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Introduction

Quantum graphs, not always necessarily known under this name, have been used
since the 1930s as models in various Ąelds of physics, mathematics, chemistry
and engineering. Only since the end of the 1980s, however, the concept has been
gradually transformed into a coherent, and more widely studied, subject - we can
account this growth to the relevance of quantum graphs as simpliĄed models
in mentioned scientiĄc areas anytime one considers wave propagation through
systems at a wide range of scales, from macroscopic to nanostructures. Those
include for example quantum wires, photonic crystals or carbon nanostructures.
Beyond their use as models of speciĄc systems, quantum graphs provide a testing
ground to study fundamental properties of quantum dynamics, for instance, man-
ifestations of quantum chaos. Altogether, this is a Ąeld full of exciting challenges
inviting multidisciplinary approaches; for its broad survey we refer to the mono-
graph [BK13].

In the article [SK15] (see also [SV23]), techniques of quantum graphs were
used to model the anomalous Hall effect. Their results prompted further research
into time-reversal non-invariant graphs, because in order to derive an expression
for Hall voltage, their model involves only atomic orbitals with a speciĄc orienta-
tion. This is hardly justiĄable from the Ąrst principles. The needed violation of
the time-reversal invariance can be, however, achieved by an appropriate choice
of the vertex coupling conditions. The Ąrst example of that type was presented
in the paper [ET18], where they have shown how spectral properties of quan-
tum graphs heavily depend on their topology, in particular, on the vertex-degree
parity. The same effect was also observed in spectra of other periodic system
investigated in [BET21].

The matrices describing such vertex coupling belong to the circulant class,
together with many others like those characterizing the well-known δ or δ

′

cou-
plings. In contrast to the Šrotational couplingŠ, those are invariant with respect
to the time reversal. Despite this difference, such couplings have a common
property: in planar graphs they exhibit a PT-symmetry. This concept is usual-
ly associated with non-selfadjointness of the Hamiltonian [ET21], but here one
has an unitary evolution invariant with respect to the combined transformations,
as demonstrated in the paper [ET21].

The aim of this thesis is to examine graphs with circulant vertex couplings
from a broader point of view. In the examples to be analyzed, we will pay par-
ticular attention to the dependence on the parameters of the models. Examples
can be found in previous works: in [BET22], the effects of graph edge lengths
modiĄcations were considered, and in [ETT18], an interpolation between differ-
ent vertex couplings was considered. We intend to perform an analogous analysis
in combination and greater detail.

Let us brieĆy describe the structure of this thesis. The Ąrst chapter introduces
the concept of quantum graph in a mathematically rigorous way, as a preliminary
to the presentation of the results in the following chapters. Here we will also
introduce circulant matrices and derive some of their properties which will be
needed further. At the end of the chapter, we recall how one describes symmetries
in the context of quantum graphs.
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The second chapter is devoted to the simplest situation when the graph
has a single vertex being of the star form. We determine here the number
and the functional form of graph Hamiltonian eigenvalues in dependence on
the vertex condition, introduce the associated scattering matrix and compute
its general form, and Ąnally, we inspect its behaviour for low and high energies.

The third chapter deals with spectral properties of a periodic quantum graph
in the form of a rectangular lattice. After deriving the corresponding spectral
condition for the general circulant matrix, we focus on the case of lattices with
coupling belonging to the class of permutation-invariant ones and describe com-
pletely their spectral structure.

Finally, the fourth chapter is concerned with another periodic quantum graph,
this time a one-dimensional quantum chain. This model was previously studied
for different length conĄgurations and vertex conditions, for example, in [BET22]
or [DET08]. Here we combine it with the interpolating coupling proposed in
[ETT18], and by means of the techniques used in the previous chapter, we examine
the spectrum as a function of the parameters in full generality.
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1. Preliminaries

1.1 Quantum graphs

A quantum graph, as a mathematical object, consists of three components -
a metric graph Γ; a differential operator H; and vertex conditions. The following
deĄnitions of those components are taken or paraphrased from [BK13], and be-
cause this thesis is not necessarily about the most general aspects of the graph
theory, it will only feature the concepts required to understand our reasoning
and results; a detailed exposition of the theory the reader can Ąnd in the afore-
mentioned book.

1.1.1 Metric graphs

DeĄnition 1.1 (Graph). A graph Γ consists of

• a set of vertices ¶vi♢ = υ; the number of its elements Ąnite or countably
inĄnite;

• and a set of edges ¶ej♢ connecting (some or all of) them.

As we can see, the basic notion of a graph does not have additional structures,
for example, it is not equipped with a metric, which is important for quantum
graphs.

The symbol vi ∈ ej means that the vertex vi is an endpoint of the edge ej.
Vertices u and v are adjacent, denoted u∼v, if there is an edge connecting them.
The topology of a graph is speciĄed by ♣υ♣× ♣υ♣ adjacency matrix AΓ,uv, generally
deĄned as

AΓ,uv =

∮︂
1 if u∼v,
0 otherwise.

The degree du of a vertex u is the number of edges emanating from given u, and it
holds that

du =
∑︂

v∈υ

AΓ,uv.

The edges can be undirected (without speciĄed direction), or directed (each
edge has assigned one origin and one terminal vertex). Directed edges are called
bonds, and if all edges of a graph are bonds, the graph is then called direct-
ed graph or digraph. With respect to vertices, bonds can be either incoming
or outgoing. One can convert a non-oriented graph to a digraph by exchanging
each edge for a pair of bonds b and b with opposite directions - bond b is then
called reversal to b (and vice versa). Analogously, a directed graph can be made
undirected - through natural projection that maps mutually reversal bonds into
a single edge - but only if it is possible for all connections between vertices.

Graphs, where one treats edges only as relations between vertices, are al-
so called discrete or combinatorial. On the other hand, if we consider edges
as individual one-dimensional objects on their own, then we call those graphs
complexes. Metric graphs are complexes, and as such we require more from their
edges - namely we want to describe their character in greater detail.
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DeĄnition 1.2 (Metric graph). A graph Γ is a metric graph if it satisĄes DeĄ-
nition (1.1) with these additional conditions:

1. a length Lb ∈ (0,∞⟩ is assigned to each bond b. If an edge has inĄnite
length, it will have only one vertex (at its beginning) and will be called lead;

2. the lengths of the bonds that are mutually reversal are assumed to be equal,
Lb = Lb. Therefore, length of an edge e is also deĄned, Le = Lb;

3. a coordinate xb ∈ ⟨0, Lb⟩ is assigned to each bond, increasing in the direction
of the bond;

4. the relation xb = Lb − xb holds for coordinates on mutually reversed bonds.

If all edges are of equal length, the metric graph Γ is then called equilateral.

The suggestiveness of the name tells us that each metric graph can be equipped
with a natural metric - a sequence of edges ¶ej♢M

j=1 between vertices v and w (al-

so called path) has length
∑︁M

j=1 Lj, and distance ρ(v,w) between said vertices
is then the minimal length of the path connecting them. Here we implicitly as-
sume that loops (single edge with both ends connected to one vertex) or multiple
edges between any two vertices are not present, as they can be broken into indi-
vidual pieces through the introduction of new, so-called ŤdummyŤ, vertices with
dv = 2. And since there is the coordinate x on each edge, it is not problematic
to deĄne the distance between two arbitrary points belonging to the graph.

It should be noted that for quantum graphs (or any metric graph for that
matter) it is usually assumed that the degree of each vertex is Ąnite and positive
(this, for example, means that vertices not connected to any edge are prohibited).

DeĄnition 1.3. A connected metric graph Γ is called inĄnite if it has inĄnitely
many vertices, otherwise it is called Ąnite. A Ąnite graph with all edges of Ąnite
length is called compact.

While here we will deal with both Ąnite and inĄnite graphs, they will always
be undirected.

One last note regarding metric graphs - vertices are obviously their points,
but the same is true for all points x on the edge e. So when we speak about func-
tions on metric graph Γ, we are able to deĄne them also along the edges. More-
over, the coordinates living on them then enable the deĄnition of the Lebesgue
measure dx on the graph. This in turn enables the deĄnition of some standard
function spaces on Γ. Let us recall the notation typically used for Sobolev spaces,
in a scope sufficient for our research (in particular, we deĄne it only in one di-
mension).

DeĄnition 1.4 (Weak derivative, Sobolev space). Suppose that Ω is an open
subinterval of R. Let f be a function locally integrable on Ω, f ∈ L1

loc
(Ω).

The function f has a weak derivative of order k ∈ N0 if there exist a function
g ∈ L1

loc
(Ω) satisfying

∫︂

Ω

f(x)∂kψ(x)dx = (−1)k
∫︂

Ω

g(x)ψ(x)dx
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for all ψ ∈ C∞
c (Ω), i.e. inĄnitely differentiable functions with compact support.

Suppose k ∈ N0, 1 ≤ p ≤ ∞. Then the Sobolev space W k,p(Ω) consists
of equivalence classes of functions f satisfying

W k,p(Ω) = ¶f ∈ Lp(Ω) : ∀n ∈ N0, n ≤ k, ∂nf ∈ Lp(Ω)♢,

where the derivative is taken in a weak sense. The standard norm on these spaces
is deĄned as

∥f∥W k,p(Ω) =

(︄
k∑︂

n=0

∫︂

Ω

♣∂nf ♣p
)︄ 1

p

for 1 ≤ p < ∞,

∥f∥W k,∞(Ω) = max
n≤k

sup
Ω

♣∂nf ♣ for p = ∞.

We usually denote Hk(Ω) := W k,2.

In particular, H0(Ω) = L2(Ω). Extending these to quantum graphs is then
quite straightforward.

DeĄnition 1.5. 1. The space L2(Γ) on Γ consists of equivalence classes of
measurable and square-integrable functions on each edge e in a way that

∥f∥2
L2(Γ) :=

∑︂

e∈¶e♢
∥f∥2

L2(e) < ∞.

2. The Sobolev space H1(Γ) on Γ consist of equivalence classes of continuous
functions belonging to H1(e) on each edge e in a way that

∥f∥2
H1(Γ) :=

∑︂

e∈¶e♢
∥f∥2

H1(e) < ∞.

The requirement of continuity is a natural condition for f from H1(Γ), because
then f assumes the same value on all edges adjacent to a particular v, and f(v)
is uniquely deĄned for all vertices. There is then a clear similarity to traditional
one-dimensional setting, in which H1 functions are continuous.

In contrast, there is no such condition, and therefore no natural deĄnition
of Hk(Γ), for k > 1, because we do not necessarily know what should functions
satisfy at the graph vertices. This freedom of choice largely inĆuences how our
studied system behaves, as will be seen later. Until speciĄed, we require at least
smoothness of functions along the edges, and for our later examples, it is prefer-
able to consider this weaker condition even for H1.

DeĄnition 1.6. By H̃
k
(Γ), k ∈ N, we denote space

H̃
k
(Γ) :=

{︂

e∈¶e♢
Hk(e),

in which all functions f living on Γ belong to the Sobolev space Hk(e) on each
edge and

∥f∥2

H̃
k

(Γ)
:=

∑︂

e∈¶e♢
∥f∥2

Hk(e) < ∞.
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1.1.2 Differential operator

The leap from a metric to a quantum graph is made by assigning a differen-
tial (or even more general) operator on Γ. In our setting, but also commonly
in physical applications, we will call this operator the Hamiltonian, as we consid-
er a quantum particle ŤlivingŤ on the graph - the graph acts as a conĄguration
space for said particle. Hamiltonian can be interpreted as an operator of the total
energy of the system and is usually required to be self-adjoint. The most studied
operator assigns to function f(xe) its negative second derivative on each edge:

f(xe) ↦→ −d2f

dx2
e

(xe). (1.1)

More generally, the Schrödinger operator might be used; its action is described
as

f(xe) ↦→ −d2f

dx2
e

(xe) + V (xe)f(xe),

where V (x) is called an electric potential.

Remark. We understand the term Šelectric potentialŠ as a potential related to
all non-magnetic forces. It usually stems from the interaction of charge with
an external Ąeld, but can correspond to any other force, for example gravitational.

Both of these two operators do not contain Ąrst-order derivatives or terms
proportional to them, therefore they might be used on undirected metric graphs
(their edges respectively). This is not the case of a magnetic Schrödinger operator

f(xb) ↦→
(︄

1

i

d

dxb

− A(xb)

)︄2

f(xb) + V (xb)f(xb),

with a magnetic potential A(x), which is (one-dimensional) vector Ąeld. Here
we need to specify individual bonds and their direction - but it can be shown
that these problems can be solved, or rather circumvented, by slight change
to the structure of the graph [BK13, Section 2.6]. Overall, in this thesis we
will restrict ourselves only to (1.1).

An operator cannot be properly deĄned without a description of its domain,
which should also include information about the smoothness of functions on
the edges and conditions at the vertices. Additional conditions are imposed if we
also require it to be self-adjoint - Hamiltonian then represents an observable quan-
tity. When we consider operator (1.1) (or more general one with ŤniceŤ enough
potentials), it is satisfactory for functions f to be in Sobolev space H2(e) on each
edge e. Then we must ŤjustŤ Ąnd the self-adjoint extensions through boundary
conditions; this procedure is explained in detail in [BK13, Section 1.4.1].

1.1.3 Vertex conditions

Once we assume that the domain of the operator is in Sobolev spaceH2(e) on each
edge e, we can use Sobolev trace theorem to show that functions f and their Ąrst
derivatives are correctly deĄned at the endpoints (vertices) of edges in question as
the appropriate one-sided limits. Thus, the vertex boundary condition may only
contain data from boundary values of f and df/dx. In this work we assume that
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studied graphs only have local vertex conditions - for a Ąxed vertex v, its condition
takes values only from functions and their derivatives at the vertex v - as these are
the simplest and physically natural vertex conditions. It can be shown that non-
local conditions can be transformed into a local one living inside a single vertex
by modifying the topology of the graph [BK13, Section 1.4.6], even though this
might not preserve their type.

Our operator (1.1) acts as a second-order operator, therefore the ODE theory
tells us we need to establish two conditions for each edge to acquire the solution.
The number of conditions at every vertex then must be equal to its degree dv.
The most general (homogeneous) condition can be written as

AvF (v) +BvF
′(v) = 0,

where F (v) is a dv dimensional vector of functions, each living on its own edge
incident to vertex v, evaluated at the said v; similarly with F ′(v) as a vector
of Ąrst derivatives; and Av and Bv are dv×dv matrices. To have the correct
number of independent conditions means that rank of dv×2dv matrix (Av, Bv)
must be full, i.e. dv.

As the proof of the following theorem takes several pages and an additional
lemma to complete, it will not be shown here and we will rather focus on its
results - how should we choose vertex condition in order to achieve self-adjoint
Hamiltonian; the interested reader can Ąnd it in [BK13, Section 1.4.1].

Theorem 1.1. Let Γ be a metric graph with Ąnitely many edges. Consider the op-
erator acting as −d2f

dx2
e

on each edge e with the domain consisting of functions

that belong to H̃
2
(Γ) and satisfying some local vertex conditions involving vertex

values of functions and their derivatives. The operator is self-adjoint if and on-
ly if the vertex conditions can be written in one of the following ways:

1. For every vertex v of degree dv there exist dv×dv matrices Av and Bv such
that the dv×2dv matrix (Av, Bv) has the maximal rank, the matrix AvB

∗
v

(where B∗
v denotes Hermitian adjoint of Bv) is self-adjoint and the boundary

values of f satisfy

AvF (v) +BvF
′(v) = 0

2. For every vertex v of degree dv there exist a unitary dv×dv matrix Uv such
that the boundary values of f satisfy

i(Uv − I)F (v) + (Uv + I)F ′(v) = 0,

where I is a dv×dv identity matrix.

3. For every vertex v of degree dv, there are three mutually orthogonal projec-
tors PD,v, PN,v and PR,v = I − PD,v − PN,v, acting in Cdv , and an in-
vertible self-adjoint operator Λv, acting in the subspace PR,vC

dv , such that
the boundary values of f satisfy

PD,vF (v) = 0

PN,vF
′(v) = 0

PR,vF
′(v) = ΛvPR,vF (v)
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As it is obvious from the assumptions, Theorem 1.1 is valid for Ąnite graphs
only. Similar results, whose proofs are present in [BK13, Section 1.4.4], can be
obtained for (countably) inĄnite graphs if we assume lengths of all edges uniformly
bounded from below (0 < L0 ≤ Le ≤ ∞), with additional speciĄcs on the domain
of the Hamiltonian - mainly we require that

∑︁
e ∥f∥2

H2(e) < ∞ and the third
type of condition from Theorem 1.1 is satisĄed for all v. While it is possible
to consider quantum graphs without restrictions on the lengths of their edges,
i.e. inf Le = L0 > 0 is not satisĄed, the problem of self-adjointness becomes
much more complicated, see [EKMN18].

Here we list some examples of common vertex conditions (compare with stan-
dard terminology used with regards to differential equations), and their repre-
sentations as unitary matrices Uv - here we denote dv × dv unit matrix as I
and dv × dv matrix with 1 in all entries as J :
Dirichlet vertex condition

∏︂
⋁︂⋁︂⨄︂
⋁︂⋁︂⎩

f(x) is continuous at v,

f(v) = 0,

Uv = −I.
Kirchhoff vertex condition (also called Neumann, standard or free)

∏︂
⋁︂⋁︂⨄︂
⋁︂⋁︂⎩

f(x) is continuous at v,
∑︁

e
df

dxe
(v) = 0,

Uv = I.

δ-type vertex condition
∏︂
⋁︂⋁︂⨄︂
⋁︂⋁︂⎩

f(x) is continuous at v,
∑︁

e
df

dxe
(v) = αvf(v), αv ∈ R,

Uv = 2
dv+iαv

J − I.

(1.2)

And while written explicitly above, they can be summarized into
∏︂
⋁︂⋁︂⋁︂⨄︂
⋁︂⋁︂⋁︂⎩

f(x) is continuous at v,

cos(γv)
∑︁

e
df

dxe
(v) = sin(γv)f(v),

Uv = 2
dv+itan(γv)

J − I, γv ̸= π/2

where γv = 0 corresponds to Kirchhoff, γv = π/2 to Dirichlet, and all other values
between to δ-type condition (and only for this type is the Uv matrix formula
present usable).

Similar to δ-type condition is δ
′

-type condition, with roles of functions and
their derivatives switched:

∏︂
⋁︂⋁︂⨄︂
⋁︂⋁︂⎩

values of df
dxe

(v) are independent of e adjacent to the v,
∑︁

e fe(v) = αv
df

dxe
(v), αv ∈ R,

Uv = −2
dv−iαv

J + I.

(1.3)

These are all examples of permutation-invariant vertex conditions. Their name
comes from the fact that the vertex condition stays the same after any permuta-
tion of edges adjacent to the vertex, and they can be generally written as

U = rJ + sI, (1.4)
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where ¶r, s♢ ∈ C. We will closely examine the spectral properties of a rectangular
lattice equipped with this condition in Section 3.2.

1.1.4 Periodic graphs

A larger part of this thesis regards inĄnite graphs, but all of them will be peri-
odic. As was shown in [BK13], this allows us to solve relevant equations inside
the elementary cell, also called fundamental domain, and then extend the solution
on the whole graph.

DeĄnition 1.7 (Periodic graph). An inĄnite combinatorial, metric, or quantum
graph Γ is said to be periodic (or Zn-periodic) if there is a free abelian group
G = Zn and mapping (g, x) ∈ G× Γ ↦→ gx ∈ Γ with following properties:

1. Group action:

• For any g ∈ G, the mapping x ↦→ gx is a bijection of Γ.

• 0x = x for every x ∈ Γ, with 0 ∈ G being the neutral element.

• (gigj)x = gi(gjx) for any gi, gj ∈ G, x ∈ Γ.

2. Continuity: For any g ∈ G, the mapping x ↦→ gx is continuous.

3. Faithfulness: If gx = x for some x ∈ Γ, then g = 0.

4. Discreteness: For any x ∈ Γ, there is a neighbourhood U of x such that
gx /∈ U for g ̸= 0.

5. Co-compactness: The space of orbits Γ/G is compact, i. e. the Γ can be
obtained by G-shifts of a compact subset.

6. Structure preservation:

• gu ∼ gv if and only if u ∼ v. SpeciĄcally, G acts bijectively on edges.

• In the case of a metric or quantum graph, the action preserves lengths
of edges: Lge = Le.

• For quantum graphs, the action commutes with the Hamiltonian H
and preserves the vertex conditions.

DeĄnition 1.8 (Fundamental domain). If there exist a compact part Q of Γ
satisfying:

• the union of all G-shifts of Q covers the Γ

⋃︂

g∈G

gQ = Γ;

• differently shifted copies of Q have only Ąnitely many common parts, none
of which are vertices;

then the Q is called fundamental domain of Γ. This Q is not uniquely deĄned.
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1.1.5 Floquet-Bloch theory

DeĄnition 1.9 (Character). Character of the group G is a homomorphism ς :
G ↦→ C \ ¶0♢, with C \ ¶0♢ being considered as a group with respect to multipli-
cation. Therefore

ς(e) = 1, where e is the unit of G,

ς(gigj) = ς(gi)ς(gj) for any gi, gj ∈ G.

Lemma 1.1. Every character of G = Zn can be represented by a vector θ ∈ Cn:

ς(g) = eiθ·g, g ∈ G.

This character is unitary (maps G into the unit circle) if and only if θ ∈ Rn.

Vectors θ are in physics known as quasi-momenta. Characters represented
as such are 2π-periodic with respect to (individual components of) θ. If we
consider only real quasi-momenta, we can restrict their values to any fundamental
domain B of the action of 2πZn. B is usually chosen as the cube

B = ⟨ − π,π⟩n,

which is in quantum theory called Brillouin zone.
If we factor out group action and 2π-periodicity, we get a complex vector with

non-zero components
z := eiθ = (eiθ1 , . . . ,eiθn)

called Floquet multipliers.

DeĄnition 1.10 (Floquet transform). Floquet transform of the function f is
deĄned as

f(v) ↦→ f̂(v,z) =
∑︂

g∈Zn

f(gv)z−g,

where g acts on vertex v and z is a Floquet multiplier.

The Floquet transform on a quantum graph reduces the Hamiltonian H
to a set of differential operators H(z) on fundamental domain Q [BK13]. We
choose this domain conveniently in a way that there are no original vertices on
the domain boundary. Additional vertices of degree one then automatically ap-
pear on the edges in the points crossing our chosen boundary, with their respective
vertex condition (continuation of the function on the edge). Concrete examples
of this technique will be shown in the following chapters.

1.1.6 Spectral properties

The spectrum σ(H) of the operator H in L2(Γ) is the union of the closed Ąnite
intervals of eigenvalue ranges,

Ij = ¶hj(z) : z ∈ B♢

called spectral bands. Band-gap structure is then the name for the representation

σ(H) =
⋃︂

j

Ij;

11



some of the intervals in question might be only points.
With a periodic self-adjoint Hamiltonian H, its spectrum can contain only

absolutely continuous or pure point parts [BK13, Section 4.3.2]. Additionally,
bound states and compactly supported eigenfunctions may appear due to the
failure of the uniqueness of continuation principle for relevant equations [BK13,
Section 3.4] - corresponding eigenvalues are inĄnitely degenerated and in physics
they are called Ćat bands.

