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Abstract: In this thesis, we study exact black hole spacetimes of algebraic type D,
which are a part of much wider Plebański–Demiański class of solutions. We re-
formulate the well-known form of this metric and obtain new improved repre-
sentation of this black hole family with simplified, explicit and (at least par-
tially) factorized metric functions. This new form of the spacetimes allows us
to gain the standard expressions for the well-known solutions such as the Kerr–
Newman–NUT–(anti-)de Sitter black hole, accelerating Kerr–Newman–(anti-)de
Sitter black hole, (possibly charged) Taub–NUT–(anti-)de Sitter black hole, accel-
erating Kerr–NUT–(anti-)de Sitter black hole, and their special cases in asymp-
totically flat universe, just by putting the appropriate parameters to zero. We
also provide a thorough physical and geometrical analysis of this new form of
spacetimes. Furthermore, we analyze a solution corresponding to the accelerat-
ing Taub–NUT black hole, which was originally found by Chng, Mann and Stelea
in 2006. We perform an in-depth analysis of this solution, and study its relation
to the Plebański–Demiański class.
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Abstrakt: V práci studujeme přesné prostoročasy představuj́ıćı černé d́ıry alge-
braického typu D, které jsou součást́ı mnohem obsáhleǰśı Plebańského–Demiań-
ského tř́ıdy řešeńı. Přeformulujeme známý tvar této metriky, č́ımž źıskáme novou
vylepšenou reprezentaci této rodiny řešeńı se zjednodušenými, explicitńımi a (ale-
spoň částečně) faktorizovanými metrickými funkcemi. Tento nový tvar pros-
toročas̊u nám umožňuje źıskat standardńı výrazy pro známá řešeńı, jako jsou
Kerrova–Newmanova–NUT–(anti-)de Sitterova černá d́ıra, zrychluj́ıćı Kerrova–
Newmanova–(anti-)de Sitterova černá d́ıra, (nabitá) Taub–NUT–(anti-)de Sit-
terova černá d́ıra, urychlená Kerrova–NUT–(anti-)de Sitterova černá d́ıra a je-
jich speciálńı př́ıpady v asymptoticky plochém vesmı́ru, a to pouhým dosazeńım
př́ıslušných parametr̊u za nulu. Uvád́ıme také d̊ukladnou fyzikálńı a geometrickou
analýzu tohoto nového tvaru prostoročas̊u. Dále analyzujeme řešeńı odpov́ıdaj́ıćı
urychlené Taub–NUT černé d́ı̌re, které p̊uvodně nalezli Chng, Mann a Stelea v
roce 2006. Provád́ıme d̊ukladnou analýzu tohoto řešeńı a studujeme jeho vztah
k Plebańského–Demiańského tř́ıdě.
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“Understanding is, after all, what
science is all about – and science
is a great deal more than mindless
computation.”

Roger Penrose
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Preface
This thesis starts with an Initial overview. Its chapters are labeled by Roman
numbers, and equations simply as “(chapter.number)”. This is followed by chap-
ters containing our New results, divided into 3 main parts. These are labeled by
the Arabic numbers, and are linked to the attached publications. The original
publications are denoted as P1, P2, and P3, respectively. The corresponding
sections and subsections are labeled accordingly to the labeling in the original
publications. Each equation, denoted by “(number)” only, refers to the related
publication.

Our work uses the convention of standard textbooks, namely Exact Space-
Times in Einstein’s General Relativity by Jerry B. Griffiths and Jǐŕı Podolský
[1], and Exact Solutions of Einstein’s Field Equations by Stephani et al. [2]. In
particular, the standard convention of geometrical units c = G = 1 is adopted,
and we employ the notation for expressing coordinate components of a general
tensor as T µν...

αβ..., where the Greek letters span 0,1,2,3. The metric tensor gµν

describing a spacetime is assumed to have the Lorentzian signature (−, +, +, +).
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Introduction
More than a century has passed since Albert Einstein introduced his general the-
ory of relativity (see the original paper [3]), ushering in a new era of physics. His
original approach brought a completely new perspective into the understanding
of the fundamental concepts such as space, time, and gravity. Since then, this
theory has proven itself in many different areas of physics and astronomy, and
has withstood many attempts to disprove it.

The general theory of relativity has explained a number of problems that re-
mained unresolved until then, namely the principal problems of a non-relativistic
(and therefore acausal) behavior of the classical Newtonian theory of gravitation,
or the anomalous perihelion advance of Mercury, which the general relativity
managed to explain without any arbitrary parameter [4].

Not only has the theory achieved to answer some of the open problems of that
time, but it also predicted a completely new and unexpected phenomena. Among
the many interesting predictions of general relativity, let us mention especially
the (nowadays famous) black holes, gravitational waves, or gravitational lensing.

All of these marvelous predictions emerged from the Einstein field equations,
the fundamental set of relations for gravitational field of general relativity, which
are expressed in a single elegant equation:

Rµν − 1
2 Rgµν + Λgµν = 8πTµν , (EFE)

where gµν is the spacetime metric, Rµν is the corresponding Ricci tensor, R is the
Ricci scalar, Λ is the cosmological constant, and Tµν is the energy-momentum
tensor of matter.

The first of these surprising predictions was the black hole solution. This
solution of (EFE) describing, in a general case, any spherically symmetric and
static vacuum spacetime was presented by Karl Schwarzschild already in 1916: it
is the famous Schwarzschild metric [5].

Finding this solution so early was for Einstein actually quite surprising:

“I had not expected that one could formulate the exact solution of the
problem in such a simple way.”

This was his reaction, when he received from Schwarzschild this first non-trivial
exact solution, less than two months after Einstein’s presentation of (EFE) to the
Prussian Academy of Science [6].

The gravitational waves were also predicted in the very same year. In June
1916, and two years later in 1918, Albert Einstein published two papers [7, 8]
in which he derived and studied the “ripples in spacetime” directly from his
(linearized) field equations.

General relativity soon has also found its value in cosmology. In 1917, Albert
Einstein published his paper of the static universe [9], immediately followed by
Willem de Sitter with his fundamental vacuum model with a positive cosmological
constant [10].

Nevertheless, what made Albert Einstein instantly famous was the prediction
of gravitational deflection of starlight passing near the massive objects [11]. This
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was confirmed by expedition, led by the British astronomer Arthur Stanley Ed-
dington, which measured deviations in the position of stars near the Sun during
the total solar eclipse of May 29, 1919. Still, general relativity remained outside
the mainstream of theoretical physics and astrophysics until sometime between
1960 and 1975.

The “golden age of general relativity”, as Kip Thorne refers to this era [12],
was associated primarily with the general acceptance of phenomena such as the
black holes, big bang, their singularities, or gravitational waves – which until
then were considered merely as theoretical constructs. Actually, Albert Einstein
himself was very sceptical about the physical relevance of all these predictions
[6, 13].

Figure 1: The first detection of gravi-
tational waves observed by both LIGO
detectors (Hanford and Livingston) and
their comparison. (Image Credit: Cal-
tech/MIT/LIGO Lab. [20])

The first attempts to prove the
real existence of gravitational waves
were initiated after 1960 [14]. These
were the famous Weber bars, large alu-
minum cylinders constructed by physi-
cist Joseph Weber as resonant anten-
nae for gravitational waves of a spe-
cific wave length. However, although
his measurements claiming detections
have been published [15, 16, 17], it is
now generally accepted that these de-
tectors were not efficient enough to be
able to find such a small spacetime dis-
tortions directly.

The first (somewhat indirect) evi-
dence of their existence was measured
after 1974, discovering the first binary
pulsar PSR B1913+16 in the constel-
lation of Aquila. From the timing ob-
servations over the subsequent decades
there has been a decay of the orbital
period corresponding to the loss of en-
ergy and angular momentum, as it
was predicted by the general relativ-
ity [18, 19]. For the first direct detection of the gravitational waves we had to
wait for the development of highly sensitive laser interferometers LIGO till 2015
(see Fig. 1).

This era, starting after 1960, also brought a number of new exact solutions
of Einstein’s field equations, representing gravitational waves, inhomogeneous
cosmological models, and various black holes. Let us mention just the most
important black hole solutions of that time: the Taub–NUT metric (1951, 1963)
[21, 22] (an axially symmetric solution with a “specific twist”), the C-metric
(named in 1962) [23, 24], see also [25, 26] (an accelerating black hole), or the
famous Kerr metric (1963) [27] (a rotating black hole). The whole family of
solutions of algebraic type D containing all these black holes was later found by
Plebański and Demiański (1971, 1976) [28, 29].

In recent years, we have witnessed several breakthrough observations, con-
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firming general relativity. The first is the rapid development of the new scientific
discipline called gravitational-wave astronomy. In fact, the first detection of grav-
itational waves was achieved only 7 years ago [30] (see Fig. 1). Now we detect a
surprising number of gravitational wave sources in the LIGO and VIRGO detec-
tors. The black hole mergers are among the most significant phenomena.

Figure 2: The first images of the su-
permassive black hole at the core of
the galaxy Messier 87 produced by the
Event Horizon Telescope collaboration.
(Image Credit: [33])

In addition, the launch of the Eu-
ropean LISA satellites is planned in
the next decade. This should open
the gravitational-wave window to space
even further at different frequencies (see
for example [31], summarizing the cur-
rent topics to which LISA observa-
tions can make an essential contribu-
tion). This is also why the description
and study of the properties of various
black holes, albeit at a purely theoreti-
cal level, is still a very important topic
in Einstein’s theory of gravity and its
generalizations.

Another recent observational break-
through is the first-ever image of the
shadow of the supermassive black hole
in the center of the galaxy Messier
87 taken by the Event Horizon Tele-
scope collaboration in April, 2017. This
was analyzed and announced in 2019
[32, 33]. In March 2021, the col-
laboration team of EHT has revealed
a first polarized-based image of M87*
[34], and subsequently, also an image of
Sagittarius A* (the supermassive black
hole at the center of the Milky Way),

was made public in May 2022 [35].
All these recent achievements indicate that we may be at the beginning of an

era that will bring us new and unexpected discoveries. This, of course, would
not be possible without a proper understanding of the physics behind all these
observations, which puts even more emphasis on the study of exact solutions of
Einstein’s theory. These are a main topic of this Doctoral Thesis.
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Conception and contents of the Doctoral Thesis
This work focuses on exact four-dimensional black hole solutions with a high de-
gree of symmetry. More precisely, the entire thesis is (either directly or indirectly)
linked to the Plebański–Demiański family of type D black hole solutions [28, 29].

Actually, it is the result of my long-lasting personal journey which I have
started already nine years ago. It began with a study of an article “Accelerating
Taub–NUT and Eguchi-Hanson solitons in four dimensions” published by Brenda
Chng, Robert Mann and Cristian Stelea in 2006 [37]. In this paper, a brand new
solution, which seemed to represent an accelerating Taub–NUT solution, was
introduced. This was surprising, since there was no such a solution found in the
large Plebański–Demiański class of black hole solutions [1], [38]–[40], although
the rotating accelerating Taub–NUT solution was included.

First, it was necessary to explicitly calculate all components of the Ricci tensor
to verify that the new solution is indeed a vacuum solution of the field equations.
However, this was difficult due to the complexity of the problem. Therefore,
we reformulated the metric into another form, more liable for our computations.
In fact, we developed two independent methods (algorithms) to compute the
Ricci tensor – one based on the direct computation, and the second utilizing the
relations of the curvature tensors of mutually conformal metrics.

From the Weyl tensor we then computed its Newman–Penrose scalars, and
using the scalar invariants I and J we have identified the general algebraic type
of this solution, with four distinct principal null directions.

These results were important. Not only we verified that this new metric is a
vacuum solution, but we also confirmed that it does not belong to the Plebański–
Demiański family of type D solutions. It thus turned out to deviate from it.

Then, we introduced a new representation of this new metric in “spherical-
type” coordinates, which is more convenient for any physical analysis. Explicitly
depending on three physical parameters – namely the mass m, acceleration α
and the NUT parameter l – this new representation makes possible to recover
the well-known spacetimes in the standard coordinates (that is the C-metric,
and the Taub–NUT metric in “spherical-like” coordinates) by switching off the
parameters l and α, respectively.

Using this new convenient metric, we performed a thorough physical and geo-
metrical analysis of such accelerating NUT black hole. In particular, we localized
and study its four Killing horizons. Employing the scalar invariants, we investi-
gated the curvature. Interestingly, no curvature singularities occur while keeping
non-zero NUT parameter l. We provided a complete understanding of the global
structure by identifying the asymptotically flat regions and by relating them to
the conformal infinities.

We also proved that the solution can be analytically extended, so that it corre-
sponds to a pair of such black holes uniformly accelerating in opposite directions.
The source of this acceleration comes from the rotating cosmic strings (or struts)
located along the axes. The rotation is caused exclusively by the NUT parame-
ter l. Of course, similarly as in the Taub–NUT case without acceleration, there
occur a pathological regions with closed timelike curves in the vicinity of these
strings (or struts).

I addressed this topic already in my Bachelor Thesis [41], in which I verified
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the “vacuumness” of the original solution, computed the NP scalars, determined
the algebraic type of this spacetime, and outlined a new better representation of
this metric. I followed up on this work in my Diploma Thesis [42], reformulating
the key scalars and invariants in a new metric representation, verifying earlier
results, and providing the principal null directions. We carefully analyzed the
pathological regions and visualized their localization according to the concrete
values of the mass, acceleration and the NUT parameter. We also performed
some investigations of the non-accelerating Taub–NUT metric.

The outputs of the Diploma Thesis were presented as an article in the pro-
ceedings of Week of Doctoral Students organised by the Charles University [43].

My first two years of PhD studies focused, among other things, on completion
of open questions concerning this topic, and on writing them up (during the
COVID lockdown) in an exhaustive publication Accelerating NUT black holes
[44]. This article is summarized and attached in Chapter 1 of this thesis.

Another topic was outlined in my Diploma Thesis [42], namely the reinvesti-
gation of the whole Plebański–Demiański metric. We started from the convenient
representation of this family found by Griffiths and Podolský in 2005 [38]–[40],
and using a suitable redefinition of the physical parameters we managed to con-
siderably simplify and fully factorize the metric functions in the case of vanishing
cosmological constant Λ.

Our new metric depends on 6 physical parameters, namely the mass m, accel-
eration α, rotational parameter a, NUT parameter l, and electric and magnetic
charges e, g, whereby no other free parameter was left undetermined.

The main advantage of this new representation is that it is possible to simply
set an appropriate physical parameters to zero, thus obtaining the standard forms
of the simpler black hole solutions such as the Kerr–Newman–NUT black hole,
accelerating Kerr–Newman black hole, (possibly charged) Taub–NUT black hole,
or accelerating Kerr–NUT black hole, respectively. Extreme and hyperextreme
cases can also be discussed.

Moreover, it explicitly demonstrates that no accelerating Taub–NUT black
hole is included in this large family, which further confirms conclusions of our
previous work [44].

The new improved metric also enabled us to investigate various physical and
geometrical properties, such as the location and the nature of the horizons, or the
character of singularities. We also studied and visualized the ergoregions, and the
global structure of the solution including the Penrose conformal diagrams. We
analyzed the nature of the axes, namely their rotational character, conicity of
the cosmic strings or struts causing the acceleration of the black hole, and the
pathological behavior caused by the presence of the parameter NUT. Additionally,
we calculated the area and the surface gravity of the horizons from which we
provided basic thermodynamic quantities.

This was studied and published in a comprehensive publication New improved
form of black holes of type D [45] in 2021. The main results of this publication
are presented in Chapter 2.

However, this paper did not describe black holes in the (anti-)de Sitter back-
ground. Taking into the consideration a non-zero Λ causes multiple problems.
For example, it is not possible to fully factorize both key metric functions P (θ)
and Q(r). Actually, this problem occurs already in the most simplest subcase
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of the Schwarzschild–de Sitter solution (see [1] for more details). Therefore, the
general analysis of the horizons is not as clear as in the Λ = 0 case.

Even though, we managed to simplify the metric functions, and to factorize
the function P (θ). We introduced a new representation for a fully general black
hole of type D determined by the mass m, acceleration α, Kerr-like rotation a, the
NUT parameter l, the electric and magnetic charges e, g, and the cosmological
constant Λ, respectively.

This new metric reduces to the standard forms of the well-known black holes,
namely to the Kerr–Newman–NUT–(anti-)de Sitter black hole (α = 0), accel-
erating Kerr–Newman–(anti-)de Sitter black hole (l = 0), charged Taub–NUT–
(anti-)de Sitter black hole (a = 0), accelerating Kerr–NUT–(anti-)de Sitter black
hole (e = g = 0) and their analogies in the flat universe (Λ = 0) just by switching
off the appropriate parameters. Even for Λ ̸= 0 we explicitly observe that no
accelerating Taub–NUT–(anti-)de Sitter solution exists in this wide class.

We were able to fully analyze and explicitly evaluate physically and geomet-
rically relevant entities. We did localize all the horizons and classify generally
their multiplicity. We investigated the location of ergoregions, the character of
singularities, as well as the global structure including the Penrose conformal dia-
grams.

Moreover, we investigated the cosmic strings or struts along the axes of sym-
metry θ = 0, or θ = π, respectively. Their conicity causing the acceleration of
the black hole was explicitly determined, and it can be regularized for a specific
combination of the parameters. Both axes are twisting, and one of them is encir-
cled by a pathological region with closed timelike curves caused by the presence
of the NUT parameter. Explicit thermodynamic properties, such as the entropy
or temperature of the horizons, were also evaluated.

We summarized and presented all these original results in the publication New
form of all black holes of type D with a cosmological constant [46]. This is the
basis of Chapter 3 of this Doctoral Thesis.
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Initial overview
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I. Some basic tools
General relativity enables us to express physical variables for specific different
observers by using different coordinates and frames. In particular, we express the
key tensors in the most convenient “directions”. For that reason, we introduce
orthonormal frames (t, x, y, z) and null tetrads

k = 1√
2(t + z) , l = 1√

2(t − z) , m = 1√
2(x − iy) , m̄ = 1√

2(x + iy) .

This null tetrad is normalized as k · l = −1 and m · m̄ = 1. Its four vectors
can be transformed via the following relations:

k′ = k , l′ = l + Lm̄ + L̄m + LL̄ l , m′ = m + Lk ,

k′ = k + K m̄ + K̄ m + KK̄ l, l′ = l , m′ = m + K l, (I.1)
k′ = B k , l′ = B−1 l , m′ = eiϕ m ,

where K and L are any complex parameters, while B, ϕ are any real parameters.
Together these six transformations generate the whole Lorentz group.

I.1 Curvature
The fundamental geometrical object describing curvature of the spacetime is the
Riemann tensor Rµνρσ. Its contraction Rµν ≡ Rα

µαν is the Ricci tensor. It
is usually expressed in the Newman–Penrose formalism. This means that the
components are projected to the appropriate null tetrad (k, l, m, m̄), namely

Φ00 = 1
2 Rµν kµkν , Φ22 = 1

2 Rµν lµ lν ,

Φ01 = 1
2 Rµν kµmν , Φ12 = 1

2 Rµν lµmµ , (I.2)

Φ02 = 1
2 Rµν mµmν , Φ11 = 1

2 Rµν

(︂
kµ lν − mµm̄ν

)︂
,

where Φ01, Φ02, Φ12 are complex. The trace of the Ricci tensor R = Rµ
µ is the

Ricci scalar.
Remaining 10 independent components of the Riemann tensor form the Weyl

tensor defined by the expression

Cκλµν = Rκλµν − 1
2
(︂
Rλµgκν + Rκν gλµ − Rλν gκµ − Rκµgλν

)︂
+ 1

6 R
(︂
gκµgλν − gκν gλµ

)︂
. (I.3)

While the Ricci tensor is directly connected to the stress-energy tensor Tµν

of matter via the Einstein field equations (EFE), the Weyl tensor corresponds to
the curvature components representing a “free gravitational energy”. For vacuum
solutions the Riemann tensor is fully determined by the Weyl tensor, Cκλµν =
Rκλµν .
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All 10 independent components of the Weyl tensor are encoded in 5 complex
Newman–Penrose scalars ΨA given by the expressions

Ψ0 = Cκλµν kκmλkµmν ,

Ψ1 = Cκλµν kκ lλkµmν ,

Ψ2 = Cκλµν kκmλm̄µ lν , (I.4)
Ψ3 = Cκλµν lκkλ lµm̄ν ,

Ψ4 = Cκλµν lκm̄λ lµm̄ν .

The definitions (I.2) and (I.4) depend on the chosen null tetrad (k, l, m, m̄)
as there exists the freedom due to the Lorentz transformations (I.1).

I.2 Algebraic classification
A null vector kµ is called the principal null direction if it satisfies the condition
k[ρCκ]λµ[νkσ]k

λkµ = 0, which is equivalent to

Ψ0 = 0 ,

see [47, 2].
The scalar Ψ0 can be expressed in a different null tetrad using the Lorentz

transformation (I.1) by rotating the vector k while keeping l fixed. The null
rotation yields

Ψ′
0 = Ψ0 − 4K Ψ1 + 6K2 Ψ2 − 4K3 Ψ3 + K4 Ψ4

!= 0 (I.5)

where K is the complex parameter from (I.1), see [1, 2]. In every event of the
spacetime there thus exist 4 principal null directions. Depending on their multi-
plicity we distinguish the algebraic type of the given metric.

More specifically, if kµ is the double degenerate principal null direction, an
appropriate rotation achieving Ψ0 = Ψ1 = 0 can be found, and the spacetime is
of algebraic type II. If kµ is a triple degenerate principal null direction, a trans-
formation for getting Ψ0 = Ψ1 = Ψ2 = 0 exists, and the spacetime is of type III.
In the case of quadruply degenerate principal null direction kµ, so called type N,
the tetrad can be found for which Ψ0 = Ψ1 = Ψ2 = Ψ3 = 0.

Similarly, we can rotate the vector lµ while having kµ fixed. In that matter
we proceed “backwardly”, i.e. we are looking for such L from (I.1) which could
satisfy that Ψ4 = 0. When the direction which is aligned with the null vector lµ is
double aligned, we can found a transformation which satisfies that Ψ4 = Ψ3 = 0
etc.

Depending on the existence of two double degenerate directions (corresponding
to both kµ and lµ) we distinguish the type D (i.e. Ψ0 = Ψ1 = 0 = Ψ3 = Ψ4). If
not, we have the type II.

The remaining two types are the general algebraic type I with all distinct
PNDs, and a trivial conformally flat solution (type O) for which all NP scalars
are zero, ΨA ≡ 0, and for which does not make sense to define PNDs.
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This algebraic classification is summarized in the following table:

Type Multiplicity ΨA in an appropriate null tetrad
I 1 1 1 1 Ψ0 = 0, other components are nonzero
II 2 1 1 Ψ0 = Ψ1 = 0, other components are nonzero
D 2 2 Ψ0 = Ψ1 = 0 = Ψ3 = Ψ4, Ψ2 ̸= 0
III 3 1 Ψ0 = Ψ1 = Ψ2 = 0, Ψ3 ̸= 0
N 4 Ψ0 = Ψ1 = Ψ2 = Ψ3 = 0, Ψ4 ̸= 0
O no PND Ψ0 = Ψ1 = Ψ2 = Ψ3 = Ψ4 = 0

There exists an invariant way, how to determine the algebraic type of any
solution. Originally, the algorithm was presented by d’Inverno and Russell-Clark
in 1971 [48], but we employ the notation from the textbook Stephani et al.,
2003 [2].

This approach to classification is based on the scalar invariants I, J, K, L, N,
defined using the NP scalars of the Weyl tensor (I.4) explicitly as:

I ≡ Ψ0Ψ4 − 4 Ψ1Ψ3 + 3 Ψ2
2 , J ≡

⃓⃓⃓⃓
⃓⃓⃓Ψ0 Ψ1 Ψ2
Ψ1 Ψ2 Ψ3
Ψ2 Ψ3 Ψ4

⃓⃓⃓⃓
⃓⃓⃓ , (I.6)

K ≡ Ψ1Ψ2
4 − 3 Ψ4Ψ3Ψ2 + 2 Ψ3

3 , L ≡ Ψ2Ψ4 − Ψ2
3 , N ≡ 12 L2 − Ψ2

4 I .

Interestingly in vacuum, the real part of I is proportional to the Kretschmann
scalar. This relation will be extended in the next section.

The advantage of these scalar invariants is that they can easily be used to
determine the algebraic structure of a given metric. More precisely, only an
algebraically special spacetimes (all types except the trivial type O and a general
type I) comply the equation

I3 = 27J2 . (I.7)

Moreover, we distinguish whether the condition I = 0 = J holds. If it holds,
then we further need to investigate whether the equation K = 0 = N holds as
well. If yes, then the spacetime is of algebraic type II. If not the solution has the
type D structure.

If the condition I = 0 = J does not hold, then we further verify the condition
K = 0 = L. If this condition does not hold then the solution is of algebraic
type III, otherwise we have the type N metric.

All these possibilities with an appropriate structure of the NP scalars (I.4)
are illustrated in the schematic diagram in Fig. I.1. For further details please see
Griffiths and Podolský, 2009 [1], or Stephani et al., 2003 [2].
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Type I Type II Type D Type III Type N 

Type O 

Ψ଴ ≡ Ψଵ ≡ Ψଶ ≡ Ψଷ ≡ Ψସ ≡ 0 

Ψ଴ = Ψଵ = Ψଶ = Ψଷ = 0, 

                 Ψସ ≠ 0 

 

Ψ଴ = Ψଵ = Ψଶ = 0, 

             Ψଷ ≠ 0 

 

Ψ଴ = 0, 

Ψଵ ≠ 0 
Ψ଴ = Ψଵ = 0, 

      Ψଶ ≠ 0 

 

Ψ଴ = Ψଵ = 0 = Ψଷ = Ψସ, 

                 Ψଶ ≠ 0 

 

Yes 

Yes 

Yes 
No 

No 
No 

No 
Yes 

Figure I.1: A schematic diagram of the algebraic classification of a general metric,
using the scalar invariants I, J, K, L and N computed from the NP scalars of the Weyl
tensor (I.4) via the relations (I.6).

I.3 The scalar invariant I
There exist relations between the Newman–Penrose scalars ΨA, the Weyl scalar

C ≡ CabcdCabcd

and the Kretschmann scalar

K ≡ RabcdRabcd.
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Let us assume a general Weyl tensor Cabcd and its components ΨA with respect
to its null directions (k, l, m, m̄).

Now, by introducing a complex Weyl tensor

C∗
abcd ≡ Cabcd + i C∼

abcd , (I.8)

where C∼
abcd is the right dual

C∼
abcd ≡ 1

2 ϵcdef C ef
ab , (I.9)

we find out that

C∗
abcdC∗abcd = (CabcdCabcd − C∼

abcdC∼abcd) + 2i CabcdC∼
abcd , (I.10)

and C∼
abcdC∼abcd = −CabcdCabcd , so that

C∗
abcdC∗abcd = 2(CabcdCabcd + i CabcdC∼

abcd) . (I.11)

The complex Weyl tensor C∗
abcd can be also expressed in the bivector base

Uab ≡ −lam̄b + lbm̄a, Vab ≡ kamb − kbma, Wab ≡ mam̄b − mbm̄a − kalb + kbla,
constructed from the null tetrad, as

1
2 C∗

abcd = Ψ0 UabUcd + Ψ1

(︃
UabWcd + WabUcd

)︃
(I.12)

+ Ψ2

(︃
VabUcd + UabVcd + WabWcd

)︃
+ Ψ3

(︃
VabWcd + WabVcd

)︃
+ Ψ4 VabVcd ,

see eq. (3.58) of [2].
Using the fact that all contractions vanish except UabV

ab = 2 and WabW
ab =

−4, we obtain

C∗
abcdC∗abcd = 32

(︃
Ψ0Ψ4 − 4Ψ1Ψ3 + 3Ψ2

2

)︃
≡ 32I . (I.13)

From (I.11) it follows that

CabcdCabcd = 16 Re (I) . (I.14)

For type D spacetimes, for which the only non-vanishing component of the Weyl
tensor is Ψ2, we simply get

C ≡ CabcdCabcd = 48 Re (Ψ2
2) . (I.15)

I.4 Relation to the Kretschmann scalar
From the definition of the Weyl tensor (I.3), we easily prove

C = K − 2RabR
ab + 1

3R2 . (I.16)
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Splitting up the Ricci tensor Rab into its trace-less tensor Sab and the Ricci
scalar R, we get, in terms of the NP scalars Φab,

Rab ≡ Sab + 1
4Rgab

= 2Φ00 lalb − 2Φ01(lam̄b + m̄alb)
−2Φ̄01(lamb + malb) + 2Φ02m̄am̄b + 2Φ̄02mamb

+2Φ11(kalb + lakb + m̄amb + mam̄b) − 2Φ12(kam̄b + m̄akb)

−2Φ̄12(kamb + makb) + 2Φ22kakb + 1
4Rgab . (I.17)

By contraction

RabR
ab = 8(Φ00Φ22 − 2Φ01Φ̄12 − 2Φ̄01Φ12 + Φ̄02Φ02 + 2Φ2

11) + 1
4R2 (I.18)

(see also the equation (19) of [49]). With the expressions (I.14), and (I.16), we
get

K = 16 Re (I) + 16(Φ00Φ22 − 2Φ01Φ̄12 − 2Φ̄01Φ12 + Φ̄02Φ02 + 2Φ2
11) + 1

6R2. (I.19)

Specially for the Plebański–Demiański metric, which is of type D solution with
the only non-zero component of the Ricci tensor Φ11 and the Ricci scalar equal
to 4Λ (see the following section, eq. (II.16), we obtain

K = 48 Re (Ψ2
2) + 32 Φ2

11 + 8
3 Λ2 . (I.20)

This relation will be importing in the arguments contained in the following chap-
ters.
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II. Plebański–Demiański class of
solutions
This Doctoral Thesis mainly concentrates on the Plebański–Demiański family of
exact solutions – a general class of type D spacetimes with a double-aligned non-
null electromagnetic field and (possibly) non-zero cosmological constant. This
large class of solutions was originally found by Debever in 1971 [28] and later
reformulated in a more convenient form by Plebański and Demiański in 1976
[29], namely

dŝ2 = 1
(1 − p̂r̂)2

⎡⎣− Q̂(r̂)
r̂2 + p̂2 (dτ̂ − p̂2dσ̂)2 + r̂2 + p̂2

Q̂(r̂)
dr̂2

+ P̂ (p̂)
r̂2 + p̂2 (dτ̂ + r̂2dσ̂)2 + r̂2 + p̂2

P̂ (p̂)
dp̂2

⎤⎦ , (II.1)

with the metric functions

P̂ (p̂) = k̂ + 2n̂p̂ − ϵ̂ p̂2 + 2m̂p̂3 − (k̂ + ê2 + ĝ2 + Λ̃/3) p̂4 , (II.2)
Q̂(r̂) = (k̂ + ê2 + ĝ2) − 2m̂r̂ + ϵ̂ r̂2 − 2n̂r̂3 − (k̂ + Λ̃/3) r̂4 . (II.3)

This metric contains seven arbitrary real parameters m̂, n̂, ê, ĝ, ϵ̂, k̂, and Λ̃, of
which the first four are, according to Plebański and Demiański [29], somehow con-
nected to the mass, NUT parameter, electric and magnetic charges, respectively,
while Λ̃ is the cosmological constant.1 The meaning of ϵ̂ and k̂ was unclear.

