,00) always negative, and as such the condition is
never satisfied and the positive spectrum remains separated from zero.

Negative spectrum

The general condition for the negative part of the spectrum is obtained by inter-
changing k for ix. Equation (3.7) then becomes

rk(A; — k*Ay)(cos B, sinh kl; + cos 0 sinh kly)
+k(Ag — k2 Ag) sinh k(ly + Iy)
+1%As (cos 0y cosh kly + cos 0 cosh k) (3.26)
+r2Ag cosh kly cosh kly

+(—k*A7 + k*Ag + Ag) sinh sl sinh kly = 0.

Both sinh(z) and cosh(z) are non-periodic functions diverging for large values of
the variable x. This is the reason why the number of possible bands in the negative
part of the spectrum is finite, in fact with a bound coming from the spectrum of
U, as stated by the following theorem [BET22l, Theorem 2.6].

Theorem 3.1. Consider a periodic quantum graph and assume that its elemen-
tary cell contains N vertices with the couplings described by unitary matrices U;,
j = 1,..., N, then the negative spectrum of the corresponding Hamiltonian con-
sists of at most Z;V:l n§+) bands (where ngﬂ are eigenvalues situated in the upper
complez plane).

Remark. This is the generalization of Proposition for periodic graphs.

Because now our elementary cell contains one vertex, described by an unitary
matrix with at most two distinct eigenvalues, the negative spectrum must also
have at most two negative bands.

As far as its behaviour around zero is concerned, the calculations are the same:
using Taylor expansions

(60° |, (o1)°

sinh kl = 6l + T + 51 + 0(57),
2 4
cosh kKl =1+ (52[') + ((ZR + 0(0%),
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we substitute into condition (3.26) and obtain

[Ag + Az(l1 + I2) + Aglyly + Ai(lycos O + lscos b1) + As(cos by + cos 63)]
A As 13 l53
482~ As(l 4+ 1) + 76([12 +15%) + ?3(1? F 120+ L+ %)

A
— A7lllg + Fgllb(llQ + l22) — AQ([lCOS 92 + ZQCOS 91)

A A
+ 75“12008 0y + ly*cos 01) + Fl(ll?’cos 0y + ly*cos 61)] + O(6*) = 0.

The only difference is a change of sign in O(§?) terms, so the same conditions
as for the positive spectrum apply, but with inequality sign flipped in those cases
where the relevant higher-order terms were used.

Let us summarize obtained results in the following theorem, where we reca-
pitulate significant features of the spectrum, in particular in the limits of high
and low energies, for both the positive and negative spectrum.

Theorem 3.2. Let U = rJ + sl be an unitary permutation invariant circulant
matriz specifying vertex condition on a quantum graph with a rectangular lattice
with lengths ly and 1y, ly > 1y, and Hamiltonian (1.1) on its edges. Choose

parametrization
s = cost + 1sin v,

1
r=—gcos (v —)[cosy + isiny].
Then the following is true:

1. If —1 is one of the eigenvalues of U, the high energy positive spectrum is
dominated by spectral bands, while spectral gaps shrink as O(k™1).

2. If =1 is not an eigenvalue of U, the high energy positive spectrum is domi-
nated by spectral gaps. Bands are formed only around points

kmi="5" 1=12 and meN

and they have an asymptotically constant width

4

cos(y — 1) (cos ¥ + 1)
—2siny (cosv 4+ 1) + sin ¥ (cosy + cos(y — 9) )

|+ O(m™).

If% is irrational, this is always true; for rational %, there exists an addi-
tional type of band with asymptotically constant width

4l +1p) cos(y — ) (cos ¥ + 1)
AE,, = : :
Lily | —2sinvy(cos? + 1)+ sind (cosy + cos(y — ) )
+O(m™).

3. If 1 is not an eigenvalue of U, whether positive spectrum is connected to
the point k = 0 is determined by inequality

|4sin ) cosy + (—2cosy + cos ¥ cos(y — ) + cos(y + ) ) (1 + [2)
— [2siny (cos ¥ — 1) — sin ¥ (cosy — cos(y — 9) ) | l113]
< | =cos(y — 1) (cos? — 1)(ly + l3) — 4sinv cos(y — ) |
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in case ¥ ¢ (2arctan(%), 2arctan(2)), or by

in
[4sin ) cosy + (—2cosy + cos ¥ cos(y — ) + cos(y + 9) ) (L + l2)
— [2siny (cos ¥ — 1) — sin ¥ (cosy — cos(y — 9) ) | l115]
< | = cos(y —13) (cos? — 1)(la — 11) |
in caseV € (2 arctan(%), 2 arctan(%) );if 0 =2 arctan(%), then the relevant
condition s
|4 sind cosy + (—2cosy + cos ) cos(y — ) + cos(y + ) ) (ly + )
— [2siny (cos ¥ — 1) — sin ¥ (cosy — cos(y — ) ) | l115]
< | —cos(y — ) (cos ¥ — 1)l; — 2sin ) cos(y — ) |,
where j is the second index different from i. If any of them is satisfied, then

the positive spectrum is connected to zero.

. If 1 is an eigenvalue of U, then if s = 1, the condition for the absence of
a gap around zero in the positive spectrum is

0 <A4tanvy+ 1+ [;
if it is satisfied, the positive spectrum is connected to zero, otherwise it is
not.

Furthermore, if s+ 4r =1 and if 9 € (2arctan %, 2 arctan % ), the positive

spectrum is always connected to the zero; if ¥ ¢ (Qarctan%,Zarctan%),
then the condition reads

0 <4dtany+ (I1 + lo);

if satisfied, the positive spectrum is connected to the zero, otherwise it is
not.

. The number of negative bands is bounded from above by the number of eigen-
values of U in the upper complex plane.

. If 1 is not an etgenvalue of U, whether the negative spectrum is connected to
the zero is determined by the exact same condition as the positive spectrum,
i.e. both sides are (dis)connected if there are any negative bands.

. If 1 is an eigenvalue of U, then if s = 1, the condition for the absence of
a gap around zero in the negative spectrum is

0>4tany + s + Iy;

if it is satisfied, the negative spectrum is connected to zero, otherwise it is
not.

Furthermore, if s +4r = 1 and if 9 € (Qarctan%,Qarctan%), the nega-

tive spectrum is always connected to zero; if ¥ ¢ (2arctan%,2arctan%),
then the condition reads

0> 4tany + (b + l2);

if satisfied, the negative spectrum is connected to the zero, otherwise it is
not.
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Square lattice l; = [; = [ then slightly simplifies things:

Corollary 3.1. Let U = rJ + sl be an unitary permutation invariant circulant
matrix specifying vertex condition on a quantum graph with a square lattice with
length | and Hamiltonian (1.1)) on its edges. Choose parametrization

s =cosv + isind,
1
r=—gcos (v —9)[cosy + isin~y].
Then all statements true for rectangular lattice are also valid with these additional
specifications:

1. If —1 s not an eigenvalue of U, the high energy positive spectrum is domi-
nated by spectral gaps. Bands are periodically formed only around points

k=" meN

and they have an asymptotically constant width

AE, — 8 cos(y — ) (cos v + 1)

-1
l _QSin’y(Cosq9+1)+Sin19(COS’y—|—C()5(/y_19)) +O(m )

2. If 1 is not an eigenvalue of U, whether the positive spectrum is connected
to zero is determined by inequality

|4sin v cosy + 21 (—2 cosy + cos ¥ cos(y — ) + cos(y + V) )
— [ [2siny (cos® — 1) — sin® (cosy — cos(y — ) )] |
< | =2lcos(y — ) (cos? — 1) — 4sin¥ cos(y — I)|;

if it is satisfied, then the positive spectrum is connected to zero.

3. If 1 is one of the eigenvalues of U, the condition for the absence of a gap
around zero in the positive spectrum is

0 <2tan~vy+1;

if it is satisfied, the positive spectrum is connected to zero, otherwise it is
not.

4. If 1 is one of the eigenvalues of U, then, if s = 1, the condition for the ab-
sence of a gap around zero in the negative spectrum is

0> 2tany +;

if it is satisfied, the negative spectrum is connected to zero, otherwise it is
not.

Furthermore, if s + 4r = 1, then the condition is
0> 2tany +(;

if satisfied, the negative spectrum is connected to zero, otherwise it is not.
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Now we present a few examples illustrating the derived results. The structure
of bands and gaps in Figure was calculated for ¥ = 7/3 and v = 27/3 with
[ = 1. It corresponds to the case of square lattice with s + 4r = 1, for which we
have conditions

0<2tanvy+1l~ —1.732+1=-0.732

for small energies at the k side of momentum axis and
0>2tany + 1~ —0.732

for the k side; in this situation, we see how the (only) negative band is connected
to zero, while the lowest positive one is separated. Because —1 is an eigenvalue of
matrix U, we also see how positive band intervals become shorter and shorter with
larger values of momentum variable k, and their proximity to integer multiples
of . Eigenvalue s = % + z@ is the only one in the upper complex plane, and as
such there cannot be more negative bands than the one we see in the Figure [3.3]

Figure 3.4 was calculated for ¥ = 7/3 and v = 77 /6 with [ = 1. Because here
is s + 4r = —1, condition for both the negative and positive band is

|4 sin 1 cosy + 21 (—2cosy + cos ¥ cos(y — V) + cos(y + V) )
— [ [2siny (cos® — 1) — sin® (cosy — cos(y — ) )] |
< | —2lcos(y — 1) (cos? — 1) — 4sin¥ cos(y — I)|;

after the substitution, it reads
V3 13 1 V3 V3
\ - 4(7)2 +2(V3 - 57) - (5)\ ~ 0.902 < \ — 5 4(7)2] ~ 2.134,

so both the lowest positive and negative part of the system spectrum is connected
to zero. Because —1 is an eigenvalue of U, with growing k£ bands become larger
and more prominent. There is once again only one negative band, as a larger
number of them is prohibited by Theorem 3.1}
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Figure 3.3: Spectral condition solution for square lattice, [ = 1, with permutation-
invariant vertex condition defined by coefficients (r,s) = (3 — i%,% + z@)
The green dashed line is an evaluation of the spectral condition, while the shaded
region marks areas where spectral bands would occur if crossed by the dashed

line. Red horizontal lines then correspond to spectral bands.
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Figure 3.4: Spectral condition solution for square lattice, [ = 1, with permutation-
invariant vertex condition defined by coefficients (r,s) = (=3 — i?,% + @?)
The green dashed line is an evaluation of the spectral condition, while the shaded
region marks areas where spectral bands would occur if crossed by the dashed

line. Red horizontal lines then correspond to spectral bands.
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4. Interpolating coupling

4.1 Basic properties

Another possible type of a circulant vertex condition is the one continuously inter-
polating between a ¢ condition from and the condition generated by the ma-
trix R from (3.3)). It was first introduced by authors of [ETT18§] in order to analyse
and distinguish behaviour of vertex couplings with different symmetries, because
while both of the mentioned conditions are PT-symmetric, ’extremal’ rotation-
ally symmetric coupling, in contrast to a 0 coupling, violates the time-reversal
symmetry (L.5).