1.2 Circulant matrices

We have seen that vertex conditions are speciĄed by dv×dv matrices. Our atten-
tion will now be focused on a special class of the said matrices.

DeĄnition 1.11 (Circulant matrix). Let c be general vector (generating vec-
tor) in the form c = (c1, c2, c3,. . ., cn)⊤, where cl ∈ C for all l = 1, . . . ,n.
Then the n×n circulant matrix C is given as follows:

C =

∏︁
ˆ︂ˆ︂ˆ︂ˆ︂ˆ︂ˆ︂ˆ︂∐︂

c1 c2 c3 . . . cn

cn c1 c2 . . . cn−1
... cn c1

. . .
...

c3 . . .
. . . . . . c2

c2 c3 . . . cn c1

∫︁
ˆ︃ˆ︃ˆ︃ˆ︃ˆ︃ˆ︃ˆ︃ˆ︁

.

In other words, element Cij is given as Cij = cj−i+1 (mod n).

We shall make and prove (or at least give the general idea of the proof) several
claims about properties of circulant matrices, which will be useful later on.

Proposition 1.1 (Eigenvectors and eigenvalues). The normalized eigenvectors
of circulant matrices are independent of the choice of the vector c. They have
the form ϕl = 1√

n
(1, ωl, ω2l, . . ., ω(n−1)l)⊤, where ω := e2πi/n. Furthermore,

eigenvalues λl can be written in the form λl =
∑︁n

a=1 caω
l(a−1).

Proof. When we multiply the supposed eigenvector ϕl by circulant matrix from
the left, the Ąrst entry of the resulting vector is

1√
n

n∑︂

a=1

caω
l(a−1) =

1√
n

·
n∑︂

a=1

caω
l(a−1).

The second entry is then

1√
n

n∑︂

a=1

ca−1ω
l(a−1) =

ωl

√
n

·
n∑︂

a=1

ca−1ω
l(a−2) =

ωl

√
n

·
n∑︂

a=1

caω
l(a−1),

where we used the same a as the summation index after the second equality,
for the values, over which we sum, are same due to mod n nature of ca and ω.
The m-th entry is

1√
n

n∑︂

a=1

ca−m+1ω
l(a−1) =

ωl(m−1)

√
n

·
n∑︂

a=1

caω
l(a−1).

12



From that we can conclude that ϕl is the sought eigenvector, and the eigenvalues
are indeed in the form λl =

∑︁n
a=1 caω

l(a−1); there cannot be more than n eigen-
values (excluding multiplicity).

Proposition 1.2 (Commutativity). Any two given circulant matrices commute,
i.e. C ˜︁C = ˜︁CC.

Proof. The demanded property follows from the set of equations, whose relevance
we will comment on later. First, let us denote W = C ˜︁C. Then (in all calculations
we work in mod n arithmetic, if needed):

Wij =
n∑︂

a=1

Cia
˜︁Caj =

n∑︂

a=1

ca−i+1˜︁cj−a+1

=
n∑︂

a=1

ca+1˜︁cj−i−a+1 =
n∑︂

a=1

ca+j+1˜︁c−i−a+1

=
n∑︂

a=1

cj−(n−a)+1+n˜︁cn−i−a+1 =
n∑︂

a=1

cj−(n−a)+1˜︁c(n−a)−i+1

=
n∑︂

a=1

cj−a+1˜︁ca−i+1 =
n∑︂

a=1

˜︁CiaCaj

The Ąrst equality is expression of a general element of W from matrix multiplica-
tion, the second then uses the property of circulant matrices from DeĄnition 1.11.
The third and fourth use different forms of values from the sum - speciĄcally,
we use shifted summation indices throughout those steps, but we can rename
them back to a, similarly to Proposition 1.1. The Ąfth one then uses modu-
lar property of deĄning vector c, c−j = cn−j. The sixth just regroups index a,
the seventh uses renaming, and Ąnally the eighth one is just expression of matrix
multiplication ˜︁CC.

Proposition 1.3 (Diagonalization, expression of cl). Circulant matrices are di-
agonalizable by the discrete Fourier transform, i.e. D = V CV ∗, where C is
a circulant matrix, D is a diagonal matrix with circulant matrixŠs eigenvalues
on its diagonal and V is an unitary DFT matrix, where

V = 1√
n

∏︁
ˆ︂ˆ︂ˆ︂ˆ︂ˆ︂ˆ︂ˆ︂∐︂

1 1 1 1 . . . 1
1 ω−1 ω−2 ω−3 . . . ω−(n−1)

1 ω−2 ω−4 ω−6 . . . ω−2(n−1)

...
...

...
...

...

1 ω−(n−1) ω−2(n−1) ω−3(n−1) . . . ω−(n−1)2

∫︁
ˆ︃ˆ︃ˆ︃ˆ︃ˆ︃ˆ︃ˆ︃ˆ︁

.

The coefficients cl can be cast as cl = 1
n

∑︁n
a=1 λaω

−a(l−1).

Sketch of proof. Because of Proposition 1.2, any circulant matrix is also a normal
matrix, i.e. [C,C∗] = 0, because the Hermitian adjoint of a circulant matrix
is also circulant. Thus is C unitary diagonalizable from the spectral theorem,

13



which tells us that an operator on a Ąnite-dimensional vector space is normal
if and only if it is unitarily diagonalizable. The fact that V is indeed the sought
unitary transformation matrix can be veriĄed by direct computation, same as
the form of numbers on the diagonal. Expression of the coefficients cl follows
from inverse discrete Fourier transformation, i.e. C = V ∗DV , where it should be
noted that Dii = λi−1 (mod n) with λl deĄned in Proposition 1.1.

As will be seen later on, the form of vertex condition we will be using is a variant
of the second one from Theorem 1.1, so circulant matrices used in them also need
to be unitary.

Proposition 1.4 (Unitarity). For any circulant matrix C to be unitary requires
following conditions to be met:

∏︂
⨄︂
⎩

∑︁n
a=1 ♣ca♣2 = 1

∑︁n
a=1 caca+b = 0 for b = 1, . . . , n− 1

Proof. Because Proposition 1.2 holds, we need to check only that CC∗ = I.
Direct calculation and matching of respective matrix entries then gives us the Ąrst
condition from calculating diagonal terms and the second from calculating off-
diagonal ones.

Remark. There are alternative ways how one can approach these problems -
for example Proposition 1.3 can be proven without the help of Proposition 1.2,
and Proposition 1.2 would then be immediately obvious, because any pair of cir-
culant matrices is simultaneously diagonalizable.

1.3 Symmetries

In quantum mechanics, any transformation of the system can be described by
an unitary or an antiunitary operator ΘT : H → H, where H is associated Hilbert
space of quantum states; under this transformation, quantum states and operators
behave as

Ψ̃ = ΘTΨ and Õ = Θ∗
TOΘT.

An operator is then said to be symmetric, or invariant, under this transformation
if Õ = O, which means that

∏︂
⨄︂
⎩

[ΘT, O] = 0 for discrete symmetries, or

[G,O] = 0 for continuous symmetries,

where G is a generator of said symmetry.
In our case we are interested in HamiltonianH of the system described by (1.1)

and its (non-)invariance with respect to time-reversal and parity transformations,
and how can these transformations be represented as unitary (or antiunitary)
operators. In particular, because the action of (1.1) is real and not dependent
on the edge orientation, self-adjointness of H, which we need, is determined by
a boundary condition. We employ the second part of Theorem 1.1, and require
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the condition to be satisĄed for all ΘTF (v); symmetry of such Hamiltonian can
then be checked by requiring

Θ∗
TUvΘT = Θ−1

T UvΘT = Uv.

The Ąrst transformation of those listed above is easier to obtain: time inversion
must be antilinear, because

Θ∗
t [X,P ]Θt = Θ∗

t iℏΘt = −iℏ,

where X and P are operators of position and momentum, respectively. Note that
this relation holds only if the operators are applied to sufficiently regular func-
tions; otherwise we have to resort to the Weyl form of the canonical commutation
relation. When we are working in our quantum graph setting, we do not consider
the internal degrees of freedom of the particles involved, and use x representa-
tion; therefore Θt must be just the complex conjugation operator. When acting
as an operator transformation, it behaves as

Θ−1
t UvΘt = ΘtUvΘt = UT

v , (1.5)

because
0 = i(Uv − I)ΘtF (v) + (Uv + I)ΘtF

′(v),

0 = −iΘt(Uv − I)F (v) + Θt(Uv + I)F ′(v),

0 = −i(Uv − I)F (v) + (Uv + I)F ′(v),

0 = −i(I − UT
v )F (v) + (I + UT

v )F ′(v),

0 = i(UT
v − I)F (v) + (UT

v + I)F ′(v),

where we used unitarity relations UT
v Uv = I. Therefore H is time-reversal

symmetric if and only if its coupling matrix is transpose-symmetric.
A quantum graph is PT-symmetric if it is symmetric under joint parity

and time-reversal transformation. Our knowledge of the form of the latter then
implies

Θ−1
p UvΘp = ΘpUvΘp = UT

v ,

just imagine both sides of the equation transformed under time-reversal transfor-
mation as in (1.5). To gain additional insight we remember that a diagonal matrix
is already equal to its transpose and that Uv is a circulant matrix - we know how
D = V UvV

∗ from Proposition 1.3, and substituting leads us to

ΘpV
∗DVΘp = V TDV

resulting in condition
Θp = V TV,

and thus

Θp =

∏︁
ˆ︂ˆ︂ˆ︂ˆ︂ˆ︂ˆ︂ˆ︂ˆ︂ˆ︂∐︂

1 0 0 . . . 0 0 0
0 0 0 . . . 0 0 1
0 0 0 . . . 0 1 0
...

...
...

...
...

...
...

0 0 1 . . . 0 0 0
0 1 0 . . . 0 0 0

∫︁
ˆ︃ˆ︃ˆ︃ˆ︃ˆ︃ˆ︃ˆ︃ˆ︃ˆ︃ˆ︁

.
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A priori there is no need to have a quantum graph embedded in any ambient
space, even though this embedding naturally exists in some applications (for ex-
ample quantum wire circuits) [BK13, Section 1.3], but parity transformations are
intrinsically linked with mirroring in the Euclidean space. Considering quantum
graph as planar, we see that Θp has sought properties, because, under given trans-
formation, it preserves edge e1 (or possibly ek+1 as well, if n = 2k) and switches
edge ej with en+2−j [ET21].
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2. Star graph

2.1 Basic properties

Let us consider the so-called quantum star graph - one central vertex connecting
n semi-inĄnite edges. The associated Hilbert space of states is

⌉︂n
l = 1 L

2(R+)
with elements Ψ = ¶ψl♢, while the Hamiltonian of the system is the aforemen-
tioned negative Laplacian provided we employ the atomic units, ℏ = 2m = 1,
which we always do in this thesis: H¶ψl♢ = ¶−ψ′′

l ♢. The vertex boundary
conditions making the Laplacian a self-adjoint operator on the graph are given
by Theorem 1.1. We will write them in the form

(U − I)Ψ + i(U + I)Ψ
′

= 0, (2.1)

where U is an unitary n×n circulant matrix and I is an unit n×n matrix; it is
obtained from the second one presented by replacing Uv with U∗

v . Needless to say,
Uv and U∗

v are unitary circulant simultaneously. Even at this stage we can draw

Figure 2.1: An example of a star graph with n = 6.

some conclusions about the bound states of a given Hamiltonian. The essential
spectrum of any such operator is ⟨0,∞), as it follows from [Wei12, Theorem 8.19],
because any pair referring to different matrices U has a common symmetric re-
striction of deĄciency indices at most (n, n), including the case on n disconnected
half-lines, where the property is obvious. The question about the number of
bound states, that is, the negative eigenvalues, was addressed in [BET22, Theo-
rem 2.6]; we will prove this claim in a slightly different way.

Proposition 2.1 (Bound states of a star graph). For a star graph equipped with
the Hamiltonian H¶ψl♢ = ¶−ψ′′

l ♢, the number of its bound states (eigenvalues
of the Hamiltonian) is equal to the number of eigenvalues of the unitary matrix
U , which speciĄes the boundary condition (2.1), in the upper complex plane.

Proof. When looking for eigenvalues of the Hamiltonian, one solves the following
equation

Hψl = −κ2ψl
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for all l. With H speciĄed above, its solution can be written as

ψl = dle
−κx,

where we, without the loss of generality, assume κ > 0 (as we require ψl ∈
L2(R+)). Solutions must also satisfy the indicated boundary condition. That,
after the substitution, means

(U − I)d − iκ(U + I)d = 0,

which can then be recast as

Ud =
1 + iκ

1 − iκ
d.

We can clearly see that 1+iκ
1−iκ

is an eigenvalue of U , and after explicitly retrieving
its real and imaginary part,

1 + iκ

1 − iκ
=

1 − κ2

1 + κ2
+

2iκ

1 + κ2
,

we have one-to-one correspondence between κ (consequently κ2) and eigenvalues
of U in the upper complex plane, because the imaginary part of the eigenvalues
is greater than 0.

Simple algebraic manipulations then give

κl = −iλl − 1

λl + 1
,

where λl are eigenvalues of U in the upper complex plane, and after recalling
Proposition 1.1, we can rewrite values of eigenenergies (in atomic units) in terms
of circulant coefficients ca as

−κ2
l = −(λl − 1)(λl − 1)

(λl + 1)(λl + 1)

= −2 − 2ℜ(λl)

2 + 2ℜ(λl)

= −1 − ℜ(
∑︁n

a=1 caω
l(a−1))

1 + ℜ(
∑︁n

a=1 caωl(a−1))
,

where ℜ denotes the real part of a complex number.

2.2 Scattering properties

In general, the scattering vertex matrix can be expressed as [BK13, Lemma 2.1.3.]

S(k) =
(k − 1)I + (k + 1)U

(k + 1)I + (k − 1)U
, (2.2)

where k is the momentum of a plane wave in the used units. While this notation
may not be necessarily clear from the point of the order of multiplication, as both
the numerator and the denominator contain matrices, we should note that all
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matrices present are circulant, thus their sum with respective coefficients is also
circulant, and, recalling Proposition 1.2, we can write the expression in this way
interpreting the right-hand side as a function of a single unitary operator in
the sense of the functional calculus. If U is circulant, S(k) is circulant as well.

If we deĄne a new variable η := k−1
k+1

, we can rewrite (2.2) as

S(k) =
ηI + U

I + ηU
. (2.3)

Let us denote ˜︁U := I + ηU . This circulant matrix is deĄned by vector

˜︁c = ( ˜︁c1, ˜︁c2, ˜︁c3, . . .,˜︂cn)⊤ = (1 + ηc1, ηc2, ηc3, . . ., ηcn)⊤,

and its eigenvalues, after we recall Proposition 1.1, are

˜︁λl =
n∑︂

a=1

˜︂caω
l(a−1). (2.4)

Its inverse ˜︁U−1 then has eigenvalues inverse to those in Equation (2.4), and,
consequently due to Proposition 1.3, is deĄned by vector with entries

c
′

l =
1

n

n∑︂

a=1

˜︁λ−1
a ω−a(l−1). (2.5)

Equation (2.3) can be rewritten as

S(k) = η ˜︁U−1 + ˜︁U−1U,

so, taking information from (2.5), its general element is given as

Sij = ηc
′

j−i+1 +
n∑︂

d=1

c
′

d−i+1cj−d+1

= η
1

n

n∑︂

l=1

˜︁λ−1
l ω−l(j−i) +

1

n

n∑︂

d=1

n∑︂

l=1

˜︁λ−1
l ω−l(d−i)cj−d+1.

(2.6)

If we do the summation over d Ąrst, Equation (2.6) can be substantially simpliĄed.
That is because

n∑︂

d=1

cj−d+1ω
−l(d−i) =

n∑︂

d=1

c−dω
−l(d−i+j+1) = ωl(i−j)

n∑︂

d=1

c−dω
l(−d−1) = λlω

l(i−j),

where we used modular properties of cd and ω, and the expression of eigenvalues
λl. Substituting into Equation (2.6), we have the Ąnal expression

Sij =
1

n

n∑︂

l=1

ωl(i−j)(η + λl)˜︁λ−1
l , (2.7)

or, equivalently, in terms of coefficients of circulant matrices,

Sij =
1

n

n∑︂

l=1

ωl(i−j)η +
∑︁n

a=1 caω
l(a−1)

∑︁n
b=1 ˜︁cbωl(b−1)

. (2.8)
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2.3 High and low energy limit

Now we take a look into the properties of S matrix in high energy limit k → ∞
and low energy limit k → 0, which is equivalent to η → 1 and η → −1,
respectively. But to do so, we will need the following lemma:

Lemma 2.1.
∑︁n

a=1 ω
l(a−1) = 0 for all l = 1, . . . , n− 1.

Proof. By Proposition 1.1, the given sum is equivalent to the expression of eigen-
values of circulant matrix deĄned by a vector consisting of ones in all its positions.
But this matrix has trivially rank one, so all but one eigenvalues are equal to zero,
and the only non-zero one corresponds to d = n and is equal to n.

For the high energy limit, we need to distinguish between two cases - when ma-
trix U has −1 in its spectrum, and when it has not. When −1 /∈ σ(U), we have
from Equation (2.7)

lim
k→∞

Sij =
1

n

n∑︂

l=1

ωl(i−j)

(︄
1 + c1 +

n∑︂

a=2

caω
l(a−1)

)︄(︄
1 + c1 +

n∑︂

a=2

caω
l(a−1)

)︄−1

, (2.9)

where we used speciĄc values of λl and ˜︁λ−1
l in given limit. From that, using

Lemma 2.1, we can clearly see how

lim
k→∞

S(k) = I, (2.10)

as diagonal values will sum to 1 and off-diagonal values will be 0 due to the fact
that i− j can be maximally equal to n− 1 (mod n). Note that there is an alter-
native way to get this result: under our assumption regarding the spectrum of U ,
the operator I +U is invertible and claim (2.10) follows from (2.3) by functional
calculus.

When −1 ∈ σ(U), part of the term, corresponding to this eigenvalue, from
the sum (2.7), denoted by speciĄc l, will be

η +
∑︁n

a=1 caω
l(a−1)

1 + η
∑︁n

a=1 caωl(a−1)
=
η − 1

1 − η
= −1.

The previously observed behaviour in the limit k → ∞ is disturbed, as I + U is
no longer invertible. SpeciĄc values of Sij must be calculated directly and depend
on the deĄning vector c of circulant matrix U , respectively on position of −1 in
σ(U) given by index number l - after substituting into Equation (2.8) we have

lim
k→∞

Sij =
−ωl(i−j)

n
+

1

n

∑︂

d̸=l

ωd(i−j) 1 +
∑︁n

a=1 caω
d(a−1)

∑︁n
b=1 ˜︁cbωd(b−1)

,

which can be in the limit, now similarly to Equation (2.9), rewritten as

lim
k→∞

Sij = −ωl(i−j)

n
+

1

n

∑︂

d̸=l

ωd(i−j).
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Finally, we distinguish between diagonal and off-diagonal terms:

lim
k→∞

Sii = − 1

n
+
n− 1

n
=
n− 2

n
,

lim
k→∞

Sij = −ωl(i−j)

n
+

1

n

n∑︂

d=1

ωd(i−j) − ωl(i−j)

n

= −2ωl(i−j)

n
,

(2.11)

where we employed Lemma 2.1 for off-diagonal terms. We implicitly assumed that
algebraic multiplicity of eigenvalue −1 is one - generalization to a case where −1
has multiplicity µA is straightforward, as

lim
k→∞

Sii = −µA

n
+
n− µA

n
=
n− 2µA

n
,

lim
k→∞

Sij = −
∑︂

l∈M

ωl(i−j)

n
+

1

n

n∑︂

d=1

ωd(i−j) −
∑︂

l∈M

ωl(i−j)

n

= −2
∑︂

l∈M

ωl(i−j)

n
,

(2.12)

where M is a set of all l corresponding to −1 in σ(U) with cardinality of µA.
On the other hand, in the low energy limit, we need to be cautious about

the presence of 1 in σ(U). If 1 is not in the spectrum of U , analogical calculation
leads to

lim
k→0

S(k) = −I, (2.13)

while the other case gives

lim
k→0

Sii =
µA

n
− n− µA

n
=

2µA − n

n
,

lim
k→0

Sij =
∑︂

l∈M

ωl(i−j)

n
− 1

n

n∑︂

d=1

ωd(i−j) +
∑︂

l∈M

ωl(i−j)

n

= 2
∑︂

l∈M

ωl(i−j)

n
,

(2.14)

where M and µA now regards 1.
Let us test these formulae in speciĄc examples. Consider deĄning vector c with

c2 = 1 and other coefficients equal to 0 in dimension n = 4. Spectrum of respective
U , given by Proposition 1.1, is (remembering that in this case ω = e2πi/4 = eπi/2)

λ1 = c2ω
1(2−1) = ω = i,

λ2 = ω2 = −1,

λ3 = ω3 = −i,
λ4 = ω4 = 1.

Here we have −1 with l = 2 and 1 with l = 4 in σ(U), both with multiplicity
µA = 1. In the high energy limit, individual terms, as by Equation (2.11), are

lim
k→∞

Sii =
1

2
,

lim
k→∞

Sij = −ω2(i−j)

2
= −(−1)(i−j)

2
.

21



We can see that if (i − j) is even, the corresponding term is equal to −1/2,
while if (i− j) is odd, matrix entries will be 1/2. Because S is a circulant matrix
regardless of the limit used, we need to compute (for example) the Ąrst row only,
and Ąnally, we get

lim
k→∞

S = 1
2

∏︁
ˆ︂ˆ︂ˆ︂∐︂

1 1 −1 1
1 1 1 −1

−1 1 1 1
1 −1 1 1

∫︁
ˆ︃ˆ︃ˆ︃ˆ︁.

For the low energy limit, we have

lim
k→0

Sii = −1

2
,

lim
k→0

Sij =
ω4(i−j)

2
=

1(i−j)

2
,

and thus

lim
k→0

S = 1
2

∏︁
ˆ︂ˆ︂ˆ︂∐︂

−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

∫︁
ˆ︃ˆ︃ˆ︃ˆ︁.

Both of these are the same as the results obtained in [ET18] for this particular
choice of U .

If we choose c with c2 = −1 and other coefficients 0 again, with dimension
n = 3, spectrum of U , with ω = e2πi/3, will be

λ1 = −ω,
λ2 = −ω2,

λ3 = −1.

The low energy limit then trivially goes to −I because 1 /∈ σ(U), and the high
energy limit can be written as

lim
k→∞

S = 1
3

∏︁
ˆ︂∐︂

1 −2 −2
−2 1 −2
−2 −2 1

∫︁
ˆ︃ˆ︁,

which are again results obtained in [ET21].
Let us sum up what we have obtained so far - we proved that the number

of star graphŠs bound states is equal to the number of matrix U Šs eigenvalues
in the upper complex plane, and numerical values of eigenenergies are given by

−κ2
l = −1 − ℜ(λl)

1 + ℜ(λl)
.

