
MASTER THESIS

Bc. Renáta Pivodová

Multi-objective Neural Architecture
Search

Department of Theoretical Computer Science and Mathematical Logic

Supervisor of the master thesis: Mgr. Martin Pilát, Ph.D.
Study programme: Computer Science

Study branch: Artificial Intelligence

Prague 2023

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

ii

I dedicate this work to my family and my partner. Also my great thanks belongs
to supervisor of this thesis Martin Pilát for his support, mentoring and advice.

Computational resources were provided by the e-INFRA CZ project
(ID:90140), supported by the Ministry of Education, Youth and Sports of the
Czech Republic.

iii

iv

Title: Multi-objective Neural Architecture Search

Author: Bc. Renáta Pivodová

Department: Department of Theoretical Computer Science and Mathematical
Logic

Supervisor: Mgr. Martin Pilát, Ph.D., Department of Theoretical Computer
Science and Mathematical Logic

Abstract: Neural architecture search is a promising approach to automatic neural
network architecture design, which can save a designer’s work. The real world
contains a lot of problems, which are time-consuming to solve even by neural
architecture search techniques. A lot of these problems require architectures
optimized according to different criteria such as quality, time of search, etc. In
this work, we present two methods extending the CoDeepNEAT, a state-of-the-
art neural architecture search algorithm. The Lamarckian CoDeepNEAT is the
CoDeepNEAT enriched with weight inheritance implementation inspired by the
Lamarckian theory of evolution. The Multi-objective CoDeepNEAT performs a
multi-objective minimization of two chosen neural network objectives - the error
rate and the number of floating point operations. Thanks to the base NSGA-
II algorithm, the Multi-objective CoDeepNEAT searches for well-performing and
fast networks. The methods are evaluated on the MNIST and CIFAR-10 datasets.

Keywords: neural architecture search multiobjective optimization lamarckism
evolutionary algorithm CoDeepNEAT neural networks

v

vi

Contents

Introduction 3

1 Evolutionary Algorithms 5
1.1 Biological Inspiration . 5
1.2 Individual . 5

1.2.1 Genotype and Phenotype 5
1.2.2 Fitness . 6

1.3 Genetic Operators . 6
1.3.1 Selection . 6
1.3.2 Crossover . 7
1.3.3 Mutation . 9

1.4 Genetic Algorithms . 10
1.5 Coevolution . 10
1.6 Multi-objective EA . 12

1.6.1 Pareto-based Methods . 12
1.6.2 NSGA-II . 13

2 Neural Networks 15
2.1 Biological inspiration . 15
2.2 Perceptron . 15
2.3 Feedforward Neural Networks . 16
2.4 Convolutional Neural Networks 17

3 Neural Architecture Search 21
3.1 NAS Components . 21
3.2 ENAS . 24
3.3 LEMONADE . 25
3.4 CoDeepNEAT . 25

3.4.1 Development . 26
3.4.2 Principles of CoDeepNEAT 27

4 Proposed Approach 31
4.1 LamaCoDeepNEAT . 31
4.2 Multi-objective LamaCoDeepNEAT 33

5 Experiments 39
5.1 Used Implementation . 39
5.2 Datasets . 40

5.2.1 MNIST . 40
5.2.2 CIFAR-10 . 41

5.3 Experiments with MNIST . 41
5.4 Experiments with CIFAR-10 . 47

5.4.1 CIFAR-10 - Short Version 48
5.4.2 CIFAR-10 - Short Version, Higher Mutation Probability . 50
5.4.3 CIFAR-10 - Long Version 54

1

Conclusion 59

Bibliography 61

List of Figures 67

List of Tables 71

A Attachments 73
A.1 Hardware . 73
A.2 Digital Attachements . 73

2

Introduction
Artificial Intelligence (AI) is a beneficial field making work easier and more pleas-
ing in many fields. An image recognition model can perform melanoma (a type
of skin cancer) detection in medicine field. A recommendation system, which
recommends to its users what kind of a movie they may like based on provided
data, can be a core for streaming platforms in the movie industry. And a text
generator can produce a summary of stock market news, which is then checked
by an editor and published, in the journalism industry. But AI is helpful in daily
life tasks too. An AI model can be a strong opponent in a chess game. A smart-
phone camera may hide your photographic ineptitude by automatically setting
appropriate camera parameters. Artificial neural networks (ANN) are responsible
for the biggest part of AI application success and the fast growth of this field.
With still improving computer and memory resources, the development of ANN
tools seems to be unstoppable.

But still, the process of creating an AI system based on ANN is complex
and very demanding. The development workflow consists of several steps: data
collecting, data preprocessing, neural network architecture design, neural network
training, evaluating, etc. Some of the steps are repeated, of course, and the final
cost of the whole procedure increases. Every attempt to simplify counts.

One of the successful attempts led to an establishment of a new computer
science discipline Neural Architecture Search (NAS). NAS tries to search and
produce a neural network architecture as a result of a problem defined by a
developer. This way, the developer does not need to manually design a NN archi-
tecture based on their knowledge and findings, because NAS will do it for them.
So it seems, that the automation of the design part of the model development
is done. During NAS existence, different approaches have appeared, for exam-
ple, neural architecture search based on evolutionary algorithms inspired by the
natural evolution process.

In practice, using NAS for designing a neural network for hard and complex
problems is still very time-consuming. Every network which is found during the
search process must be tested, how much it is suitable for a given problem. This
is usually done through NN training and evaluation, a straightforward, but de-
manding way. So applying some time-saving techniques is a spot-on proposal.
We study common time-saving techniques appropriate for neural network search
and implement weight inheritance based on our findings. This Lamarckian evo-
lution theory-inspired approach does not waste already trained weights from the
neural network, rather it passes them to the network’s successor with very similar
architecture and parameters, simply said.

As we said, NAS is used for the creation of deep neural networks, which can
solve some tasks. But a lot of real-world problems can not be solved by opti-
mizing only one chosen characteristic of the solution. For example, a buyer has
several criteria for buying a car. What about the cost, car fuel consumption, com-
fort, etc. And if they can choose only one criterion, then which one is the best?
The continuing increase of computer capability allows us to design a neural archi-
tecture search method focused on multi-objective optimization, which is exactly
the content of this thesis.

3

To sum it up, in this thesis, we focus on studying existing state-of-the-art neu-
ral architecture search algorithms, methods for decreasing computational time,
and multi-objective optimization techniques. Then based on our findings, we
extend a chosen algorithm by adding two studied methods, which results in de-
signing two proposed algorithms - one is based only on weight inheritance and
the other is its multi-objective version. Both algorithms are tested and evaluated
in experiments on two datasets.

In Chapter 1, we introduce concepts of evolutionary algorithms and in Chap-
ter 2, we describe the basics of neural networks, mainly convolutional neural
networks, which are both needed for understanding our proposed solutions. In
Chapter 3, a neural architecture search is presented. We mention several NAS
methods and NAS components. Also, we focus on a closer description of a chosen
algorithm, which served as a base for our proposals. Chapter 4 introduces our
proposed methods and extensions. And, finally, Chapter 5 shows a description
and results of our experiments.

4

1. Evolutionary Algorithms
Evolutionary algorithms (EA) [1] is a field of computer science strongly inspired
by nature and its mechanisms. Evolutionary algorithms mimic the real evolution
of beings in a significantly shorter and simple way. The beautiful idea of EA
allows us to find solutions to given problems without knowing anything about
the way how to solve them in exchange for our computer resources.

1.1 Biological Inspiration
Generally speaking, evolution is a process working with a population of indi-
viduals. The primary task is to change an individual’s characteristics during
the process and find the most suitable traits for living in a given environment.
These characteristics are also responsible for the individual’s success in being se-
lected for mating. Due to mating, characteristic traits are passed from parents
to their offspring, but sometimes not in the same state as mutation may be ap-
plied. All these findings were observed and processed by Charles Darwin in his
book On the Origin of Species [2].

1.2 Individual
In a computer world, a population of individuals is a set of solutions to the problem
we want to solve, known as an environment. Every individual can be interpreted
in two ways: as a genotype and as a phenotype.

1.2.1 Genotype and Phenotype
The genotype is an individual’s full information, which is an object of evolution
and heredity. On the other hand, the phenotype is a bundle of the individual’s
actual properties observable in the environment such as morphology or behavior.
For example, a human’s genotype is DNA and phenotype is a human’s body.
Graph genotype is a pair of an edge set and a node set and phenotype is the graph
itself.

For many problems, it is a challenging task to find the right encoding from
phenotype to genotype [3]. In other cases there is no need to look for an encoding
and evolution can be applied directly to phenotype. One of the most used and
easiest encodings is a binary encoding. An individual is encoded as a string
of binary values. Alphabet, integer and a floating point encodings works in similar
way.

A neural networks encoding is a complex field that can be divided into three
types depending on what you want to evolve - weights, architecture, or both.
A weights encoding is typically done in the floating point way where the pheno-
type of the network is a vector of weights. The architecture can be encoded as
a matrix, for example. But in practice, encoding is usually more complex as it
is more suitable for the implementation of the problem. We will discuss some of
the specific solutions later.

5

1.2.2 Fitness
A fitness function is an objective function serving for evaluating how good or bad a
solution (individual) is. After obtaining an individual’s fitness, some evolutionary
principles (e.g. parent selection) work with this value and therefore population
development is fitness-driven. Artificial evolution is not blind nor completely
random and respects Darwinian natural selection, which is also driven by the
individual’s survival and mating skills.

The fitness function is a problem (environment) specific tool. Designing appro-
priate function is not very straightforward for complicated and rich environments
since it is not only about describing the ideal solution. A developer must not
forget about computational efficiency and time of solution evaluation. Executing
a time-consuming function for every individual in every generation may waste
plenty of resources.

An example of a trivial problem and its fitness is finding a binary vector with
the longest distance between two zeros. In such a case, one of the possible fitness
functions returns a maximal number of ones between two zeros. An example of
a more complicated problem is finding an artificial neural network classifying dig-
its. Computing the fitness function includes training on a dataset and evaluating
the proposed network. The fitness value then can be its error rate.

1.3 Genetic Operators
To make any evolutionary algorithm successful and heading towards the right
solution, we need to define and apply so-called genetic operators. The genetic
operators are subprocesses that imitate natural principles responsible for the de-
velopment and reproduction of appropriate genomes in the real world. There are
three main types of operators: selection, crossover, and mutation.

1.3.1 Selection
Selection [4] is an operator which selects preferred individuals from a population
and creates a new subpopulation. That is done by transferring the individuals
which were selected according to their fitness. In contrast with crossover and
mutation, selection is independent of a chosen genome encoding (unless we count
the fitness computation).

Selection can be used in two ways depending on what kind of the subpopula-
tion we want to obtain and in which part of evolution we execute selection.

Parental selection is a type of selection comparing and choosing those in-
dividuals from the population, which will serve as parents. Their main goal is
to reproduce and create a new population of possibly better children. Parental
selection is a crucial part of every evolution.

In some cases, it is convenient to use population selection for selecting ad-
equate individuals which will be propagated into the next generation. Typically,
this selection unifies a population of parents and a population of newly created
offspring, then picks out the fittest individuals and creates a fresh population for
the next round of evolution. This is usually done as the last step of the iteration.

6

Population selection supports elitism. This phenomenon retains the fittest
genomes unchanged throughout the whole process. For every generation, the best
individual of the current generation is never worse than the best individual of the
previous generation.

Elitism can be practiced unintentionally, meaning that passing the best par-
ents into a new population relies only upon the probability of selection. Or one
can define an exact number of the elite parents who are transferred into the new
population before the selection part.

Examples of Selection

There are numerous implementations of selection operators. Let us describe those
commonly used in genetic algorithms, which will be discussed in the next section.

Roulette wheel selection computes a probability pi of being selected for
every individual i. If fi is a fitness of individual i and N is the number of
individuals in a population, then pi is obtained as:

pi = fi

N∑︁
j=1

fj

. (1.1)

Then we need to divide an interval [0, 1) into N intervals corresponding to
computed probabilities. Finally, choose an individual by generating a random
number from the same interval (i.e. [0, 1)). Repeat the last step until we have
the desired number of individuals.

This method is named after its similarity to roulette wheels. Imagine that we
divide a roulette wheel by drawing borders of areas. Every individual gets one
area, which must correspond by its size to an individual’s fitness value. Then we
spin the wheel, throw a ball and wait for the result.

In Fig 1.1, there is a visualization of roulette wheel selection of five new
individuals i1,..., i5 from six existing individuals j1,..., j6. Old individuals split
the roulette wheel accordingly to their fitness-based probability of selection p1,...,
p6. Red lines interpret five selected individuals. In this case, a newly selected
group contains i1 = j2, i2 = j1, i3 = j6, i4 = j4, i5 = j1.

Tournament selection randomly chooses k genomes from a population and
performs a tournament amongst them. Typically, k is a small number, like 2, 3,
or 5. The winner is the fittest candidate (with some probability p) and moves
to the new population. Binary tournament selection choose k = 2 candidates
to the tournament. The winner of the binary tournament is the fitter individual
with some high probability. Tournament selection with k = 1 is equivalent to
random selection. Selection with p = 1 selects only the best candidates and is
called deterministic.

Tournament selection mainly differs from roulette wheel selection in being
independent of individual’s exact fitness value. The tournament is also suitable
for negative fitness values.

1.3.2 Crossover
After retrieving plausible candidates for their reproduction, it is time for crossover
[5, 3]. Crossover, also called a recombination, is a genetic operator responsible for

7

p
1

p
2p

3

p
4

p
5

p
6

i
5

i
2

i
1

i
4

i
3

Figure 1.1: Roulette wheel selection of five individuals.

producing new individuals which are somehow related to origin individuals called
parents. Typically, a combination of genetic information of two parents leads to
obtaining one or two new children. This is analogous to a sexual reproduction in
biology. Children can be also obtained by copying whole genetic information from
one parent, in this case, we talk about an analogy to an asexual reproduction. In
this case, crossover is not applied at all, therefore the mutation is very important.
Methods from a field of evolutionary programming use no or little crossover.

Examples of Crossover

This operator differs for various genome encoding, so the number of existing
crossover methods is enormous. The following examples are just the tip of
the crossover iceberg, other examples are listed in [5].

K-point crossover is designed for the recombination of genomes represented
by arrays of values. K-point crossover can be described in three easy steps.
First, choose the value of k, usually, it is some small number like 1, or 2 (one-
point, two-point crossover). Second, randomly generate k different indexes to
individuals which defines where the individuals are meant to be split into k + 1
subarrays. Finally, receive one or two children by an alternate combination of
those subarrays.

An example of two-point crossover of parents PA and PB resulting in two
children CA and CB with two crossing positions 2 and 4 is shown in Figure 1.2.

Uniform crossover is a very simple and widely employed crossover method
thanks to its universal usage. The main idea can be illustrated as flipping a coin
every time we want to decide which gene is inherited from what parent. This
crossover can create two opposite children from two parents at once, similar to k-
point crossover. Some modifications may be done, such as non-equal probabilities
of gene choice.