II.1 The Griffiths–Podolský representation
Our study is based on another representation of this metric introduced by Griffiths
and Podolský in 2005 [38]–[40]. We will briefly describe the coordinate and the
parametric transformation they have used.

First of all, we rescale the original coordinates and the parameters, see [1],

p̂ =
√

αω p , r̂ =
√︃

α

ω
r , σ̂ =

√︃
ω

α3 σ , τ̂ =
√︃

ω

α
τ , (II.4)

m̂ + in̂ =
(︃

α

ω

)︃3/2
(m̃ + iñ) , ê + iĝ = α

ω
(ẽ + ig̃) , ϵ̂ = α

ω
ϵ , k̂ = α2k ,

where m̃, ñ, ẽ, g̃, ϵ, α, k, ω, and Λ̃ is a new set of arbitrary real parameters,
and two of them can be set for convenience. An appropriate choice of the twist
parameter ω is a mainstay of our papers [45, 46], and will be discussed in chapters
2 and 3.

1Note that in this thesis we use both Λ and Λ̃ as cosmological constants. The different
labeling is only to emphasize that the solutions are related to the Einstein field equations
(EFE) with different values of cosmological constant. This is caused by the conformal rescaling
of the metric ds̃2 → ds2, which also changes the Ricci tensor Rµν and the Ricci scalar R.
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The metric (II.1)–(II.3) transforms into

ds̃2 = 1
(1 − αpr)2

⎡⎣− Q(r)
r2 + ω2p2 (dτ − ωp2dσ)2 + r2 + ω2p2

Q(r) dr2

+ P(p)
r2 + ω2p2 (ωdτ + r2dσ)2 + r2 + ω2p2

P(p) dp2

⎤⎦ , (II.5)

where

P(p) = k + 2ω−1 ñp − ϵp2 + 2αm̃p3 −
[︂
α2(ω2k + ẽ2 + g̃2) + ω2 Λ̃/3

]︂
p4 , (II.6)

Q(r) = (ω2k + ẽ2 + g̃2) − 2m̃r + ϵr2 − 2αω−1 ñr3 − (α2k + Λ̃/3)r4 . (II.7)

Let us also mention an interesting relation between these metric functions (see
the unnumbered equation on page 340 of [40]), namely

Q(r) = −α2r4 P
(︃ 1

αr

)︃
− Λ̃

3

(︃
ω2

α2 + r4
)︃

. (II.8)

The most convenient null tetrad naturally adapted to the metric (II.1)–(II.3)
is given by the vectors

k = 1 − αpr√︂
2(r2 + ω2p2)

[︄
1√︂

Q(r)

(︂
r2 ∂τ − ω ∂σ

)︂
−
√︂

Q(r) ∂r

]︄
,

l = 1 − αpr√︂
2(r2 + ω2p2)

[︄
1√︂

Q(r)

(︂
r2 ∂τ − ω ∂σ

)︂
+
√︂

Q(r) ∂r

]︄
, (II.9)

m = 1 − αpr√︂
2(r2 + ω2p2)

[︄
− 1√︂

P(p)

(︂
ωp2 ∂τ + ∂σ

)︂
+ i

√︂
P(p) ∂p

]︄
.

In terms of this null tetrad, the spin coefficients are given by

κ = σ = λ = ν = 0 , (II.10)

ϱ = µ =
√︄

Q

2(r2 + ω2p2)
1 + i αωp2

r + i ωp
, (II.11)

τ = π =
√︄

P

2(r2 + ω2p2)
ω − i αr2

r + i ωp
, (II.12)

ϵ = γ = 1
4

√︄
Q

2(r2 + ω2p2)

[︃
2 1 − αpr

r + i ωp
− 2αp − (1 − αpr) Q′

Q

]︃
, (II.13)

α = β = 1
4

√︄
P

2(r2 + ω2p2)

[︃
2ω

1 − αpr

r + i ωp
+ 2i αr + i (1 − αpr) P ′

P

]︃
, (II.14)

which indicates that the null congruences tangent to the vectors kµ and lµ are both
geodesic, shear-free but with non-zero expansion and possibly twist. Moreover,
the twist of each congruence is proportional to the parameter ω, which gives us
a hint for fixing it.

Utilizing the null tetrad (II.9), the only non-zero component of the Weyl tensor
in the Newman–Penrose formalism equals to

Ψ2 = −(m̃ + i ñ)
⎛⎝1 − αpr

r + i ωp

⎞⎠3

+ (ẽ2 + g̃2)
⎛⎝1 − αpr

r + i ωp

⎞⎠3
1 + αpr

r − i ωp
, (II.15)
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confirming that the metric is of algebraic type D. The corresponding projection
of the Ricci tensor onto the null tetrad (II.9) simply yields

Φ11 = 1
2 (ẽ2 + g̃2) (1 − αpr)4

(r2 + ω2p2)2 , ΛNP ≡ 1
24 R = 1

6 Λ̃ . (II.16)

Both relations (II.15) and (II.16) indicate the presence of the curvature singularity
at p = 0 = r.

II.2 Black hole solutions of type D
The character of the spacetime (II.5) is determined by the metric functions Q(r)
and P(p). We focus the function P(p). It turns out to be appropriate to change
the coordinates by the following transformation

p = l

ω
+ a

ω
p̃ , τ = t − (l + a)2

a
φ , σ = −ω

a
φ , (II.17)

where a and l are new arbitrary parameters, later interpreted as the Kerr-like
rotation and the NUT parameter. With these changes, the metric (II.5)–(II.7)
becomes, see [1],

ds̃2 = 1
Ω2

⎡⎣− Q(r)
ρ2

[︄
dt −

(︂
a(1 − p̃2) + 2l(1 − p̃)

)︂
dφ

]︄2

+ ρ2

Q(r) dr2

+ ρ2

P̃(p̃)
dp̃2 + P̃(p̃)

ρ2

[︄
adt −

(︂
r2 + (a + l)2

)︂
dφ

]︄2
⎤⎦ , (II.18)

where

Ω = 1 − α

ω
(l + ap̃)r , (II.19)

ρ2 = r2 + (l + ap̃)2 , (II.20)
P̃(p̃) = a0 + a1 p̃ + a2 p̃2 + a3 p̃3 + a4 p̃4 , (II.21)
Q(r) = (ω2k + ẽ2 + g̃2) − 2m̃r + ϵr2 − 2αω−1nr3 − (α2k + Λ̃/3)r4 , (II.22)

and

a0 = 1
a2

(︄
ω2k + 2ñl − ϵl2 + 2α

l3

ω
m̃ −

[︄
α2

ω2 (ω2k + ẽ2 + g̃2) + Λ̃
3

]︄
l4
)︄

,

a1 = 2
a

(︄
ñ − ϵl + 3α

l2

ω
m̃ − 2

[︄
α2

ω2 (ω2k + ẽ2 + g̃2) + Λ̃
3

]︄
l3
)︄

,

a2 = −ϵ + 6α
l

ω
m̃ − 6

[︄
α2

ω2 (ω2k + ẽ2 + g̃2) + Λ̃
3

]︄
l2 , (II.23)

a3 = 2α
a

ω
m̃ − 4

[︄
α2

ω2 (ω2k + ẽ2 + g̃2) + Λ̃
3

]︄
al ,

a4 = −
[︄

α2

ω2 (ω2k + ẽ2 + g̃2) + Λ̃
3

]︄
a2 .
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Concentrating on the metric function P̃(p̃), the most physically relevant case
corresponds to the situation of at least two distinct roots. In such a case, we can
utilize the coordinate freedom to set these roots at p̃ = ±1, that is

P̃(p̃) = (1 − p̃2)(a0 − a3 p̃ − a4 p̃2) . (II.24)

Comparing (II.21) and (II.24) we get two constraints, namely a1 = −a3 and
a2 = −a0 − a4, leading directly to the expressions for ϵ and ñ, namely

ϵ = ω2k

a2 − l2 + 4α
l

ω
m̃ − (a2 + 3l2)

[︄
α2

ω2 (ω2k + ẽ2 + g̃2) + Λ̃
3

]︄
, (II.25)

ñ = ω2kl

a2 − l2 − α
(a2 − l2)

ω
m̃ + (a2 − l2) l

[︄
α2

ω2 (ω2k + ẽ2 + g̃2) + Λ̃
3

]︄
. (II.26)

Furthermore, in terms of these expressions involving the parameter a0 (II.23) can
be reexpressed as(︄

ω2

a2 − l2 + 3α2 l2
)︄

k = a0 + 2α
l

ω
m̃ − 3α2 l2

ω2 (ẽ2 + g̃2) − l2 Λ̃ . (II.27)

We have to impose a condition for positive value of the parameter a0 to
preserve that P̃(p̃) is positive for p̃ ∈ [−1, 1]. Using the freedom, we can consider
only the

a0 = 1
case.

Using the natural substitution p̃ = cos θ, where θ ∈ [0, π], we finally obtain a
class of solutions describing a general Plebański–Demiański black holes of type D
in a simple form (c.f. eq. (16.18) of [1]):

ds̃2 = 1
Ω2

[︄
− Q(r)

ρ2

[︃
dt −

(︂
a sin2θ + 4l sin2 θ

2
)︂

dφ
]︃2

+ ρ2

Q(r) dr2 (II.28)

+ ρ2

P(θ) dθ2 + P(θ)
ρ2 sin2θ

[︃
adt −

(︂
r2 + (a + l)2

)︂
dφ
]︃2
]︄

,

where

Ω = 1 − α

ω
(l + a cos θ) r , (II.29)

ρ2 = r2 + (l + a cos θ)2 , (II.30)
P(θ)

(︂
≡ sin2θ P̃(cos θ)

)︂
= 1 − a3 cos θ − a4 cos2 θ , (II.31)

Q(r) = (ω2k + ẽ2 + g̃2) − 2m̃r + ϵr2 − 2αω−1nr3 − (α2k + Λ̃/3)r4 . (II.32)

This metric simplifies the Plebański–Demiański solution to a very convenient
form, and presents a clear and direct generalization of the well-known metrics
(see the scheme on Fig. II.1). The only remaining problem is a rather complex
form of the explicit metric functions P(θ) and Q(r), and the ambiguity of the
parameter ω. In this work we have succeeded in solving these open problems,
and we offer a new useful reparametrization of this metric. More specifically, we
use the metric form (II.28), which is already in the most convenient form, and we
simplify the metric functions (II.31), (II.32). We also conveniently fix the twist
parameter ω. All this is done in Chapters 2 and 3.
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Figure II.1: Schematic diagram of a Plebański–Demiański class of type D black hole
solutions (II.28)–(II.32) in a flat universe background (Λ̃ = 0), see [1, 40] for a similar
diagram. A general metric solution can be separated into two cases – when the Kerr-like
rotation parameter is bigger than the NUT parameter a > l, or when the NUT param-
eter exceeds the Kerr-like rotation parameter, l > a. The diagram illustrates all rele-
vant transitions to simpler black hole solutions, including the C-metric, the Taub–NUT
metric, Reissner–Nordström metric, Kerr–Newman metric, or Schwarzschild metric and
Minkowski flat space, respectively. We can see that no (possibly charged) accelerat-
ing Taub–NUT is included, because setting a = 0 simplifies the metric directly to the
(possibly charged) Taub–NUT metric.
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III. Deviating solution –
accelerating Taub–NUT black
holes
Now, we come to an important observation. Although the Plebański–Demiański
metric (II.28) generally includes an accelerating and rotating Taub–NUT black
hole, its non-rotating version (a = 0) turns out not to be possible, see the Figure
II.1. This can be seen from (II.28)–(II.32) by fixing the twist parameter as ω =
a−1.

Firstly, we express the parameter k given by (II.27) for such a fixed ω, and
expand it in the powers of the Kerr-like rotation parameter a as

k|ω=a−1 = −a2 l2
(︂
1 − l2Λ̃

)︂
+ O(a3) . (III.1)

Now we put this into the expressions (II.25), (II.26), for the parameters ϵ, ñ,
that is

ϵ|ω=a−1 = 1 − 2l2Λ̃ + O(a) , (III.2)

ñ|ω=a−1 =
(︃

1 − 4
3 l2 Λ̃

)︃
l + O(a) , (III.3)

which simplifies the metric function Q(r) to

Q(r)|ω=a−1 = −l2
(︂
1 − l2 Λ̃

)︂
+ ẽ2 + g̃2 − 2m̃r + (1 − 2l2 Λ̃)r2 − Λ̃

3 r4 + O(a) .

We also substitute these expansions into (II.23) for the parameters a3, a4 defining
the metric function P(θ) via (II.31), and we obtain

a3|ω=a−1 = O(a) and a4|ω=a−1 = O(a2) . (III.4)

If we now set a = 0, we obtain

Ω = 1 and P(θ) = 1 . (III.5)

The resulting solution can thus be expressed as

ds̃2 = −f(r)
(︃

dt − 4l sin2 θ

2 dφ
)︃2

+ 1
f(r) dr2 +

(︂
r2 + l2

)︂ (︂
dθ2 + sin2θ dφ2

)︂
,

where

f(r) = 1
r2 + l2

[︃
r2 − l2 − 2m̃r + ẽ2 + g̃2 − Λ̃

(︃1
3 r4 + 2l2r2 + l4

)︃]︃
.

This is the non-accelerating charged Taub–NUT black hole in the (anti-)de Sitter
background (see eq. (12.19) in [1] and [36]), therefore we do not expect any
solution describing the accelerating Taub–NUT in the Plebański–Demiański class
of metrics.
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III.1 The Chng–Mann–Stelea solution
It was thus a surprise when such a solution was found in a work of Brenda
Chng, Robert Mann and Cristian Stelea in 2006 [37]. It was constructed via
the generating method which utilizes the SL(2, R) symmetry of the reduced
Lagrangian (for more details see the second section of [37]). This method has
been applied on the accelerating version of the Zippoy–Vorhees metric (on the
metric form presented by Teo in 2006 [50]). The metric generated by this method
was presented in the form

ds̄2 = −(y2 − 1)F (y)
α2(x − y)2

C2δ

H̄(x, y)

[︄
dt̄ + 1

C

(︄
(1 − x2)F (x)
α2(x − y)2 + 2Mx

α

)︄
dφ

]︄2

(III.6)

+ H̄(x, y)
α2(x − y)2

[︄
(1 − x2)F (x)dφ2 + dx2

(1 − x2)F (x) + dy2

(y2 − 1)F (y)

]︄
,

where

F (x) = 1 + 2αM x , (III.7)
F (y) = 1 + 2αM y , (III.8)

H̄(x, y) = 1
2 + δ

2

(︄
(y2 − 1)F (y)
α2 (x − y)2

)︄2

. (III.9)

In the following Chapter 1 we will investigate this solution in full detail.
More specifically, we will prove that this solution solves the vaccum Einstein field
equation, and examine the algebraic type of this solution. This will clarify its
existence outside the Plebański–Demiański class of solutions. A thorough physical
and geometrical analysis of this solution will then also be provided.
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1. Accelerating Taub–NUT black
holes
This chapter is based on the paper Accelerating NUT black holes [44] by Podolský
and Vrátný, published in 2020 in the journal Physical Review D 102, 084024.

1.1 Checking the vacuum equations
Finding a solution of an accelerating Taub–NUT black hole by Chng, Mann and
Stelea [37] was surprising, as it was unexpected. Therefore it was desirable to
prove conclusively whether it is truly a vacuum solution of the Einstein field
equations. And if so, to clarify its relation to the Plebański–Demiański class of
type D solutions.

First of all, we reparametrized the metric (III.6)–(III.9) introduced by Chng,
Mann and Stelea, using τ = 2λ (α2C t̄ − φ) and ds̄2 → ds2 ≡ 2 ds̄2, where a new
real parameter λ ≡

√
δ

α2 was introduced. This approach yield a better representa-
tion for subsequent direct computations, namely

ds2 = − (y2 − 1)F (y)
α2(x − y)2H(x, y)

[︄
dτ + 2λ F (x)1 − 2xy + y2

(x − y)2 dφ

]︄2

(1.1)

+ H(x, y)
α2(x − y)2

[︄
(1 − x2)F (x) dφ2 + dx2

(1 − x2)F (x) + dy2

(y2 − 1)F (y)

]︄
,

where
H(x, y) = 1 + λ2 (y2 − 1)2F 2(y)

(x − y)4 , (1.2)

and F (ξ) = 1 + 2αMξ .
For computing all the components of the Ricci tensor we developed a com-

puter algebra method optimized for any stationary, axially symmetric solution
– final equations of this method are presented in Appendix A, eq. (A11). In-
deed, using this direct method the computations were lasting via Mathematica
on a standard PC just around 40 seconds, and resulted in all zero components.
Therefore, we could confidently say that the metric (1.1)–(1.2) (or (III.6)–(III.9),
respectively) is indeed a vacuum solution of Einstein’s field equations.

In addition, we developed an equivalent and independent method utilizing
the well known relations between the curvature tensors of conformally related
metrics. This alternative approach (described in the Appendix B) was applied on
the metric ĝab = Ω2 gab, where Ω2 ≡ α2 (1−x2)F (x) (y2 −1)F (y) (x−y)10 H(x, y),
verifying that all the Ricci components are identically zero. The second method
took just around 15 seconds.

1.2 Algebraic type of the spacetime
Next, it was necessary to understand the relation between this accelerating Taub–
NUT metric and the Plebański–Demiański family, which seems not to involve such
a solution (see Chapter III).
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To this end, we had to determine the algebraic structure of the new solution.
Adopting a natural null tetrad

k = 1√
2

(︄
1√
−gtt

∂t + 1
√

gyy

∂y

)︄
,

l = 1√
2

(︄
1√
−gtt

∂t − 1
√

gyy

∂y

)︄
, (1.3)

m = 1√
2

(︄√︃
gtt

D
∂φ + gtφ√

Dgtt

∂t − i
√

gxx

∂x

)︄
,

with D = gttgφφ − g2
tφ, we were able to compute the NP scalars ΨA of the Weyl

tensor. These were simplified to the following factorized form:

Ψ0 = Ψ4 = −3 α2λ (1 − x2)F (x) (y2 − 1)F (y) Ξ(x, y) ,

Ψ1 = Ψ3 = −3 α2λ i
√︂

(1 − x2)F (x)
√︂

(y2 − 1)F (y) Σ(x, y) Ξ(x, y) , (1.4)

Ψ2 =
[︃

α2λ Π(x, y) + i α3M(x − y)5
]︃

Ξ(x, y) ,

where

Ξ(x, y) = i (x − y)4[︂
(x − y)2 − λ i (y2 − 1)(1 + 2αMy)

]︂3 ,

Σ(x, y) = xy − 1 − αMx (1 − 3y2) − αMy (1 + y2) , (1.5)

Π(x, y) = 2 Σ2(x, y) −
[︂
(1 − x2)F (x) − αM(x − y)3

]︂
(y2 − 1)F (y) .

Following the procedure summarized in Sec. I.2 (especially the scheme on
Fig. I.1), we computed the scalar invariants I and J (I.6) and verified that the
condition I3 = 27J2 does not hold. This clearly means that the metric (1.1) is of
a general algebraic type I, and therefore cannot be included in the wide Plebański–
Demiański class of type D solutions.

1.2.1 The principal null directions
Using the NP scalars (1.4)–(1.5) we were able to transform the null tetrad (1.3)
via the Lorentz transformations (I.1),

k′ = k + K m̄ + K̄ m + KK̄ l, l′ = l, m′ = m + K l , (1.6)

and compute explicitly the four distinct principal null directions. These corre-
spond to the null vector k′ obtained by (1.6) with the following four complex
coefficients:

Ki =
κ1,2 ±

√︂
κ2

1,2 − 4
2 , κ1,2 =

−2Ψ1 ±
√︂

4Ψ2
1 − 2Ψ0(3Ψ2 − Ψ0)

Ψ0
. (1.7)

Thus, we answered both main questions concerning this new interesting solu-
tion.
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1.3 A new convenient form of the metric
Although the metric (1.1)–(1.2) was useful for the hard computations, it was no
more suitable for geometrical analysis and the physical interpretation than the
original metric form (III.6)–(III.9).

Therefore, we applied a specific set of transformations on the metric (III.6)–
(III.9), namely

x = − cos θ , y = − 1
α (r − r−) , t̄ = r+ − r−

2αlC
t , (1.8)

and we introduced the NUT parameter l and a new real mass parameter m via
the relations

l =
√

δ

α2 r+ , m =
√

M2 − l2 . (1.9)

Specific combinations of the mass parameter m and the NUT parameter l can be
conveniently defined as

r+ ≡ m +
√

m2 + l2 ,

r− ≡ m −
√

m2 + l2 . (1.10)

Finally, we rescaled the metric as ds2 ≡ 2 r+
r+−r−

ds̄2, and we got a very conve-
nient form of the metric:

ds2 = 1
Ω2

⎡⎣− Q
R2

(︄
dt − 2l

(︂
cos θ − α T sin2θ

)︂
dφ

)︄2

+R2

Q
dr2 + R2

(︄
dθ2

P
+ P sin2θ dφ2

)︄⎤⎦, (1.11)

where the metric functions are

Ω(r, θ) = 1 − α (r − r−) cos θ ,

P (θ) = 1 − α (r+ − r−) cos θ ,

Q(r) =
(︂
r − r+

)︂(︂
r − r−

)︂(︂
1 − α(r − r−)

)︂(︂
1 + α(r − r−)

)︂
, (1.12)

T (r, θ) = (r − r−)2P

(r+ − r−) Ω2 ,

R2(r, θ) = 1
r2

+ + l2

(︄
r2

+(r − r−)2 + l2(r − r+)2

[︂
1 − α2(r − r−)2

]︂2
[︂
1 − α (r − r−) cos θ

]︂4
)︄

.

This new metric form is described by spherical-like coordinates, and is more
suitable for investigation of geometric properties or physical interpretation. It
explicitly depends on 3 free parameters – the mass m, the NUT parameter l, and
the acceleration parameter α.

Clearly, the biggest advantage of our new metric is that we can easily recover
the well-known forms of the special metrics just by setting the parameters α or l
to zero.
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These are:

• Taub–NUT metric (α = 0):

ds2 = −f
(︂
dt − 2l cos θ dφ

)︂2
+ dr2

f
+ (r2 + l2)(dθ2 + sin2θ dφ2) , (1.13)

where

f ≡ Q
R2

⃓⃓⃓⃓
α=0

= r2 − 2mr − l2

r2 + l2 . (1.14)

• C-metric (l = 0):

ds2 = 1
(1 − α r cos θ)2

⎡⎣− Q dt2 + dr2

Q
+ r2

(︄
dθ2

P
+ P sin2θ dφ2

)︄⎤⎦, (1.15)

where

P = 1 − 2αm cos θ ,

Q ≡ Q
R2

⃓⃓⃓⃓
l=0

=
(︃

1 − 2m

r

)︃
(1 − αr)(1 + αr) . (1.16)

Both of these metrics (1.13)–(1.14), or (1.15)–(1.16), respectively, are the
standard forms of the well known black holes (see [1] for more details).

1.4 Physical analysis of the new metric
Then, we could take the full advantage of the new metric form (1.11)–(1.12) and
perform a thorough physical and geometrical analysis (see Sec. P1.VI).

The positions of the black hole and acceleration horizons H±
b and H±

a , respec-
tively, located at Q(r) = 0, were straightforward to find:

H+
b : r = r+

b ≡ r+ > 0 ,

H−
b : r = r−

b ≡ r− < 0 ,

H+
a : r = r+

a ≡ r− + α−1 , (1.17)
H−

a : r = r−
a ≡ r− − α−1 ,

where r± take the form (1.10).
From (1.17), it is obvious that for a sufficiently small (positive) acceleration,

namely for

0 < α <
1

2
√

m2 + l2
, (1.18)

the ordering of its four horizons remains in the following natural order:

r−
a < r−

b < 0 < r+
b < r+

a . (1.19)
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1.4.1 Curvature, algebraic structure, and regularity
In Sec. P1.VI.B, we also rewrote the Newman–Penrose scalars ΨA (1.4)–(1.5) in
terms of the new metric form (1.11)–(1.12). Adopting the natural null tetrad

k(rθ) = 1√
2

Ω
(︄

R√
Q

∂t +
√

Q
R

∂r

)︄
,

l(rθ) = 1√
2

Ω
(︄

R√
Q

∂t −
√

Q
R

∂r

)︄
, (1.20)

m(rθ) = 1√
2

Ω
R

√
P sin θ

(︃
∂φ + 2l

(︂
cos θ − α T sin2θ

)︂
∂t − i P sin θ ∂θ

)︃
,

we computed the components of the Weyl tensor as

Ψ(rθ)
0 = Ψ(rθ)

4 = −3 i α2 l PQ (r − r−) sin2 θ X ,

Ψ(rθ)
1 = Ψ(rθ)

3 = 3 α l
√

PQ sin θ S X , (1.21)

Ψ(rθ)
2 =

[︃
− r+

√
m2 + l2 Ω5 + i l W/(r − r−)

]︃
X ,

where the functions X, S, W read

X(r, θ) = (r2
+ + l2)(r − r−)3 Ω4[︂

r+(r − r−)2 Ω2 − i l Q
]︂3 ,

S(r, θ) =
(︂
1 − α2(r − r−)2

)︂
(r − r+)

−
[︃
(r − r+) −

√
m2 + l2

(︂
1 − α2(r − r−)2

)︂]︃
Ω , (1.22)

W (r, θ) = 2 S2 +
(︂
1 − α2(r − r−)2

)︂
(r − r+) ×[︃√

m2 + l2 Ω3 − α2(r − r−)3P sin2 θ
]︃

.

Computation of these scalars took a larger amount of time then for the scalars
ΨA from the previous metric (1.4). However, since we used the generalized met-
ric (1.11) and chose an appropriate null tetrad (1.20), a standard form of the
Newman–Penrose scalars of the Taub–NUT metric Ψ(rθ)

2 = − m+i l
(r+i l)3 and the ac-

celerating C-metric Ψ(rθ)
2 = − m

r3 (1 − α r cos θ)3 could be easily obtained.
Using this new representation of the NP scalars ΨA, we investigated the alge-

braic type and regularity of the horizons and axes as well. These were thoroughly
discussed in Sec. P1.VI.B. Among that, we explicitly expressed the relation
I3 − 27J2 (see (I.6) and the scheme on Fig. I.1), namely

I3 − 27J2 = 9
4

[︄(︃
r+

√
m2 + l2 Ω5 − i l

[︂
W/(r − r−) − α2PQ (r − r−) sin2 θ

]︂)︃2

−16 α2l2PQ sin2 θ S2
]︄
D2X2 , (1.23)

where D is defined as

D ≡ 4Ψ2
1 − 2Ψ0(3Ψ2 − Ψ0) = −18 α2 l

√
m2 + l2 PQ sin2 θ Ω3X2 Y . (1.24)
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Clearly, the relation (1.23) is zero if the parameter D (1.24) vanishes. This
holds for either α = 0 or l = 0. Moreover, there occurs also a specific combination,
namely

W = α2PQ (r − r−)2 sin2θ and r+
√

m2 + l2 Ω5 = ±4 αl
√

PQ sin θ S , (1.25)

which generates a specific hypersurface of a special algebraic type. Following the
scheme on Fig. I.1, we were able to assign this hypersurface the algebraic type II
or type N (see the discussion in Sec. P1.VI.C).

Furthermore, studying the scalars ΨA (1.21), we could easily determine the
location of the curvature singularity. That should occur only when the parameter
X (1.22) diverges. More specifically, the parameter X diverges when

r+(r − r−)2 Ω2 − i l Q = 0 . (1.26)

Both the real and imaginary parts must be zero. The only possibility is

l = 0 and at the same time r = r− = 0 . (1.27)

This result corresponds to the standard C-metric [1].
We also verified these results by an explicit computation (c.f. eq. (85) of Sec.

P1.VI.C) and by the visualisations of the Kretschmann scalar (see Fig. 2 and
Fig. 3).

1.4.2 Conformal infinity and the global structure
Interestingly, all the components of ΨA (1.21) factorized out the parameter X
(1.22). In fact, the limit X → 0 corresponds to asymptotically flat regions, and
we can identify them with a conformal infinity I±. A similar deduction can be
found also for the NP scalars (1.4) and the function Ξ.

More specifically, the conformal infinity I is localized at

I :

⎧⎪⎪⎨⎪⎪⎩
x = y for the metric (1.1) ,

r = r− + 1
α cos θ

for the metric (1.11) and θ ̸= π
2 ,

±∞ for the metric (1.11) and θ = π
2 .

(1.28)

Notice again, that both relations correspond to Ω(r, θ) = 0.
Using these results, the global structure of the whole spacetime could be

derived. This was visualized on Fig. 4 of an attached article, and is repeated
here in Fig. 1.1.

For the metric form (III.6)–(III.9), we fixed the coordinates t̄, φ, and plotted
the diagram for a general couple (x, y). It corresponds to the coordinates (r, θ)
via the relation (1.8). The coordinate θ covers just a part of the coordinate x,
namely x ∈ [−1, 1]. This section is shaded in the diagram, and describes the
black hole part of the solution.

A new representation (1.11)–(1.12) allows us to understand the global struc-
ture. We can notice that the distinct limit values of y = ±∞ correspond to a
single value of r, namely to the inner horizon at r−. These parts can thus be glued
together, yielding a new view on the global structure (see the right diagram of
Fig. 1.1).
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Figure 1.1: The complete global structure of accelerating NUT black holes. These
sections are represented by mutually equivalent pair of coordinates x, y and θ, r. The
black hole spacetime is localized in the shaded region x ∈ [−1, 1] between the two ro-
tating cosmic strings. The spacetime is separated by four Killing horizons at special
values of y or r. Namely, these are the two black-hole horizons H±

b , which are located
at r−

b = r−, r+
b = r+, and the two acceleration horizons H±

a present at r+
a = r− + 1

α ,
r−

a = r− − 1
α . The lines r = 0 and r = ∓∞ (indicated by horizontal dashed lines) are

only the coordinate singularities. Conformal infinity I, where the spacetime is asymp-
totically flat (see eq. (1.28)), is located along the diagonal line x = y. For more detail,
see Fig. 4 of an attached article.

