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Abstract
Motivated by the occurrence of financial stylized facts (also) in the cryptocur-
rency markets, we study their dynamics by applying one of the most well-
known financial agent-based models to them. Based on interactions between
two boundedly rational types of traders, this modeling framework nests eight
submodels using four attractiveness specifications and two switching mecha-
nisms between the trading strategies. The analysis is based on three types of
datasets — S&P500 to receive a benchmark to the previous research and a
comparison with crypto markets, Bitcoin, and a hypothetical market-weighted
Top20 cryptocurrency index. For the estimation, we utilize the simulated
method of moments, a technique commonly used in complex models where
analytical solutions are not feasible. Overall, the results for cryptocurrency
datasets imply a very promising application of agent-based models to the anal-
ysis of crypto markets. Particularly, for Bitcoin, all submodels produce data
in close agreement with the empirical data-generating process. We attribute
the robust rank of results to the low level of rationality of the studied markets.
However, we are unable to directly interpret the evolution of the trading groups
due to the lack of the resulting group dynamics. We identify a similar prob-
lem in several other recent studies and suggest addressing this issue in further
research by reevaluating the fixed parameters.
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Abstrakt
Motivovaní výskytom finančných štylizovaných faktov (aj) na trhoch s kryp-
tomenami, študujeme ich dynamiku cez aplikáciu jedného z najznámejších mod-
elov založených na finančných agentoch. Na základe interakcií medzi dvoma
ohraničene racionálnymi typmi obchodníkov, tento modelovací rámec spája
osem podmodelov pomocou štyroch špecifikácií atraktivity a dvoch mecha-
nizmov prepínania medzi obchodnými stratégiami. Analýza je založená na
troch typoch údajov — S&P500 pre získanie benchmarku s predchádzajúcim
výskumom a porovanie s kryptomenami, Bitcoin dátami, a hypotetickým trhom
váženým indexom kryptomien Top20. Na odhad používame simulovanú metódu
momentov, techniku bežne používanú v zložitých modeloch, kde analytické
riešenia nie sú možné. Celkovo výsledky naznačujú veľmi sľubnú aplikáciu
modelov založených na agentoch pre analýzu kryptotrhov. Predovšetkým pre
Bitcoin všetky podmodely produkujú údaje v úzkej zhode s empirickým pro-
cesom generovania údajov. Robustné hodnotenie výsledkov pripisujeme nízkej
úrovni racionality skúmaných trhov. Nie sme však schopní priamo interpreto-
vať vývoj obchodných skupín pre nedostatok výslednej skupinovej dynamiky.
V niekoľkých ďalších nedávnych štúdiách identifikujeme podobný problém a
navrhujeme ho riešiť v ďalšom výskume prehodnotením pevných parametrov.
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Chapter 1

Introduction

Cryptocurrency markets emerged as one of the consequences of the financial
crisis. Being characterized by their lack of regulation by third parties, non-
existent intrinsic value, and high volatility, they represent a completely new
type of financial market. However, similar to other types of financial mar-
kets, they possess unique statistical properties called stylized facts (Cont 2001).
Higher volatility, fat-tail returns, absence of autocorrelation in raw returns, or
volatility clustering are one of the many well-analyzed and documented facts,
regardless of whether we look at Bitcoin or other cryptocurrencies (Bariviera
2017; Urquhart 2016; Drożdż et al. 2018).

In the traditional financial markets, classical economic theories failed to
explain these facts. As such, with the development of computational methods
in the 1980s, financial agent-based models (FABMs) based on interactions of
boundedly rational agents emerged (Hommes 2006). These models usually in-
corporate two main types of traders, fundamentalists and chartists. While fun-
damentalists base their strategies on fundamental economic factors, chartists
base theirs on historical prices. By simulating the interaction between these two
groups and combining it with the model’s price formation mechanism, FABMs
can replicate some of the stylized facts observed in financial markets.

However, this approach has not yet been applied to cryptocurrency markets.
By applying one of the FABMs to the cryptocurrencies, this thesis aims to bet-
ter understand the factors influencing its participants’ behaviour and assess the
overall prospects of applying these models to crypto markets. The motivation
for our research is the following. The world of financial and cryptocurrency
markets is a complex and dynamic system that is constantly changing, driven
by the behaviour of its participants. Understanding the dynamics of these
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traders is essential for investors and policymakers, as it can form investment
decisions and regulatory policies for economic shocks evoked by sudden market
changes.

We choose to work with a well-studied model proposed by Franke & West-
erhoff (2012). This model nests eight submodels based on four characteristics
of relative attractiveness and two switching mechanisms, giving us enough free-
dom when applying it to a new type of market. To optimize our parameters, we
invoke the simulated method of moments (SMM), first proposed by McFadden
(1989) and Pakes & Pollard (1989). This statistical technique is often used
when it is difficult to obtain closed-form solutions and is very popular among
FABMs.

For benchmark purposes, we first reevaluate the model on the extended
dataset of the S&P500 Index. Next, we apply the model to Bitcoin, the most
studied cryptocurrency with the highest market capitalization. Furthermore,
we create a hypothetical market-weighted Top20 Index to receive a more com-
prehensive representation of crypto markets and apply the model to this index
as well. The validity of our results is then assessed through the standardly used
J-test of overidentifying restrictions.

Overall, our analysis shows encouraging results in using financial agents for
cryptocurrency markets, for both Bitcoin and the hypothetical Top20 index.
Moreover, these findings remain consistent across various model specifications.

The thesis is sectioned following. Chapter 2 introduces the background
of FABMs and research in cryptocurrency markets, highlighting their natural
candidacy for applying them to FABMs. Chapter 3 provides information on the
estimation methodology SMM and Chapter 4 continues with the definition of
the model. In Chapter 5, we present our datasets and computing setup. Next,
Chapter 6 provides the results of our analysis. Chapter 7 continues with a
discussion of our research’s limitations in interpreting the interactions between
the two groups of traders and potential improvements for further analysis.
Lastly, Chapter 8 summarizes our main findings.



Chapter 2

Literature review

This chapter introduces the literature and current research in the field of
FABMs and cryptocurrencies. The main aim is to understand the develop-
ment of the research as well as the essential challenges. Firstly, the background
of FABMs, together with the simple classification of different types, is intro-
duced. Next, we discuss the critical role of estimation methods. In the second
section, we focus on cryptocurrencies as natural candidates for FABMs. In
the first step, we consider the stylized facts identified in existing research as a
practical assumption for applying FABM techniques. In the second step, we
focus on the role of cryptocurrencies as a basis for understanding the context
in which we will interpret our results later in the thesis.

2.1 Financial agent-based modeling
FABMs represent a computational modeling approach used to study the be-
haviour of individual agents in a financial market. They model interactions
between agents, such as traders, investors, and market makers, to understand
how they collectively influence financial markets.

FABMs emerged due to the growing recognition of the limitation of tradi-
tional paradigms, such as rational expectations and efficient market hypothesis
(Fama 1970; Muth 1961). The traditional economic approach of rational mar-
kets was not able to replicate "so-called" stylized facts, which represent statis-
tical properties typical for financial markets, such as fat-tailed returns, absence
of autocorrelation in raw returns, or volatility clustering (Hommes 2006; Cont
2001). In contrast to the traditional approach, the dynamics in FABMs is
based on agents who are boundedly rational and follow simple rules of thumb,
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which creates a more realistic and dynamic representation of traders (Tversky
& Kahneman 1974; Simon 1957).

One of the first attempts at FABMs can be traced to Zeeman (1974), who
studied the instability of asset prices by applying the catastrophe theory. How-
ever, the main expansion of FABMs took place in the 80s and 90s and was
closely connected to the development and wider availability of new computa-
tional methods and tools. The most influential models that created the basis
for further research include mainly the work of Brock & Hommes (1998), Lux
& Marchesi (1999), and LeBaron et al. (1999).

2.1.1 Types and differences between FABMs

Looking at the simple classification of FABMs based on the number of agents,
the most common frameworks are 2-type or 3-type designs. The 2-type design
represents the most simplified version with only fundamentalists with mean-
reverting and chartists with trend-following beliefs. The 3-type design includes
a third type of agents such as contrarians or market makers (Chen et al. 2012).
To illustrate this framework, Farmer & Joshi (2002) developed a 3-type model
with market makers, who adjust prices based on the demand. Designs with
N or an infinite number of agents are usually referred to as many many-type
models. According to LeBaron (2006), the main advantage of fewer-type models
compared to many-type ones is more direct connections between parameters
and results which might not be seen in the more complex frameworks.