The interpolating coupling {U(t) : t € (0,1)} was constructed in such a way
that

U0) =1+

Jand U(1) = R,

n—+ix

t — U(t) is continuous on (0,1), (4.1)

U(t) is unitary circulant for all ¢,

where n is a vertex degree. The process itself is explained in detail in the men-
tioned article; in the first step the eigenvalues of corresponding vertex matrices
are constructed with given properties, and through them the generating vector of
the circulant matrix is expressed, as it was described in Proposition [I.3] The final
eigenvalues of U(t) are then

(D) e (1=t for [l =0, (4.2)
I im0 for1 <l <n-—1, .
where now L ,
n+ ia n — i ,
- c (— th = 727, 43
y=arg = € (—mm), thus ———— = (4.3)

Writing U (t) explicitly is rather lengthy and in principle not needed for further
calculations; the main results of [ETTI8| concerned the star graph and the period-
ic square lattice (n = 4), with the same Hamiltonian as we have used in previous
chapters. They can be summarized as follows:

The star graph Hamiltonian

2

. 1—t
« has a negative eigenvalue —k* = —tanQ% whenever a < 0.

e has %] eigenvalues for every t € (0,1) if n > 3; they have the form
—k* = —cot?((L—1)rt), where j = 1,..., %L foroddnand j = 1,...,2—1

for even n.

e has all eigenvalues diverging to —oo in the limit ¢ — 0,

except for —tanzw, which approaches —tan®Z = —g—z.

e has all eigenvalues converging to 0 and —tan“%, if present, j the same
as before, in the limit ¢ — 1_; for ¢ = 1, zero is no longer an eigenvalue
of the star graph, see Proposition [2.1]

The Hamiltonian of a periodic square lattice of the edge length [y
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e has a ’discontinuity’ for ¢t = 0, as there is always a spectral band, which
becomes narrower for smaller values of ¢ and eventually disappears.

« has point degeneracies for a = 0, as in that case spectral bands for particular

1y
values of t = ﬁarccot (mlf)
flat bands’.

, m € N, may collapse into points, also called

e has non-monotonous gap widths with respect to ¢ for all a.
e has some bands independent of .
» has band edges curves described by analytic functions of k.

» has 'flat bands’ for ¢ = 1, which are smeared into regular bands for ¢t < 1.

4.2 Periodic chain

Here we will consider the same interpolating vertex condition, but for a peri-
odic chain graph presented in Figure [4.1] Our Hamiltonian is once again neg-
ative Laplacian acting on each edge, and for now, we generally assume [; > 0,
j = 1,23

We solve this problem using a similar Ansatz as in Equation ,

(U(t) — D(v) + il(U(t) + D' (v) = 0, (4.4)

however, now we introduce the length-type parameter [, which serves as a tool
to scale other lengths and consequently the graph as a whole - the lengths have
the form

lj - ljl,

where l;- € RT are some numbers. In previous chapters, we implicitly fixed
the scale by requiring [ = 1; as we will see later on, another (to a degree arbi-
trary) choice of scaling might be more convenient here. 1)(v) denotes the value of
the wave function ¢(x) at the vertex, and the same equation as the is used

for p(z).

Figure 4.1: Periodic quantum chain with its elementary cell highlighted. [BET22]
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We describe wave functions on the edges as

Vi(x) = afe™ +aye™ x e (0

2
. . ! (4.5)
oy(x) = BN 4 b e (— D0),
with additional conditions
wn(§) = Uea(=5). wy(5) = (%)
¢3(§3) =e' @3(_ 23)7 ¢3(§3) =e' 903(_53)7

¥1(0) = »1(0), wi(O = @1(0)7

which come from the Floquet conditions for the elementary cells of a periodic
graph for 5 = 2,3, while for ;7 = 1 we require the wave function and its first
derivative to be continuous, as x = 0 was chosen in the middle of the edge

connecting adjacent loops; ¥ denotes Bloch phase factor. Substituting (4.5]) into
them gives us

b ikl =i p— o — ikl ,—i0
by =ase™e, by =a,e e,
bi =age™e ™ by =age Mo (4.6)
+ ot - — -
by =ay, by =ay.

To accommodate both ¥ (x) and ¢(x) into one equation, we now denote

v = (5 )

i. e. block diagonal matrix, where each block corresponds to one vertex in
the elementary cell and the vertex condition is described by 3x3 interpolating

coupling matrix U(t). Similarly
_(V 0

where V' is the discrete Fourier transform matrix defined in Proposition [I.3]
We solve Equation (4.4]) in the form

=
SN~—
|
<
~
—~
|=
SN~—

(2 1\ 2
03(0) 4}(0)
) - 1) (p@f@,ﬁ | +iwe+n gp@f’({oé) 0, (A7)
©2(0) —,(0)
3(0) —5(0)

where we have chosen the direction of the chain from the left to the right,
and as such inward (with respect to the vertices) derivatives must be taken with
an opposite sign. The ¢ part of the wave function vector has an enumeration
different from ¢ due to the topology of our graph - vertices in the quantum
chain are described by the same coupling, and each of them must have the same
orientation.
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Combining (4.5)), (4.6) and (4.7) with Proposition [L.3] yields

ai
ay
at
[V*(D(t) — I)VM — le*(D(t) + I)VN] az_ =0, (4.8)
2
ag
az
where
eikli/2  o—ikly/2 0 0 0 0
0 0 0 0 1 1
0 0 1 1 0 0
M = ekl /2 ikl /2 0 0 0 0 ,
0 0 eiklge—ie e—iklg e—i@ 0 0
0 0 0 0 cikls p—i0  —ikls ,—if
and
_6ikl1/2 e*ikl1/2 0 0 0 0
0 0 0 0 1 —1
0 0 1 —1 0 0
N = e—iklL/2  _ gikl1/2 0 0 0 0
0 0 _eiklg 6—1‘9 e—iklz e—iG 0 0
0 0 0 0 _etklz =i ,—ikl3 ,—if

Equation is solvable if and only if
det[(D(t) — I)VM — kl(D(t) + I)VN] = 0;
the final spectral condition then reads, modulo numerical prefactors,
kS Ps+k° Ps+Kk* Py+ k> Ps+ k* Py +k Py + Py + k*(sin Py +cos P.) = 0 (4.9)

where P are products of three types of polynomials - depending on cos~y(1 — )
or siny(1 — t), and furthermore, on cos %t and sin %t, and finally, on goniometric
functions of kl;; they are explicitly evaluated in Appendix .

Let us test it on examples of previously gathered results. If we choose t = 1,

then

t 3 t 1
siny(1—1t) =0, cosy(l —t) =1, sin% = \2_, COS% =2

and using

sink(ly + Iy + I3) = — sin kl; sin kly sin kls + cos kly cos kly sin ki3
+ cos kly cos ki3 sin kly + cos kls cos ki sin ki,
with
sin k(ll + lg — lg) + sin ]C(ll + lg — l3) + sin /{Z(ll + lQ — 13) =
3sin kil sin kly sin kls 4 cos kly cos kly sin ki
+ cos kly cos kls sin kl; + cos kls cos kly sin ki
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we can transforms (4.9)), up to a prefactor, into

(K*1* + 3) sin kI, sin kly sin kl3
+ 2(K*I? + 1)[sin kl; — sin k(l; + I3) cos kly — cos kl3 cos ki sin kly] (4.10)
+ 2 cos 0 (K*1* + 1)[sin kly + sin ki3] + 4kl sin @ [cos kl3 — cos kly] = 0,

which is nothing but the spectral condition (2.8) of [BET22].

One of the possible ways to fix the scaling, which will be particularly useful
for the periodic chain, is requiring ls 4+ l3 = 27 to be always satisfied. Keeping
that in mind, we inspect the case t = 0 in the symmetric example Iy = I3 = 7
in the limit {; — 0, in which

t t
siny(1 —t) =sin~y, cosy(1 —t) = cos, sin% =0, cos% =1,
and (4.9) reads
siny sinkm3
cos kT + cos 6 + - =0;
cosy+1 £k 2
its spectral band condition is then
3 v sin k7
k —tan — <1 4.11
cos kT + 5 tan g ——| < (4.11)

This is the same result as in [DETOS8][Proposition 2.1}, except for one thing:
from (4.3)) we can see that

n? — a? ) 2no
CosY = gz and sy = e
From there then
¢ 2no 2%
an-~y = =
v n2 _ o2 1_(%)2’
and it is not difficult to realize how
v«
tan — = — 4.12
an 5= o ( )

must be fulfilled; but when we compare (4.11)) with the aforementioned result

ink
coslmr—l—%sm T <1, (4.13)
it gives us
; v a la
an— = — = ——
2 6 23’

which is one half of the value we would have expected from the periodic quantum
chain with vertices of degree three, n = 3. It can be understood with a physical
insight into the problem, as well as by a careful look into the definition of §
condition ([1.2)). Function(s) living on the edges adjacent to the given vertex
acquire the same value f(v) in it. As l; — 04, the difference between values
f(v) of the two neighbouring vertices becomes smaller, until it must be the same
when the vertices join. The sum of the derivatives along adjacent edges must
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be always equal to af(v), but for I; = 0, there cannot possibly be a derivative
along its edge and the equality must be satisfied by functions on the other two
edges. In the end, there are four edges adjacent to one vertex, with two pairs
of edges, where derivatives of their respective functions both sum to af(v). In
other words, we combined two vertices into one with doubled strength constant.
This means that o present in is two times larger than the one in (4.11]),
and, if & now labels our original constant from a general periodic chain, is
again satisfied.

Alternatively, we can explain this by symmetries - noting that the quantum
chain is symmetric along the horizontal axis passing through vertices, which al-
lows us to decompose our Hamiltonian into a direct sum of its symmetric and
antisymmetric part, the latter of which contains functions vanishing at the axis
of the chain which can contribute only to the point spectrum, in other words,
to the flat bands [DETOS§].

If we make use of the fixed scaling l5 + I3 = 27 also in , it can be solved
independently of  due to the fact that

sinkls + sinkly = sinkls + sin 2kx cos klg — sin kl3 cos 2km
= sin kl3 + 2sin kmw cos km cos klz — sinklg [1 — 2Sin2k:7r]
= 2sin k7 cosk(m — I3),
cos klg — cos kly = cos kls — cos klz cos 2km — sin kl3 sin 2k
= cos klz — cosklz [1 — 251n2k7r] — 2sin km cos km sin kls
= 2sin k7 sin k(m — I3),
which vanishes provided that sinkm = 0. In principle, we can use the same
procedure for any scale fixing constant 3 > 0, ls+I3 = 3, but 27 gives conveniently
expressible results, detailed in the article [BET22].
We would like to present something similar for our interpolating spectral con-
dition (4.9), as both P, and P. contain terms proportional to sin kl3 + sin ki,

but while the former also includes part multiplied by cos kl3 — cos kly, the latter
has cos kl3 + cos kly instead; that is why

« spectral condition cannot be, outside of ¢ = 1 [BET22] and ¢t = 0
(as will be seen later on), generally solved without the dependence on pa-
rameter ¢, i. e. our system generally does not contain flat bands in its
spectrum.