Let us also mention that we were able to analytically extend the solution
through the acceleration horizons using the boost-rotation metric (103). Similar
approach was already employed earlier for the C-metric (see [51, 52, 53]).

This reveals that there exists actually a pair of such black holes which are
causally separated and accelerating in opposite directions. For more details, see
Sec. P1.VI.D.

1.4.3 Character of the axes

Another part of our paper contains investigation of the nature of the axes θ = 0
and θ = π. Actually, in addition to the mass m, acceleration α or the NUT
parameter l, there is also the fourth free parameter C hidden in the range of the
coordinate φ ∈ [0, 2πC). This parameter determines the magnitude of the deficit
(or excess) angle around the individual axes which causes the acceleration of the
black hole (for the C-metric this phenomena is discussed in detail in [1]). By an
appropriate fixing of C, we can regularize this topological pathology for one of
the axes.

Of course, there is also the NUT pathology around the axes, a similar as
in the classic Taub–NUT solution. This can be regularized by the coordinate
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transformation
t = t0 + 2lφ , (1.29)

removing this pathology from the θ = 0 axis. The deficit angle then vanishes for
an appropriate choice

C = C0 ≡ 1
1 − 2α

√
m2 + l2

. (1.30)

With the choice (1.30), the second axis θ = π remains with an excess angle

δπ = − 8πα
√

m2 + l2

1 − 2α
√

m2 + l2
< 0 , (1.31)

which we interpret as a strut causing the acceleration of this solution.
Analogously, we can perform the coordinate transformation

t = tπ − 2lφ , (1.32)

and subsequently set the parameter C to

C = Cπ ≡ 1
1 + 2α

√
m2 + l2

. (1.33)

This choice would regularize the θ = π axis, however it would introduce a deficit
angle around the θ = 0 axis

δ0 = 8πα
√

m2 + l2

1 + 2α
√

m2 + l2
> 0 . (1.34)

This would correspond to the string pulling the black hole. For more information
about computing the deficit or excess angles see [1], or our attached article.

These strings/struts are twisting. This can be observed from the function
ω ≡ gtφ

gtt
, evaluated on the axes θ = 0 or θ = π. This twisting parameter can be

adjusted using the coordinate transformations (1.29) or (1.32). Nevertheless, its
difference remains a constant ∆ω = 4l.

1.4.4 Pathological regions
The last interesting phenomena which we investigated are the pathological regions
around the axes caused by the presence of the NUT parameter l. Indeed, with
a non-zero l, it can be seen from metric (1.11) that there occur areas where the
metric coefficient is negative,

gφφ < 0 . (1.35)

Because it determines the negative norm of the Killing vector ∂φ, it shows the
existence of regions where the closed timelike curves occur.

For the metric (1.11), these pathologies lie in the range such that

R4P (1 − cos2θ) < 4l2Q
(︂

cos θ − α T (1 − cos2θ)
)︂2

. (1.36)

The condition (1.36) is not explicitly solvable, and thus it needs to be visual-
ized by computer. This was made in Fig. 5 of an attached article, and is recalled
also here in Fig. 1.2.
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Figure 1.2: Plot of the metric function gφφ and the pathological regions along
the axes θ = 0 and θ = π (1.36) in the quasi-polar coordinates x ≡

√
r2 + l2 sin θ,

y ≡
√

r2 + l2 cos θ . The visualization shows the value of gφφ for r > 0 (left figure)
and for r < 0 (right figure). Moreover, horizons r±, r±

a and the conformal infinities are
visualized. For more detail, see the Fig. 5 of an attached Paper 1.

The pathological regions modify when the coordinate transformations (1.29)
or (1.32) is provided. This situation is illustrated on Fig 6 of Paper 1.

1.5 Summary
In this chapter, we have described our studies of a new interesting class of space-
times representing accelerating black holes with a NUT parameter. Now, we
summarize the most important observations. In particular:

• By developing two independent methods, we verified that the metric (III.6)–
(III.9) found by Chng, Mann and Stelea in 2006 is indeed an exact vacuum
solution to the Einstein’s field equations.

• Using the metric form (1.1), we computed all the components ΨA of the
Weyl tensor with respect to the null tetrad (1.3).

• From these, we calculated the corresponding curvature scalar invariants I
and J (I.6). Since generically I3 ̸= 27 J2, the solution is of algebraically
general type I with four distinct PNDs (given by eqs. (1.6)–(1.7)).

• This confirms the previous observations about the deviation of this solu-
tion from the wide Plebański–Demiański class of type D spacetimes (see
Chapter III).

• In Sec. 1.3 we have summarized the derivation of a new metric form (1.11)
of the accelerating Taub–NUT in “spherical-type” coordinates, explicitly
depending on three physical parameters, namely the mass m, the accelera-
tion α, and the NUT parameter l.
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• By setting these physical parameters to zero, we recover the well-known
black holes in standard coordinates, namely the C-metric when l = 0, the
Taub–NUT metric when α = 0, the Schwarzschild metric, and flat Minkow-
ski space.

• Using the new metric (1.11), we provided an indepth physical and geomet-
rical analysis of this new solution. In Sec. 1.4 we have summarized the main
results, namely:

• We localized the horizons H±
b and H±

a at the roots of the metric function
Q(r) (1.17), and determined the condition (1.18) for their most natural
ordering r−

a < r−
b < 0 < r+

b < r+
a .

• We analyzed the curvature of this solution. More precisely, adopting the
naturally chosen null tetrad (1.20), we calculated all the ΨA components of
the Weyl tensor in terms of these new coordinates (1.21)–(1.22).

• There may be special hypersurfaces of a special algebraic type, however the
overall spacetime is of a general algebraic type I.

• From the NP scalars we localized the curvature singularity at r = 0 while
necessarily l = 0. It means, that the purely accelerating Taub–NUT is
non-singular.

• We identified the asymptotically flat regions which correspond to the confor-
mal infinities I± given by Ω = 0. This lead us to a complete understanding
of the global structure of this black hole, summarized in Fig. 1.1.

• We were able to analytically extend the solution across the acceleration
horizons, which revealed that there actually exists a pair of such (causally
separated) NUT black holes uniformly accelerating in opposite directions.

• A geometrical analysis of the axes of axial symmetry at θ = 0 and θ = π
revealed that the physical source of the acceleration of this solution lies in
their topological defects.

• We were able to fully regularize these defects along one of the axes of sym-
metry by a suitable choice of the conicity factor C.

• These cosmic strings/struts located along the axes of symmetry are twisting
when l ̸= 0. This phenomena characterizes their twist parameter ω, which
is directly related to the NUT parameter l. There is always a constant
difference ∆ω = 4l between the twist parameter of each axis, and disappears
only for a vanishing NUT parameter l = 0.

• Similarly to the case of non-accelerating Taub–NUT metric, pathological
regions with closed timelike curves occur. These areas are visualized in
Fig 1.2.

The accelerating Taub–NUT metric is an interesting solution deviating from
the Plebański–Demiański class of type D black holes. We hope that the new
explicit form (1.11)–(1.12) will help further investigations in the field of the black
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hole thermodynamics, quantum gravity, or high-energy physics (for example by
extending the recent studies [54, 55]).

Furthermore, the case m = 0 was not explicitly studied, yet a black hole that
is twisting and accelerating, even though massless, could be an interesting topic
for further investigation. It can be easily computed that such a NUT twisting
string would be of a general algebraic type I (see equation (1.23)). We thank
Ibrahim Seniz for pointing this out to us.

A great success would be to find any generalization to this accelerating Taub–
NUT solution, e.g. to charge the black hole (e ̸= 0 ̸= g), add the rotational
parameter (a ̸= 0), or study such black holes in (anti-)de Sitter background
(Λ ̸= 0). This task is however tricky due to the complexity of the metric functions
R2 or of T in (1.12).
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We present and analyze a class of exact spacetimes which describe accelerating black holes with a
Newman-Unti-Tamburino (NUT) parameter. First, by two independent methods we verify that the intricate
metric found by Chng, Mann, and Stelea in 2006 indeed solves Einstein’s vacuum field equations of
general relativity. We explicitly calculate all components of the Weyl tensor and determine its algebraic
structure. As it turns out, it is actually of algebraically general type I with four distinct principal null
directions. It explains why this class of solutions has not been (and could not be) found within the large
Plebański–Demiański family of type D spacetimes. Then we transform the solution into a much more
convenient metric form which explicitly depends on three physical parameters: massm, acceleration α, and
the NUT parameter l. These parameters can independently be set to zero, recovering thus the well-known
spacetimes in standard coordinates, namely the C-metric, the Taub–NUT metric, the Schwarzschild metric,
and flat Minkowski space in spherical coordinates. Using this new metric, we investigate main physical and
geometrical properties of such accelerating NUT black holes. In particular, we localize and study four
Killing horizons (two black-hole plus two acceleration horizons) and carefully investigate the curvature.
Employing the scalar invariants we prove that there are no curvature singularities whenever the NUT
parameter is nonzero. We identify asymptotically flat regions and relate them to conformal infinities. This
leads to a complete understanding of the global structure of the spacetimes: each accelerating NUT black
hole is a “throat” which connects “our universe” with a “parallel universe.” Moreover, the analytic
extension of the boost-rotation metric form reveals that there is a pair of such black holes (with four
asymptotically flat regions). They uniformly accelerate in opposite directions due to the action of rotating
cosmic strings or struts located along the corresponding two axes. Rotation of these sources is directly
related to the NUT parameter. In their vicinity there are pathological regions with closed timelike curves.

DOI: 10.1103/PhysRevD.102.084024

I. INTRODUCTION

Exact solutions of Einstein’s general relativity play an
important role in understanding strong gravity. Among the
first and most fundamental such spacetimes, which were
found, investigated and understood, were black holes. They
exhibit many key features of the relativistic concept of
gravity with surprising applications in modern astrophys-
ics. It is now clear that rotating black holes reside in the
hearts of almost all galaxies, and that binary black hole
systems in the last stage of their evolution are the strongest
sources of gravitational waves in our Universe.
In 1976, Plebański and Demiański [1] presented a nice

form of a complete class of exact spacetimes of algebraic
type D (including a double aligned non-null electromag-
netic field and any cosmological constant), first obtained by
Debever [2] in 1971. This class involves various black
holes, possibly charged, rotating and accelerating. In
particular, this large family of solutions contains the

well-known Schwarzschild (1915), Reissner–Nordström
(1916–1918), Schwarzschild–de Sitter (1918), Kerr
(1963), Taub–NUT (1963) or Kerr–Newman (1965) black
holes, and also the C-metric (1918, 1962) which was
physically interpreted by Kinnersley–Walker (1970) as
uniformly accelerating pair of black holes.
Unfortunately, these interesting types of black holes—

and their combinations—had to be obtained from the
general Plebański–Demiański metric by special limiting
procedures (degenerate transformations), see Sec. 21.1.2 of
the classic compendium [3] for more details. Moreover, it
was traditionally believed that the constant coefficients of
the two related Plebański–Demiański quartic metric func-
tions directly encode the physical parameters of the
spacetimes.
In 2003, Hong and Teo [4,5] came with a simple but very

important idea of employing the coordinate freedom
to rewrite the C-metric in a new form such that its two
quartic (cubic in the uncharged case) metric functions
are factorized to simple roots. This novel approach enor-
mously simplified the associated calculations and—more
importantly—the physical analysis of the C-metric because
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the roots themselves localize the axes of symmetry and
position of horizons.
Inspired by these works of Hong and Teo, with Jerry

Griffiths we applied their novel idea to the complete family
of Plebański–Demiański spacetimes [1]. This “new look”
enabled us to derive an alternative form of this family of
type D black hole solutions, convenient for physical and
geometrical interpretation, see [6–8] and Ch. 16 of [9] for
summarizing review. This form of the metric reads

ds2 ¼ 1

Ω2

�
−
Q
ϱ2

�
dt −

�
asin2θ þ 4lsin2

θ

2

�
dφ

�
2

þ ϱ2

Q
dr2

þ ϱ2

P
dθ2 þ P

ϱ2
sin2θ½adt − ðr2 þ ðaþ lÞ2Þdφ�2

�
;

ð1Þ

where P¼ 1− a3 cosθ− a4 cos2 θ, Q¼ ðω2kþ e2 þ g2Þ−
2mrþ ϵr2 − 2αnω−1r3 − ðα2kþ 1

3
ΛÞr4, Ω¼ 1− αðlþ

a cosθÞω−1r, ϱ2 ¼ r2 þ ðlþ a cos θÞ2, and a3; a4; ϵ; n; k
are uniquely determined constants. The free parameters of
the solutions have a direct physical meaning, namely the
mass m, electric and magnetic charges e and g, Kerr-like
rotation a, Newman-Unti-Tamburino (NUT)-like param-
eter l, acceleration α, and the cosmological constant Λ. All
the particular subclasses of the Plebański–Demiański black
holes can be easily obtained from (1) by simply setting
these physical parameters to zero.
At first sight, it would seem possible to obtain an

exact vacuum solution for accelerating black holes with
a NUT parameter simply by keeping α, m, l and setting
a ¼ e ¼ g ¼ Λ ¼ 0. However, in [6] we explicitly dem-
onstrated that in such a special case the constant α is a
redundant parameter which can be removed by a specific
coordinate transformation. In other words, the case α, m, l
is just the “static” black hole with a NUT parameter l. Thus
we argued convincingly in [6] that the solution which
would combine the Taub–NUT metric with the C-metric is
not included in the Plebański–Demiański family of black
holes, despite the fact that a more general solution which
describes accelerating and rotating black holes with NUT
parameter is included in it (indeed, in the metric (1) it is
possible to keep α, a, l, m all nonvanishing). This led us in
2005 to a “private conjecture” that the genuine accelerating
Taub–NUT metric (without the Kerr-like rotation a) need
not exist at all.
Quite surprisingly, such a solution was found next year

in 2006 by Chng, Mann, and Stelea [10] by applying a
sequence of several mathematical generating techniques. It
was presented in the following form1

ds̄2 ¼ −
ðy2 − 1ÞFðyÞ
α2ðx − yÞ2

c2δ
H̄ðx; yÞ

×

�
dt̄þ 1

c

�ð1 − x2ÞFðxÞ
α2ðx − yÞ2 þ 2Mx

α

�
dφ

�
2

þ H̄ðx; yÞ
α2ðx − yÞ2

�
ð1 − x2ÞFðxÞdφ2

þ dx2

ð1 − x2ÞFðxÞ þ
dy2

ðy2 − 1ÞFðyÞ
�
; ð2Þ

where

FðxÞ ¼ 1þ 2αMx; ð3Þ

FðyÞ ¼ 1þ 2αMy; ð4Þ

H̄ðx; yÞ ¼ 1

2
þ δ

2

�ðy2 − 1ÞFðyÞ
α2ðx − yÞ2

�
2

; ð5Þ

see Eq. (35) in [10]. This metric explicitly contains four
parameters, namely M, α, c, and δ. The authors of [10]
argued that the parameter δ is related to the NUT parameter
in the limiting case when the acceleration vanishes. And,
complementarily, when this parameter is set to zero, the
C-metric can be obtained. It is thus natural to interpret
the metric (2)–(5) as an exact spacetime with uniformly
accelerating black hole and a specific twist described by the
NUT parameter. This very interesting suggestion surely
deserves a deeper analysis. To our knowledge, during the
last 15 years this has not yet been done, and it is the main
purpose of this paper.
First, in Sec. II we will remove the redundant parameter

c, simplifying the original metric of [10] to the form in
which the twist can be set to zero (leading to the standard
C-metric). Using it, in subsequent Sec. III we will confirm
that the metric (2)–(5) is indeed a vacuum solution of
Einstein’s field equations (we will do this by two inde-
pendent methods, based on the general results summarized
in Appendices A and B). In Sec. IV we will calculate the
NP scalars ΨA in a suitable null frame and determine the
algebraic type of the Weyl tensor. Since it will turn out to
be algebraically general with four distinct principal null
directions, it cannot belong to the class of type D
Plebański–Demiański spacetimes (1). Then, in Sec. V
we will present a new metric form of the solution which
is much better suited for a geometrical and physical
interpretation of this class of black holes. When its three
parameters l, α, and m are set to zero, standard form of
the C-metric, the Taub–NUT metric, the Schwarzschild
metric and eventually Minkowski space are directly
obtained. Specific properties of this family of accelerating
NUT black holes are investigated in Sec. VI. In particular,
we study horizons, curvature singularities, asymptotically
flat regions, global structure of these spacetimes, and

1We have only replaced the acceleration parameter A by α, and
the mass parameter m by M, and the constant C by c.
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specific nonregularity of the two axes of symmetry, cor-
responding to rotating cosmic strings or struts (surrounded
by regions with closed timelike curves) which are the
physical source of acceleration of the pair of black holes.

II. REMOVING THE DEGENERACY
AND INITIAL COMMENTS

We immediately observe that the original metric (2)
does not admit setting c ¼ 0 and δ ¼ 0. The metric
degenerates and its investigation is thus complicated. In
fact, the constant c is redundant. To solve these problems,
we found convenient to perform a transformation of the
time coordinate

τ ¼ 2λðα2c t̄ − φÞ; ð6Þ
where the new real parameter λ ≥ 0 is defined as

λ ≡
ffiffiffi
δ

p

α2
: ð7Þ

Rescaling trivially the metric (2) by a constant conformal
factor, ds̄2 → ds2 ≡ 2ds̄2, we obtain a better representation
of the solution

ds2 ¼ −
ðy2 − 1ÞFðyÞ

α2ðx − yÞ2Hðx; yÞ
�
dτ þ 2λFðxÞ 1 − 2xyþ y2

ðx − yÞ2 dφ

�
2

þ Hðx; yÞ
α2ðx − yÞ2

�
ð1 − x2ÞFðxÞdφ2

þ dx2

ð1 − x2ÞFðxÞ þ
dy2

ðy2 − 1ÞFðyÞ
�
; ð8Þ

where the function H ≡ 2H̄ takes the form

Hðx; yÞ ¼ 1þ λ2
ðy2 − 1Þ2F2ðyÞ

ðx − yÞ4 ; ð9Þ

and FðxÞ ¼ 1þ 2αMx, FðyÞ ¼ 1þ 2αMy are the linear
functions (3) and (4), respectively. Without loss of general-
ity, we may assume α ≥ 0.
It is now possible to set λ ¼ 0, in which case H ¼ 1, and

the new metric reduces to a diagonal line element

ds2 ¼ 1

α2ðx − yÞ2
�
−ðy2 − 1ÞFðyÞdτ2 þ ð1 − x2ÞFðxÞdφ2

þ dx2

ð1 − x2ÞFðxÞ þ
dy2

ðy2 − 1ÞFðyÞ
�
: ð10Þ

This is the usual form of the C-metric, see e.g. Eqs. (14.3),
(14.4) in [9] with the identification GðxÞ ≡ ð1 − x2ÞFðxÞ,
y → −y and m ≡M. In such a special case, the metric
represents a spacetime with pair of Schwarzschild-like
black holes of mass M ≥ 0 and uniform acceleration α
caused by cosmic strings or struts.

The full metric (8) with a generic λ is clearly a one-
parameter generalization of this C-metric. Additional off-
diagonal metric component dτdφ also occurs, indicating
that the parameter λ is related to an inherent twist/rotation
effect in the spacetime. It will be explicitly demonstrated in
Sec. V that this parameter is directly proportional to the
genuine NUT parameter l.
Preliminary physical interpretation of (8) can now also

be done using similar arguments as those for the C-metric,
as summarized in Ch. 14 of [9]. In particular, we can
comment on the character of coordinate singularities. In
order to keep the correct metric signature of (8) and obtain
the usual black-hole interpretation of the spacetime, it is
necessary to require ð1 − x2ÞFðxÞ ≥ 0. In view of the roots,
this restricts the range of the spatial coordinate to x ∈
½−1; 1� and puts the constraint 0 ≤ 2αM < 1. The coor-
dinate singularities at x ¼ �1 are the two poles (axes).
On the other hand, the admitted zeros of the function
ðy2 − 1ÞFðyÞ represent the horizons, and FðyÞ can be both
positive and negative. More arguments on this will be given
in Sec. VI, where it will also be demonstrated that the
singularity of the metric (8) at x ¼ y corresponds to
asymptotically flat conformal infinity I.

III. CHECKING THE VACUUM EQUATIONS

Next, it is desirable to verify that the metric (8) with (3),
(4), (9) is an exact solution of vacuum Einstein’s field
equations.
With trivial identification τ ≡ t, this metric clearly

belongs to the generic class of stationary axially symmetric
metrics

ds2 ¼ gttdt2 þ 2gtφdtdφþ gφφdφ2 þ gxxdx2 þ gyydy2;

ð11Þ

in which all the functions are independent of the temporal
coordinate t and angular coordinate φ. Indeed, the explicit
metric coefficients of the spacetime (8) are

gtt ¼ −
ðy2 − 1ÞFðyÞ

α2ðx − yÞ2Hðx; yÞ ;

gtφ ¼ −2λ
ðy2 − 1ÞFðyÞFðxÞð1 − 2xyþ y2Þ

α2ðx − yÞ4Hðx; yÞ ;

gφφ ¼ −4λ2
ðy2 − 1ÞFðyÞF2ðxÞð1 − 2xyþ y2Þ2

α2ðx − yÞ6Hðx; yÞ

þHðx; yÞð1 − x2ÞFðxÞ
α2ðx − yÞ2 ;

gxx ¼
Hðx; yÞ

α2ðx − yÞ2ð1 − x2ÞFðxÞ ;

gyy ¼
Hðx; yÞ

α2ðx − yÞ2ðy2 − 1ÞFðyÞ : ð12Þ
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Interestingly, the subdeterminant

D ≡ gttgφφ − g2tφ < 0; ð13Þ

turns out to be very simple, namely

D ¼ −
ð1 − x2ÞFðxÞðy2 − 1ÞFðyÞ

α4ðx − yÞ4 : ð14Þ

Using the expressions (11)–(14), we need to evaluate the
Riemann and Ricci curvature tensors. Unfortunately, stan-
dard computer algebra systems did not provide us the
results (even after several hours of calculation on a standard
desktop PC) when we attempted to perform a direct
calculation starting from (12). Therefore, we had to employ
a more sophisticated approach. Actually, we developed two
independent methods.

A. Method A

It turned out much more convenient first to analytically
derive explicit expressions for the Christoffel symbols and
subsequently the corresponding components of the curva-
ture tensors of the generic stationary axisymmetric metric
(11). These results are summarized in Appendix A.
Moreover, instead of using standard textbook definitions

of the Riemann and Ricci tensors, we employed their
alternative (and equivalent) versions (A8), (A10). The main
advantage of this approach is that the second derivatives of
the metric are all involved explicitly in the simplest possible
way. It is not necessary to differentiate the Christoffel
symbols which also contain the inverse metric and thus
their first derivatives unnecessarily complicate the evalu-
ation of the curvature.
In the second step, we then substituted the explicit metric

functions (12), (14) into the general expressions (A5), (A9),
and (A11). With a usual PC, such a symbolic-algebra
computational process using MATHEMATICA lasted only
around 40 seconds. The result of this computation con-
firmed that all the Ricci tensor components (A11) are zero.
The metric (8) is thus indeed a vacuum solution in
Einstein’s gravity theory.

B. Method B

To verify this result (and fasten the computation), we
also employed an alternative method based on the “con-
formal trick.” Its main idea is that, by multiplying the
physical metric (8) by a suitable conformal factor Ω2, the
metric components of the related unphysical metric become
polynomial expressions. Their differentiation and combi-
nation, which are necessary to evaluate the curvature
tensors, are performed much faster. Specifically, we intro-
duced an unphysical metric g̃ab via the conformal relation

g̃ab ¼ Ω2gab; ð15Þ

where

Ω2 ≡ α2ð1 − x2ÞFðxÞðy2 − 1ÞFðyÞðx − yÞ6H̃ðx; yÞ; ð16Þ
and

H̃ðx; yÞ ≡ ðx − yÞ4Hðx; yÞ ¼ ðx − yÞ4 þ λ2ðy2 − 1Þ2F2ðyÞ:
ð17Þ

The metric functions g̃ab are then only polynomials of
x and y,

g̃tt ¼ −ð1 − x2ÞFðxÞðy2 − 1Þ2F2ðyÞðx − yÞ8;
g̃tφ ¼ −2λð1 − x2ÞF2ðxÞðy2 − 1Þ2F2ðyÞ

× ð1 − 2xyþ y2Þðx − yÞ6;
g̃φφ ¼ −4λ2ð1 − x2ÞF3ðxÞðy2 − 1Þ2F2ðyÞ

× ð1 − 2xyþ y2Þ2ðx − yÞ4
þ ð1 − x2Þ2F2ðxÞðy2 − 1ÞFðyÞH̃2ðx; yÞ;

g̃xx ¼ ðy2 − 1ÞFðyÞH̃2ðx; yÞ;
g̃yy ¼ ð1 − x2ÞFðxÞH̃2ðx; yÞ: ð18Þ

Using the expressions summarized in Appendix A, we first
computed the Christoffel symbols Γ̃a

bc and the Ricci tensor
components R̃ab for this conformal metric g̃ab (it also has
the stationary axisymmetric form (11), only the tilde
symbol is added everywhere). Then we employed the
expressions (B4)–(B6) derived in Appendix B to calculate
the Ricci tensor components Rab of the physical metric gab,
which is (12). The computer algebra manipulation using
MATHEMATICA again verified that Rab ¼ 0, confirming that
the metric is a vacuum solution of Einstein’s equations. In
fact, the conformal Method B is faster than Method A: the
computation took only 15 seconds.

IV. DETERMINING THE ALGEBRAIC
TYPE OF THE SPACETIME

It is now necessary to determine the algebraic type of the
spacetime which is given by the algebraic structure of the
Weyl tensor. The standard procedure is to evaluate all its ten
components [3,9]

Ψ0 ≡ Cabcdkambkcmd;

Ψ1 ≡ Cabcdkalbkcmd;

Ψ2 ≡ Cabcdkambm̄cld;

Ψ3 ≡ Cabcdlakblcm̄d;

Ψ4 ≡ Cabcdlam̄blcm̄d; ð19Þ

in properly normalized null tetrad fk; l;m; m̄g. We adopt
the most natural tetrad for the metric (11) in the coordinates
ðt;φ; x; yÞ, namely
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k ≡
1ffiffiffi
2

p
�

1ffiffiffiffiffiffiffiffi−gtt
p ∂t þ

1ffiffiffiffiffiffigyy
p ∂y

�
;

l ≡
1ffiffiffi
2

p
�

1ffiffiffiffiffiffiffiffi−gtt
p ∂t −

1ffiffiffiffiffiffigyy
p ∂y

�
;

m ≡
1ffiffiffi
2

p
� ffiffiffiffiffi

gtt
D

r
∂φ þ

gtφffiffiffiffiffiffiffiffiffi
Dgtt

p ∂t −
iffiffiffiffiffiffi
gxx

p ∂x

�
; ð20Þ

with D given by (13). All the scalar products vanish,
except for

k · l ¼ −1; m · m̄ ¼ 1: ð21Þ

For vacuum solutions, the Ricci tensor and Ricci scalar
vanish. The Weyl tensor is thus identical to the Riemann
curvature tensor, and in expressions (19) we can replace
Cabcd by Rabcd. In view of the vanishing components of the
null tetrad vectors (20) and the vanishing components of the
Riemann tensor (A9) of the metric (11), summarized in
Appendix A, the following formulas for the Weyl scalars
can be derived

Ψ0 ¼
1

4

�
1

Dgyy

�
g2tφ
gtt

Rtyty − 2gtφRtyφy þ gttRφyφy

�
−
1

D
Rtφtφ

þ 1

gxx

�
1

gtt
Rtxtx −

1

gyy
Rxyxy

��

−
i
2

1ffiffiffiffiffiffiffi
−D

p 1ffiffiffiffiffiffiffiffiffiffiffiffigxxgyy
p

�
gtφ
gtt

Rtxty −Rtφxy −Rtxφy

�
;

Ψ1 ¼
1

2

�
1ffiffiffiffiffiffiffi

−D
p

gyy

�
Rtyφy −

gtφ
gtt

Rtyty

�
−

i
gtt

ffiffiffiffiffiffiffiffiffiffiffiffigxxgyy
p Rtxty

�
;

Ψ2 ¼
1

4

�
1

Dgyy

�
g2tφ
gtt

Rtyty − 2gtφRtyφy þ gttRφyφy

�
þ 1

D
Rtφtφ

þ 1

gxx

�
1

gtt
Rtxtx þ

1

gyy
Rxyxy

��

−
i
2

1ffiffiffiffiffiffiffi
−D

p 1ffiffiffiffiffiffiffiffiffiffiffiffigxxgyy
p

�
gtφ
gtt

Rtxty þRtφxy −Rtxφy

�
;

Ψ3 ¼ Ψ1;

Ψ4 ¼ Ψ0: ð22Þ

Notice that, interestingly, the long expressions for Ψ0 and
Ψ2 are very similar. In fact, they only differ in signs of
three terms.
Now, by substituting the explicit components (12) of the

metric and the corresponding Riemann tensor (A9) into
(22), the computer algebra system MAPLE rendered the
following Weyl scalars:

Ψ0 ¼ Ψ4 ¼ −3α2λð1 − x2ÞFðxÞðy2 − 1ÞFðyÞΞðx; yÞ;
Ψ1 ¼ Ψ3 ¼ −3α2λi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x2ÞFðxÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy2 − 1ÞFðyÞ

q

× Σðx; yÞΞðx; yÞ;
Ψ2 ¼ ½α2λΠðx; yÞ þ iα3Mðx − yÞ5�Ξðx; yÞ; ð23Þ

where the functions Ξ, Σ, and Π are defined as

Ξðx; yÞ ¼ ðH − 4Þ ffiffiffiffiffiffiffiffiffiffiffiffi
H − 1

p þ ið4 − 3HÞ
ðx − yÞ2H3

;

Σðx; yÞ ¼ xy − 1 − αMxð1 − 3y2Þ − αMyð1þ y2Þ;
Πðx; yÞ ¼ 2Σ2ðx; yÞ − ½ð1 − x2ÞFðxÞ − αMðx − yÞ3�

× ðy2 − 1ÞFðyÞ; ð24Þ

with H ≡Hðx; yÞ given by (9), and FðxÞ, FðyÞ by (3), (4).
Surprisingly, the key function Ξðx; yÞ which factorizes all
the Weyl scalars can be written in an explicit and compact
form as

Ξ ¼ iðx − yÞ4
½ðx − yÞ2 − λiðy2 − 1Þð1þ 2αMyÞ�3 : ð25Þ

From these curvature scalars, we then computed the
scalar invariants I and J, defined as

I ≡Ψ0Ψ4 − 4Ψ1Ψ3 þ 3Ψ2
2; J≡

								

Ψ0 Ψ1 Ψ2

Ψ1 Ψ2 Ψ3

Ψ2 Ψ3 Ψ4

								
; ð26Þ

and using MAPLE we verified that the equality I3 ¼ 27J2

does not hold. This means (see [3,9]) that the metric (8) is
algebraically general, that is of type I.
Consequently, the accelerating NUT metric (8) cannot

be included in the Plebański–Demiański family because
this is of algebraic type D.
Of course, this conclusion is only valid when λ ≠ 0.