Another difference in the models is whether and how agents can change
their strategies. In the early models, agents did not reevaluate their strate-
gies. Kirman (1993) in his model introduced the herding mechanism, where
the fraction of one strategy determines how likely is to change the current posi-
tion. Brock et al. (1998) proposed an adaptive belief system where traders can
change between a predetermined number of strategies. Looking at the more
complex dynamics, Franke & Westerhoff (2012) compared herding, misalign-
ment, predisposition, and wealth specifications together with two switching
strategies when studying the S&P500 returns.

Other divisions can be based on differences in estimation methods, price
and time dynamics, or stylized facts that they explain (Lux & Zwinkels 2018;
Chen et al. 2012; Dieci & He 2018).
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2.1.2 Estimation and evaluation of agent-based models

Following Chen et al. (2012), the main estimation methods are maximum likeli-
hood estimations (MLE), least squares (LS), the simulated method of moments
(SMM), and variations of these three. The basic idea of MLE is to find the
values of the parameters that maximize the likelihood of observing the given
set of data. Alfarano et al. (2005) use MLE when studying herding tendency to
explain heavy tails and clustering in returns. Other examples include various
continuations of this model (Alfarano et al. 2006; 2007). The LS method min-
imizes the sum of the squared differences between the observed data and the
predictions of the model. Examples of the nonlinear least square estimation
include Boswijk et al. (2007), who proposed a behavioural asset pricing model
with endogenous evolutionary selection or a study of exchange rates based on
the European Monetary System Crisis (de Jong et al. 2009; 2010). Lastly, the
SMM estimates the parameters of a model by matching the set of selected mo-
ments of the model’s simulated data to those of observed data. The method
was originally developed by McFadden (1989) and Pakes & Pollard (1989).
Gilli & Winker (2003) applied as first the SMM to the agent-based ant model
developed by Kirman (1993). Other applications include Franke (2009) who
calibrates six parameters of the Manzan & Westerhoff (2005) model, or Franke
& Westerhoff (2012; 2016).

Following developments in computational methods from other disciplines,
more complex methods of estimations have emerged in the last couple of years.
Grazzini et al. (2017) first introduced Bayesian inference techniques to FABMs.
Some other more complex developments include the non-parametric simulated
maximum likelihood (Kukacka & Barunik 2017) or the sequential Monte Carlo
method (Lux & Zwinkels 2018).

Despite the development in estimation techniques, one of the most com-
monly identified challenges of Financial Agent-Based Models remains the diffi-
culty in accurately calibrating and validating the models (Fagiolo et al. 2007;
Platt 2020). Fabretti (2013) identifies calibration and validation as critical is-
sues and claims that the research has not yet given sufficient consideration to
the process of calibrating. Similarly, Platt (2020) states that the current re-
search is more focused on the introduction of new calibration methods without
proper benchmarking with existing techniques.

Another critical issue related to the calibration of FABMs is the selection of
moments. Typically, the moment set for a given model estimation is determined
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in an intuitive manner based on the expertise of the proposers following the
model’s dynamics (Zila & Kukacka 2023). As such, Fagiolo et al. (2007) point
out the problem of highly parametrized models. To rely on a more advanced
method of choosing the moments, Lamperti et al. (2018) introduced as first
more advanced approach combining machine learning and intelligent iterative
sampling to the model of Brock et al. (1998). According to their results, they
were able to significantly decrease the computation time burden and receive a
fairly accurate proxy of the true model.

2.2 Cryptocurrency markets
One of the consequences of the financial crisis in 2008 was the emergence of
a decentralized electronic transaction system based on blockchain and digital
cryptocurrencies. The system operates on peer-to-peer transactions without
the need for banks or other institutions. As a result, as the trading is unregu-
lated by higher institutions, the prices should reflect the uncertainty associated
with the exchange viability (Hu et al. 2019). Interestingly, compared with other
financial assets, the value of cryptocurrencies is not based on any tangible asset
or a firm’s/country’s economic situation. Because of the non-existent intrinsic
value, Bariviera et al. (2017) refer to cryptocurrencies as "synthetic" assets.

The first cryptocurrency introduced was Bitcoin by an anonymous person
or group under the pseudonym Nakamoto (2008) and it started to be issued
at the beginning of 2009. Bitcoin remains the most significant currency by
market capitalization to this day. However, the crypto market has experienced
enormous growth since its launch. Nowadays, there are more than 22 thou-
sand cryptocurrencies with a total market cap of $1.05 trillion (CoinMarketCap
2023a).

Because of the fast growth and high volatility in both prices and volume
(Ciaian et al. 2016; Katsiampa 2017), the academic literature about crypto
markets has been quite extensive in recent years. Due to the scope of the
thesis, we will mainly discuss the research around stylized facts and the role
of crypto markets as an investment. However, other studies cover topics such
as price dynamics, market efficiency, regulation, or diversification benefits, and
we refer to the recent overviews for more information (Corbet et al. 2019; Ma
et al. 2020).
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2.2.1 Stylized facts of cryptocurrency markets

Due to the unique properties of cryptocurrencies compared to traditional fi-
nancial assets, such as decentralization, non-existent intrinsic value and lack
of regulation, a significant part of the research focuses on the comparison of
crypto markets and financial markets from the point of studying their statisti-
cal properties (Bariviera 2017; Urquhart 2016; Drożdż et al. 2018). Based on
the research done so far, the studied time horizon plays an important role, and
crypto markets seem to have a clear evolution and share stylized facts similar
to other financial markets.

Looking at the era before 2014, one could refer to this time as an infancy
phase. Bariviera (2017) studies daily and interdaily Bitcoin returns from 2011
to 2017. He concludes that the Hurst exponent, a measure of long-term mem-
ory of time series, changes rapidly during the first studied period. Similarly,
Urquhart (2016) conducts 4 tests (Ljung-Box for autocorrelation, Bartels test
for independence, variance ratio test, and Hurst exponent) on Bitcoin data
from 2010 to 2016 to determine its efficiency. He finds that even though the
whole sample is not weakly efficient, the later subsample indicates efficiency
to some extent. In line with that, Drożdż et al. (2018) state that after 2014,
returns possess fat tails similar to well-established financial markets such as the
USD/EU exchange market. As a result, they conclude that cryptocurrencies
"carry the concrete potential of imminently becoming a mature market".

Although there is a growing body of literature on the properties of cryp-
tocurrencies, the current research has some limitations, particularly in terms
of exploring the properties of other cryptocurrencies. Nevertheless, despite
the lack of research in this area, it appears that other major cryptocurrencies
with high market capitalization also exhibit stylized facts and are significantly
influenced by Bitcoin. Hu et al. (2019) conduct a large study of 222 cryp-
tocurrencies and find a strong correlation between other cryptocurrencies and
Bitcoin. Phillip et al. (2018) extend the long memory properties studied by
Bariviera (2017) on 5 cryptocurrencies (Bitcoin, Ethereum, Ripples, Dash and
Nem) by using the generalized long memory effect and come to the same con-
clusion. Other stylized facts such as fat tails, absence of autocorrelations, and
volatility clustering are present in other cryptocurrencies as well (Zhang et al.
2018).
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2.2.2 Investment and diversification benefits

Another extensive debate is about the role of cryptocurrencies in a portfolio,
whether they have a safe haven or hedging properties or whether they act
mainly as a speculative investment. Overall, results seem to vary depending on
the studied time horizon, specific market conditions, and the studied financial
assets (Zhang et al. 2018; Shahzad et al. 2019; Fang et al. 2019; Bouri et al.
2017; Baur et al. 2018).

Baur et al. (2018) find that Bitcoin is uncorrelated with traditional finan-
cial assets such as stocks, bonds, or commodities and, therefore, could act as
a weak safe haven. On the other hand, Bouri et al. (2017) study the dynamic
conditional correlation model proposed by Engle (2002) and conclude that Bit-
coin is mainly suitable for diversification purposes and acts as a safe haven only
for Asian Markets. Fang et al. (2019) find Bitcoin possesses hedging properties
under specific economic uncertainty conditions. Moreover, a more recent study
capturing the beginning of Covid-19 rejects Bitcoin as a possible safe haven as
it increases portfolio downside risk even with a small allocation in the portfolio
(Conlon & McGee 2020).

Even though the research around safe haven and hedging capabilities vary
greatly, the debate on diversification benefits is more unified. One part of the
research focuses on the diversification in a combination of mainly Bitcoin with
traditional assets (Ma et al. 2020; Trimborn et al. 2020; Corbet et al. 2019),
while the other compares strategies for investing in several cryptocurrencies
(Liu 2019; Mensi et al. 2019; Platanakis & Urquhart 2019). As this thesis
discusses the combination of several cryptocurrencies, we will discuss only the
latter one. Liu (2019) studies ten major cryptocurrencies by market capital-
ization and concludes, that diversification improves overall investment results.
When comparing six portfolio strategies (naive, minimum variance, risk-parity,
Markowitz, maximum Sharpe ratio, and maximum utility), the naive portfolio
interestingly provides the best Sharpe ratio in out-of-sample performance. Pla-
tanakis & Urquhart (2019) similarly conclude that traditional portfolio theories
cannot be relied upon for out-of-sample performance in crypto markets.