Spectrum given by our condition (4.9)) thus has only continuous band-gap struc-
ture. Similarly to the (4.10)), it can be rewritten into the form

v, €080 + vgsinf = v, (4.14)

where we now introduce angle 9 as

Ve Vs
T T
[2)2 2 [2y2 2
Ve +Us Ve +Us

the denominator of these two quantities cannot be equal to 0, as it is directly
constructed from polynomials P, and P;, and we already established these cannot
vanish simultaneously. From there (4.14) transforms into

sind = costd =

Uy

/012 2
v+ Ui

sin(f +v) =
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and because
0 < sin?(§ 4+ 9) < 1,

particular k2 is part of a spectral band if

v2 v —02 >0, (4.15)
while spectral gap condition reads

V2 + 2 — 02 <0. (4.16)

This solution is completely general and valid for the whole range of every pa-
rameter present - we might specify it further only if interesting properties emerge
for some values of [}, ¢ or 7.

Becauset € (0,1), cos & € (3,1) and, looking at the structure of polynomials
in , only ¢ = 0 significantly alters spectral condition as a whole due to the fact
that for it 5 = P = P, = P; = P, = 0. Similarly v € (—m,7),
and therefore cosy(1 —t) € (—1,1). Keeping these two observations in mind,
we can handle particular cases separately, which will enable us later to make some

algebraic operations without complications.

4.3 Spectral properties

4.3.1 Caseoft=0

Let us start with the limit case of a d-type condition. As was mentioned above,

for t =0 is P; = 0. Consequently is v; = 0, and from (4.15)) with (4.16)) spectral
band and gap condition become, respectively,

Ylaq, |2 >0, (4.17)
Ve Ve
with
v. = —32k*1*(cosy + 1)(sin kly + sin kl3) (4.18)
and

Vv, = — 16k2l2(cosq/ + 1){2sin kly + 3sin ki sin kls sin ki3
— 2[cos klj cos klg sin kl3 + cos kly cos klg sin klj + cos ki3 cos kly sin kla]}
+ 96kl sin y[cos kly sin klg sin kl3 + cos klg sin klg sin kl; + cos ki3 sin kl; sin kls]

— 144(cosy — 1) sin kl; sin klg sin kl3.
(4.19)

Flat bands

We will return to the form (4.14)) of the spectral condition for a moment. Using
our preferred scaling I, + I3 = 2w, (4.18) becomes

v, = —64k*1*(cosy + 1) sin kr cos k(m — I3), (4.20)

and we are now able to find the flat bands, i. e. k, for which is the solution

of a given spectral condition independent of 6. In our case, this happens for
mm

k= k= ——— .
m, or 2(7T—l3)’ mEN
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We may without loss of generality assume I3 < 7, because k must be from R{
by its definition. If I3 > 7, we will use the fact that cosz in an even function,
or symmetry of solutions with corresponding lo; symmetric case [, = I3 = 7 will be
treated separately. For the former choice of k = m, becomes, with some
additional algebraic manipulations,
Vv, = — 16m2l2(cos7 + 1){2sinml; + 3sinmly sinmls sinmls
— 2[cos mly sinm(ly + l3) + cosmls cosmls sinmly]}
+ 96ml sin y[cos mly sinmls sinmls + sinml; sinm(ly + I3)]
— 144(cosy — 1) sinmly sinmls sinmls
= — 16m21%(cosy + 1) sinmiy {2 + sinmly sinmlz — 2cosm(ly +13)}
+ 96ml siny cos ml; sin mly sin mls
— 144(cosy — 1) sinmly sin mly sinmls
=— 16m2l2(cos7 + 1) sinmly sinmly sinmls
+ 96ml sin~y cos mly sinmly sinmlg

— 144(cosy — 1) sinmly sinmls sinmls.

Therefore (4.14)) reduces to

sin mly sin mls [mzl2 sinml; — 6ml cosmly tan(%) — 9 sinml; tanQ(%)] =
) ) ) 3(cosmly — 1) tan(3) 3(cosmly + 1) tan(3)
sinmly sinmly sinmls [ml — - |[ml — . | =
sin mly sin mlq
ml1 ml1

sinmly sinmly sin mlg [ml + atan(T)][ml — acot(T)] =0,

and we can infer that

o if I3, and consequently I, is a rational multiple of 7, i. e. I3 = §7T with

coprime p,q € N, then k% = ¢?>m?, m € N, is part of the spectrum for all p
regardless of the other parameters.

o if ¥ = 0, or equivalently o = 0, then the first statement is also valid for
l; = 1.

o if v # 0 and [; is an integer multiple of 7, there are no flat bands except
those mentioned in the first statement, if present.

o for other values of [1, both rational and irrational, with + # 0, there might
be another flat band k% = m?, as long as there exist integer solution m for
either ml + atan(™) = 0ormi — acot(™2) = 0.

For case k = % =k Equation (4.19) becomes

vy = — 16]?:212(c05'y + 1){2sin kly + sin kl; sin kly sin kl3
— 2cos kly sin 2km — 2sin kly cos 2km}
+ 96k1 sin y[cos Kl sin kly sin kls + sin kly sin 21%77]
— 144(cos~y — 1) sin kly sin kly sin kl3 = 0.

(4.21)

A procedure similar to the previous case might be performed only if

’ITL?T2

= m "eN.
2(7T—l3) mm,m,m €
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Now we come to three different possibilities:

e I3 being an irrational multiple of 7, for which this simplification is not
possible and solutions of (4.21]) must be obtained numerically, if there are
anys;

e [3 =0, which will be treated separately later on;

« and /3 being a rational multiple of 7, which is doable with some restrictions
imposed on numbers m, m’ or ¢, using previous notation, but in the end it
would lead to similar conclusions as the case k = m (looking at the structure
of , it would mainly require finding a & for which sin kl;, sin kl3 and
sin 2k vanish simultaneously).

FExample 4.1. Let us consider quantum chain with parameterst = 0,y = 0,
I = 1,1, = %’r and I3 = %’r. According to our results, flat bands should
occur at every integer multiple of 5 (stemming from [3) and 3 (stemming from

l; and 7 being 0). Furthermore, because Sl = m% we should see flat
bands at multiples of g for which is m an odd multiple of 3. Figure shows
spectral structure of described quantum chain for £ € (20,27). Because flat
bands are eigenvalues of infinite multiplicity but of zero Lebesgue measure, they
are not visible directly in the colour-coded spectral decomposition, but they can
be identified by peaks that are touching, but not (necessarily) crossing, zero of
the vertical axis. We can see them in all suspected points on a given interval,

specifically £ = {20,21,22.5,24,25,27}.

2x10% -
1x109 - /\
: ey AN A \/t\/ /\/\ Y k
i 21 72 23 24 25\ \/26 \f}
~1x109 -
—2x10% -
~3x109 "

Figure 4.2: Evaluation of spectral condition with parameters set in Example [4.1]
Spectral bands are coloured red, while spectral gaps are blue. Flat bands are
denoted by black points.
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High energy limit

Let us move to the asymptotic region. Restricting ourselves to the leading power
of k appearing in the fractions in (4.17)),

4 sin kly sin? km — 4 cos kly cos k sin k + sin kly sin kl, sin ks
2(sin kly + sin kl3) B
sin kly sin kly sin kls — 4 sin kw cos k(7 + 1)
4sin km cos k(m — I3)

(4.22)

The only time when its denominator would be equal to zero are the instances of
flat bands, so we now consider only k away from these points, where the spec-
trum has a band-gap structure. Any further simplifications are unfortunately not
possible, except for particular values of the lengths [y, [, and [3. Nevertheless,
it is true that

e in the high energy limit, the spectrum of in momentum variable k is
independent of strength parameter v up to an O(k~!) error and its structure
can be changed only through differences to the length parameters of a chain
graph. 0 condition is an energy potential type interaction, and therefore
becomes less relevant for system behaviour in the high energy regime.

FExample 4.2. Consider quantum chain graph with¢t = 0,1 = 1,1, = 2 and
I3 = 1% Figure shows its spectral condition for v = 1 and k € (40,42),
while Figure [4.4] was made with v = —2. There are subtle differences with
regard to the width of the bands, but overall is the structure of the spectrum in
momentum scale nearly identical, even for these relatively small values of k.

Low energy limit

To gain an insight into the behaviour around 0, we now set k = § and Taylor
expand relevant functions, specifically
313
sin k’lj = (Slj — Tj + 0(54),
272

cos kl; =1— TJ + O(8%).

Looking at the (4.18)), v, is proportional at least to the 4. While not as obvious,
the same is true for v, as a whole. It is then sufficient to include only the leading
terms from expansions above and ratio ?* now reads

3217 (Iy 4 I3) + 961 (Ials + L1134 l1ly) tan § + 144 Ly lols tan® 3
—3212 (I + 13)
(lls + Lils + llp) tand  91ylyl3 tan®
L(ly + 13) 2 82(+ 1)
Here we choose to evaluate the band part of spectral condition (4.17)). The gap

condition would be done analogically, but it will follow automatically as a negation
of the obtained result. Substitution of given o= means that

(4.23)

~1-3

_ (lglg + 1113 + l]_l2) tan% 9 lllglg tan2 %

— = <2.
- L(lo+13) 2 2(l,+13) —
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Figure 4.3: Evaluation of spectral condition with parameters set in Example 4.2
and v = 1. Spectral bands are coloured red, while spectral gaps are blue.
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Figure 4.4: Evaluation of spectral condition with parameters set in Example
and v = — 2. Spectral bands are coloured red, while spectral gaps are blue.
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Dividing by —1 and keeping tan 3 as an independent variable, we complete
the square as

9 l1l2l3 Y 11 (lglg -+ lllg -+ lllg) 2 1 12 (lglg + lllg + l1l2)2
0>-——2% |(tan 24— —= > 2
=212 (Iy + 1) [(tan 3+3 Il ) -3 2213 |z -2,
leading to
1 l2 (lglg + lllg + l1l2>2 Y 11 (lglg + l1l3 + l1l2> 2
— > (tan = + =
9 BRIE (tan 3 3 L1l )
A+ )P 1P (bl + Ll + L) 1P (loly — Ll — L)’
=79 Lil; 9 2212 ~ 9 21212 '

The upper bound is always positive, so we can take its square root without any
additional thought, but the same cannot be said for the lower bound. First,
assume that

lal3
lo+ 15
Then after taking the square root of the whole inequality we have
1 1 1 — —
71 (Iols + lils + l1ls) > ltan . 71 (Ials + 113 + l11o) S 71 (Ials — l1ls — lils)

3 lilsls - 2 3 lilsls -3 lilsls ’

l2l3 — l1l5 — l1l2 >0= ll <

and we can assume the inside of the resulting absolute value to be either positive,

leading to
Y _gl(lg—f‘lg) . 47T l

> tan - > _ = —— 4.24
0 =t 2 3 lglg 3 (277' - lg)lg ( )
or negative, in which case
21 Uals +hls + hia) = SELLIC Rl ) Chl.) < tan ~ < —gi (4.25)
3 L1155 3L 3 bl 2 ly

On the other hand, if

lol3
loly — iy — lils <0 = 1) > ,
203 13 102 > 1 = l2 + l3
we get
ll (lglg + lil3 + lllg) > |tan v n ll (lglg + lls + lllg) > ll (—1213 + Uz + lllg)7
3 L1515 2 3 L1515 3 L1155

and through the same procedure, we have

ol 21
>t > 4.26
0 an 5 37, (4.26)

together with

21 Ar [ v 4 [
<tan - < ——

If any of those inequalities, chosen accordingly to match given length ratios,
is satisfied, the positive spectrum is connected to the 0, otherwise it is not. Ad-
ditionally, because tan(z) is an odd function, the positive spectrum cannot be
connected to zero for v > 0.
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Negative spectrum

The negative spectral condition is again obtained by substitution & = ik, x > 0,
meaning that
v, = 132K%1*(cosy + 1)(sinh kly + sinh xl3)
and
v, = i16K%1%(cosy + 1){2sinh kl; — 3sinh kl; sinh kly sinh kl3

— 2[cosh kl cosh klg sinh kl3 + cosh klg cosh kl3 sinh kly

+ cosh kl3 cosh kl; sinh ki3] }

— 196! sin y[cosh kl; sinh kly sinh kl3 + cosh kl sinh ki3 sinh kl;

+ cosh kl3 sinh kl; sinh kls]

+ i144(cosy — 1) sinh sl; sinh kls sinh xl3.