In the case of vanishing λ, implying H ¼ 1 and thus
Ξ ¼ i=ðx − yÞ2, the only nontrivial Weyl scalar remains
Ψ2 ¼ −Mα3ðx − yÞ3. Such spacetime is of algebraic type
D, with double degenerate principal null directions k and l.
In fact, it is the C-metric (10) which belongs to the
Plebański–Demiański class.
Deeper analysis of the algebraic structure will be

presented in Secs. VI B and VI C.

A. The principal null directions

Actually, it is possible to determine four principal null
directions (PNDs) of the Weyl tensor, and to prove
explicitly that they are all distinct.
As usual [3,9], we employ the dependence of the Weyl

scalars (19) on the choice of the null tetrad, namely their
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transformation properties under a null rotation which keeps
l fixed,

k0 ¼ kþ Km̄þ K̄mþ KK̄l; l0 ¼ l; m0 ¼ mþ Kl;

ð27Þ

where K is a complex parameter. The component Ψ0 then
transforms to

Ψ0
0 ¼ Ψ0 þ 4KΨ1 þ 6K2Ψ2 þ 4K3Ψ3 þ K4Ψ4: ð28Þ

The condition for k0 to be a principal null direction is
Ψ0

0 ¼ 0, which is equivalent

Ψ0 þ 4KΨ1 þ 6K2Ψ2 þ 4K3Ψ3 þ K4Ψ4 ¼ 0: ð29Þ

Since this is a quartic expression in K, there are exactly
four complex roots Ki (i ¼ 1, 2, 3, 4) to this equation. Each
Ki corresponds via (27) to the principal null direction k0i.
In the case of the metric (8), theWeyl scalars with respect

to the null tetrad (20) are (23). Due to the special property
Ψ4 ¼ Ψ0 and Ψ3 ¼ Ψ1, the key algebraic equation (29)
simplifies to

Ψ0

�
K2 þ 1

K2

�
þ 4Ψ1

�
K þ 1

K

�
þ 6Ψ2 ¼ 0; ð30Þ

(K must be nonvanishing in (29) because Ψ0 ≠ 0). It is
convenient to introduce a new parameter

κ ≡ K þ 1

K
; ð31Þ

so that (30) reduces to the quadratic equation in κ,

Ψ0κ
2 þ 4Ψ1κ þ 2ð3Ψ2 −Ψ0Þ ¼ 0; ð32Þ

with two solutions

κ1;2 ¼
−2Ψ1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Ψ2

1 − 2Ψ0ð3Ψ2 −Ψ0Þ
p

Ψ0

: ð33Þ

Finally, we find the roots Ki by solving (31), that is the
quadratic equation K2 − κK þ 1 ¼ 0:

Ki ¼
κ �

ffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − 4

p

2
; ð34Þ

where κ ¼ κ1 and κ ¼ κ2. Indeed, we have thus obtained
four explicit complex roots Ki corresponding to four
distinct PNDs k0i, which can be expressed using (27).

V. A NEW CONVENIENT FORM OF THE METRIC

The metric (2) can be put in an alternative form which is
suitable for its physical interpretation, in particular for

determining the meaning of its three free parameters. This
is achieved by performing the coordinate transformation

x ¼ − cos θ; y ¼ −
1

αðr − r−Þ
; t̄ ¼ rþ − r−

2αlc
t:

ð35Þ

We introduce the NUT parameter l as

l ≡ λrþ ¼
ffiffiffi
δ

p

α2
rþ; ð36Þ

using the definition (7), and a new real mass parameter m
via the relation

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − l2

p
: ð37Þ

Specific combinations of m and l can conveniently be
defined and denoted as

rþ ≡mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
;

r− ≡m −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
; ð38Þ

so that rþ is always positive while r− is always negative.
Actually, it will soon be seen that these constants describe
the location of two Taub–NUT horizons. From these
definitions, important identities immediately follow,
namely

rþ þ r− ¼ 2m;

rþ − r− ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
¼ 2M ≥ 0;

rþr− ¼ −l2;

rþðrþ − r−Þ ¼ r2þ þ l2: ð39Þ

The original metric (2) with (3)–(5) then becomes

ds̄2 ¼ 1

Ω2

�
−
ðrþ − r−Þ2

2r2þ
ð1 − α2ðr − r−Þ2Þ

FðyÞ
Hðx; yÞ

×

�
dt − 2l

�
cos θ − α

ðr − r−Þ2FðxÞsin2θ
ðrþ − r−ÞΩ2

�
dφ

�
2

þ 1

2
ðr − r−Þ2Hðx; yÞ

×

�
dr2

FðyÞðr − r−Þ2ð1 − α2ðr − r−Þ2Þ

þ dθ2

FðxÞ þ FðxÞsin2θdφ2

��
; ð40Þ

where Ω ≡ 1 − αðr − r−Þ cos θ. Of course, the metric func-
tions FðxÞ, FðyÞ, and Hðx; yÞ ≡ 2H̄, given by (3), (4), and
(9), respectively, must be expressed in terms of the new
coordinates r and θ. It is useful to relabel them as

JIŘÍ PODOLSKÝ and ADAM VRÁTNÝ PHYS. REV. D 102, 084024 (2020)

084024-6

Paper 1, Phys. Rev. D 102, 084024 (2020)
Accelerating NUT black holes

48



FðxÞ → PðθÞ ¼ 1 − αðrþ − r−Þ cos θ;
FðyÞ → FðrÞ ¼ r − rþ

r − r−
;

Hðx; yÞ → Hðr; θÞ ¼ 1þ l2

r2þ

ðr − rþÞ2
ðr − r−Þ2

×
½1 − α2ðr − r−Þ2�2

½1 − αðr − r−Þ cos θ�4
: ð41Þ

Notice that H is always positive. Finally, it is natural to
introduce two new functions replacing FðrÞ and Hðr; θÞ,
namely

QðrÞ ≡ FðrÞðr − r−Þ2ð1 − α2ðr − r−Þ2Þ;
R2ðr; θÞ ≡ rþ

rþ − r−
ðr − r−Þ2Hðr; θÞ; ð42Þ

and to perform a trivial rescaling of the whole metric by a
constant conformal factor as

ds2 ≡
2rþ

rþ − r−
ds̄2: ð43Þ

Thus, the exact solution found in [10] simplifies consid-
erably to a new convenient form of the metric

ds2 ¼ 1

Ω2

�
−

Q
R2

�
dt − 2lðcos θ − αT sin2θÞdφ

�
2

þR2

Q
dr2 þR2

�
dθ2

P
þ Psin2θdφ2

��
; ð44Þ

where

Ωðr;θÞ ¼ 1− αðr− r−Þ cosθ;
PðθÞ ¼ 1− αðrþ − r−Þ cosθ;
QðrÞ ¼ ðr− rþÞðr− r−Þð1− αðr− r−ÞÞð1þ αðr− r−ÞÞ;

T ðr;θÞ ¼ ðr− r−Þ2P
ðrþ − r−ÞΩ2

;

R2ðr;θÞ ¼ 1

r2þ þ l2

�
r2þðr− r−Þ2 þ l2ðr− rþÞ2

×
½1− α2ðr− r−Þ2�2

½1− αðr− r−Þcosθ�4
�
: ð45Þ

This new metric form can be used for investigation of
geometric properties of the spacetime and for its physical
interpretation. It explicitly contains 3 free parameters,
namely m, l and α [the first two uniquely determining
the constants rþ and r− via the relations (38)]. They can
independently be set to any value. In particular, it is
possible to set them to zero, thus immediately obtaining
important special subclasses of the spacetime metric (44).
This is the main advantage of (44) if compared to the
original form (2) in which, in particular, it is not possible to

set α ¼ 0, and also the NUT parameter is not explicitly
identified.
Let us now investigate the spacetime, based on the new

form of its metric (44), (45).

A. The case l = 0: The C-metric
(accelerating black holes)

For l ¼ 0 the constants (38) become

rþ ¼ 2m; r− ¼ 0; ð46Þ

so that the metric functions (45) reduce considerably to

Ωðr; θÞ ¼ 1 − αr cos θ;

PðθÞ ¼ 1 − 2αm cos θ;

QðrÞ ¼ rðr − 2mÞð1 − αrÞð1þ αrÞ;
R2ðr; θÞ ¼ r2: ð47Þ

The metric (44) thus simplifies to a diagonal line element

ds2 ¼ 1

ð1 − αr cos θÞ2

×

�
−Qdt2 þ dr2

Q
þ r2

�
dθ2

P
þ Psin2θdφ2

��
; ð48Þ

where

P ¼ 1 − 2αm cos θ;

Q ≡
Q
R2

¼
�
1 −

2m
r

�
ð1 − αrÞð1þ αrÞ: ð49Þ

This is exactly the C-metric expressed in spherical-type
coordinates, see Eqs. (14.6) and (14.7) in [9]. As has been
thoroughly described in Ch. 14 of [9], this metric represents
the spacetime with a pair of Schwarzschild-like black holes
of mass m which uniformly accelerate due to the tension of
cosmic strings (or struts) located along the half-axes of
symmetry at θ ¼ 0 and/or θ ¼ π. Their acceleration is
determined by the parameter α. This gives the physical
interpretation to the two constant parameters of the solution.

B. The case α= 0: The Taub–NUT metric
(twisting black holes)

Complementarily, it is possible to directly set α ¼ 0 in
the metric (44). In such a case the functions (45), using the
identities (39), reduce to simple quadratics

Ωðr; θÞ ¼ 1;

PðθÞ ¼ 1;

QðrÞ ¼ ðr − rþÞðr − r−Þ ≡ r2 − 2mr − l2;

R2ðr; θÞ ¼ r2 þ l2: ð50Þ
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The metric (44) remains nondiagonal, but has a compact
explicit form

ds2 ¼ −fðdt − 2l cos θdφÞ2 þ dr2

f

þ ðr2 þ l2Þðdθ2 þ sin2 θdφ2Þ; ð51Þ
where

f ≡
Q
R2

¼ r2 − 2mr − l2

r2 þ l2
: ð52Þ

It is exactly the standard Taub-NUT metric, see Eqs. (12.1)
and (12.2) in [9]. As summarized in Ch. 12 of [9], this
metric is interpreted as a spacetime with black hole of mass
m and NUT twist parameter l. There are horizons located at
r ¼ rþ and r ¼ r−, but there is no curvature singularity at
r ¼ 0. Whenever the NUT parameter l is nonvanishing,
there is an internal twist in the geometry, related to spinning
cosmic strings located along the axes θ ¼ 0 and/or θ ¼ π.
In the vicinity of these “torsion singularities” there appear
closed timelike curves.

C. The case α= 0 and l = 0: Schwarzschild black hole

By simultaneously setting both the acceleration α and the
NUT parameter l to zero, we immediately obtain the
standard spherically symmetric metric

ds2 ¼ −
�
1 −

2m
r

�
dt2 þ

�
1 −

2m
r

�
−1
dr2

þ r2ðdθ2 þ sin2θdφ2Þ: ð53Þ
As is well known (see, e.g., Ch. 8 of [9]), it represents the
spherically symmetric Schwarzschild black hole of mass m
in asymptotically flat space. There is no acceleration and no
twist, the axes are regular (there are no cosmic strings,
struts, or torsion singularities).

D. The case α= 0 and l = 0 and m= 0:
Minkowski flat space

By setting α ¼ 0 ¼ m in (48), (49) which implies
P ¼ 1 ¼ Q, or by setting l ¼ 0 ¼ m in (51), (52) which
implies f ¼ 1, or by setting m ¼ 0 in (53), we obtain

ds2 ¼ −dt2 þ dr2 þ r2ðdθ2 þ sin2 θdφ2Þ: ð54Þ
This is obviously the flat metric in spherical coordinates
(Eq. (3.2) in [9]).
Since all such subcases are directly obtained as special

cases, it is indeed natural to interpret the general metric
(44), (45) as a three-parameter family of exact spacetimes
with uniformly accelerating black holes with the twist NUT
parameter.
The structure of the new family of spacetimes which

represent accelerating NUT black holes is shown in Fig. 1.
Previously known spacetimes are obtained in their classic

form by simply setting the acceleration α, the NUT
parameter l, or the mass m to zero. With these settings,
algebraically general solution of Einstein’s vacuum equa-
tions reduces to type D.

VI. PHYSICAL INTERPRETATION OF
THE NEW METRIC FORM

A. Position of the horizons

The metric (44) is very convenient for investigation of
horizons. In these coordinates, ∂t is one of the Killing vectors
(the second is ∂φ). Its norm is −Q=ðΩRÞ2, so that t is a
temporal coordinate in the regionswhereQðrÞ > 0,while it is
a spatial coordinate in the regions where QðrÞ < 0. These
regions are separated by the Killing horizons localized at
QðrÞ ¼ 0. The formof themetric functionQ is given by (45),
which is clearly a quartic factorized into four roots. There are
thus four Killing horizons, located at

Hþ
b ∶ r ¼ rþb ≡ rþ > 0;

H−
b∶ r ¼ r−b ≡ r− < 0;

Hþ
a ∶ r ¼ rþa ≡ r− þ α−1;

H−
a∶ r ¼ r−a ≡ r− − α−1; ð55Þ

FIG. 1. Schematic structure of the complete family of accel-
erating black holes with a NUT parameter. This 3-parameter class
of vacuum solutions to Einstein’s field equations is of general
algebraic type I, reducing to double degenerate type D whenever
the acceleration α or the NUT parameter l (or both) vanish. By
setting any of the three independent parameters α, l,m to zero, the
well-known classes (namely the NUT solution, the C-metric,
Schwarzschild black hole and Minkowski flat space) are obtained
directly in their usual forms, whose equation numbers are also
indicated in the diagram.
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(see Fig. 4)where r� are defined by (38). Recall also (39), that
is rþ − r− ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
> 0 (unless m ¼ 0 ¼ l, in which

case rþ ¼ 0 ¼ r−).
The horizons Hþ

b ;H
−
b at rþb ; r

−
b are two black-hole

horizons. Interestingly, they are located at the same values
rþ; r− of the radial coordinate r as the two horizons in the
standard (nonaccelerating) Taub–NUT metric, see (50).
The horizons Hþ

a ;H−
a at rþa ; r−a are two acceleration

horizons. Their presence is the consequence of the fact that
the black hole accelerates whenever the parameter α is
nonzero. They generalize the acceleration horizons
þα−1;−α−1 present in the C-metric, see (49).
These pairs of roots are clearly ordered as rþb > r−b and

rþa > r−a (naturally assuming that the acceleration param-
eter α is positive). Their mutual relations, however, depend
on the specific values of the three physical parameters m, l,
α. Concentrating on the physically most plausible case
when the acceleration is small, the value of α−1 is very
large, and rþa becomes bigger than rþb . This condition
rþa > rþb explicitly reads

α <
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p : ð56Þ

For such a small acceleration of the black hole, the ordering
of its four horizons is

r−a < r−b < 0 < rþb < rþa : ð57Þ

The first two horizons H−
a and H−

b (acceleration and
black-hole, respectively) are in the region r < 0, while the
remaining two horizons Hþ

b and Hþ
a (black-hole and

acceleration, respectively) are in the region r > 0. Such
a situation can be naturally understood as the Taub-NUT
spacetime with usual two “inner” black hole horizons H�

b ,
which are here surrounded by two additional “outer”
acceleration horizons H�

a (one in the region r > 0 and
the second in the region r < 0).
Evaluating QðrÞ, generally given by (45), at r ¼ 0 we

obtain using (39)

Qðr ¼ 0Þ ¼ rþr−ð1 − α2r2−Þ ¼ −l2ð1 − α2r2−Þ: ð58Þ

From the condition (56) and (38) it follows that

1 − α2r2− >
2m2 þ 3l2 þ 2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p

4ðm2 þ l2Þ > 0; ð59Þ

so that Qðr ¼ 0Þ < 0. It implies Q < 0 for any
r ∈ ðr−b ; rþb Þ. We conclude that the coordinate t is temporal
in the regions ðrþb ; rþa Þ and ðr−a ; r−b Þ, that is between the
black-hole and acceleration horizons, while it is spatial in
the complementary three regions of the radial coordinate r.

Moreover, when the condition (56) is satisfied, the metric
coefficient PðθÞ in (44) is always positive. Indeed,

Pmin ¼ Pðθ ¼ 0Þ ¼ 1 − αðrþ − r−Þ
¼ 1 − 2α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
> 0: ð60Þ

Of course, for other choices of the physical parameters,
different number and different ordering of the horizons can
be achieved. They also may coincide, thus becoming
degenerate horizons. In particular, in the limit of vanishing
acceleration α → 0, the two outer acceleration horizons
disappear (formally via the limits rþa → þ∞, r−a → −∞),
and only two Taub-NUT black hole horizons Hþ

b ;H
−
b

remain. On the other hand, for vanishing NUT parameter
l → 0, one of the black-hole horizon disappears (formally
via the limit r−b ≡ r− → 0), while the second becomes
rþb ≡ rþ → 2m. There is just one black-hole horizon at
2m surrounded by two acceleration horizons located at
�α−1, which is exactly the case of the C-metric with a
curvature singularity at r ¼ 0.

B. Curvature of the spacetime, algebraic structure,
and regularity

1. The Weyl scalars

We now employ the Weyl scalarsΨA given by (23), (24),
(25) to discuss the algebraic properties of the spacetime,
including the subcases l ¼ 0 and α ¼ 0, the location of
physical curvature singularities and its global structure.
These scalars correspond to the metric (8) with coor-

dinates x, y, and it is thus natural to denote them as ΨðxyÞ
A .

It will also be convenient to express these curvature scalars

as ΨðrθÞ
A for the metric form (44) with coordinates r, θ.

Using the transformation (35) and definitions (41), (42)
we immediately derive α2ð1 − x2ÞFðxÞðy2 − 1ÞFðyÞ ¼
PQðr − r−Þ−4 sin2 θ, with P ¼ PðθÞ and Q ¼ QðrÞ given
by (45), and similarly we express the functions Ξ, Σ, andΠ.
However, it is also necessary to properly rescale the scalars

ΨðxyÞ
A given by (23) to get ΨðrθÞ

A because the metrics (8) and
(44) are not the same: They are related by a constant
conformal factor,

gðrθÞab ¼ ω2gðxyÞab ; where ω2 ¼ rþ
rþ − r−

: ð61Þ

Indeed, gðxyÞab ¼ 2ḡab while g
ðrθÞ
ab ¼ 2

rþ
rþ−r−

ḡab, see (43). The

corresponding Weyl tensor components are related as

CðrθÞ
abcd ¼ ω2CðxyÞ

abcd, see [11]. The null tetrad (20) also needs
to be rescaled in such a way that it remains properly
normalized in the coordinates r, θ as (21). This requires
kðrθÞ ¼ ω−1kðxyÞ, lðrθÞ ¼ ω−1lðxyÞ, mðrθÞ ¼ ω−1mðxyÞ. In
view of (19), we obtain the relation
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ΨðrθÞ
A ¼ ω−2ΨðxyÞ

A : ð62Þ

Using (23)–(25) and (61)–(62), we thus calculate the Weyl
curvature scalars for the metric (44) with respect to the null
tetrad

kðrθÞ ¼ 1ffiffiffi
2

p Ω
�

Rffiffiffiffi
Q

p ∂t þ
ffiffiffiffi
Q

p

R
∂r

�
;

lðrθÞ ¼ 1ffiffiffi
2

p Ω
�

Rffiffiffiffi
Q

p ∂t −
ffiffiffiffi
Q

p
R

∂r

�
;

mðrθÞ ¼ 1ffiffiffi
2

p Ω
R

ffiffiffiffi
P

p
sin θ

ð∂φ þ 2lðcos θ − αT sin2 θÞ∂t

− iP sin θ∂θÞ: ð63Þ

It turns out that

ΨðrθÞ
0 ¼ ΨðrθÞ

4 ¼ −3iα2lPQðr − r−Þsin2θX;
ΨðrθÞ

1 ¼ ΨðrθÞ
3 ¼ 3αl

ffiffiffiffiffiffiffiffi
PQ

p
sin θSX;

ΨðrθÞ
2 ¼ ½−rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
Ω5 þ ilW=ðr − r−Þ�X; ð64Þ

where

Xðr; θÞ ¼ ðr2þ þ l2Þðr − r−Þ3Ω4

½rþðr − r−Þ2Ω2 − ilQ�3 ;

Sðr; θÞ ¼ ð1 − α2ðr − r−Þ2Þðr − rþÞ
− ½ðr − rþÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
ð1 − α2ðr − r−Þ2Þ�Ω;

Wðr; θÞ ¼ 2S2 þ ð1 − α2ðr − r−Þ2Þðr − rþÞ
× ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
Ω3 − α2ðr − r−Þ3Psin2θ�: ð65Þ

These functions are related to (24) via

X ≡
−iðrþ − r−Þ
α2r2þðr − r−Þ5

Ξ; S ≡ α2ðr − r−Þ3Σ;

W ≡ α4ðr − r−Þ6Π; ð66Þ

and Ω ¼ Ωðr; θÞ, P ¼ PðθÞ, and Q ¼ QðrÞ are given
by (45).
As we have already argued in Sec. IV, this class of

spacetimes with accelerating Taub–NUT black hole is
generically of type I, i.e., it is algebraically general.
However, it may degenerate. When either α ¼ 0 or
l ¼ 0, the only nontrivial curvature component is given by

ΨðrθÞ
2 ¼ ½−rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
Ω5 þ ilW=ðr − r−Þ�X: ð67Þ

Such spacetimes are clearly of algebraic type D, with two
double-degenerate principal null directions kðrθÞ and lðrθÞ of
the Weyl/Riemann tensor.

This is fully consistent with the fact that the case l ¼ 0

(implying rþ ¼ 2m, r− ¼ 0, see (46), and X ¼ ðrþr3Ω2Þ−1)
corresponds to the type D accelerating C-metric, for which

ΨðrθÞ
2 ¼ −

m
r3
ð1 − αr cos θÞ3; ð68Þ

see Ch. 14 in [9].
The complementary case α ¼ 0, which cannot be

directly obtained from ΨðxyÞ
A given by (23), corresponds

to the type D twisting Taub–NUT metric. It follows
from (50) that in such a case Ω ¼ 1 and QðrÞ ¼
ðr − rþÞðr − r−Þ. With the help of relation (39) we thus get

X ¼ r2þ þ l2

½rþðr − r−Þ − ilðr − rþÞ�3
¼ ðrþ − ilÞðrþ þ ilÞ

ðrþ − ilÞ3ðrþ ilÞ3 ;

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
; W ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
ðr − r−Þ; ð69Þ

so that

ΨðrθÞ
2 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
ðrþ − ilÞX ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p

rþ − il
rþ þ il
ðrþ ilÞ3

¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p

r2þ þ l2
ðrþ þ ilÞ2
ðrþ ilÞ3 : ð70Þ

Applying the identities

r2þ þ l2 ¼ rþðrþ − r−Þ ¼ 2rþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
; and

ðrþ þ ilÞ2 ¼ 2rþðmþ ilÞ; ð71Þ

we finally obtain

ΨðrθÞ
2 ¼ −

mþ il
ðrþ ilÞ3 ; ð72Þ

which is the standard form of the scalar Ψ2 for the Taub–
NUT spacetime, see Ch. 12 in [9].

2. Algebraic type and regularity of the horizons

It can be immediately observed from (64) that on the
horizons (55), defined by Q ¼ 0, all the Weyl scalars
vanish except

ΨðrθÞ
2 ðat any horizon rhÞ

¼ −
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p

r2þðrh − r−Þ3
�
rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
Ω3 − il

W
ðrh − r−ÞΩ2

�
:

ð73Þ

Therefore, all horizons are of algebraic type D. This is true
in a generic case with any acceleration α and any NUT
parameter l. Moreover, at these horizons the spacetime is
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regular, that is free of curvature singularities. This can be
proved as follows:

(i) At the acceleration horizons rþa ; r−a , the values are
rh − r− ¼ �α−1, so that ΩðrhÞ ¼ 1 ∓ cos θ and
WðrhÞ ¼ 2α−2ð1 ∓ 2α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
Þ2Ω2, implying

ΨðrθÞ
2 ðH�

a Þ ¼ 2α2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p

r2þ

× ½∓ αrþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
ð1 ∓ cos θÞ3

þ 2ilð1 ∓ 2α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
Þ2�: ð74Þ

(ii) At the positive black hole horizon rþb ≡ rþ > 0, the
value of the factor is rh − r− ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
, so

that ΩðrhÞ¼ 1– 2α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þ l2

p
cosθ¼P, WðrhÞ ¼

2ðm2 þ l2Þð1 − 4α2ðm2 þ l2ÞÞ2Ω2. Thus,

ΨðrθÞ
2 ðHþ

b Þ ¼ −
1

4r2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p

× ½rþð1 − 2α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
cos θÞ3

− ilð1 − 4α2ðm2 þ l2ÞÞ2�: ð75Þ

(iii) At the negative black hole horizon r−b ≡ r− < 0,
the expression (73) seems to diverge. However,
a careful analysis of the limit r → r− of (67)
shows, using X → irþð4l3ðm2 þ l2ÞÞ−1, Ω → 1

and W=ðrh−r−Þ→
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þl2

p
ð1−6α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þl2

p
cosθÞ

that

ΨðrθÞ
2 ðH−

b Þ ¼ −
rþ

4l3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p

× ½lð1 − 6α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
cos θÞ þ irþ�:

ð76Þ

The expressions (74)–(76) explicitly demonstrate
that at any horizon the gravitational field is finite,
without the curvature singularities.

3. Algebraic type of the axes and principal
null directions

Similarly, along both the axes θ ¼ 0 and θ ¼ π the

function sin θ vanishes, which implies that ΨðrθÞ
0 ¼ ΨðrθÞ

1 ¼
0 ¼ ΨðrθÞ

3 ¼ ΨðrθÞ
4 . This proves that the algebraic structure

of the spacetime on these axes is also of type D, with the
only curvature component (67).
Finally, let us comment on the principal null directions

(PNDs) of the curvature tensor introduced in Sec. IVA.
Using the Weyl scalars (64) we can express the key
discriminant of the equation (33) as

D ≡ 4Ψ2
1 − 2Ψ0ð3Ψ2 −Ψ0Þ

¼ −18α2l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
PQ sin2 θΩ3X2Y; ð77Þ

where Yðr;θÞ¼ lð1−α2ðr−r−Þ2Þðr−rþÞþ irþðr−r−ÞΩ2.
Therefore, thereare ingeneral twodistinctrootsκ1,κ2 of(33),
andsubsequently thereare fourdistinct rootsKi of (34).They
correspond to four distinct PNDs of the Weyl tensor, con-
firming that the metric (44) is of algebraically general type I.
However, if (and only if) α ¼ 0 or l ¼ 0, the discriminant

(77) everywhere vanishes and there is only one double
root κ of (33). In such cases, there are just two roots

K1;2 ¼
κ �

ffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − 4

p

2
; ð78Þ

corresponding to two doubly degenerate PNDs k01;2 of
type D spacetimes (the Taub–NUTmetric and theC-metric,
respectively). In particular, in this limit K1 → 0 and
K2 → ∞ which effectively corresponds to PND kðrθÞ and
PND lðrθÞ given by (63).