In Figure 1.3, we can see uniform crossover of parents PA and PB with a prob-

8

ability of choosing a gene from the first parent set to 0.5. This example creates
only one child C.

Figure 1.2: Two-point crossover with two children.

P
A

1 2 3 4 5

P
B

9 6 7 8 6

C 1 2 7 8 5

Figure 1.3: Uniform crossover with one children and probability 0.5.

Arithmetic crossover uses for the gene combination arithmetic operations.
For example, children c may be obtained as a weighted mean of every gene of par-
ents p, q : ci = api + (1− a)qi where 0 < a < 1.

1.3.3 Mutation
Mutation [6, 3] brings another randomness into the evolutionary process. Oper-
ators randomly change some characteristic traits of an individual and this makes
mutation responsible for maintaining the genetic diversity of a population. Ex-
ploration is supported and individuals are not too similar to each other. Hence,
this behaviour helps the population by preventing it from being stuck in a local
optimum. The mutation operator is very powerful and in some evolutionary algo-
rithms fields, e.g. evolutionary strategies [7], crossover is completely suppressed
at the expense of mutation.

Examples of mutation

Bit-flip mutation is a mutation specifically designed for binary individuals.
Every gene is changed to another value with some small probability. Mutation of
position one and three in individual P creates individual P ′ as shown in Figure
1.4.

9

P 0 1 1 0 1 P’ 0 0 1 1 1

Figure 1.4: Bit-flip mutation of an individual.

Other types of mutation are usually very customized for a given genome en-
coding. But typically, when an algorithm works with individuals composed of
numbers (floats or integers), mutation designs can be divided into two categories.
Biased mutation takes into account the original gene value when it computes
the new value. A simple example is a mutation, which takes the original value
and adds to it a random number from normal distribution: gt+1 = gt +N (0, σ).
On the other hand, unbiased mutation generates a new random gene regardless
of its original value.

1.4 Genetic Algorithms
Genetic algorithms (GA) are a subclass of evolutionary algorithms and they are
probably one of the simplest approaches of EA [4]. Therefore the original genetic
algorithm proposal is nowadays called simple genetic algorithm (SGA) [8]. The
SGA works with the simplest encoding and the minimal set of genetic operators.
This approach was proposed by Holland in the 1960s [9].

The SGA uses the mentioned binary encoding. An individual’s genotype is
a string of k binary values. Formally for individual x: x ∈ {0, 1}k. Individual’s
fitness is computed by some real-valued fitness function f mapping individuals
space to the set of real numbers: f : {0, 1}k → R.

The SGA uses roulette-wheel selection for selecting parents from a popu-
lation. Parents are then mating via one-point crossover with crossover proba-
bility pc. This probability determines if parents undergo crossover as we do not
want to modify all individuals in the population. The mutation method chosen
for the SGA is bit-flip mutation with probability pm which decides whether
a gene in the genome is flipped to the other binary value.

See Algorithm 1 for the description of the SGA.

1.5 Coevolution
During time, scientists discovers new ideas and bring upgrades to mentioned
methods. A lot of improvements are inspired by nature and biology, just like
the main idea of evolutionary algorithms. One of them is the principle of coevo-
lution [10].

In nature, it can happen that two (or more) species reciprocally affect their
evolution as they interact together. For example, bird-pollinated flowers evolved
coloration distinctive to hummingbird vision. Usually, the influence of the other
species affects natural selection. The same goes with coevolution in computer
science, where another species’ impact is implemented in selection through fitness

10

Algorithm 1 Simple Genetic Algorithm
Require: fitness function f , crossover probability pc, mutation probability pm,

population size m, maximal number of generations g
t← 0
randomly initialize(Population(t))
evaluate(Population(t), f)
while isNotTerminanted() and t < g do

Parents(t)← roulette wheel selection(Population(t))
Children(t)← one point crossover(Parents(t), pc)
mutate(Children(t), pm)
evaluate(Children(t), f)
Population(t + 1)← Children(t)
t← t + 1

end while

computation [11]. The rest of the evolution process runs independently on other
species.

Coevolution is widely used for complex tasks, which is better to decompose
into easier subtasks. Then populations of solutions for every subtask are treated
and simultaneously evolved as different species. An example, which will be dis-
cussed later in section 3.4, is coevolution of structures of convolutional neural net-
works - blueprints, which defines an architecture of a neural network, and modules
representing convolutional or fully connected layer.

Cooperative vs. Competitive Coevolution

Depending on their fitness computation, coevolution methods can be divided into
cooperative coevolution [12] and competitive coevolution [13]. The cooperative
mode evaluates an individual by concatenating it with (usually) the best individ-
ual from other species in some defined way. At the end of evolution, the fittest
individual with its collaborators from other species gives the best solution to
the problem.

Competitive coevolution evolves competing species. The competitive fitness
is based on direct competition among individuals selected from the independently
evolving populations. For example, fitnessa = 1− fitnessb, for fitness ∈ (0, 1).
In other words, when one is winning, the other one is losing and otherwise. The
typical case of competitive coevolution is coevolution of predator and prey, where
the fitness of the predator can be computed as the time to catch tc and fitness of
the prey as 1− tc.

Species

Another attempt of scientists to apply biologically inspired phenomena is an im-
plementation of individual species [14]. This mechanism fights against selection,
which usually leads to a loss of diversity in a population. Selection of candidates
for a mating pool is heavily dependent on the fitness of individuals. To decrease
this dependency, it is possible to divide the population into species according to
how individuals are similar to each other.

11

To preserve genome diversity, genetic operators work only with individuals
from given species. The size of the species population is the bigger the better
performance individuals give, in practice. So individuals of better species have
a bigger probability to survive into the next generation.

The difference between species and coevolution is that individuals in all species
use the same fitness function. The fitness function does not evaluate concatenated
individuals from all species as it does in coevolution.

Species in a population allows us to add improving principles and methods to
evolution. A well-known mechanism is called fitness sharing [15]. Fitness sharing
is inspired by the idea, that individuals of the same species have to share resources
(e.g. food), therefore the resource is the fitness value in the case of evolutionary
algorithms. Typically, the shared fitness f ′

i of an individual i is calculated as:

f ′
i = fi∑︁N

j=1 sh(dij)
, (1.2)

where fi is the fitness value of the individual i, sh is a sharing function measuring
the similarity level of two individuals, dij is the distance between individuals i, j
and N is the number of individuals in the given species. Individuals in densely
populated regions are given a lower fitness value than comparably good solutions
in sparsely populated regions. In effect, sharing tends to encourage the search in
unexplored areas.

1.6 Multi-objective EA
Plenty of problems do not settle for solutions optimized for only one objective.
An example from the real world is buying a PC. The cost, computer perfor-
mance, or the type of GPU, etc. are decisive properties for a buyer and they
typically want to find the compromise of all important features. Multi-objective
evolutionary algorithms (MOEAs) were designed to solve this type of problems
[16, 17].

In some cases, a sufficient solution is to compute fitness function f(x) as
a weighted sum of objectives o1, ..., on (or use other scalarization methods) f(x) =∑︁

aioi, where a1, ..., an are defined weights and this way we are back to single-
objective optimization.

From now on, when we talk about multi-objective optimization, we always
mean minimization.

1.6.1 Pareto-based Methods
A common approach is to search for Pareto-optimal solutions [18]. The set of
these Pareto-optimal solutions is called Pareto front and for each solution, it is
true that it is not dominated1 by any other solution in the search space. No
Pareto solution can decrease any objective without increasing other objectives.
Since the set of Pareto-optimal solutions is not finite, we try to approximate it.

1A solution S dominates a solution S′ if S is in all criteria at least as good as S′ and at least
in one criterion S is clearly better.

12

We will take a closer look at how these algorithms work with a popular method
in the next subsection.

A visualization of the Pareto front in the search space of solutions with ob-
jectives f1 and f2 is shown in Figure 1.5.

A
B

C

f
1

f
2

f
1
(A) < f

1
(B)

f
2
(A) > f

2
(B)

Figure 1.5: The visualization of Pareto front.

1.6.2 NSGA-II
NSGA stands for non-dominated sorting genetic algorithm [19]. It is one of
the simplest examples of multi-objective evolutionary algorithms and for its pop-
ularity NSGA has ensured its further development and improvements (NSGA-II
[20], NSGA-III [21, 22]).

Implementation

NSGA-II implements multi-objectiveness mainly in environmental selection.
When it comes to selecting individuals, who will be transferred into the next
generation, parents and offspring populations are joined together creating one
population (elitism is done in this part). This large merged population is then
divided into non-dominated fronts. The first front is a set of all non-dominated
individuals from the population, the second front is a set of all non-dominated
individuals from the population without the first front, etc. Next-generation
individuals are taken from the fronts with the lowest number.

When we want to select a number of individuals smaller than the size of
the front with the lowest number, we need to decide which individuals will be
transferred and which will die. This decision is left to secondary sorting criterion
and the original NSGA-II uses crowding distance (another example of a secondary
criterion is hypervolume contribution). Crowding distance is essentially based on a
distance between the two closest neighbours of the individual. The bigger distance
the better because it means that such a solution is in a sparsely populated area
and improves the coverage of the Pareto front. For this reason, solutions at the
ends of the front get infinite distance which secures their place in the selection.

13

So, when comparing two individuals, first a rank of the individual (number of
the front to which it belongs) is considered (smaller is better). In the case of the
same rank, their crowding distance is considered (bigger is better). No fitness is
computed.

The steps of NSGA-II can be summarized as follows:

1. Create a new population by merging the parent population and the offspring
population.

2. Apply non-dominated sorting algorithm 2 on the population, which creates
non-dominated fronts.

3. Generate a next-generation population and fill it with individuals from
fronts with the lowest number until the required size is reached. If needed,
use crowding distance calculation for selection from the last used front.

4. Generate new offspring from the next generation population.

Algorithm 2 Fast Non-dominated Sorting Algorithm
Require: a population P

for each p ∈ P do
for each q ∈ P do

if p dominates q then
Sp = Sp ∪ q

else if q dominates p then
np = np + 1

end if
if np = 0 then

Front1 = Front1 ∪ {p}
end if

end for
end for
i = 1
while Fronti ̸= ∅ do

T = ∅
for each p ∈ Fronti do

for each q ∈ Sp do
nq = nq − 1
if thennq = 0

T = T ∪ {q}
end if

end for
i = i + 1
Fronti = T

end for
end while

14

2. Neural Networks
Similarly to evolutionary algorithms, the idea leading to creation of neural net-
works (NN) comes from biological inspiration. The first model was proposed by
Rosenblatt in [23]. Even though neural networks differ from today’s findings in
neurology, their theoretical background is very strong. They are still popular
and useful for solving different tasks from the computer world, like time series
prediction, image classification, etc.

2.1 Biological inspiration
A neural network imitates the behaviour and structure of an animal brain. Simply
said, the natural nervous system is built from neurons, electrically excitable cells,
connected by synapses with other neurons. Biological neurons communicate by
sending electric signals via these synapses. Artificial neural networks are made
from neurons too, but artificial neurons are processing units. They are also linked
by synapses, which transmit a signal from one neuron to another. As information
flows through the whole network, every time it visits a new neuron, it is changed a
bit. This results in the transformation of the initial information into the solution
to the given problem, ideally.

2.2 Perceptron
In this chapter, we will show how a neuron works and computes on an easy
example - a simple model containing only one neuron called perceptron, also
known as McCulloh-Pitts neuron [24].

An essential characteristic of every neuron is its weights. Weights are a vec-
tor of real numbers, which are used for the transformation of retrieved signals.
The developer’s goal is to train the neural network to give plausible solutions
for the given problem. It is done by learning, the process of iterative changing
weights, which is usually based on some version of gradient descent algorithm
[25].

An activation function is a non-linear function that maps a weighted summary
of retrieved signal into defined space, i.e. binary values. It is a NN defining
parameter, which always needs to be defined.

Network Calculation

Neuron computation can be formally described as follows: for a given input vector
x = (x1, x2, ..., xn), a neuron constitutes a function

y = ϕ(
n∑︂

i=1
wixi + b), (2.1)

where w = (w1, w2, ..., wn) is a neuron weight vector, b is a neuron bias and ϕ is
an activation function.

Perceptron aims to perform binary classification. For this purpose, the best
choice for the activation function is a function defined as:

15

ϕ(x) =
⎧⎨⎩1 if x > 0,

0 otherwise.
(2.2)

A visual interpretation of a perceptron computation is in Figure 2.1.

x1

x2

x3

xn

w1

w2

w3

wn
.
.
.

1

b

∑ 𝜙

Figure 2.1: The scheme of a perceptron.

2.3 Feedforward Neural Networks
One neuron alone is not a very effective model for solving complex problems,
due to its non-ability to learn patterns that are not linearly separable. It is
better to use neurons as elementary units of some network. Multilayer perceptron
(MLP) is a model built from at least three layers of neurons [26]. Those layers
are called input, hidden and output layers. Thanks to the input layer, which
transforms input data into a space, where it becomes linearly separable, MLP
can distinguish non-linearly separable data.

Feedforward neural network (FNN) is a class of neural networks, to which
MLP belongs [27]. They are called feedforward because of their architecture -
neural connections do not form any kind of cycle. This means input data pass
only in one direction, never backward. Generally, any acyclic graph can be viewed
as a feedforward network.

Network Calculation

Since FNN contains more than one layer, networks compute their output a bit
differently. Neural weights compose matrices W which represent the weights
between consecutive layers. For every weight matrix, its size is defined as a size
of the next layer × a size of the current layer. FNN then computes the output
of every network, from the first hidden layer to the output layer, as follows:

y = ϕ(Wx + b), (2.3)

where b ∈ R|next layer | is a vector of biases and x ∈ R|current layer | is a vector of
previous layer results. ϕ is a non-linear activation function, which can be defined

16

differently for every layer in FNN. Commonly used functions are sigmoid, softmax,
or ReLU (for closer description and other functions look in [28]).

x
1

x
2

x
3

h
1

h’
1

h
2

h
3

h
4

h’
2

h’
3

h’
4

y
1

y
2

hidden layer h hidden layer h’input layer i output layer o

Figure 2.2: The visualization of a feedforward neural network with two hidden
layers.

An example of a FNN with an input layer i, two hidden layers h, h′, and an
output layer o is shown in Figure 2.2. We will denote weight matrices as Wh,i

for weights from the input layer to the first hidden layer, similarly, we get Wh′,h,
Wo,h′ . Biases are bh, bh′ , bo and activation functions ϕh, ϕh′ , ϕo.

We then can compute the final network output vector y for input vector x as:

h = ϕh(Wh,ix + bh), (2.4)
h′ = ϕh′(Wh′,hh + bh′), (2.5)
y = ϕo(Wo,h′h′ + bo), (2.6)

where h and h′ are vectors of intermediate results from corresponding hidden
layers.

2.4 Convolutional Neural Networks
In this section, we will focus more on neural network architecture called convolu-
tional neural networks (CNN) as evolving CNNs is crucial for this master thesis
[29]. The first modern CNN was introduced in LeCun’s paper [30] in 1998. This
architecture gained its popularity thanks to its ability to effectively solve image-
related tasks (e.g. image recognition), which use image pixels as input data. CNN
contains at least one convolutional layer that supports mathematical operation
convolution.