We calculated the general form of scattering vertex matrix, given by Equation
(2.8), and found its limit for k → ∞ and k → 0 in dependence on the spectrum
of U , given by Equations (2.12) and (2.14) respectively.
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3. Rectangular graph

3.1 Basic properties

Following the results obtained for a star graph, we now consider the Ąrst example
of a graph with a periodic lattice structure, speciĄcally in the form of a rect-
angular lattice, whose edges have lengths l1 and l2. The Hamiltonian acting on
each edge is still the same as was in the case of a star graph, H¶ψl♢ = ¶−ψ′′

l ♢.
The periodicity assumption means that the (general) circulant vertex conditions
(2.1) are the same at every vertex, where present matrices now have dimensions
4×4. According to Section 1.1.4, the spectral analysis can be reduced to the in-
vestigation of the operator on the fundamental domain sketched in Figure 3.1,
which contains a single vertex with the coordinate x = 0, and we assume the edge
coordinates increase in the upward and right directions.

Figure 3.1: A periodic rectangular graph with its elementary cell (fundamental
domain) highlighted.

The system is solvable by writing the Ansatz for wave functions on edges as

ψ1(x) = a1e
ikx + b1e

−ikx, x ∈ ⟨0, l1
2

⟩

ψ2(x) = a2e
ikx + b2e

−ikx, x ∈ ⟨0, l2
2

⟩

ψ3(x) = ω1(a1e
ik(x+l1) + b1e

−ik(x+l1)), x ∈ ⟨− l1
2
, 0⟩

ψ4(x) = ω2(a2e
ik(x+l2) + b2e

−ik(x+l2)), x ∈ ⟨− l2
2
, 0⟩

(3.1)

where the Floquet multipliers, or Bloch phase factors, eiθj , j = 1, 2 are denoted
as ωj. The fact that

a3 = a1e
ikl1 , b3 = b1e

−ikl1 ,

a4 = a2e
ikl2 , b4 = b2e

−ikl2 ,
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comes from the conditions we impose at the elementary cell boundary,

ψ3(−
l1
2

) = ψ1(
l1
2

),

ψ4(−
l2
2

) = ψ2(
l2
2

).

Plugging values Ψ(0) and Ψ
′

(0), where (in contrast to the star graph of the pre-
vious chapter) we choose to take the Ąrst derivative in the direction of the edge
coordinate, into (2.1) leads to a homogeneous linear system of equations for co-
efficients aj, bj. Its solvability is equivalent to the following determinant being
zero
\︄\︄\︄\︄\︄\︄\︄\︄

−c1η + c3ω1µ − 1 c1 − c3ηω1µ + η −c2η + c4ω2ν c2 − c4ηω2ν

−c4η + c2ω1µ c4 − c2ηω1µ −c1η + c3ω2ν − 1 c1 − c3ηω2ν + η

−c3η + c1ω1µ + ηω1µ c3 − c1ηω1µ − ω1µ −c4η + c2ω2ν c4 − c2ηω2ν

−c2η + c4ω1µ c2 − c4ηω1µ −c3η + c1ω2ν + ηω2ν c3 − c1ηω2ν − ω2ν

\︄\︄\︄\︄\︄\︄\︄\︄
,

where we use µ = eikl1 , ν = eikl2 and η = k−1
k+1

for the sake of brevity. Evaluat-
ing the determinant in terms of the original momentum variable k instead of η,
we arrive at the spectral condition

4ei(θ1+θ2)

(k + 1)4

∑︂

i

KiFi = 0. (3.2)

It is rather long, if written fully, as both coefficients Ki and functions Fi differ
in their nature, as polynomials of different order in coefficients c from circulant
matrix and variable k, or parametric dependence, as functions of l1 and l2; they
can be found explicitly in Appendix A.1.

Nevertheless, it becomes particularly simple for the ŠextremalŠ rotationally
symmetric coupling,

R =

∏︁
ˆ︂ˆ︂ˆ︂∐︂

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

∫︁
ˆ︃ˆ︃ˆ︃ˆ︁ , (3.3)

on the square lattice, l1 = l2; the Ąnal spectral condition will be identical to that
explicitly derived earlier in [ET18].

3.2 Permutation-invariant vertex condition

Permutation-invariant vertex condition (1.4) is a natural class of vertex couplings
that directly generalises both the δ and δ

′

condition. In comparison with the gen-
eral circulant matrix from DeĄnition 1.11, it is much simpler being characterized
by only two parameters; in particular, the spectral condition (3.2) simpliĄes sig-
niĄcantly. As we mentioned before, the matrix U specifying vertex condition
must be unitary, with the following implication for the parameters:

Lemma 3.1. Matrix U = rJ + sI, where I is a n× n identity matrix and J is a
matrix of the same dimensions with 1 in all of its entries, is unitary if and only
if ♣s♣ = 1 ∧ ♣s+ nr♣ = 1.
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Proof. For the implication from the left to the right, the sufficient condition is
obtained by substituting the given form of U into Proposition 1.1 in conjunction
with Lemma 2.1. From these the matrix U has n−1 times degenerated eigenvalue
s and one eigenvalue s+ nr. Both conditions regarding r and s then follow from
evaluating unitarity condition UU∗ = U∗U = I in the basis set where U is
diagonal.

The implication from the right to the left follows from (after a simple manip-
ulation) expressing the unitarity conditions stated in Proposition 1.4.

If we use this type of condition for our rectangular lattice, i.e. c1 = r + s,
c2 = c3 = c4 = r, spectral condition (3.2) is reduced to

−ei(θ1+θ2) 4

(k + 1)4
¶4rik[(s− 1)2 + k2(s+ 1)2](cos θ2 sin kl1 + cos θ1 sin kl2)

+2ik[(s− 1)2(4rs+ 2r + s2 − 1)

+k2(s+ 1)2(4rs− 2r + s2 − 1)] sin k(l1 + l2)

+8rk2(s− 1)(s+ 1)(cos θ2 cos kl1 + cos θ1 cos kl2)

+4k2(s− 1)(s+ 1)(4rs+ s2 − 1) cos kl1 cos kl2

−[2k2(s− 1)(s+ 1)(4rs+ s2 − 1)

+k4(s+ 1)3(4r + s+ 1)

+(s− 1)3(4r + s− 1)] sin kl1 sin kl2♢ = 0.

(3.4)

Let us look into some speciĄc examples. One of the most common permutation-
invariant vertex conditions is δ-condition (1.2) - substituting

r =
2

4 + iα
, α ∈ R, s = −1 (3.5)

gives us the left-hand side of Equation (3.4) as

2k(sin k(l1 + l2) − cos θ2 sin kl1 − cos θ1 sin kl2) + α sin kl1 sin kl2.

Here we omitted the numerical prefactor 64iei(θ1+θ2)

(k+1)4(4+iα)
, and for convenience, we will

continue to do so in other examples as well (with generally different prefactors) -
in other words, we display only the part relevant to vanishing of the determinant.
Similarly, we have δ

′

-condition (1.3) with values

r =
−2

4 − iα
, α ∈ R, s = 1, (3.6)

which leads to the left-hand side being

2(sin k(l1 + l2) + cos θ2 sin kl1 + cos θ1 sin kl2) − kα sin kl1 sin kl2.

Both of these results are the same as the ones obtained in [EG96] and [Exn96].

3.3 Spectral properties

Let us examine spectral condition (3.4) in more detail. It is useful to parametrize
coefficients s and r such that

s = eiϑ = cosϑ+ i sinϑ and

r = ♣r♣eiγ = ♣r♣(cos γ + i sin γ).
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As for s, we see that unitarity condition regarding U from Lemma 3.1 is satisĄed
automatically; the second condition then gives

♣cosϑ+ n♣r♣ cos γ + i(sinϑ+ n♣r♣ sin γ)♣ = 1.

It can be simpliĄed, using ♣s♣ = 1, to

2n♣r♣(cosϑ cos γ + sinϑ sin γ) + n2♣r♣2 = 0,

leading to either the trivial case of ♣r♣ = r = 0, or the condition

− 2

n
cos (γ − ϑ) = ♣r♣,

which for n = 4 in a rectangular lattice case reads

−1

2
cos (γ − ϑ) = ♣r♣.

This, in particular, means that ϑ can be treated as a free parameter chosen from
interval ⟨0, 2π), while γ is without loss of generality restricted to subinterval
⟨π

2
, 3π

2
⟩, including r = 0 case. It does not mean that other values of γ from ⟨0, 2π)

are prohibited per se, they just give the same results - if we choose some γ
′

from
⟨ − π

2
,π

2
⟩, we can treat it in the same way as γ − π with γ ∈ ⟨π

2
, 3π

2
⟩, and

r
′

= ♣r′♣eiγ
′

= − 2

n
(cos γ

′

+ i sin γ
′

) cos (γ
′ − ϑ)

= − 2

n
[cos (γ − π) + i sin (γ − π)] cos (γ − ϑ− π)

= − 2

n
(cos γ + isinγ) cos (γ − ϑ) = r.

Substituting our parametrized coefficients into Equation (3.4) gives, discarding
irrelevant prefactors, the spectral condition

k cos (γ − ϑ) [(cosϑ− 1) + k2(cosϑ+ 1)](cos θ2 sin kl1 + cos θ1 sin kl2)

+k¶[−2 cos γ + cosϑ cos (γ − ϑ) + cos (γ + ϑ)]

+ k2[2 cos γ − cosϑ cos (γ − ϑ) + cos (γ + ϑ)]♢ sin k(l1 + l2)

+2k2 sinϑ cos (γ − ϑ) (cos θ2 cos kl1 + cos θ1 cos kl2)

+4k2 sinϑ cos γ cos kl1 cos kl2

−¶2k2 sinϑ cos γ

+k4[2 sin γ (cosϑ+ 1) − sinϑ (cos γ + cos (γ − ϑ) )]

+[2 sin γ (cosϑ− 1) − sinϑ (cos γ − cos (γ − ϑ) )]♢ sin kl1 sin kl2 = 0,

(3.7)

or, in a form simpliĄed for further purposes,

k(A1 + k2A2)(cos θ2 sin kl1 + cos θ1 sin kl2)

+k(A3 + k2A4) sin k(l1 + l2)

+k2A5(cos θ2 cos kl1 + cos θ1 cos kl2)

+k2A6 cos kl1 cos kl2

+(k2A7 + k4A8 + A9) sin kl1 sin kl2 = 0

(3.8)

(All of Ai are again written explicitly in the Appendix A.2).
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High energy spectrum

Because the structure of spectral bands at high energies is an important charac-
teristic of transport properties of a quantum graph, consider limit k → ∞ at Ąrst.
At the leading order, condition (3.8) reads

k4A8 sin kl1 sin kl2 + O(k3) = 0,

provided that A8 ̸= 0. This can happen only if −1 is not part of the vertex matrix
spectrum. Indeed, we have

A8 = −2 sin γ (cosϑ+ 1) + sinϑ (cos γ + cos (γ − ϑ) ),

and −1 ∈ σ(U) means either s = −1, then necessarily cosϑ = −1 with sinϑ = 0,
and subsequently A8 = 0, or s+ 4r = −1, where we can simultaneously solve for
the real and imaginary part of this expression, from there get

cosϑ = cos 2γ and sinϑ = sin 2γ, (3.9)

then Ąnally substituting into A8

A8 = −2 sin γ (cos 2γ + 1) + sin 2γ (cos γ + cos γ cos 2γ + sin γ sin 2γ)

= 2 sin γ (−sin γ2 + 1 − cos γ4 − sin γ2 cos γ2)

= 2 sin γ [−cos γ4 + (1 − sin γ2) cos γ2] = 0.

If −1 is not an eigenvalue, i.e. Dirichlet part of the matrix eigenspace is not
present, the high energy spectrum is dominated by gaps, as bands can be formed
only in the vicinity of points

km,j = mπ
lj
, j = 1,2 and m ∈ N.

We consider the next-to-leading order and rewrite condition (3.8) in the asymp-
totic form,

A8 sin kl1 sin kl2 +
A4 sin k(l1 + l2) + A2(cos θ2 sin kl1 + cos θ1 sin kl2)

k
= O(k−2),

(3.10)
and we introduce

k =
mπ

lj
+ δ, m ∈ N. (3.11)

As a general rule for this thesis, although we shall always specify them beforehand,
we use the expansions

sin kli = sin
mπli
lj

+ δli cos
mπli
lj

− δ2l2i
2

sin
mπli
lj

− δ3l3i
6

cos
mπli
lj

+ O(δ4)

cos kli = cos
mπli
lj

− δli sin
mπli
lj

− δ2l2i
2

cos
mπli
lj

+
δ3l3i
6

sin
mπli
lj

+ O(δ4)

(3.12)
every time there is a need to get a better understanding of the said bands. In these
expansions, we stick to the notation introduced in (3.11), where li is an arbitrary
length relevant to the given problem.
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Because the following procedure is practically the same for both j, we now
focus only on j = 1, whereas for j = 2 we will present only the Ąnal results.
Expanding functions around km,1 gives us

sin kl1 = (−1)m

(︄
δl1 − δ3l1

3

6

)︄

sin kl2 =

(︄
1 − δ2l2

2

2

)︄
sin

l2
l1
mπ +

(︄
δl2 − δ3l2

3

6

)︄
cos

l2
l1
mπ

sin k(l1 + l2) = (−1)m

[︄(︄
1 − δ2(l1 + l2)

2

2

)︄
sin

l2
l1
mπ

+

(︄
δl2 − δ3(l1 + l2)

3

6

)︄
cos

l2
l1
mπ

⟨︂

and substituting into Equation (3.10), with k−1 = l1
mπ

+ O(m−2), we get

l1
mπ

[A4(−1)m + A2 cos θ1] sin
l2
l1
mπ

+δ¶A8(−1)ml1 sin
l2
l1
mπ +

l1
mπ

[(A4(−1)m(l1 + l2) + A2l2 cos θ1) cos
l2
l1
mπ

+A2l1(−1)m cos θ2]♢

+δ2¶A8(−1)ml1l2 cos
l2
l1
mπ − l1

mπ
[A4(−1)m (l1 + l2)

2

2
+ A2

l2
2

2
cos θ1] sin

l2
l1
mπ♢

+O(δ3) = 0.

Here we want to express δ as a function of the other parameters, gaining thus
an insight into its behaviour. Our strategy revolves around the fact that Ąrst,
we want to include some O(1) terms (with respect to m), as in the end we work
in the limit m → ∞, and secondly, we want to do it through the lowest order of
δ as possible. Now, for example, it is sufficient to take the terms proportional to
the Ąrst order in δ, and including limit m → ∞ we have

δ(θ1) =
−[A4(−1)m + A2 cos θ1] sin l2

l1
mπ

A8(−1)mmπ sin l2
l1
mπ

+ O(m−2).

Here we face two possible situations:

• If l2
l1

is irrational, sin l2
l1
mπ for large m ∈ N is never 0, we can cancel it

in both the numerator and the denominator, and

δ(θ1) =
−[A4 + A2(−1)m cos θ1]

A8mπ
.

• If l2
l1

is some rational number, sin l2
l1
mπ is periodic as a function of m,

and is in particular equal to 0 for m = m
′ l1
l2

, m
′ ∈ N. For such m we

must go up to the second order of δ to be able to express it, and then

δ(θ1) = − 1

mπ

A4(l1 + l2) + A2[l2(−1)
m(1+

l2
l1

)
cos θ1 + l1 cos θ2]

A8l2(−1)
m

l2
l1

;

otherwise asymptotic expression of δ(θ1) stays the same as in the irrational
case.
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In the asymptotic regime we generally deĄne the dispersion function branch Em(θ)
around k = mπ

lj
, dependent on an arbitrary Bloch factor, as

Em(θ) := k2
m,j(θ) =

(︂mπ
lj

⎡2
+ 2

mπ

lj
δ(θ) + O(m0); (3.13)

we drop the subscript j because the length lj is usually not the only relevant
length parameter, and we are mostly interested in dependence on m (i. e. higher
energies). The corresponding energy band width ∆Em is then expressed as

∆Em = ♣k2
m,j(0) − k2

m,j(π)♣
≈ 2

mπ

lj
♣δ(0) − δ(π)♣. (3.14)

The sought energy Em(θ1) as a function of the Bloch parameter is now

Em(θ1) =
(︂mπ
l1

⎡2 − 2
A4 + A2(−1)m cos θ1

A8l1
+ O(m−1),

while the band width itself is

∆Em =
4

l1

\︄\︄\︄\︄\︄
A2

A8

\︄\︄\︄\︄\︄+ O(m−1).

As for the particular case of rational l2
l1

, the energy has the same expression with
corresponding δ, and the band width is

∆Em =
4(l1 + l2)

l1l2

\︄\︄\︄\︄\︄
A2

A8

\︄\︄\︄\︄\︄+ O(m−1); (3.15)

while we do not necessarily know the value of (−1)
m(1+

l2
l1

)
, θ1 is the Ąrst com-

ponent of the quasimomentum, and we can always choose a combination of θ1

and θ2 at the border of the Brillouin zone leading to a maximum difference be-
tween boundaries of said energy band(s).

The calculation for li = l2 leads to similar results, as

• for l1
l2
/∈ Q

δ(θ2) =
−[A4 + A2(−1)m cos θ2]

A8mπ
,

• for l1
l2

∈ Q

δ(θ2) = − 1

mπ

A4(l1 + l2) + A2[l2 cos θ1 + l1(−1)
m(1+

l1
l2

)
cos θ2]

A8l1(−1)
m

l1
l2

;

if m = m
′ l2
l1

, otherwise δ stays the same as for the irrational case,

and from that

∆Em =
4

l2

\︄\︄\︄\︄\︄
A2

A8

\︄\︄\︄\︄\︄+ O(m−1)
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for irrational and some cases of a rational fraction of lengths, or band widths given
by Equation (3.15) for speciĄc instances of a rational case where sin l1

l2
mπ = 0.

However, as we have seen before, if −1 is part of the matrix spectrum, A8 = 0
and the asymptotic band-gap structure changes. If s = −1, then ϑ = π,

A2 = A4 = A5 = A6 = A7 = A8 = 0

and in limit k → ∞ we have

A1 (cos θ2 sin kl1 + cos θ1 sin kl2) + A3 sin k(l1 + l2) + O(k−1)

=2 cos γ (cos θ2 sin kl1 + cos θ1 sin kl2 − sin k(l1 + l2) ) + O(k−1) = 0,

where everything except the error term is annulated by setting

θ1 = kl1 + 2nπ ∧ θ2 = kl2 + 2mπ, n,m ∈ Z.

If s+ 4r = −1, for large k condition (3.8) reads

A2 (cos θ2 sin kl1 + cos θ1 sin kl2) + A4 sin k(l1 + l2) + O(k−1) = 0,

but using previously established relations (3.9) between ϑ and γ we get

2 cos γ3 (cos θ2 sin kl1 + cos θ1 sin kl2 + sin k(l1 + l2) ) + O(k−1) = 0,

satisĄed, up to the error term, by

θ1 = kl1 + (2n+ 1)π ∧ θ2 = kl2 + (2m+ 1)π, n,m ∈ Z,

so both possibilities lead to the high energy spectrum of our graph being domi-
nated by bands, while gaps vanish in the order O(k−1), which at the energy scale
means their width is asymptotically bounded.

Low energy spectrum

Next, we consider spectral structure around the point k = 0. We choose k = δ
as a small parameter and use Taylor expansions

sin kl = δl − (δl)3

3!
+

(δl)5

5!
,

cos kl = 1 − (δl)2

2!
+

(δl)4

4!
,

where l denotes l1, l2, or (l1 + l2), depending on the speciĄc circumstances. Con-
dition (3.8) transforms into

[A6 + A3(l1 + l2) + A9l1l2 + A1(l1cos θ2 + l2cos θ1) + A5(cos θ1 + cos θ2)]

+δ2[A4(l1 + l2) − A6

2
(l1

2 + l2
2) − A3

2
(
l1

3

3
+ l1

2l2 + l1l2
2 +

l2
3

3
)

+ A7l1l2 − A9

6
l1l2(l1

2 + l2
2) + A2(l1cos θ2 + l2cos θ1)

− A5

2
(l1

2cos θ2 + l2
2cos θ1) − A1

6
(l1

3cos θ2 + l2
3cos θ1)] + O(δ4) = 0.
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The plan is to get terms with cos θ1 and cos θ2 to one side of the equation, and be-
cause both of these individually range from −1 to 1, we can rewrite our condition
in the form of inequality, which will be easier to evaluate. For general expression,
it means that

[A6 + A3(l1 + l2) + A9l1l2] + δ2[A4(l1 + l2) − A6

2
(l21 + l22)

− A3

2
(
l31
3

+ l21l2 + l1l
2
2 +

l32
3

) + A7l1l2 − A9

6
l1l2(l

2
1 + l22)] + O(δ4)

= − A1(l1cos θ2 + l2cos θ1) − A5(cos θ1 + cos θ2)

+ δ2[
A5

2
(l21cos θ2 + l22cos θ1) +

A1

6
(l31cos θ2 + l32cos θ1)

− A2(l1cos θ2 + l2cos θ1)] + O(δ4)

= − [(A1l1 + A5) cos θ2 + (A1l2 + A5) cos θ1]

+ δ2[(
A5

2
l21 +

A1

6
l31 − A2l1) cos θ2 + (

A5

2
l22 +

A1

6
l32 − A2l2) cos θ1] + O(δ4).

(3.16)
Because we investigate the asymptotic regime δ → 0, the terms proportional to
at least δ2 in Equation (3.16) do not need to be taken into account as long as
O(1) terms are not equal for a particular choice of θ1 and θ2. Our condition then
becomes

A6 + A3(l1 + l2) + A9l1l2 = −[(A1l1 + A5) cos θ2 + (A1l2 + A5) cos θ1]. (3.17)

Let us examine its right-hand side in more detail. It is of the form

t2 cos θ1 + t1 cos θ2,

and if our goal is to transform Equation (3.17) into an inequality, we need to
Ąnd its maximum and minimum with respect to θ1 and θ2. After differentiation
the possible stationary points are

(θ1,θ2) =

∏︂
⋁︂⋁︂⋁︂⋁︂⋁︂⨄︂
⋁︂⋁︂⋁︂⋁︂⋁︂⎩

(0, 0),

(π, π),

(0,π),

(π,0).

These points form two pairs (the Ąrst with the second and the third with the
fourth), each containing maximum and minimum, depending on whether t1 and t2
have the same sign or not.