To summarize, FABMs provide insights into financial markets through in-
teractions of boundedly rational agents. Cryptocurrencies are characterized
by less regulation, no intrinsic value, and high volatility. Similar to financial
markets, they possess stylized facts that have been widely studied. As such,
they are a natural candidate for FABMs to study the behaviour of traders.



Chapter 3

The simulated method of moments

This chapter introduces the estimation methodology. Firstly, the development
and the simple intuition behind the technique are introduced in Section 3.1.
Next, we propose the formal definition and discuss the weighting matrix in
Section 3.2. The following Section 3.3 discusses the selected moments of Franke
& Westerhoff (2012).

3.1 About the method
The SMM (also called the method of simulated moments) is a statistical tech-
nique used to estimate a model’s parameters when it is difficult or impossible
to obtain closed-form solutions. In such cases, traditional approaches, such as
the maximum likelihood or the generalized method of moments, may not be
applicable.

The method was introduced by McFadden (1989) and Pakes & Pollard
(1989). McFadden (1989) provided theoretical foundations that an unbiased
simulator can be used to generate a sample of moments given a set of pa-
rameters, with simulation errors independent across observation and normally
distributed variance in the estimates of the moments due to the law of large
numbers. The SMM was further developed by Lee & Ingram (1991) and Duffie
& Singleton (1993), who extended the method to time-series data and panel
data. The technique is particularly useful in complex models where analytical
solutions are not available, and it has been applied in various fields, including
economics, finance, and engineering.

The idea behind this method is to simulate the model repeatedly using
different parameter sets and match the sample counterparts of selected mo-
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ments of the simulated data to the ones of the empirical data. Optimization
of the model’s parameters is based on minimizing the difference between the
simulated and observed moments through a loss function. Moreover, the loss
function incorporates the weighting matrix, which assigns different weights to
each of the moments, reflecting their relative importance or precision.

3.2 Formal definition
In the formal definition of the SMM, we follow Zila & Kukacka (2023) and
Franke & Westerhoff (2012).

The aim of the agent-based model is to explain the essential stylized facts
of financial markets. There are various summary statistics, also known as
moments, that can be utilized to analyze these facts. As we do not know the
true values of these moments, we rely on their sample counterparts.

We can start by considering a time series y and D moments of our interest
that can be calculated by their sample counterparts functions

md(y), d = 1, ..., D.

Starting with the empirical part and to demonstrate it on an example, if the
mean is the first moment we are interested in, we can calculate the mean of
the empirical time series

{yemp
t }, t = 1, ..., Temp,

by using the arithmetic mean, which is a standardly used sample counterpart

m1(yemp
t ) = 1

Temp

Temp∑︂
t=1

yemp
t .

Next, we can store these moment results of the empirical time series into a
D × 1 vector

memp = [m1(yemp), ..., mD(yemp)]T ,

where T denotes transposition.
As a following step, we assume we possess a well-specified stochastic model

that accurately depicts a certain aspect of the real world, with the empirical
time series being one of the many possible realizations. As such, we can use



3. The simulated method of moments 11

the model to generate a simulated time series

{ysim
t (θ)}, t = 1, ..., Tsim, Tsim ≥ Temp,

where θ represents a vector of true parameters we are trying to estimate. By
simulating the model N times, we mitigate the effect of randomness. Next, for
each simulated time series, we can calculate the sample counterpart of the D

moments of our interest and take the average to receive the mirror version of
the empirical moment. The corresponding functions calculating the averages
of simulated moments can be defined following:

msim
d (θ) = 1

N

N∑︂
n=1

md(ysim
n (θ)), d = 1, ..., D

We can organize these moments into a D × 1 simulated vector of moments

msim(θ) = [msim
1 (θ), ..., msim

D (θ)]T .

Then the loss function is defined as

J = h(θ)T Wh(θ),

where h(θ) = memp − msim and W is a positive D × D weighting matrix. The
optimization means finding parameters that minimize the loss function, i.e the
optimized estimated parameter set is

θ̂ = arg min
θ∈Θ

(J(θ)),

where Θ denotes the admissible space. Lastly, we utilize the J test statistic to
assess the compatibility of the moment conditions (Franke 2009; Jang 2015):

J̄ = J(θ̂) T →∞−−−→ χ2
D−L,

where L denotes the total number of parameters that we are estimating. A
valid model is one that has a J function value less than the χ2 value with
D − L degrees of freedom corresponding to a certain significance level. If the
model surpasses the critical value, it means that the model fails to replicate
the observed data in at least one dimension.
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3.2.1 Weighting matrix

The idea of the weighting matrix is to assign more importance to stable mo-
ments while considering possible correlations between individual moments. The
standardly considered candidate is inverse to the variance-covariance matrix

W = Σ−1,

however, we first need to estimate Σ. To do so, we follow Franke & Westerhoff
(2012) and use a block bootstrap approach. We consider B block samples
from the empirical time series with a length of 250 days. However, for the
moments capturing the long memory properties, we consider longer blocks with
a length of 750 days. Next, we calculate the bootstrapped moments through
the counterpart functions mentioned above.

mb = [mb
1, ..., mb

D], b = 1, ..., B

to obtain the frequency distributions. Next, we calculate m = 1
B

∑︁B
b=1 mb and

define the estimate of the variance-covariance matrix as

Σ̂ = 1
B

B∑︂
b=1

(mb − m)(mb − m)T

Then we calculate the inverse of Σ̂ to obtain the weighting matrix

W = Σ̂
−1

3.3 The selected moments
The model of Franke & Westerhoff (2012), fully specified in Chapter 4, matches
the nine moments of the empirical time series to explain four stylized facts.
These four properties of financial data are the absence of autocorrelations in
the raw returns, fat tails, volatility clustering, and the long memory feature.

The first selected moment is the first-order autocorrelation coefficient of the
raw returns. For the volatility clustering, the model matches the mean value
of the absolute returns to scale the volatility. Next, the fat tail characteristic
is evaluated using the Hill estimator to calculate the tail index of the absolute
returns. Lastly, six lags i ∈ {1, 5, 10, 25, 50, 100} are considered to capture the
long memory property.



Chapter 4

Franke and Westerhoff (2012)
model

This chapter introduces the model by Franke & Westerhoff (2012), starting
with a brief overview in Section 4.1 and continuing with the formal definition in
Section 4.2. In Subsection 4.2.1, we discuss price and demand formation, while
Subsection 4.2.2 presents two approaches to the switching strategy. Finally,
Subsection 4.2.3 considers principles and combinations that impact strategy
attractiveness.

4.1 About the model
The preliminary versions of the model can be traced back to Franke (2008)
and Franke & Westerhoff (2011). Franke (2008) explores a framework in which
individual agents shift between two types of the sentiment using particular tran-
sition probabilities and the following work examines the structural stochastic
volatility. Franke & Westerhoff (2012) then further develops the possible vari-
ations of switching mechanisms and determinants of relative attractiveness by
considering seven different models and assessing them. Due to the complex
analysis of the optimized results, the winning model was set up as a bench-
mark version for future research. In the follow-up study, Franke & Westerhoff
(2016) study the phase plane of the price and the majority index of the winning
model in more detail. For the benchmark assessment, Barde (2016) tests the
model and compares it with the herding model and its asymmetric version us-
ing various calibration setups and Platt (2020) uses the model when comparing
different calibration methods.
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4.2 Formal definition

4.2.1 Demand and price impact functions

The model consists of two groups of traders, chartists and fundamentalists,
together with a market maker who determines the price of an asset for each
period. The market maker is assumed to maintain an inventory, which he uses
to serve any excess demand and adds any excess supply. He then reacts to this
imbalance by adjusting each period’s price with a constant positive factor µ in
the direction of excess demand. As such, the log price pt at the start of the
period t is based on the equation

pt = pt−1 + µ(nf
t−1d

f
t−1 + nc

t−1d
c
t−1),

where nf
t−1, nc

t−1 = 1 − nf
t−1 denotes the market fractions of the fundamental-

ists and chartists and df
t−1, dc

t−1 indicates the corresponding demand from an
average trader of both groups from the last period.

Regarding the formation of demands, the model follows two simple deter-
ministic rules. Firstly, an average fundamentalist trader believes the market
is inversely tied to how far the price deviates from its fundamental value. As
such, if we assume an asset’s exogenous constant fundamental price p⋆, the
demand is proportionate to (p⋆ − pt). Secondly, the demand of an average
chartist trader is proportional to the returns he observed in the previous pe-
riod, i.e. (pt −pt−1). Moreover, the demands of both groups involve noise terms
that reflect a certain within-group heterogeneity. Combining all, the demand
functions for fundamentalists and chartists for the period t are

df
t = ϕ(p⋆ − pt) + εf

t , εf
t ∼ N(0, σ2

f )

dc
t = χ(pt − pt−1) + εc

t , εc
t ∼ N(0, σ2

c ),

where ϕ, χ represent constant non-negative parameters, and σ2
f , σ2

c denotes the
volatilities of the noise terms εf

t , εc
t for the fundamentalists and chartists.