Convolution

Convolution is a mathematical operation (denoted by the symbol ∗) operating
with two functions and producing one new function which shows, how much is

17

the first function affected by the second function. For two functions x and w is
convolution x ∗ w defined as:

(x ∗ w)(t) =
∫︂

x(t− a)w(a) da. (2.7)

Function w is called kernel. If we use convolution in image processing, a func-
tion x is then an input image, and function w is some kind of filter. This termi-
nology also applies to convolution in CNNs. In a world of weight matrices, we
define convolution as:

(K ∗ I)i,j =
∑︂
m,n

Ii−m,j−nKm,n. (2.8)

When processing images, the input pixel is usually not only one value but
a whole vector of values called channels. The same goes for output pixels, which
are composed of output channels. This new data information needs to be pro-
cessed by convolution too, so the kernel is actually a four-dimensional tensor.

Simply said, convolution emphasizes or removes certain features from the in-
put image. The value of an output pixel is computed as a weighted sum of
the pixel’s neighbourhood in the input image. Kernel defines the weights used in
the sum. This method is used, for example, in image smoothing or edge detection.

The convolutional kernel may be also referred to as convolutional filter. Con-
volution is in fact a type of filtering, which is an operation computing an output
pixel from its original neighbourhood. When the convolutional layer filters im-
ages, the kernel extracts its visual features, like edges. For this reason, the kernel
is also called feature detector.

0 -1 0

-1 5 -1

0 -1 0

Figure 2.3: An example of image convolution with sharpening kernel of author’s
cat photo. Produced with a website app available on [31].

Convolutional, Dense and Pooling Layers

As mentioned before, the convolutional network contains at least one convolu-
tional layer. The design of this layer requires a definition of the following param-
eters: width W and height H of the kernel, number of input, output channels C,
O. Then we get the kernel of size W ×H × C ×O.

The output size can be also controlled by two other parameters. The stride
defines what (in what position) the input pixel should be used in calculating
the output pixel. For example, the output is half the size, if the stride is 2.

18

The padding scheme acquires two values: valid or same. Valid padding uses only
valid (existing) input pixels, which causes the result to be smaller. Same padding
keeps the size of the result the same as the size of the input, but it uses zero
pixels for evaluation of edge pixels.

In Figure 2.4, an example of convolution with a filter of size 2 × 2 is shown.
Valid padding and stride 1 cause that the size of the output matrix is smaller
than the original matrix.

2 0 1

0

312

2 1

1

10

0 3

2

3

2

input kernel output

Figure 2.4: An example of pixel matrix convolution with a kernel of size 2 × 2,
valid padding and stride 1.

Dense layer also known as fully-connected layer connects every neuron to
every neuron in the next layer. Dense layers are usually used for the classifica-
tion/regression part in CNNs, therefore they are used as the ending layers in the
architecture.

CNN contains not only convolutional layers and fully-connected layers. An-
other component is so called pooling layer. The pooling layer reduces the spatial
size of intermediate results and decreases the number of the network’s parame-
ters. The pooling process divides the image into the same size regions. Then it
performs some operations on every region producing only one value. Max pooling
computes the output as maximum value of the region, average pooling computes
average value of the region [32].

2 0 1

0

312

2 1

2

2

3

3

input output

max
pooling

Figure 2.5: Max pooling with neighbourhood of size 2 × 2.

19

20

3. Neural Architecture Search
Despite neural networks being widely used for finding solutions to computer sci-
ence problems, there is still one big part of work with neural networks scientists
struggle with. Designing an appropriate neural network is still a very challenging
task. NN architecture describes what number of layers and neurons a network
contains, how are these neurons connected, what activation function is used, etc.
There is plenty of parameters designers have to deal with, but luckily, weights
do not belong to them because their values are found during the training process
later.

Historically the first approach is manual architecture design by hand. This
approach requires a designer’s deep knowledge, creativity and time. As much
as it may seem like looking for a needle in a haystack, this method has yielded
many useful principles and architectures that have come into widespread use. For
example residual connections [33], a model called SqueezeNet [34] and previously
mentioned convolutional layers [29].

As time passed, the idea of automatic architecture search become more re-
alistic. This technique is called neural architecture search (NAS) [35, 36]. It is
a rapidly evolving field, nowadays, and the very successful fruit of this method is
e.g. the EfficientNets family of architectures [37].

Neural architecture search process is illustrated in Figure 3.1. A search strat-
egy selects an architecture A from a predefined search space A. Then a perfor-
mance estimation strategy evaluates proposed architecture A and the result is
given back to the search strategy.

search space A search strategy

performance
estimation
strategy

architecture

A ∈ A

performance
estimate of A

Figure 3.1: The abstract illustration of neural architecture search.

3.1 NAS Components
Search Space

The search space defines the type of NNs we want to find and use later. Since
this space can be enormous and the search could be infinite, the search space
needs to be limited. Limits can be easily set by creating task-specific space, for
example, the space of convolutional networks for searching solutions for image
recognition. Or we can be more concrete and use search space based on state-
of-the-art architectures. This approach was used by authors of NAS-Bench-101
[38], who used search space inspired by ResNet [33] and Inception [39].

To sum up, this part of the NAS workflow is still heavily influenced by sci-
entists, who define and set space limits. If they create a very specific and small

21

search space, the rest of the NAS parts can be less time-consuming, but also
the probability of finding novelty solutions decreases.

White et al. [35] divides popular search spaces into several types.

1. Macro search spaces can be of two types. The first type contains whole
neural architectures represented as a single directed acyclic graph (this ap-
proach was very popular with the first NAS attempts). The second type of
macro search spaces focus only on macro-level hyperparameters.

2. Chain-structured search spaces are made of a simple sequential chain
of operation layers.

3. Cell-based search spaces work with knowledge gained from manual de-
sign: in some state-of-the-art networks, some blocks of layers are repeated
multiple times. So cell-based space contains only these blocks called cells.
Cells are then stacked and together create the final network.

4. Hierarchical search spaces consist of multiple searchable levels of motifs,
where the motif is often a directed acyclic graph of lower-level motifs.

Search Strategy

The way we should explore the search space to find the optimal solution is defined
by a chosen search strategy. Search strategies can be naturally divided into two
categories: black-box optimization techniques and one-shot techniques. The dif-
ference between these two categories will be shown in specific methods, which
gained their popularity over the years of NAS research.

Random search is usually a first attempt to search for any solution. Even
though it is generally not very effective, the simplicity of the idea and imple-
mentation are tempting - architectures are selected randomly from the search
space. Selected networks are then trained and the one with the best accuracy is
the result.

Reinforcement learning (RL) uses a neural network1, called controller, to
find architectures in the search space as its action [41]. The controller is then
rewarded based on the found network validation accuracy. Finally, the controller
updates its searching strategy (NN parameters) to maximize its reward and is
ready to look for another architecture. See general RL NAS Algorithm 3.

A popular search strategy based on reinforcement learning is Efficient Neural
Architecture Search (ENAS) described in Section 3.2, for example. A closer de-
scription of reinforcement learning based NAS and other possible approaches to
it can be found in this survey [42].

Evolutionary algorithms were historically the first approach to neural ar-
chitecture search, but the usage has changed since then [43]. They used to si-
multaneously optimize both the neural architecture and the weights i.e. they
performed neuroevolution [44]. Today, EAs are rather used only for the optimiza-
tion of architectures that are then trained with SGD-based methods.

Evolutionary algorithms were closely described in Chapter 1. Evolutionary
NAS algorithms work with neural architectures as individuals. In every genera-
tion, a group of parent architectures is sampled from a population using a selection

1Usually a recurrent neural network [40].

22

Algorithm 3 General Reinforcement Learning NAS Algorithm
Randomly initialize controller weights θ.
for t = 1, ..., T do

Use the controller policy π(a, θ) to find an architecture a.
train(a)
evaluate(a)
Update controller’s parameters θ by performing a gradient update.

end for

operator according to their fitness. The fitness is usually computed as network
accuracy or error rate after the network was trained. Parents are then combined
and mutated as crossover and mutation rules say. This results in the birth of new
and ideally better neural architectures.

Evolutionary NAS algorithms are very variable. Scientists can choose from
a wide range of existing genetic operators and individual encodings or they can
simply use tailored procedures. Also, the possibility of implementing other evo-
lution principles such as elitism, and coevolution, contributes to the diversity of
evolutionary-based methods.

Other black-box optimization techniques include bayesian optimization
methods [45] or Monte Carlo tree search [46]. All of the black-box methods
rely on iterative sampling of architectures from the search space, training them,
and updating the search strategy based on the network’s success. But thousands
of networks can be trained, in practice, so the time complexity becomes a big
issue here.

Simple description of one-shot NAS techniques follows [47]. Its creation was
inspired by avoiding training each architecture from scratch. The backbone of
these techniques is to find only one large neural supernetwork or hypernetwork2.
After ”one-shot” training of the supernetwork, the search space is created from
subnetworks, which are not evaluated again, because they inherited their weights
from corresponding parts of the supernetwork.

Performance Estimation

As mentioned before, most search strategies involve performance estimation based
on training and evaluating found neural networks, which can significantly increase
the computational cost. One option is to reduce training demands like a lower
number of train epochs or subsampling of the input dataset.

Another possibility is to use speedup techniques for NAS algorithms. Perfor-
mance prediction is a technique based on predicting the performance of the NN
before it is fully trained. The prediction is handled by any function called perfor-
mance predictor. Multi-fidelity algorithms try to approximate the objective
function by a lower-fidelity and cheaper version parameterized by the fidelity
parameter. Weight inheritance fights against discarding gained knowledge of
already trained networks and saves some time. Weights of trained architectures
are transferred to similar newly found networks.

2These are not two different names for the same thing. A hypernetwork is NN which gener-
ates the weights of other neural networks.

23

Multi-objective Search

Until now, we introduced methods that are based on searching only for the most
accurate architectures by maximizing accuracy or minimizing error rate. But
every neural network has other features which can be also optimized. Focusing
on minimization of a size of a network or a number of trainable parameters
can lead to desired time-consumption decrease because of faster training. Other
interesting objectives are for example memory consumption and inference time.
These features are not powerful enough to use as the only objective as we still
want to reach a capable network. One approach called multi-objective search aims
for all chosen objectives in one searching process.

3.2 ENAS
The Efficient Neural Architecture Search (ENAS) is an approach based on rein-
forcement learning search strategy [48]. It uses a long short-term memory con-
troller for searching for neural network architectures. When the controller finds
a new child model, the model is then trained to minimize cross-entropy loss and
evaluated. The controller uses the measured performance as a guide for finding
better models. The controller itself is trained with a policy gradient to select a NN
maximizing the expected reward. This process is repeated for many iterations.

The ENAS uses a unique representation of search space, which they view as
a single directed acyclic graph (DAG). The nodes of DAG are local computations
and edges represent the flow of information. The found child models are then
presented as subgraphs of this larger graph. An example of ENAS DAG search
space is shown in Figure 3.2.

Figure 3.2: The visualization of the directed acyclic graph search space. The red
connections define a found child model, which has input in node 1, and nodes 3
and 6 are output nodes.

The DAG search space allows implementing the main contribution of ENAS
parameter (weights) sharing between found child models, which makes ENAS per-
formance faster. So ENAS works with two learnable parameters: the parameters
of the controller and the shared parameters of the child models.

In the paper, authors propose ENAS for convolutional neural networks and
recurrent neural networks. Both types require different approaches to designing
its elementary cells, but the common base process can be simply described as:
the controller samples a subgraph from the DAG and its parameters, such as
operations used in the nodes and connections.

24

3.3 LEMONADE
The Lamarckian Evolutionary Algorithm for Multi-Objective Neural Architecture
Design (LEMONADE) is an evolutionary algorithm for multi-objective archi-
tecture search with Lamarckian inheritance mechanism [49]. The LEMONADE
evolves neural networks optimizing two objectives, one objective maximizes net-
work performance and one objective penalizes resource consumption.

The evolution works with the population of neural network encodings. The
sampling process is divided into two stages. In the first stage, the parents are
sampled from the population based on their cheap objective values such as model
size. After sampling, the creation of children using special network operators hap-
pens (the operators are described in the next paragraph). In a second sampling
stage, the second round of the selection chooses a subset of children based again
on the cheap objectives. This subset of child networks is then evaluated on some
expensive objectives. By this two-staged sampling strategy, the LEMONADE
generates and evaluates more children that have the potential to fill gaps in the
current Pareto front approximation. The next generation is a new Pareto front
computed from the current population and generated children.

The LEMONADE network operators are used in the evolution as the muta-
tion operators. The operators can be divided into two classes, namely network
morphism and approximate network morphism. The network morphism is an op-
erator, which enlarges NN but preserves the network performance (the network
remains the same). The LEMONADE network morphism operators are:

• insert an identity block, which does not change the network performance,

• increase the number of convolution filters,

• add the skip connection.

As was said, all network morphisms increase the network capacity. But dur-
ing multi-objective optimization, operators, which can decrease the size of NN
architecture are needed. The proposed operators with this ability are grouped
into a class called approximate network morphism. The LEMONADE specifically
uses:

• remove a layer or a skip connection,

• prune a convolutional layer,

• substitute convolution by a depthwise separable convolution.

All modified objects are chosen randomly.

3.4 CoDeepNEAT
The Coevolution Deep NeuroEvolution of Augmemting Topologies (CoDeepNEAT
or CDN) is a method from a class of evolutionary neural architecture search
algorithms introduced by Miikkulainen et al. in 2018 [50].

25

3.4.1 Development
The CoDeepNEAT is a descendant of a different NAS method - NeuroEvolution
of Augmenting Topologies (NEAT), which carries the core idea of all NEAT-based
methods [51]. NEAT is a genetic algorithm and it is based on some new principles:
usage of historical markers and complexifying. As the name says, NEAT is a kind
of neuroevolution, so it evolves both weights and architecture.

NEAT

NEAT uses direct encoding. A neural network is represented as a simple list of
connection genes (edges). Each connection gene specifies its input node, an output
node, an enable bit (whether the edge is enabled or disabled), and an innovation
number crucial for properly working genetic operators. These numbers mark the
original ancestor of each gene. See Figure 3.3, where the third gene is disabled,
so the connection that it specifies (between nodes 2 and 5) is not expressed in
the phenotype.

Figure 3.3: A genotype to phenotype mapping example. Source: [51].

The mutation can change any network in multiple ways: weight mutation,
adding a node, adding a connection. Adding node or connection and its influence
on both genotype and phenotype is shown in Figure 3.4. The top number in
every connection gene is the innovation number. New genes are assigned new
increasingly higher numbers.

In order to perform crossover which does not create a nonsensical topology, the
innovation numbers are used. During crossover, the connections in both parents
with the same innovation numbers are lined up. Other genes, which have different
innovation numbers, are inherited from the parent with better fitness value. The
process of crossover is visualized in Figure 3.5.