The number of possible negative spectral bands still satisfies the bound of Theo-
rem (3.1} Our elementary cell has two vertices, each of them described by the same
coupling matrix, in which all of the eigenvalues, except one, are equal to -1, there-
fore

o there are at most two negative spectral bands, whose appearance is con-
ditioned by v < 0 (equivalently tan or a less than zero); for v > 0,
the negative spectrum is empty.

This can be understood from the fact that v, grows as x2ef(1H2+s) while the v,

grows at most as x2e®%) j = 2.3, whichever l; is higher; their ratio then must
be larger than 1, satisfying the gap condition of .
In a similar way, one finds the behaviour in the low energy limit - in the leading
term
sin zl; ~ dl; =~ sinh zl;,
cos xl; = 1 =~ cosh xl;.

x now denotes both k£ and x; here it is only important that both quantities are
positive and approaching zero. But because all relevant parts retain their relative
sign in the ratio 7=, we arrive at the exact same conditions as for the positive

part of the spec’cru}n7 only with tan 3 separated from 0, and conclude that

« if there is any negative spectral band, it and the lowest positive band are
either both connected to k? = 0, or they both remain separated.

Ezxample 4.3. Consider quantum chain with¢ = 0,1 = 1,[; = 2andl3 = Z.

3
Because 5
2w 18 l2 -+ l3

we make use of conditions (4.26)) and (4.27)). From there the boundaries read

0 and
tan — =
an2 _1,
3
12
~ —S—and
_ T
tang— 12 1
57 3’

o4



respectively. Figures and show spectral bands with non-negative ~ -
not only is continuous negative spectrum empty, but for the former are positive
bands separated from & = 0. Figures [4.8] [4.10] and [4.12] were made with
corresponding to respective boundary values of tan 3, demonstrating how spec-
tral bands in positive and negative spectrum shift between being simultaneously
(dis)connected from zero, while Figures , and were chosen as examples
of particular conditions (not) being satisfied.

Limit [y — 0

There are two possible ways how we can pass into a quantum chain connected with
vertices of degree four - one of them is when [/, shrinks to zero. We will not treat
the symmetric quantum chain (and vice versa later on) as some exceptional case,
because spectrum of this quantum graph topology with § coupling was already
described in more detail in [DETO0S].

Because v, from , or rather (4.20f), is not a function of [;, it remains
unchanged, while v, takes on the form

v, =32k1%(cosy + 1) sin k(ly + I3)
496kl sin v sin klg sin kl3.

Apart from being a considerably more compact expression, there is no difference
in evaluating , so we pass directly to the individual characteristics.
Considering flat bands, those coming from [; are naturally absent, the others
are present once again if 3 is a rational multiple of 7.
Evaluation of the high energy limit will be in the end easier if done through
spectral condition . In the leading order, it gives

(SiIl k?lg —+ sin kl3)2 — SiIl2 k(lg —+ l3)
2sin? kly sin® ki3 + 2 sin kly sin kl3(1 — cos kly cos ki)
2sin kly sin kiz(1 — cosk(ly +13)) > 0,

up to an O(k™') error. It is also the exact form of the spectral band condition
if we choose v = 0 in this setting. Because

2(1 — cosk(ly + I3)) = 2(1 — cos 27k) = 4sin kr > 0

is always satisfied (here we operate outside of flat bands), we can divide by this
term and the effective condition becomes

sin kly sin klz > 0. (4.28)

Note that exactly the same condition was obtained in [BET22, Equation (3.33)].
This indicates a shared property, which we will briefly describe below.

To this aim, we introduce the probability of belonging to the (positive) spec-
trum, by which we can compare features of individual spectra. Defined in [BB13]
as

P,(H) := lim [1( lo(H) N (0,K)|, (4.29)

K—o0
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-50 1

-100 -

Figure 4.5: Evaluation of spectral condition with parameters set in Example 4.3

and v = 0.2. Spectral bands are coloured red, while spectral gaps are blue.
100 -
50+~
-1.0 -0.5 - 0.5 1.0
-K k
_50 L
-100 -

Figure 4.6: Evaluation of spectral condition with parameters set in Example 4.3
and v = 0. Spectral bands are coloured red, while spectral gaps are blue.
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-50
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Figure 4.7: Evaluation of spectral condition with parameters set in Example 4.3
and v = — 0.2. Spectral bands are coloured red, while spectral gaps are blue.
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Figure 4.8: Evaluation of spectral condition with parameters set in Example [4.3
and v = —2arctan é ~ —0.64. Spectral bands are coloured red, while spectral
gaps are blue.
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-100 -

Figure 4.9: Evaluation of spectral condition with parameters set in Example 4.3

and v = — 0.8. Spectral bands are coloured red, while spectral gaps are blue.
100 -
50+~
-1.0 -0.5 - 0.5 1.0
-K k
-50 -
-100 -

Figure 4.10: Evaluation of spectral condition with parameters set in Example
and v = — 2arctan ;—i ~ —1.30. Spectral bands are coloured red, while
spectral gaps are blue.
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Figure 4.11: Evaluation of spectral condition with parameters set in Example 4.3

and v = — 1.5. Spectral bands are coloured red, while spectral gaps are blue.
100 -
50 -
| | | /\ |
-1.0 -0.5 - 0.5 1.0

-K k
-50 -
-100 -

Figure 4.12: Evaluation of spectral condition with parameters set in Example [4.3
and v = — 2arctan (;—i + %) ~ —1.66. Spectral bands are coloured red, while
spectral gaps are blue.
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for (4.28) we have
P,(H)y=1...l3=m7

P,(H) = ; g Ew (4.30)

Zero in the definition of (4.29)) can be in the asymptotic regime replaced by any

positive number, therefore we can use it on the spectral condition determined
by (4.28)). For each of the sine factors from the said condition, the probabili-

ty that it will be positive, or negative, for a random value of k is equal to %
When [, = I3 = m, these probabilities are correlated (or rather sin? z is al-
ways non-negative). For any other possible combination of lengths, the positive
spectrum has an infinite number of open gaps, and while the concrete shape
of the spectrum depends on ratio % - periodic for rational and aperiodic for
irrational, both in the momentum scale - the P,(H) is always 1,
uncorrelated probabilities we have

(5) () -

In their article, [BB13|] have proven the universality of P,(H) for quantum graphs
equipped with Kirchhoff (or more generally ) coupling - its value remains the
same regardless of the specific lengths characterizing the graph, as long as they
remain incommensurate. This applies to our graph as well, but here is the set of
length values leading to universal P,(H) (which is, in particular, obtainable an-
alytically) larger, containing Vi3 # 7, due to the simple form of the (asymptotic)
spectral condition.

The procedure in the low energy limit could be repeated exactly the same as
before, and we can directly substitute into to gain

because for

1 312[3 tan%7
[(ly + 13)
meaning that
0 S _3[2[3 tan% _ _3l2l3 tan% S 9
l (lg -+ lg) (27
Therefore there is just one condition for the spectrum connected to k% = 0,
4 l
0> tan L > —— (4.31)

2 3 (271' - 13)137

which in the language of a, assuming it was specified earlier before limit [y — 0,
can be rewritten as

l
0>a>-27—F—.
== 7T(27T - lg)lg

While we have confirmed it by explicit calculation, it could have been shown
directly from conditions and - because [y is equal to 0, it is necessarily
smaller than %, making use of both conditions valid, but in our case both
the upper and lower bound from go to —oo, so the condition cannot be
fulfilled for a fixed ~.

Whether the negative spectrum is connected to 0 is determined by the same
condition (4.31)), excluding tan3 = 0, and the only remarkable difference is
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that our elementary cell now contains only one vertex, which is the reason why
the upper limit for the number of negative bands decreases to one; it can exist
only for v < 0.

FExample 4.4. Consider quantum chain with ¢ = 0,1 = 1,4 = 0 and

v = 2. If we choose I3 # m, for example 7, we get picture similar to Figure
4.13. Behaviour at low energies depends on a specific value of v, but as k grows,
the band-gap structure saturates into the pattern we see starting around £ = 10,
which is periodic and equally populated by bands and gaps with respect to their
widths in momentum scale. On the other hand, if we choose [3 = m, an example
of which is Figure [£.14], from a certain moment, depending on ~, spectral bands
quickly start to dominate and eventually dominate the whole momentum axis &

in the asymptotic regime.

Limit [3 — 0

The second way how we can obtain vertices of degree four is by shrinking I3
to zero, or doing the same with l,. The other length is in our scale automatically
fixed to 2w, changing (4.18]) to

v, = —64k*[*(cosy + 1) sin krm cos kr

and
v, = — 64k*1*(cos~y + 1) sin kn[sin ki; sin k7 — cos kl; cos k7|
+ 192kl sin y sin kl; sin km cos km
= 64k*1*(cosy + 1) sin km cos k(m + 11)
+ 192k[ sin v sin kl; sin km cos km
Firstly, all k2 = m?2, m € N are in the positive spectrum, in accordance with

2m—1

the previous result, but now we have flat bands also possible for £ = 5

Substitution into (4.14]) yields

2
2m —1 2m —1 2m —1 [
64( m ) l2(cosv+1)sin( m = D cos( m=Dir+14) = 0.

2 2 2

Thus in addition there are flat bands present if [; is a 7-multiple of an even integer
(for all m € N), or if [} is a rational multiple of 7, [; = g, and

2m—-1)1+2) mod2=1
q

(for some m € N).
For the high energies, we have from (4.15))

4 sin? 16212 sin kly sink(ly +1;) > 0,

which corresponds to

sin kly sink(2m +1;) > 0,
up to O(k™1). This is once again the same condition as was found in [BET22,
Section 4.1 for ¢ = 1 in the limit I3 — 0. Even though there is a periodicity if [;
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Figure 4.13: Evaluation of spectral condition with parameters set in Example [4.4]
and [3 = 7. Spectral bands are coloured red, while spectral gaps are blue.
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I
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Figure 4.14: Evaluation of spectral condition with parameters set in Example [4.4
and [3 = m. Spectral bands are coloured red, while spectral gaps are blue.

62



is a rational multiple of 7, using argument similar to when [; was approaching 0,
we arrive to

When [; — oo, the positive spectrum becomes 'denser’ if we talk about the num-
ber of spectral bands (or gaps) per fixed interval, but the share of the momentum
scale covered remains the same.