4.2.2 Switching mechanisms

The model considers two types of switching between the groups, the transition
probability approach (TPA) and the discrete choice approach (DCA). Both
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techniques incorporate index at−1 that stands for the relative attractiveness of
fundamentalism versus chartism behavior at the end of period t − 1.

Starting with the TPA approach, the idea is that increasing values of the
index increase the probability πcf of a chartist becoming a fundamentalist and
decrease the probability πfc of a fundamentalist switching to a chartist. In the
case of a decreasing index, the situation works vice versa. If we have a large
population and assume that the relative changes in the switching probabili-
ties are both linear and symmetrical, it can be shown that at a macro level,
the probabilistic factors become insignificant and the following deterministic
equation will determine the market fractions

nf
t = nf

t−1 + nc
t−1π

cf (at−1) − nf
t−1π

fc(at−1)

nc
t = 1 − nf

t

πcf (at−1) = min[1, ν exp(at−1)]

πfc(at−1) = min[1, ν exp(−at−1)]

where ν > 0 denotes the flexibility parameter.
The second approach DCA involves payoff indices uf and uc based on past

capital gains. The market shares then follow the formula

ns
t = exp(βus

t−1)
exp(βuf

t−1) + exp(βuc
t−1)

, s = c, f

where β is referred to as the intensity of choice. Economically, the fraction of
traders following a particular strategy depends positively on the payoffs from
the previous periods. The intensity of choice then represents how sensitive the
traders are to differences in the two trading strategies. With respect to the
fundamentalists, we can rewrite the market share as

nf
t = 1

1 + exp[−β(uf
t−1 − uc

t−1)]

In the expression above, the term (uf
t−1 − uc

t−1) measures the payoff difference
between fundamentalist and chartist trading. Due to the similar meaning,
the term can be substituted by the relative attractiveness of fundamentalism
strategy at−1. Then the DCA takes the following form

nf
t = 1

1 + exp(−βat−1)
, nc

t = 1 − nf
t
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From the description of the two switching approaches, it can be seen that
the DCA impacts the market shares directly on the level nf

t , via the term
1

1+exp(−βat−1) , and the TPA through impact the change (nf
t − nc

t), via the term
nc

t−1π
cf (at−1) − nf

t−1π
fc(at−1).

4.2.3 Determining the relative attractiveness

The model considers four possible components of the relative attractiveness
index — herding (H), wealth (W), predisposition (P), and misalignment (M).

Looking at the first component, herding reflects that the more adherents
one group has, the more attractive it becomes. The effect on the index at is
proportionate to the difference between the market fractions of fundamentalists
and chartists nf

t − nc
t and is measured by the term αn.

The second principle deals with the wealth difference between the two
strategies, and the definition is more challenging. Firstly, we start by con-
sidering both strategies’ short-term capital gains at day t. If we assume an
average trader, his gains can be derived as a demand formulated at the day
t − 2 and executed the next day at the price pt−1

gs
t = [exp(pt) − exp(pt−1)]ds

t−2, s = c, f

Next, let η be a memory coefficient between one and zero. Then we consider
the wealth of an average trader at day t to be calculated as a weighted average
between capital gains earned that day and wealth from the previous day.

ws
t = ηws

t−1 + (1 − η)gs
t , s = c, f

This definition of wealth can be then rewritten as

ws
t = (1 − η)

∞∑︂
k=0

ηkgs
t−k, s = c, f

which allows the interpretation of wealth as accumulated profits of a strategy
s over the infinite time discounted by (1 − η). Accordingly, the next princi-
ple we are interested in is the difference between wealth (wf

t − wc
t ) and the

proportionate impact on at is measured by αw.
Next, the predisposition term α0 reflects a certain a priori preference to-

wards one of the strategies. Regarding the tendency towards fundamentalism,
the term is positive, and vice versa for chartism.
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Lastly, the misalignment indicates that the further the asset price from the
fundamental value is, the riskier the chartism strategy becomes. It is calculated
as the squared deviations of pt from the p⋆, and the proportionate effect on the
index at is expressed through αp.

There are several ways of combining these components to define the relative
attractiveness index; however, after some preliminary results, the original paper
narrows the focus on the following four combinations

W at = αw(wf
t − wc

t ),

WP at = αw(wf
t − wc

t ) + α0,

WHP at = αw(wf
t − wc

t ) + αn(nf
t − nc

t) + α0,

HPM at = αn(nf
t − nc

t) + α0 + αp(pt − p⋆)2,

where αn, αp, αw are positive and α0 may take any value.
We obtain eight unique models by combining all types of relative attrac-

tiveness with two switching mechanisms. The original study neglected the
WHP-TPA model due to the irrelevance of the results, so the authors stud-
ied only seven models in detail. Additionally, four parameters are fixed for all
seven models. For clarity, Table 4.1 summarizes all the estimated parameters
and the values they can attain together with the fixed parameters proposed by
Franke & Westerhoff (2012).

Table 4.1: The overview of estimated and fixed parameters

Coefficient Possible values
ϕ aggressiveness of fundamentalists non-negative
χ aggressiveness of chartists non-negative
η memory (0,1)
σf volatility of the fundamentalists’ noise term non-negative
σc volatility of the chartists’ noise term non-negative
α0 predisposition any
αn herding strictly positive
αp misalignment strictly positive
αw wealth strictly positive
p⋆ fundamental value of the market asset fixed at 0.0
µ market impact factor of demand fixed at 0.01
ν flexibility parameter (TPA) fixed at 0.05
β intensity of choice (DCA) fixed at 1.0



Chapter 5

Data and methodology

The chapter introduces the financial datasets and setups for the optimization.
Section 5.1 presents the datasets we work with together with the logic behind
creating a hypothetical cryptocurrency index. Next, we discuss the setup for
the preliminary and final optimization setups in Section 5.2.

5.1 Description of data
For the analysis, we use log returns, so with respect to the log price pt, we can
write

rt = pt − pt−1

Based on the thesis’s original scope, we work with two types of datasets:
S&P500 and Bitcoin. Starting with the traditional financial markets, for the
extended version of the S&P500 Index, we include 10882 observations from
1980-01-02 to 2023-02-28 based on the closing prices from Yahoo Finance (2023)
[database accessed 2023-03-03]. The S&P500 index allows us to reevaluate the
original study, including major economic events such as the Financial Crisis or
the Covid-19 pandemic, and receive a more recent view of financial markets.
Moreover, it gives us a benchmark for the primary purpose of this thesis —
applying the model to crypto markets.

For the crypto analysis, we first maximize the observed period for the Bit-
coin data and cover 3594 observations from 2013-04-29 to 2023-02-28 using
prices from CoinGecko (2023) [database accessed 2023-03-06]. Secondly, we
create a hypothetical market-weighted crypto index. Based on the current
week, the index includes the top 20 cryptocurrencies by market cap, and we
reevaluate the weights in the index daily. For historical information on the most
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significant currencies by market capitalization, we gather information from the
weekly tables available at CoinMarketCap (2023b). For the daily prices of these
currencies, we use the CoinGecko (2023) database due to the convenient use
of pycoingecko library. We cover 2985 observations from 2014-12-28 to 2023-
02-28 [database accessed 2023-03-17]. Unfortunately, the use of two sources
and relatively large datasets of 20 currencies leads to some discrepancies in the
availability of the data, especially in the early years. However, the weights are
always reevaluated only for available currencies, so even though the term Top20
can be in this meaning misleading, the index itself should provide a relatively
realistic picture of the cryptocurrency market.

Figure 5.1: Comparison of log returns: Bitcoin and Top20 Index
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Figure 5.1 presents a comparison of the historical log returns of Bitcoin and
the Top20 Index. It can be easily seen that the overall shape is similar. The
most dominant extreme value is at the beginning of March 2020, representing
the start of Covid, where the log returns dropped by almost 50% on 2020-03-
12. We present Table 5.1 summarizing the standard descriptive statistics for
all covered datasets.
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Table 5.1: The overview of descriptive statistics of log returns of em-
pirical datasets

S&P500 Bitcoin Top20
Mean (×10−4) 3.31 14.33 18.69
Median (×10−4) 5.63 15.59 23.53
Min (×10−2) -22.89 -46.47 -45.41
Max (×10−2) 10.96 35.75 17.69
SD (×10−2) 1.14 4.13 3.84
Skewness -1.09 -0.53 -1.06
Kurtosis 24.34 10.91 10.68

5.2 Setup description
In the preliminary analysis, we analyze constraints covering all submodels’
behaviour. As the models consist of different parameter sets, the behaviour
changes considerably, especially for parameters such as fundamentalists’ ag-
gressiveness or the predisposition effect. As such, we relax the constraints that
are either unstable within the model itself or between different models and,
at the same time, tighten the stable ones. Moreover, the preliminary analysis
of the WHP-TPA model, combining wealth, herding and predisposition com-
ponents, suggested relevant results. Therefore, we decide to include it in the
final estimation and estimate a total of eight models instead of seven as in the
original study.