Explicitly written, the right-hand side of Equation (3.17) is

− cos(γ − ϑ) ¶[(cosϑ− 1)l1 + 2 sinϑ ] cos θ2 + [(cosϑ− 1)l2 + 2 sinϑ ] cos θ1♢
= t2 cos θ1 + t1 cos θ2;

here we, without the loss of generality, assume l2 > l1 > 0. Sign of a particular ti
can be determined from inequality

li >
2 sinϑ

1 − cosϑ
= 2 cot

ϑ

2
;
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if both l1 and l2 do (or do not) satisfy it, Equation (3.17) can be Ąnally rewritten
into

♣A6 + A3(l1 + l2) + A9l1l2♣ < ♣ − A1(l1 + l2) − 2A5♣, (3.18)

then if l2 does satisfy it, but l1 does not, Equation (3.17) becomes

♣A6 + A3(l1 + l2) + A9l1l2♣ < ♣ − A1(l2 − l1)♣. (3.19)

If these inequalities, in their particular setting of lengths, are satisĄed, then there

1 2 3 4 5 6

θ
-5

5

10

Figure 3.2: 2 cot ϑ
2

on interval ⟨0, 2π⟩ with lines l2 = 5 and l1 = 2; red horizontal
line on ϑ axis corresponds to interval where condition (3.19) is valid.

exists a positive band connected to the zero.
Should the left and the right side of (3.18) or (3.19) become equal, it does

not mean that the positive spectrum is necessarily separated from zero, but we
need to go to higher orders in the δ expansion. While we once again start from
condition (3.16) generally, both of the sides are always equal speciĄcally if 1 is
a part of the vertex matrix eigenvalues. If s = 1,

A1 = A3 = A5 = A6 = A7 = A9 = 0,

and we must go up to the O(δ4) terms in condition (3.8) around 0; it then reads

A4(l1 + l2) + A2(l1cos θ2 + l2cos θ1)

+δ2[−A4

2
(
l31
3

+ l21l2 + l1l
2
2 +

l32
3

) − A2

6
(l31 cos θ2 + l32 cos θ1) + A8l1l2] = 0.

Similarly to the previous case, we separate terms containing cos θ1 and cos θ2 from
the others, and we also explicitly evaluate

A2 = A4 = 2 cos γ and A8 = −4 sin γ,
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which leads to

δ2[4 sin γ l1l2 + cos γ (l21l2 + l1l
2
2)]

=2 cos γ [l1(1 + cos θ2) + l2(1 + cos θ1)]

−δ2 cos γ

3
[l1

3(1 + cos θ2) + l2
3(1 + cos θ1)]

= cos γ [l1(2 − δ2l21
3

)(1 + cos θ2) + l2(2 − δ2l22
3

)(1 + cos θ1)].

(3.20)

On the right-hand side, the δ2 term can be omitted because δ is arbitrarily small,
and not only is its sign determined by O(1) terms, but the right-hand side will
inevitably be larger than the left-hand side. Additionally, (1 + cos θi) ∈ ⟨0,2⟩,
and (3.20) can be rewritten as

0 ≤ δ2(4l1l2 tan γ + l1
2l2 + l1l2

2) ≤ 4(l1 + l2).

From the middle term, we can factor l1l2 out, and because we are interested
in small values of δ, the Ąnal condition under which the band is connected to zero
reads

0 ≤ 4 tan γ + l2 + l1. (3.21)

The case tan γ = − l1+l2
4

is included - when plugged into original condition (3.8),
it can be rewritten as

(cos θ1 + cos kl2 +
kl2
2

sin kl2) sin kl1 + (cos θ2 + cos kl1 +
kl1
2

sin kl1) sin kl2 = 0,

which is around 0 always solvable by speciĄc choice of θ1 and θ2 due to the fact
that

1 ≥ cosx+
x

2
sin x

near the zero. Obviously, this procedure does not apply when cos γ = 0, but in
that case r = 0, as ϑ = 0, and that reduces original condition (3.4) to

sin kl1 sin kl2 = 0,

which means that the whole spectrum would consist only of two types of Ćat
bands around points

k = mπ
l1

and k = mπ
l2
, m = 0, 1, 2, . . .

On the other hand, if s + 4r = 1, then sinϑ = − sin 2γ and cosϑ = − cos 2γ,
therefore

A9 = 0,

A6 = −8 sin γ cos2 γ,

A3 = −2 cos3 γ,

A1 = 2 cos3 γ, and

A5 = 4 sin γ cos2 γ.

(3.22)

The condition of connection to the zero then reads

♣ − 8 sin γ cos2 γ − 2(l1 + l2) cos3 γ♣ < ♣ − 2(l1 + l2) cos3 γ − 8 sin γ cos2 γ♣, (3.23)
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if taken from (3.18), or

♣4 tan γ + (l1 + l2)♣ < (l2 − l1), (3.24)

if taken from (3.19); Ąnal arrangement for this case once again excludes cos γ = 0,
but this choice would inadvertently lead to cosϑ = 1, which we already men-
tioned. While it might not be immediately clear whether or when are both sides
equal in (3.24) in contrast to (3.23), let us remember that, due to the relations
between ϑ and γ, tan γ = − cot ϑ

2
follows immediately, and from assumptions

leading to (3.19), tan γ ∈ ⟨− l2
2
, − l1

2
⟩. Furthermore, 4 tan γ + (l1 + l2) is a lin-

ear function of tan γ, so on the given interval it may reach maximum (or mini-
mum) only at its endpoints, which are now − l2

2
and − l1

2
, both leading to equality

in (3.24). Otherwise it is satisĄed, and in other words, if l2 ̸= l1, s + 4r = 1,
and ϑ ∈ (2 arctan 2

l2
, 2 arctan 2

l1
) (illustrated for example by the red line in Figure

3.2), the positive spectrum is always connected to the point k = 0.
As was mentioned before, if it is appropriate to use (3.23), we need to use

higher orders in δ expansion, so plugging (3.22) additionally with

A2 = −2 sin2 γ cos γ,

A4 = 6 sin2 γ cos γ,

A7 = 4 sin γ cos2 γ,

into (3.16) (or (3.23) respectively), we get

♣ − 8 sin γ cos2 γ − 2(l1 + l2) cos3 γ

+ δ2[6(l1 + l2) sin2 γ cos γ + 4(l1
2 + l2

2) sin γ cos2 γ

+ (
l1

3

3
+ l1

2l2 + l1l2
2 +

l2
3

3
) cos3 γ + 4l1l2 sin γ cos2 γ]♣

<♣ − 8 sin γ cos2 γ − 2(l1 + l2) cos3 γ

+ δ2[2(l1
2 + l2

2) sin γ cos2 γ + (l1
3 + l2

3)
cos3 γ

3
+ 2(l1 + l2) sin2 γ cos γ]♣.

Effectively, we are in the situation

♣x+ y♣ < ♣x♣,

where
y = δ2[4(l1 + l2) sin2 γ cos γ + 2(l21 + l22) sin γ cos2 γ

+ (l21l2 + l1l
2
2) cos3 γ + 4l1l2 sin γ cos2 γ]

= δ22(l1 + l2) cos3 γ [2 tan2 γ + (l1 + l2) tan γ +
l1l2
2

],

x = −2 cos3 γ [4 tan γ + (l1 + l2)]

+ δ22 cos3 γ [(l21 + l22) tan γ +
(l31 + l32)

6
+ (l1 + l2) tan2 γ].

Because the expression y is O(δ2) and x is in the highest order O(1), it is only
important whether x and y have the same sign; γ is now taken from (π

2
, 3π

2
),
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therefore cos3 γ < 0 and sign of y is determined by

2 tan2 γ + (l1 + l2) tan γ +
l1l2
2
, (3.25)

while sign of x is determined by

4 tan γ + (l1 + l2).

Solving quadratic equation (3.25) for tan γ gives us two solutions

tan γ = − l1
2

and tan γ = − l2
2

;

between them is (3.25) negative, but values from this interval already correspond
to (3.24), so for our current purposes is (3.25) always positive, and y is always
negative for tan γ outside of ⟨− l2

2
,− l1

2
⟩ (the solutions of (3.25) itself will be dealt

with later). The prefactor before the relevant O(1) part of x is always positive,
therefore the Ąnal condition ensuring the existence of spectral band connected
to zero is

0 < 4 tan γ + (l1 + l2).

Note that here tan γ = − l1+l2
4

cannot occur as − l1+l2
4

is the average between
− l1

2
and − l2

2
, so it must deĄnitely lie between those two values, and now we are

working outside of the mentioned interval.
There are two particular cases

tan γ =

∏︂
⋁︂⋁︂⋁︂⨄︂
⋁︂⋁︂⋁︂⎩

− l2
2

− l1
2

solving (3.25). In both of them y = 0, so we must once again go to higher order
terms, effectively solving the inequality

♣x+ z♣ < ♣x+ z′♣,
where

z = δ4¶−A4

6
[l31 + 3(l21l2 + l22l1) + l32] +

A6

24
(l41 + 6l21l

2
2 + l42)

+
A3

120
[l51 + 5(l41l2 + l42l1) + 10(l31l

2
2 + l32l

2
1) + l52]

+ A8l1l2 − A7

6
(l31l2 + l32l1)♢

= 2δ4cos3γ ¶−tan2γ

2
[l31 + 3(l21l2 + l22l1) + l32] − tan γ

6
(l41 + 6l21l

2
2 + l42)

− 1

120
[l51 + 5(l41l2 + l42l1) + 10(l31l

2
2 + l32l

2
1) + l52]

+ 2l1l2tan3γ−tan γ

3
(l31l2 + l32l1)♢,

z′ = δ4[−A2

6
(l31 + l32) +

A5

24
(l41 + l42) +

A1

120
(l51 + l52)]

= 2δ4cos3γ [
tan2γ

6
(l31 + l32) +

tan γ

12
(l41 + l42) +

1

120
(l51 + l52)]

.
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Now if tan γ = − l1
2
, then under our assumptions x > 0 holds, and because δ

is arbitrarily small, it is sufficient to have z′ > z. After substitution and factoring
out l51, where we denote p = l2

l1
, we can transform it into

2p5 − 10p4 + 10p3 − 5p2 + 35p+ 7 > 0.

This polynomial is on the interval (1,∞) (because l2 > l1) always positive,
and therefore our condition is always satisĄed and the positive spectrum is con-
nected to zero.

On the other hand, if tan γ = − l2
2
, we have x < 0 and z′ < z must be true.

Again, after substitution we have

−7p5 − 35p4 + 5p3 − 10p2 + 10p− 2 > 0,

but this polynomial is on (1,∞) always negative, and as such the condition is
never satisĄed and the positive spectrum remains separated from zero.

Negative spectrum

The general condition for the negative part of the spectrum is obtained by inter-
changing k for iκ. Equation (3.7) then becomes

κ(A1 − κ2A2)(cos θ2 sinh κl1 + cos θ1 sinh κl2)

+κ(A3 − κ2A4) sinh κ(l1 + l2)

+κ2A5 (cos θ2 cosh κl1 + cos θ1 cosh κl2)

+κ2A6 cosh κl1 cosh κl2

+(−κ2A7 + κ4A8 + A9) sinh κl1 sinh κl2 = 0.

(3.26)

Both sinh(x) and cosh(x) are non-periodic functions diverging for large values of
the variable x. This is the reason why the number of possible bands in the negative
part of the spectrum is Ąnite, in fact with a bound coming from the spectrum of
U , as stated by the following theorem [BET22, Theorem 2.6].

Theorem 3.1. Consider a periodic quantum graph and assume that its elemen-
tary cell contains N vertices with the couplings described by unitary matrices Uj,
j = 1, . . . , N , then the negative spectrum of the corresponding Hamiltonian con-
sists of at most

∑︁N
j=1 n

(+)
j bands (where n

(+)
j are eigenvalues situated in the upper

complex plane).

Remark. This is the generalization of Proposition 2.1 for periodic graphs.

Because now our elementary cell contains one vertex, described by an unitary
matrix with at most two distinct eigenvalues, the negative spectrum must also
have at most two negative bands.

As far as its behaviour around zero is concerned, the calculations are the same:
using Taylor expansions

sinh κl = δl +
(δl)3

3!
+

(δl)5

5!
+ O(δ7),

cosh κl = 1 +
(δl)2

2!
+

(δl)4

4!
+ O(δ6),
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we substitute into condition (3.26) and obtain

[A6 + A3(l1 + l2) + A9l1l2 + A1(l1cos θ2 + l2cos θ1) + A5(cos θ1 + cos θ2)]

+δ2[−A4(l1 + l2) +
A6

2
(l1

2 + l2
2) +

A3

2
(
l1

3

3
+ l1

2l2 + l1l2
2 +

l2
3

3
)

− A7l1l2 +
A9

6
l1l2(l1

2 + l2
2) − A2(l1cos θ2 + l2cos θ1)

+
A5

2
(l1

2cos θ2 + l2
2cos θ1) +

A1

6
(l1

3cos θ2 + l2
3cos θ1)] + O(δ4) = 0.

The only difference is a change of sign in O(δ2) terms, so the same conditions
as for the positive spectrum apply, but with inequality sign Ćipped in those cases
where the relevant higher-order terms were used.

Let us summarize obtained results in the following theorem, where we reca-
pitulate signiĄcant features of the spectrum, in particular in the limits of high
and low energies, for both the positive and negative spectrum.

Theorem 3.2. Let U = rJ + sI be an unitary permutation invariant circulant
matrix specifying vertex condition on a quantum graph with a rectangular lattice
with lengths l2 and l1, l2 > l1, and Hamiltonian (1.1) on its edges. Choose
parametrization

s = cosϑ+ i sinϑ,

r = −1

2
cos (γ − ϑ)[cos γ + i sin γ].

Then the following is true:

1. If −1 is one of the eigenvalues of U , the high energy positive spectrum is
dominated by spectral bands, while spectral gaps shrink as O(k−1).

2. If −1 is not an eigenvalue of U , the high energy positive spectrum is domi-
nated by spectral gaps. Bands are formed only around points

km,i = mπ
li
, i = 1,2 and m ∈ N

and they have an asymptotically constant width

∆Em =
4

li

\︄\︄\︄\︄\︄
cos(γ − ϑ) (cosϑ+ 1)

−2 sin γ (cosϑ+ 1) + sinϑ (cos γ + cos(γ − ϑ) )

\︄\︄\︄\︄\︄+ O(m−1).

If l2
l1

is irrational, this is always true; for rational l2
l1

, there exists an addi-
tional type of band with asymptotically constant width

∆Em =
4(l1 + l2)

l1l2

\︄\︄\︄\︄\︄
cos(γ − ϑ) (cosϑ+ 1)

−2 sin γ (cosϑ+ 1) + sinϑ (cos γ + cos(γ − ϑ) )

\︄\︄\︄\︄\︄

+ O(m−1).

3. If 1 is not an eigenvalue of U , whether positive spectrum is connected to
the point k = 0 is determined by inequality

♣4 sinϑ cos γ + (−2 cos γ + cosϑ cos(γ − ϑ) + cos(γ + ϑ) )(l1 + l2)

− [2 sin γ (cosϑ− 1) − sinϑ (cos γ − cos(γ − ϑ) ) ] l1l2♣
< ♣ − cos(γ − ϑ) (cosϑ− 1)(l1 + l2) − 4 sinϑ cos(γ − ϑ) ♣
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in case ϑ /∈ ( 2 arctan( 2
l2

), 2 arctan( 2
l1

) ), or by

♣4 sinϑ cos γ + (−2 cos γ + cosϑ cos(γ − ϑ) + cos(γ + ϑ) )(l1 + l2)

− [2 sin γ (cosϑ− 1) − sinϑ (cos γ − cos(γ − ϑ) ) ] l1l2♣
< ♣ − cos(γ − ϑ) (cosϑ− 1)(l2 − l1) ♣

in case ϑ ∈ ( 2 arctan( 2
l2

), 2 arctan( 2
l1

) ); if ϑ = 2 arctan( 2
li

), then the relevant
condition is

♣4 sinϑ cos γ + (−2 cos γ + cosϑ cos(γ − ϑ) + cos(γ + ϑ) )(l1 + l2)

− [2 sin γ (cosϑ− 1) − sinϑ (cos γ − cos(γ − ϑ) ) ] l1l2♣
< ♣ − cos(γ − ϑ) (cosϑ− 1)lj − 2 sinϑ cos(γ − ϑ) ♣,

where j is the second index different from i. If any of them is satisĄed, then
the positive spectrum is connected to zero.

4. If 1 is an eigenvalue of U , then if s = 1, the condition for the absence of
a gap around zero in the positive spectrum is

0 ≤ 4 tan γ + l2 + l1;

if it is satisĄed, the positive spectrum is connected to zero, otherwise it is
not.

Furthermore, if s+ 4r = 1 and if ϑ ∈ ( 2 arctan 2
l2
, 2 arctan 2

l1
⟩, the positive

spectrum is always connected to the zero; if ϑ /∈ ( 2 arctan 2
l2
, 2 arctan 2

l1
⟩,

then the condition reads

0 < 4 tan γ + (l1 + l2);

if satisĄed, the positive spectrum is connected to the zero, otherwise it is
not.

5. The number of negative bands is bounded from above by the number of eigen-
values of U in the upper complex plane.

6. If 1 is not an eigenvalue of U , whether the negative spectrum is connected to
the zero is determined by the exact same condition as the positive spectrum,
i.e. both sides are (dis)connected if there are any negative bands.

7. If 1 is an eigenvalue of U , then if s = 1, the condition for the absence of
a gap around zero in the negative spectrum is

0 ≥ 4 tan γ + l2 + l1;

if it is satisĄed, the negative spectrum is connected to zero, otherwise it is
not.

Furthermore, if s + 4r = 1 and if ϑ ∈ ( 2 arctan 2
l2
, 2 arctan 2

l1
⟩, the nega-

tive spectrum is always connected to zero; if ϑ /∈ ( 2 arctan 2
l2
, 2 arctan 2

l1
⟩,

then the condition reads

0 > 4 tan γ + (l1 + l2);

if satisĄed, the negative spectrum is connected to the zero, otherwise it is
not.
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Square lattice l2 = l1 = l then slightly simpliĄes things:

Corollary 3.1. Let U = rJ + sI be an unitary permutation invariant circulant
matrix specifying vertex condition on a quantum graph with a square lattice with
length l and Hamiltonian (1.1) on its edges. Choose parametrization

s = cosϑ+ i sinϑ,

r = −1

2
cos (γ − ϑ)[cos γ + i sin γ].

Then all statements true for rectangular lattice are also valid with these additional
speciĄcations:

1. If −1 is not an eigenvalue of U , the high energy positive spectrum is domi-
nated by spectral gaps. Bands are periodically formed only around points

km = mπ
l
, m ∈ N

and they have an asymptotically constant width

∆Em =
8

l

\︄\︄\︄\︄\︄
cos(γ − ϑ) (cosϑ+ 1)

−2 sin γ (cosϑ+ 1) + sinϑ (cos γ + cos(γ − ϑ) )

\︄\︄\︄\︄\︄+ O(m−1).

2. If 1 is not an eigenvalue of U , whether the positive spectrum is connected
to zero is determined by inequality

♣4 sinϑ cos γ + 2l (−2 cos γ + cosϑ cos(γ − ϑ) + cos(γ + ϑ) )

− l2 [2 sin γ (cosϑ− 1) − sinϑ (cos γ − cos(γ − ϑ) ) ] ♣
< ♣ − 2l cos(γ − ϑ) (cosϑ− 1) − 4 sinϑ cos(γ − ϑ)♣;

if it is satisĄed, then the positive spectrum is connected to zero.

3. If 1 is one of the eigenvalues of U , the condition for the absence of a gap
around zero in the positive spectrum is

0 ≤ 2 tan γ + l;

if it is satisĄed, the positive spectrum is connected to zero, otherwise it is
not.

4. If 1 is one of the eigenvalues of U , then, if s = 1, the condition for the ab-
sence of a gap around zero in the negative spectrum is

0 ≥ 2 tan γ + l;

if it is satisĄed, the negative spectrum is connected to zero, otherwise it is
not.

Furthermore, if s+ 4r = 1, then the condition is

0 > 2 tan γ + l;

if satisĄed, the negative spectrum is connected to zero, otherwise it is not.
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Now we present a few examples illustrating the derived results. The structure
of bands and gaps in Figure 3.3 was calculated for ϑ = π/3 and γ = 2π/3 with
l = 1. It corresponds to the case of square lattice with s + 4r = 1, for which we
have conditions

0 ≤ 2 tan γ + l ≈ −1.732 + 1 = −0.732

for small energies at the k side of momentum axis and

0 > 2 tan γ + l ≈ −0.732

for the κ side; in this situation, we see how the (only) negative band is connected
to zero, while the lowest positive one is separated. Because −1 is an eigenvalue of
matrix U , we also see how positive band intervals become shorter and shorter with
larger values of momentum variable k, and their proximity to integer multiples
of π. Eigenvalue s = 1

2
+ i

√
3

2
is the only one in the upper complex plane, and as

such there cannot be more negative bands than the one we see in the Figure 3.3.
Figure 3.4 was calculated for ϑ = π/3 and γ = 7π/6 with l = 1. Because here

is s+ 4r = −1, condition for both the negative and positive band is

♣4 sinϑ cos γ + 2l (−2 cos γ + cosϑ cos(γ − ϑ) + cos(γ + ϑ) )

− l2 [2 sin γ (cosϑ− 1) − sinϑ (cos γ − cos(γ − ϑ) ) ] ♣
< ♣ − 2l cos(γ − ϑ) (cosϑ− 1) − 4 sinϑ cos(γ − ϑ)♣;

after the substitution, it reads

\︄\︄\︄− 4
(︂√

3

2

⎡2
+ 2

(︂√
3 − 1

2

√
3

2

⎡
−
(︂1

2

⎡\︄\︄\︄ ≈ 0.902 <
\︄\︄\︄−

√
3

2
+ 4

(︂√
3

2

⎡2\︄\︄\︄ ≈ 2.134,

so both the lowest positive and negative part of the system spectrum is connected
to zero. Because −1 is an eigenvalue of U , with growing k bands become larger
and more prominent. There is once again only one negative band, as a larger
number of them is prohibited by Theorem 3.1.
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Figure 3.3: Spectral condition solution for square lattice, l = 1, with permutation-
invariant vertex condition deĄned by coefficients (r,s) = (1

8
− i

√
3

8
,1
2

+ i
√

3
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).
The green dashed line is an evaluation of the spectral condition, while the shaded
region marks areas where spectral bands would occur if crossed by the dashed
line. Red horizontal lines then correspond to spectral bands.
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Figure 3.4: Spectral condition solution for square lattice, l = 1, with permutation-
invariant vertex condition deĄned by coefficients (r,s) = (−3

8
− i

√
3

8
,1
2

+ i
√

3
2

).
The green dashed line is an evaluation of the spectral condition, while the shaded
region marks areas where spectral bands would occur if crossed by the dashed
line. Red horizontal lines then correspond to spectral bands.

41



4. Interpolating coupling

4.1 Basic properties

Another possible type of a circulant vertex condition is the one continuously inter-
polating between a δ condition from (3.5) and the condition generated by the ma-
trix R from (3.3). It was Ąrst introduced by authors of [ETT18] in order to analyse
and distinguish behaviour of vertex couplings with different symmetries, because
while both of the mentioned conditions are PT-symmetric, ŠextremalŠ rotation-
ally symmetric coupling, in contrast to a δ coupling, violates the time-reversal
symmetry (1.5).