Low energy behaviour can be again simply described by , leading to

l
-1 - 371 tan%
and consequently
0> tan L > 22 (4.32)
an— > ———. :
- 2= 3

Whether is the positive and negative spectrum connected to zero is determined
(up to exclusion of 0 from the latter) by this condition, and the negative spectrum
still has at most one spectral band. Again, this fact could have been read directly

from (4.26]) and (4.27) using argumentation similar to limit /; — 0.

Symmetric quantum chain

Let us finish this section with a case of the symmetric chain graph, I, = I3 = 7.
Substituting into (4.20]) we have

v, = —64k*1*(cosy + 1) sinkm,

and there are once again flat bands for all £k = m, m € N, as [3 is now rational
multiple of 7 with p = ¢ = 1.
In the high energy region, (4.22) simplifies to

sin kly sin k7

1 —cosk(m + ). (4.33)

In comparison to the general case, we can clearly see that points

k=TT meN,
l

belong to spectral bands, because

mm(m+ 1)

<1
l

— bl

|— COS

up to an O(k~!) error, but there are no further simplifications giving additional
insight into the behaviour of the spectrum.

While the length values of the symmetric chain were in some sense special for
the high energy limit, behaviour in the negative part of the spectrum and around
zero remains unchanged, and the formulae derived do not undergo substantial
simplification after these lengths are plugged in, and for that reason we do not
present them explicitly.

Overall, let us recapitulate obtained results in the following theorem.
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Theorem 4.1. Let ' be a quantum chain graph with the topology illustrated by
Figure described by lengths I; > 0, 7 = 1,2,3, length scaling parameter
I > 0, and a circulant vertex matriz U(0) (describing § coupling), with strength
parameter v € (—m,m). Assuming we fix the scaling by requiring ly + l3 = 2,
we can draw these conclusions about its spectrum:

1. For all possible length and coupling strength configurations, flat bands
k* = m2¢%, m € N are present if I3 a rational multiple of w, I3 = Er.

o There might be additional flat bands of the same type if v = 0 (Kirch-
hoff coupling) and 1y is a rational multiple of .

o With an arbitrary v and ly, except for ly being an integer multiple of
7, there might be extra flat band k* = m? if ml + atan(™L) = 0

orml — acot(™) = 0 is satisfied.
e Forly = 0, there are no other flat bands present.
e Forly = 0, there are additional flat bands only if 1 is an integer

multiple of 21w (Ym), or a rational multiple of ™ (some m).

2. The high energy spectrum is generally independent of v, up to an O(k™1)
error.

e Probability of a random point k belonging to the positive spectrum is
constant in the limits l; or I3 going to zero. If the value of the length
I3 is w in the former case, this probability is equal to 1, otherwise it is

always equal to %, regardless of other parameters.

3. Whether the positive spectrum is connected to energy k* = 0 is dependent
on all parameters of a quantum chain.

o It might be connected only if v < 0.

o Ifly < 2B whether the positive or negative spectrum is connected is

2m 7’

determined by conditions (4.24) and (4.25)), respectively.
o Ifly > %, whether the positive or negative spectrum is connected is
determined by conditions (4.26) and (4.27)), respectively.

o When either ly orls shrinks to zero, positive spectrum is possibly con-

nected if similar conditions are satisfied, see (4.31) or (4.32)) respec-
tively.

4. There are always at most two negative spectral bands, possibly appearing only
for v < 0. This mazximal number decreases to one in limits Iy — 0 and
Is — 0. The negative spectrum, if present, is connected to k* = k?> =0
only if the positive spectrum is also connected.

4.3.2 Case of t #0

While the concrete spectral structure is obviously dependent on a specific value
of t, cases of t = 0 and ¢ = 1 are the only ones radically changing equation
, because some polynomials P vanish. Outside of them, the behaviour of
the spectral condition is similar across all of the remaining ¢.
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High energy limit

We explained why the flat bands are absent except at the two extremal values
of the interpolation parameter t. As such, we can now continue straight to the
limit £ — oo of our quantum chain. Looking at in the highest order of k,
where we already factored out (cos & — 1)?, gives us

—1296 k™ 1" (cosy(1 — t) + 1)? sinkl; sin®kl, sin®klz + O(k'') < 0;

therefore the high energies are dominated by spectral gaps, as could have been
expected from the absence of eigenvalue —1 for vertices of degree three, see (4.2)).
Bands are formed only around the points

km,j = ?7 m e N7 ] = 17273a
J

and to gain a deeper insight, we rewrite (4.9)) into the asymptotic form

&+&+ Py N P.cosf + P, sin 0
16 kis K26 kA6

= O(k™?). (4.34)

Each of the three cases follows the analysis in the same way, and we will write it
explicitly only for /; and I3 - is symmetric in the [y and [3, and the final
result can be obtained by simply switching these two quantities.

Starting with [, we substitute it in and make use of . This specif-

ically means

3

3
sin ]{le = (—1)m(5l1 — (—].>m66l1 + 0(54>,

- 5213 4
cos kly = (—=1)™ — (=1)™ 7 + O(8%),
l 6213 l 83103
sin kly = sin mZ”(l —52) + cos me(azg - h) 0,
1 1
272 373 (4.35)
cos kly = cos mﬂ'b( 0 52) — sin mals (0ly — 5—l) + O(5Y),
ll 2 ll 6
l 5212 l 5313
sin kly = sin ——2 (1 — 3 4 cos 2 (fly — ) + O(6Y),
L 2 [ 6
272 373
cos klz = cos mly (1-— 0 l3) — sin mls (0l — ﬂ) + O(6Y).
Iy 2 Iy 6
Plugging these into (4.34)), with
-1 l -1
k== — + O(m™),
mm
l
2 — 2 -2
Lyt o)

65



leads to

24
{ _ (_1)m Bbll sin m7rl2 sin mﬂ'lg

mml ll ll
(—=1)™i3 mrly . mmly m7rl2 mﬂ'lg
AR (08 Ty ST sin Ty

1 2
6t, [sin mly + sin mﬂlg][—&cos@ + ﬁfsinﬁ]}

b l

mly mmls 302

+0{(= 1)l sin = = sin == [366 + — 5 (=30 + Be)]

Iy Iy
24
. (_1)m /Bbll
i

mml
m2m2]2

(gﬁd + ﬁe)
(—1)m16E2

1
m2m2]2 5 b

1613 mly mml

I3 cos o + I3 cos 21— B.cosd + Brsind] }
1 1

l l l l
+02{(=1)"3634(I115 sin Mt coS s + [1l5 sin s coS mn 2)

I l h ly
241 l l
— (=)™ Foly [(lily + lols + 1113) cos T2 s 1108
mml

[y [y

12 12 12 [ [
(Rl 2 4 Ll 4 B sin 02 gin TR L 0(m2))
2 2 2 I I

I I
83 {(=1)™36,[l1lal cos ml” 2 cos mf 3
1 1

3 2 2
_ (li n % n %)Sin mﬂ'lz sin m7Tl3] +O(m_1)} +(/)(54) =0
6 2 2 L l

_|_

] [gﬁd + ﬁe]

m7rl2 oS m7rl3 i (ll 4 l2) oS m’/TlQ sin mﬂ'lg]
ll ll ll ll

[(ll + l3> Sin

l l [ [
[(lh + 12+ 13) cos T2 s 108 (I 4 13) sin T2 i 0 ]

+ I, I, L I

m2m2]?

(4.36)
where
B =cosy(1—1)+1,

51) = Sin7(1 - t)a

COS——I—Q cos % + 1
Be = cosy(1 —t) +2 3 2

cos— — cos%t —

cos—+3 cos.ﬂ—i—l
Ba=cosy(1—1t) —2 33 (4.37)
cos 5 —1 cos 5 —
7t 5 7t 7
cos 5 + 32 cos 5 + =
66270057(1—15)(: 3 T45—3 5

OSg— COS?—

By = V3 siny(1 — 1) S5 (08 31; )

(cos & —

In the leading order of the asymptotic regime, if we assume that both %’ and %
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are irrational, § can be easily obtained from (4.306|):

246,14 mly mmls

{ ( ) ol Sin ll sSin ll
(_1)ml% mmly . mrl3 . mﬂ'lz m7rl3
+ o [cos 7 sin L + sin I 7 11984 + Be]
16l% . m7Tl2 . m7rl3 .
m2r2]2 [ L + sin I J[—Bccos + Brsinb] }

+6{(~1)"368,l sin ml”lz sin Ty _ g,

1 ll

here we have retained only the leading term in m from the part linear in .
Expression for energy is still given by (3.13]), but what is more interesting is
the width of the bands. The relevant part of ¢ - terms which do not vanish in

(3.14), i.e. proportional to @ - is now given by

1612 mﬂ ol .
5(9) o m272]2 [Sln 2 4 sin T 3][5CC089 . ﬂfsmé]

(—1)m366al1 sin %ll? sin %115

When dealing with the case ¢ = 0, we had spectral condition containing cos € only,
so it was easy to determine the points in the Brillouin zone (—7,7) corresponding
to the maxima and minima of dispersion curves. This is related to the fact that,
in graphs we are considering here, they correspond to the antisymmetric and
symmetric solutions, respectively, provided the coupling is time-reversal invariant
[EKWI0]. For ¢t # 0 it is not the case, as now there is also sin @ term; therefore
we must find extrema of §(#). Differentiating with respect to 6, we have

Besing + [rcosh = 0,

and from there

B tan 6. (4.38)

Be

On (—m,m), this equation has indeed two solutions, whose difference is always .
Further on, we can make use of the property

sin (6 +7) = —sin#, cos (0 +7) = — cos b,

meaning that substitution of one of the roots can be simply replaced by a change
of sign. Equation (3.14)), now with proper values of 6, now gives

16 | (Bccosby — [y sinfy)(sin ™ mlz + sin mmla)

b O(m™? 4.39
Immrl? B sin ml”b sin ml”l3 +O0(m™),  ( )

AE,, =

where 6 = arctan(—g—) and will be denoted as such for the rest of this chapter.