Looking at the technical details, during the first stage, we work with 100
repetitions, each consisting of 30 independent simulations with 2000 iteration
steps. For the weighting matrix, we create 5000 samples of non-overlapping
blocks from the empirical time series of length 250 days for the first five mo-
ments of our interest. For the moments capturing the long memory properties
(autocorrelation of absolute returns at lags i ∈ {10, 25, 50, 100}), we use blocks
with a length of 750 days.

Due to the heterogeneity between the models’ behaviour, we obtain rela-
tively wide parameters’ constraints, so for the final analysis, we increase the
iteration steps to 6000. Simply speaking, the increase in iterations gives the
optimization a higher chance of reaching the optimum or at least getting rea-
sonably close to it. Next, we increase the number of independent simulations
to 100 to mitigate the effect of randomness.



Chapter 6

Results

The chapter displays and discusses the optimized parameters and the loss func-
tion values. Section 6.1 presents the results for the S&P500 dataset. Section 6.2
and Section 6.3 continue with the results of the application to the cryptocur-
rency market, discussing the Bitcoin and Top20 Index datasets, respectively.

6.1 S&P500
Before going into details, let us again enhance the differences between the
models. The relative attractiveness specifications are based on combinations
of four components - wealth (W), predisposition (P), herding (H), and price
misalignment (M). In the TPA approach, the relative attractiveness determines
the probability of changing the strategy, and in the DCA, the effect of the index
is directly on the level of fractions.

Table 6.1 presents the optimized parameter estimated for the empirical
S&P500 dataset. Overall, we receive approximately three times lower average
J-values than the original study for all models, which we attribute mainly to a
better optimization method and setup. Firstly, the optimization methods have
developed in the last ten years, and we likely use a more advanced optimiza-
tion package than the original study. Secondly, the wider constraints give the
optimization more freedom in reaching or getting close to the optimum. More-
over, we also use a larger dataset with more observations that reveals more
information on the behaviour in the financial markets. However, all models are
still rejected as the true models by the J-test of overidentification at the 5%
significance level.
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Table 6.1: Franke and Westerhoff (2012): Results for the S&P500 data

DCA TPA

Par./ Model
L

W
6

WP
7

WHP
8

HPM
7

W
6

WP
7

WHP
8

HPM
7

ϕ̂
⟨0,10⟩

7.007
(4.46,9.81)

3.322
(0.03,9.86)

3.345
(0.13,9.12)

0.257
(0.19,0.33)

7.049
(4.48,9.19)

4.462
(0.11,9.83)

5.434
(0.04,9.91)

0.266
(0.17,0.35)

χ̂
⟨0,5⟩

3.859
(0.208,4.989)

1.375
(0.075,4.658)

1.197
(0.039,3.620)

0.125
(0.001,0.413)

4.134
(2.251,4.970)

1.107
(0.006,4.741)

1.578
(0.117,4.174)

0.106
(0.003,0.382)

η̂
⟨0.8,1⟩

0.996
(0.994,0.998)

0.996
(0.992,0.998)

0.995
(0.988,0.998)

- 0.995
(0.993,0.997)

0.996
(0.990,0.998)

0.970
(0.823,0.998)

-

σ̂f
⟨0,3.5⟩

0.768
(0.50,1.23)

1.607
(0.71,2.12)

1.753
(0.86,2.17)

1.870
(1.33,1.99)

0.859
(0.78,0.90)

1.705
(0.88,2.12)

1.524
(0.88,2.06)

1.834
(1.33,1.98)

σ̂c
⟨0,4⟩

1.645
(0.84,2.25)

0.967
(0.69,1.98)

0.963
(0.79,1.91)

0.891
(0.83,0.90)

1.723
(1.42,2.03)

1.031
(0.82,2.01)

0.944
(0.83,1.86)

0.889
(0.84,0.90)

α̂0
⟨−12,6⟩

- −3.751
(−9.85,3.95)

−4.652
(−10.89,3.38)

−10.138
(−11.85,−4.01)

- −5.059
(−8.85,3.88)

−2.956
(−10.45,4.40)

−10.993
(−11.99,−4.68)

α̂n
⟨0,8⟩

- 2.434
(0.38,6.80)

3.258
(2.67,4.40)

- 3.816
(0.16,7.94)

0.628
(0.02,1.56)

α̂p
⟨40,200⟩

- - - 56.02
(42.16,172.52)

- - - 67.90
(51.40,198.34)

α̂w
⟨200,3200⟩

2065.80
(854.28,3131.23)

2424.54
(911.52,3178.77)

2557.68
(1315.12,3152.05)

- 2561.65
(1049.64,3191.86)

2751.91
(1893.87,3195.47)

2098.84
(415.56,3180.15)

-

J̄ = J(θ̂) 9.588
(7.93,13.14)

9.098
(7.75,10.49)

8.619
(6.85,10.89)

6.646
(6.25,7.32)

8.556
(7.21,10.17)

8.617
(7.51,9.95)

9.563
(7.92,10.88)

6.838
(6.46,7.33)

χ2
9−L 7.81 5.99 3.84 5.99 7.81 5.99 3.84 5.99

p-value 0.022 0.011 0.003 0.036 0.036 0.013 0.002 0.033
J-test at 5% rej.H0 rej.H0 rej.H0 rej.H0 rej.H0 rej.H0 rej.H0 rej.H0

Note: The optimized parameters are based on 100 repetitions, each averaged over 100 independent simulations with 6000 iterations. The
constraints for the parameters are denoted in ⟨ ⟩ brackets, and 95% sample confidence intervals are in ( ) parentheses.
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The best-performing models with respect to p-values are W-TPA and HPM-
DCA, with a value of 0.036. A similar p-value of 0.033 also has the HPM-TPA
specification. Since the HPM models have lower J-values in both switching
approaches and p-values are relatively similar for W and HPM, the HPM spec-
ification seems to be the winner regardless of the switching approach. This
suggests that the combination of herding, predisposition towards one of the
strategies, and price misalignment appears to be the best when capturing the
dynamics in the financial market represented by the S&P500 Index. Addition-
ally, in the case of HPM, the estimated parameter α̂n in both the DCA a TPA
approach pushes to the lower bound, meaning that the J-value could be likely
improved with looser bounds. Looking at the interpretation of the HPM mod-
els, the negative predisposition parameter suggests an a priori preference for
chartism. Next, the high values of the price misalignment suggest stronger ten-
dencies to change strategy to fundamentalism when the price of an asset gets
far away from its fundamental value, and the herding is of similar magnitude
to the original study.

Concerning the switching, the DCA and TPA approaches have no clear
overall winner. W and WP specifications receive better results in the TPA
setting, and WHP and WP perform better in the DCA.

Regarding the estimated parameters, we can see considerable heterogeneity
between the models. Firstly, the wealth component leads to a higher magnitude
of the aggressiveness parameters ϕ̂ and χ̂ compared to the HPM specification,
which aligns with the original study. The memory coefficient is very close to
the upper bound, suggesting the strong influence of past wealth on the wealth
component. Next, the noticeable difference compared to the original study is
that the fundamentalists have roughly two times higher volatility in the noise
term than the chartists in the WP, WHP, and HPM models. This could be
attributed to adding more than a decade of new observations, including major
economic events such as the Financial Crisis, the Great Recession, and Covid-
19.

Generally, the confidence intervals for the estimated parameters are wide,
with the exception of the memory coefficient η̂, while the confidence intervals for
the J-values are relatively narrow. This suggests that many parameter sets with
different estimates lead to similar loss function values. Additionally, the loose
bounds compared to the previous research capture the majority of parameters
behaviour, except for herding where the HPM strongly pushes to the lower
bound and misalignment in the HPM-TPA is close to the upper bound. For
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the estimated parameters determining the relative attractiveness, the wealth
α̂w and herding α̂n component is of similar magnitude to the original study.
On the other hand, the price misalignment is several times higher, meaning a
stronger tendency to switch to a fundamentalist strategy when the price gets
far from the fundamental value. The predisposition parameter is significantly
negative for WP and HPM models, suggesting a priori preference for chartism.