To protect novelties with low fitness between more optimized networks, NEAT
divides the population into species. Individuals then compete only with individ-
uals of the same species. The speciation is based on topology similarity.

When NEAT was firstly introduced, it performed a faster search than any
other neuroevolution technique. These results led to the enrichment NEAT-family
with new algorithms such as HyperNEAT [52], DeepNEAT or CoDeepNEAT [50].

26

Figure 3.4: The two types of structural mutation in NEAT. Source: [51].

From NEAT to DeepNEAT

Previously described NEAT’s strong point is evolution of small neural networks,
but it is not as practical for deep neural networks. Some changes were required
to adapt the NEAT core idea to evolution of bigger and more complex architec-
tures. This attempt results in designing DeepNEAT, which evolves topologies
and hyperparameters of DNNs.

The DeepNEAT backbone is basically the same as NEAT’s, species and inno-
vation numbers (historical markings) are used as well, but the major difference
is in genome encoding. Instead of representing a network as a list of connections
between neurons, DeepNEAT works with lists of connections between layers of
NN. Each layer is defined by hyperparameters such as type of layer (e. g. convo-
lutional layer, fully-connected layer), number of neurons, and activation function.

Since DeepNEAT does not perform weight evolution, every solution needs to
be trained to compute its fitness. Also, the algorithm has to deal with possibly
different input and output sizes of connected layers. Implementing downsampling
or adding a merge layer etc. solve this problem.

3.4.2 Principles of CoDeepNEAT
In this subsection, the main ideas of Coevolution DeepNEAT algorithm are de-
scribed. The word coevolution in CoDeepNEAT refers to defined algorithm being
in fact coevolutionary algorithm evolving two populations: the population of
blueprints and the population of modules. The motivation for cooperative co-
evolution comes from phenomena appearing in successful deep neural networks -
some architectures are created from modules, which are repeated multiple times.

Populations and Evaluation

Modules are small structures of connected layers composed from at least one layer.
They are always divided into species as module speciesism is crucial for blueprints.
Blueprints are backbones of evolved neural networks. They are graphs of nodes,

27

Figure 3.5: NEAT crossover of two networks. Source: [51].

which are actually pointers to module species. Initialization of these populations
is very simple, as it is also in NEAT. All modules are initialized with random
values and assigned to a single species. Every initialized blueprint has a minimal
graph. Initializing values with defined hyperparameters (module/blueprint size,
optimizers, dropout, etc.) is also possible.

These two populations evolve separately. Before the application of genetic
operators (selection, crossover, mutation), fitness, which depends on the other
population, needs to be calculated. For this reason, modules and blueprints are
combined in a way, that every pointer node in the blueprint is replaced with a ran-
dom module of the corresponding specie. If the blueprint contains multiple nodes,
which point to the same module specie, they are replaced with the same module.
This leads to the creation of a bigger working neural network. The assembled
network is then trained, and evaluated and its fitness is passed to its original
blueprint and modules. After evaluation of all assembled networks, the final
blueprint and module fitness are computed as the average fitness of all assembled
networks they were part of.

See Figure 3.6 for visualization of network assembly. Nodes in the blueprint
B point to module species 1 and 2. From these species, modules M and N are
randomly sampled, which are then put into the blueprint in corresponding places.
Finally, the result of this procedure is the assembled network A.

28

input

1

2

1

output

specie

1
specie

2
specie

3

module population

conv 3x3

max pool

conv 2x2

input

conv 3x3

max pool

conv 3x3

max pool

conv 2x2

output

blueprint B assembled network A

module M module N

Figure 3.6: CoDeepNEAT assembly of a neural network from a blueprint and
modules.

Evolution

Since both module and blueprint genomes can be represented as graphs, the same
crossover and mutation methods can be used, but still, light changes need to be
done. CoDeepNEAT operators are based on and heavily influenced by NEAT
genetic operators.

CoDeepNEAT uses uniform crossover over the graph nodes with a fixed prob-
ability. For modules, it means their definition (parameters) are combined into re-
sulting offspring. So in practice, a mutation process needs to be implemented for
every module type, because each of them may have unique parameters. Crossover
in blueprints creates new offspring by merging their genomes and random deci-
sion over the same genes in both parents. Blueprint crossover is very similar to
NEAT/DeepNEAT crossover.

Mutation is based on structural changes in graphs: node addition or removal,
edge addition or removal, or node replacement (changing node features). Another
type of mutation can be implemented such as optimizer mutation or node species
mutation for blueprints.

During evolution, a defined percentage of the fittest individuals in both pop-
ulations are transferred into the new generation, so CoDeepNEAT uses elitism
and ensures the preservation of the best solution.

29

30

4. Proposed Approach
In this chapter, we will describe the proposed approach to multi-objective neural
architecture search. The approach is based on some of the related work and
processes introduced in previous chapters.

We chose to study and extend evolutionary-based neural architecture search,
namely the CoDeepNEAT (Section 3.4). At first, we tried to speed up the CDN
by implementing a weight inheritance between neural networks, which was in-
spired by Lamarck’s evolution theory commonly used in evolutionary algorithms.
This part of the work involved studying neural network weights and their be-
haviour, proposal and implementation of the weight inheritance. Multi-objective
optimization in CoDeepNEAT is built on the usage of the popular algorithm
NSGA-II (see Section 1.6.2, [20]). This extension lets us optimize neural net-
works in two chosen objectives: the error rate of the trained neural network and
the computational complexity of the network. Implementing the NSGA-II into
the CDN has been accompanied by a complex study of the principles of both
main algorithms.

We propose an implementation of Lamarckian CoDeepNEAT called Lama-
CoDeepNEAT (LamaCDN), which is based on NN weight inheritance, and its
multi-objective version using NSGA-II called Multi-objective LamaCoDeepNEAT
(MOLamaCDN).

4.1 LamaCoDeepNEAT
LamaCoDeepNEAT is an extension of the CoDeepNEAT algorithm, which hon-
ours the law of lamarckian evolutionary principle introduced in 1809 [53]. Lamar-
ckism1 is based on the principle that parents can transmit their physical character-
istics developed during their lifetime to their offspring. Compared to Darwinism
in evolutionary algorithms, which transfers unchanged characteristics, Lamarck-
ian EA pass the parent’s traits as they were at the time of mating. The classic
example used to explain the concept is a giraffe with an elongated neck. Over
a lifetime of straining to reach high branches, the giraffe developed an elongated
neck, which was then inherited by its children.

This principle can speed up the evolution of chosen traits since a child con-
tinues to evolve the trait in the state, in which the parent passed it to them. So
the child does not waste time repeating the parent’s progress. The LamaCoDeep-
NEAT transfer the learned weights of a parental neural network to an offspring
neural network, which saves time during training of the new NN because the net-
work does not start with the random weights.

Weight Transfer between Modules and Networks

Since neural networks are not taken as individuals of the population in the
LamaCDN but only as objects used for fitness calculation, the weight inheritance
is realized on the population of modules. At first, a part of weight inheritance
process is done during composition of a neural network by combining a blueprint

1Named after its author - French biologist Jean Baptiste Lamarck.

31

and modules. The building modules pass their layer weights to the assembled
network. The assembled network does not have initialized weights (by for exam-
ple the Glorot uniform initializer or the He normal initializer [54]), as it does in
the CoDeepNEAT, but inherited (except for the networks created from the initial
populations, because these individuals have not been trained). When modules
transfer their weight matrices onto the model, the weight matrices of connected
modules may have been incompatible, meaning that the number of output chan-
nels of the previous module is not the same as the number of input channels of
the following module. The number of input channels needs to be changed. So the
weight matrix inherited from the following module is resized (the way of resizing
is described in the next paragraph). See Figure 4.1 for the visualization of weight
inheritance during NN assembling.

input

1

2

output

3 ✕ 3 ✕ 3✕ 1 3 ✕ 2 ✕ 2 ✕ 3

7 ✕ 7 ✕ 3

3 ✕ 3 ✕ 3 ✕ 1

1 ✕ 2 ✕ 2 ✕ 3

blueprint B assembled network A

module M,
specie 1

module N,
specie 2

[1,0,1] [0,3,1]

[2,2,2] [2,1,3]

[1,0,1] [0,3,1]

[2,2,2] [2,1,3]

Figure 4.1: The visualization of weight inheritance during the assembling of a
neural network from the blueprint B and the modules M, N. The dimensionality
of modules weight matrices is shown as a number of input channels × kernel size
× kernel size × number of output filters. The weight matrix of module N is
shrunken in the first dimension in order to make it compatible with module M .

After the training of the assembled network during evolution, the network
weights are passed on to the corresponding modules. One module can be present
in multiple assembled networks. When this happens, the module inherits the
weights from the network with the best fitness.

Weight Inheritance during Mating

A simple rule for weight inheritance is applied during the crossover: a new mod-
ule inherits the neural weights of the fitter parent. One must be careful about
the possibility of different kernel sizes and a number of filters2, which define the re-
sulting size of the weight matrix. Divergence can be caused by both crossover
and mutation. When the offspring kernel size or the number of filters is smaller

2(Output) filter is a different name for output channel denoting a dimensionality of an output
space. This name is widely used among the TensorFlow community.

32

than the parent’s values, the parent’s weight matrix is reduced and then passed
to the offspring. Otherwise, we add new weights initialized with zero value. We
have chosen to add zero values because it does not change the performance of
the layer and the layer remains to compute the same function as it did before
the weight matrix transformation, but the weight matrix dimension is changed
as we request. A module mutation is done by changing some of the module pa-
rameter values. The weight matrix needs to be changed when the kernel size or
the number of filters is mutated, which is done the same way as it is during the
crossover.

4.2 Multi-objective LamaCoDeepNEAT
The Multi-objective LamaCoDeepNEAT is the LamaCDN enhanced by mech-
anisms supporting multi-objective optimization. The main mechanism is the
NSGA-II algorithm presented in Section 1.6.2.

A version of multi-objective CoDeepNEAT has been already used in design-
ing LEAF (Learning Evolutionary AI Framework), the evolutionary AutoML
framework3 [55]. In LEAF, multi-objective optimization is used to maximize
the performance and minimize the complexity (e.x. a number of parameters)
of the evolved networks simultaneously. The ranking of blueprints and modules
is computed from successive Pareto fronts generated from both objectives, as-
sembled networks are ranked similarly. Although the paper includes algorithms
of the multi-objective version of the CDN and the Pareto front calculation, the
mechanisms are too poorly described to be replicated without further informa-
tion.

Multi-objectiveness in MOLamaCDN

In our proposal of the MOLamaCDN, non-dominated sorting is used on blue-
prints, modules, and assembled networks. But there is a difference between sort-
ing blueprints/modules and assembled networks in purpose and implementation
details such as secondary criterion.

Firstly, let’s look at the objectives which are being optimized during the evolu-
tion. Since our goal is to decrease the time-complexity of evolved neural networks,
we chose to optimize the number of floating point operations (FLOPs4), which
is a commonly used measurement for neural network models and it makes our
proposal more comparable with existing NAS methods. The FLOPs value for
a given convolutional network is calculated as a sum of FLOPs of each layer.
The FLOPs of the convolutional layer can be obtained as [56]:

FLOPs = 2fko, (4.1)
o = (i− k)− 1, (4.2)

where f is the number of convolutional filters, k is the kernel shape, o is the output
size and i is the input size. But one module can be used to process input data
with different sizes during one evolution iteration. For example, an assembled

3One of the authors of the LEAF is an author of the CDN Risto Miikkulainen.
4Do not confuse with floating point operations per second (FLOPS).

33

network contains the same module at two positions (the original blueprint has
two nodes, which point to the same module specie). Therefore input size is a
non-defining parameter for a module and output size, which depends on the input
size, is removed from the FLOPs calculation for modules in MOLamaCDN for
this reason. Then we get:

FLOPs = 2fk. (4.3)

A blueprint FLOPs value is calculated as a FLOPs value of its assembled neural
network, which we can obtain with implemented Tensorflow functions. Minimiza-
tion of FLOPs may lead to a decrease in the size of evolved architectures and
the number of trainable parameters. Another benefit of optimizing FLOPs is its
undemanding and relatively supported calculation.

The other objective is the error rate of the trained network, so both objectives
need to be minimized. The error rate is calculated as 1− sparse categorical accu-
racy of the model. We use sparse categorical accuracy implemented in Tensorflow
[57]:

from . import backend as K
def sparse_categorical_accuracy(y_true, y_pred):
return K.mean(K.equal(K.max(y_true, axis=-1),

K.cast(K.argmax(y_pred, axis=-1),
K.floatx())))

But unlike the calculation of the number of FLOPs, calculating the error rate
of the network is the most time-consuming part of the whole evolutionary NAS,
especially because of the network training.

Both of the objectives are computed for every assembled network and then
passed to every object, which was used for the creation of the assembled network,
similarly as it is done in single-objective methods. Error rates are transferred
to both blueprints and modules, but FLOPs are passed only to blueprints since
the final number of FLOPs of modules is independent of assembled network and
its architecture. The module’s number of FLOPs is computed from its parame-
ters, which do not change during the network assembling but only change during
the mutation. So every module mutation is accompanied by the number of FLOPs
update.

Transfer of Objective Values

Passing calculated objective values from the network to the modules and the
blueprints is not as straightforward as it is in the single-objective CDN. We have
to figure out, how to transfer a pair of values gained by an assembled network and
combine it with values from other assembled networks. We have proposed and
compared two methods of objectives transmission. The simpler one is inspired
by the single-objective CDN - after training, the assembled network error rate
and FLOPs are assigned to the blueprint and all modules used for the creation
of the network. After evaluation of all networks in the current generation, each
blueprint calculates its final objective values as an average of all assigned values:

o =
∑︁n

i oi

n
, (4.4)

34

where o is the calculated objective of the blueprint/module, n is the number of
assembled networks based on the blueprint/module and oi is the objective value
of such ith network. The module calculates this way only error rate, FLOPs
stays the same for the reason, which is described in the previous paragraph. The
advantage of this approach is its simplicity and low time complexity. But it
completely discards the information, that objective values create pairs depending
on their original network, which may be useful information. Error rate and FLOPs
are quite contradictory qualities and a network with a low error rate probably
has a high FLOPs value (and vice versa).

original blueprint B

o1
M
, o2

M,

o1
N
, o2

N,

network M

network N

cloned blueprint C

cloned blueprint D

Figure 4.2: The visualization of the cloning of blueprint. The original blueprint B
creates two assembled networks M, N and two clones C, D. After training, each
network passes its calculated objective values o1 and o2 to the relevant blueprint
copy and copies become part of the population.

The other proposed method, which is actually used in the MOLamaCDN, can
be divided into two phases.

In the cloning phase, we create a new copy of every blueprint used in
the currently evaluated network. Assign to these copies gained objectives val-
ues of the network. Put the copies in the same species as its original blueprint
and for each one assign the number of siblings - how many blueprint copies of
the current blueprint there are. Remove the original blueprint from the popu-
lation. A simplified view of the cloning phase with blueprints is in Figure 4.2
showing creation of two copy blueprints. Similarly, create copies of all modules.
Assign the error rate and trained weights and remove the original modules too.
The advantage of this approach is that the weights are passed on to modules with
corresponding objective values, so the module do not need to combine weights
from all genomes it has appeared in and lose some information. This way, module
and blueprint populations temporarily increase their size, which will be decreased
back to normal in the next phase.