If at least one of the fractions f‘f or §2 is rational, then there exist some values

of m, for which either sin ml’rb or sin m;lrl?’ and consequently the denominator of
4.39), would be zero. Because all the remaining terms proportional to § from

4.36)) are at least O(m™!), they would also go to zero with m — oo, and in
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contrast to the previous calculation, we must go up to 62 terms. When I, # I3,
let us without loss of generality assume that for given m it holds
mmlsy mmls mi2

sin = , COS 2 =(-1)

mmls
l1

_1\ymj2
=0 ll[(—1)m§?smmfl3
1

and that sin is different from 0; hence

{ ][9ﬁd + 6@]

m2m2[?
1612 . mmrls

3z Sl 2 [—f.cosf + Bysind]}

246bl1 ml—2.
5 — (1) L+ ) (—1)"n
#3120 g )1y

62 (—1)736 B, 1Ly sin T

(4.40)

mﬂ'lg

Two solutions of this quadratic equation eventually result in the same energy
band width, so we again display only the relevant part for one of them:

!
5(6) $ < Bla >2 (h+12)*  B[9Bd+ Be + (—1)" ) 16(— fecosd + Bgsind)]
3mm Sl 313 36m2m212 8,111

(4.41)
Determining sought points in the Brillouin zone is now even harder - not only
are we limited by the extrema of the dispersion functions, but in order to get
a valid solution, inside of the square root in (4.41)) must be non-negative. Let us
take a closer look. In the first term, every number present is real and squared,
thus it is positive as a whole. The denominator of the second term is also positive.
We do not necessarily have information about the sign of

(—1)™H ) (ZB.cosd + Bysind),

but because the values in the extremal points of the dispersion function differ
only by sign, we have freedom of choice depending on the situation. The sign of
the numerator must then be governed by 954 + (.. But this quantity is always
negative. Looking for its extrema, we have

0 (1—1¢t)siny(1—1t) it
—(9 ) = 16(2 —) =0,
87(ﬂd+ﬁ) 1 —cosZ ( +COS3)

and, on intervals we now consider, ¢ = 1 or v = 0 must be true. For ¢t = 1,

984 + Be = —144

regardless of 7. The other partial derivative, on the line v = 0, reads
s, 7 sin T
—(9 ) =32— 3 =0,
8t< Bt Be) (1 —cos &)?

which for ¢t # 0 does not have a solution. As such there are no local extrema,
and quick check in the endpoints of ¢t and 7 (possibly in limit) confirms that —144
is in fact the maximal value.
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Due to this reasoning, has always at least one real solution. If there
are two, band width is determined from their difference; if there is only one,
band width is proportional to it (the inside of is an analytic function of
Bloch parameter 6, and there must exist a 6 for which it is equal to 0, marking
the second edge of this spectral band). Nevertheless, both options have from
(4.41))

5(0) x —

m
ergo, according to (3.14)),
AE,, = const. + O(m™)

in the leading order, proportional specifically to [y, I, and functions S. Under
the other set of assumptions, Iy would be switched for 3.

There are possible combination of lengths where for certain m both sin 7r%

Iy

and sin ml”l?’ are equal to 0. If for example
1

mml ’ ’
ZT3 =mm, mym €N
1

mrly,  mr(2r —13)  2mn? /

= = —m 7T,

ly ly [y

and this can happen if [; is a rational multiple of 7w (note that, parity-wise, both
numbers are the same). It is also trivially true for the symmetric quantum chain.
In those cases we consider terms up to 6° from Equation (4.36]), solving

( )ml2
o m2m2l2 (I + 1o+ 13) (964 + Be)

(—=1)™1613
- m2 2l2 llﬁc
(=" 0 1613
m? 2l2
243,1
3 (-1)™ mﬂ”ll (hls + loly + Lil3)}
+83{(=1)"36Bul115l3} = 0.

In the next step, we make use of

—168. + 984 + B = 0,

(Io + l3)(—Becos + Brsind) }

and after that
Bel1 ? (Il + lol3 + l153)2
o(0
(6) o {<3m7rﬁal B3
: (4.42)

B+ 13)[9B + B + (-1 )m(1+,1 16(—pB.cosb + Sysind)] | 2
36m3r 2l2ﬁal1l213 .

Using the same arguments as earlier, we arrive at the conclusion that

AE,, = const. + O(m™!)

in the leading order, now proportional to [y, ls, I3 and f3.
If % is close to the point 7%, then:
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o If both ratios % and % are irrational, width of the spectral band has asymp-

totic behaviour O(m™1), or rather O(k™1), as k — oo.

o If % or é—j is rational, there are periodically distributed bands with asymp-
totically constant widths, their specific limits depending on concrete values
of t, v, I, Iy and Iy or I3, respectively. Otherwise the O(k™!) asymptotic

above applies to them as well.

When we choose [; = I3, special cases of the expansion around %7 L are the same
as (4.35)), only with roles of I3 and [; interchanged. Substitution into (§ gives

245(,13 . mﬂ'll . m’ﬂ'lg
S S

{= (D"

m7rl l3 l3
_ ﬂﬁ mmly
2]2 ¢S l3
(-1 )ml§ mmly . mmly : m?Tlg mﬂll
+ m2r2]2 [cos I3 Sin I3 +sin ls s 11984 + 5]
1612 . mmly

[—f.cosf + [sind]}

n
m2m2[2 I3

mﬂ'lg . m7rl1 3[%

+0{(—1)™I3sin sin (36, + o ———(—=3B4+ 5.)]

ls ls
(-1 24513
( )ml2

mml
+ W[(ll + l2 + lg) COS

(gﬁd + Be)

1612 mml
72l2l166 CcoS —— s !

1612 mml '
Wsl?[b €0 ls : + (=1)™l3][—Bccost + Bysind] }

l [ l l
+02{(=1)"3634(I115 sin Mt coS Tt + lyl3 sin mrh cos mn 2)

24513 mly mmly

— (=1 — [(lily + lols + 1113) cos L cos L

12 13 12 [ [

— (5 Hhls+ 2+ bl + 2)sinm7r 2sin 7 4 O(m~2)}
mmls mmrly

ls ls
+53{(—1)m366a[l1l213 cos cos
ls ls
3 2
bl B G G T o)) 1 0% = 0
6 2 2 I3 3

[ l [ [
T2 s L 4 (I + 13) cos T2 i 7 1]
l3 l3 l3 l3
mmlsy mmly mmly . mmly

cos sin ]
13 l3 l3 l3

[(l1 4 13) sin

— (ll + l2> sin

(4.43)
we similarly express ¢ in the first approximation and get

16 |(B.cosby — Bysinby)

Imml? B sin ml”ll

AE,, =

+O(m™?), (4.44)

for both % and % irrational.
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Because the leading term (with respect to m) proportional to 4% is exactly
the same as in (4.40]), except for [; and I3 interchanged, 0(f) proportionality is
nearly identical to (4.41) and we get

AE,, = const. + O(m™)

in the leading order for some m when % is rational and we assume sin ml%f? different
from 0. As we would expect, our results remain unchanged.

If % is rational, there exist some m for which functions of Bloch parameter 6
necessarily vanish in term constant in 0 from (4.43). Assuming sin mligll different
from 0, solutions for 6 now depend on parity - because

12 2m — 13 mim

2= =27 _ N,
ml3 m l3 l3 m = m €

for even m we have le also even and vice versa.
Therefore for odd m

l2 m7rl1

{mzﬂzp Si s (165 + 964+ Be)}
24651 l
b= 20, 4 g sin 77
3
2 m7rll
g 2 + 1) cos —=(98: + Be)
1612 .
T m(l2 + 13)(B.cosf — Brsind)}
l
+52{366al213 sin mr 1} = 0

When solving a given quadratic equation for d, # functions inside the discriminant
are at least, depending on the values of 3, of the order O(m™2), while outside
of it they have an O(m~2) behaviour. For m large enough, we could modify
the discriminant through

mrl mrl  mnl 2 mml

but the relevant part of 6(6) will always be O(m™2) at the minimum. That is
why
AE,, = O(m™)

in the leading order, considering that we work in the limit m — oo and parts of
0 not proportional to € will cancel out when computing band width.
For even m, we solve

2451;13 . m7rl1
0{ — lo+1
+of mml (2 + I3) sin I3
l2 mﬂ'll
+ 27%2([2 + lg)(gﬁd + 5@) COS l3

1612 '
+ ng(h + 13)(—pfccosf + Bysind) }

l
+0%{36B,lal3 sin mf Ly =0,
3
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and using the same method we eventually arrive at

AL, — 16 |(B.cosby — ﬂf. sin 911)(12 +13) L O(m™?),
Immi? Bals sin %
32 |(BccosB — Bfsinby) s
= O .
OmPly| By sin = +0m™)

Finally if both % and % are rational, there are some m for which

. m7rl1 . m7rl2
sin = sin =0.

l3 ls

We solve )
it 1

5{(_]‘) 3 mQ;le

m 1612 )
(=) (I + ) (—Bcost) + fysind) }

it 24,1
I &;m@+gg+h@}

(la 4+ 13)(98a + Be)

02— (-1)

b
+0*{(=1)"5364ulr 213} = 0,
and from there, having () with very similar structure to (4.42)),

AE,, = const. + O(m™)

in the leading order.

o The asymptotic remains the same as before near the points £ = -
always O(m™1) for 2 and & irrational ti tant when 2 or I i
ys O(m™") for ;2 and 7! irrational, sometimes constant when 2 or 7 is

l3
rational.

« Analogous statement is true even if we are near points k = =

Spectral band widths are then maximally of the order O(m°) = O(1) with respect
to the power of m, otherwise they shrink. From its definition (3.14)),

or with the extremum points in the Brillouin zone. In order to stay asymptotically
constant at the energy scale, |ky, j(0) — K, ; ()] must behave (at least) as O(m™1).
Intervals belonging to the spectrum in momentum scale k are then smaller and
smaller, and because our high energy asymptotic is a combination of three peri-
odic functions, the number of those intervals is surely countable. In the language

of probability (4.29)),
P,(H) =0.
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FExample 4.5. Consider quantum chain with ¢t = 05, v = 1,1 = 1,
Iy = 2andl3 = 7. Spectral bands can appear only around points & = ’?—j”,
j = 1,2, 3. This on displayed interval k& € (10,13) in Figure matches
to points {10,12} (from I3), {10, 22 ~ 10.67, 3! ~ 11.33,12, 3 ~ 12.67} (from I)
and {T° ~ 11,47 ~ 12.57} (from l;). Each of those points is accompanied by
a peak in spectral condition function, and by spectral band, groups of which may
merge if their respective points are sufficiently close. For higher energies, these
bands become smaller and overshadowed by spectral gaps.

5.0x1011 1

- - I\

L L | L L L | L L L L L | L L L | k
: \17 A s 120\ 125 | 130
-5.0x10"1 -

-1.ox1o12E \/

-15x1012 -

—2.0x1012

—25x1012 "

Figure 4.15: Evaluation of spectral condition with parameters set in Example
4.5 Spectral bands are coloured red, while spectral gaps are blue.

Low energy limit

Analogously to the ¢ = 0 case, when we expand trigonometric functions of k
around k& = 0, there is at least 6% proportionality in the equation for some
small 6. While here we must operate with condition , individual v are just
functions of P, and when squared, their leading terms will be squares of leading
terms from polynomials P.

We are effectively solving the equation

3Py 4+ 62 Py + 8 P+ Py + 0% (Py sinf + P, cos ) = O(5%)

where now

Py~ —64[369,

Py~ 01[—1611 3 + (I + b + 13) (985 + B1)] = 01 (I + 15) 98k + 1),
Py~ —246%1(lols + Ly + 1113) By,

Py = 365° 111533,

P, = 1651%(ly + 13)3,,

P, = 1651%[(ly + 13) By + 415,

(4.45)
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with

cos——
— 1 _4)—3
6 Sme( >cos—+1
cos &t — cos ™ — 1
= 1—1¢ 3 3 2
Bn = cos( )Cos— + 1 cos— +1’
cos & — cos”—t—l
Br = cosy( ) cos— 1 cos— +1’ (4.46)
cos——§ cosg—g

=7 1—t 2T
& COSV( )Cos——l— 1 COS— +1’

B =cosy(l —t) —1,

sin T (cos T —1)
1—t

= V3 sin( ) (cos 5+ 1)

Substituting (4.45)) into (4.15]), while other polynomials are in our approximation

nearly 0, gives us the final condition

{640°8, — P(I2 + 15)(98x + By)
1241 (Ialy + Uila + 1il3) By — 361112l )2 (4.47)
< 25614{(l2 + 13)252 + [<l2 + lg)ﬁh + 4lﬁg]2}-
Several of the /’s contain cosy(1 — t) term non-trivially intertwined with func-

tions of . This does not allow simplifications we have seen earlier with ¢ = 0,
and for this reason, we will not discuss it further.