C. Curvature singularities and invariants

1. Investigation of possible singularities

The Weyl scalars ΨðxyÞ
A given by (23)–(25), or their

equivalent forms ΨðrθÞ
A given by (64)–(65), can be used to

study curvature singularities in the family of accelerating
NUT black holes.
By inspection we observe that all functions entering

these scalars are bounded2 except the function Xðr; θÞ, or
equivalently Ξðx; yÞ, whose denominator can be zero. This
key function appears as a joint factor in all the Weyl scalars
(64). Regions of spacetime where Xðr; θÞ → ∞ thus clearly
indicate the possible presence of a physical singularity. In
view of (65), such a curvature singularity corresponds to
the vanishing denominator of X (provided its numerator
remains nonzero), that is

rþðr − r−Þ2Ω2 − ilQ ¼ 0: ð79Þ

Both the real and imaginary parts must vanish. Since
rþ ¼ mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
> 0, Ω is everywhere a positive

conformal factor, and Q ¼ 0 identifies regular horizons
(as shown in previous section), the only possibility is when

l ¼ 0 and at the same time r ¼ r− ¼ 0; ð80Þ

where in the last equality we applied the relation r− ≡m −ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
for l ¼ 0. The curvature singularity thus appears

only in the C-metric spacetime at the origin r ¼ 0. All other

2As will be demonstrated in Sec. VI D, a possible divergence
for r → ∞ corresponds to asymptotically flat regions.
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spacetimes in the large class of accelerating NUT black
holes are nonsingular. The presence of the NUT parameter
l (even a very small one) thus makes the spacetime regular.
This property is well known for classic Taub–NUT space-
time (see Ch. 12 in [9]), and the same property holds also in
this new class of accelerating NUT black holes.
Consequently, to describe the complete spacetime mani-
fold, it is necessary to consider the full range of the radial
coordinate r ∈ ð−∞;þ∞Þ.
To confirm these observations, we employ the scalar

curvature invariant I defined in (26). Introducing a
convenient new function Δ, defined as

Δ ≡ Ψ2 −Ψ0; ð81Þ
and using the special geometrical property of the spacetime
Ψ0 ¼ Ψ4 and Ψ1 ¼ Ψ3, this invariant is simplified to

I ¼ Ψ2
0 − 4Ψ2

1 þ 3Ψ2
2 ¼ 3Δ2 −D; ð82Þ

where the discriminant D is given by (77). Explicit
evaluation now leads to

I ¼ 3

�
r2þðm2 þ l2ÞΩ10

− 12α2l2PQsin2θS2 − 3α4l2ðr − r−Þ2P2Q2sin4θ

− l2W2=ðr − r−Þ2 − 2ilrþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
Ω5W=ðr − r−Þ

�
X2:

ð83Þ

Since (as already argued) even the function W=ðr − r−Þ is
finite at the black hole horizon r−b ≡ r−, the scalar curvature
invariant I becomes unbounded only if the function
X diverges. This happens if, and only if, both the conditions
(80) hold.
Recall also that the real part of the invariant I is

proportional to the Kretschmann scalar,

K ≡ RabcdRabcd ¼ 16ReðIÞ; ð84Þ

which can thus be evaluated as

K ¼ 48fReðΨ2
2Þ − 3α2l2PQsin2θ

½4S2 þ α2ðr − r−Þ2PQsin2θ�ReðX2Þg: ð85Þ

In this form it is explicitly seen that the Kretschmann scalar
for the C-metric or the Taub–NUT black hole is simply
obtained by setting l ¼ 0 or α ¼ 0, respectively. In both
cases, it leads to

Kl or α→0 ¼ 48ReðΨ2
2Þ; ð86Þ

where Ψ2 is given by (68) or (72), in full agreement with
[12,13]. Interestingly, K ¼ 48ReðΨ2

2Þ also on the horizons
(55) where Q ¼ 0, and on the axes θ ¼ 0; π where
sin θ ¼ 0.
In the general case of accelerating NUT back holes, the

Kretschmann curvature scalar K is given by expression
(85). This explicit but somewhat complicated function of

0

2

r r

15 10 5 5 10 15 20
r

0.6

0.4

0.2

0.2

0.4

0.6

FIG. 2. The value of the Kretschmann curvature scalar (85) plotted as the function KðrÞ, where r is the radial coordinate, for θ ¼ 0, π
2
,

and π. The black-hole parameters are m ¼ 8, l ¼ 5, and α ¼ 0.025.
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FIG. 3. The Kretschmann curvature scalar (85) visualized in quasipolar coordinates as Kðx; yÞ, where x ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ l2

p
sin θ,

y ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ l2

p
cos θ, so that r ¼ 0 is a circle of radius l. The left column corresponds to r ≥ 0, while the right column represents

r < 0. The first row plots the Kretchmann scalar for the accelerating NUT black hole with m ¼ 8, l ¼ 5 and α ¼ 0.025. It can be seen
that the curvature is everywhere finite, even in the vicinity of r ¼ 0, and it smoothly continues across r ¼ 0 from r > 0 to r < 0.
The second and third rows correspond to special cases of this metric, namely the Taub–NUT metric (with m ¼ 8, l ¼ 5, α ¼ 0) and the
C-metric (withm ¼ 8, l ¼ 0, α ¼ 0.025). The Taub–NUT metric has no divergence ofK, which is independent of θ. On the other hand,
the C-metric becomes singular as r → 0, that is at x ¼ 0 ¼ y (therefore we plot only the region r ≥ 0). The two separate cosmic strings
along the axes θ ¼ 0 and θ ¼ π are indicated as dashed curves.
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the coordinates r and θ is visualized in the two illustrative
figures.
In Fig. 2 we plot the Kretschmann scalar KðrÞ as a

function of the radial coordinate r for three fixed privileged
values of θ, namely θ ¼ 0, θ ¼ π

2
and θ ¼ π. In fact, we will

argue later that the two poles/axes at θ ¼ 0 and π
correspond to the position of (rotating) cosmic strings,
while θ ¼ π

2
is the equatorial section “perpendicular” to

them. It can be seen that for each θ there are several local
maxima and local minima. Half of these extremes are in the
region r > 0, the remaining are located in the region r < 0.
The curvature is everywhere finite, and its maximal values
are localized close to the origin r ¼ 0 inside the black hole,
that is within the shaded region r ∈ ðr−; rþÞ ≡ ðr−b ; rþb Þ.
In Fig. 3 we include the angular dependence on θ. The

left column corresponds to the region r ≥ 0, while the right
column represents the region r < 0. The first row plots the
Kretchmann scalar Kðr; θÞ for the accelerating NUT black
hole (with m ¼ 8, l ¼ 5, α ¼ 0.025), the second and third
rows correspond to special cases of this metric, namely the
Taub–NUT metric (m ¼ 8, l ¼ 5, α ¼ 0) and the C-metric
(m ¼ 8, l ¼ 0, α ¼ 0.025). From these visualizations of the
Kretschmann curvature scalar it is seen that the dependence
on both r and θ is smooth, and the curvature is everywhere
finite, except for the C-metric at r ¼ 0, in full agreement
with the condition (80). The two distinct cosmic strings
located on the axes θ ¼ 0 and θ ¼ π, respectively, are
indicated as dashed curves.

2. Scalar invariants and algebraic types

Let us conclude this part by returning to the scalar
curvature invariants I and J. We can express J, defined in
(26), in terms of the discriminant D and the function Δ as

J ¼ 1

2
ΔðD − 2Δ2Þ: ð87Þ

Using (82), the key expression I3 − 27J2 thus takes the
compact form

I3 − 27J2 ¼ 1

4
ð9Δ2 − 4DÞD2; ð88Þ

which is explicitly

I3 − 27J2 ¼ 9

4

�
ðrþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
Ω5 − il½W=ðr − r−Þ

− α2PQðr − r−Þsin2θ�Þ2

− 16α2l2PQsin2θS2
�
D2X2: ð89Þ

According to standard classification scheme for determin-
ing the algebraic type (see, e.g., page 122 of [3]), the
spacetime is of a general algebraic type I if (and only if)

I3 ≠ 27J2. This is clearly the generic case of (89), con-
firming the results of Sec. IV. Only for D ¼ 0 (or X ¼ 0
which is, however, a subcase of D ¼ 0), the spacetime
degenerates and becomes algebraically special. In particu-
lar, it follows from (77) that D ¼ 0 whenever α ¼ 0 or
l ¼ 0, and such spacetimes are actually of type D every-
where, as we have already demonstrated in previous
sections.
Zeros of the big square bracket in (89) identify alge-

braically more special regions in a given spacetime. It
requires

W ¼ α2PQðr − r−Þ2sin2θ and

rþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
Ω5 ¼ �4αl

ffiffiffiffiffiffiffiffi
PQ

p
sin θS: ð90Þ

Clearly, this can happen only for the generic case of
accelerating NUT black holes with α ≠ 0 ≠ l. It is inter-
esting to observe from (64) that these two conditions imply

Ψ2 ¼ −
1

3
ðΨ0 � 4Ψ1Þ; ð91Þ

and thus D ¼ 4ðΨ0 �Ψ1Þ2 and Δ ¼ − 4
3
ðΨ0 � Ψ1Þ, which

now implies a specific relation D ¼ 9
4
Δ2. In such degen-

erate regions, the scalar curvature invariants take the form

I ¼ 3

4
Δ2; J ¼ 1

8
Δ3; and further

K ¼ 9

8
Ψ1Δ2; L ¼ 1

4
ðΨ0 � 3Ψ1ÞΔ

⇒ N ¼ 9

4
Ψ1ð3Ψ1 � 2Ψ0ÞΔ2; ð92Þ

confirming I3 ¼ 27J2. Therefore, using the classification
scheme, as summarized in [3], forΔ ¼ 0 ⇔ Ψ0 ¼ ∓Ψ1 the
region is of algebraic type N (because I ¼ J ¼ 0 ¼
K ¼ L), while for Δ ≠ 0 it is of type II. It degenerates
to algebraic type D if, and only if, Ψ1 ¼ 0 ≠ Ψ0 (because
I ≠ 0 ≠ J but K ¼ 0 ¼ N).

D. Description of the conformal infinity I�
and global structure

The coordinates employed in (44) are comoving in the
sense that they are adapted to the accelerating black holes.
This is clearly seen from the fixed position of the
geometrically unique horizons which are still at the same
values (55) of the radial coordinate r, despite the fact that
the black hole moves. This has many advantages, and
greatly simplifies physical and geometrical analysis of the
spacetime. However, as thoroughly discussed in the simpler
case of the C-metric (when l ¼ 0) in [9], such accelerating
comoving coordinates cannot naturally cover the whole
conformal infinity I (scri).
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1. Asymptotically flat regions

From the Weyl scalars (64), (65) it follows that asymp-
totically flat regions without any curvature, locally resem-
bling the null infinity I of Minkowski space, are reached
for Xðr; θÞ → 0. It occurs in the vicinity of Ω ≡ 1−
αðr − r−Þ cos θ ¼ 0, that is for r→ r−þ1=ðαcosθÞ. This
corresponds to the largest possible finite positivevalues of r in
the angular half-range θ ∈ ð0; π

2
Þ, but to the lowest possible

finitenegativevaluesof r for the secondhalf-rangeθ ∈ ðπ
2
; πÞ.

In the equatorial sectionθ ¼ π
2
, such asymptotically flat region

is reached both at r ¼ þ∞ and r ¼ −∞.
It is necessary to clarify these somewhat puzzling

observations. Such an understanding of the global structure
of the spacetime manifold with accelerating NUT black

holes will provide us with the complete picture summarized
in Fig. 4.
To describe and investigate the complete conformal

infinity I of spacetimes with accelerating NUT black
holes, it is much more convenient to consider the metric
form (8). Similarly as for the spherical-like coordinates, it
directly follows from expressions (23) that the correspond-
ing curvature scalars ΨA all vanish for Ξðx; yÞ ¼ 0. Such
regions are thus asymptotically flat, representing I . In view
of the explicit form of this function (25) it is clear that this
condition is equivalent to x − y ¼ 0. Therefore, the asymp-
totically flat infinity is located at

I∶ x ¼ y; ð93Þ

FIG. 4. The complete spacetime structure of the class of accelerating NUT black holes, suppressing the coordinates t and φ
(corresponding to stationary and axial symmetry). These fundamental sections are represented by (mutually equivalent) coordinates x, y
and θ, r. The black hole spacetime is localized in the shaded region x ∈ ½−1; 1� between two rotating cosmic strings at the two opposite
poles θ ¼ 0 and θ ¼ π. In the complementary (vertical) direction, the spacetime is separated by four Killing horizons at special values of
y and equivalently r, namely the two black-hole horizonsH�

b are located at r−b ¼ r−, r
þ
b ¼ rþ and two acceleration horizonsH�

a are at
rþa ¼ r− þ 1

α, r
−
a ¼ r− − 1

α. They separate different regions of the spacetimes in which the coordinate r is spatial (regions II�) or temporal
(regions I� and III). The values r ¼ 0 and r ¼∓ ∞, indicated by horizontal dashed lines, are only coordinate singularities. Conformal
infinity I, where the spacetime is asymptotically flat, is located along the diagonal line x ¼ y. There are thus two asymptotically flat
regions corresponding to our universe where r > 0 and the parallel universe where r < 0, which are connected through the region III
with the highest (but finite) curvature in the black hole interior r ∈ ðr−; rþÞ. Notice, however, that only along the equatorial section θ ¼ π

2

the corresponding two conformal infinities I� are represented by r ¼ �∞. Unlike in the C-metric or Schwarzschild black hole, with the
NUT parameter l there is no curvature singularity at r ¼ 0. It is thus obvious that there are two complete strings (not just semi-infinite
strings) at θ ¼ 0 and θ ¼ π, both connecting the two distinct universes as r ∈ ð−∞;þ∞Þ. In fact, to obtain a geodesically complete
spacetime, it is necessary to “glue the two universes” along the regular horizon H−

b at r ¼ r−b ≡ r−, both at y ¼ −∞ and y ¼ þ∞, by
identifying the corresponding parts of these lower and upper boundaries of the diagram indicated by two finely dashed line segments
between x ∈ ½−1; 1�. Thus we obtain a complete diagram of the spacetimewith accelerating NUT black holes, shown in the right part of
this figure.
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see also Fig. 4. The admitted range of the coordinate x is
x ∈ ½−1; 1� (see the subsequent section) and thus the range
of y on I is also y ∈ ½−1; 1�. Interestingly, it is exactly the
same situation as for the C-metric (10), see [9].
It can now be understood, what are the specific draw-

backs of the spherical-like coordinates r, θ of the metric
(44) to represent I . There is no problem in the equatorial
plane θ ¼ π

2
corresponding to x ¼ 0, which symmetrically

divides the spacetime into two regions between the two
axes (strings). Due to (93), the scri I in such “transverse
section” is located at y ¼ 0, and it follows from the
transformation (35) that this occurs at infinite values of r,

I at θ ¼ π

2
∶ r ¼ �∞; ð94Þ

as naïvely assumed. However, at any other section θ ¼
const., the conformal infinity I is located at finite values
of r. Indeed, (93) with (35) reads cos θ ¼ 1=½αðr − r−Þ�,
that is

I at any θ ≠
π

2
∶ r ¼ r− þ 1

α cos θ
: ð95Þ

Therefore, close to the first string at θ ¼ 0 we obtain
r → r− þ α−1 ≡ rþa , while close to the second string at
θ ¼ π we get r → r− − α−1 ≡ r−a , see (55) and Fig. 4.
Notice that this is exactly the condition for vanishing
conformal factor in the metric (44), (45),

Ωðr; θÞ ¼ 0: ð96Þ

Such a behavior is analogous to the situation in the
simpler C-metric [9]. However, in the present case of
accelerating NUT black holes, there are two distinct
asymptotically flat regions, namely Iþ which is the
conformal boundary of “our universe” in the region Iþ,
and I− which is the conformal boundary of “parallel
universe” in the region I−. In order to cover the part
θ > π

2
of Iþ in “our universe,” it is necessary to also

consider r < 0. And vice versa: to cover the part θ < π
2
of

I− in parallel universe, it is necessary to also employ r > 0.
This is surely possible, but quite cumbersome.

2. Boost-rotation metric form and its analytic extension

To further elucidate the global structure of the new
solution (44) for accelerating NUT black holes, it is useful
to express it in a form in which its boost and rotation
symmetries are explicitly manifested. This will also provide
a clear argument indicating that the analytically extended
space-time represents a pair of accelerated black-hole
sources. It is achieved by applying the transformation

ζ ¼
ffiffiffiffi
P

p

αΩ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1 − α2ðr − r−Þ2j

q
; ð97Þ

ρ ¼ sin θ
Ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr − rþÞðr − r−Þ

p
; ð98Þ

(so that ζ, ρ ≥ 0) with t0 ¼ αt and φ unchanged. Clearly,
ζ ¼ 0 at both acceleration horizons H�

a , whereas ρ ¼ 0 at
both black-hole horizons H�

b , and also along the two
strings located at θ ¼ 0 and θ ¼ π. An application of the
transformation (97), (98) takes the metric (44) to the form

ds2 ¼ −eμζ2ðdt0 − AdφÞ2 þ eλðdζ2 þ dρ2Þ þ e−μρ2dφ2;

ð99Þ

where the functions μ, λ, and A are

eμ ¼ ðr − rþÞðr − r−Þ
R2P

;

e−λ ¼ R−2
�
ðr − rþÞðr − r−ÞP

þ ðm2 þ l2Þ½1 − α2ðr − r−Þ2�sin2θ
�
;

A ¼ 2αl

�
cos θ −

α

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p r − r−
r − rþ

Pρ2
�
: ð100Þ

Of course, these metric functions need to be rewritten in
terms of the variables ζ and ρ.
When the NUT parameter vanishes, l ¼ 0, the metric

becomes static because A ¼ 0. In fact, the remaining
functions eμ and e−λ then reduce exactly to expressions
(14.30), (14.31) in [9] for the C-metric. For m → 0, the
metric (99) further reduces to the uniformly accelerated flat
metric, since eμ → 1 and e−λ → 1, yielding

ds2 ¼ −ζ2dt02 þ dζ2 þ dρ2 þ ρ2dφ2: ð101Þ

It is equation (14.25) in [9], equivalent to the Bondi–
Rindler metric (3.14) whose coordinates are adapted to the
uniform acceleration. This weak-field limit thus provides a
reasonable justification that the black-hole sources are
indeed accelerating. Moreover, in view of (97), the accel-
eration is given by the parameter α (see also Sec. 3.5 in [9]
for more details).
Now, the metric (99) in the stationary regions II can be

analytically extended through the acceleration horizons
located at ζ ¼ 0 by transforming it to the boost-rotation
symmetric form with rotating sources (see [14–16]). In
particular, by performing the transformation3

T ¼ �ζ sinh t0; Z ¼ �ζ cosh t0; ð102Þ

the metric becomes

3An analogous transformation in the nonstationary
regions I close to the conformal infinity I is T ¼ �ζ cosh t0,
Z ¼ �ζ sinh t0.
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ds2 ¼ −
eμ

Z2 − T2
½ðZdT − TdZÞ − AðZ2 − T2Þdφ�2

þ eλ
�ðZdZ − TdTÞ2

Z2 − T2
þ dρ2

�
þ e−μρ2dφ2: ð103Þ

Clearly, ζ2 ≡ jZ2 − T2j, so that the acceleration horizons
H�

a are now located at T ¼ �Z. They separate the domains
of types I and II. For the whole range of the coordinates T
and Z, the boost-rotation symmetric metric (103) covers all
these regions, with μ, λ, and A being specific functions of ρ
and Z2 − T2, independent of t0 and φ.
Notice, however, that the coordinates ðζ; ρÞ and equiv-

alently ðr; θÞ with the “þ” sign in (102) each cover only
half of the section t0 ¼ const corresponding to a single
domain of type II, because necessarily Z > 0. To cover
also the analytically extended regions Z < 0, a second
copy of these coordinates is required by choosing the
“−” sign in (102). This indicates that the complete
spacetime actually contains a pair of uniformly accel-
erating NUT black holes, similarly as in the case of the
C-metric (see Ch. 14 in [9] for the details). These two
black holes accelerate away from each other, and are
causally separated. The analytically extended manifold
thus contains four asymptotically flat regions, a pair of
Iþ and a pair of I−, each in our universe and in the
parallel universe.
Let us finally remark that at large values of the radial

coordinate r close to I� where Ω ¼ 0, for any fixed
value of θ the metric functions behave as R ∼ r, P is a
constant, and Ω ∼ r (the case θ ¼ π

2
must be treated

separately). It thus follows from (100) that the functions
eμ; e−λ; A remain finite in this limit, demonstrating the
correct asymptotic behavior of the boost-rotation metric
form (103). In fact, analogously to the procedure pre-
sented in [16], by a properly performed rescaling of the
coordinates and uniquely chosen linear combination of t0

and φ, for the given θ it is possible to achieve eμ; eλ → 1,
and A → 0 in the asymptotically flat regions of these
spacetimes.

E. Character of the axes θ = 0 and θ= π:
Rotating cosmic strings

We have seen in Sec. VI A that the coordinate singu-
larities given by QðrÞ ¼ 0 represent four horizons (55)
associated with the Killing vector field ∂t. There is also the
second Killing vector field ∂φ, and its degenerate points
identify the spatial axes of symmetry.
They are located at the coordinate singularities of the

function sin θ in the new metric (44), and these appear
at the poles θ ¼ 0 and θ ¼ π. Therefore, the range of the
spatial coordinate θ must be constrained to θ ∈ ½0; π�.
Via the simple relation x ¼ − cos θ this is equivalent to
the range x ∈ ½−1; 1� between the two poles x ¼ �1 of
the function ð1 − x2Þ in the original form of the metric

(8). The location of these poles is indicated in Fig. 4,
defining the boundary of the physical spacetime with
black holes (the shaded region). Expressed in terms of
the coordinates of the boost-rotation/axially symmetric
metric (103), related by (98), these poles θ ¼ 0; π
correspond to ρ ¼ 0 which naturally identifies the
corresponding two axes.
In analogy with the C-metric, such degenerate axes

represent cosmic strings or struts. Their tension is the
physical source of the acceleration of the black holes.
We have proven in Sec. VI B that the algebraic

structure of (generic) type I spacetime degenerates along
these axes to type D, with the only curvature component
Ψ2 given by (67). Subsequently, in Sec. VI C we have
demonstrated that for θ ¼ 0 and θ ¼ π the Kretschmann
scalar KðrÞ ¼ 48ReðΨ2

2Þ [see the expression (85)]
is everywhere finite, as is explicitly plotted in Figs. 2
and 3. There is thus no curvature singularity along
these axes. Instead, these are basically topological
defects associated with conical singularities given by
deficit or excess angles around the two distinct axes. In
addition, due to the nonvanishing NUT parameter l,
these cosmic strings or struts are rotating, thus intro-
ducing an internal twist to the entire spacetime with
accelerating NUT black holes. We will now analyze
them in more detail.

1. Cosmic strings or struts

We have seen that there are three explicit physical
parameters of the spacetime (44), namely the mass m,
the acceleration α, and the NUT parameter l of the black
holes [which determine the horizon parameters r� ¼ m�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
, see (38) and (55)]. In fact, there is also the

fourth free parameter C, which is hidden in the range of
the angular coordinate φ ∈ ½0; 2πCÞ. It has not yet been
specified. We will demonstrate its physical meaning by
relating it to the deficit (or excess) angles of the cosmic
strings.
Let us start with investigation of the (non)regularity of

the first axis of symmetry θ ¼ 0 in (44). Consider a small
circle around it given by θ ¼ const., with the range
φ ∈ ½0; 2πCÞ, assuming fixed t and r. The invariant length
of its circumference is

R
2πC
0

ffiffiffiffiffiffiffigφφ
p dφ, while its radius isR

θ
0

ffiffiffiffiffiffi
gθθ

p
dθ̃. The axis is regular if their fraction in the limit

θ → 0 is equal to 2π. In general we obtain

f0 ≡ lim
θ→0

circumference
radius

¼ lim
θ→0

2πC ffiffiffiffiffiffiffigφφ
p

θ
ffiffiffiffiffiffi
gθθ

p : ð104Þ

Now, the conceptual problem is that the metric function gφφ
in (44), and thus the circumference, does not approach zero
in the limit θ → 0 due to the presence of cos θ in the first
term in the metric. This problem can be resolved by the
same procedure as for the classic Taub–NUT solution (see
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the transition between the metrics (12.1) and (12.3) in [9]):
By applying the transformation of the time coordinate4

t ¼ t0 þ 2lφ; ð105Þ
the metric (44) becomes

ds2 ¼ 1

Ω2

�
−

Q
R2

�
dt0 þ 2l

�
2sin2

θ

2
þ αT sin2θ

�
dφ

�
2

þR2

Q
dr2 þR2

�
dθ2

P
þ Psin2θdφ2

��
; ð106Þ

so that

gφφ ¼ 1

Ω2

�
R2Psin2θ − 4l2

Q
R2

�
2sin2

θ

2
þ αT sin2θ

�
2
�
;

gθθ ¼
R2

Ω2P
: ð107Þ

For very small values of θ we obtain gφφ ≈R2Pθ2=Ω2

because the terms proportional to l2 become negligible.
Evaluating the limit (104) we thus obtain

f0 ¼ 2πCð1 − αðrþ − r−ÞÞ ≡ 2πCð1 − 2α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
Þ:
ð108Þ

The axis θ ¼ 0 in the metric (106) can thus be made
regular by the choice

C ¼ C0 ≡
1

1 − 2α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p : ð109Þ

Analogously, it is possible to regularize the second axis
of symmetry θ ¼ π. Performing the complementary trans-
formation of the time coordinate

t ¼ tπ − 2lφ; ð110Þ
the metric (44) becomes

ds2 ¼ 1

Ω2

�
−

Q
R2

�
dtπ − 2l

�
2cos2

θ

2
− αT sin2θ

�
dφ

�
2

þR2

Q
dr2 þR2

�
dθ2

P
þ Psin2θdφ2

��
; ð111Þ

i.e.,

gφφ ¼ 1

Ω2

�
R2Psin2θ − 4l2

Q
R2

�
2cos2

θ

2
− αT sin2θ

�
2
�
;

gθθ ¼
R2

Ω2P
: ð112Þ

For θ → π we thus obtain gφφ ≈R2Pðπ − θÞ2=Ω2. The
radius of a small circle around the axis θ ¼ π is

R
π
θ

ffiffiffiffiffiffi
gθθ

p
dθ̃.

Evaluating the fraction

fπ ≡ lim
θ→π

circumference
radius

¼ lim
θ→π

2πC ffiffiffiffiffiffiffigφφ
p

ðπ − θÞ ffiffiffiffiffiffi
gθθ

p ; ð113Þ

we obtain

fπ ¼ 2πCð1þ αðrþ − r−ÞÞ ≡ 2πCð1þ 2α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
Þ:
ð114Þ

The axis θ ¼ π in the metric (111) is thus regular for the
unique choice

C ¼ Cπ ≡
1

1þ 2α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p : ð115Þ

It is now explicitly seen that it is not possible to
regularize simultaneously both the axes because C0 ≠ Cπ

and t0 ≠ tπ ¼ t0 þ 4lφ (unless α ¼ 0 ¼ l which is just
the Schwarzschild solution, regular for the standard
choice C ¼ 1).
When the second axis of symmetry θ ¼ π is made

regular by the choice (115), there is necessarily a deficit
angle δ0 (conical singularity) along the first axis θ ¼ 0,
namely

δ0 ≡ 2π − f0 ¼
8πα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p

1þ 2α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p > 0: ð116Þ

The corresponding tension in this cosmic string located
along θ ¼ 0 pulls the black hole, causing its uniform
acceleration. Such string extends to the full range of the
radial coordinate r ∈ ð−∞;þ∞Þ, connecting thus our
universe with the parallel universe through the nonsingular
NUT black-hole interior, see Fig. 4. Moreover, as argued in
Sec. VI D, there is a pair of causally separated NUT black
holes accelerating away from each other by the action of
two such cosmic strings, one string in each copy Z > 0
and Z < 0.
Complementarily, when the first axis of symmetry θ ¼ 0

is made regular by the choice (109), there is necessarily an
excess angle δπ along the second axis θ ¼ π, namely

δπ ≡ 2π − fπ ¼ −
8πα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p

1 − 2α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p < 0: ð117Þ

This represents the cosmic strut located along θ ¼ π
between the two black holes, pushing them away from
each other in opposite spatial directions �Z.
In particular, for black holes with vanishing NUT

parameter l ¼ 0, the general results (116) and (117)
reduce to

4It leads to a closed circle instead of an open helical orbit of the
axial Killing vector around θ ¼ 0. For a recent related study of
geometrical and physical properties of symmetry axes of black
holes with NUT parameters see [17].
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δ0 ¼
8παm

1þ 2αm
and δπ ¼ −

8παm
1 − 2αm

; ð118Þ

which fully agree with the known expressions for the
C-metric, see Eqs. (14.15)–(14.17) in [9].

2. Rotation of these cosmic strings or struts

With a generic NUT parameter l, these cosmic strings/
struts are rotating. This can be seen by calculating the
angular velocity parameter ω of the metric along the two
different axes [10],

ω ≡
gtφ
gtt

: ð119Þ

For the general form of the new metric (44) we obtain
ω ¼ −2lðcos θ − αT sin2 θÞ. Evaluating it on the axis
θ ¼ 0 and the axis θ ¼ π, we immediately get

ω0 ¼ −2l and ωπ ¼ 2l; ð120Þ

respectively. Both cosmic strings/struts thus rotate. In fact,
they are contrarotating with exactly opposite angular
velocities �2l determined solely by the NUT parameter.
If the first axis of symmetry θ ¼ 0 is made regular by

considering the metric (106) with the time t0, then ω ¼
2lð2 sin2 θ

2
þ αT sin2 θÞ and the corresponding angular

velocities of the axes are

ω0 ¼ 0 and ωπ ¼ 4l; ð121Þ

On the other hand, when the second axis θ ¼ π is
regularized by switching to the metric (111) with tπ , then
ω ¼ −2lð2 cos2 θ

2
− αT sin2 θÞ and the angular velocities of

the axes are

ω0 ¼ −4l and ωπ ¼ 0: ð122Þ

Clearly, there is always a constant difference Δω ≡ ωπ −
ω0 ¼ 4l between the angular velocities of the two rotating
cosmic strings or struts, directly given by the NUT
parameter l.