35

Algorithm 4 The Cloning Phase
Require: a population P , a set of assembled networks A

Q = {} ▷ A set of clones.
R = {} ▷ A set of individuals which have

been cloned.
for each a ∈ A do

for each p ∈ P and assemble(p, a) do ▷ The individual p have assem-
bled the network a.

q = copy(p) ▷ Copy all p attributes including
species.

q.f lops = a.flops
if q.type is ”blueprint” then

q.error rate = a.error rate
else

assign weights(q, a)
end if
Q = Q ∪ q
R = R ∪ p

end for
end for
P = (P ∪Q) \R ▷ Update P by merging it with

clones from Q and by removing
individuals from R

In order to create the mating pool, we sort the current population with
clones and divide them into fronts by fast non-dominated sorting algorithm (Al-
gorithm 2) known from NSGA-II. From the fronts, we choose a group of the best
individuals, which will be later used as parents and moved straight to the new
population. This way elitism is implemented in the MOLamaCDN. Every candi-
date needs to be checked, whether it has no other sibling in the mating pool (i.e.
an individual which was cloned from the same original individual). If the group
already contains one of the siblings, who belongs to a better front, the others
are completely removed from the population. If both siblings belong to the same
front, the algorithm chooses randomly. When it comes to the situation, where
we have to choose a number of candidates smaller than the size of the front, we
decide by the number of individual’s siblings (which is our secondary criterion)
and if compared values are the same, we look at the crowding distance (this ap-
ply to the siblings in this phase too). The usage of the number of siblings as a
secondary criterion indicates our preference for the number of times an individual
was selected to form an assembled network over front coverage.

During the offspring creation, we fill the rest of the new population with
offspring of individuals from the previously selected mating pool. The mating
individuals are chosen by tournament selection, which compares their rank, num-
ber of siblings, and crowding distance. Offspring are created by the crossover and
mutation methods used in the original CoDeepNEAT implementation [58].

The comparison of these two methods has shown, that the first method
with averaging evolved the population of networks with similar objective values.
The method with cloning usually came with a wider variety of objective values,

36

so it is better for preserving the diversity of individuals and reaching extremes of
optimized objectives. On the other hand, the implementation of cloning is more
complex and it demands more memory and time.

Algorithm 5 The Mating Pool Creation
Require: a population P , a number of parents to select x

M = {} ▷ A mating pool.
fronts = nondomsort(P) ▷ Use sorting Algorithm 2.
for each f ∈ fronts do

if x == 0 then
return M

end if
if size(f) ≤ x then

for each p in f do
if siblings(p) not in M then ▷ No p’s siblings have been selected.

M = M ∪ p
x = x− 1

end if
end for

else
crowding distance(f) ▷ Compute crowding distance.
sort(f) ▷ Sort f by number of siblings and

crowding distance in decreasing or-
der.

for each p in f do
if x == 0 then

return M
end if
if siblings(p) not in M then

M = M ∪ p
x = x− 1

end if
end for

end if
end for

37

(1) (2) (3) (4) (5)

Figure 4.3: The effect of cloning on the population of individuals. Picture (1)
shows a new population of five individuals (red, orange, green, blue, and purple).
Picture (2) shows the cloning phase, where the red, green, and blue individuals are
copied. The original individuals are then deleted in (3). From this population
are then selected the best individuals, in the picture (4) those are the orange
individual and the red and blue clones, the rest is removed. The final stage of
the population (5) is ready for mating.

38

5. Experiments
In this section, we describe the experiments with LamaCDN and MOLamaCDN
that we have conducted. We introduce and describe the CDN implementation and
packages used for our implementation and the datasets used in the experiments.
The results of experiments are then presented and compared with each other and
with some other known models.

The evolutionary experiments need a lot of time to evaluate and they are
usually launched in multiple runs. The final described model is usually the one
of all results, which reached the best score and has the best performance. We
present its objectives: fitness (i.e. error rate) and FLOPs value, and the total
number of network parameters (trainable and non-trainable).

We decided to check and test our two proposed methods on two datasets -
MNIST [59, 60] and CIFAR-10 [61, 62]. Also, we needed to run the implemen-
tation of the CoDeepNEAT we used, since it has no official experiment results,
which we could use for comparison. The results from the original CDN paper
cannot be compared either, since we did not use the original implementation as
a base for our method because authors did not publish the code. MNIST exper-
iments were run with one set of hyperparameters and CIFAR-10 was run with
three sets of hyperparameters. The parameters are described in the next section.
To sum up, we prepared and conducted twelve experiments in total.

We did not use any architecture dataset for limitation NAS search space like
NAS-Bench-101 [63]. NAS-Bench-101 contains over 5 million trained models,
which were evaluated on the CIFAR-10 dataset. Since our methods contain weight
inheritance, training a network is an important part we do not want to skip.

5.1 Used Implementation

First, we needed to find an implementation of the CoDeepNEAT, because we
used it as a base algorithm for our proposed approach. We applied multiple
changes and expansions to transform the original CoDeepNEAT into the Lamar-
ckian CoDeepNEAT, and later into the multi-objective version of LamaCoDeep-
NEAT. Unfortunately, CDN authors did not publish their paper [50] with the
relevant code. Releasing code is highly recommended since without the full origi-
nal code and used hyperparameters it is nearly impossible to reproduce the NAS
methods. This and other recommendations to developers are mentioned in [35].
In 2020, a paper introducing a CDN implementation using Keras and its source
code was published by Bohrer [64, 65]. The paper is a useful source for writing
your own code since it contains many implementation details, which were not
mentioned in the original paper. However, we decided not to use this code, be-
cause it is built on old methods of using the Keras and Tensorflow packages and
the versions of the used packages are outdated.

The code, which we actually used as a foundation, is a part of Paul Pauls’s
Tensorflow-Neuroevolution framework (abb. TFNE) [66]. TFNE works with Ten-
sorflow version 2.x and it is quite a robust and sophisticated framework. And yet,

39

TFNE is open to modifications, properly documented1 and user-friendly, which
makes it easier to work with it. As mentioned before, the whole code is writ-
ten in Python 3.7 [67], which is a popular and supported language for machine
learning model development. A significant part of the code uses Tensorflow -
machine learning platform [68], especially for work with neural networks, their
assembling, training, and evaluating fitness function and weight inheritance. In-
formations about our source code can be found in Attachement A.2.

5.2 Datasets

The chosen datasets, the MNIST dataset and the CIFAR-10 dataset, are well-
known in the machine learning community. Both of them are image datasets
suitable for image classification [69, 70]. Their main perks are their quality, size,
and availability.

5.2.1 MNIST

The MNIST database (Modified National Institute of Standards and Technology
database) [59] was first introduced in 1998 by LeCun. It is a dataset of hand-
written and annotated digits. It has a training set of 60 000 examples and a test
set of 10 000 examples. The dataset has been used also for tasks like image clus-
tering or image generation so far. A few MNIST database variants have occurred
during its existence, such as Sequential MNIST for sequential image classification
[71] or Moving MNIST for video prediction [72]. The Moving MNIST contains
short video sequences, where two digits move independently around the frame,
bounce off the edges and intersect with each other.

The MNIST database does not need any preprocessing - all of its images are
size-normalized and centered in a fixed-size image. Every image has a size of
28× 28 pixels, the shown digit is centered in the image and it has 20× 20 pixels
size. The database contains black-and-white pictures only.

Figure 5.1: Sample images from the MNIST dataset, from [73].

1The documentation can be found on [58].

40

5.2.2 CIFAR-10
The CIFAR-10 dataset (Canadian Institute for Advanced Research) [61] is a
dataset of photo images, which can be split into ten groups (which explains the
name CIFAR-10) by displayed object. The categories are airplane, automobile,
bird, cat, deer, dog, frog, horse, ship, and truck. Every class consists of 6 000
images, so the database contains 50 000 training images and 10 000 test images
in total. All images are colour photographs with resolution 32× 32 pixels and 3
channels (RGB).

5.3 Experiments with MNIST
The results of experiments with the MNIST dataset are presented in this section.
First, the parameters of experiments are described. Descriptions and obtained
results of runs of all methods (CoDeepNEAT, LamaCoDeepNEAT, and Multiob-
jective LamaCoDeepNEAT) follow.

Parameters

We used the same experiment hyperparameters values as the authors used in
Keras-based CDN implementation [64], but we have slightly changed some of
them (some of them are not mentioned in the article). The original CDN proposal
[50] was not evaluated on the MNIST dataset.

All of the MNIST experiments run for 40 generations. The populations con-
tain 10 individuals, 10 blueprints, and 30 modules. Every blueprint is used
for network assembling once per generation. The networks are trained on the
full training dataset (60,000 images) for 4 epochs. A maximal number of mod-
ule/blueprint species is set to 5, except for the maximal number of blueprint
species in MOLamaCDN, where it is set to 1, so the speciation is practically not
used. The genetic operator parameters for modules are as follows: the mutation
probability is 0.8, and the crossover probability is 0.2. In every generation, the
two best modules are carried unchanged into the next generation. The blueprint
mutation probability is set to 0.3 and the blueprint crossover probability is set to
0.1.

Other parameters used for MNIST experiments are closely described in the
following tables. Table 5.1 contains parameters related to produced networks.
The table says that every assembled network contains convolutional layers with
one dense or flatten layer used as an output layer. Adam optimization is used for
network optimization. It is a stochastic gradient descent method that is based
on adaptive estimation of first-order and second-order moments [74]. Tables 5.2
and 5.3 show the parameters of mentioned layers. The dense layers are strictly
defined with 10 units and a softmax activation function since they are used only
as the output layer. The convolutional layers can be more diverse. Some of the
parameters, e.g. merge method or activation function, can be randomly chosen
during initialization and they can become the object of mutation during evolution.
Table 5.3 also contains parameters related to dropout and max pooling layers,
which may become a part of a module. We have run every method experiment
15 times.

41

Parameter Type Options
Datatype of network

phenotype
Fixed [”float32”]

Available modules Fixed [”Convolutional”]
Available optimizers Fixed [”Adam”]

Output layers Random choice [”Flatten”, ”Dense”]

Table 5.1: Experiment hyperparameter table.

Parameter Type Options
Units Fixed [10]

Activation function Fixed [”softmax”]

Table 5.2: Experiment parameter table for output dense layers.

Parameter Type Options
Merge method Random choice [”Concatenate”, ”Add”]

Filters Fixed [”min”: 32, ”max”: 256,
”step”: 32, ”stddev”:

32]
Kernel size Random choice [1, 2, 3]

Stride Fixed [1]
Padding Random choice [”valid”, ”same”]

Activation function Random choice [”relu”, ”elu”, ”linear”]
Kernel initializer Fixed [”glorot uniform”]
Bias initializer Fixed [”zeros”]

Max pooling flag Fixed [0.5]
Max pooling size Fixed [2]

Dropout flag Fixed [0.5]
Dropout size Fixed [”min”: 0.1, ”max”: 0.7,

”step”: 0.1, ”stddev”:
0.2]

Table 5.3: Experiment parameter table for convolutional layers.

CoDeepNEAT and LamaCoDeepNEAT on MNIST

The best network which CoDeepNEAT experiments returned has an error rate of
1.18%. After the final training for 100 epochs, the network has reached 99.01%
accuracy (i.e. 0.99% error rate). This network has been found in the 38th gener-
ation. Another interesting network property is the FLOPs value 41,512,062 and
the number of all (trainable and non-trainable) parameters 381,898.

With LamaCoDeepNEAT, we have obtained a network with an error rate
of 1.72% and an error rate of 1.56% after training for 100 epochs (i.e. 98.44%
accuracy). The best network has been created in the 30th generation. The FLOPs
value is 2,195,230 and the number of all parameters is 441,290.

Since our experiments run on different computers with different CPUs, etc.,
it is not possible to prove the decrease in training time caused by the weight
inheritance by a simple comparison of the training times of the networks. Also,

42

the best networks have a different size (the number of parameters), which affect
the training time too, so we need to choose a different comparative method. In
this article [75], authors compared an evolutionary algorithm evolving neural net-
works without a crossover operator (mutation operator only) with its Lamarckian
version. They studied and compared test accuracies of the best networks at some
points of evolution. They came to the conclusion, that the fitness convergence
speed was improved by implementing weight inheritance, which sometimes made
it possible to reduce the number of generations.

A plot of the fitness evaluation of the experiment with the best result can
be found in Figure 5.2 for both methods. Blue points represent all assembled
networks (10 networks per generation) and their reached fitness value in a gener-
ation. Red point is the best network with the lowest fitness value in the current
generation. To sum up, we have found a network using Lamarckian CoDeep-
NEAT with weight inheritance to the MNIST dataset, which is comparable to the
CoDeepNEAT solution. The process of experiments is similar but the LamaCDN
experiment converged to the best solution a bit faster than the CDN experiment.

Figure 5.2: A network fitness evaluation during 40 generations in CoDeepNEAT
and LamaCoDeepNEAT algorithms on the MNIST dataset.

See Figure 5.3 for further comparison of the average course of the experiment.
Red points mean the best assembled networks with the lowest fitness value of
each experiment. The red line runs through the mean of the points from the
same generation, therefore it represents the average fitness function development
in each method. We used for the visualization the experiments which run for all
40 generations (15 experiments for CDN and 12 experiments for LamaCDN in
total).

The average course of the experiment is very similar for CoDeepNEAT and
LamaCoDeepNEAT. They converge comparably fast and the light differences in
achieved final fitness value may be reduced with the increase in the number of ex-
periments. This conclusion supports the idea, that the MNIST dataset is too easy
to solve to show the improvement caused by the weight inheritance implementa-
tion. The already mentioned article [75] contains a similar observation. Authors
state, that the MNIST dataset is easy to solve and can be learned quickly by
small networks, which leads to marginal improvements from weight inheritance.

We can calculate the average execution time of experiments, which ran on the
same cluster and did not reach the wall time. See Table 5.4 to compare the average

43

Figure 5.3: An average fitness function value of the best networks in every gen-
eration in CoDeepNEAT and LamaCoDeepNEAT on the MNIST dataset.

experiment execution time on some clusters2. LamaCDN experiments were less
time-consuming on almost every cluster. In some cases, the differences are tens
of thousands of seconds. So the conclusion is that LamaCDN performs MNIST
experiments returning networks with similar performance as CDN networks, but
in a shorter time.

Table 5.4 also shows the average execution time for Multi-objective experi-
ments. The ”X” mark means that MOLamaCDN experiments did not run on the
particular cluster, so the data for calculation does not exist. The MOLamaCDN
experiments are discussed in the next section.