6.2 Bitcoin
Looking at the results from Bitcoin data, the main finding is that all submodels
are valid based on the J-test at a 5% significance level (see Table 6.2). Not
rejecting the null hypothesis means that they offer a close approximation of
the data-generating process. This result suggests that using models based on
interactions between boundedly rational agents to explain the behaviour of
cryptomarkets looks promising.

The model with the highest p-value at 0.57 is W-TPA, closely followed by
the W-DCA at 0.54. The results of the models with W specifications, both in
terms of the highest p-values and smallest J-values, mean that the model based
on the wealth differences between the two strategies captures the behaviour at
the Bitcoin market the best.

The second-best models are WP, combining the differences in wealth and
certain predispositions towards one of the strategies. A direct comparison can
be made with the HPM models, which are based on the same number of pa-
rameters. The J-values are approximately lower by 60%, and the p-values are
more than doubled, indicating a clear superiority of the WP specification.

Comparing the TPA and DCA switching approach, the TPA performs bet-
ter with a lower average J-value in all models. This contrasts with the S&P500
results, where the switching approaches performed similarly. However, as the
J-values between models with the same specifications but different switching
differ only slightly, the essential factor when comparing the quality of the mod-
els is the specification, not the switching mechanism.

Generally, the confidence intervals for most estimates are narrower com-
pared to the previous case and do not hit bounds. The exceptions are, again,
the lower bounds of the herding component for the HPM specifications and the
wealth boundaries, especially for W-TPA. Moreover, the confidence intervals
of chartists’ aggressiveness hit zero for all models, suggesting a questionable
significance of this parameter. On the other hand, the fundamentalists’ aggres-
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Table 6.2: Franke and Westerhoff (2012): Results for the Bitcoin data

DCA TPA

Par./ Model
L

W
6

WP
7

WHP
8

HPM
7

W
6

WP
7

WHP
8

HPM
7

ϕ̂
⟨0,10⟩

7.222
(6.95,7.76)

7.946
(5.69,9.64)

7.371
(1.97,9.72)

1.220
(1.12,1.27)

7.229
(6.96,7.84)

7.505
(4.89,9.34)

7.626
(5.38,9.45)

1.151
(1.05,1.27)

χ̂
⟨0,5⟩

0.252
(0.003,1.192)

0.858
(0.010,2.805)

0.740
(0.007,3.086)

0.061
(0.002,0.216)

0.287
(0.001,1.152)

0.489
(0.009,1.609)

0.606
(0.005,2.196)

0.074
(0.003,0.273)

η̂
⟨0.8,1⟩

0.987
(0.986,0.987)

0.986
(0.984,0.988)

0.986
(0.983,0.987)

- 0.987
(0.986,0.988)

0.986
(0.985,0.988)

0.986
(0.982,0.988)

-

σ̂f
⟨0,3.5⟩

1.668
(1.65,1.69)

1.701
(1.63,2.54)

1.733
(1.63,2.58)

2.516
(2.49,2.54)

1.671
(1.66,1.69)

1.717
(1.63,2.73)

1.684
(1.63,1.72)

2.505
(2.47,2.53)

σ̂c
⟨0,4⟩

2.797
(2.76,2.85)

2.751
(1.65,2.98)

2.692
(1.65,2.90)

1.618
(1.61,1.63)

2.805
(2.76,2.84)

2.696
(1.68,2.85)

2.740
(2.51,2.95)

1.616
(1.60,1.63)

α̂0
⟨−12,6⟩

- −2.773
(−11.02,5.14)

−2.456
(−11.24,5.04)

−11.045
(−11.98,−9.15)

- −3.124
(−10.66,5.40)

−2.431
(−11.31,4.95)

−11.078
(−11.96,−9.50)

α̂n
⟨0,8⟩

- - 2.285
(0.12,5.01)

3.077
(2.39,3.80)

- - 1.603
(0.12,4.83)

1.088
(0.17,1.82)

α̂p
⟨40,200⟩

- - - 149.633
(123.99,176.13)

- - - 156.707
(129.35,185.23)

α̂w
⟨200,3200⟩

2827.15
(2099.35,3188.98)

2380.34
(863.68,3171.47)

2444.09
(904.06,3139.26)

- 2750.32
(1993.70,3185.04)

2336.98
(822.45,3165.33)

2625.21
(1767.86,3167.80)

-

J̄ = J(θ̂) 2.158
(1.91,2.59)

2.738
(2.17,4.62)

2.785
(2.06,5.19)

4.614
(4.38,4.93)

2.005
(1.76,2.37)

2.584
(1.88,4.71)

2.637
(1.97,4.59)

4.450
(4.12,4.69)

χ2
9−L 7.81 5.99 3.84 5.99 7.81 5.99 3.84 5.99

p-value 0.540 0.254 0.095 0.100 0.571 0.275 0.104 0.108
J-test (5%) not rej. H0 not rej. H0 not rej. H0 not rej. H0 not rej. H0 not rej. H0 not rej. H0 not rej. H0

Note: The optimized parameters are based on 100 repetitions, each averaged over 100 independent simulations with 6000 iterations. The
constraints for the parameters are denoted in ⟨ ⟩ brackets, and 95% sample confidence intervals are in ( ) parentheses.
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siveness reaches higher values compared to the S&P500 data. The volatilities
of the noise terms σ̂f and σ̂c are also higher in all models, which is in line
with the more volatile nature of Bitcoin itself. Lastly, the estimations of other
parameters determining the relative attractiveness are similar to the results of
S&P500 data, with the exception of the misalignment parameter that is more
than doubled. This suggests that traders are more sensitive to the deviation
of the price from its fundamental value and are more likely to change their
strategy to fundamentalism.

6.3 Top20
Finally, after receiving promising results for Bitcoin, we take a closer look at the
more realistic representation of the whole crypto market, an index consisting
of Top20 cryptocurrencies. Compared to the previous cases, we had to extend
the upper bound for the aggressiveness of fundamentalists from 10 to 16 as
all models including the wealth component reached the upper bound in the
preliminary analysis.

Looking at the results in Table 6.3, we immediately notice that we get higher
J-values than in the case of Bitcoin itself but lower than in the S&P500 Index.
An intuitive explanation for this robust rank is that the values correspond to
how rational or irrational the market is. S&P500 is the most commonly used
benchmark for financial markets, the more mature and stable form of market
that we study. As such, we can expect more reasonable participant behaviour.
Cryptomarkets are, on the other hand, much more volatile and less regulated,
attracting the riskier type of investors who are more prone to irrational ac-
tions. At the same, the index consisting of the Top20 cryptocurrency is more
resilient towards fluctuations of individual currencies, includes a larger pool of
participants and therefore could be considered more rational than Bitcoin.

Looking at the results of the Top20 Index, only W-DCA and W-TPA cannot
be rejected at the 5% significance level, and WP models are rejected only
weekly. These findings, consistent with those from the Bitcoin market, indicate
that wealth specifications that rely on the differences in wealth between the two
strategies are the most effective in capturing the behaviour in crypto markets.
Compared to the financial markets represented by the S&P500 Index, the HPM
specifications perform poorly and are strongly rejected. As such, among the
models with seven parameters, WP specification is preferred. Both DCA and
TPA switching approaches perform similarly in terms of J-value.
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Table 6.3: Franke and Westerhoff (2012): Results for the Top20 data

DCA TPA

Par./ Model
L

W
6

WP
7

WHP
8

HPM
7

W
6

WP
7

WHP
8

HPM
7

ϕ̂
⟨0,16⟩

12.447
(11.35,13.87)

13.21
(11.22,15.80)

13.135
(10.97,15.68)

1.467
(1.39,1.54)

12.953
(11.41,14.77)

13.147
(10.94,15.48)

13.175
(11.13,15.37)

1.499
(1.44,1.70)

χ̂
⟨0,5⟩

1.845
(0.174,4.040)

1.174
(0.035,3.957)

1.499
(0.015,4.394)

0.135
(0.006,0.381)

1.867
(0.020,4.138)

1.640
(0.003,4.749)

1.741
(0.028,3.976)

0.133
(0.002,0.477)

η̂
⟨0.8,1⟩

0.982
(0.979,0.984)

0.982
(0.977,0.984)

0.980
(0.973,0.984)

- 0.980
(0.978,0.983)

0.981
(0.975,0.985)

0.980
(0.975,0.983)

-

σ̂f
⟨0,3.5⟩

1.649
(1.62,1.67)

1.638
(1.58,1.68)

1.676
(1.60,2.36)

2.395
(2.36,2.43)

1.649
(1.62,1.67)

1.655
(1.59,2.03)

1.659
(1.60,2.03)

2.397
(2.37,2.43)

σ̂c
⟨0,4⟩

3.272
(3.18,3.36)

3.064
(2.79,3.36)

3.084
(1.54,3.42)