The interpolating coupling ¶U(t) : t ∈ ⟨0,1⟩♢ was constructed in such a way
that ∏︂

⋁︂⋁︂⋁︂⋁︂⨄︂
⋁︂⋁︂⋁︂⋁︂⎩

U(0) = −I +
2

n+ iα
J and U(1) = R,

t → U(t) is continuous on ⟨0,1⟩,
U(t) is unitary circulant for all t,

(4.1)

where n is a vertex degree. The process itself is explained in detail in the men-
tioned article; in the Ąrst step the eigenvalues of corresponding vertex matrices
are constructed with given properties, and through them the generating vector of
the circulant matrix is expressed, as it was described in Proposition 1.3. The Ąnal
eigenvalues of U(t) are then

λl(t) =

∏︂
⨄︂
⎩
e−i(1−t)γ for l = 0,

− eiπt( 2l
n

−1) for 1 ≤ l ≤ n− 1,
(4.2)

where now

γ := arg
n+ iα

n− iα
∈ (−π,π), thus

n− iα

n+ iα
= e−iγ. (4.3)

Writing U(t) explicitly is rather lengthy and in principle not needed for further
calculations; the main results of [ETT18] concerned the star graph and the period-
ic square lattice (n = 4), with the same Hamiltonian as we have used in previous
chapters. They can be summarized as follows:
The star graph Hamiltonian

• has a negative eigenvalue −κ2 = −tan2 (1−t)γ
2

whenever α < 0.

• has ⌊n−1
2

⌋ eigenvalues for every t ∈ (0,1⟩ if n ≥ 3; they have the form

−κ2 = −cot2(( j
n

− 1
2
)πt), where j = 1, . . . , n−1

2
for odd n and j = 1, . . . , n

2
−1

for even n.

• has all eigenvalues diverging to −∞ in the limit t → 0+,
except for −tan2 (1−t)γ

2
, which approaches −tan2 γ

2
= −α2

n2 .

• has all eigenvalues converging to 0 and −tan2 jπ
n

, if present, j the same
as before, in the limit t → 1−; for t = 1, zero is no longer an eigenvalue
of the star graph, see Proposition 2.1.

The Hamiltonian of a periodic square lattice of the edge length l1
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• has a ŠdiscontinuityŠ for t = 0, as there is always a spectral band, which
becomes narrower for smaller values of t and eventually disappears.

• has point degeneracies for α = 0, as in that case spectral bands for particular

values of t = 4
π
arccot

(m− 1
2

)π

l1
, m ∈ N, may collapse into points, also called

ŠĆat bandsŠ.

• has non-monotonous gap widths with respect to t for all α.

• has some bands independent of t.

• has band edges curves described by analytic functions of k.

• has ŠĆat bandsŠ for t = 1, which are smeared into regular bands for t < 1.

4.2 Periodic chain

Here we will consider the same interpolating vertex condition, but for a peri-
odic chain graph presented in Figure 4.1. Our Hamiltonian is once again neg-
ative Laplacian acting on each edge, and for now, we generally assume lj > 0,
j = 1, 2, 3.

We solve this problem using a similar Ansatz as in Equation (2.1),

(U(t) − I)ψ(v) + il(U(t) + I)ψ
′

(v) = 0, (4.4)

however, now we introduce the length-type parameter l, which serves as a tool
to scale other lengths and consequently the graph as a whole - the lengths have
the form

lj = lj̃l,

where lj̃ ∈ R+ are some numbers. In previous chapters, we implicitly Ąxed
the scale by requiring l = 1; as we will see later on, another (to a degree arbi-
trary) choice of scaling might be more convenient here. ψ(v) denotes the value of
the wave function ψ(x) at the vertex, and the same equation as the (4.4) is used
for φ(x).

Figure 4.1: Periodic quantum chain with its elementary cell highlighted. [BET22]
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We describe wave functions on the edges as

ψj(x) = a+
j e

ikx + a−
j e

−ikx, x ∈ ⟨0, lj
2

⟩,

φj(x) = b+
j e

ikx + b−
j e

−ikx, x ∈ ⟨ − lj
2
,0⟩,

(4.5)

with additional conditions

ψ2(
l2
2
) = eiθφ2(− l2

2
), ψ

′

2(
l2
2
) = eiθφ

′

2(− l2
2
),

ψ3(
l3
2
) = eiθφ3(− l3

2
), ψ

′

3(
l3
2
) = eiθφ

′

3(− l3
2
),

ψ1(0) = φ1(0), ψ
′

1(0) = φ
′

1(0),

which come from the Floquet conditions for the elementary cells of a periodic
graph for j = 2,3, while for j = 1 we require the wave function and its Ąrst
derivative to be continuous, as x = 0 was chosen in the middle of the edge
connecting adjacent loops; eiθ denotes Bloch phase factor. Substituting (4.5) into
them gives us

b+
2 = a+

2 e
ikl2e−iθ, b−

2 = a−
2 e

−ikl2e−iθ,

b+
3 = a+

3 e
ikl3e−iθ, b−

3 = a−
3 e

−ikl3e−iθ,

b+
1 = a+

1 , b−
1 = a−

1 .

(4.6)

To accommodate both ψ(x) and φ(x) into one equation, we now denote

U(t) ≡
(︄
U(t) 0

0 U(t)

)︄
,

i. e. block diagonal matrix, where each block corresponds to one vertex in
the elementary cell and the vertex condition is described by 3×3 interpolating
coupling matrix U(t). Similarly

V ≡
(︄
V 0
0 V

)︄
,

where V is the discrete Fourier transform matrix deĄned in Proposition 1.3.
We solve Equation (4.4) in the form

(U(t) − I)

∏︁
ˆ︂ˆ︂ˆ︂ˆ︂ˆ︂ˆ︂ˆ︂ˆ︂∐︂

ψ1(
l1
2
)

ψ3(0)
ψ2(0)
φ1(− l1

2
)

φ2(0)
φ3(0)

∫︁
ˆ︃ˆ︃ˆ︃ˆ︃ˆ︃ˆ︃ˆ︃ˆ︃ˆ︁

+ il(U(t) + I)

∏︁
ˆ︂ˆ︂ˆ︂ˆ︂ˆ︂ˆ︂ˆ︂ˆ︂ˆ︂∐︂

−ψ′

1(
l1
2
)

ψ
′

3(0)
ψ

′

2(0)
φ

′

1(− l1
2
)

−φ′

2(0)
−φ′

3(0)

∫︁
ˆ︃ˆ︃ˆ︃ˆ︃ˆ︃ˆ︃ˆ︃ˆ︃ˆ︃ˆ︁

= 0, (4.7)

where we have chosen the direction of the chain from the left to the right,
and as such inward (with respect to the vertices) derivatives must be taken with
an opposite sign. The ψ part of the wave function vector has an enumeration
different from φ due to the topology of our graph - vertices in the quantum
chain are described by the same coupling, and each of them must have the same
orientation.
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Combining (4.5), (4.6) and (4.7) with Proposition 1.3 yields

[V ∗(D(t) − I)VM − klV ∗(D(t) + I)V N ]

∏︁
ˆ︂ˆ︂ˆ︂ˆ︂ˆ︂ˆ︂ˆ︂ˆ︂∐︂

a+
1

a−
1

a+
2

a−
2

a+
3

a−
3

∫︁
ˆ︃ˆ︃ˆ︃ˆ︃ˆ︃ˆ︃ˆ︃ˆ︃ˆ︁

= 0, (4.8)

where

M =

∏︁
ˆ︂ˆ︂ˆ︂ˆ︂ˆ︂ˆ︂ˆ︂ˆ︂∐︂

eikl1/2 e−ikl1/2 0 0 0 0
0 0 0 0 1 1
0 0 1 1 0 0

e−ikl1/2 eikl1/2 0 0 0 0
0 0 eikl2e−iθ e−ikl2e−iθ 0 0
0 0 0 0 eikl3e−iθ e−ikl3e−iθ

∫︁
ˆ︃ˆ︃ˆ︃ˆ︃ˆ︃ˆ︃ˆ︃ˆ︃ˆ︁

,

and

N =

∏︁
ˆ︂ˆ︂ˆ︂ˆ︂ˆ︂ˆ︂ˆ︂ˆ︂∐︂

−eikl1/2 e−ikl1/2 0 0 0 0
0 0 0 0 1 −1
0 0 1 −1 0 0

e−ikl1/2 −eikl1/2 0 0 0 0
0 0 −eikl2e−iθ e−ikl2e−iθ 0 0
0 0 0 0 −eikl3e−iθ e−ikl3e−iθ

∫︁
ˆ︃ˆ︃ˆ︃ˆ︃ˆ︃ˆ︃ˆ︃ˆ︃ˆ︁

.

Equation (4.8) is solvable if and only if

det[(D(t) − I)VM − kl(D(t) + I)V N ] = 0;

the Ąnal spectral condition then reads, modulo numerical prefactors,

k6 P6 +k5 P5 +k4 P4 +k3 P3 +k2 P2 +k P1 +P0 +k2(sin θ Ps +cos θ Pc) = 0 (4.9)

where P are products of three types of polynomials - depending on cos γ(1 − t)
or sin γ(1 − t), and furthermore, on cos πt

3
and sin πt

3
, and Ąnally, on goniometric

functions of klj; they are explicitly evaluated in Appendix A.3.
Let us test it on examples of previously gathered results. If we choose t = 1,

then

sin γ(1 − t) = 0, cos γ(1 − t) = 1, sin
πt

3
=

√
3

2
, cos

πt

3
=

1

2
,

and using

sin k(l1 + l2 + l3) = − sin kl1 sin kl2 sin kl3 + cos kl1 cos kl2 sin kl3

+ cos kl2 cos kl3 sin kl1 + cos kl3 cos kl1 sin kl2

with
sin k(l1 + l2 − l3) + sin k(l1 + l2 − l3) + sin k(l1 + l2 − l3) =

3 sin kl1 sin kl2 sin kl3 + cos kl1 cos kl2 sin kl3

+ cos kl2 cos kl3 sin kl1 + cos kl3 cos kl1 sin kl2
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we can transforms (4.9), up to a prefactor, into

(k4l4 + 3) sin kl1 sin kl2 sin kl3

+ 2(k2l2 + 1)[sin kl1 − sin k(l1 + l3) cos kl2 − cos kl3 cos kl1 sin kl2]

+ 2 cos θ (k2l2 + 1)[sin kl2 + sin kl3] + 4kl sin θ [cos kl3 − cos kl2] = 0,

(4.10)

which is nothing but the spectral condition (2.8) of [BET22].
One of the possible ways to Ąx the scaling, which will be particularly useful

for the periodic chain, is requiring l2 + l3 = 2π to be always satisĄed. Keeping
that in mind, we inspect the case t = 0 in the symmetric example l2 = l3 = π
in the limit l1 → 0, in which

sin γ(1 − t) = sin γ, cos γ(1 − t) = cos γ, sin
πt

3
= 0, cos

πt

3
= 1,

and (4.9) reads

cos kπ + cos θ +
sin γ

cos γ + 1

sin kπ

k

3

2
= 0;

its spectral band condition is then
\︄\︄\︄\︄\︄cos kπ +

3

2
tan

γ

2

sin kπ

k

\︄\︄\︄\︄\︄ ≤ 1. (4.11)

This is the same result as in [DET08][Proposition 2.1], except for one thing:
from (4.3) we can see that

cos γ =
n2 − α2

n2 + α2
and sin γ =

2nα

n2 + α2
.

From there then

tan γ =
2nα

n2 − α2
=

2α
n

1 − (α
n
)2
,

and it is not difficult to realize how

tan
γ

2
=
α

n
(4.12)

must be fulĄlled; but when we compare (4.11) with the aforementioned result

\︄\︄\︄\︄\︄cos kπ +
α

4

sin kπ

k

\︄\︄\︄\︄\︄ ≤ 1, (4.13)

it gives us

tan
γ

2
=
α

6
=

1

2

α

3
,

which is one half of the value we would have expected from the periodic quantum
chain with vertices of degree three, n = 3. It can be understood with a physical
insight into the problem, as well as by a careful look into the deĄnition of δ
condition (1.2). Function(s) living on the edges adjacent to the given vertex
acquire the same value f(v) in it. As l1 → 0+, the difference between values
f(v) of the two neighbouring vertices becomes smaller, until it must be the same
when the vertices join. The sum of the derivatives along adjacent edges must
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be always equal to αf(v), but for l1 = 0, there cannot possibly be a derivative
along its edge and the equality must be satisĄed by functions on the other two
edges. In the end, there are four edges adjacent to one vertex, with two pairs
of edges, where derivatives of their respective functions both sum to αf(v). In
other words, we combined two vertices into one with doubled strength constant.
This means that α present in (4.13) is two times larger than the one in (4.11),
and, if α now labels our original constant from a general periodic chain, (4.12) is
again satisĄed.

Alternatively, we can explain this by symmetries - noting that the quantum
chain is symmetric along the horizontal axis passing through vertices, which al-
lows us to decompose our Hamiltonian into a direct sum of its symmetric and
antisymmetric part, the latter of which contains functions vanishing at the axis
of the chain which can contribute only to the point spectrum, in other words,
to the Ćat bands [DET08].

If we make use of the Ąxed scaling l2 + l3 = 2π also in (4.10), it can be solved
independently of θ due to the fact that

sinkl3 + sinkl2 = sinkl3 + sin 2kπ cos kl3 − sin kl3 cos 2kπ

= sin kl3 + 2 sin kπ cos kπ cos kl3 − sin kl3 [1 − 2sin2kπ]

= 2 sin kπ cos k(π − l3),

cos kl3 − cos kl2 = cos kl3 − cos kl3 cos 2kπ − sin kl3 sin 2kπ

= cos kl3 − cos kl3 [1 − 2sin2kπ] − 2 sin kπ cos kπ sin kl3

= 2 sin kπ sin k(π − l3),

which vanishes provided that sin kπ = 0. In principle, we can use the same
procedure for any scale Ąxing constant β > 0, l2+l3 = β, but 2π gives conveniently
expressible results, detailed in the article [BET22].

We would like to present something similar for our interpolating spectral con-
dition (4.9), as both Ps and Pc contain terms proportional to sin kl3 + sin kl2,
but while the former also includes part multiplied by cos kl3 − cos kl2, the latter
has cos kl3 + cos kl2 instead; that is why

• spectral condition (4.9) cannot be, outside of t = 1 [BET22] and t = 0
(as will be seen later on), generally solved without the dependence on pa-
rameter θ, i. e. our system generally does not contain Ćat bands in its
spectrum.

Spectrum given by our condition (4.9) thus has only continuous band-gap struc-
ture. Similarly to the (4.10), it can be rewritten into the form

vc cos θ + vs sin θ = vz, (4.14)

where we now introduce angle ϑ as

sinϑ =
vc√︂

v2
c + v2

s

, cosϑ =
vs√︂

v2
c + v2

s

;

the denominator of these two quantities cannot be equal to 0, as it is directly
constructed from polynomials Pc and Ps, and we already established these cannot
vanish simultaneously. From there (4.14) transforms into

sin(θ + ϑ) =
vz√︂

v2
c + v2

s
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and because
0 ≤ sin2(θ + ϑ) ≤ 1,

particular k2 is part of a spectral band if

v2
c + v2

s − v2
z ≥ 0, (4.15)

while spectral gap condition reads

v2
c + v2

s − v2
z < 0. (4.16)

This solution is completely general and valid for the whole range of every pa-
rameter present - we might specify it further only if interesting properties emerge
for some values of lj, t or γ.

Because t ∈ ⟨0,1⟩, cos πt
3

∈ ⟨1
2
,1⟩ and, looking at the structure of polynomials

in (4.9), only t = 0 signiĄcantly alters spectral condition as a whole due to the fact
that for it P6 = P5 = P4 = P3 = Ps = 0. Similarly γ ∈ (−π,π),
and therefore cos γ(1 − t) ∈ (−1, 1⟩. Keeping these two observations in mind,
we can handle particular cases separately, which will enable us later to make some
algebraic operations without complications.

4.3 Spectral properties

4.3.1 Case of t = 0

Let us start with the limit case of a δ-type condition. As was mentioned above,
for t = 0 is Ps = 0. Consequently is vs = 0, and from (4.15) with (4.16) spectral
band and gap condition become, respectively,

\︄\︄\︄\︄
vz

vc

\︄\︄\︄\︄ ≤ 1,
\︄\︄\︄\︄
vz

vc

\︄\︄\︄\︄ > 1, (4.17)

with
vc = −32k2l2(cos γ + 1)(sin kl2 + sin kl3) (4.18)

and

vz = − 16k2l2(cos γ + 1)¶2 sin kl1 + 3 sin kl1 sin kl2 sin kl3

− 2[cos kl1 cos kl2 sin kl3 + cos kl2 cos kl3 sin kl1 + cos kl3 cos kl1 sin kl2]♢
+ 96kl sin γ[cos kl1 sin kl2 sin kl3 + cos kl2 sin kl3 sin kl1 + cos kl3 sin kl1 sin kl2]

− 144(cos γ − 1) sin kl1 sin kl2 sin kl3.

(4.19)

Flat bands

We will return to the form (4.14) of the spectral condition for a moment. Using
our preferred scaling l2 + l3 = 2π, (4.18) becomes

vc = −64k2l2(cos γ + 1) sin kπ cos k(π − l3), (4.20)

and we are now able to Ąnd the Ćat bands, i. e. k, for which is the solution
of a given spectral condition independent of θ. In our case, this happens for

k = m, or k =
mπ

2(π − l3)
, m ∈ N.
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We may without loss of generality assume l3 < π, because k must be from R+
0

by its deĄnition. If l3 > π, we will use the fact that cosx in an even function,
or symmetry of solutions with corresponding l2; symmetric case l2 = l3 = π will be
treated separately. For the former choice of k = m, (4.19) becomes, with some
additional algebraic manipulations,

vz = − 16m2l2(cos γ + 1)¶2 sin ml1 + 3 sin ml1 sin ml2 sin ml3

− 2[cos ml1 sin m(l2 + l3) + cos ml2 cos ml3 sin ml1]♢
+ 96ml sin γ[cos ml1 sin ml2 sin ml3 + sin ml1 sin m(l2 + l3)]

− 144(cos γ − 1) sin ml1 sin ml2 sin ml3

= − 16m2l2(cos γ + 1) sin ml1¶2 + sin ml2 sin ml3 − 2 cos m(l2 + l3)♢
+ 96ml sin γ cos ml1 sin ml2 sin ml3

− 144(cos γ − 1) sin ml1 sin ml2 sin ml3

= − 16m2l2(cos γ + 1) sin ml1 sin ml2 sin ml3

+ 96ml sin γ cos ml1 sin ml2 sin ml3

− 144(cos γ − 1) sin ml1 sin ml2 sin ml3.

Therefore (4.14) reduces to

sin ml2 sin ml3 [m2l2 sin ml1 − 6ml cos ml1 tan(
γ

2
) − 9 sin ml1 tan2(

γ

2
)] =

sin ml1 sin ml2 sin ml3 [ml − 3(cos ml1 − 1) tan(γ
2 )

sin ml1
][ml − 3(cos ml1 + 1) tan(γ

2 )

sin ml1
] =

sin ml1 sin ml2 sin ml3 [ml + α tan(
ml1

2
)][ml − α cot(

ml1

2
)] = 0,

and we can infer that

• if l3, and consequently l2, is a rational multiple of π, i. e. l3 = p
q
π with

coprime p, q ∈ N, then k2 = q2m2, m ∈ N, is part of the spectrum for all p
regardless of the other parameters.

• if γ = 0, or equivalently α = 0, then the Ąrst statement is also valid for
lj = l1.

• if γ ̸= 0 and l1 is an integer multiple of π, there are no Ćat bands except
those mentioned in the Ąrst statement, if present.

• for other values of l1, both rational and irrational, with γ ̸= 0, there might
be another Ćat band k2 = m2, as long as there exist integer solution m for
either ml + α tan(ml1

2
) = 0 or ml − α cot(ml1

2
) = 0.

For case k = mπ
2(π−l3)

≡ k̃ Equation (4.19) becomes

vz = − 16k̃
2
l2(cos γ + 1)¶2 sin k̃l1 + sin k̃l1 sin k̃l2 sin k̃l3

− 2 cos k̃l1 sin 2k̃π − 2 sin k̃l1 cos 2k̃π♢
+ 96k̃l sin γ[cos k̃l1 sin k̃l2 sin k̃l3 + sin k̃l1 sin 2k̃π]

− 144(cos γ − 1) sin k̃l1 sin k̃l2 sin k̃l3 = 0.

(4.21)

A procedure similar to the previous case might be performed only if

mπ2

2(π − l3)
= m

′

π, m,m
′ ∈ N.
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Now we come to three different possibilities:

• l3 being an irrational multiple of π, for which this simpliĄcation is not
possible and solutions of (4.21) must be obtained numerically, if there are
any;

• l3 = 0, which will be treated separately later on;

• and l3 being a rational multiple of π, which is doable with some restrictions
imposed on numbers m,m

′

or q, using previous notation, but in the end it
would lead to similar conclusions as the case k = m (looking at the structure
of (4.21), it would mainly require Ąnding a k̃ for which sin k̃l1, sin k̃l3 and
sin 2k̃π vanish simultaneously).

Example 4.1. Let us consider quantum chain with parameters t = 0, γ = 0,
l = 1, l1 = 2π

3
and l3 = 4π

5
. According to our results, Ćat bands should

occur at every integer multiple of 5 (stemming from l3) and 3 (stemming from
l1 and γ being 0). Furthermore, because mπ

2(π−l3)
= m5

2
, we should see Ćat

bands at multiples of 5
2

for which is m an odd multiple of 3. Figure 4.2 shows
spectral structure of described quantum chain for k ∈ ⟨20, 27⟩. Because Ćat
bands are eigenvalues of inĄnite multiplicity but of zero Lebesgue measure, they
are not visible directly in the colour-coded spectral decomposition, but they can
be identiĄed by peaks that are touching, but not (necessarily) crossing, zero of
the vertical axis. We can see them in all suspected points on a given interval,
speciĄcally k = ¶20, 21, 22.5, 24, 25, 27♢.

21 22 23 24 25 26 27
k

-3×109
-2×109
-1×109

1×109
2×109

Figure 4.2: Evaluation of spectral condition with parameters set in Example 4.1.
Spectral bands are coloured red, while spectral gaps are blue. Flat bands are
denoted by black points.
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High energy limit

Let us move to the asymptotic region. Restricting ourselves to the leading power
of k appearing in the fractions in (4.17),

4 sin kl1 sin2 kπ − 4 cos kl1 cos kπ sin kπ + sin kl1 sin kl2 sin kl3
2(sin kl2 + sin kl3)

=

sin kl1 sin kl2 sin kl3 − 4 sin kπ cos k(π + l1)

4 sin kπ cos k(π − l3)
.

(4.22)

The only time when its denominator would be equal to zero are the instances of
Ćat bands, so we now consider only k away from these points, where the spec-
trum has a band-gap structure. Any further simpliĄcations are unfortunately not
possible, except for particular values of the lengths l1, l2 and l3. Nevertheless,
it is true that

• in the high energy limit, the spectrum of (4.17) in momentum variable k is
independent of strength parameter γ up to an O(k−1) error and its structure
can be changed only through differences to the length parameters of a chain
graph. δ condition is an energy potential type interaction, and therefore
becomes less relevant for system behaviour in the high energy regime.

Example 4.2. Consider quantum chain graph with t = 0, l = 1, l1 = 2 and
l3 = 1π

3
. Figure 4.3 shows its spectral condition for γ = 1 and k ∈ ⟨40, 42⟩,

while Figure 4.4 was made with γ = −2. There are subtle differences with
regard to the width of the bands, but overall is the structure of the spectrum in
momentum scale nearly identical, even for these relatively small values of k.