F. Regions with closed timelike curves around the
rotating strings

In the vicinity of the rotating cosmic strings or struts,
which are located along θ ¼ 0 and θ ¼ π, the spacetime
with accelerating NUT black holes can serve as a specific
time machine. Indeed, similarly as in the classic Taub–NUT
solution, there are closed timelike curves.
To identify these pathological causality-violating

regions, let us again consider simple curves in the space-
time which are circles around the axes of symmetry θ ¼ 0
and θ ¼ π such that only the periodic angular coordinate
φ ∈ ½0; 2πCÞ changes, while the remaining three

coordinates t, r and θ are kept fixed. The corresponding
tangent (velocity) vectors are thus proportional to the
Killing vector field ∂φ. Its norm is determined just by
the metric coefficient gφφ, which for the general metric (44)
reads

gφφ ¼ 1

Ω2

�
R2Psin2θ − 4l2

Q
R2

ðcos θ − αT sin2θÞ2
�
:

ð123Þ

When l ¼ 0, i.e., for nonrotating cosmic strings, this
metric coefficient is always positive, so that the circles
are spacelike curves. However, with the NUT parameter
l, there are regions where gφφ < 0 in which the circles
(orbits of the axial symmetry) are closed timelike curves.
These pathological regions are explicitly given by the
condition

R4Pð1 − cos2 θÞ < 4l2Qðcos θ − αT ð1 − cos2 θÞÞ2;
ð124Þ

where the functions P, Q, T , R have been defined in
(45). Although this condition is quite difficult to be
solved analytically, some general observations can easily
be made.
In particular, the condition can not be satisfied in the

regions where QðrÞ < 0. Assuming that the acceleration
α is not too large, satisfying (56) which implies (57),
the closed timelike curves can thus only appear
between the black hole horizon Hb and the acceleration
horizon Ha, that is only in the region IIþ given by
r ∈ ðrþb ; rþa Þ or in the region II− given by r ∈ ðr−a ; r−b Þ.
On the contrary, the pathological domain can not occur
in the region III inside the black hole or close to the
conformal infinities I� which are the boundaries of the
dynamical regions I� where r is temporal because
Q < 0, see Fig. 4.
These observations are nicely confirmed by plotting the

values of the relevant function gφφðr; θÞ given by (123),
obtained numerically for various choices of the black-hole
parameters. A typical example m ¼ 0.5, l ¼ 3, α ¼ 0.05 is
presented in Fig. 5, for r > 0 (left) and r < 0 (right). The
grey curves are contour lines (isolines) of a constant value
of gφφðr; θÞ, red color depicts large positive values, while
blue color depicts negative values (dark gray domains
indicate extremely large values, both positive and negative).
Zeros of gφφ in light yellow, determining the boundary of
the pathological regions given by the condition (124), are
exactly indicated by the thick black curves. As expected,
these regions with closed timelike curves occur close to the
both axes θ ¼ 0 and θ ¼ π, were the rotating cosmic strings
at located. Such regions are indeed restricted to the
concentric domains (two annuli) between the black hole
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horizons H�
b at r�b ¼ r� and the acceleration horizons H�

a

at r�a ¼ r− � α−1.
Interestingly, for r > 0 there is another pair of symmetric

“lobes” around θ ¼ 0 near the acceleration horizon Hþ
a

(big red circle). At a given r close to rþa , these lobes
extend to surprisingly large values of θ. Similarly, there
is a “mirror” pair of such pathological regions near H−

a
and θ ¼ π for r < 0. In both cases, the lobes are
localized around such axis, along which the acceleration
horizon Ha closely approaches the conformal infinity I
at Ω ¼ 0.
In Fig. 5 we visualized the regions containing the closed

timelike curves for the accelerating black hole with a big
value of the NUT parameter l ¼ 6m ¼ 3. However, our
investigation of a large set of the parameters m, l, and α
shows that the overall picture displayed here is quite
generic.
Similarly, it is possible to investigate the regions

with closed timelike curves in the special cases when
one of the axes is regular. The case with regular axis
θ ¼ 0 is described by the metric (106), and the corre-
sponding metric function (107) gives for fixed t0 the
condition

R4Pð1þ cos θÞ < 4l2Qð1 − cos θÞð1þ αT ð1þ cos θÞÞ2;
ð125Þ

while the complementary case with regular axis θ ¼ π
is described by the metric (111), and the corresponding
metric function (112) yields for fixed tπ

R4Pð1 − cos θÞ < 4l2Qð1þ cos θÞð1 − αT ð1 − cos θÞÞ2:
ð126Þ

For a direct comparison with Fig. 5, analogous visual-
izations of the pathological regions in such special cases
are shown in Fig. 6 for the same choice of the black-
hole parameters.
Finally, we can observe that the conditions (124)–(126)

for the pathological regions simplify considerably in the
absence of acceleration. Indeed, for α ¼ 0 the key functions
reduce to P ¼ 1, Q ¼ ðr − rþÞðr − r−Þ ≡ r2 − 2mr − l2

and R2 ¼ r2 þ l2, see (50), so that the above three con-
ditions (124)–(126) for the regions with closed timelike
curves become, respectively,

cos2 θ >
r2 þ l2

r2 þ l2 þ 4l2f
;

cos θ < −
r2 þ l2 − 4l2f
r2 þ l2 þ 4l2f

;

cos θ >
r2 þ l2 − 4l2f
r2 þ l2 þ 4l2f

; ð127Þ

FIG. 5. Plot of the metric function gφφ (123) for the general accelerating NUT black hole (44) with rotating cosmic strings on both axes
θ ¼ 0 and θ ¼ π. Its values are visualized in quasipolar coordinates x ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ l2

p
sin θ, y ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ l2

p
cos θ for r ≥ 0 (left) and r ≤ 0

(right). The gray annulus in the center of each figure localizes the black hole bordered by its horizons H�
b at rþ > 0 and r− < 0. The

acceleration horizons H�
a at rþa and r−a (big red circles) and the conformal infinity I at Ω ¼ 0 are also shown. The grey curves are

contour lines gφφðr; θÞ ¼ const, and the values are color-coded from red (positive values) to blue (negative values). Extremely large/low
values are cut and depicted in dark gray. The thick black curves in the light yellow domain are the isolines gφφ ¼ 0 determining the
boundary of the pathological regions (124) with closed timelike curves. They occur close to both the axes θ ¼ 0 and θ ¼ π (purple
dashed lines), but also near the acceleration horizons, forming an additional symmetric pair of “lobes” around θ ¼ 0 just belowHþ

a and
around θ ¼ π just above H−

a . This plot for the choice m ¼ 0.5, l ¼ 3, α ¼ 0.05 is typical.
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where fðrÞ ≡Q=R2, see (52). The result (127) fully agrees
with the equation for the Taub–NUT spacetime presented in
Sec. 12.1.4 of the monograph [9].

VII. CONCLUDING SUMMARY

We presented and carefully investigated a remarkable
class of spacetimes which represent accelerating black
holes with a NUT parameter. In particular:

(i) By two independent methods we verified in Sec. III
that the metric (2) found by Chng, Mann and Stelea
in 2006 is indeed an exact solution to Einstein’s
vacuum field equations.

(ii) To achieve this, we employed a modified version
(8) of the solution in which one redundant param-
eter was removed and the original metric simpli-
fied, so that the standard C-metric (10) is
immediately obtained by setting the NUT-like twist
parameter λ to zero.

(iii) Using the metric form (8), in Sec. IV we calculated
all components of the Weyl tensor in the natural null
tetrad (20), namely the NP scalars ΨA (23), and the
correspondingcurvature scalar invariants I andJ (26).

(iv) Since generically I3 ≠ 27J2, the Weyl tensor is
of algebraically general type I with four distinct

FIG. 6. The functions gφφ given by (107) and (112) for the accelerating NUT black hole metric (106) with the regular axis θ ¼ 0 (top
row) and for the metric (111) with the regular axis θ ¼ π (bottom row). The regions with closed timelike curves surround the remaining
rotating cosmic string, and there is always an additional symmetric pair of such pathological regions near the acceleration horizons.
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principal null directions, explicitly given by ex-
pressions (27) with (34), (33).

(v) It explains why this class of solutions with accel-
erating NUT black holes has not been previously
found within the large Plebański–Demiański family
of type D spacetimes.

(vi) In Sec. V we derived and introduced a new
metric form (44) of these solutions in “spheri-
cal-type” coordinates which is much more
convenient for understanding of this class of black
holes.

(vii) In particular, its metric functions (45), with r� ≡
m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
given by (38), explicitly depend on

three physical parameters, namely the mass m, the
acceleration α, and the NUT parameter l.

(viii) These black-hole parameters can be separately set
to zero, recovering the well-known spacetimes in
standard coordinates, namely the C-metric (48)
when l ¼ 0, the Taub–NUT metric (51) when
α ¼ 0, the Schwarzschild metric (53), and flat
Minkowski space (54).

(ix) The structure of this complete family of accelerat-
ing NUT black holes is shown in Fig. 1. By setting
α ¼ 0 or l ¼ 0, algebraically general spacetime
reduces to the type D.

(x) Using the new metric (44), in Sec. VI we inves-
tigated main physical and geometrical properties of
this family of accelerating NUT black holes. In
particular:

(xi) In Sec. VI A we localized the position of the
horizons associated with the Killing vector field
∂t. There are two black-hole horizonsH�

b located at
r−b ≡ r− and rþb ≡ rþ plus two acceleration horizons
H�

a at rþa ≡ r− þ 1
α and r−a ≡ r− − 1

α. For small
acceleration α < 1

2
ffiffiffiffiffiffiffiffiffiffi
m2þl2

p they are ordered as

r−a < r−b < 0 < rþb < rþa , see (57).
(xii) We carefully analyzed the curvature of the spacetime

in Sec. VI B. We expressed the Weyl scalars (64) in
the new coordinates and frames. For l ¼ 0 and

α ¼ 0, only the Newtonian component ΨðrθÞ
2 re-

mains, and its special subcases (68) and (72) fully
agree with standard expressions for the C-metric and
the Taub–NUT metric, which are both of algebraic
type D.

(xiii) Evaluating these Weyl scalars on the horizons, we
proved that they are all regular (that is free of
curvature singularities), and of a double degenerate
algebraic type D.

(xiv) Using the curvature invariants, including the
Kretschmann scalar, we proved in Sec. VI C that
there are no curvature singularities whenever the
NUT parameter l is nonzero. This is visualized in
Figs. 2 and 3. Maximal (finite) values of the
curvature are inside the black hole.

(xv) Curvature singularity appears only in the C-metric
case l ¼ 0 at r ¼ 0. All other spacetimes in the
class of accelerating NUT black holes are non-
singular, and to describe their complete manifold it
is thus necessary to consider the full range of the
coordinate r ∈ ð−∞;þ∞Þ.

(xvi) There may occur special regions in a given space-
time which are of algebraic type D, II or N,
according to the values of the scalar curvature
invariants (92).

(xvii) In Sec. VI D we identified asymptotically flat
regions which correspond to the conformal infin-
ities I� given by Ω ¼ 0. These are simply given by
the condition x ¼ y in the coordinates of the metric
form (8).

(xviii) Using the spherical-like coordinates of (44), the
position of I� is given by the conditions (94) and
(95), which look less intuitive.

(xix) All these investigations lead us to a complete
understanding of the global structure of this class
of spacetimes, summarized in Fig. 4. The accel-
erating NUT black hole can be understood as a
“throat” of maximal curvature which connects our
universe located in the region r > 0with the second
(also asymptotically flat) parallel universe in the
region r < 0.

(xx) Analytic extension across the acceleration horizons,
using the boost-rotation symmetric form of the
metric (103), revealed that there is actually a pair of
such (causally separated) NUT black holes, which
together involve four asymptotically flat regions.
The two black holes uniformly accelerate in oppo-
site directions, as in the case of the C-metric
with l ¼ 0.

(xxi) We clarified in Sec. VI E that the physical
source of the acceleration of this pair of black
holes is the tension (or compression) in the
rotating cosmic strings (or struts) located along
the corresponding two axes of axial symmetry at
θ ¼ 0 and θ ¼ π.

(xxii) These strings or struts are related to the deficit or
excess angles which introduce topological defects
along the axes. However, their curvature remains
finite, and of algebraic type D.

(xxiii) In general, there are strings/struts along both the
axes, but one of the axis can be made fully
regular by a suitable choice of the constant C in
the range φ ∈ ½0; 2πCÞ. The first axis θ ¼ 0 is
regular in the metric form (106) with the choice
(109), whereas the second axis θ ¼ π is regular
in the form (111) with the choice (115). In the
first case, there is a cosmic strut along θ ¼ π
with the excess angle (117), while in the second
case there is a cosmic string along θ ¼ 0 with
the deficit angle (116).
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(xxiv) In addition to the deficit/excess angles, these
cosmic strings/struts located along the axes of
symmetry are characterized by their rotation param-
eter ω (angular velocity). Their values are directly
related to the NUT parameter l, see expressions
(120)–(122).

(xxv) There is always a constant difference Δω ¼ 4l
between the angular velocities of the two rotating
cosmic strings or struts. If, and only if l ¼ 0, both
the axes are nontwisting.

(xxvi) In the neighborhood of these rotating strings/struts
there occur pathological regions with closed time-
like curves. They are given by the conditions (124)–
(126) and visualized in Figs. 5 and 6.

We hope that, with these geometrical and physical
insights, the new explicit form (44) of the class of
accelerating NUT black holes can be used as an interesting
example for various types of investigations in Einstein’s
general relativity, black hole thermodynamics, quantum
gravity, or high-energy physics, for example by extending
the recent studies [18,19].
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APPENDIX A: CURVATURE OF GENERAL
STATIONARY AXISYMMETRIC SPACETIMES

Let us assume a general form of stationary axisymmetric
metric in coordinates ðt;φ; x; yÞ given by (11), that is

gμν ¼

0
BBB@

gtt gtφ 0 0

gtφ gφφ 0 0

0 0 gxx 0

0 0 0 gyy

1
CCCA; ðA1Þ

in which all the metric functions can only depend on
x and y. The inverse matrix is

gμν ¼

0
BBB@

gφφ=D −gtφ=D 0 0

−gtφ=D gtt=D 0 0

0 0 1=gxx 0

0 0 0 1=gyy

1
CCCA; ðA2Þ

where

D ≡ gttgφφ − g2tφ: ðA3Þ

The corresponding Christoffel symbols of the first kind
Γαβγ ≡ 1

2
ðgαβ;γ þ gγα;β − gβγ;αÞ are

Γttt ¼ 0; Γφtt ¼ 0; Γxtt ¼ − 1
2
gtt;x; Γytt ¼ − 1

2
gtt;y;

Γttφ ¼ 0; Γφtφ ¼ 0; Γxtφ ¼ − 1
2
gtφ;x; Γytφ ¼ − 1

2
gtφ;y;

Γttx ¼ 1
2
gtt;x; Γφtx ¼ 1

2
gtφ;x; Γxtx ¼ 0; Γytx ¼ 0;

Γtty ¼ 1
2
gtt;y; Γφty ¼ 1

2
gtφ;y; Γxty ¼ 0; Γyty ¼ 0;

Γtφφ ¼ 0; Γφφφ ¼ 0; Γxφφ ¼ − 1
2
gφφ;x; Γyφφ ¼ − 1

2
gφφ;y;

Γtφx ¼ 1
2
gtφ;x; Γφφx ¼ 1

2
gφφ;x; Γxφx ¼ 0; Γyφx ¼ 0;

Γtφy ¼ 1
2
gtφ;y; Γφφy ¼ 1

2
gφφ;y; Γxφy ¼ 0; Γyφy ¼ 0;

Γtxx ¼ 0; Γφxx ¼ 0; Γxxx ¼ 1
2
gxx;x; Γyxx ¼ − 1

2
gxx;y;

Γtxy ¼ 0; Γφxy ¼ 0; Γxxy ¼ 1
2
gxx;y; Γyxy ¼ 1

2
gyy;x;

Γtyy ¼ 0; Γφyy ¼ 0; Γxyy ¼ − 1
2
gyy;x; Γyyy ¼ 1

2
gyy;y;

ðA4Þ

and usual Christoffel symbols of the second kind Γα
βγ ≡ gασΓσβγ are thus
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Γt
tt ¼ 0; Γφ

tt ¼ 0;

Γt
tφ ¼ 0; Γφ

tφ ¼ 0;

Γt
tx ¼ 1

2
ðgφφgtt;x − gtφgtφ;xÞ=D; Γφ

tx ¼ 1
2
ðgttgtφ;x − gtφgtt;xÞ=D;

Γt
ty ¼ 1

2
ðgφφgtt;y − gtφgtφ;yÞ=D; Γφ

ty ¼ 1
2
ðgttgtφ;y − gtφgtt;yÞ=D;

Γt
φφ ¼ 0; Γφ

φφ ¼ 0;

Γt
φx ¼ 1

2
ðgφφgtφ;x − gtφgφφ;xÞ=D; Γφ

φx ¼ 1
2
ðgttgφφ;x − gtφgtφ;xÞ=D;

Γt
φy ¼ 1

2
ðgφφgtφ;y − gtφgφφ;yÞ=D; Γφ

φy ¼ 1
2
ðgttgφφ;y − gtφgtφ;yÞ=D;

Γt
xx ¼ 0; Γφ

xx ¼ 0;

Γt
xy ¼ 0; Γφ

xy ¼ 0;

Γt
yy ¼ 0; Γφ

yy ¼ 0;

ðA5Þ

Γx
tt ¼ − 1

2
gtt;x=gxx; Γy

tt ¼ − 1
2
gtt;y=gyy;

Γx
tφ ¼ − 1

2
gtφ;x=gxx; Γy

tφ ¼ − 1
2
gtφ;y=gyy;

Γx
tx ¼ 0; Γy

tx ¼ 0;

Γx
ty ¼ 0; Γy

ty ¼ 0;

Γx
φφ ¼ − 1

2
gφφ;x=gxx; Γy

φφ ¼ − 1
2
gφφ;y=gyy;

Γx
φx ¼ 0; Γy

φx ¼ 0;

Γx
φy ¼ 0; Γy

φy ¼ 0;

Γx
xx ¼ 1

2
gxx;x=gxx; Γy

xx ¼ − 1
2
gxx;y=gyy;

Γx
xy ¼ 1

2
gxx;y=gxx; Γy

xy ¼ 1
2
gyy;x=gyy;

Γx
yy ¼ − 1

2
gyy;x=gxx; Γy

yy ¼ 1
2
gyy;y=gyy

: ðA6Þ

Now, we compute the Riemann curvature tensor. However, instead of using the usual definition

Rμ
νκλ ≡ Γμ

νλ;κ − Γμ
νκ;λ þ Γμ

ρκΓρ
νλ − Γμ

ρλΓρ
νκ; ðA7Þ

for our purposes we found that it is much more convenient to employ the equivalent expression

Rμνκλ ¼
1

2
ðgμλ;κν þ gκν;μλ − gμκ;νλ − gνλ;μκÞ þ ΓσμλΓσ

νκ − ΓσμκΓσ
νλ: ðA8Þ

Its advantage is that there is no need to differentiate the complicated Christoffel symbols of the second kind. This greatly
simplifies subsequent computer algebra manipulations. Direct evaluation using (A4) and (A5) leads to
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Rtφtφ ¼ 1

4

�
g2tφ;x − gtt;xgφφ;x

gxx
þ g2tφ;y − gtt;ygφφ;y

gyy

�
;

Rtφtx ¼ 0;

Rtφty ¼ 0;

Rtφφx ¼ 0;

Rtφφy ¼ 0;

Rtφxy ¼
1

4ðgttgφφ − g2tφÞ
�
gttðgtφ;ygφφ;x − gtφ;xgφφ;yÞ − gtφðgtt;ygφφ;x − gtt;xgφφ;yÞ þ gφφðgtt;ygtφ;x − gtt;xgtφ;yÞ

�
;

Rtxtx ¼ −
1

2
gtt;xx þ

1

4

�
gttg2tφ;x − 2gtφgtt;xgtφ;x þ gφφg2tt;x

gttgφφ − g2tφ
þ gtt;xgxx;x

gxx
−
gtt;ygxx;y

gyy

�
;

Rtxty ¼ −
1

2
gtt;xy þ

1

4

�
gttgtφ;xgtφ;y − gtφðgtt;xgtφ;y þ gtφ;xgtt;yÞ þ gφφgtt;xgtt;y

gttgφφ − g2tφ
þ gtt;xgxx;y

gxx
þ gtt;ygyy;x

gyy

�
;

Rtxφx ¼ −
1

2
gtφ;xx þ

1

4

�
gttgtφ;xgφφ;x − gtφðg2tφ;x þ gtt;xgφφ;xÞ þ gφφgtt;xgtφ;x

gttgφφ − g2tφ
þ gtφ;xgxx;x

gxx
−
gtφ;ygxx;y

gyy

�
;

Rtxφy ¼ −
1

2
gtφ;xy þ

1

4

�
gttgtφ;ygφφ;x − gtφðgtφ;xgtφ;y þ gtt;ygφφ;xÞ þ gφφgtt;ygtφ;x

gttgφφ − g2tφ
þ gtφ;xgxx;y

gxx
þ gtφ;ygyy;x

gyy

�
;

Rtxxy ¼ 0;

Rtyty ¼ −
1

2
gtt;yy þ

1

4

�
gttg2tφ;y − 2gtφgtt;ygtφ;y þ gφφg2tt;y

gttgφφ − g2tφ
−
gtt;xgyy;x

gxx
þ gtt;ygyy;y

gyy

�
;

Rtyφx ¼ Rtxφy − Rtφxy;

Rtyφy ¼ −
1

2
gtφ;yy þ

1

4

�
gttgtφ;ygφφ;y − gtφðg2tφ;y þ gtt;ygφφ;yÞ þ gφφgtt;ygtφ;y

gttgφφ − g2tφ
−
gtφ;xgyy;x

gxx
þ gtφ;ygyy;y

gyy

�
;

Rtyxy ¼ 0;

Rφxφx ¼ −
1

2
gφφ;xx þ

1

4

�
gttg2φφ;x − 2gtφgtφ;xgφφ;x þ gφφg2tφ;x

gttgφφ − g2tφ
þ gφφ;xgxx;x

gxx
−
gφφ;ygxx;y

gyy

�
;

Rφxφy ¼ −
1

2
gφφ;xy þ

1

4

�
gttgφφ;xgφφ;y − gtφðgtφ;xgφφ;y þ gφφ;xgtφ;yÞ þ gφφgtφ;xgtφ;y

gttgφφ − g2tφ
þ gφφ;xgxx;y

gxx
þ gφφ;ygyy;x

gyy

�
;

Rφxxy ¼ 0;

Rφyφy ¼ −
1

2
gφφ;yy þ

1

4

�
gttg2φφ;y − 2gtφgtφ;ygφφ;y þ gφφg2tφ;y

gttgφφ − g2tφ
−
gφφ;xgyy;x

gxx
þ gφφ;ygyy;y

gyy

�
;

Rφyxy ¼ 0;

Rxyxy ¼ −
1

2
ðgxx;yy þ gyy;xxÞ þ

1

4

�
g2xx;y þ gxx;xgyy;x

gxx
þ g2yy;x þ gxx;ygyy;y

gyy

�
: ðA9Þ

Finally, we employ a general expression for the Ricci tensor,

Rνλ ≡ gμκRμνκλ ¼
1

2
gμκðgμλ;κν þ gκν;μλ − gμκ;νλ − gνλ;μκÞ þ gμκΓσμλΓσ

νκ − gμκΓσμκΓσ
νλ; ðA10Þ
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which yields the following nontrivial components for the Ricci tensor of the metric (A1):

Rtt ¼ −
1

2

�
gtt;xx
gxx

þ gtt;yy
gyy

�
− 2ðΓx

tφΓφ
tx þ Γy

tφΓφ
tyÞ

− Γx
ttðΓt

tx − Γφ
φx þ Γx

xx − Γy
xyÞ − Γy

ttðΓt
ty − Γφ

φy − Γx
xy þ Γy

yyÞ;

Rtφ ¼ −
1

2

�
gtφ;xx
gxx

þ gtφ;yy
gyy

�
− Γx

ttΓt
φx − Γy

ttΓt
φy − Γφ

txΓx
φφ − Γφ

tyΓy
φφ − Γx

tφðΓx
xx − Γy

xyÞ þ Γy
tφðΓx

xy − Γy
yyÞ;

Rφφ ¼ −
1

2

�
gφφ;xx
gxx

þ gφφ;yy
gyy

�
− 2ðΓx

tφΓt
φx þ Γy

tφΓt
φyÞ

− Γx
φφð−Γt

tx þ Γφ
φx þ Γx

xx − Γy
xyÞ − Γy

φφð−Γt
ty þ Γφ

φy − Γx
xy þ Γy

yyÞ;

Rxx ¼ −
1

2

�
gφφgtt;xx − 2gtφgtφ;xx þ gttgφφ;xx

gttgφφ − g2tφ
þ gyy;xx þ gxx;yy

gyy

�
þ ðΓt

txÞ2 þ 2Γφ
txΓt

φx þ ðΓφ
φxÞ2

þ Γx
xxðΓt

tx þ Γφ
φxÞ þ Γy

xyðΓx
xx þ Γy

xyÞ þ Γy
xxðΓt

ty þ Γφ
φy − Γx

xy − Γy
yyÞ;

Rxy ¼ −
1

2

�
gφφgtt;xy − 2gtφgtφ;xy þ gttgφφ;xy

gttgφφ − g2tφ

�
þ Γt

txΓt
ty þ Γφ

txΓt
φy þ Γφ

tyΓt
φx þ Γφ

φxΓφ
φy

þ Γx
xyðΓt

tx þ Γφ
φxÞ þ Γy

xyðΓt
ty þ Γφ

φyÞ þ Γx
xyΓy

xy − Γx
yyΓy

xx;

Ryy ¼ −
1

2

�
gφφgtt;yy − 2gtφgtφ;yy þ gttgφφ;yy

gttgφφ − g2tφ
þ gxx;yy þ gyy;xx

gxx

�
þ ðΓt

tyÞ2 þ 2Γφ
tyΓt

φy þ ðΓφ
φyÞ2

þ Γy
yyðΓt

ty þ Γφ
φyÞ þ Γx

xyðΓx
xy þ Γy

yyÞ þ Γx
yyðΓt

tx þ Γφ
φx − Γx

xx − Γy
xyÞ: ðA11Þ

APPENDIX B: RICCI TENSORS OF
CONFORMALLY RELATED METRICS

For the conformally related metrics (15),

g̃ab ¼ Ω2gab; ðB1Þ

the corresponding Ricci tensors are connected as (see,
e.g., [11])

R̃ab ¼ Rab − 2Ω−1∇a∇bΩ −Ω−1gabgcd∇c∇dΩ

þ 4Ω−2∇aΩ∇bΩ −Ω−2gabgcd∇cΩ∇dΩ: ðB2Þ

This implies relation between the physical and unphysical
Ricci tensors Rab and R̃ab, respectively,

Rab ¼ R̃ab þ
1

Ω2
½ðg̃abg̃cd þ 2δcaδ

d
bÞðΩ;cd − Γ̃e

cdΩ;eÞΩ
− 3g̃abg̃cdΩ;cΩ;d�: ðB3Þ

For the metric (15), (18), the conformal factor (16) is
independent of φ and t, so that the resulting metric is again
stationary and axisymmetric, in which case the relations
(B3) simplify to

Rtt ¼ R̃tt þ
Φ
Ω
g̃tt −

2

Ω
ðΓ̃x

ttΩ;x þ Γ̃y
ttΩ;yÞ;

Rtφ ¼ R̃tφ þ
Φ
Ω
g̃tφ −

2

Ω
ðΓ̃x

tφΩ;x þ Γ̃y
tφΩ;yÞ;

Rφφ ¼ R̃φφ þ
Φ
Ω
g̃φφ −

2

Ω
ðΓ̃x

φφΩ;x þ Γ̃y
φφΩ;yÞ;

Rxx ¼ R̃xx þ
Φ
Ω
g̃xx þ

2

Ω
ðΩ;xx − Γ̃x

xxΩ;x − Γ̃y
xxΩ;yÞ;

Rxy ¼ R̃xy þ
Φ
Ω
g̃xy þ

2

Ω
ðΩ;xy − Γ̃x

xyΩ;x − Γ̃y
xyΩ;yÞ;

Ryy ¼ R̃yy þ
Φ
Ω
g̃yy þ

2

Ω
ðΩ;yy − Γ̃x

yyΩ;x − Γ̃y
yyΩ;yÞ;

ðB4Þ

where

Φ ≡ −
1

D̃
½ðg̃φφΓ̃x

tt − 2g̃tφΓ̃x
tφ þ g̃ttΓ̃x

φφÞΩ;x

þ ðg̃φφΓ̃y
tt − 2g̃tφΓ̃y

tφ þ g̃ttΓ̃y
φφÞΩ;y�

þ 1

g̃xx
ðΩxx − Γ̃x

xxΩ;x − Γ̃y
;xxΩ;yÞ

þ 1

g̃yy
ðΩyy − Γ̃x

;yyΩ;x − Γ̃y
yyΩ;yÞ −

3

Ω

�
Ω2

;x

g̃xx
þΩ2

;y

g̃yy

�
;

ðB5Þ
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and the determinant for the metric (18) reads

D̃ ≡ g̃ttg̃φφ − g̃2tφ ¼ Ω4D

¼ −ðx − yÞ8ð1 − x2Þ3F3ðxÞðy2 − 1Þ3F3ðyÞH̃2ðx; yÞ: ðB6Þ
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2. New improved form of black
holes of type D
This chapter is based on the paper New improved form of black holes of type D
[45] by Podolský and Vrátný, published in 2021 in the journal Physical Review
D 104, 084078.

2.1 Derivation of the new metric form
In this contribution, we studied the whole Plebański–Demiański class of black hole
solutions in asymptotically flat universe (that is for Λ = 0). More specifically, we
derived a new metric form based on the well-known representation of this large
family originally found by Griffiths and Podolský in 2006 (II.28)–(II.32). We also
provided a thorough physical and geometrical analysis of this solution.

The main reason, why we decided to (re)analyze this solution, was a general
simplicity and the ability to factorize the metric function Q(r) given by (II.32)
in the case Λ = 0. This factorization was already introduced by Griffiths and
Podolský in 2005 (see the equation (15) in [38]). The question was whether also
the second metric function P (θ) could be factorized. We achieved this.

First of all, we introduced a set of new parameters, namely

m ≡ a2 − l2

ω2k
m̃ − α

l

ω
(a2 − l2 + e2 + g2) ,

e2 ≡ a2 − l2

ω2k
ẽ2 , (2.1)

g2 ≡ a2 − l2

ω2k
g̃2 .

Using it, we were able to pull a common constant factor S−1 out of the metric
functions P(θ) (II.31) and Q(r) (II.32), that is

Q(r) = S−1 Q(r) , P(θ) = S−1 P (θ) , (2.2)

where the prefactor is simply

S−1 ≡ ω2k

a2 − l2 . (2.3)

Then, we performed the transformations t → S t and φ → S φ which effec-
tively pulled out the constant S from the complete metric. This could be removed
by a simple conformal rescaling of the whole metric, ds̃2 = S ds2.

The last step was to appropriately fix the twist parameter ω. Recall that from
(II.11) it is clear that ω represents a twist behavior. By studying the choices made
for ω in [38], [40] for gaining the standard forms of the well-known metrics, we
finally decided to fix the parameter as

ω ≡ a2 + l2

a
. (2.4)
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With such a unique choice, we derived a completely new form of the Plebański–
Demiański metric describing all the type D black hole solutions with zero cosmo-
logical constant, namely

ds2 = 1
Ω2

(︄
− Q

ρ2

[︂
dt −

(︂
a sin2 θ + 4l sin2 1

2θ
)︂

dφ
]︂2

+ ρ2

Q
dr2

+ ρ2

P
dθ2 + P

ρ2 sin2 θ
[︂
a dt −

(︂
r2 + (a + l)2

)︂
dφ
]︂2)︄

, (2.5)

where

Ω = 1 − α a

a2 + l2 r (l + a cos θ) , (2.6)

ρ2 = r2 + (l + a cos θ)2 , (2.7)

P (θ) =
(︃

1 − α a

a2 + l2 r+(l + a cos θ)
)︃(︃

1 − α a

a2 + l2 r−(l + a cos θ)
)︃

, (2.8)

Q(r) =
(︂
r − r+

)︂(︂
r − r−

)︂(︃
1 + α a

a − l

a2 + l2 r
)︃(︃

1 − α a
a + l

a2 + l2 r
)︃

, (2.9)

and the convenient parameters r± determining the two main roots of Q(r) are

r± ≡ m ±
√︂

m2 + l2 − a2 − e2 − g2 . (2.10)

The whole metric is now described by the following physical parameters:

m ..... mass ,

a ..... Kerr-like rotation ,

l ..... NUT parameter ,

e ..... electric charge ,

g ..... magnetic charge ,

α ..... acceleration .