CDN LamaCDN MOLamaCDN
Cluster No. of

runs
t [s] No. of

runs
t [s] No. of

runs
t [s]

aman 4 108,872 8 98,783 0 X
elan 1 74,051 1 88,115 3 13,471
gita 3 122,651 2 28,296 0 X
zelda 1 125,137 2 52,424 2 9,105
zenon 2 108,970 2 97,665 5 15,468

Table 5.4: Average execution time table for CoDeepNEAT, LamaCoDeepNEAT,
MOCoDeepNEAT on the MNIST dataset.

2Parameters of the clusters are listed in Attachement A.1.

44

Multi-objective LamaCoDeepNEAT on MNIST

The best result obtained from MOLamaCDN experiments is the neural network
with 1.55% error rate, and 1.23% error rate (e.x. 98.77% accuracy) after final
training for 100 epochs. The best network has been created in the 35th generation.
The FLOPs value is 270,430 and the number of all parameters is 54,410. This
means that the best result of MOLamaCDN is as good as the results of CDN and
LamaCDN, but is less demanding on computer resources. The least demanding
network found by this experiment reached also promising results: the FLOPs
are 112,926 and the error rate is 9.03%. This pair of networks is quite similar
compared to the result pairs of other experiments. Usually, the network with the
lowest FLOPs reached a high error rate, which was expected.

A visualization of the experiment’s interim results is in Figure 5.4. A blue line
shows the lowest fitness value from all assembled networks in each generation. A
green line connects the lowest reached FLOPs values of all assembled networks in
the current generation. So the figure does not show concrete fitness and FLOPs
values for every network, because it shows the progress of the fitness and FLOPs
evolution during the experiment that returned the best network.

The fitness value did not converge in the same way as in other experiments.
The first-generation populations (randomly) created a very good network with
circa 8% error rate, which caused a very fast and promising convergence. This
probably also led to the similarity of both resulting networks, which is mentioned
in the previous paragraph, even though each of them is aimed at a different
objective. The neural architecture search focused on a subspace of less demanding
and good-performing networks since the beginning.

Figure 5.4: A fitness values of the best networks and FLOPs values of the least
demanding networks in every generation in the Multi-objective LamaCoDeep-
NEAT experiment on the MNIST dataset.

A visualization of the development of the first non-dominated front during
generation is shown in Figure 5.5 (for a closer description of non-dominated fronts
see Section 1.6.2). In both images, a point represents a network from the best
front and its fitness and FLOPs values. Colours of the points distinguish the
generation, in which the network was created and assigned to the first front. The
networks from the same generation are also connected with a dotted line. The

45

larger subfigure shows an overall view of all networks from the first fronts. The
smaller subfigure is focused on the more interesting area, where the differences in
reached objective values are more distinguishable.

Figure 5.5: A visualization of the first non-dominated front of assembled net-
works in every fifth generation in Multi-objective LamaCoDeepNEAT experiment
returning the best network on the MNIST dataset.

The networks became better in both objectives than their predecessors in
almost every showed generation, which is a desired property of multi-objective
optimization experiments. It seems that our proposed implementation of multi-
objectiveness preserved its characteristic properties. Even though, it was applied
to two coevolving populations (one of them divided into species) and assembled
networks used to evaluate their objectives, not only on one population of indi-
viduals as usual. The experiment was evolving a more diverse population after
the 15th generation, based on an observation, that the first fronts are larger after
this particular generation.

An average course of MOLamaCDN experiments on the MNIST dataset can
be seen in Figures 5.6 and 5.7. In Figure 5.6, a blue line connects the calculated
average fitness value in each generation. Blue dots represent the fitness value of
all generated networks. Similarly, the average FLOPs value is represented by a
green line and the green dots represent all reached values by all networks in Figure
5.7. Both average objectives converge to optimal solutions comparably. The con-
vergence of fitness values corresponds to LamaCDN and CDN experiments. On
the other hand, it does not reach such good results as single-objective methods,
but that is surely caused by the multi-objectiveness of opposing objectives.

Another interesting observation can be seen in Figure 5.7. The average FLOPs
value is slightly increasing after 25th generation. This may be caused by chosen
optimization objectives, which are conflicting - it is usually needed to increase
the FLOPs of the network to decrease its error rate, and vice versa. But this idea
needs to be supported by more experiments running for more generations.

Table 5.4 shows the average execution times of MOLamaCDN experiments
and experiments of other methods on particular clusters. The MOLamaCDN
executions were significantly faster, which is probably caused by multi-objective

46

Figure 5.6: An average fitness function value of the best networks in every gen-
eration in Multi-objective LamaCoDeepNEAT on the MNIST dataset.

Figure 5.7: An average FLOPs value of the least demanding networks in every
generation in Multi-objective LamaCoDeepNEAT on the MNIST dataset.

optimization and Lamarckian principles - the weight inheritance and evolving
less computer-demanding neural networks due to FLOPs optimization. For ex-
ample, the average execution time on the zenon cluster is 15,467.80 seconds for
MOLamaCDN, 97,665.00 seconds for LamaCDN, and 108,970.00 seconds for the
original CDN. The difference between MOLamaCDN and LamaCDN is more than
2.5 hours and the difference between MOLamaCDN and CDN is almost 26 hours.

5.4 Experiments with CIFAR-10
This section describes the results of experiments using the CIFAR-10 dataset.
We introduce experiment parameters, then we present results and best models of
each method.

47

We ran three experiments with different parameter settings for each method.
The reason is the high consumption of computing resources needed for creating
a CIFAR-10-based image recognition solution. We have proposed three versions
of the experiment: a short experiment, a short experiment with higher muta-
tion probability, and a long experiment. All variants are closely described in the
following sections.

5.4.1 CIFAR-10 - Short Version
Parameters of Short Version

Bohrer et al. [64] considered the experiment parameters used in the original
proposal [50] and estimated the time required to be difficult to achieve for common
users. They have decided to run the CIFAR-10 experiments with settings similar
to MNIST experiment parameters.

We have tried the same approach. Every evolution runs for 40 generations
with populations of 30 modules, and 10 blueprints, which assembled 10 networks
in each iteration. The networks are trained on the whole CIFAR-10 dataset
(50,000 train images, 10,000 test images) for 4 epochs and then evaluated. The
module mutation probability is 0.8, and the module crossover probability is 0.2.
The blueprint mutation probability is 0.3, and the blueprint crossover probability
is 0.1. Other parameters can be obtained from Tables 5.1, 5.2, 5.3, which were
presented in the previous MNIST Section 5.3.

CoDeepNEAT and LamaCoDeepNEAT on CIFAR10 - Short Version

The best result of CoDeepNEAT short experiments with CIFAR10 is a neural
network, which reached during the evolution an error rate of 39.7%, after train-
ing for 100 epochs it is 38.9%. The best network has been created in the 32nd

generation. The FLOPs value is 20,021,278 and the number of all parameters is
238,730.

The LamaCoDeepNEAT best network has an error rate of 31.33% and after
final training error rate of 31.13%. The network was created in 19th generation.
The FLOPs value is 25,411,934 and the number of all parameters is 161,322. But
experiments found another interesting network, which reached a higher error rate
during the evolution, but after training it reached 70.61% accuracy, which is a
29.39% final error rate. And one experiment found a very promising network
with an error rate of only 27.17% error rate, but unfortunately, the experiment
ran out of time during the 26th generation.

Figure 5.8 compares the course of both experiments returning the best net-
works. It seems that both experiments have similar courses, but LamaCDN still
returned a better result. More details about experiments can be obtained from
Figure 5.9, which shows an average course of the LamaCDN and CDN experi-
ments (we used for average computation 10 CDN experiments and 8 LamaCDN
experiments).

The progress of the average error rate corresponds to the progress of exper-
iments with similar settings described in [64], where the average line did not
drastically increase/decrease either. Authors present as their best result a net-
work with 77% accuracy (trained for a longer time), which is not significantly

48

Figure 5.8: A network fitness evaluation during 40 generations in CoDeepNEAT
and LamaCoDeepNEAT algorithms on the CIFAR10 dataset - short version of
the experiment.

Figure 5.9: An average fitness function value of the best networks in every gener-
ation in CoDeepNEAT and LamaCoDeepNEAT on the CIFAR10 dataset - short
version of the experiment.

different from our results. But their network is also more robust than ours (see
Figure 20 in [64]), while our network is basically assembled from two convolu-
tional modules with max pooling layers of size 2, the first has 128 filters and the
kernel of size 3x3, the second module has 96 filters and the kernel size is 3x3.
This simple architecture is not able to reach higher accuracy without increasing
its complexity so it seems that we need to boost the evolution to support the
network growth or let the experiments run with more computationally demand-
ing parameters. These observations lead us to design a new set of experiments,
which are discussed later.

49

If we focus on the average execution time of experiments on the CIFAR-
10 dataset, we find out that the LamaCoDeepNEAT performed a faster search.
The LamaCDN experiment lasted 82,184.33 seconds on average and CDN lasted
118,184.86 seconds (experiments ran on the kirke cluster). The difference is circa
10 hours.

Multi-objective LamaCoDeepNEAT on CIFAR-10 - Short Version

The best network obtained from short MOLamaCDN experiments has a 55.54%
error rate. After the final training, it is 54.7%. The network was obtained in 27th

generation, the FLOPs value is 213,002 and the total number of parameters is
82,058.

Figure 5.10: A fitness values of the best networks and FLOPs values of the
least demanding networks in every generation in the short Multi-objective
LamaCoDeep-NEAT experiment on the CIFAR-10 dataset.

This low accuracy is caused by the size and complexity of found neural ar-
chitecture - the experiment returned a network assembled from only one convo-
lutional module with max pooling and dropout layers. The resulting networks
are very similar for the rest of the short MOLamaCDN experiments on CIFAR-
10, see Figure 5.11, where the average course of experiments are displayed. On
the other hand, found networks were very small, so it seems that minimization
of FLOPs dominated. The reason causing this behavior may be that initialized
networks were too small to be successful on the CIFAR-10 dataset, and FLOPs
minimization on small networks was less challenging than accuracy maximiza-
tion. A longer training during evaluation and a higher probability of increasing
network architecture size during mutation may be helpful.

5.4.2 CIFAR-10 - Short Version, Higher Mutation Prob-
ability

We have decided to do another set of experiments with the CIFAR-10 dataset
after obtaining the results from the short experiments. As we mentioned, all
methods produced small networks, which were not able to perform well on that
complex dataset. The hyperparameters of these experiments are different only in

50

(a) Average fitness. (b) Average FLOPs.

Figure 5.11: An average fitness function value of the best networks (left) and an
average FLOPs value of the least demanding networks (right) in every generation
in short Multi-objective LamaCoDeepNEAT on the CIFAR-10 dataset.

blueprint mutation probability. This change is supposed to boost the growth of
the networks during evolution and help our methods to find larger (and there-
fore hopefully more accurate) resulting architectures. The specific changes in
parameters are listed in Table 5.5.

Parameter Old Value New Value
Mutation probability 0.3 0.5

Add connection
probability

0.2 0.35

Add node probability 0.2 0.35
Remove connection

probability
0.05 0

Remove node
probability

0.05 0

Mutate node species
probability

0.3 0.1

Mutate optimizer
probability

0.1 0.1

Crossover probability 0.1 0.1

Table 5.5: A comparison of blueprint evolution parameter values used in the
short CIFAR-10 experiments and in the short CIFAR-10 experiments with higher
mutation probability.

CoDeepNEAT and LamaCoDeepNEAT on CIFAR10 - Short Version,
Higher Mutation Probability

The network with the lowest error rate during CoDeepNEAT evolution - 43.21%,
has reached FLOPs value 82,420,382, the total number of parameters is 487,626
and its origin generation is the 38th generation. The final error rate obtained
after training for 100 epochs is 36.06%.

The LamaCoDeepNEAT experiments have found the network with a 37.49%
error rate and 27.31% error rate after final training. The network FLOPs value

51

is 74,726,942 and the number of parameters is 434,634. The network was found
in the last generation.

See Figure 5.12 for fitness evaluation of CDN and LamaCDN experiments,
which have found the best networks. Figure 5.13 shows an average course of both
experiments. We can see that the LamaCDN experiments reached better error
rates on average, similar to MNIST and short CIFAR-10 experiments.

Figure 5.12: A network fitness evaluation during 40 generations in CoDeepNEAT
and LamaCoDeepNEAT algorithms on the CIFAR10 dataset - short version of
the experiment with bigger mutation probability.

Figure 5.13: An average fitness function value of the best networks in every
generation in CoDeepNEAT and LamaCoDeepNEAT on the CIFAR10 dataset -
a short version of the experiment with bigger mutation probability.

It seems that increasing the mutation probability helped to find larger, there-
fore, better-performing networks, as we expected. A comparison of an average

52

fitness evolution of all four short CIFAR-10 experiments (CDN and LamaCDN
with lower probability, CDN and LamaCDN with higher probability) can be seen
in Figure 5.14. We can observe, that our LamaCDN experiments with lower
probability reached the best fitness in around half time of evolution, meanwhile,
LamaCDN with higher probability found the best networks in the last generations
on average, which looks like a promising way to reach even better networks. Ta-
ble 5.6 shows the average FLOPs value and number of total parameters reached
by the best networks in every experiment. The average number of FLOPs in-
creased in experiments with higher probability, on the other hand, the number
of total parameters actually decreased, but the difference is not as big as it is in
the FLOPs values.

Figure 5.14: An average fitness function value of the best networks in every
generation in CDN and LamaCDN on the CIFAR-10 dataset, short version, and
in CDN and LamaCDN on the CIFAR-10 dataset, short version with higher
mutation probability.

Method Average FLOPs Average total params
CDN, lower prob 55,285,676 1,304,161

LamaCDN, lower prob 43,751,295 363,929
CDN, higher prob 84,718,562 1,195,815

LamaCDN, higher prob 47,937,053 361,921

Table 5.6: A table of average FLOPs and the number of total network parameters
reached by the best network for short experiments ran on the CIFAR-10 dataset.

Multi-objective LamaCoDeepNEAT on CIFAR10 - Short Version,
Higher Mutation Probability

The higher mutation probability did not improve MOLamaCDN as it did with
LamaCDN and CDN. This can be seen in Figure 5.15, which shows an average
fitness value during evolution in all experiments in Figure 5.15a and an average

53

FLOPs value in 5.15b. A lot of experiments with higher probability did not
finish the evolution before the time ran out (wall time was set to 48 hours), so it
seems that their evolution becomes more computationally demanding. This would
also explain the observation from the figure with average FLOPs 5.15b, that the
experiments did not reach as low FLOPs values as MOLamaCDN experiments
with lower probability. Extending execution wall time for experiments may bring
more interesting results and more accurate networks.

(a) Average fitness. (b) Average FLOPs.

Figure 5.15: An average fitness function value of the best networks (left) and an
average FLOPs value of the least demanding networks (right) in every generation
in short Multi-objective LamaCoDeepNEAT on the CIFAR-10 dataset with lower
mutation probability and with higher mutation probability.

5.4.3 CIFAR-10 - Long Version
Parameters of Long Version

The parameters used for long experiments are inspired by parameters of the
original CDN CIFAR-10 experiment [50].