1.525
(1.50,1.55)

3.258
(3.09,3.41)

3.123
(2.09,3.43)

3.143
(2.02,3.40)

1.529
(1.51,1.55)

α̂0
⟨−12,6⟩

- −6.335
(−11.57.4.46)

−4.125
(−11.44,5.63)

−6.523
(−7.90,−4.96)

- −4.843
(−11.30,4.89)

−2.750
(−11.40,5.20)

−6.513
(−7.26,−5.76)

α̂n
⟨0,8⟩

- - 3.137
(0.14,7.66)

3.911
(3.23,4.86)

- - 3.418
(0.16,7.70)

1.379
(0.81,2.03)

α̂p
⟨40,200⟩

- - - 183.538
(144.37,199.07)

- - - 187.86
(168.74,199.78)

α̂w
⟨200,3200⟩

2647.36
(1782.37,3185.24)

2042.30
(935.26,3121.52)

2132.48
(864.83,3122.58)

- 2386.02
(731.38,3173.02)

2254.59
(881.48,3160.94)

2268.69
(953.27,3155.90)

-

J̄ = J(θ̂) 5.922
(5.58,6.35)

6.096
(5.50,7.71)

6.489
(5.75,9.80)

11.012
(10.76,11.34)

5.958
(5.48,6.42)

6.409
(5.64,9.96)

6.453
(5.73,10.18)

11.075
(10.77,11.48)

χ2
9−L 7.81 5.99 3.84 5.99 7.81 5.99 3.84 5.99

p-value 0.115 0.047 0.011 0.004 0.114 0.041 0.011 0.004
J-test (5%) not rej. H0 rej. H0 rej. H0 rej. H0 not rej. H0 rej. H0 rej. H0 rej. H0

Note: The optimized parameters are based on 100 repetitions, each averaged over 100 independent simulations with 6000 iterations. The
constraints for the parameters are denoted in ⟨ ⟩ brackets, and 95% sample confidence intervals are in ( ) parentheses.
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In all models, fundamentalists display higher levels of aggressiveness com-
pared to other markets, exceeding Bitcoin by approximately 60%. Chartists, on
the other hand, exhibit even greater levels of aggressiveness, with values several
times higher, especially for HPM models. While the fundamentalists’ volatility
of the noise term is comparable to that of Bitcoin, the chartists’ volatility is
roughly 15% higher, with the exception of HPM models. The higher value of
α̂n and α̂p suggests more pronounced herding behaviour compared to previous
markets and a stronger influence of price misalignment.

To sum up the central message of our results, we demonstrated a very
promising application of financial agents to cryptocurrency markets, both on
the level of Bitcoin and a hypothetical Top20 Index. These findings, repre-
sented by small values of the average loss function and tested by the J-test of
overidentification, are consistent between different model specifications.



Chapter 7

Discussion

The chapter discusses the limitations of our analysis and potential improve-
ments for further research. Firstly, we examine the limitations of our setup
and constraints in Section 7.1. In Section 7.2, we discuss our inability to in-
terpret the meaningful evolution of the two groups. Lastly, we talk about
alternative evaluation metrics in Section 7.3.

7.1 Constraints
To start, let us dive into the constraints setup and its limitations. In our prelim-
inary analysis of the S&P500 dataset, we checked the behaviour of all models
with a relatively modest setup (100 replications, each averaged on 30 indepen-
dent simulations with 2000 iteration steps). The heterogeneity between the
models, especially for the parameters as the aggressiveness of fundamentalists
ϕ̂ and the predisposition component αn̂, led to setting rather loose constraints.
This aimed to give the optimization enough space to find the minimum and
have the same constraints for different empirical datasets when possible. In the
extended versions, we then encountered two issues.

Firstly, despite setting relatively wide constraints for the estimated param-
eters, the final runs with more iteration steps hit the bounds. The explanation
for encountering this problem is that with a lower number of iterations, the op-
timization did not reach the boundary, and thus such behaviour could not be
detected. Due to this, we could likely get lower numbers for the HPM models
by extending the boundaries. Secondly, the relatively wide constraints often
lead to wide distributions of the parameters. This means relatively many com-
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binations of parameters lead to similar results, undermining the final value of
the parameters calculated as an average.

In the future, several measures could be taken to improve the results in this
matter. First, conducting more replications would reveal more information
about the distributions of the parameters and J-values. Currently, with 100
replications, it is uncertain whether the wide distributions of certain parameters
are a property of the model or whether we did not have enough values to reveal
the true shape of the parameters’ distribution. However, increasing replications
linearly increases the computational time, so we would need a more powerful
computing budget.1

Similarly, widening the constraints or increasing the number of iteration
steps would be computationally expensive. As such, we could bypass this issue,
at least to some extent, by having multiple constraint sets for different models.
From all models, it can be seen that the behaviour between the two switching
approaches is relatively similar, and we get much heterogeneous behaviour from
the different relative attractiveness specifications. Therefore, we could create
constraint sets for different model specifications. However, we would lose the
ability to compare the models themselves directly with each other, so having a
more powerful computational setup for future estimations would be a preferable
option.

7.2 Interpreting the results
Up to this point, we have intentionally postponed the discussion on the evolu-
tion of the trading groups. We receive two opposite extremes, either absolute
dominance of chartists or fundamentalists, which is very unlikely in real life.
Moreover, there is almost no gradual dynamic in the switching. Figure 7.1 il-
lustrates these issues on the evolution of chartists and log returns based on the
optimized sets of parameters for all datasets for the HPM-DCA and W-DCA
models. Figures for chartists’ evolution for all models are then available in Ap-
pendix A (see Figure A.1 for S&P500, Figure A.2 for Bitcoin, and Figure A.3

1In our analysis, the majority of simulations were executed on a server with an Intel Xeon
W 3.00 GHz processor with 10 cores and 32 GB RAM. With the setting of 100 replications,
each averaged over 100 simulations with 6000 iteration steps, the average computational time
is around 16 hours for the most extended S&P500 dataset and the most complex WHP-TPA
model. For the shorter Bitcoin and Top20 datasets, the computational time decreases to a
third and takes approximately 5 hours. In the case of less complex specifications with six or
seven estimating parameters, the optimization declines by 10-20%.
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for Top20 Index). The behaviour observed in both cases is highly improba-
ble and contradictory, indicating that chartists have a dominant influence in
the HPM-DCA model, while fundamentalists have a stronger impact in the
W-DCA model. The only behaviour that persists in both types is stronger
switching tendencies in crypto markets. The only evolution that does not seem
completely unrealistic is the W-DCA for S&P500, but the log returns show an
unlikely behaviour.

Figure 7.1: Evolution of chartists and log returns for HPM-DCA and
W-DCA models
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However, the issue of unlikely optimization results is not unique to our
study. Figure 7.2 displays the evolution of chartists based on optimized re-
sults from the three recent studies by Barde (2016), Platt (2020), and Zila &
Kukacka (2023). As can be seen, optimized parameters from all studies en-
counter similar unlikeliness of real representation, however, from the opposite
bank. Looking at the graphs, there is almost no interaction between chartists
and fundamentalists, with the chartists representing less than 4% of all partic-
ipants for the majority of the time.

Figure 7.2: Evolution of chartists — HPM-DCA
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Note: The graphs are based on optimized parameters sets for HPM-DCA model for
S&P500 Index (Platt 2020; Zila & Kukacka 2023) and USP/GBP exchange rates
(Barde 2016).

Zila & Kukacka (2023) use a very similar number of observations and only
a slightly different setup with two main differences, narrower constraints and
500 replications. Interestingly, when we compare the final loss functions, they
receive just a slightly smaller average J-value of 6.32 compared to our value of
6.65. Despite having similar J-values, the final economic interpretation would
be entirely different, with one study being entirely dominated by chartists and
the other by fundamentalists. This suggests some inconsistencies that should be
addressed in future research. Looking at what could be improved in our work,
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compared to other studies, we use much wider constraints. Even though the
model itself does not have upper limits for the parameters with the exception
of the memory coefficient, some upper boundaries may be needed to capture
the dynamics meaningfully.

Another option is to scrutinize and reevaluate the fixed parameters intro-
duced in Franke & Westerhoff (2012). The original study does not specify
reasons for choosing particular values of these parameters. However, they were
likely determined based on information up to 2007, not capturing events such as
the Financial Crisis, Covid-19, or the Russian invasion of Ukraine, which signif-
icantly shook the markets. Therefore, we believe that reevaluating the values
of the fixed parameters could encourage more dynamic interactions between
chartists and fundamentalists.

7.2.1 Potential reevaluation of fixed parameters

Although a more detailed analysis of the fixed parameters would be needed for
further research, we highlight several observations we noticed while working
with the model. For additional analysis, we used our optimized results and
tried different settings. We scaled the market impact factor of demand µ, the
flexibility parameter ν for the TPA switching, and the intensity of choice β for
the DCA switching. Moreover, we changed the intensity of noise terms.