The great advantage of this new metric form is that we can now easily ob-
tain the standard forms of the most important black holes by simply setting the
corresponding physical parameters to zero, namely

• α = 0 : Kerr–Newman–NUT black holes (P2.III.A) ,
• l = 0 : Accelerating Kerr–Newman black holes (P2.III.B) ,
• a = 0 : Charged Taub–NUT black holes (P2.III.C) ,
• e = 0 = g : Uncharged accelerating Kerr–NUT black holes (P2.III.D) .

The new metric (2.5) describes black hole solutions with distinct horizons only
when the condition m2 + l2 > a2 + e2 + g2 holds. This representation, however,
also admits extreme and hyperextreme cases for which m2 + l2 ≤ a2 + e2 + g2. For
these cases we use a slightly modified metric functions (2.8), (2.9), namely

P (θ) = 1 − 2 α a
l + a cos θ

a2 + l2 m + α2a2 (l + a cos θ)2

(a2 + l2)2 (a2 − l2 + e2 + g2) , (2.11)

Q(r) =
(︂
r2 − 2m r + (a2 − l2 + e2 + g2)

)︂(︃
1 + α a

a − l

a2 + l2 r
)︃(︃

1 − α a
a + l

a2 + l2 r
)︃

.

Extreme and hyperextreme solutions are described in section (P2.IV).
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2.2 Physical analysis of the new metric form
Another benefit of this new metric form is its suitability for physical and geomet-
rical analysis. The fact that the metric is a direct generalization of the standard
forms of well-known black hole metrics means that physically relevant variables
or invariants are easily comparable with the ones from these simpler solutions.
Similarly, other well studied phenomena such as the ergoregions, pathological re-
gions, cosmological strings/struts, singularities, etc., are also expected to appear
in the general case.

First, we introduced a natural null tetrad inspired by the null tetrad (II.9):

k = 1√
2

Ω
ρ

[︄
1√
Q

(︃(︂
r2 + (a + l)2

)︂
∂t + a ∂φ

)︃
+
√︂

Q ∂r

]︄
,

l = 1√
2

Ω
ρ

[︄
1√
Q

(︃(︂
r2 + (a + l)2

)︂
∂t + a ∂φ

)︃
−
√︂

Q ∂r

]︄
, (2.12)

m = 1√
2

Ω
ρ

[︄
1√

P sin θ

(︃
∂φ +

(︂
a sin2 θ + 4l sin2 1

2θ
)︂

∂t

)︃
+ i

√
P ∂θ

]︄
.

Adopting this null tetrad the only non-zero NP scalars corresponding to the Weyl
and Ricci tensors are

Ψ2 = Ω3[︂
r + i (l + a cos θ)

]︂3
[︄

− (m + i l)
(︃

1 − i α a
a2 − l2

a2 + l2

)︃

+ (e2 + g2)
r − i (l + a cos θ)

(︃
1 + α a

a2 + l2

[︂
a r cos θ + i l (l + a cos θ)

]︂)︃]︄
, (2.13)

Φ11 = 1
2(e2 + g2) Ω4

ρ4 , (2.14)

while the Ricci scalar R vanishes (c.f. the NP scalars of the previous form of the
metric (II.15), (II.16)).

The spin coefficients are given by

κ = ν = 0 , σ = λ = 0 ,

ϱ = µ = −
√

Q√
2 ρ3

(︃
1 + i α a

a2 + l2 (l + a cos θ)2
)︃(︂

r − i (l + a cos θ)
)︂

, (2.15)

τ = π = −a
√

P sin θ√
2 ρ3

(︃
1 − i α a

a2 + l2 r2
)︃(︂

r − i (l + a cos θ)
)︂

,

which correspond to the expressions (II.10)–(II.12). Also the remaining coeffi-
cients α = β and ϵ = γ are non-zero, but we do not explicitly write them here
due to their complexity.

Therefore, both PNDs k and l are geodetic and shear-free, but with expansion
and a generally non-zero twist given by

Θ ≡ −Re (ρ) = −Re (µ) =
√

Q√
2 ρ3

(︃
r + α a

a2 + l2 (l + a cos θ)3
)︃

, (2.16)

ω ≡ −Im (ρ) = −Im (µ) = −Ω
√

Q√
2 ρ3

(l + a cos θ) . (2.17)
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The Newman–Penrose scalars of the Maxwell 2-form F for the charged solu-
tion (e ̸= 0 ̸= g) was also evaluated. Its 4-potential is

A = −
√︂

e2 + g2 r

ρ2

[︃
dt − (a sin2 θ + 4l sin2 1

2θ) dφ
]︃

, (2.18)

and the corresponding NP scalars gives only one non-zero component

Φ1 ≡ 1
2Fab(kalb + m̄amb) =

√
e2 + g2 Ω2(︂

r + i (l + a cos θ)
)︂2 . (2.19)

Furthermore, we were able to explicitly expressed the corresponding Weyl
scalar C ≡ CabcdCabcd (see the equations (65)–(66)). However, we mistakenly
called it the Kretschmann scalar K which is true only for the uncharged solution
(see Sec. I.4 for a full explanation, in particular equation (I.20)).

2.2.1 Horizons
The black hole horizons H±

b and the acceleration horizons H±
a given by the equa-

tion Q(r) = 0 are immediately apparent from the factorized form of the metric
function Q(r) given by (2.9), that is

H+
b at r+

b ≡ r+ = m +
√︂

m2 + l2 − a2 − e2 − g2 , (2.20)

H−
b at r−

b ≡ r− = m −
√︂

m2 + l2 − a2 − e2 − g2 , (2.21)

H+
a at r+

a ≡ + 1
α

a2 + l2

a2 + a l
, (2.22)

H−
a at r−

a ≡ − 1
α

a2 + l2

a2 − a l
, (2.23)

where r± were already introduced in (2.10).
Clearly r+ is positive for any choice of parameters (assuming m > 0), but r−

can have any sign:

r− > 0 ⇔ l2 < a2 + e2 + g2 , (2.24)
r− < 0 ⇔ l2 > a2 + e2 + g2 , (2.25)
r− = 0 ⇔ l2 = a2 + e2 + g2 . (2.26)

Moreover, for a sufficiently small (positive) acceleration

α <
1
r+

a2 + l2

a2 + a l
, (2.27)

the 4 horizons of the Plebański–Demiański black hole takes the most natural
ordering

r−
a < r−

b < r+
b < r+

a , (2.28)

where the two black hole horizons H±
b are surrounded by two “outer” acceleration

horizons H±
a .
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2.2.2 Ergoregions

Due to the presence of the rotation parameter a, the existence of ergoregions,
commonly known for the Kerr black hole and other related metrics, can be ex-
pected. The ergoregions occur in the situation when

gtt = 1
Ω2ρ2 (P a2 sin2 θ − Q) > 0 . (2.29)

This equation is not directly solvable by analytic means, but we provided
some visualization by computer plotting, see the Fig. 2.1.

Figure 2.1: Plot of the metric function gtt given by (2.29) in quasi-polar coordinates
x ≡

√︁
r2 + (a + l)2 sin θ, y ≡

√︁
r2 + (a + l)2 cos θ for r ≥ 0. The green regions localize

the ergoregions. The gray annulus in the center of each figure localizes the black hole
within its horizons H±

b at r+ and r−. The acceleration horizon H+
a at r+

a (big red circle)
and the conformal infinity I at Ω = 0 are also shown. For more details, see the Fig. 1
of the attached Paper 2.

2.2.3 Curvature singularities

Curvature singularities of a generic type D black hole (2.5) were discussed in Sec.
P2.V.C. They correspond to the case when the only non-zero component of the
Weyl tensor Ψ2 (2.13) diverges. This happens only for ρ2 = r + i (l + a cos θ) = 0,
that is when both the real and imaginary parts vanish:

r = 0 and at the same time l + a cos θ = 0 . (2.30)

This condition can be also seen from the Ricci scalar (2.14), or the Weyl
scalar C (equations (65)–(66) of the attached paper).

From the conditions (2.30), we can discuss all possible cases of the mutual
relation between the Kerr-like rotation a and the NUT parameter l. More specif-
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Figure 2.2: A schematic visualization of the ring singularity of the generic PD black
hole (2.5) for fixed coordinates t and φ. Visualization depicts the closest neighborhood
of the origin r = 0 (black circle), the ring singularity (red circle) for various values of
the Kerr-like rotation a or the NUT parameter l. For more details, see the Fig. 3 of
an attached article.

ically, the character of the curvature singularity is:

l = 0 , a = 0 : singularity at r = 0 for any θ ,

l = 0 , a ̸= 0 : ring singularity at r = 0 for θ = π/2 ,

0 < |l| < |a| : ring singularity at r = 0 for cos θ = −l/a , (2.31)
l = +a : singularity at r = 0 for θ = π ,

l = −a : singularity at r = 0 for θ = 0 ,

|l| > |a| > 0 : no singularity ,
l ̸= 0 , a = 0 : no singularity .

We illustrate all these situations in a schematic visualization in Fig. 2.2, show-
ing the closest neighborhood of the coordinate origin r = 0 (denoted by a black
vertical circle). The coordinates t and φ are fixed, and we plot (a part of) the
radial coordinate r and the angular coordinate θ ∈ [0, π].

2.2.4 Global structure and the conformal diagrams
We carefully derived the coordinate transformations to compactified coordinates
{T̃

±
h , R̃

±
h } (eq. (118) and (119) of the attached paper) and the appropriate angular
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coordinate ϕh (Ibid., eq. (104)). This allowed us to rigorously construct the
conformal Penrose diagrams. It generalized the previous works on special cases
of non-accelerating black holes [56]–[63], or black holes with non-zero acceleration
[53, 64].

Each couple of compactified coordinates {T̃
±
h , R̃

±
h } covers the correspond-

ing horizon H±
h . The distinct regions of the manifold between the horizons are

characterized by two integers (i, j). There are 5 types of regions, namely:

Region Description Specification of (i, j)
I: asymptotic time-dependent domain between H+

a and I (n − 2m + 1, n + 2m − 1)
II: stationary region between H+

b and H+
a (2n − m, 2n + m − 1)

III: time-dependent domain between the black-hole horizons (n − 2m, n + 2m)
IV: stationary region between H−

a and H−
b (2n − m + 1, 2n + m)

V: asymptotic time-dependent domain between I and H−
a (n − 2m + 1, n + 2m − 1)

The complete global structure was visualized for two cases: one for a special θ
on which the ring curvature singularity at r = 0 occurs, the second without any
curvature singularity (see Fig. 5 and Fig. 4 of the attached paper, respectively).
We present here only the case with the singularity, however in a slightly modified
form then Fig. 5 of the publication. Fig. 2.3 here takes into account the fact,
recently pointed out by MacCallum [65], that although the geodesics end for a
certain θ in a singularity, the diagram can still be extended for other types of
curves bypassing the curvature singularity at r = 0 via different values of θ.

Figure 2.3: Penrose conformal diagram of the completely extended spacetime (2.5) for
the section θ, ϕh = const. containing the curvature singularity at r = 0. In this case,
the regions IV are “cut in half” by this singularity, but it can be extended to a negative
r with curves having a different value of θ at r = 0.
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2.2.5 Regularity of the axes
Similarly as in Chapter 1, we investigated the nature of the axes θ = 0 and θ = π.
Also in this case the angular coordinate φ ∈ [0, 2πC) has the range depending on
the parameter C. This conicity factor represents a possible topological incom-
pleteness around the axes which physically causes the acceleration of this black
hole.

We started from the metric (2.5) with a vanishing NUT pathology around the
θ = 0 axis, and we just removed its conicity. This was easily achieved by the
convenient choice

C = C0 ≡
[︃(︃

1 − α
a2 + al

a2 + l2 r+

)︃(︃
1 − α

a2 + al

a2 + l2 r−

)︃]︃−1
(2.32)

=
[︃
1 − 2αm

a2 + al

a2 + l2 + α2
(︃

a2 + al

a2 + l2

)︃2
(a2 − l2 + e2 + g2)

]︃−1
,

which necessarily left an excess angle around the second axis θ = π, namely

δπ = −8π α
a2 [m(a2 + l2) − αal(a2 − l2 + e2 + g2)]

(a2 + l2)2 − 2αm(a2 + al)(a2 + l2) + α2(a2 + al)2(a2 − l2 + e2 + g2) .

Notice that it vanishes whenever αa = 0, that is for non-accelerating black holes.
On the other hand, performing the coordinate transformation

t = tπ − 4lφ , (2.33)

which effectively removes the NUT pathology around the complementary θ = π
axis, and assuming an appropriate choice of the conicity parameter

C = Cπ ≡
[︃(︃

1 + α
a2 − al

a2 + l2 r+

)︃(︃
1 + α

a2 − al

a2 + l2 r−

)︃]︃−1
(2.34)

=
[︃
1 + 2αm

a2 − al

a2 + l2 + α2
(︃

a2 − al

a2 + l2

)︃2
(a2 − l2 + e2 + g2)

]︃−1
,

the axis θ = π becomes completely regular, with a deficit angle

δ0 = 8π α
a2 [m(a2 + l2) − αal(a2 − l2 + e2 + g2)]

(a2 + l2)2 + 2αm(a2 − al)(a2 + l2) + α2(a2 − al)2(a2 − l2 + e2 + g2)

around the axis θ = 0. Again, it vanishes for αa = 0.
Interestingly, there exists a specific combination of physical parameters

m(a2 + l2) = αal (a2 − l2 + e2 + g2) , (2.35)

which regularizes both axes. Nevertheless, such a combination does not satisfy
the natural restrictions on the acceleration (2.27). For more information see the
book by Griffiths and Podolský [1], or our attached Paper 2.

From the function ω ≡ gtφ

gtt
on the axes θ = 0 and θ = π, it is also clear

that these strings/struts are twisting. It is possible to modify the twist of the
individual axes by the coordinate transformation (2.33), but the difference always
remains the same, namely ∆ω = 4l.

Another interesting phenomena which we have investigated is the occurrence
of the pathological regions around the rotating strings/struts along the axes,
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caused by the presence of the NUT parameter l. Indeed, with a non-zero l there
are areas where gφφ < 0. This causes the existence of closed timelike curves. For
the form of the metric (2.5), these pathologies lie in the range of the coordinates
for which

R4P (1 − cos2θ) < 4l2Q
(︂

cos θ − α T (1 − cos2θ)
)︂2

. (2.36)

These regions has been visualized in Fig. 6 of the attached Paper 2.

2.2.6 Thermodynamic properties
Finally, we computed the basic thermodynamic properties such as the entropy S
and the temperature T . They are directly connected to the area of the horizons A
and the surface gravity κ via the standard relations

S ≡ 1
4 A , T ≡ 1

2π
κ , (2.37)

see [66] for more details.
The area of all four horizons is given by the following expressions

area of H+
b is A+

b =
4πC

(︂
r2

+ + (a + l)2
)︂

(︃
1 − α

a2 + al

a2 + l2 r+

)︃(︃
1 + α

a2 − al

a2 + l2 r+

)︃ , (2.38)

area of H−
b is A−

b =
4πC

(︂
r2

− + (a + l)2
)︂

(︃
1 − α

a2 + al

a2 + l2 r−

)︃(︃
1 + α

a2 − al

a2 + l2 r−

)︃ , (2.39)

area of H+
a is infinite , (2.40)

area of H−
a is infinite , (2.41)

from which we can easily compute the entropy S via (2.37).
The surface gravity of the horizons is:

surface gravity of H+
b is κ+

b =
1
2

(︂
r+ − r−

)︂(︃
1 + α

a2 − al

a2 + l2 r+

)︃(︃
1 − α

a2 + al

a2 + l2 r+

)︃
r2

+ + (a + l)2 ,

surface gravity of H−
b is κ−

b = −
1
2

(︂
r+ − r−

)︂(︃
1 + α

a2 − al

a2 + l2 r−

)︃(︃
1 − α

a2 + al

a2 + l2 r−

)︃
r2

− + (a + l)2 ,

surface gravity of H+
a is κ+

a = −α
a2

a2 + l2

(︂
r+

a − r+
)︂(︂

r+
a − r−

)︂
(r+

a )2 + (a + l)2 ,

surface gravity of H−
a is κ−

a = α
a2

a2 + l2

(︂
r−

a − r+
)︂(︂

r−
a − r−

)︂
(r−

a )2 + (a + l)2 ,

which determines the temperature T , via (2.37).
It can be easily seen that extreme black holes, for which r+ = r−, have zero

temperature, because κ−
b = 0 = κ+

b .
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2.3 Summary
In this second Chapter, we have summarized the new metric form of the large
Plebański–Demiański class of type D black holes (2.5)–(2.9). This form is much
more convenient for geometrical or physical analysis. In particular:

• In Sec. 2.1, we outlined the derivation of a new form of the metric. By in-
troducing a reparametrization (2.1), applying the special conformal rescal-
ing S (2.3), and fixing a useful gauge of the twist parameter ω (2.4), we
were able to significantly simplify and neatly factorize the metric functions
(2.6)–(2.9).

• The metric depends on six physical parameters, namely on the mass m,
the rotational parameter a, the NUT twist parameter l, the acceleration
parameter α, and the charges e and g, respectively.

• Putting these parameters to zero, we recover the standard forms of the well-
known simpler metrics, such as the Kerr–Newman–NUT black hole (for
α = 0), accelerating Kerr–Newman black hole (for l = 0), charged Taub–
NUT black hole (for a = 0), and uncharged accelerating Kerr–NUT black
holes (for e = 0 = g).

• By setting the Kerr-like rotation a to zero, the new metric (2.5) becomes
completely independent of the acceleration α, and simplifies directly to the
charged Taub–NUT black hole. This confirms the previous observation that
there is no accelerating NUT black hole in the Plebański–Demiański class
of type D spacetimes.

• We evaluated the NP scalars of the Weyl and Ricci tensors in the natural
tetrad (2.12). The only non-zero components are the Ψ2 and Φ11, see (2.13)
and (2.14), confirming the type D algebraic structure.

• We calculated the spin coefficients. Both the double-degenerate PNDs are
expanding and (generally) twisting.

• There are four distinct horizons localized as the roots of the metric function
Q(r). These are a pair of black-hole horizons H±

b at r±
b and a pair of

acceleration horizons H±
a at r±

a . The roots r±
b and r±

a are explicitly expressed
and simple, see (2.20)–(2.23).

• For a sufficiently small α (2.27), the four horizons follows the natural or-
dering r−

a < r−
b < r+

b < r+
a .

• Similarly to the Kerr black hole, there are ergoregions due to the non-zero
rotational parameter a. These were visualized in Fig. 2.1.

• Using the curvature scalars, we clarified the presence of a ring curvature
singularity. It can occur if and only if r = 0 and at the same time l +
a cos θ = 0. Various possibilities were summarized in (2.31) and illustrated
in Fig. 2.2.
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• We constructed the corresponding Kruskal–Szekeres-type coordinates, and
generated the corresponding Penrose conformal diagrams. In Fig. 2.3, we
presented the version of the Penrose diagram for an appropriate θ = const.
including the singularity. This figure is, however, modified compared to
Fig. 5 of the attached Paper 2 due to the recent findings of MacCallum.

• The physical source of the acceleration comes from the topological defects
along the two axes of axial symmetry at θ = 0 and θ = π. By an appropriate
choice of the conicity parameter C, we managed to regularize one of the
axes. For a vanishing acceleration α, both the axes are regular.

• These cosmic strings/struts are twisting. This is characterized by the twist
parameter ω, which is always directly related to the NUT parameter l. The
difference between the twist parameters of each axis is always the constant
∆ω = 4l.

• The NUT-like pathology in the neighborhood of these rotating strings or
struts was studied. These regions with closed timelike curves are generally
given by the condition (2.36).

• The metric form (2.5) is also suitable for an easy analysis of the black hole
thermodynamics. We have explicitly evaluated the area of the four horizons,
their surface gravity, and thus their related temperature T and entropy S
(2.37).

To conclude, all this demonstrates the usefulness of the new improved metric
form of the family of type D black holes. We hope that various other investigations
of this interesting class of accelerating and rotating black holes with charges and
a NUT parameter can now be performed.

Although the results, published in Paper 2, cover all the main aspects of this
family of black holes, the cosmological constant Λ was missing.

As the next step we generalized our results to any value of Λ, completing thus
the derivation of the new better form of full family of type D black holes. This is
the contents of our Paper 3, summarized in the following Chapter 3.

81



82



New improved form of black holes of type D
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We derive a new metric form of the complete family of black hole spacetimes (without a cosmological
constant) presented by Plebański and Demiański in 1976. It further improves the convenient representation
of this large family of exact black holes found in 2005 by Griffiths and Podolský. The main advantage of
the new metric is that the key functions are considerably simplified, fully explicit, and factorized. All four
horizons are thus clearly identified, and degenerate cases with extreme horizons can easily be discussed.
Moreover, the new metric depends only on six parameters with direct geometrical and physical meaning,
namely m; a; l; α; e; g which characterize mass, Kerr-like rotation, Newman-Unti-Tamburino (NUT)
parameter, acceleration, electric and magnetic charges of the black hole, respectively. This general metric
reduces directly to the familiar forms of either (possibly accelerating) Kerr–Newman, charged Taub–NUT
solution, or (possibly rotating and charged) C-metric by simply setting the corresponding parameters to
zero, without the need of any further transformations. In addition, it shows that the Plebański–Demiański
family does not involve accelerating black holes with just the NUT parameter, which were discovered by
Chng, Mann and Stelea in 2006. It also enables us to investigate various physical properties, such as the
character of singularities, horizons, ergoregions, global conformal structure including the Penrose
diagrams, cosmic strings causing the acceleration of the black holes, their rotation, pathological regions
with closed timelike curves, or explicit thermodynamic properties. It thus seems that our new metric is a
useful representation of this important family of black hole spacetimes of algebraic type D in the
asymptotically flat settings.

DOI: 10.1103/PhysRevD.104.084078

I. INTRODUCTION

In this contribution, we derive and analyze a new
coordinate representation of the Plebański–Demiański
spacetimes [1] describing a large class of black holes
(identified also by Debever [2]). It contains, as special
cases, all the well-known simpler black holes, namely the
Schwarzschild (1915), Reissner–Nordström (1916–1918),
Kerr (1963), Taub–NUT (1963) or Kerr–Newman (1965)
black holes, and also the C-metric (1918, 1962), physically
interpreted by Kinnersley–Walker (1970) as uniformly
accelerating pair of black holes, see e.g., [3,4]. These
accelerating black holes can also be charged, rotating, and
can admit the NUT twist parameter.
The class of Plebański–Demiański spacetimes, which

includes all these famous black holes, is a family of exact
solutions to Einstein–Maxwell equations of algebraic
type D with double-aligned non-null electromagnetic field
(in the present paper we restrict ourselves only to the case
of vanishing cosmological constant)—see Chapter 16 of
the monograph [4] for the recent review and number of
related references.

Our new form of the metric, which further improves the
convenient representation of the class of Plebański–
Demiański black holes found by Griffiths and Podolský
[5–7], reads

ds2 ¼ 1

Ω2

�
−
Q
ρ2

h
dt−

�
asin2θþ 4lsin2 1

2
θ
�
dφ

i
2 þ ρ2

Q
dr2

þρ2

P
dθ2 þ P

ρ2
sin2θ

h
adt− ðr2 þ ðaþ lÞ2Þdφ

i
2
�
; ð1Þ

where

Ω ¼ 1 −
αa

a2 þ l2
rðlþ a cos θÞ; ð2Þ

ρ2 ¼ r2 þ ðlþ a cos θÞ2; ð3Þ

PðθÞ ¼
�
1 −

αa
a2 þ l2

rþðlþ a cos θÞ
�

×

�
1 −

αa
a2 þ l2

r−ðlþ a cos θÞ
�
; ð4Þ*podolsky@mbox.troja.mff.cuni.cz

†vratny.adam@seznam.cz
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QðrÞ ¼ ðr − rþÞðr − r−Þ

×

�
1þ αa

a − l
a2 þ l2

r

��
1 − αa

aþ l
a2 þ l2

r

�
: ð5Þ

The main roots of QðrÞ, which identify the two black-hole
horizons, are (independently of α) located at

rþ ≡mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2 − a2 − e2 − g2

q
; ð6Þ

r− ≡m −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2 − a2 − e2 − g2

q
; ð7Þ

with the (naturally positive) physical parameters

m…::mass;

a…::Kerr-like rotation;

l…::NUTparameter;

e…:: electric charge;

g…::magnetic charge;

α…:: acceleration:

This is a further simplification of the previous Griffiths–
Podolský form of the metric. The generic structure of the
metric has remained basically the same (compare (1) with
Eq. (16.18) in [4], renaming P → P, Q → Q and ϱ → ρ),
but the new metric functions PðθÞ and QðrÞ are now much
more compact and explicit than previous PðθÞ and QðrÞ.
They are nicely factorized, with P determining the deficit
angles corresponding to the cosmic strings along the axes
θ ¼ 0; π of the black holes (causing the acceleration), while
the roots of Q clearly determine the four horizons.
Moreover, the ambiguous twist parameter ω has been
removed by its most convenient fixing.
To see these improvements explicitly, let us recall the

original Griffiths–Podolský form [5] of the metric func-
tions, namely

Ω ¼ 1 − α
� l
ω
þ a
ω
cos θ

�
r;

ρ2 ¼ r2 þ ðlþ a cos θÞ2; ð8Þ

and

PðθÞ ¼ 1 − a3 cos θ − a4 cos2 θ; ð9Þ

QðrÞ ¼
�
ðω2kþ ẽ2 þ g̃2Þ

�
1þ 2α

l
ω
r

�
− 2m̃rþ ω2k

a2 − l2
r2
�

×

�
1þ α

a− l
ω

r

��
1− α

aþ l
ω

r

�
; ð10Þ

where the constants are

a3 ¼ 2α
a
ω
m̃ − 4α2

al
ω2

ðω2kþ ẽ2 þ g̃2Þ;

a4 ¼ −α2
a2

ω2
ðω2kþ ẽ2 þ g̃2Þ; ð11Þ

and ω2k is given by

ω2k
a2 − l2

¼ 1þ 2α l
ω m̃ − 3α2 l2

ω2 ðẽ2 þ g̃2Þ
1þ 3α2 l2

ω2 ða2 − l2Þ ; ð12Þ

which implies the expression

ω2kþ ẽ2 þ g̃2 ¼ ða2 − l2 þ ẽ2 þ g̃2Þ þ 2α l
ω ða2 − l2Þm̃

1þ 3α2 l2

ω2 ða2 − l2Þ :

ð13Þ

Substituting (11)–(13) into (9) and (10) gives explicit but
cumbersome expressions for the key metric functions PðθÞ
and QðrÞ. This is now simplified in the new compact form
of the metric (1)–(5).