Every experiment runs for 72 generations. A module population contains
45 modules, a blueprint population contains 25 blueprints and together they
assemble 100 networks. A blueprint is used as a base for 4 networks in every
iteration. The training uses all images from the database and it takes 8 epochs.

Other parameters are the same as for the short version, so we repeat them
just briefly. A maximal number of species is set to 5 too. The module mutation
probability is 0.8, and the module crossover probability is 0.2. The blueprint
mutation probability is 0.3, and the blueprint crossover probability is 0.1. For a
closer description of network components, look in Tables 5.1, 5.2, 5.3.

Another important parameter of the experiment is wall time, which is unique
for the long version. Since we do not rely on evolution iterating for all 72 gener-
ations in a reasonable time, we stop the experiment after reaching a given wall
time. Every long experiment had wall time set to 168 hours.

CoDeepNEAT and LamaCoDeepNEAT on CIFAR-10 - Long Version

The long CoDeepNEAT experiments on CIFAR-10 found the neural network with
a 33.8% error rate gained during evaluation. This network is bigger than the

54

network found during the short version of the experiment - the FLOPs value is
127,627,630 and the number of trainable and non-trainable parameters is 674,314.
The whole experiment lasted for 16 generations. The best network obtained
from the long LamaCDN experiment has an evaluation error rate of 21.35%,
111,765,534 FLOPs, and 700,042 parameters. This experiment ran for 15 gener-
ations.

See Figure 5.16 for a comparison of fitness evolution during the long experi-
ment of both algorithms.

Figure 5.16: A network fitness in CoDeepNEAT and LamaCoDeepNEAT algo-
rithms on the CIFAR10 dataset - the long version of the experiment.

An average course of both experiments is shown in Figure 5.17 (CDN presents
19 experiments, LamaCDN presents 23 experiments). The first observable differ-
ence between these two plots is the maximal reached length of evolution. Mean-
while, the longest CDN experiment ran for 19 generations, the longest LamaCDN
experiment run for 41 generations. All of the long experiments run on similar
clusters kirke, nympha, and halmir. The average number of generations of CDN
experiments is 10.95, but the average number for the LamaCDN experiments is
again higher - 17.91 generations, so it seems that the Lamarckian version is really
faster than the original CDN without weight inheritance. Another difference is in
the diversity of assembled networks - the CDN experiments obtained more similar
networks than the LamaCDN experiments.

Multi-objective LamaCoDeepNEAT on CIFAR-10 - Long Version

The long MOLamaCDN experiments returned a network with a 45.36% error rate
gained after training for 8 epochs during evaluation, 941,630 FLOPs, and 144,842
parameters, which makes it bigger and more promising than the best network of
the short MOLamaCDN experiments on CIFAR-10. This experiment’s smallest
found network has 213,022 FLOPs and a 61.86% error rate. In total, it ran only
for 11 generations in 168 hours long execution time. See Figure 5.18 for evolution
of the lowest fitness and FLOPs values in this experiment.

Development of the first non-dominated front during evolution is shown in
Figure 5.19. The MOLamaCDN evolved networks, which were getting better in
both measured objectives during the experiment.

Two long experiments ran for all 72 generations, but the resulting best net-
works are not very accurate - they are too small and not very complex to reach
good results. In this case, optimization of FLOPs objective dominated (as it

55

Figure 5.17: An average fitness function value of the best networks in every
generation in CoDeepNEAT and LamaCoDeepNEAT on the CIFAR10 dataset -
long version of the experiment.

Figure 5.18: A fitness values of the best networks and FLOPs values of
the least demanding networks in every generation in the long Multi-objective
LamaCoDeep-NEAT experiment on the CIFAR-10 dataset.

happened in short experiments). The rest of the experiments ran for 7.54 gener-
ations on average and their average course of fitness and FLOPs value evolution
is shown in Table 5.20.

The long versions of the CIFAR-10 experiments have shown more promising
results for all three methods even though they did not finish evolution in com-
parison with the short version of experiments. During their short period of time,
they have found more accurate networks, which is probably caused by their bigger
size. The LamaCDN is faster than CDN on CIFAR-10 too, and multi-objective

56

optimization is able to optimize networks in both objectives in the CIFAR-10
dataset. The problem for future development is still the high time consumption.

Figure 5.19: A visualization of the first non-dominated front of assembled net-
works in every fifth generation in Multi-objective LamaCoDeepNEAT on the
CIFAR-10 dataset, long version of experiments.

(a) Average fitness. (b) Average FLOPs.

Figure 5.20: An average fitness function value of the best networks (left) and an
average FLOPs value of the least demanding networks (right) in every generation
in short Multi-objective LamaCoDeepNEAT on the CIFAR-10 dataset.

57

58

Conclusion
In this work, we have proposed, implemented and tested two versions of CoDeep-
NEAT, which is a well-known neural architecture search algorithm based on co-
evolutionary algorithms and results in finding neural networks suitable for solving
given problems. Both new versions were evaluated on several experiments with
the MNIST and CIFAR-10 datasets.

The first version of CDN is called Lamarckian CoDeepNEAT and it enriches
the original CDN implementation with neural network weight inheritance imple-
mentation, which is inspired by Lamarckian theory of evolution. LamaCoDeep-
NEAT does not waste hard trained network weights, rather it passes them onto
similar successor networks used in the next generation of evolution. The experi-
ments have shown that the method with this weight enhancement is able to find
networks with a smaller error rate (or at least as good as the original CDN) in a
much shorter time. In the case of the MNIST dataset, the biggest difference in
average execution time on the same computation cluster is circa 26 hours between
LamaCDN and CDN - a 77% faster execution time. In the case of the short ex-
periments on the CIFAR-10 dataset, the difference is circa 10 hours - a 30% faster
execution time. The long CIFAR-10 experiments, which were designed to work
with huge populations and to evolve as many generations as they can until they
reach the experiment wall time, showed similar results. The CDN experiments ran
for 10.95 generations on average, meanwhile, the LamaCDN experiments evolved
for 17.91 generations on average in the same amount of time.

The second proposed method is CoDeepNEAT adapted for multi-objective
optimization (as opposed to original CDN, which focuses only on single-objective
optimization), called Multi-objective LamaCDN since it also uses previously men-
tioned weight inheritance and LamaCDN as the base algorithm. So instead of
searching for a neural network with the best accuracy, we have designed a neural
architecture search algorithm, which focuses also on the network’s computational
requirements (i.e. network floating point operations). The multi-objective imple-
mentation is based on the NSGA-II algorithm used not only for blueprint and
module selection but also for selection of assembled networks used for weight
inheritance and mating. The experiments showed, that our approach preserves
desired multi-objective optimization properties, minimizes both defined objec-
tives and evolves networks better than their predecessors. The MOLamaCDN
experiments have found a network with a comparably low error rate as the origi-
nal version for the MNIST dataset, but this network has a much smaller FLOPs
value and the total number of parameters. The smallest network from this exper-
iment is even smaller, but the error rate is worse of course. The experiments with
CIFAR-10 dataset have found networks, which are usually not as well performing
as networks found by LamaCDN and CDN. On the other hand, their average
sizes and FLOPs decreased during evolution and the minimization worked as we
wanted. We have observed that the MOLamaCDN method is able to find non-
demanding and well-performing networks for datasets solvable by small networks
such as the MNIST dataset. The networks found for more complex datasets, like
the CIFAR-10 dataset, are usually rather less computation-demanding than more
accurate. This may be caused by the fact, that it is harder to achieve a good

59

error rate than a low FLOPs value when our first initial populations of randomly
generated individuals create simple and small networks.

The presented methods may be enriched with the implementation of some
method, which will boost the network growth in size, so they can achieve bet-
ter performance in both LamaCDN and MOLamaCDN (e.g. different mutation
probability, initialization with more complex individuals). The next possibility
for improvement is to try different base methods - a different multi-objective
optimization algorithm for example.

In more general, better results may be obtained by doing more and more ex-
periments with different datasets and hyperparameters since significantly more
computational resources are likely to become available in the near future. In-
creasing the number of training epochs will lead to getting better results but
also higher computational consumption. In our work, we aimed only for evolv-
ing convolutional networks, but further study may focus on using both proposed
methods on evolving LSTM networks suitable for e.g. language modeling, as it
was done with CDN in the original work [50].

60

Bibliography
[1] Xinjie Yu and Mitsuo Gen. Introduction to evolutionary algorithms. Springer

Science & Business Media, 2010.

[2] Charles Darwin. On the origin of species, 1859. Routledge, 2004.

[3] AE Eiben, JE Smith, AE Eiben, and JE Smith. Representation, mutation,
and recombination. Introduction to Evolutionary Computing, pages 49–78,
2015.

[4] Sourabh Katoch, Sumit Singh Chauhan, and Vijay Kumar. A review on
genetic algorithm: past, present, and future. Multimedia Tools and Applica-
tions, 80:8091–8126, 2021.

[5] Anant J Umbarkar and Pranali D Sheth. Crossover operators in genetic
algorithms: a review. ICTACT journal on soft computing, 6(1), 2015.

[6] Thomas Bäck, David B Fogel, Darrell Whitley, and Peter J Angeline. Mu-
tation operators. Evolutionary computation, 1:237–255, 2000.

[7] Hans-Georg Beyer and Hans-Paul Schwefel. Evolution strategies–a compre-
hensive introduction. Natural computing, 1:3–52, 2002.

[8] Michael D Vose. The simple genetic algorithm: foundations and theory. MIT
press, 1999.

[9] Holland Jh. Adaptation in natural and artificial systems. Ann Arbor, 1975.

[10] John N Thompson. Concepts of coevolution. Trends in Ecology & Evolution,
4(6):179–183, 1989.

[11] Chern Han Yong and Risto Miikkulainen. Cooperative coevolution of multi-
agent systems. Technical report, Citeseer, 2001.

[12] Mitchell A Potter and Kenneth A De Jong. A cooperative coevolution-
ary approach to function optimization. In Parallel Problem Solving from
Nature—PPSN III: International Conference on Evolutionary Computation
The Third Conference on Parallel Problem Solving from Nature Jerusalem,
Israel, October 9–14, 1994 Proceedings 3, pages 249–257. Springer, 1994.

[13] Bi Li, Tu-Sheng Lin, Liang Liao, and Ce Fan. Genetic algorithm based on
multipopulation competitive coevolution. In 2008 IEEE Congress on Evolu-
tionary Computation (IEEE World Congress on Computational Intelligence),
pages 225–228. IEEE, 2008.

[14] David E Goldberg, Jon Richardson, et al. Genetic algorithms with sharing
for multimodal function optimization. In Genetic algorithms and their ap-
plications: Proceedings of the Second International Conference on Genetic
Algorithms, volume 4149. Hillsdale, NJ: Lawrence Erlbaum, 1987.

61

[15] Bruno Sareni and Laurent Krahenbuhl. Fitness sharing and niching methods
revisited. IEEE transactions on Evolutionary Computation, 2(3):97–106,
1998.

[16] David A Van Veldhuizen and Gary B Lamont. Multiobjective evolutionary
algorithm research: A history and analysis. Technical report, Citeseer, 1998.

[17] Aimin Zhou, Bo-Yang Qu, Hui Li, Shi-Zheng Zhao, Ponnuthurai Nagarat-
nam Suganthan, and Qingfu Zhang. Multiobjective evolutionary algorithms:
A survey of the state of the art. Swarm and evolutionary computation,
1(1):32–49, 2011.

[18] Patrick Ngatchou, Anahita Zarei, and A El-Sharkawi. Pareto multi objec-
tive optimization. In Proceedings of the 13th international conference on,
intelligent systems application to power systems, pages 84–91. IEEE, 2005.

[19] Nidamarthi Srinivas and Kalyanmoy Deb. Muiltiobjective optimization us-
ing nondominated sorting in genetic algorithms. Evolutionary computation,
2(3):221–248, 1994.

[20] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A
fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE transactions
on evolutionary computation, 6(2):182–197, 2002.

[21] Kalyanmoy Deb and Himanshu Jain. An evolutionary many-objective op-
timization algorithm using reference-point-based nondominated sorting ap-
proach, part i: solving problems with box constraints. IEEE transactions on
evolutionary computation, 18(4):577–601, 2013.

[22] Himanshu Jain and Kalyanmoy Deb. An evolutionary many-objective op-
timization algorithm using reference-point based nondominated sorting ap-
proach, part ii: Handling constraints and extending to an adaptive approach.
IEEE Transactions on evolutionary computation, 18(4):602–622, 2013.

[23] Frank Rosenblatt. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review, 65(6):386, 1958.

[24] Warren Mcculloch and Walter Pitts. A logical calculus of ideas immanent
in nervous activity. pages 127–147, 1943.

[25] Sebastian Ruder. An overview of gradient descent optimization algorithms.
arXiv preprint arXiv:1609.04747, 2016.

[26] Hassan Ramchoun, Youssef Ghanou, Mohamed Ettaouil, and Mo-
hammed Amine Janati Idrissi. Multilayer perceptron: Architecture opti-
mization and training. 2016.

[27] Murat H Sazli. A brief review of feed-forward neural networks. Commu-
nications Faculty of Sciences University of Ankara Series A2-A3 Physical
Sciences and Engineering, 50(01), 2006.

[28] Sagar Sharma, Simone Sharma, and Anidhya Athaiya. Activation functions
in neural networks. Towards Data Sci, 6(12):310–316, 2017.

62

[29] Zewen Li, Fan Liu, Wenjie Yang, Shouheng Peng, and Jun Zhou. A survey of
convolutional neural networks: analysis, applications, and prospects. IEEE
transactions on neural networks and learning systems, 2021.

[30] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[31] Victore Powell. Image kernels explained visually. https://setosa.io/ev/
image-kernels/. [Online], accessed: 2023-04-04.

[32] Hossein Gholamalinezhad and Hossein Khosravi. Pooling methods in deep
neural networks, a review. arXiv preprint arXiv:2009.07485, 2020.

[33] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–778, 2016.

[34] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf,
William J Dally, and Kurt Keutzer. Squeezenet: Alexnet-level accu-
racy with 50x fewer parameters and¡ 0.5 mb model size. arXiv preprint
arXiv:1602.07360, 2016.

[35] Colin White, Mahmoud Safari, Rhea Sukthanker, Binxin Ru, Thomas
Elsken, Arber Zela, Debadeepta Dey, and Frank Hutter. Neural architec-
ture search: Insights from 1000 papers. arXiv preprint arXiv:2301.08727,
2023.

[36] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture
search: A survey. The Journal of Machine Learning Research, 20(1):1997–
2017, 2019.

[37] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for con-
volutional neural networks. In International conference on machine learning,
pages 6105–6114. PMLR, 2019.

[38] Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy,
and Frank Hutter. Nas-bench-101: Towards reproducible neural architecture
search. In International Conference on Machine Learning, pages 7105–7114.
PMLR, 2019.

[39] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Ra-
binovich. Going deeper with convolutions. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages 1–9, 2015.