Low energy limit

To gain an insight into the behaviour around 0, we now set k = δ and Taylor
expand relevant functions, speciĄcally

sin klj = δlj − δ3l3j
6

+ O(δ4),

cos klj = 1 − δ2l2j
2

+ O(δ4).

Looking at the (4.18), vc is proportional at least to the δ3. While not as obvious,
the same is true for vz as a whole. It is then sufficient to include only the leading
terms from expansions above and ratio vz

vc
now reads

32 l2 (l2 + l3) + 96 l (l2l3 + l1l3 + l1l2) tan γ
2

+ 144 l1l2l3 tan2 γ
2

−32 l2 (l2 + l3)
=

− 1 − 3
(l2l3 + l1l3 + l1l2) tan γ

2

l (l2 + l3)
− 9

2

l1l2l3 tan2 γ
2

l2 (l2 + l3)
.

(4.23)

Here we choose to evaluate the band part of spectral condition (4.17). The gap
condition would be done analogically, but it will follow automatically as a negation
of the obtained result. Substitution of given vz

vc
means that

0 ≤ −3
(l2l3 + l1l3 + l1l2) tan γ

2

l (l2 + l3)
− 9

2

l1l2l3 tan2 γ
2

l2 (l2 + l3)
≤ 2.
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40.5 41.0 41.5 42.0
k

-1×1010
-5×109

5×109
1×1010

Figure 4.3: Evaluation of spectral condition with parameters set in Example 4.2
and γ = 1. Spectral bands are coloured red, while spectral gaps are blue.
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3×109

Figure 4.4: Evaluation of spectral condition with parameters set in Example 4.2
and γ = − 2. Spectral bands are coloured red, while spectral gaps are blue.
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Dividing by −1 and keeping tan γ
2

as an independent variable, we complete
the square as

0 ≥ 9

2

l1l2l3
l2 (l2 + l3)

[︂(︂
tan

γ

2
+

1

3

l (l2l3 + l1l3 + l1l2)

l1l2l3

⎡2− 1

9

l2 (l2l3 + l1l3 + l1l2)
2

l21l
2
2l

2
3

]︂
≥ −2,

leading to

1

9

l2 (l2l3 + l1l3 + l1l2)
2

l21l
2
2l

2
3

≥
(︂

tan
γ

2
+

1

3

l (l2l3 + l1l3 + l1l2)

l1l2l3

⎡2

≥ −4

9

(l2 + l3)l
2

l1l2l3
+

1

9

l2 (l2l3 + l1l3 + l1l2)
2

l21l
2
2l

2
3

=
1

9

l2 (l2l3 − l1l3 − l1l2)
2

l21l
2
2l

2
3

.

The upper bound is always positive, so we can take its square root without any
additional thought, but the same cannot be said for the lower bound. First,
assume that

l2l3 − l1l3 − l1l2 ≥ 0 ⇒ l1 ≤ l2l3
l2 + l3

.

Then after taking the square root of the whole inequality we have

1

3

l (l2l3 + l1l3 + l1l2)

l1l2l3
≥
\︄\︄\︄\︄\︄tan

γ

2
+

1

3

l (l2l3 + l1l3 + l1l2)

l1l2l3

\︄\︄\︄\︄\︄ ≥ 1

3

l (l2l3 − l1l3 − l1l2)

l1l2l3
,

and we can assume the inside of the resulting absolute value to be either positive,
leading to

0 ≥ tan
γ

2
≥ −2

3

l (l2 + l3)

l2l3
= −4π

3

l

(2π − l3)l3
(4.24)

or negative, in which case

−2

3

l (l2l3 + l1l3 + l1l2)

l1l2l3
= −2

3

l

l1
− 2

3

l (l2 + l3)

l2l3
≤ tan

γ

2
≤ −2

3

l

l1
. (4.25)

On the other hand, if

l2l3 − l1l3 − l1l2 ≤ 0 ⇒ l1 ≥ l2l3
l2 + l3

,

we get

1

3

l (l2l3 + l1l3 + l1l2)

l1l2l3
≥
\︄\︄\︄\︄\︄tan

γ

2
+

1

3

l (l2l3 + l1l3 + l1l2)

l1l2l3

\︄\︄\︄\︄\︄ ≥ 1

3

l (−l2l3 + l1l3 + l1l2)

l1l2l3
,

and through the same procedure, we have

0 ≥ tan
γ

2
≥ −2

3

l

l1
(4.26)

together with

−2

3

l

l1
− 4π

3

l

(2π − l3)l3
≤ tan

γ

2
≤ −4π

3

l

(2π − l3)l3
. (4.27)

If any of those inequalities, chosen accordingly to match given length ratios,
is satisĄed, the positive spectrum is connected to the 0, otherwise it is not. Ad-
ditionally, because tan(x) is an odd function, the positive spectrum cannot be
connected to zero for γ > 0.
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Negative spectrum

The negative spectral condition is again obtained by substitution k = iκ, κ > 0,
meaning that

vc = i32κ2l2(cos γ + 1)(sinh κl2 + sinh κl3)

and
vz = i16κ2l2(cos γ + 1)¶2 sinh κl1 − 3 sinh κl1 sinh κl2 sinh κl3

− 2[cosh κl1 cosh κl2 sinh κl3 + cosh κl2 cosh κl3 sinh κl1

+ cosh κl3 cosh κl1 sinh κl2]♢
− i96κl sin γ[cosh κl1 sinh κl2 sinh κl3 + cosh κl2 sinh κl3 sinh κl1

+ cosh κl3 sinh κl1 sinh κl2]

+ i144(cos γ − 1) sinh κl1 sinh κl2 sinh κl3.

The number of possible negative spectral bands still satisĄes the bound of Theo-
rem 3.1. Our elementary cell has two vertices, each of them described by the same
coupling matrix, in which all of the eigenvalues, except one, are equal to -1, there-
fore

• there are at most two negative spectral bands, whose appearance is con-
ditioned by γ < 0 (equivalently tan γ

2
or α less than zero); for γ ≥ 0,

the negative spectrum is empty.

This can be understood from the fact that vz grows as κ2eκ(l1+l2+l3), while the vc

grows at most as κ2eκ(lj), j = 2, 3, whichever lj is higher; their ratio then must
be larger than 1, satisfying the gap condition of (4.17).

In a similar way, one Ąnds the behaviour in the low energy limit - in the leading
term

sin xlj ≈ δlj ≈ sinh xlj,

cos xlj ≈ 1 ≈ cosh xlj.

x now denotes both k and κ; here it is only important that both quantities are
positive and approaching zero. But because all relevant parts retain their relative
sign in the ratio vz

vc
, we arrive at the exact same conditions as for the positive

part of the spectrum, only with tan γ
2

separated from 0, and conclude that

• if there is any negative spectral band, it and the lowest positive band are
either both connected to k2 = 0, or they both remain separated.

Example 4.3. Consider quantum chain with t = 0, l = 1, l1 = 2 and l3 = π
3
.

Because

l1 = 2 ≥
π
3

5π
3

2π
=

5π

18
=

l2l3
l2 + l3

,

we make use of conditions (4.26) and (4.27). From there the boundaries read

tan
γ

2
=

∏︂
⋁︂⨄︂
⋁︂⎩

0 and

− 1

3
,

tan
γ

2
=

∏︂
⋁︂⋁︂⨄︂
⋁︂⋁︂⎩

− 12

5π
and

− 12

5π
− 1

3
,
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respectively. Figures 4.5 and 4.6 show spectral bands with non-negative γ -
not only is continuous negative spectrum empty, but for the former are positive
bands separated from k = 0. Figures 4.8, 4.10 and 4.12 were made with γ
corresponding to respective boundary values of tan γ

2
, demonstrating how spec-

tral bands in positive and negative spectrum shift between being simultaneously
(dis)connected from zero, while Figures 4.7, 4.9 and 4.11 were chosen as examples
of particular conditions (not) being satisĄed.

Limit l1 → 0

There are two possible ways how we can pass into a quantum chain connected with
vertices of degree four - one of them is when l1 shrinks to zero. We will not treat
the symmetric quantum chain (and vice versa later on) as some exceptional case,
because spectrum of this quantum graph topology with δ coupling was already
described in more detail in [DET08].

Because vc from (4.18), or rather (4.20), is not a function of l1, it remains
unchanged, while vz takes on the form

vz =32k2l2(cos γ + 1) sin k(l2 + l3)

+96kl sin γ sin kl2 sin kl3.

Apart from being a considerably more compact expression, there is no difference
in evaluating (4.17), so we pass directly to the individual characteristics.

Considering Ćat bands, those coming from l1 are naturally absent, the others
are present once again if l3 is a rational multiple of π.

Evaluation of the high energy limit will be in the end easier if done through
spectral condition (4.15). In the leading order, it gives

(sin kl2 + sin kl3)
2 − sin2 k(l2 + l3) =

2 sin2 kl2 sin2 kl3 + 2 sin kl2 sin kl3(1 − cos kl2 cos kl3) =

2 sin kl2 sin kl3(1 − cos k(l2 + l3)) ≥ 0,

up to an O(k−1) error. It is also the exact form of the spectral band condition
if we choose γ = 0 in this setting. Because

2(1 − cos k(l2 + l3)) = 2(1 − cos 2πk) = 4 sin2 kπ > 0

is always satisĄed (here we operate outside of Ćat bands), we can divide by this
term and the effective condition becomes

sin kl2 sin kl3 ≥ 0. (4.28)

Note that exactly the same condition was obtained in [BET22, Equation (3.33)].
This indicates a shared property, which we will brieĆy describe below.

To this aim, we introduce the probability of belonging to the (positive) spec-
trum, by which we can compare features of individual spectra. DeĄned in [BB13]
as

Pσ(H) := lim
K→∞

1

K
♣σ(H) ∩ ⟨0,K⟩♣ , (4.29)
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Figure 4.5: Evaluation of spectral condition with parameters set in Example 4.3
and γ = 0.2. Spectral bands are coloured red, while spectral gaps are blue.
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Figure 4.6: Evaluation of spectral condition with parameters set in Example 4.3
and γ = 0. Spectral bands are coloured red, while spectral gaps are blue.
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Figure 4.7: Evaluation of spectral condition with parameters set in Example 4.3
and γ = − 0.2. Spectral bands are coloured red, while spectral gaps are blue.
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Figure 4.8: Evaluation of spectral condition with parameters set in Example 4.3
and γ = −2 arctan 1

3
≈ −0.64. Spectral bands are coloured red, while spectral

gaps are blue.
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Figure 4.9: Evaluation of spectral condition with parameters set in Example 4.3
and γ = − 0.8. Spectral bands are coloured red, while spectral gaps are blue.

-1.0 -0.5 0.5 1.0

-100
-50

50

100

-κ k

Figure 4.10: Evaluation of spectral condition with parameters set in Example
4.3 and γ = − 2 arctan 12

5π
≈ −1.30. Spectral bands are coloured red, while

spectral gaps are blue.
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Figure 4.11: Evaluation of spectral condition with parameters set in Example 4.3
and γ = − 1.5. Spectral bands are coloured red, while spectral gaps are blue.
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Figure 4.12: Evaluation of spectral condition with parameters set in Example 4.3
and γ = − 2 arctan ( 12

5π
+ 1

3
) ≈ −1.66. Spectral bands are coloured red, while

spectral gaps are blue.
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for (4.28) we have
Pσ(H) = 1 . . . l3 = π

Pσ(H) =
1

2
. . . l3 ̸= π

(4.30)

Zero in the deĄnition of (4.29) can be in the asymptotic regime replaced by any
positive number, therefore we can use it on the spectral condition determined
by (4.28). For each of the sine factors from the said condition, the probabili-
ty that it will be positive, or negative, for a random value of k is equal to 1

2
.

When l2 = l3 = π, these probabilities are correlated (or rather sin2 x is al-
ways non-negative). For any other possible combination of lengths, the positive
spectrum has an inĄnite number of open gaps, and while the concrete shape
of the spectrum depends on ratio l3

l2
- periodic for rational and aperiodic for

irrational, both in the momentum scale - the Pσ(H) is always 1
2
, because for

uncorrelated probabilities we have

(︄
1

2

)︄2

+

(︄
1

2

)︄2

=
1

2

In their article, [BB13] have proven the universality of Pσ(H) for quantum graphs
equipped with Kirchhoff (or more generally δ) coupling - its value remains the
same regardless of the speciĄc lengths characterizing the graph, as long as they
remain incommensurate. This applies to our graph as well, but here is the set of
length values leading to universal Pσ(H) (which is, in particular, obtainable an-
alytically) larger, containing ∀l3 ̸= π, due to the simple form of the (asymptotic)
spectral condition.

The procedure in the low energy limit could be repeated exactly the same as
before, and we can directly substitute into (4.23) to gain

−1 − 3
l2l3 tan γ

2

l (l2 + l3)
,

meaning that

0 ≤ −3
l2l3 tan γ

2

l (l2 + l3)
= −3

l2l3 tan γ
2

l 2π
≤ 2.

Therefore there is just one condition for the spectrum connected to k2 = 0,

0 ≥ tan
γ

2
≥ −4π

3

l

(2π − l3)l3
, (4.31)

which in the language of α, assuming it was speciĄed earlier before limit l1 → 0,
can be rewritten as

0 ≥ α ≥ −2π
l

(2π − l3)l3
.

While we have conĄrmed it by explicit calculation, it could have been shown
directly from conditions (4.24) and (4.25) - because l1 is equal to 0, it is necessarily
smaller than l2l3

2π
, making use of both conditions valid, but in our case both

the upper and lower bound from (4.25) go to −∞, so the condition cannot be
fulĄlled for a Ąxed γ.

Whether the negative spectrum is connected to 0 is determined by the same
condition (4.31), excluding tan γ

2
= 0, and the only remarkable difference is
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that our elementary cell now contains only one vertex, which is the reason why
the upper limit for the number of negative bands decreases to one; it can exist
only for γ < 0.

Example 4.4. Consider quantum chain with t = 0, l = 1, l1 = 0 and
γ = 2. If we choose l3 ̸= π, for example π

2
, we get picture similar to Figure

4.13. Behaviour at low energies depends on a speciĄc value of γ, but as k grows,
the band-gap structure saturates into the pattern we see starting around k = 10,
which is periodic and equally populated by bands and gaps with respect to their
widths in momentum scale. On the other hand, if we choose l3 = π, an example
of which is Figure 4.14, from a certain moment, depending on γ, spectral bands
quickly start to dominate and eventually dominate the whole momentum axis k
in the asymptotic regime.

Limit l3 → 0

The second way how we can obtain vertices of degree four is by shrinking l3
to zero, or doing the same with l2. The other length is in our scale automatically
Ąxed to 2π, changing (4.18) to

vc = −64k2l2(cos γ + 1) sin kπ cos kπ

and
vz = − 64k2l2(cos γ + 1) sin kπ[sin kl1 sin kπ − cos kl1 cos kπ]

+ 192kl sin γ sin kl1 sin kπ cos kπ

= 64k2l2(cos γ + 1) sin kπ cos k(π + l1)

+ 192kl sin γ sin kl1 sin kπ cos kπ

Firstly, all k2 = m2, m ∈ N are in the positive spectrum, in accordance with
the previous result, but now we have Ćat bands also possible for k = 2m−1

2
.

Substitution into (4.14) yields

64

(︄
2m− 1

2

)︄2

l2(cos γ + 1) sin
(2m− 1)π

2
cos

(2m− 1)(π + l1)

2
= 0.

Thus in addition there are Ćat bands present if l1 is a π-multiple of an even integer
(for all m ∈ N), or if l1 is a rational multiple of π, l1 = p

q
, and

(2m− 1)(1 +
p

q
) mod 2 = 1

(for some m ∈ N).
For the high energies, we have from (4.15)

4 sin2 kl2
2

sin kl1 sin k(l2 + l1) ≥ 0,

which corresponds to
sin kl1 sin k(2π + l1) ≥ 0,

up to O(k−1). This is once again the same condition as was found in [BET22,
Section 4.1] for t = 1 in the limit l3 → 0. Even though there is a periodicity if l1
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Figure 4.13: Evaluation of spectral condition with parameters set in Example 4.4
and l3 = π

2
. Spectral bands are coloured red, while spectral gaps are blue.
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2.0×108

Figure 4.14: Evaluation of spectral condition with parameters set in Example 4.4
and l3 = π. Spectral bands are coloured red, while spectral gaps are blue.
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is a rational multiple of π, using argument similar to when l1 was approaching 0,
we arrive to

Pσ(H) =
1

2
.

When l1 → ∞, the positive spectrum becomes ŠdenserŠ if we talk about the num-
ber of spectral bands (or gaps) per Ąxed interval, but the share of the momentum
scale covered remains the same.

Low energy behaviour can be again simply described by (4.23), leading to

−1 − 3
l1
l

tan
γ

2

and consequently

0 ≥ tan
γ

2
≥ −2

3

l

l1
. (4.32)

Whether is the positive and negative spectrum connected to zero is determined
(up to exclusion of 0 from the latter) by this condition, and the negative spectrum
still has at most one spectral band. Again, this fact could have been read directly
from (4.26) and (4.27) using argumentation similar to limit l1 → 0.

Symmetric quantum chain

Let us Ąnish this section with a case of the symmetric chain graph, l2 = l3 = π.
Substituting into (4.20) we have

vc = −64k2l2(cos γ + 1) sin kπ,

and there are once again Ćat bands for all k = m, m ∈ N, as l3 is now rational
multiple of π with p = q = 1.

In the high energy region, (4.22) simpliĄes to

sin kl1 sin kπ

4
− cos k(π + l1). (4.33)

In comparison to the general case, we can clearly see that points

k =
mπ

l1
, m ∈ N,

belong to spectral bands, because

\︄\︄\︄\︄\︄− cos
mπ(π + l1)

l1

\︄\︄\︄\︄\︄ ≤ 1,

up to an O(k−1) error, but there are no further simpliĄcations giving additional
insight into the behaviour of the spectrum.

While the length values of the symmetric chain were in some sense special for
the high energy limit, behaviour in the negative part of the spectrum and around
zero remains unchanged, and the formulae derived do not undergo substantial
simpliĄcation after these lengths are plugged in, and for that reason we do not
present them explicitly.

Overall, let us recapitulate obtained results in the following theorem.
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Theorem 4.1. Let Γ be a quantum chain graph with the topology illustrated by
Figure 4.1, described by lengths lj ≥ 0, j = 1, 2, 3, length scaling parameter
l > 0, and a circulant vertex matrix U(0) (describing δ coupling), with strength
parameter γ ∈ (−π,π). Assuming we Ąx the scaling by requiring l2 + l3 = 2π,
we can draw these conclusions about its spectrum:

1. For all possible length and coupling strength conĄgurations, Ćat bands
k2 = m2q2, m ∈ N are present if l3 a rational multiple of π, l3 = p

q
π.

• There might be additional Ćat bands of the same type if γ = 0 (Kirch-
hoff coupling) and l1 is a rational multiple of π.

• With an arbitrary γ and l1, except for l1 being an integer multiple of
π, there might be extra Ćat band k2 = m2 if ml + α tan(ml1

2
) = 0

or ml − α cot(ml1
2

) = 0 is satisĄed.

• For l1 = 0, there are no other Ćat bands present.

• For l3 = 0, there are additional Ćat bands only if l1 is an integer
multiple of 2π (∀m), or a rational multiple of π (some m).

2. The high energy spectrum is generally independent of γ, up to an O(k−1)
error.

• Probability of a random point k belonging to the positive spectrum is
constant in the limits l1 or l3 going to zero. If the value of the length
l3 is π in the former case, this probability is equal to 1, otherwise it is
always equal to 1

2
, regardless of other parameters.

3. Whether the positive spectrum is connected to energy k2 = 0 is dependent
on all parameters of a quantum chain.

• It might be connected only if γ ≤ 0.

• If l1 ≤ l2l3
2π

, whether the positive or negative spectrum is connected is
determined by conditions (4.24) and (4.25), respectively.

• If l1 ≥ l2l3
2π

, whether the positive or negative spectrum is connected is
determined by conditions (4.26) and (4.27), respectively.

• When either l1 or l3 shrinks to zero, positive spectrum is possibly con-
nected if similar conditions are satisĄed, see (4.31) or (4.32) respec-
tively.

4. There are always at most two negative spectral bands, possibly appearing only
for γ < 0. This maximal number decreases to one in limits l1 → 0 and
l3 → 0. The negative spectrum, if present, is connected to k2 = κ2 = 0
only if the positive spectrum is also connected.

4.3.2 Case of t ̸= 0

While the concrete spectral structure is obviously dependent on a speciĄc value
of t, cases of t = 0 and t = 1 are the only ones radically changing equation
(4.9), because some polynomials P vanish. Outside of them, the behaviour of
the spectral condition is similar across all of the remaining t.
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High energy limit

We explained why the Ćat bands are absent except at the two extremal values
of the interpolation parameter t. As such, we can now continue straight to the
limit k → ∞ of our quantum chain. Looking at (4.16) in the highest order of k,
where we already factored out (cos πt

3
− 1)2, gives us

−1296 k12 l12 (cos γ(1 − t) + 1)2 sin2kl1 sin2kl2 sin2kl3 + O(k11) < 0;

therefore the high energies are dominated by spectral gaps, as could have been
expected from the absence of eigenvalue −1 for vertices of degree three, see (4.2).
Bands are formed only around the points

km,j =
mπ

lj
, m ∈ N, j = 1,2,3,

and to gain a deeper insight, we rewrite (4.9) into the asymptotic form

P6

l6
+
P5

kl6
+

P4

k2l6
+
Pc cos θ + Ps sin θ

k4l6
= O(k−3). (4.34)

Each of the three cases follows the analysis in the same way, and we will write it
explicitly only for l1 and l3 - (4.34) is symmetric in the l2 and l3, and the Ąnal
result can be obtained by simply switching these two quantities.

Starting with l1, we substitute it in (3.11) and make use of (3.12). This specif-
ically means

sin kl1 = (−1)mδl1 − (−1)m δ
3l31
6

+ O(δ4),

cos kl1 = (−1)m − (−1)m δ
2l21
2

+ O(δ4),

sin kl2 = sin
mπl2
l1

(1 − δ2l22
2

) + cos
mπl2
l1

(δl2 − δ3l32
6

) + O(δ4),

cos kl2 = cos
mπl2
l1

(1 − δ2l22
2

) − sin
mπl2
l1

(δl2 − δ3l32
6

) + O(δ4),

sin kl3 = sin
mπl3
l1

(1 − δ2l23
2

) + cos
mπl3
l1

(δl3 − δ3l33
6

) + O(δ4),

cos kl3 = cos
mπl3
l1

(1 − δ2l23
2

) − sin
mπl3
l1

(δl3 − δ3l33
6

) + O(δ4).