Negative spectrum

Once again we are interested in two particular characteristics concerning the neg-
ative spectrum: the number of spectral bands, and whether the lowest one,
if present, is connected to k> = 0. The work for the second answer was done in
the previous section - in the used approximation cosx gives the same expression
as cosh z, similarly with sinz and sinh x; while individual terms in v, change
sign, it changes for each of them, and v? is unaffected; similarly for v, and wv,.
Hence for all t < 1 the negative spectrum is connected only if the same is true
for the positive one.

Regarding the number of negative spectral bands, our elementary cell has
two vertices of degree three with eigenvalues . Their imaginary parts are,
in order,

—siny(1 — 1),
: 2 Tt
—sin7t(= — 1) = sin —,
3 3
mt
—sinmt(= — 1) = —sin =
sm7r(3 ) sin —

Sign of (1 —t) is determined by ~, 7t is always positive. According to Theorem
B.1], for negative v there might be at most four distinct negative spectral bands,
one for the first and one for the second eigenvalue, per vertex, while non-negative
~ allows maximally two of them, each stemming from the second eigenvalue.

In the limit ¢ — 0., the maximal number of bands must necessarily decrease
(to two for negative v or zero if v > 0). Therefore, if for £ > 0 the number of
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bands exceeds the indicated limit, they could either become thinner until they
eventually vanish, or they might merge.

The presence of flat bands or behaviour around k? = 0 is undisturbed when we
move to the quantum chain with vertices of degree four. On the other hand,
the high energy spectrum is different in both possible limits I; — 0 and I3 — 0,
if only because P = 0 in each of them.
Starting with {; = 0, now reads
P P, P.cosf+ P,sin6

. —2
Ty BRI o), (4.48)

P; = —241° 3, sin kly sin kls,

Py = 214984 + B.) sin kr cos k,
P, =~ —16k*I*B.(sin kly + sin kl3),
P, =~ 16k*I* B (sin kly + sin kl3).

Bands are formed only around £ = 2% or k = ™%, Again, without loss of

ls I3
generality, we choose * and express trigonometric functions in 0 neighbourhoods
of those points as

6213 [ mml
sin kly = (1 — —2)sin 22 4 §l, 2+ 0(679),
sin k}lg = (—1)m5l3 + 0(6_3)7
522 2 2
sin kr = (1 — T ) sin WEW 4o cos 8 O(57?),
3 3
5272 2 2
cos km = (1 — i )COSW;—7T — 67 sin —— + O(57%),
3 3

Equation (4.48]) is explicitly written as

I mm? | mn? I mly
2— 1
{ m7rl<9ﬂd+6@) oS L sin L + 6m l( B cos B + By sin 6) sin I }
l l 2 2
0{ — (=1)"248l38in —— Mt 2—37r(9ﬁd + B.)(cos® 2T 2™ )
l3 l3 l3
[ l
+ 16m—?7’rl(l2 cos ml: 2 4+ (=1)™s)(—f. cos 0 + B sin 0)}
l
§2{ — (=1)™24Byl5l3c0s o O(m™1H} =0.

I3

If % is irrational, we can express

25
6(0) =

(984 + 5e) cos— sm— + 1625 Iy i (—f. cos 0 4 By sin 0) sin mmly

I3
(— )m24ﬁblgsm mligl?

and from ((3.14))

8 |—pBccos bt + Bfsin 0,

AFE,, =
3li3 Bp

+O(m™1).
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Figure 4.16: Evaluation of spectral condition around small values of E = k?
and its dependence on t with [ =1, [; = 2, [3 = § and v = —F. Spectral bands
are indicated by light colour, while spectral gaps are dark.
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Figure 4.17: Evaluation of spectral condition around small values of E = k?
and its dependence on ¢ with [ =1, [} = 2, [3 = § and v = 0. Spectral bands are
indicated by light colour, while spectral gaps are dark.
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Figure 4.18: Evaluation of spectral condition around small values of E = k?
and its dependence on ¢ with [ = 1, [; = 2, I3 = § and v = §. Spectral bands are
indicated by light colour, while spectral gaps are dark.
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mmls

T 0, we recall that

If % is rational, then if for some m is sin

mly 2r — I3 2mm
m

p— p— —_— f— /EN
ls ls o
_mm_mrm oy,
ls 2

where we utilized the fact that m and m’ have the same parity. Because of that,
we solve

3 myp 3 ,
5{2ﬁﬂ(95d + Be) + (—1) 16m7rl (lo +l3)(—Pccos O + [ysin §)}
52{ — 24ﬁbl2l3 + O(mfl)} =0.
0 is easily obtained:

257 (98, + B.) + (=1)™16 -2 (Iy + I3)(—Be cos @ + B sin 0)

_ “mmnl mal
0(0) = 24 8l513
and finally
AE, — 8(ly +13) | =P cos by + Sysin 6, + O(mY),

3llsls B

e In the limit [; — 0, the positive spectrum has only asymptotically constant
bands at the energy scale.

In the momentum scale, these spectral bands must behave as O(k~!). Therefore
P,(H) =0.

The last remaining question for this part is the number of negative spectral bands.
Imaginary parts of U(t) eigenvalues are now
—siny(1 — 1),
mt

. t(2 1) .
—sin7t(= — 1) = sin —
4 2’

4
—sinmt(-—1)=0
Sln7T(4 ) =0,
mt

6
— si t - 1 _ — i - .
SN 7 ( ) S1n 9

Through Theorem [3.1] for negative 7 there are at most two negative spectral
bands, while for non-negative, this number decreases to one.

Limit I3 — 0

For I3 — 0, the structure of the given asymptotic equation remains the same as
, but now with
Py = —241° By sin kl; 2 sin kr cos k,
Py = —160*B.sinkly + 1*(984 + Be) sin k(l; + 27)
= [*sin kly (—1683. + 984 + Be) + 21* (984 + Be) sinkm cos k(I + )
= 21*(984 + B.) sin kr (cos kly cos km — sin ki sin kr),
P. ~ —16k*1*.2 sinkm cos k,
P, =~ 16k*1*3;2 sin k7 cos k.
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As always, the appearance of the spectral bands is determined by the polynomial

next to the highest order of k& (now Ps), which gives us three options - £k = 2%

1

k = mand k = % In all of them, we can factor out 2sin k7 and focus

only on the remaining trigonometric functions.

Around 7%, spectral condition (4.48)) reads

2 2
+ 16 2 (—p.cos 6 + By sin 0) cos mr
mml

}

m ll mm
{(-1) %(9@1 + f3.) cos 2
mm? [

(=)™ (4 ) (984 + B)sin L

1

1
2

0{ — (—=1)"245l,cos

l . mn? ‘
_ 16@7r sin 2 (—p.cos @+ Brsin0)}
2
52{(_1)m245b117rsin mr + @(m‘l)} —0.

1

Therefore for [; incommensurable with ls,

2 1 (—=1)™(—p.cosb+ Bfsinb)

o0 =
(6) o« 3mml o
and 8 6, + .
8 1 |—p.cos b + [ysin b, 1
AE, = -—— @ ,
311, By +Om ™)
while if [; is a rational multiple of m,
2 2
cosmﬂ =0, sinm7T = +1,

[y l

and we get exactly the same result, only obtained from higher orders of ~.
If K = m, the spectral condition is

{—(=1)"248, sinmly + (—1)’";[(95,1 + Be) cosmly

1
+ (=1)"™16— (=B cos 0 + B sin 0)}

1

6{ — (=1)"24Byl1cos mly — (—1)mﬁ(11 + 1) (984 + Be) sinmly }
3 2

52{(—1)”@24&(51 + ?) sinmly + O(m™")} =0,

then, generally,
5(0) o g 1 (-1) (—ﬂd:os@%—ﬂfsm@)7
3mly lcosmly Be
81 |—f.cos b + Bfsin b, .
Bl = 3L [y cos mly +O(m™).

On the other hand, if cosml; = 0, we must solve the quadratic equation for §.
Functions of Bloch parameter 6 are again inside the discriminant, which reads

(éz(ll + ) (984 + 5e)>2 . 243, — 16m(—ﬁc cos 0 + [y sin 6)
186,(3 + %) 248,(% + =)
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The first term is of the order O(m~?), and is small in comparison with the second
term in the high energy limit. Ergo,

1 2 1 —f.cos 8 + [y sin
JOR l%w?l\/l ~ 3milsinml B
(3 + %)
N1<1_1 1 —BCCOSQ—i—ﬁfsinH)
(%—F%Q)% 3 mlsinml, B ’

and from there (sin ml; must be equal to 1)

AEm:?le , 1 - —f.cos 8 + By sin 6, L O(mY).
(L 4+ )3 By
Finally, if £ = %, we start from
1 .
{- (—1)mH(9ﬁd + Be) sinkly }

ml
kl
16 :
+ (—1)’"H7r(—ﬁc cos 0 + [Bysin 0)}
SH{(=1)"24Byl 7 coskly + O(m™1)} = 0.
In the first approximation, we express

_ 5 (984 + Be) sin kly
2487 sin kl; — é(ll + ) (984 + Be) cos kly + %W(—ﬁc cos 0+ Bpsinf)

Isolating the denominator of this quantity, we can recast it in the limit m — oo
as

M (=1)"24Bymsinkly — (—1)"— (I3 + 7)(984 + Be) cos kly

J

1 1
24Bym sinkly 1 — Lbotm bl cof oy 4 o 2 ZPecon ey s
1 11+ 7984 + Be 2 —f.cos 8 + [y sin 6
~—— (1 4+ — cot kl; — : );
248y sin klq kl m 243, 3kl sin kly o
therefore
1 964+ Be 2 —B.cos 0 + [Bysin 0
kl 24Bym 3kl sin kly o
2 (984 + Be)(—Be cos b1 + [ sin 0;) Ly
AE,, =
™ 9(2m — )72 B2 sin kly +0(m™),

assuming [; attains value for which sin kl; # 0. Should it not be the case, we sim-
ply go to the second order of § and get

2 1 —B.cosf+ [ysind

0(0) o ———
() o = T cos ks By
8 1 |—p.cosby + [ysin b, 1
AE,, = —— :
Overall,
P,(H) =0;

the reasoning behind this argument stays the same, because the majority of pos-
sible band widths at the energy scale stays asymptotically constant, and the rest
decreases as O(m™1).
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Case of 7 =0

We finish this section by considering v = 0. This case has common behaviour
with the ¢ = 1 case in some sense -

Ps=P=P =P =0,

all other polynomials are much simpler, and the structure of spectral condition
is analogous to Equation . Results obtained earlier for ¢ # 0, particularly
the high energy limit and whether is the spectrum connected to energy k> = 0,
still hold, but our choice of v gives rise to some peculiarities not seen before.