[40] Hojjat Salehinejad, Sharan Sankar, Joseph Barfett, Errol Colak, and
Shahrokh Valaee. Recent advances in recurrent neural networks. arXiv
preprint arXiv:1801.01078, 2017.

[41] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement
learning. arXiv preprint arXiv:1611.01578, 2016.

63

https://setosa.io/ev/image-kernels/
https://setosa.io/ev/image-kernels/

[42] Yesmina Jaafra, Jean Luc Laurent, Aline Deruyver, and Mohamed Saber
Naceur. Reinforcement learning for neural architecture search: A review.
Image and Vision Computing, 89:57–66, 2019.

[43] Yuqiao Liu, Yanan Sun, Bing Xue, Mengjie Zhang, Gary G. Yen, and
Kay Chen Tan. A survey on evolutionary neural architecture search. IEEE
Transactions on Neural Networks and Learning Systems, 34(2):550–570,
2023.

[44] Dario Floreano, Peter Dürr, and Claudio Mattiussi. Neuroevolution: from
architectures to learning. Evolutionary intelligence, 1:47–62, 2008.

[45] Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabas Poc-
zos, and Eric P Xing. Neural architecture search with bayesian optimisation
and optimal transport. Advances in neural information processing systems,
31, 2018.

[46] Renato Negrinho and Geoff Gordon. Deeparchitect: Automatically designing
and training deep architectures. arXiv preprint arXiv:1704.08792, 2017.

[47] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and
Quoc Le. Understanding and simplifying one-shot architecture search. In
International conference on machine learning, pages 550–559. PMLR, 2018.

[48] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient
neural architecture search via parameters sharing. In International confer-
ence on machine learning, pages 4095–4104. PMLR, 2018.

[49] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Efficient multi-
objective neural architecture search via lamarckian evolution. arXiv preprint
arXiv:1804.09081, 2018.

[50] Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya Rawal, Dan Fink,
Olivier Francon, Bala Raju, Hormoz Shahrzad, Arshak Navruzyan, Nigel
Duffy, et al. Evolving deep neural networks. arXiv e-prints, pages arXiv–
1703, 2017.

[51] Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks
through augmenting topologies. Evolutionary computation, 10(2):99–127,
2002.

[52] Kenneth O Stanley, David B D’Ambrosio, and Jason Gauci. A hypercube-
based encoding for evolving large-scale neural networks. Artificial life,
15(2):185–212, 2009.

[53] Jean-Baptiste de Monet de Lamarck. Philosophie zoologique, ou Exposition
des considérations relatives à l’histoire naturelle des animaux..., volume 1.
Dentu, 1809.

[54] Lucas Gabriel Coimbra Evangelista and Rafael Giusti. Short-term effects of
weight initialization functions in Deep NeuroEvolution. Evo* 2021, page 21,
2021.

64

[55] Jason Liang, Elliot Meyerson, Babak Hodjat, Dan Fink, Karl Mutch, and
Risto Miikkulainen. Evolutionary neural automl for deep learning. In Pro-
ceedings of the Genetic and Evolutionary Computation Conference, pages
401–409, 2019.

[56] Jeremy Cohen. How to Optimize a Deep Learning Model for
faster Inference? https://www.thinkautonomous.ai/blog/
deep-learning-optimization/. [Online], accessed: 2023-04-05.

[57] Francois Chollet et al. Keras: Deep Learning library for Ten-
sorFlow and Theano. https://github.com/keras-team/keras/blob/
c2e36f369b411ad1d0a40ac096fe35f73b9dffd3/keras/metrics.py.

[58] Paul Pauls. The documentation of the Tensorflow-Neuroevolution frame-
work. https://tfne.readthedocs.io/en/latest/index.html.

[59] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[60] Yann LeCun. MNIST handwritten digits database. http://yann.lecun.
com/exdb/mnist/. [Online], accessed: 2023-04-03.

[61] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features
from tiny images. 2009.

[62] Alex Krizhevsky. CIFAR-10 and CIFAR-100 datasets. https://www.cs.
toronto.edu/˜kriz/cifar.html. [Online], accessed: 2023-04-03.

[63] Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy,
and Frank Hutter. Nas-bench-101: Towards reproducible neural architecture
search. In International Conference on Machine Learning, pages 7105–7114.
PMLR, 2019.

[64] Jonas da Silveira Bohrer, Bruno Iochins Grisci, and Marcio Dorn. Neuroevo-
lution of neural network architectures using codeepneat and keras. arXiv
preprint arXiv:2002.04634, 2020.

[65] Jonas da Silveira Bohrer. Keras-CoDeepNEAT. https://github.com/
sbcblab/Keras-CoDeepNEAT.

[66] Paul Pauls. The Tensorflow-Neuroevolution Framework. https://github.
com/PaulPauls/Tensorflow-Neuroevolution.

[67] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. Cre-
ateSpace, Scotts Valley, CA, 2009.

[68] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kud-
lur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek

65

https://www.thinkautonomous.ai/blog/deep-learning-optimization/
https://www.thinkautonomous.ai/blog/deep-learning-optimization/
https://github.com/keras-team/keras/blob/c2e36f369b411ad1d0a40ac096fe35f73b9dffd3/keras/metrics.py
https://github.com/keras-team/keras/blob/c2e36f369b411ad1d0a40ac096fe35f73b9dffd3/keras/metrics.py
https://tfne.readthedocs.io/en/latest/index.html
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://github.com/sbcblab/Keras-CoDeepNEAT
https://github.com/sbcblab/Keras-CoDeepNEAT
https://github.com/PaulPauls/Tensorflow-Neuroevolution
https://github.com/PaulPauls/Tensorflow-Neuroevolution

Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya
Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasude-
van, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale
machine learning on heterogeneous systems, 2015. Software available from
tensorflow.org.

[69] Sanghyeon An, Minjun Lee, Sanglee Park, Heerin Yang, and Jungmin So.
An ensemble of simple convolutional neural network models for mnist digit
recognition. arXiv preprint arXiv:2008.10400, 2020.

[70] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint arXiv:2010.11929,
2020.

[71] Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long se-
quences with structured state spaces. arXiv preprint arXiv:2111.00396, 2021.

[72] Minseok Seo, Hakjin Lee, Doyi Kim, and Junghoon Seo. Implicit stacked
autoregressive model for video prediction. arXiv preprint arXiv:2303.07849,
2023.

[73] Josef Steppan. Sample images from MNIST dataset. [Online], accessed:
2023-04-03].

[74] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014.

[75] Jonas Prellberg and Oliver Kramer. Lamarckian evolution of convolutional
neural networks. In Parallel Problem Solving from Nature–PPSN XV: 15th
International Conference, Coimbra, Portugal, September 8–12, 2018, Pro-
ceedings, Part II 15, pages 424–435. Springer, 2018.

66

List of Figures

1.1 Roulette wheel selection of five individuals. 8
1.2 Two-point crossover with two children. 9
1.3 Uniform crossover with one children and probability 0.5. 9
1.4 Bit-flip mutation of an individual. 10
1.5 The visualization of Pareto front. 13

2.1 The scheme of a perceptron. 16
2.2 The visualization of a feedforward neural network with two hidden

layers. 17
2.3 An example of image convolution with sharpening kernel of au-

thor’s cat photo. Produced with a website app available on [31]. . 18
2.4 An example of pixel matrix convolution with a kernel of size 2 ×

2, valid padding and stride 1. 19
2.5 Max pooling with neighbourhood of size 2 × 2. 19

3.1 The abstract illustration of neural architecture search. 21
3.2 The visualization of the directed acyclic graph search space. The

red connections define a found child model, which has input in
node 1, and nodes 3 and 6 are output nodes. 24

3.3 A genotype to phenotype mapping example. Source: [51]. 26
3.4 The two types of structural mutation in NEAT. Source: [51]. . . . 27
3.5 NEAT crossover of two networks. Source: [51]. 28
3.6 CoDeepNEAT assembly of a neural network from a blueprint and

modules. 29

4.1 The visualization of weight inheritance during the assembling of a
neural network from the blueprint B and the modules M, N. The
dimensionality of modules weight matrices is shown as a number
of input channels × kernel size × kernel size × number of output
filters. The weight matrix of module N is shrunken in the first
dimension in order to make it compatible with module M 32

4.2 The visualization of the cloning of blueprint. The original blueprint
B creates two assembled networks M, N and two clones C, D. Af-
ter training, each network passes its calculated objective values o1
and o2 to the relevant blueprint copy and copies become part of
the population. 35

4.3 The effect of cloning on the population of individuals. Picture (1)
shows a new population of five individuals (red, orange, green, blue,
and purple). Picture (2) shows the cloning phase, where the red,
green, and blue individuals are copied. The original individuals
are then deleted in (3). From this population are then selected the
best individuals, in the picture (4) those are the orange individual
and the red and blue clones, the rest is removed. The final stage
of the population (5) is ready for mating. 38

5.1 Sample images from the MNIST dataset, from [73]. 40

67

5.2 A network fitness evaluation during 40 generations in CoDeep-
NEAT and LamaCoDeepNEAT algorithms on the MNIST dataset. 43

5.3 An average fitness function value of the best networks in every gen-
eration in CoDeepNEAT and LamaCoDeepNEAT on the MNIST
dataset. 44

5.4 A fitness values of the best networks and FLOPs values of the least
demanding networks in every generation in the Multi-objective
LamaCoDeepNEAT experiment on the MNIST dataset. 45

5.5 A visualization of the first non-dominated front of assembled net-
works in every fifth generation in Multi-objective LamaCoDeep-
NEAT experiment returning the best network on the MNIST dataset. 46

5.6 An average fitness function value of the best networks in every
generation in Multi-objective LamaCoDeepNEAT on the MNIST
dataset. 47

5.7 An average FLOPs value of the least demanding networks in every
generation in Multi-objective LamaCoDeepNEAT on the MNIST
dataset. 47

5.8 A network fitness evaluation during 40 generations in CoDeep-
NEAT and LamaCoDeepNEAT algorithms on the CIFAR10 dataset
- short version of the experiment. 49

5.9 An average fitness function value of the best networks in every gen-
eration in CoDeepNEAT and LamaCoDeepNEAT on the CIFAR10
dataset - short version of the experiment. 49

5.10 A fitness values of the best networks and FLOPs values of the
least demanding networks in every generation in the short Multi-
objective LamaCoDeep-NEAT experiment on the CIFAR-10 dataset. 50

5.11 An average fitness function value of the best networks (left) and an
average FLOPs value of the least demanding networks (right) in
every generation in short Multi-objective LamaCoDeepNEAT on
the CIFAR-10 dataset. 51

5.12 A network fitness evaluation during 40 generations in CoDeep-
NEAT and LamaCoDeepNEAT algorithms on the CIFAR10 dataset
- short version of the experiment with bigger mutation probability. 52

5.13 An average fitness function value of the best networks in every gen-
eration in CoDeepNEAT and LamaCoDeepNEAT on the CIFAR10
dataset - a short version of the experiment with bigger mutation
probability. 52

5.14 An average fitness function value of the best networks in every
generation in CDN and LamaCDN on the CIFAR-10 dataset, short
version, and in CDN and LamaCDN on the CIFAR-10 dataset,
short version with higher mutation probability. 53

5.15 An average fitness function value of the best networks (left) and an
average FLOPs value of the least demanding networks (right) in
every generation in short Multi-objective LamaCoDeepNEAT on
the CIFAR-10 dataset with lower mutation probability and with
higher mutation probability. 54

5.16 A network fitness in CoDeepNEAT and LamaCoDeepNEAT algo-
rithms on the CIFAR10 dataset - the long version of the experiment. 55

68

5.17 An average fitness function value of the best networks in every gen-
eration in CoDeepNEAT and LamaCoDeepNEAT on the CIFAR10
dataset - long version of the experiment. 56

5.18 A fitness values of the best networks and FLOPs values of the
least demanding networks in every generation in the long Multi-
objective LamaCoDeep-NEAT experiment on the CIFAR-10 dataset. 56

5.19 A visualization of the first non-dominated front of assembled net-
works in every fifth generation in Multi-objective LamaCoDeep-
NEAT on the CIFAR-10 dataset, long version of experiments. . . 57

5.20 An average fitness function value of the best networks (left) and an
average FLOPs value of the least demanding networks (right) in
every generation in short Multi-objective LamaCoDeepNEAT on
the CIFAR-10 dataset. 57

69

70

List of Tables

5.1 Experiment hyperparameter table. 42
5.2 Experiment parameter table for output dense layers. 42
5.3 Experiment parameter table for convolutional layers. 42
5.4 Average execution time table for CoDeepNEAT, LamaCoDeep-

NEAT, MOCoDeepNEAT on the MNIST dataset. 44
5.5 A comparison of blueprint evolution parameter values used in the

short CIFAR-10 experiments and in the short CIFAR-10 experi-
ments with higher mutation probability. 51

5.6 A table of average FLOPs and the number of total network pa-
rameters reached by the best network for short experiments ran
on the CIFAR-10 dataset. 53

A.1 CPU properties of Metacentrum clusters used for experiments. . . 73

71

72

A. Attachments

A.1 Hardware

Cluster CPU
aman 4x 14-core Intel Xeon E7-4830 v4 (2.00GHz)
elan 2x Intel Xeon Processor (2x 16) 2.2 GHz
gita non-public data
halmir 64x AMD EPYC 7543
kirke 64x AMD EPYC 7532
nympha 32x Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz
zelda 4x Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz
zenon 2x AMD EPYC 7351 (2x 16 Core) 2.40 GHz

Table A.1: CPU properties of Metacentrum clusters used for experiments.

A.2 Digital Attachements
The implementation of this work is also available at a GitHub repository on
https://github.com/pivodovr/MasterThesis.

The repository directory structure:

LamaCoDeepNEAT

— examples - CDN, LamaCDN experiment scripts

— tests - CDN, LamaCDN implementation test scripts

— tfne - CDN and LamaCDN implementation

MOLamaCoDeepNEAT

— examples - MOLamaCDN experiment scripts

— tests - MOLamaCDN implementation test scripts

— tfne - MOLamaCDN implementation

73

https://github.com/pivodovr/MasterThesis

74

	Introduction
	Evolutionary Algorithms
	Biological Inspiration
	Individual
	Genotype and Phenotype
	Fitness

	Genetic Operators
	Selection
	Crossover
	Mutation

	Genetic Algorithms
	Coevolution
	Multi-objective EA
	Pareto-based Methods
	NSGA-II

	Neural Networks
	Biological inspiration
	Perceptron
	Feedforward Neural Networks
	Convolutional Neural Networks

	Neural Architecture Search
	NAS Components
	ENAS
	LEMONADE
	CoDeepNEAT
	Development
	Principles of CoDeepNEAT

	Proposed Approach
	LamaCoDeepNEAT
	Multi-objective LamaCoDeepNEAT

	Experiments
	Used Implementation
	Datasets
	MNIST
	CIFAR-10

	Experiments with MNIST
	Experiments with CIFAR-10
	CIFAR-10 - Short Version
	CIFAR-10 - Short Version, Higher Mutation Probability
	CIFAR-10 - Long Version

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	Attachments
	Hardware
	Digital Attachements