(4.35)

Plugging these into (4.34), with

k−1 =
l1
mπ

+ O(m−1),

k−2 = (
l1
mπ

)2 + O(m−2),
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leads to

¶ − (−1)m 24βbl1
mπl

sin
mπl2
l1

sin
mπl3
l1

+
(−1)ml21
m2π2l2

[cos
mπl2
l1

sin
mπl3
l1

+ sin
mπl2
l1

cos
mπl3
l1

][9βd + βe]

+
16l21
m2π2l2

[sin
mπl2
l1

+ sin
mπl3
l1

][−βccosθ + βfsinθ]♢

+δ¶(−1)ml1 sin
mπl2
l1

sin
mπl3
l1

[36βa +
3l21

m2π2l2
(−3βd + βe)]

− (−1)m 24βbl1
mπl

[(l1 + l3) sin
mπl2
l1

cos
mπl3
l1

+ (l1 + l2) cos
mπl2
l1

sin
mπl3
l1

]

+
(−1)ml21
m2π2l2

[(l1 + l2 + l3) cos
mπl2
l1

cos
mπl3
l1

− (l2 + l3) sin
mπl2
l1

sin
mπl3
l1

]

(9βd + βe)

− (−1)m16l21
m2π2l2

l1βc

+
16l21
m2π2l2

[l2 cos
mπl2
l1

+ l3 cos
mπl3
l1

][−βccosθ + βfsinθ]♢

+δ2¶(−1)m36βa(l1l3 sin
mπl2
l1

cos
mπl3
l1

+ l1l2 sin
mπl3
l1

cos
mπl2
l1

)

− (−1)m 24βbl1
mπl

[(l1l2 + l2l3 + l1l3) cos
mπl2
l1

cos
mπl3
l1

− (
l21
2

+ l1l2 +
l22
2

+ l1l3 +
l23
2

) sin
mπl2
l1

sin
mπl3
l1

] + O(m−2)♢

+δ3¶(−1)m36βa[l1l2l3 cos
mπl2
l1

cos
mπl3
l1

− (
l31
6

+
l1l

2
2

2
+
l1l

2
3

2
) sin

mπl2
l1

sin
mπl3
l1

] + O(m−1)♢ + O(δ4) = 0,

(4.36)
where

βa = cos γ(1 − t) + 1,

βb = sin γ(1 − t),

βc = cos γ(1 − t)
cos πt

3
+ 2

cos πt
3

− 1
+ 2

cos πt
3

+ 1
2

cos πt
3

− 1
,

βd = cos γ(1 − t)
cos πt

3
+ 3

cos πt
3

− 1
+ 3

cos πt
3

+ 1
3

cos πt
3

− 1
,

βe = 7 cos γ(1 − t)
cos πt

3
+ 5

7

cos πt
3

− 1
+ 5

cos πt
3

+ 7
5

cos πt
3

− 1
,

βf =
√

3 sin γ(1 − t)
sin πt

3
(cos πt

3
+ 1)

(cos πt
3

− 1)2
.

(4.37)

In the leading order of the asymptotic regime, if we assume that both l3
l1

and l2
l1
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are irrational, δ can be easily obtained from (4.36):

¶ − (−1)m 24βbl1
mπl

sin
mπl2
l1

sin
mπl3
l1

+
(−1)ml21
m2π2l2

[cos
mπl2
l1

sin
mπl3
l1

+ sin
mπl2
l1

cos
mπl3
l1

][9βd + βe]

+
16l21
m2π2l2

[sin
mπl2
l1

+ sin
mπl3
l1

][−βccosθ + βfsinθ]♢

+δ¶(−1)m36βal1 sin
mπl2
l1

sin
mπl3
l1

♢ = 0;

here we have retained only the leading term in m from the part linear in δ.
Expression for energy is still given by (3.13), but what is more interesting is
the width of the bands. The relevant part of δ - terms which do not vanish in
(3.14), i.e. proportional to θ - is now given by

δ(θ) ∝
16l21

m2π2l2
[sin mπl2

l1
+ sin mπl3

l1
][βccosθ − βfsinθ]

(−1)m36βal1 sin mπl2
l1

sin mπl3
l1

.

When dealing with the case t = 0, we had spectral condition containing cos θ only,
so it was easy to determine the points in the Brillouin zone ⟨−π,π⟩ corresponding
to the maxima and minima of dispersion curves. This is related to the fact that,
in graphs we are considering here, they correspond to the antisymmetric and
symmetric solutions, respectively, provided the coupling is time-reversal invariant
[EKW10]. For t ̸= 0 it is not the case, as now there is also sin θ term; therefore
we must Ąnd extrema of δ(θ). Differentiating with respect to θ, we have

βcsinθ + βfcosθ = 0,

and from there

−βf

βc

= tan θ. (4.38)

On ⟨−π,π⟩, this equation has indeed two solutions, whose difference is always π.
Further on, we can make use of the property

sin (θ + π) = − sin θ, cos (θ + π) = − cos θ,

meaning that substitution of one of the roots can be simply replaced by a change
of sign. Equation (3.14), now with proper values of θ, now gives

∆Em =
16

9mπl2

\︄\︄\︄\︄\︄
(βc cos θ1 − βf sin θ1)(sin

mπl2
l1

+ sin mπl3
l1

)

βa sin mπl2
l1

sin mπl3
l1

\︄\︄\︄\︄\︄+ O(m−2), (4.39)

where θ1 = arctan(−βf

βc
), and will be denoted as such for the rest of this chapter.

If at least one of the fractions l3
l1

or l2
l1

is rational, then there exist some values

of m, for which either sin mπl2
l1

or sin mπl3
l1

, and consequently the denominator of
(4.39), would be zero. Because all the remaining terms proportional to δ from
(4.36) are at least O(m−1), they would also go to zero with m → ∞, and in
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contrast to the previous calculation, we must go up to δ2 terms. When l2 ̸= l3,
let us without loss of generality assume that for given m it holds

sin
mπl2
l1

= 0, cos
mπl2
l1

= (−1)
m

l2
l1

and that sin mπl3
l1

is different from 0; hence

¶(−1)ml21
m2π2l2

[(−1)
m

l2
l1 sin

mπl3
l1

][9βd + βe]

+
16l21
m2π2l2

sin
mπl3
l1

[−βccosθ + βfsinθ]♢

+δ¶ − (−1)m 24βbl1
mπl

(l1 + l2)(−1)
m

l2
l1 sin

mπl3
l1

+ O(m−2)♢

+δ2¶(−1)m36βal1l2 sin
mπl3
l1

(−1)
m

l2
l1 + O(m−1)♢ = 0.

(4.40)

Two solutions of this quadratic equation eventually result in the same energy
band width, so we again display only the relevant part for one of them:

δ(θ) ∝

⌜⃓
⎷⃓
⎤

βbl1

3mπβal

⎣2 (l1 + l2)2

l21l22
− l21[9βd + βe + (−1)

m(1+
l2
l1

)
16(−βccosθ + βf sinθ)]

36m2π2l2βal1l2
.

(4.41)

Determining sought points in the Brillouin zone is now even harder - not only
are we limited by the extrema of the dispersion functions, but in order to get
a valid solution, inside of the square root in (4.41) must be non-negative. Let us
take a closer look. In the Ąrst term, every number present is real and squared,
thus it is positive as a whole. The denominator of the second term is also positive.
We do not necessarily have information about the sign of

(−1)
m(1+

l2
l1

)
(−βccosθ + βfsinθ),

but because the values in the extremal points of the dispersion function differ
only by sign, we have freedom of choice depending on the situation. The sign of
the numerator must then be governed by 9βd + βe. But this quantity is always
negative. Looking for its extrema, we have

∂

∂γ
(9βd + βe) =

(1 − t) sin γ(1 − t)

1 − cos πt
3

16(2 + cos
πt

3
) = 0,

and, on intervals we now consider, t = 1 or γ = 0 must be true. For t = 1,

9βd + βe = −144

regardless of γ. The other partial derivative, on the line γ = 0, reads

∂

∂t
(9βd + βe) = 32

π sin πt
3

(1 − cos πt
3

)2
= 0,

which for t ̸= 0 does not have a solution. As such there are no local extrema,
and quick check in the endpoints of t and γ (possibly in limit) conĄrms that −144
is in fact the maximal value.
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Due to this reasoning, (4.41) has always at least one real solution. If there
are two, band width is determined from their difference; if there is only one,
band width is proportional to it (the inside of (4.41) is an analytic function of
Bloch parameter θ, and there must exist a θ for which it is equal to 0, marking
the second edge of this spectral band). Nevertheless, both options have from
(4.41)

δ(θ) ∝ 1

m
ergo, according to (3.14),

∆Em = const. + O(m−1)

in the leading order, proportional speciĄcally to l1, l2, and functions β. Under
the other set of assumptions, l2 would be switched for l3.

There are possible combination of lengths where for certain m both sin mπl2
l1

and sin mπl3
l1

are equal to 0. If for example

mπl3
l1

= m
′

π, m,m
′ ∈ N

=⇒mπl2
l1

=
mπ(2π − l3)

l1
=

2mπ2

l1
−m

′

π,

and this can happen if l1 is a rational multiple of π (note that, parity-wise, both
numbers are the same). It is also trivially true for the symmetric quantum chain.
In those cases we consider terms up to δ3 from Equation (4.36), solving

δ¶(−1)ml21
m2π2l2

(l1 + l2 + l3)(9βd + βe)

− (−1)m16l21
m2π2l2

l1βc

+
(−1)

m
l2
l1 16l21

m2π2l2
(l2 + l3)(−βccosθ + βfsinθ)♢

−δ2¶(−1)m 24βbl1
mπl

(l1l2 + l2l3 + l1l3)♢
+δ3¶(−1)m36βal1l2l3♢ = 0.

In the next step, we make use of

−16βc + 9βd + βe = 0,

and after that

δ(θ) ∝
∮︂(︄

βbl1
3mπβal

)︄2
(l1l2 + l2l3 + l1l3)

2

l21l
2
2l

2
3

− l21(l2 + l3)[9βd + βe + (−1)
m(1+

l2
l1

)
16(−βccosθ + βfsinθ)]

36m2π2l2βal1l2l3

⨀︁ 1
2

.

(4.42)

Using the same arguments as earlier, we arrive at the conclusion that

∆Em = const. + O(m−1)

in the leading order, now proportional to l1, l2, l3 and β.
If k is close to the point mπ

l1
, then:
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• If both ratios l3
l1

and l2
l1

are irrational, width of the spectral band has asymp-

totic behaviour O(m−1), or rather O(k−1), as k → ∞.

• If l2
l1

or l3
l1

is rational, there are periodically distributed bands with asymp-
totically constant widths, their speciĄc limits depending on concrete values
of t, γ, l, l1 and l2 or l3, respectively. Otherwise the O(k−1) asymptotic
above applies to them as well.

When we choose lj = l3, special cases of the expansion around mπ
l3

are the same
as (4.35), only with roles of l3 and l1 interchanged. Substitution into (4.34) gives

¶ − (−1)m 24βbl3
mπl

sin
mπl1
l3

sin
mπl2
l3

− (−1)m16l23
m2π2l2

βc sin
mπl1
l3

+
(−1)ml23
m2π2l2

[cos
mπl2
l3

sin
mπl1
l3

+ sin
mπl2
l3

cos
mπl1
l3

][9βd + βe]

+
16l23
m2π2l2

sin
mπl2
l3

[−βccosθ + βfsinθ]♢

+δ¶(−1)ml3 sin
mπl2
l3

sin
mπl1
l3

[36βa +
3l23

m2π2l2
(−3βd + βe)]

− (−1)m 24βbl3
mπl

[(l1 + l3) sin
mπl2
l3

cos
mπl1
l3

+ (l2 + l3) cos
mπl2
l3

sin
mπl1
l3

]

+
(−1)ml23
m2π2l2

[(l1 + l2 + l3) cos
mπl2
l3

cos
mπl1
l3

− (l1 + l2) sin
mπl2
l3

sin
mπl1
l3

]

(9βd + βe)

− 16l23
m2π2l2

l1βc cos
mπl1
l3

+
16l23
m2π2l2

[l2 cos
mπl2
l3

+ (−1)ml3][−βccosθ + βfsinθ]♢

+δ2¶(−1)m36βa(l1l3 sin
mπl2
l3

cos
mπl1
l3

+ l2l3 sin
mπl1
l3

cos
mπl2
l3

)

− (−1)m 24βbl3
mπl

[(l1l2 + l2l3 + l1l3) cos
mπl2
l3

cos
mπl1
l3

− (
l21
2

+ l1l3 +
l22
2

+ l2l3 +
l23
2

) sin
mπl2
l3

sin
mπl1
l3

] + O(m−2)♢

+δ3¶(−1)m36βa[l1l2l3 cos
mπl2
l3

cos
mπl1
l3

− (
l33
6

+
l3l

2
2

2
+
l3l

2
1

2
) sin

mπl2
l3

sin
mπl1
l3

] + O(m−1)♢ + O(δ4) = 0,

(4.43)
we similarly express δ in the Ąrst approximation and get

∆Em =
16

9mπl2

\︄\︄\︄\︄\︄
(βc cos θ1 − βf sin θ1)

βa sin mπl1
l3

\︄\︄\︄\︄\︄+ O(m−2), (4.44)

for both l1
l3

and l2
l3

irrational.
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Because the leading term (with respect to m) proportional to δ2 is exactly
the same as in (4.40), except for l1 and l3 interchanged, δ(θ) proportionality is
nearly identical to (4.41) and we get

∆Em = const. + O(m−1)

in the leading order for somem when l1
l3

is rational and we assume sin mπl2
l3

different
from 0. As we would expect, our results remain unchanged.

If l2
l3

is rational, there exist some m for which functions of Bloch parameter θ

necessarily vanish in term constant in δ from (4.43). Assuming sin mπl1
l3

different
from 0, solutions for δ now depend on parity - because

m
l2
l3

= m
2π − l3
l3

= 2
mπ

l3
−m = m

′ ∈ N,

for even m we have m l2
l3

also even and vice versa.
Therefore for odd m

¶ l23
m2π2l2

sin
mπl1
l3

(16βc + 9βd + βe)♢

+δ¶ − 24βbl3
mπl

(l2 + l3) sin
mπl1
l3

+
l23

m2π2l2
(l2 + l3) cos

mπl1
l3

(9βd + βe)

+
16l23
m2π2l2

(l2 + l3)(βccosθ − βfsinθ)♢

+δ2¶36βal2l3 sin
mπl1
l3

♢ = 0.

When solving a given quadratic equation for δ, θ functions inside the discriminant
are at least, depending on the values of β, of the order O(m−3), while outside
of it they have an O(m−2) behaviour. For m large enough, we could modify
the discriminant through

l3
mπl

√︄

1 − l3 x(θ)

mπl
≈ l3
mπl

(︄
1 − 1

2

l3 x(θ)

mπl

)︄
,

but the relevant part of δ(θ) will always be O(m−2) at the minimum. That is
why

∆Em = O(m−1)

in the leading order, considering that we work in the limit m → ∞ and parts of
δ not proportional to θ will cancel out when computing band width.

For even m, we solve

+δ¶ − 24βbl3
mπl

(l2 + l3) sin
mπl1
l3

+
l23

m2π2l2
(l2 + l3)(9βd + βe) cos

mπl1
l3

+
16l23
m2π2l2

(l2 + l3)(−βccosθ + βfsinθ)♢

+δ2¶36βal2l3 sin
mπl1
l3

♢ = 0,
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and using the same method we eventually arrive at

∆Em =
16

9mπl2

\︄\︄\︄\︄\︄
(βc cos θ1 − βf sin θ1)(l2 + l3)

βal2 sin mπl1
l3

\︄\︄\︄\︄\︄+ O(m−2),

=
32

9ml2l2

\︄\︄\︄\︄\︄
(βc cos θ1 − βf sin θ1)

βa sin mπl1
l3

\︄\︄\︄\︄\︄+ O(m−2).

Finally if both l1
l3

and l2
l3

are rational, there are some m for which

sin
mπl1
l3

= sin
mπl2
l3

= 0.

We solve

δ¶(−1)
m

l1
l3

l23
m2π2l2

(l2 + l3)(9βd + βe)

+ (−1)m 16l23
m2π2l2

(l2 + l3)(−βccosθ + βfsinθ)♢

+δ2¶ − (−1)
m

l1
l3

24βbl3
mπl

(l1l2 + l2l3 + l1l3)♢

+δ3¶(−1)
m

l1
l3 36βal1l2l3♢ = 0,

and from there, having δ(θ) with very similar structure to (4.42),

∆Em = const. + O(m−1)

in the leading order.

• The asymptotic remains the same as before near the points k = mπ
l3

-

always O(m−1) for l2
l3

and l1
l3

irrational, sometimes constant when l2
l3

or l1
l3

is
rational.

• Analogous statement is true even if we are near points k = mπ
l2

.

Spectral band widths are then maximally of the order O(m0) = O(1) with respect
to the power of m, otherwise they shrink. From its deĄnition (3.14),

∆Em = ♣km,j
2(0) − km,j

2(π)♣,
= ♣[km,j(0) + km,j(π)][km,j(0) − km,j(π)]♣,
≈ 2

mπ

lj
♣km,j(0) − km,j(π)♣,

or with the extremum points in the Brillouin zone. In order to stay asymptotically
constant at the energy scale, ♣km,j(0)−km,j(π)♣ must behave (at least) as O(m−1).
Intervals belonging to the spectrum in momentum scale k are then smaller and
smaller, and because our high energy asymptotic is a combination of three peri-
odic functions, the number of those intervals is surely countable. In the language
of probability (4.29),

Pσ(H) = 0.
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Example 4.5. Consider quantum chain with t = 0.5, γ = 1, l = 1,
l1 = 2 and l3 = π

2
. Spectral bands can appear only around points k = mπ

lj
,

j = 1, 2, 3. This on displayed interval k ∈ ⟨10, 13⟩ in Figure 4.15 matches
to points ¶10,12♢ (from l3), ¶10, 32

3
≈ 10.67, 34

3
≈ 11.33, 12, 38

3
≈ 12.67♢ (from l2)

and ¶7π
2

≈ 11, 4π ≈ 12.57♢ (from l1). Each of those points is accompanied by
a peak in spectral condition function, and by spectral band, groups of which may
merge if their respective points are sufficiently close. For higher energies, these
bands become smaller and overshadowed by spectral gaps.

10.5 11.0 11.5 12.0 12.5 13.0
k

-2.5×1012
-2.0×1012
-1.5×1012
-1.0×1012
-5.0×1011

5.0×1011

Figure 4.15: Evaluation of spectral condition with parameters set in Example
4.5. Spectral bands are coloured red, while spectral gaps are blue.

Low energy limit

Analogously to the t = 0 case, when we expand trigonometric functions of k
around k = 0, there is at least δ3 proportionality in the equation (4.9) for some
small δ. While here we must operate with condition (4.15), individual v are just
functions of P , and when squared, their leading terms will be squares of leading
terms from polynomials P .

We are effectively solving the equation

δ3 P3 + δ2 P2 + δ P1 + P0 + δ2 (Ps sin θ + Pc cos θ) = O(δ4)

where now

P3 ≈ −64l3βg,

P2 ≈ δl2[−16l1βh + (l1 + l2 + l3)(9βk + βl)] = δl2(l2 + l3)(9βk + βl),

P1 ≈ −24δ2l(l2l3 + l1l2 + l1l3)βb,

P0 ≈ 36δ3l1l2l3βo,

Ps ≈ 16δl2(l2 + l3)βp,

Pc ≈ 16δl2[(l2 + l3)βh + 4lβg],

(4.45)
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with

βg = sin γ(1 − t)
cos πt

3
− 1

cos πt
3

+ 1
,

βh = cos γ(1 − t)
cos πt

3
− 2

cos πt
3

+ 1
− 2

cos πt
3

− 1
2

cos πt
3

+ 1
,

βk = cos γ(1 − t)
cos πt

3
− 3

cos πt
3

+ 1
− 3

cos πt
3

− 1
3

cos πt
3

+ 1
,

βl = 7 cos γ(1 − t)
cos πt

3
− 5

7

cos πt
3

+ 1
− 5

cos πt
3

− 7
5

cos πt
3

+ 1
,

βo = cos γ(1 − t) − 1,

βp =
√

3 sin γ(1 − t)
sin πt

3
(cos πt

3
− 1)

(cos πt
3

+ 1)2
.

(4.46)

Substituting (4.45) into (4.15), while other polynomials are in our approximation
nearly 0, gives us the Ąnal condition

¶64l3βg − l2(l2 + l3)(9βk + βl)

+24l(l2l3 + l1l2 + l1l3)βb − 36l1l2l3βo♢2

≤ 256l4¶(l2 + l3)
2β2

p + [(l2 + l3)βh + 4lβg]2♢.
(4.47)

Several of the βŠs contain cos γ(1 − t) term non-trivially intertwined with func-
tions of t. This does not allow simpliĄcations we have seen earlier with t = 0,
and for this reason, we will not discuss it further.

Negative spectrum

Once again we are interested in two particular characteristics concerning the neg-
ative spectrum: the number of spectral bands, and whether the lowest one,
if present, is connected to k2 = 0. The work for the second answer was done in
the previous section - in the used approximation cosx gives the same expression
as cosh x, similarly with sin x and sinh x; while individual terms in vz change
sign, it changes for each of them, and v2

z is unaffected; similarly for vc and vs.
Hence for all t < 1 the negative spectrum is connected only if the same is true
for the positive one.

Regarding the number of negative spectral bands, our elementary cell has
two vertices of degree three with eigenvalues (4.2). Their imaginary parts are,
in order,

− sin γ(1 − t),

− sin πt(
2

3
− 1) = sin

πt

3
,

− sin πt(
4

3
− 1) = − sin

πt

3
.

Sign of γ(1 − t) is determined by γ, πt is always positive. According to Theorem
3.1, for negative γ there might be at most four distinct negative spectral bands,
one for the Ąrst and one for the second eigenvalue, per vertex, while non-negative
γ allows maximally two of them, each stemming from the second eigenvalue.

In the limit t → 0+, the maximal number of bands must necessarily decrease
(to two for negative γ or zero if γ ≥ 0). Therefore, if for t > 0 the number of
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bands exceeds the indicated limit, they could either become thinner until they
eventually vanish, or they might merge.

Limit l1 → 0

The presence of Ćat bands or behaviour around k2 = 0 is undisturbed when we
move to the quantum chain with vertices of degree four. On the other hand,
the high energy spectrum is different in both possible limits l1 → 0 and l3 → 0,
if only because P6 = 0 in each of them.

Starting with l1 = 0, (4.34) now reads

P5

l5
+
P4

kl5
+
Pc cos θ + Ps sin θ

k3l5
= O(k−2), (4.48)

P5 = −24l5βb sin kl2 sin kl3,

P4 = 2l4(9βd + βe) sin kπ cos kπ,

Pc ≈ −16k2l4βc(sin kl2 + sin kl3),

Ps ≈ 16k2l4βf (sin kl2 + sin kl3).