First of all, according to Appendix [A.3]

t
Ps = 721%(cos % — 1)%sin kly sin ki sin ki3,

t t
P, = 121*(cos % — 1)(cos % + 1)[—4sinkly + 3sink(lh + 1o+ 13)

+sink(l + 1l —l3) +sink(lo + 13 — ;) +sink(ls + 11 — o)),

P, = 2[2(COS7;t +1)*[8sin kl; — 9sink(ly + Iy + I3)

+sink(l + 1l —l3) +sink(lo + 13 — ;) +sink(ls + 1 — o)),

P. = —481*(K*I* — 1) (cosgt - 1) (cosgt + 1)(sin kly + sin kl3),

P, = 32kI*V/3 singt (cos 7;t + 1) (cos kl3 — cos kls).
Recalling , we can find flat bands by enforcing & = m, m € N. Additionally,
P, and P, can be rewritten as

P4 o< —4sin kll + 3 sin ]{Z(ll + 12 + l3>
+ sin k(ll -+ lQ — lg) + sin k(lg + l3 — ll) —+ sin k(lg + ll — l2>
= 4[sin kl; (—1 + cos k(27 — I3) cos kl3) + cos kly sin 2k,

Py < 8sinkly — 9sink(ly + o + 13)
+sink(ly + 1o —l3) +sink(le + 13 — 1;) +sink(ls + 1, — I2)
= 4[2sinkl; (1 — cos k(27 — I3) cos klz) + 2 cos ki sin 2k
+ 3sin kly sin k(27 — I3) sin ki3],
which for k = m simplify to
Py < —4sinml; sin® mils,
P, o 12sin kl; sin k(27 — I3) sin kls 4+ 8sinml; sin® mls.

Therefore, similarly to previous examples,

e ifl;=2r, j = 1,3, comprime p, q € N, then k? = ¢*m?, m € N are energies
of the flat bands in the spectrum.

Finally, in the limits of a quantum chain with vertices of degree four, Py is
always 0. The highest order of k present is now k% and the whole spectral
condition now reads either

sink(ly + I3) — (sin kly + sin kl3) cosf + O(k™') =0
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for [y — 0, or

— sin kly + sin k(l; + 27) — cos @ sin 2k7 + O(k™1)
2 sin k7 cosk(m +1y) — 2 cos @ sin kr coskr + O(k™1)

0

with [3 — 0. We have seen the exact same conditions in the asymptotic regime
for t = 0; this automatically means that for [; =0

PU(H):l l3—7T
1
PO—(H>:§ l37£7T,
while if I3 = 0,
1
P,(H)=—.
(H) =

Theorem 4.2. Let I' be a quantum chain graph with the topology illustrated by
Figure described by lengths I; > 0, 7 = 1,2,3, length scaling parameter
Il > 0, and a circulant vertex matriz U(t), t # 0, t # 1, with strength
parameter v € (—m,m). Assuming we fix the scaling by requiring ly + I3 = 2,
we can draw these conclusions about its spectrum:

1. In this setting, flat bands are generally not present in the spectrum.

o For v = 0 (Kirchhoff coupling), we are able to find flat bands in
the spectrum if lengths Iy or ly (consequently ly) are rational multi-
ples of .

2. The high energy spectrum is generally dominated by spectral gaps, and
the probability of belonging to the positive spectrum is 0, unless v = 0.

o For v =0, the probability is non-zero only for a quantum chain with
vertices of degree four. It is equal to 1 if l; =0 and l3 = 7, otherwise
it is equal to %

3. The positive spectrum is connected to energy k* = 0 only if condition
(4.47) is satisfied; this is a general condition for all possible configurations.

4. The maximum number of negative spectral bands is four, which might happen
only fory < 0. When~y > 0, there might be at most two negative spectral
bands.

o For a quantum chain with vertices of degree four, these numbers change
to two and one, respectively.

Both numbers are independent of other quantum graph parameters. Once
again, the negative spectrum is connected to k* = k> = 0 only if the

positive spectrum is connected.
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Conclusion

We have equipped quantum star graph with n adjacent edges with a general
unitary circulant vertex condition from Definition [1.11], represented by matrix U,
and found out

o number of its eigenstates, which is the same as the number of eigenvalues
of matrix U in the upper complex plane;

o their individual energies (in atomic units), given by

27il(a—1)

n 2mil(a—1)

s 1=R(0_jcie™ )
—hkp = — 2ril(a—1) )

T+ R ce™ 7 )

where [+ 1 is a row and column index of a given eigenvalue in the diagonal
representation of U;

« the general form of scattering vertex matrix S(k) and its dependence on
coefficients ¢ and momentum variable k, given by Equation ({2.8]);

o and its high and low energy limit in dependence on spectral decomposition
of vertex matrix U, see Equation for high energy and for low
energy. These results are in accordance with results obtainable from general
considerations of functional calculus. Additionally, we have successfully
tested them on specific examples of vertex conditions.

We continued with general circulant vertex condition on rectangular lattice |3.1
described by lengths {1, [, and

o calculated its spectral condition (3.2)). Again, the substitution of concrete
cocfficients ¢, specifically for ’extremal’ rotationally symmetric, § and &
coupling, leads to correct spectral conditions derived by earlier authors.

While usable for any imaginable circulant matrix U, this spectral condition is in
itself too complex for detailed analysis. Therefore we chose permutation-invariant

vertex condition ((1.4]) and

o found structure of its spectrum, summarized in Theorem Case-to-
case differences are to be present as in any parametric system, but there
is no deviation from the behaviour we would expect from vertex couplings

with Dirichlet, Neumann or Robin eigenspaces respectively (see for example
[ET21]);

o illustrated some of the properties and accuracy of our conclusions on a
square lattice.

Then we combined a quantum chain graph |4.1{ with interpolating vertex condition

@.1), getting

« general spectral condition (4.9) and tested its viability on boundary value
U(1) as well as special symmetric case of U(0) with [; = 0;
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« overall view of the spectrum in the special case U(0), summed up in Theo-
rem [£.1] Several features were graphically demonstrated, showing the cor-
rectness of our results. Additionally, we have shown that high energy be-
haviour, in particular the probability of belonging to the positive spectrum,
is tightly linked with graph geometry rather than the equipped vertex con-
dition.

o overall view of the spectrum Vt # {0, 1}, explained in Theorem We have
described its parametric dependence in full detail while highlighting phe-
nomena not present previously, for example similarities between cases with

v=0and U(1).
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Appendices

A Full expressions of spectral conditions

A.1 Rectangular lattice - general vertex condition

Ky —(e1 —ca ez —ca)(er + ot ez +ca)[(cr — e3)* + (c2 — ca)?]
F [2k cos kly + i(k? + 1) sin kl][2k cos kly + i(k* + 1) sin k]

Ko —1

F [—2k cos kly + i(k® + 1) sin kly][—2k cos kly + i(k® + 1) sin ki)
K3 2cq

F; (k% — D){(k% + 1)[cos k(ly — l3) — cosk(ly + l2)] + 2iksink(l; + 12)}
Ky —4c3

Fy  k{cosOy [—2kcoskl; +i(k? + 1)sin kly] + cos 0y [—2k cos kly + i(k? + 1) sin klo]}

Ks 16(cacy — c3)

F k2 cos 6, cos 6

K¢ —4(cacy — 32)

Fs (k? — 1)? sin kly sin klo

K7 (ci —c3)

Fr (k* 4+ 6k% + 1) cosk(l1 — l2) — (k* — 1)% cos k(ly + I2)
Ky 4i(c3 + 2 — 2cic3)

Fs k(k% — 1)[cos 0y sin kly + cos 0 sin ki ]

K, 4c1(c3 + 3) + c3(cd — 2 — 2cac4)]

Fy k{cos 0y [2k cos kly + i(k® + 1) sin kly] + cos 6y [2k cos kly + i(k? + 1) sin klo]}

Ko 2[c3(c3 4+ c2) + c1(c2 — 3 — 2cacy)]

F10 (k’2 - 1){(](12 + 1)[COS k(ll - 12) — COS k(ll + lg)] — 24k sin k’(ll + lg)}

38



A.2 Permutation-invariant vertex condition for rectangu-
lar and square lattice

Ay cos (7 —¥) (cos — 1)
Ay cos (7 — 1) (cosv + 1)
As —2cosvy + cost cos (v — ) + cos (v + )

Ay 2cosy — cos¥ cos (7 — ) + cos (7 + V)

As 2sin v cos (y — 1)
Ag 4sinv cosy
Az —2sind cosy

As —2sinvy (cos? + 1) 4 sin ) [cosy + cos (7 — V)]

Ag —2siny (cos? — 1) + sind [cosy — cos (7 — V)]
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A.3 Interpolating vertex condition for periodic chain

In order to display all polynomials properly, some of them have been separated
into smaller parts - these are denoted by an additional subindex.

Py 3605(cos y(1 —t) + 1)(cos T — 1)? sin ki1 sin kly sin kl3

Ps —241° siny(1 — t) (cos & — 1)?
[cos kl; sin kly sin klg + sin kly sin k(lp + [3)]

Py —161* sin kly
[cosy(1 —t) (cos %t — 1)(cos 7; +2) 4 2 (cos Tt & —1)(cos %t + %)]

P472 914 sin k(ll + 15+ lg)
[cos (1 —t) (cos Bt — 1)(cos T + 3) + 3 (cos T — 1)(cos &t + 1]
P473 l4[sin k‘(ll + 1y — 13) + sin k‘(lg + 13 — ll) + sin ]i'(lg +1 — ZQ)]

[7 cosy(1 —t) (cos %t —1)(cos T = ) + 5 (cos T - )(cos 7t =+ %)]

P 4% siny(1 —t) (cos Tt — 1)(cos T + 1)
{8coskly —9cosk(ly + 1y +13)
—5[cosk(ly + 12 — I3) + cosk(la + 13 — l1) + cos k(I3 + 11 — I2)]}

Py —16[2 sin kl;
[cos (1 —t) (cos Tt =+ 1)(cos Tt T—-2)-2 (cos Tt &+ 1)(cos %t — %)]

P o 972 sin k(ll + 1y + lg)
[cosy(1 —t) (cos 7;5 + 1)(cos %t —3)—3(cos Tt & 4 1)(cos %t — %)]

Py 3 ZQ[Sil’l k‘(ll + 1y — 13) + sin k(lg + I3 — ll) + sin k(lg +1 — lg)]
7 cosy(1 — t) (cos 5 + 1)(cos & — 7) 5 (cos Bt + 1) (cos Tt — %)]

P, —241siny(1 —t) (cos T +1)?
[cos kl; sin kly sin klg + sin kly sin k(lp + [3)]

Fy 36(cosy(1 —¢) — 1)(cos 5 + 1)? sin kly sin kly sin ki3

Py 161%2v/3 sin Z 3
{[sin klz + sin ki3] siny(1 —t) [k2l2(cos T 4+1) 4 (cos T —1)]
+2kl[cos kl3 — cos kla][cos Tt & cosy(1 —t) +1]}

P, —16[2{[Sin klg + sin kl3)
(k212 (cosy(1 —t) (cos - )(cos +2)+2 (cos - )(cos§ + 1))
—cosy(1 —t) (cos Bt + 1)(cos 5t — 2) + 2 (cos T + 1)(cos 1
—2kl [cos kl3 + cos klg] siny(1 —t) (cos T — 1)(cos T + 1)}

ol
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