The only change that did not drastically increase the J-value and encourage
dynamics was changing the parameter β for the DCA switching from 1 to 0.1.
The J-values, in this case, roughly doubled. Figure 7.3 presents the evolution
of chartists and log returns with the same parameter sets as in Figure 7.1, but
with the scaled β to 0.1. The switching is boosted in all cases, and we decreased
the occurrence of extreme instances of pure dominance of one of the groups.
Especially the W-DCA specification in the crypto markets suggests behaviour
and log returns that are much closer to what we could expect. However, when
looking at Figure 7.3, we must keep in mind that we rescaled β after the
optimization. If we had rescaled β prior to the optimization, the optimization
would have likely arrived at a different set of parameters, which could have
shown different dynamics.

Unfortunately, for the TPA switching, we could not find any setting that
would stimulate the interactions, and we leave this task to further research.
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Figure 7.3: Evolution of chartists and log returns for HPM-DCA and
W-DCA models with β = 0.1

0 500 1000 1500 2000 2500
time

0.0

0.5

1.0

n c

HPM-DCA, S&P500

0 500 1000 1500 2000 2500
time

0.2

0.0

0.2

Lo
g 

r t

0 500 1000 1500 2000 2500
time

0.0

0.5

1.0

n c

HPM-DCA, Bitcoin

0 500 1000 1500 2000 2500
time

0.2

0.0

0.2

Lo
g 

r t

0 500 1000 1500 2000 2500
time

0.0

0.5

1.0

n c

HPM-DCA, Top20

0 500 1000 1500 2000 2500
time

0.2

0.0

0.2

Lo
g 

r t

0 500 1000 1500 2000 2500
time

0.0

0.5

1.0

n c

W-DCA, S&P500

0 500 1000 1500 2000 2500
time

0.2

0.0

0.2

Lo
g 

r t

0 500 1000 1500 2000 2500
time

0.0

0.5

1.0

n c

W-DCA, Bitcoin

0 500 1000 1500 2000 2500
time

0.2

0.0

0.2

Lo
g 

r t

0 500 1000 1500 2000 2500
time

0.0

0.5

1.0

n c

W-DCA, Top20

0 500 1000 1500 2000 2500
time

0.2

0.0

0.2

Lo
g 

r t



7. Discussion 35

7.3 Evaluation metrics
Lastly, we briefly discuss the value metrics and possible alternatives to evalu-
ations of our results. We evaluate the results using the standardly used J-test
of overidentifying restrictions. For each replication, we take an average of 100
simulations. However, outlying values may shift the average, especially if we
work with a small sample, which is our case. As such, an alternative measure
more persistent towards outlying values would be using the median.

We present the frequency distributions of J-values for Bitcoin Figure 7.4.
The level of symmetry varies between models, with most distributions skewed
to the right, meaning that, indeed, we would benefit from using the median.
For the frequency distributions for other datasets, we refer to Figure A.4 for
S&P500 and Figure A.5 for Top20 Index in Appendix A.

Figure 7.4: Distributions of J-values based on optimized sets of pa-
rameters: Bitcoin
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Chapter 8

Conclusion

This thesis is concerned with one of the first applications of a financial agent-
based model to the cryptocurrency markets. To do so, we used a widely ana-
lyzed model of Franke & Westerhoff (2012), and for the estimation, we implied
the simulated method of moments. The model is based on interactions between
two types of traders, fundamentalists and chartists. It uses two switching ap-
proaches and four combinations of parameters to determine the attractiveness
of the other trading strategy. We invoked the J-test of overidentifying restric-
tions to evaluate the results.

Firstly, we reevaluated the original study on S&P500 Index to receive a
more up-to-date view of financial market behaviour. The extended time period
included observations throughout major economic events such as the Financial
Crisis or Covid-19. Next, we applied the model to Bitcoin. After receiving
promising results from the Bitcoin analysis, we created a third type of data
set, a hypothetical market-weighted Top20 cryptocurrency index. The index
includes the top 20 cryptocurrencies by market cap on a weekly basis and
reevaluates the weights daily.

We considerably widened the constraints for the parameters compared to
previous research. We received roughly three times lower J-values for the final
analysis than the original study for the S&P500. The best-performing specifi-
cation with the lowest J-value is the HPM combining herding, predisposition
and price misalignment. The overall winning model is the HPM-DCA with
the p-value of 3.6%. Although still rejected by the J-test alongside all other
specifications at the 5% significance level, the preference for this model when
capturing behaviour at financial markets is consistent with the original study.
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For the Bitcoin data, all models could not be rejected as true models at the
5% significance level. Among them, the ones with the highest p-value of 57.1%
and 54% were W-TPA and W-DCA specifications, respectively.

Thirdly, the optimization of the hypothetical Top20 Index produced smaller
J-values compared to the S&P500 Index and higher compared to Bitcoin, ex-
cept for the HPM specifications. We believe that this robust rank can be
attributed to how irrational or rational the market is. The S&P500 represents
a stable and mature financial market benchmark with more reasonable partic-
ipant behaviour, while crypto markets are volatile, less regulated, and attract
riskier investors prone to irrational actions. At the same time, the Top20 Index
is more resilient to individual currency fluctuations, includes a larger pool of
participants, and could be therefore considered more rational than Bitcoin.

The model with the highest p-value of 11.5% and 11.4% were W-DCA and
W-TPA, similar to Bitcoin. This suggests that models concerning the wealth
differences between the two strategies capture the behaviour in crypto markets
the best. The switching mechanism plays only a marginal role for the J-test,
as the values usually differed only slightly for all studied markets.

To summarise the main message from the results, we demonstrated a very
promising application of financial agents to cryptocurrency markets, both on
the level of Bitcoin and a hypothetical Top20 Index.

Additionally, we identified a research gap when interpreting the evolution
of chartists in the market. Evolutions based on optimized parameter sets in
several recent studies suggest the absolute dominance of one group of agents
and a lack of dynamics between the groups. For the optimized parameters in
our study, we were able to evoke some level of dynamics in the DCA switching
by scaling the parameter β from 1 to 0.1. To encourage more interactions, we
believe that further research needs to focus on scrutinizing the fixed parame-
ters.
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Supporting Figures

Figure A.1: Evolution of chartists based on optimized sets of param-
eters: S&P500
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Figure A.2: Evolution of chartists based on optimized sets of param-
eters: Bitcoin
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Figure A.3: Evolution of chartists based on optimized sets of param-
eters: Top20 Index
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Figure A.4: Distributions of J-values based on optimized sets of pa-
rameters: S&P500
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Figure A.5: Distributions of J-values based on optimized sets of pa-
rameters: Top20 Index

7.00 7.25
J-value

0

5

10

15

Fr
eq

ue
nc

y

W-DCA

8 10
J-value

0

10

20

30

Fr
eq

ue
nc

y

WP-DCA

8 10
J-value

0

10

20

Fr
eq

ue
nc

y

WHP-DCA

10.5 11.0 11.5
J-value

0

10

20

Fr
eq

ue
nc

y

HPM-DCA

6.5 7.0 7.5
J-value

0

10

20

30

Fr
eq

ue
nc

y

W-TPA

8 10
J-value

0

20

40

Fr
eq

ue
nc

y

WP-TPA

6 8 10
J-value

0

20

40

Fr
eq

ue
nc

y

WHP-TPA

11.0 11.5
J-value

0

10

20

Fr
eq

ue
nc

y

HPM-TPA

Top20


	Abstract
	Contents
	List of Tables
	List of Figures
	Acronyms
	Thesis Proposal
	1 Introduction
	2 Literature review
	2.1 Financial agent-based modeling
	2.1.1 Types and differences between FABMs
	2.1.2 Estimation and evaluation of agent-based models

	2.2 Cryptocurrency markets
	2.2.1 Stylized facts of cryptocurrency markets
	2.2.2 Investment and diversification benefits


	3 The simulated method of moments
	3.1 About the method
	3.2 Formal definition
	3.2.1 Weighting matrix

	3.3 The selected moments

	4 Franke and Westerhoff (2012) model
	4.1 About the model
	4.2 Formal definition
	4.2.1 Demand and price impact functions
	4.2.2 Switching mechanisms
	4.2.3 Determining the relative attractiveness


	5 Data and methodology
	5.1 Description of data
	5.2 Setup description

	6 Results
	6.1 S&P500
	6.2 Bitcoin
	6.3 Top20

	7 Discussion
	7.1 Constraints
	7.2 Interpreting the results
	7.2.1 Potential reevaluation of fixed parameters

	7.3 Evaluation metrics

	8 Conclusion
	Bibliography
	A Supporting Figures