Bands are formed only around k = mπ
l2

or k = mπ
l3

. Again, without loss of
generality, we choose mπ

l3
and express trigonometric functions in δ neighbourhoods

of those points as

sin kl2 = (1 − δ2l22
2

) sin
mπl2
l3

+ δl2 cos
mπl2
l3

+ O(δ−3),

sin kl3 = (−1)mδl3 + O(δ−3),

sin kπ = (1 − δ2π2

2
) sin

mπ2

l3
+ δπ cos

mπ2

l3
+ O(δ−3),

cos kπ = (1 − δ2π2

2
) cos

mπ2

l3
− δπ sin

mπ2

l3
+ O(δ−3),

Equation (4.48) is explicitly written as

¶2
l3
mπl

(9βd + βe) cos
mπ2

l3
sin

mπ2

l3
+ 16

l3
mπl

(−βc cos θ + βf sin θ) sin
mπl2
l3

♢

δ¶ − (−1)m24βbl3sin
mπl2
l3

+ 2
l3
mπl

π(9βd + βe)(cos2mπ
2

l3
− sin2mπ

2

l3
)

+ 16
l3
mπl

(l2 cos
mπl2
l3

+ (−1)ml3)(−βc cos θ + βf sin θ)♢

δ2¶ − (−1)m24βbl2l3cos
mπl2
l3

+ O(m−1)♢ = 0.

If l2
l3

is irrational, we can express

δ(θ) =
2 l3

mπl
(9βd + βe) cosmπ2

l3
sinmπ2

l3
+ 16 l3

mπl
(−βc cos θ + βf sin θ) sin mπl2

l3

(−1)m24βbl3sin
mπl2

l3

and from (3.14)

∆Em =
8

3ll3

\︄\︄\︄\︄\︄
−βc cos θ1 + βf sin θ1

βb

\︄\︄\︄\︄\︄+ O(m−1).
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Figure 4.16: Evaluation of spectral condition around small values of E = k2

and its dependence on t with l = 1, l1 = 2, l3 = π
2

and γ = −π
2
. Spectral bands

are indicated by light colour, while spectral gaps are dark.
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Figure 4.17: Evaluation of spectral condition around small values of E = k2

and its dependence on t with l = 1, l1 = 2, l3 = π
2

and γ = 0. Spectral bands are
indicated by light colour, while spectral gaps are dark.
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Figure 4.18: Evaluation of spectral condition around small values of E = k2

and its dependence on t with l = 1, l1 = 2, l3 = π
2

and γ = π
2
. Spectral bands are

indicated by light colour, while spectral gaps are dark.
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If l2
l3

is rational, then if for some m is sin mπl2
l3

= 0, we recall that

ml2
l3

= m
2π − l3
l3

=
2mπ

l3
−m = m

′ ∈ N

=⇒mπ

l3
=
m+m

′

2
∈ N,

where we utilized the fact that m and m
′

have the same parity. Because of that,
we solve

δ¶2
l3
mπl

π(9βd + βe) + (−1)m16
l3
mπl

(l2 + l3)(−βc cos θ + βf sin θ)♢
δ2¶ − 24βbl2l3 + O(m−1)♢ = 0.

δ is easily obtained:

δ(θ) =
2 l3

mπl
π(9βd + βe) + (−1)m16 l3

mπl
(l2 + l3)(−βc cos θ + βf sin θ)

24βbl2l3

and Ąnally

∆Em =
8(l2 + l3)

3ll2l3

\︄\︄\︄\︄\︄
−βc cos θ1 + βf sin θ1

βb

\︄\︄\︄\︄\︄+ O(m−1).

• In the limit l1 → 0, the positive spectrum has only asymptotically constant
bands at the energy scale.

In the momentum scale, these spectral bands must behave as O(k−1). Therefore

Pσ(H) = 0.

The last remaining question for this part is the number of negative spectral bands.
Imaginary parts of U(t) eigenvalues are now

− sin γ(1 − t),

− sin πt(
2

4
− 1) = sin

πt

2
,

− sin πt(
4

4
− 1) = 0,

− sin πt(
6

4
− 1) = − sin

πt

2
.

Through Theorem 3.1, for negative γ there are at most two negative spectral
bands, while for non-negative, this number decreases to one.

Limit l3 → 0

For l3 → 0, the structure of the given asymptotic equation remains the same as
(4.48), but now with

P5 = −24l5βb sin kl1 2 sin kπ cos kπ,

P4 = −16l4βc sin kl1 + l4(9βd + βe) sin k(l1 + 2π)

= l4 sin kl1(−16βc + 9βd + βe) + 2l4(9βd + βe) sin kπ cos k(l1 + π)

= 2l4(9βd + βe) sin kπ (cos kl1 cos kπ − sin kl1 sin kπ),

Pc ≈ −16k2l4βc2 sin kπ cos kπ,

Ps ≈ 16k2l4βf2 sin kπ cos kπ.
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As always, the appearance of the spectral bands is determined by the polynomial
next to the highest order of k (now P5), which gives us three options - k = mπ

l1
,

k = m and k = (2m−1)
2

. In all of them, we can factor out 2 sin kπ and focus
only on the remaining trigonometric functions.

Around mπ
l1

, spectral condition (4.48) reads

¶(−1)m l1
mπl

(9βd + βe) cos
mπ2

l1
+ 16

l1
mπl

(−βc cos θ + βf sin θ) cos
mπ2

l1
♢

δ¶ − (−1)m24βbl1cos
mπ2

l1
− (−1)m l1

mπl
(l1 + π)(9βd + βe)sin

mπ2

l1

− 16
l1
mπl

π sin
mπ2

l1
(−βc cos θ + βf sin θ)♢

δ2¶(−1)m24βbl1πsin
mπ2

l1
+ O(m−1)♢ = 0.

Therefore for l1 incommensurable with l2,

δ(θ) ∝ 2

3

1

mπl

(−1)m(−βc cos θ + βf sin θ)

βb

and

∆Em =
8

3

1

l l1

\︄\︄\︄\︄\︄
−βc cos θ1 + βf sin θ1

βb

\︄\︄\︄\︄\︄+ O(m−1),

while if l1 is a rational multiple of π,

cos
mπ2

l1
= 0, sin

mπ2

l1
= ±1,

and we get exactly the same result, only obtained from higher orders of γ.
If k = m, the spectral condition is

¶ − (−1)m24βb sinml1 + (−1)m 1

ml
(9βd + βe) cosml1

+ (−1)m16
1

ml
(−βc cos θ + βf sin θ)♢

δ¶ − (−1)m24βbl1cosml1 − (−1)m 1

ml
(l1 + π)(9βd + βe) sinml1♢

δ2¶(−1)m24βb(
l21
2

+
π2

2
) sinml1 + O(m−1)♢ = 0,

then, generally,

δ(θ) ∝ 2

3

1

ml1 l cosml1

(−1)m(−βc cos θ + βf sin θ)

βb

,

∆Em =
8

3

1

l l1

\︄\︄\︄\︄\︄
−βc cos θ1 + βf sin θ1

βb cosml1

\︄\︄\︄\︄\︄+ O(m−1).

On the other hand, if cosml1 = 0, we must solve the quadratic equation for δ.
Functions of Bloch parameter θ are again inside the discriminant, which reads

(︄
1

ml
(l1 + π)(9βd + βe)

48βb(
l21
2

+ π2

2
)

)︄2

+
24βb − 16 1

ml sin ml1
(−βc cos θ + βf sin θ)

24βb(
l21
2

+ π2

2
)

.
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The Ąrst term is of the order O(m−2), and is small in comparison with the second
term in the high energy limit. Ergo,

δ(θ) ∝ 1

(
l21
2

+ π2

2
)

1
2

√︄
1 − 2

3

1

ml sinml1

−βc cos θ + βf sin θ

βb

≈ 1

(
l21
2

+ π2

2
)

1
2

(︄
1 − 1

3

1

ml sinml1

−βc cos θ + βf sin θ

βb

)︄
,

and from there (sin ml1 must be equal to ±1)

∆Em =
4

3 l

1

(
l21
2

+ π2

2
)

1
2

\︄\︄\︄\︄\︄
−βc cos θ1 + βf sin θ1

βb

\︄\︄\︄\︄\︄+ O(m−1).

Finally, if k = (2m−1)
2

, we start from

¶ − (−1)m 1

kl
(9βd + βe) sin kl1♢

δ¶(−1)m24βbπ sin kl1 − (−1)m 1

kl
(l1 + π)(9βd + βe) cos kl1

+ (−1)m 16

kl
π(−βc cos θ + βf sin θ)♢

δ2¶(−1)m24βbl1π cos kl1 + O(m−1)♢ = 0.

In the Ąrst approximation, we express

δ ≈
1
kl

(9βd + βe) sin kl1

24βbπ sin kl1 − 1
kl

(l1 + π)(9βd + βe) cos kl1 + 16
kl
π(−βc cos θ + βf sin θ)

.

Isolating the denominator of this quantity, we can recast it in the limit m → ∞
as

1

24βbπ sin kl1

1

1 − 1
kl

l1+π
π

9βd+βe

24βb
cot kl1 + 2

3kl sin kl1

−βc cos θ+βf sin θ

βb

≈ 1

24βbπ sin kl1
(1 +

1

kl

l1 + π

π

9βd + βe

24βb

cot kl1 − 2

3kl sin kl1

−βc cos θ + βf sin θ

βb

);

therefore

δ(θ) ∝ − 1

kl

9βd + βe

24βbπ

2

3kl sin kl1

−βc cos θ + βf sin θ

βb

,

∆Em =
2

9(2m− 1)πl2

\︄\︄\︄\︄\︄
(9βd + βe)(−βc cos θ1 + βf sin θ1)

β2
b sin kl1

\︄\︄\︄\︄\︄+ O(m−2),

assuming l1 attains value for which sin kl1 ̸= 0. Should it not be the case, we sim-
ply go to the second order of δ and get

δ(θ) ∝ − 2

3kl

1

l1 cos kl1

−βc cos θ + βf sin θ

βb

,

∆Em =
8

3

1

l l1

\︄\︄\︄\︄\︄
−βc cos θ1 + βf sin θ1

βb

\︄\︄\︄\︄\︄+ O(m−1).

Overall,
Pσ(H) = 0;

the reasoning behind this argument stays the same, because the majority of pos-
sible band widths at the energy scale stays asymptotically constant, and the rest
decreases as O(m−1).
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Case of γ = 0

We Ąnish this section by considering γ = 0. This case has common behaviour
with the t = 1 case in some sense -

P5 = P3 = P1 = P0 = 0,

all other polynomials are much simpler, and the structure of spectral condition
is analogous to Equation (4.10). Results obtained earlier for t ̸= 0, particularly
the high energy limit and whether is the spectrum connected to energy k2 = 0,
still hold, but our choice of γ gives rise to some peculiarities not seen before.

First of all, according to Appendix A.3,

P6 = 72l6(cos
πt

3
− 1)2 sin kl1 sin kl2 sin kl3,

P4 = 12l4(cos
πt

3
− 1)(cos

πt

3
+ 1)[−4 sin kl1 + 3 sin k(l1 + l2 + l3)

+ sin k(l1 + l2 − l3) + sin k(l2 + l3 − l1) + sin k(l3 + l1 − l2)],

P2 = 2l2(cos
πt

3
+ 1)2[8 sin kl1 − 9 sin k(l1 + l2 + l3)

+ sin k(l1 + l2 − l3) + sin k(l2 + l3 − l1) + sin k(l3 + l1 − l2)],

Pc = −48l2(k2l2 − 1) (cos
πt

3
− 1) (cos

πt

3
+ 1)(sin kl2 + sin kl3),

Ps = 32kl3
√

3 sin
πt

3
(cos

πt

3
+ 1) (cos kl3 − cos kl2).

Recalling (4.2), we can Ąnd Ćat bands by enforcing k = m, m ∈ N. Additionally,
P4 and P2 can be rewritten as

P4 ∝ −4 sin kl1 + 3 sin k(l1 + l2 + l3)

+ sin k(l1 + l2 − l3) + sin k(l2 + l3 − l1) + sin k(l3 + l1 − l2)

= 4[sin kl1 (−1 + cos k(2π − l3) cos kl3) + cos kl1 sin 2kπ],

P2 ∝ 8 sin kl1 − 9 sin k(l1 + l2 + l3)

+ sin k(l1 + l2 − l3) + sin k(l2 + l3 − l1) + sin k(l3 + l1 − l2)

= 4[2 sin kl1 (1 − cos k(2π − l3) cos kl3) + 2 cos kl1 sin 2kπ

+ 3 sin kl1 sin k(2π − l3) sin kl3],

which for k = m simplify to

P4 ∝ −4 sinml1 sin2 ml3,

P2 ∝ 12 sin kl1 sin k(2π − l3) sin kl3 + 8 sinml1 sin2 ml3.

Therefore, similarly to previous examples,

• if lj = p
q
π, j = 1, 3, comprime p, q ∈ N, then k2 = q2m2, m ∈ N are energies

of the Ćat bands in the spectrum.

Finally, in the limits of a quantum chain with vertices of degree four, P6 is
always 0. The highest order of k present is now k4, and the whole spectral
condition now reads either

sin k(l2 + l3) − (sin kl2 + sin kl3) cos θ + O(k−1) = 0
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for l1 → 0, or

− sin kl1 + sin k(l1 + 2π) − cos θ sin 2kπ + O(k−1) =

2 sin kπ cos k(π + l1) − 2 cos θ sin kπ cos kπ + O(k−1) = 0

with l3 → 0. We have seen the exact same conditions in the asymptotic regime
for t = 0; this automatically means that for l1 = 0

Pσ(H) = 1 . . . l3 = π

Pσ(H) =
1

2
. . . l3 ̸= π,

while if l3 = 0,

Pσ(H) =
1

2
.

Theorem 4.2. Let Γ be a quantum chain graph with the topology illustrated by
Figure 4.1, described by lengths lj ≥ 0, j = 1, 2, 3, length scaling parameter
l > 0, and a circulant vertex matrix U(t), t ̸= 0, t ̸= 1, with strength
parameter γ ∈ (−π,π). Assuming we Ąx the scaling by requiring l2 + l3 = 2π,
we can draw these conclusions about its spectrum:

1. In this setting, Ćat bands are generally not present in the spectrum.

• For γ = 0 (Kirchhoff coupling), we are able to Ąnd Ćat bands in
the spectrum if lengths l1 or l3 (consequently l2) are rational multi-
ples of π.

2. The high energy spectrum is generally dominated by spectral gaps, and
the probability of belonging to the positive spectrum is 0, unless γ = 0.

• For γ = 0, the probability is non-zero only for a quantum chain with
vertices of degree four. It is equal to 1 if l1 = 0 and l3 = π, otherwise
it is equal to 1

2
.

3. The positive spectrum is connected to energy k2 = 0 only if condition
(4.47) is satisĄed; this is a general condition for all possible conĄgurations.

4. The maximum number of negative spectral bands is four, which might happen
only for γ < 0. When γ ≥ 0, there might be at most two negative spectral
bands.

• For a quantum chain with vertices of degree four, these numbers change
to two and one, respectively.

Both numbers are independent of other quantum graph parameters. Once
again, the negative spectrum is connected to k2 = κ2 = 0 only if the
positive spectrum is connected.
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Conclusion

We have equipped quantum star graph 2.1 with n adjacent edges with a general
unitary circulant vertex condition from DeĄnition 1.11, represented by matrix U ,
and found out

• number of its eigenstates, which is the same as the number of eigenvalues
of matrix U in the upper complex plane;

• their individual energies (in atomic units), given by

−κ2
l = −1 − ℜ(

∑︁n
a=1 cae

2πil(a−1)
n )

1 + ℜ(
∑︁n

a=1 cae
2πil(a−1)

n )
,

where l+ 1 is a row and column index of a given eigenvalue in the diagonal
representation of U ;

• the general form of scattering vertex matrix S(k) and its dependence on
coefficients c and momentum variable k, given by Equation (2.8);

• and its high and low energy limit in dependence on spectral decomposition
of vertex matrix U , see Equation (2.12) for high energy and (2.14) for low
energy. These results are in accordance with results obtainable from general
considerations of functional calculus. Additionally, we have successfully
tested them on speciĄc examples of vertex conditions.

We continued with general circulant vertex condition on rectangular lattice 3.1
described by lengths l1, l2 and

• calculated its spectral condition (3.2). Again, the substitution of concrete
coefficients c, speciĄcally for ŠextremalŠ rotationally symmetric, δ and δ

′

coupling, leads to correct spectral conditions derived by earlier authors.

While usable for any imaginable circulant matrix U , this spectral condition is in
itself too complex for detailed analysis. Therefore we chose permutation-invariant
vertex condition (1.4) and

• found structure of its spectrum, summarized in Theorem 3.2. Case-to-
case differences are to be present as in any parametric system, but there
is no deviation from the behaviour we would expect from vertex couplings
with Dirichlet, Neumann or Robin eigenspaces respectively (see for example
[ET21]);

• illustrated some of the properties and accuracy of our conclusions on a
square lattice.

Then we combined a quantum chain graph 4.1 with interpolating vertex condition
(4.1), getting

• general spectral condition (4.9) and tested its viability on boundary value
U(1) as well as special symmetric case of U(0) with l1 = 0;
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• overall view of the spectrum in the special case U(0), summed up in Theo-
rem 4.1. Several features were graphically demonstrated, showing the cor-
rectness of our results. Additionally, we have shown that high energy be-
haviour, in particular the probability of belonging to the positive spectrum,
is tightly linked with graph geometry rather than the equipped vertex con-
dition.

• overall view of the spectrum ∀t ̸= ¶0, 1♢, explained in Theorem 4.2. We have
described its parametric dependence in full detail while highlighting phe-
nomena not present previously, for example similarities between cases with
γ = 0 and U(1).
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Appendices

A Full expressions of spectral conditions

A.1 Rectangular lattice - general vertex condition

K1 −(c1 − c2 + c3 − c4)(c1 + c2 + c3 + c4)[(c1 − c3)2 + (c2 − c4)2]

F1 [2k cos kl1 + i(k2 + 1) sin kl1][2k cos kl2 + i(k2 + 1) sin kl2]

K2 −1

F2 [−2k cos kl1 + i(k2 + 1) sin kl1][−2k cos kl2 + i(k2 + 1) sin kl2]

K3 2c1

F3 (k2 − 1)¶(k2 + 1)[cos k(l1 − l2) − cos k(l1 + l2)] + 2ik sin k(l1 + l2)♢

K4 −4c3

F4 k¶cos θ2 [−2k cos kl1 + i(k2 + 1 )sin kl1] + cos θ1 [−2k cos kl2 + i(k2 + 1) sin kl2]♢

K5 16(c2c4 − c2

3
)

F5 k2 cos θ1 cos θ2

K6 −4(c2c4 − c2

1
)

F6 (k2 − 1)2 sin kl1 sin kl2

K7 (c2

1
− c2

3
)

F7 (k4 + 6k2 + 1) cos k(l1 − l2) − (k2 − 1)2 cos k(l1 + l2)

K8 4i(c2

2
+ c2

4
− 2c1c3)

F8 k(k2 − 1)[cos θ1 sin kl2 + cos θ2 sin kl1]

K9 4[c1(c2

2
+ c2

4
) + c3(c2

3
− c2

1
− 2c2c4)]

F9 k¶cos θ2 [2k cos kl1 + i(k2 + 1) sin kl1] + cos θ1 [2k cos kl2 + i(k2 + 1) sin kl2]♢

K10 2[c3(c2

2
+ c2

4
) + c1(c2

1
− c2

3
− 2c2c4)]

F10 (k2 − 1)¶(k2 + 1)[cos k(l1 − l2) − cos k(l1 + l2)] − 2ik sin k(l1 + l2)♢
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A.2 Permutation-invariant vertex condition for rectangu-

lar and square lattice

A1 cos (γ − ϑ) (cosϑ− 1)

A2 cos (γ − ϑ) (cosϑ+ 1)

A3 −2 cos γ + cosϑ cos (γ − ϑ) + cos (γ + ϑ)

A4 2 cos γ − cosϑ cos (γ − ϑ) + cos (γ + ϑ)

A5 2 sinϑ cos (γ − ϑ)

A6 4 sinϑ cos γ

A7 −2 sinϑ cos γ

A8 −2 sin γ (cosϑ+ 1) + sinϑ [cos γ + cos (γ − ϑ)]

A9 −2 sin γ (cosϑ− 1) + sinϑ [cos γ − cos (γ − ϑ)]
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A.3 Interpolating vertex condition for periodic chain

In order to display all polynomials properly, some of them have been separated
into smaller parts - these are denoted by an additional subindex.

P6 36l6(cos γ(1 − t) + 1)(cos πt
3 − 1)2 sin kl1 sin kl2 sin kl3

P5 −24l5 sin γ(1 − t) (cos πt
3 − 1)2

[cos kl1 sin kl2 sin kl3 + sin kl1 sin k(l2 + l3)]

P4,1 −16l4 sin kl1
[cos γ(1 − t) (cos πt

3 − 1)(cos πt
3 + 2) + 2 (cos πt

3 − 1)(cos πt
3 + 1

2)]

P4,2 9l4 sin k(l1 + l2 + l3)
[cos γ(1 − t) (cos πt

3 − 1)(cos πt
3 + 3) + 3 (cos πt

3 − 1)(cos πt
3 + 1

3)]

P4,3 l4[sin k(l1 + l2 − l3) + sin k(l2 + l3 − l1) + sin k(l3 + l1 − l2)]
[7 cos γ(1 − t) (cos πt

3 − 1)(cos πt
3 + 5

7) + 5 (cos πt
3 − 1)(cos πt

3 + 7
5)]

P3 4l3 sin γ(1 − t) (cos πt
3 − 1)(cos πt

3 + 1)
¶8 cos kl1 − 9 cos k(l1 + l2 + l3)

−5 [cos k(l1 + l2 − l3) + cos k(l2 + l3 − l1) + cos k(l3 + l1 − l2)]♢

P2,1 −16l2 sin kl1
[cos γ(1 − t) (cos πt

3 + 1)(cos πt
3 − 2) − 2 (cos πt

3 + 1)(cos πt
3 − 1

2)]

P2,2 9l2 sin k(l1 + l2 + l3)
[cos γ(1 − t) (cos πt

3 + 1)(cos πt
3 − 3) − 3 (cos πt

3 + 1)(cos πt
3 − 1

3)]

P2,3 l2[sin k(l1 + l2 − l3) + sin k(l2 + l3 − l1) + sin k(l3 + l1 − l2)]
[7 cos γ(1 − t) (cos πt

3 + 1)(cos πt
3 − 5

7) − 5 (cos πt
3 + 1)(cos πt

3 − 7
5)]

P1 −24l sin γ(1 − t) (cos πt
3 + 1)2

[cos kl1 sin kl2 sin kl3 + sin kl1 sin k(l2 + l3)]

P0 36(cos γ(1 − t) − 1)(cos πt
3 + 1)2 sin kl1 sin kl2 sin kl3

Ps 16l2
√

3 sin πt
3

¶[sin kl2 + sin kl3] sin γ(1 − t) [k2l2(cos πt
3 + 1) + (cos πt

3 − 1)]
+2kl[cos kl3 − cos kl2][cos πt

3 cos γ(1 − t) + 1]♢

Pc −16l2¶[sin kl2 + sin kl3]
[k2l2

(︁
cos γ(1 − t) (cos πt

3 − 1)(cos πt
3 + 2) + 2 (cos πt

3 − 1)(cos πt
3 + 1

2)
)︁

− cos γ(1 − t) (cos πt
3 + 1)(cos πt

3 − 2) + 2 (cos πt
3 + 1)(cos πt

3 − 1
2)]

−2kl [cos kl3 + cos kl2] sin γ(1 − t) (cos πt
3 − 1)(cos πt

3 + 1)♢
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