II. DERIVATION OF THE NEW METRIC

The first step in improving the form of the spacetime
is to concentrate on the first factor of the metric function
QðrÞ given by (10), which is quadratic in r. It can be
rewritten as

�
ðω2kþ ẽ2 þ g̃2Þ

�
1þ 2α

l
ω
r

�
− 2m̃rþ ω2k

a2 − l2
r2
�

¼ ω2k
a2 − l2

�
r2 − 2m̃

a2 − l2

ω2k
rþ

�
1þ 2α

l
ω
r

��
a2 − l2 þ a2 − l2

ω2k
ðẽ2 þ g̃2Þ

��
: ð14Þ
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It can now be observed that this rather complicated
expression nicely simplifies if we introduce a new set of
the mass and charge parameters m, e, g in such a way that

m≡ a2 − l2

ω2k
m̃ − α

l
ω
ða2 − l2 þ e2 þ g2Þ;

e2 ≡ a2 − l2

ω2k
ẽ2;

g2 ≡ a2 − l2

ω2k
g̃2: ð15Þ

Indeed, the factor (14) then takes the explicit form

ω2k
a2 − l2

½r2 − 2mrþ ða2 − l2 þ e2 þ g2Þ�: ð16Þ

Provided m2 þ l2 > a2 þ e2 þ g2, it has two explicit roots
rþ and r− given by (6) and (7), respectively. The metric
function (10) can thus be factorized to

QðrÞ ¼ S−1ðr − rþÞðr − r−Þ

×
�
1þ α

a − l
ω

r
��

1 − α
aþ l
ω

r
�
; ð17Þ

where the constant S is a shorthand for the inverse of (12),
namely

S−1 ≡ ω2k
a2 − l2

: ð18Þ

Substitution from (15) into (12), rewritten as

ω2k
a2 − l2

�
1þ 3α2

l2

ω2
ða2 − l2Þ

�

¼ 1þ 2α
l
ω
m̃ − 3α2

l2

ω2
ðẽ2 þ g̃2Þ; ð19Þ

yields the explicit expression for S in terms of the new
physical parameters

S ¼ 1 − 2α
l
ω
mþ α2

l2

ω2
ða2 − l2 þ e2 þ g2Þ: ð20Þ

Notice that it can also be expressed in terms of the roots rþ
and r− as

S ¼ 1 − α
l
ω
ðrþ þ r−Þ þ α2

l2

ω2
rþr−

¼
�
1 − α

l
ω
rþ

��
1 − α

l
ω
r−

�
: ð21Þ

One may be worried about the change of the “main
physical parameters” introduced by (15). However, by
inspecting the expressions (19), (20) it is immediately seen
that

α
l
ω
¼ 0 implies S ¼ a2 − l2

ω2k
¼ 1;

and consequentlym ¼ m̃; e ¼ ẽ; g ¼ g̃: ð22Þ

It means, that in all the subcases α ¼ 0 or l ¼ 0 (namely for
Schwarzschild, Reissner–Nordström, Kerr, Taub–NUT or
Kerr–Newman black holes, and also for their accelerating
generalizations with vanishing NUT parameter l) the mass
parameterm and the charges e, g actually remain the same.
And since there are no accelerating purelyNUT black holes
in the Plebański–Demiański class of type D solutions, see
[8], the difference betweenm, e, g and m̃; ẽ; g̃ occurs only if
αal ≠ 0, cf. (30). That is the most general case of accel-
erating black holes with both the rotation a and the NUT
parameter l, whose geometric and physical properties have
not yet been studied.
After factorizing the function QðrÞ, as the second step

we now turn to the metric function PðθÞ determined by the
constants a3 and a4. It is known that these two Plebański–
Demiański metric functions are related, and for vanishing
cosmological constant they share the root structure. It can
thus be expected that also the function PðθÞ could be
factorized by the suitable reparametrization (15). This is
indeed the case. Expressing (11) in terms of the new
parameters m, e, g we get

a3 ¼ 2α
a
ω

ω2k
a2 − l2

�
m − α

l
ω
ða2 − l2 þ e2 þ g2Þ

�
;

a4 ¼ −α2
a2

ω2

ω2k
a2 − l2

ða2 − l2 þ e2 þ g2Þ: ð23Þ

Using (18), (20) and substituting (23) into (9) we obtain

PðθÞ ¼ S
ω2k

a2 − l2
− a3 cos θ − a4cos2θ

¼ ω2k
a2 − l2

�
1 − 2α

lþ a cos θ
ω

mþ α2
ðlþ a cos θÞ2

ω2
ða2 − l2 þ e2 þ g2Þ

�

¼ S−1
�
1 − αrþ

lþ a cos θ
ω

��
1 − αr−

lþ a cos θ
ω

�
: ð24Þ
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The metric function PðθÞ is thus also factorized when
m2 þ l2 > a2 þ e2 þ g2, i.e., when the roots rþ and r−
exist.
To summarize, we have obtained the key expressions

(17) and (24), which can be written as

QðrÞ ¼ S−1QðrÞ; PðθÞ ¼ S−1PðθÞ; ð25Þ

where

QðrÞ ¼ ðr − rþÞðr − r−Þ
�
1þ α

a − l
ω

r

��
1 − α

aþ l
ω

r

�
;

ð26Þ

PðθÞ ¼
�
1 − αrþ

lþ a cos θ
ω

��
1 − αr−

lþ a cos θ
ω

�
:

ð27Þ

Putting these into the original metric [5–7] (which has the
same form as (1) with Q, P replaced byQ, P, respectively)
we get

ds2¼ S
Ω2

�
−
Q
ρ2
S−2

�
dt−

�
asin2θþ4lsin2 1

2
θ
�
dφ

�
2

þρ2

Q
dr2

þρ2

P
dθ2þ P

ρ2
sin2θS−2

�
adt−ðr2þðaþlÞ2Þdφ

�
2
�
:

ð28Þ

The third step in deriving the new metric is now based on
an observation (first made in [9]) that it is possible to
rescale the coordinates t and φ by a constant scaling factor
S ≠ 0 (because their range has not yet been specified). In
other words, we perform the transformation t → St and
φ → Sφwhich effectively removes the constants S from the
conformal metric dŝ2 ≡ S−1ds2. Moreover, a constant
conformal factor S−1 does not change the geometry of
the spacetime (recall also (22), according to which S ¼ 1
whenever αal ¼ 0). Therefore, the Plebański–Demiański
black-hole solutions can equivalently be represented by the
metric dŝ2. Dropping the hat, we arrive at the metric (1).
In fact, this specific rescaling procedure removes the two

coordinate singularities hidden in the expression (21) for S
at αlr� ¼ ω, making our new metric form (1)–(5) some-
what richer.
To complete the derivation, it only remains to fix the

remaining twist parameter ω. In the original Griffiths–
Podolský form of the metric [5], this was left as a free
parameter which could be set to any value (if at least one of
the parameters a or l are nonzero, otherwise ω≡ 0—see
the discussion in [5,7]) using the remaining coordinate
freedom. This ambiguity is unfortunate since the metric
explicitly contains nonunique ω coupled both to the Kerr-
like rotation a and the NUT parameter l. We can now

improve this drawback. It was found in [9], and conven-
iently employed in [10], that the most suitable gauge choice
of the twist parameter is

ω≡ a2 þ l2

a
; ð29Þ

so that

a
ω
¼ a2

a2 þ l2
;

l
ω
¼ al

a2 þ l2
: ð30Þ

Substituting this gauge into the expressions (8), (27) and
(26), we obtain the explicit metric functions Ω, P and Q
presented in (2), (4) and (5), respectively. The new form of
the metric (1)–(5), which nicely represents the large family
of type D black holes, is thus completely derived.

III. MAIN SUBCLASSES OF TYPE D
BLACK HOLES

When m2 þ l2 > a2 þ e2 þ g2, the new metric (1)–(5)
naturally generalizes the standard forms of the most impor-
tant black hole solutions. These are now easily obtained by
setting the corresponding physical parameters to zero.

A. Kerr–Newman–NUT black holes
(α= 0: no acceleration)

By setting the acceleration parameter α to zero, the
functions (2), (4) reduce to Ω ¼ 1, P ¼ 1, so that the
generic metric (1) simplifies as

ds2 ¼ −
Q
ρ2

�
dt −

�
asin2θ þ 4lsin2 1

2
θ
�
dφ

�
2

þ ρ2

Q
dr2

þρ2dθ2 þ sin2θ
ρ2

�
adt − ðr2 þ ðaþ lÞ2Þdφ

�
2

;

ð31Þ

where

QðrÞ ¼ ðr − rþÞðr − r−Þ; ð32Þ

ρ2 ¼ r2 þ ðlþ a cos θÞ2: ð33Þ

The two roots of QðrÞ identify the two black-hole horizons
located at

r� ≡m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2 − a2 − e2 − g2

q
: ð34Þ

Famous subcases are readily obtained, namely the black
holes solution of Kerr–Newman (l ¼ 0), charged Taub–
NUT (a ¼ 0), Kerr (l ¼ 0, e ¼ 0 ¼ g), Reissner–
Nordström (a ¼ 0, l ¼ 0), and Schwarzschild (a ¼ 0,
l ¼ 0, e ¼ 0 ¼ g).
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B. Accelerating Kerr–Newman black holes
(l = 0: no NUT)

Without the NUT parameter l, the new metric (1)
simplifies to

ds2 ¼ 1

Ω2

�
−
Q
ρ2

�
dt − asin2θ dφ

�
2

þ ρ2

Q
dr2

þ ρ2

P
dθ2 þ P

ρ2
sin2θ

�
adt − ðr2 þ a2Þdφ

�
2
�
; ð35Þ

where

Ω ¼ 1 − αr cos θ; ð36Þ

ρ2 ¼ r2 þ a2 cos2 θ; ð37Þ

PðθÞ ¼ ð1 − αrþ cos θÞð1 − αr− cos θÞ; ð38Þ

QðrÞ ¼ ðr − rþÞðr − r−Þð1þ αrÞð1 − αrÞ: ð39Þ

This is a compact factorized form of the class of accel-
erating, rotating, and charged black holes. The spacetime
admits 4 horizons, namely two black hole horizons at r� ¼
m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2 − e2 − g2

p
and two acceleration horizons at

�α−1. For vanishing charges (e ¼ 0 ¼ g), it is equivalent to
the rotating C-metric identified by Hong and Teo [11]. For
vanishing acceleration (α ¼ 0), the standard form of Kerr–
Newman solution in Boyer–Lindquist coordinates is
recovered.

C. Charged Taub–NUT black holes
(a= 0: no rotation)

By setting the Kerr-like rotation parameter a to zero, the
new metric (1) considerably simplifies and becomes inde-
pendent of the acceleration α (because the metric functions
(2)–(5) depend on α only via the product αa). Indeed,
Ω ¼ 1, P ¼ 1, so that

ds2 ¼ −
Q
ρ2

�
dt − 4lsin21

2
θ dφ

�
2

þ ρ2

Q
dr2 þ ðr2 þ l2Þðdθ2 þ sin2θ dφ2Þ; ð40Þ

where

QðrÞ ¼ ðr − rþÞðr − r−Þ; ð41Þ
ρ2 ¼ r2 þ l2: ð42Þ

This explicitly demonstrates that there is no accelerating
NUT black hole in the Plebański–Demiański family of
spacetimes. This observationwasmade already in the original
works [5–7], and recently clarified. It was proven in [8] that
the metric for accelerating (nonrotating) black holes with

purely NUT parameter—which was found in 2006 by Chng,
Mann and Stelea [12] and analyzed in detail in [8]—is of
algebraic type I. Therefore, it cannot be contained in the
Plebański–Demiański class which is of type D.
The charged Taub–NUT spacetime (40) is nonsingular

(its curvature does not diverge at r ¼ 0), away from the axis
θ ¼ π (where the rotating cosmic string is located) it is
asymptotically flat as r → �∞, and the interior of the black
hole is located between the two horizons rþ > 0 and
r− > 0, where r� ¼ m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2 − e2 − g2

p
.

D. Uncharged accelerating Kerr–NUT black holes
(e= 0 = g: vacuum)

Another nice feature of our new metric (1)–(5) is that it
has the same form for vacuum spacetimes without the
electromagnetic field. Indeed, the electric and magnetic
charges e and g, which generate the electromagnetic field,
enter only the expressions for r� introduced in (6), (7). In
other words, e and g just change the positions of the two
black hole horizons. In the vacuum case, these constant
parameters simplify to

r� ≡m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2 − a2

p
: ð43Þ

The metric (1)–(5) with (43) represents the full class of
accelerating Kerr–NUT black holes. It reduces to accelerat-
ing Kerr black hole when l ¼ 0, and nonaccelerating Kerr–
NUTblack holewhen α ¼ 0. For a ¼ 0 it simplifies directly
to the Taub–NUT black hole (40) without acceleration.

IV. EXTREME BLACK HOLES AND
HYPEREXTREME CASES

The new form of the generic black hole (1)—and also all
its subclasses—naturally admits a special case with a
degenerate horizon, which is the situation when the two
horizons coincide, rþ ¼ r−. In view of (6), (7), this occurs
if and only if the extremality condition

m2 þ l2 ¼ a2 þ e2 þ g2 ð44Þ

is satisfied, and in such a case the extremal horizon is
located at

r ¼ m: ð45Þ

Consequently, the metric functions take the form

PðθÞ ¼
�
1 −

αam
a2 þ l2

ðlþ a cos θÞ
�

2

; ð46Þ

QðrÞ ¼ ðr −mÞ2
�
1þ αa

a − l
a2 þ l2

r

��
1 − αa

aþ l
a2 þ l2

r

�
;

ð47Þ
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while all the remaining expressions in the metric (1) remain
the same. Apart from the degenerate black hole horizon at
r ¼ m with zero surface gravity (and thus zero tempera-
ture), there are two acceleration horizons.
This large family of extremal accelerating Kerr–

Newman–NUT black holes admits various natural
subclasses which are easily obtained by setting the corre-
sponding physical parameters α, l, a, e, g to zero. In
particular, Kerr–Newman–NUT black holes without accel-
eration (α ¼ 0) take the form

ds2 ¼ −
Q
ρ2

�
dt −

�
asin2θ þ 4lsin2 1

2
θ
�
dφ

�
2

þ ρ2

Q
dr2

þ ρ2dθ2 þ sin2θ
ρ2

½adt − ðr2 þ ðaþ lÞ2Þdφ�2; ð48Þ

where

Q
ρ2

¼ ðr −mÞ2
r2 þ ðlþ a cos θÞ2 : ð49Þ

The subcases are Kerr–Newman (l ¼ 0), charged Taub–
NUT (a ¼ 0), Kerr (l ¼ 0, e ¼ 0 ¼ g), and Reissner–
Nordström (a ¼ 0, l ¼ 0) extremal black holes, satisfying
the extremality condition (44).
Interestingly, in our recent work [10] we proved the

equivalence of degenerate horizons in this family (48), (49)
of type D black holes to a complete class of extremal
isolated horizons with axial symmetry.
Finally, if the physical parameters satisfy the relation

m2 þ l2 < a2 þ e2 þ g2; ð50Þ

the black hole horizons are absent. This case represents
hyperextreme spacetimes with very large rotation a and/or
charges e, g. The metric function QðrÞ does not admit the
real roots rþ; r−. Instead, it involves a nonfactorizable

quadratic term of the form (16). In such a case, the metric
(1) remains valid, but its metric functions P and Q are

PðθÞ ¼ 1 − 2αa
lþ a cos θ
a2 þ l2

m

þ α2a2
ðlþ a cos θÞ2
ða2 þ l2Þ2 ða2 − l2 þ e2 þ g2Þ; ð51Þ

QðrÞ ¼ ðr2 − 2mrþ ða2 − l2 þ e2 þ g2ÞÞ

×

�
1þ αa

a − l
a2 þ l2

r

��
1 − αa

aþ l
a2 þ l2

r

�
: ð52Þ

This exact spacetime represents a naked singularity of mass
mwith rotation a, NUT parameter l, electromagnetic charges
e, g, and acceleration α caused by the tension of rotating
cosmic strings attached to it along the axes. There are only
two acceleration horizons. For α ¼ 0, the metric simplifies
considerably to the form (48) with

Q
ρ2

¼ r2 − 2mrþ ða2 − l2 þ e2 þ g2Þ
r2 þ ðlþ a cos θÞ2 : ð53Þ

The new metric form (1)–(5) thus nicely describes the
complete family of black holes of type D, as well as their
extreme cases and hyperextreme spacetimes with naked
singularities.

V. PHYSICALDISCUSSIONOF THENEWMETRIC

To study the global structure of the spacetime and to
analyze its physical properties, it is first necessary to
determine the gravitational field, in particular the specific
curvature of the geometry, and the electromagnetic field.
These are encoded in the Newman–Penrose scalars—the
components of the Riemann and Maxwell tensors with
respect to the null tetrad. Its most natural choice is

k ¼ 1ffiffiffi
2

p Ω
ρ

�
1ffiffiffiffi
Q

p ððr2 þ ðaþ lÞ2Þ∂t þ a∂φÞ þ
ffiffiffiffi
Q

p ∂r

�
;

l ¼ 1ffiffiffi
2

p Ω
ρ

�
1ffiffiffiffi
Q

p ððr2 þ ðaþ lÞ2Þ∂t þ a∂φÞ −
ffiffiffiffi
Q

p ∂r

�
;

m ¼ 1ffiffiffi
2

p Ω
ρ

�
1ffiffiffiffi

P
p

sin θ

�
∂φ þ

�
asin2θ þ 4lsin2 1

2
θ
�
∂t

�
þ i

ffiffiffiffi
P

p ∂θ

�
: ð54Þ

Adirect calculation reveals that the only nontrivial Newman–Penrose scalars corresponding to theWeyl and Ricci tensors are

Ψ2 ¼
Ω3

½rþ iðlþ a cos θÞ�3
�
−ðmþ ilÞ

�
1 − iαa

a2 − l2

a2 þ l2

�

þ ðe2 þ g2Þ
r − iðlþ a cos θÞ

�
1þ αa

a2 þ l2
½ar cos θ þ ilðlþ a cos θÞ�

��
; ð55Þ
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Φ11 ¼
1

2
ðe2 þ g2ÞΩ

4

ρ4
; ð56Þ

while the Ricci scalar vanishes (indeed, R ¼ 0 for electro-
vacuum solutions with Λ ¼ 0). Recall also (2), (3), i.e.,

Ω¼ 1−
αa

a2 þ l2
rðlþ a cosθÞ; ρ2 ¼ r2 þ ðlþ acosθÞ2:

ð57Þ

The curvature for the main subclasses of type D black
holes, summarized in Sec. III, are now easily obtained by
setting up the corresponding physical parameters to zero:

(i) Kerr–Newman–NUT (α ¼ 0: no acceleration)

Ψ2 ¼
1

½rþ iðlþ a cos θÞ�3

×

�
−ðmþ ilÞ þ e2 þ g2

r − iðlþ a cos θÞ
�
; ð58Þ

(ii) Accelerating Kerr–Newman (l ¼ 0: no NUT)

Ψ2 ¼
ð1 − αr cos θÞ3
ðrþ ia cos θÞ3

×

�
−mð1 − iαaÞ þ ðe2 þ g2Þ 1þ αr cos θ

r − ia cos θ

�
;

ð59Þ

(iii) Charged Taub–NUT (a ¼ 0: no rotation)

Ψ2 ¼ −
mþ il
ðrþ ilÞ3 þ

e2 þ g2

ðr2 þ l2Þðrþ ilÞ2 : ð60Þ

Of course, these expressions further simplify if (some of)
the remaining parameters are zero. In particular, the Kerr–
Newman black hole is recovered from (58) if l ¼ 0. The
C-metric (accelerating charged black holes without rota-
tion) are obtained from (59) when a ¼ 0. The Reissner–
Nordström black hole follows from (60) when l ¼ 0. The
uncharged (vacuum) black holes are obtained for
e ¼ 0 ¼ g. Moreover, all these particular expressions for

Ψ2 agree with those presented in the corresponding
chapters of the monograph [4].
It is also useful to calculate the spin coefficients for the

null tetrad (54). It turns out that

κ¼ν¼0; σ¼λ¼0;

ϱ¼μ¼−
ffiffiffiffi
Q

p
ffiffiffi
2

p
ρ3

�
1þi

αa
a2þl2

ðlþacosθÞ2
�
ðr−iðlþacosθÞÞ;

τ¼π¼−
a

ffiffiffiffi
P

p
sinθffiffiffi
2

p
ρ3

�
1−i

αa
a2þl2

r2
�
ðr−iðlþacosθÞÞ:

ð61Þ

Also the coefficients α ¼ β and ϵ ¼ γ are nonzero (we do
not write them because they are not simple). Both double-
degenerate principal null directions generated by k and l
are thus geodetic and shear-free. However, they have
expansion and twist given by ϱ ¼ μ≡ −ðΘþ iωÞ, that is

Θ ¼
ffiffiffiffi
Q

p
ffiffiffi
2

p
ρ3

�
rþ αa

a2 þ l2
ðlþ a cos θÞ3

�
; ð62Þ

ω ¼ −
Ω

ffiffiffiffi
Q

p
ffiffiffi
2

p
ρ3

ðlþ a cos θÞ: ð63Þ

It is now explicitly seen that these black-hole spacetimes of
algebraic type D are nontwisting (for a general r, θ) if
and only if a ¼ 0 ¼ l. Moreover, on the horizons identified
by QðrÞ ¼ 0, both the expansion and the twist vanish
(Θ ¼ 0 ¼ ω).
For investigation of the curvature singularities and

asymptotically flat regions, it is also useful to evaluate
the Kretschmann scalar

K≡ RabcdRabcd ¼ 48ReðΨ2
2Þ; ð64Þ

for type D spacetimes. Interestingly, it takes the factorized
form

K ¼ 48
Ω6

ρ12
KþK−; ð65Þ

where

K� ¼ m

�
F� � αa

a2 − l2

a2 þ l2
F∓

�
∓ l

�
F∓ ∓ αa

a2 − l2 þ e2 þ g2

a2 þ l2
F�

�
− ðe2 þ g2Þ

�
1þ αa

a2 þ l2
rL

�
T�;

F� ¼ ðr ∓ LÞðr2 � 4rLþ L2Þ; T� ¼ ðr2 � 2rL − L2Þ; L ¼ lþ a cos θ: ð66Þ
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These expressions characterize the gravitational field.
When e, g are not zero, the black-hole spacetime also

contains a specific electromagnetic field represented by the
Maxwell 2-form F ¼ 1

2
Fabdxa ∧ dxb ¼ dA. Its 1-form

potential A ¼ Aadxa is

A¼−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2þg2

q
r
ρ2

h
dt−

�
asin2θþ4lsin2 1

2
θ
�
dφ

i
: ð67Þ

Therefore, the nonzero components of Fab ¼ Ab;a − Aa;b

are

Ftr ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 þ g2

q
ρ−4ðr2 − ðlþ a cos θÞ2Þ;

Fφr ¼ −Ftr

�
a sin2 θ þ 4l sin2 1

2
θ
�
;

Ftθ ¼ 2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 þ g2

q
ρ−4r sin θðlþ a cos θÞ;

Fφθ ¼ −2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 þ g2

q
ρ−4r sin θðlþ a cos θÞðr2 þ ðaþ lÞ2Þ:

ð68Þ

The corresponding Newman–Penrose scalars are
Φ0 ≡ Fabkamb ¼ 0, Φ2 ≡ Fabm̄alb ¼ 0, and

Φ1 ≡ 1

2
Fabðkalb þ m̄ambÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 þ g2

p
Ω2

ðrþ iðlþ a cos θÞÞ2 : ð69Þ

It follows that Φ1Φ̄1 ¼ 2Φ11, in fully agreement with (56).

A. Position of the horizons

The new metric form (1) is very convenient for inves-
tigation of horizons. Clearly, the “radial” coordinate r is
spatial in the regions whereQðrÞ > 0, while it is a temporal
coordinate where QðrÞ < 0. These regions are separated
by horizons localized at QðrÞ ¼ 0. In the case when
m2 þ l2 > a2 þ e2 þ g2, the metric function Q is given
by (5),

QðrÞ ¼ ðr − rþÞðr − r−Þ

×

�
1þ αa

a − l
a2 þ l2

r

��
1 − αa

aþ l
a2 þ l2

r

�
: ð70Þ

It is a quartic expression explicitly factorized into four real
roots, so that there are four horizons, namely

Hþ
b at rþb ≡ rþ ¼ mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2 − a2 − e2 − g2

q
;

ð71Þ

H−
b at r−b ≡ r− ¼ m −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2 − a2 − e2 − g2

q
;

ð72Þ

Hþ
a at rþa≡þ 1

α

a2 þ l2

a2 þ al
; ð73Þ

H−
a at r−a≡ −

1

α

a2 þ l2

a2 − al
; ð74Þ

see the definitions of r� introduced in (6), (7). It is clear that
rþ > 0 for an arbitrary choice of the physical parameters
(assuming m > 0), but r− can take any sign. In particular,

r− > 0 ⇔ l2 < a2 þ e2 þ g2; ð75Þ

r− < 0 ⇔ l2 > a2 þ e2 þ g2; ð76Þ

r− ¼ 0 ⇔ l2 ¼ a2 þ e2 þ g2: ð77Þ

The horizons H�
b at r�b are two black-hole horizons.

Interestingly, in our new metric form these are independent
of the acceleration parameter α. In fact, they are located at
the same values rþ; r− as the two horizons in the class of
standard (nonaccelerating) Kerr–Newman–NUT black
holes given by α ¼ 0, see [4].
The horizons H�

a at r�a are two acceleration horizons.
Their presence is the consequence of the fact that the black
holes accelerate whenever the parameter α is nonzero. It is
interesting that their location is now independent of massm
and charges e, g of the black holes. The values of r�a depend
only on the acceleration α and the specific combination of
the twist parameters a, l. Moreover, when l ¼ 0 these are
simply given just by the acceleration parameter as
r�a ¼ �α−1. They retain the same values as in the C-metric
[4] even if it is generalized to include the charges
and rotation, that is for accelerating Kerr–Newman
black holes.
Of course, there may be less than 4 horizons. As

already discussed in Sec. IV, when the physical parameters
satisfy the extremality relation m2 þ l2 ¼ a2 þ e2 þ g2 the
two black-hole horizons Hþ

b ;H
−
b coincide because

rþ ¼ r−. In such a degenerate case the extremal horizon
is located at

rþb ¼ r−b ¼ m; ð78Þ

see (44) and (45), while the two distinct acceleration
horizons H�

a given by (73) and (74) remain the same.
This is the horizon structure for the family of extremal
accelerating Kerr–Newman–NUT black holes, recently
studied in [10]. If the parameters satisfy m2 þ l2 < a2 þ
e2 þ g2 the black-hole horizons Hþ

b ;H
−
b are absent. Such

hyperextreme spacetimes involve accelerating naked sin-
gularities with just two acceleration horizons H�

a .
In the limit α → 0 of vanishing acceleration, from (73),

(74) we formally obtain r�a → �∞ which is consistent
with the fact that the two horizons H�

a disappear for
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nonaccelerating Kerr–Newman–NUT black holes. In the
complementary limit a → 0 of vanishing Kerr-like rotation,
we also obtain r�a → ∞. This explicitly confirms that
there are no accelerating purely NUT black holes in the
Plebański–Demiański family of type D spacetimes. Indeed,
by setting a ¼ 0 the metric (1) becomes independent of α,
and the metric reduces to (40) representing charged Taub–
NUT black holes without acceleration. Nevertheless, accel-
erating black holes with purely NUT parameter exist
outside the Plebański–Demiański family [12]—they are
of algebraic type I, and have been recently analyzed in
detail in [8].
Returning now to the generic case with four distinct

horizons, it immediately follows from (71)–(74) that
(assuming non-negative parameters α, a, and l)

r−b < rþb always; while r−a < rþa for 0 ≤ l < a:

ð79Þ

In the limiting case l → a we obtain rþa ¼ α−1, r−a → −∞,
while for l > a there is 0 < rþa < r−a .
The physically most natural ordering of the horizons

r−a < r−b < rþb < rþa ; ð80Þ

in which the two black hole horizonsH�
b are surrounded by

two “outer” acceleration horizonsH�
a , requires a sufficiently

small acceleration. The condition rþb < rþa explicitly reads

α <
1

rþ

a2 þ l2

a2 þ al
; ð81Þ

while r−a < r−b for any 0 ≤ l < a because in such a case
r−a < 0 but 0 < r−b .
By evaluating Q given by (70) at r ¼ 0 we obtain

Qðr ¼ 0Þ ¼ rþr− ¼ a2 − l2 þ e2 þ g2 > 0 for l < a:

ð82Þ

Consequently, Q > 0 for any ðr−a ; r−b Þ. It follows that the
coordinate r is spatial in the regions ðr−a ; r−b Þ and ðrþb ; rþa Þ,
that is between the black-hole and acceleration horizons,
while it is temporal in the complementary three regions.
Moreover, using the condition (81) we infer that

αa
a2 þ l2

r−ðlþ a cos θÞ < αa
a2 þ l2

rþðlþ a cos θÞ

< αrþ
a2 þ al
a2 þ l2

< 1: ð83Þ

Itmeans that both brackets in themetric coefficientPðθÞ given
by (4) are positive, and thus the function P in (1) is always
positive, retaining the correct signature of the spacetime.

B. Ergoregions

With the rotation parameter a, the family of black holes
(1) contains ergoregions similar to those known from the
famous Kerr solution.
The boundary of the ergoregion is defined by the condition

gtt ¼ 0, where the corresponding metric coefficient reads

gtt ¼
1

Ω2ρ2
ðPa2 sin2 θ −QÞ: ð84Þ

The corresponding condition is thus

QðreÞ ¼ a2sin2θ PðθÞ; ð85Þ

where themetric functionsPðθÞ andQðrÞ aregivenby (4) and
(5), respectively. For a fixed value of the angular coordinate θ,
the right-hand side of (85) is some constant. And since the
functionQðrÞ is of the fourth order, it follows that there are (at
most) four distinct boundaries re of the ergoregions in the
direction of θ. These are associated with the corresponding
four horizons H�

b and H�
a , defining the surfaces of infinite

redshift, and also the stationary limit at which observers on
fixed r and θ cannot “stand still”.
Solving the Eq. (85) explicitly is generally complicated

but can be plotted using computer, see Fig. 1. It is also
obvious that the ergoregion boundary “touches” the
corresponding horizon at the poles θ ¼ 0 and θ ¼ π
because there the condition (85) reduces to QðreÞ ¼ 0.
In the case of vanishing acceleration α ¼ 0, the metric

functions (4) and (5) simplify to P ¼ 1 and Q ¼ ðr − rþÞ
ðr − r−Þ. Equation (85) reduces to r2e − 2mre þ
ða2 cos2 θ − l2 þ e2 þ g2Þ ¼ 0 which has two roots

re�ðθÞ ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2 − e2 − g2 − a2 cos2 θ

q
: ð86Þ

This explicitly localizes the two ergoregions for the
Kerr–Newman–NUT black holes. As for the standard
Kerr black hole, it extends most from the corresponding
horizon in the equatorial plane θ ¼ π=2, in which case
re� ¼ m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2 − e2 − g2

p
.

On the other hand, for a ¼ 0 there are no ergoregions
because the condition (85) reduces to QðreÞ ¼ 0, i.e., the
boundaries coincide with the black hole horizons H�

b
at r� of the Taub–NUT spacetime (possibly charged).
In fact, such horizons become the Killing horizons
associated with the Killing vector field ∂t, located at
m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2 − e2 − g2

p
. To summarize, the ergoregions

are related only to the Kerr-like rotation represented by the
parameter a, not to the NUT parameter l. There are no
ergoregions in the purely NUT spacetimes.

NEW IMPROVED FORM OF BLACK HOLES OF TYPE D PHYS. REV. D 104, 084078 (2021)

084078-9

Paper 2, Phys. Rev. D 104, 084078 (2021)
New improved form of black holes of type D

91



C. Curvature singularities

By inspecting the Weyl NP scalar Ψ2 given explicitly by
the expression (55) we conclude that the curvature singu-
larities occur if and only if rþ iðlþ a cos θÞ ¼ 0 (or its
complex conjugate). Notice that this complex equation
implies also ρ2 ¼ r2 þ ðlþ a cos θÞ2 ¼ 0 which represents
the curvature singularity in the Ricci scalar Φ11 given by
(56) when the electric and magnetic charges e, g are
nonzero. Both the real and imaginary parts must vanish,
so that the curvature singularity condition reads

r ¼ 0 and at the same time lþ a cos θ ¼ 0: ð87Þ
The presence of the curvature singularity is confirmed by

the behavior of the Kretschmann scalar K≡ RabcdRabcd

given by (65). The second condition (87), that is L ¼ 0,
implies Ω ¼ 1, ρ2 ¼ r2, F� ¼ r3, T� ¼ r2, and

K� ¼ m

�
1� αa

a2 − l2

a2 þ l2

�
r3

∓ l

�
1 ∓ αa

a2 − l2 þ e2 þ g2

a2 þ l2

�
r3 − ðe2 þ g2Þr2:

In the limit r → 0 the Kretschmann scalar thus diverges,

K ¼ 48
KþK−

r12
→ ∞; ð88Þ

because KþK− ∼ r6 in the vacuum case, and KþK− ∼ r4 in
the electrovacuum case.
Now, the important observation is that the necessary (but

not sufficient) singularity condition lþ a cos θ ¼ 0 can
only be satisfied if jlj ≤ jaj. Otherwise, the expression lþ
a cos θ remains nonzero because cos θ is bounded to the
range ½−1; 1�.
We thus conclude that in the whole family of type D

spacetimes (1) the curvature singularity structure depends
on the relative values of the two twist parameters, i.e., the
Kerr-like rotation a versus the NUT parameter l, as follows:

l ¼ 0; a ¼ 0∶ singularity at r ¼ 0 for any θ;

l ¼ 0; a ≠ 0∶ singularity at r ¼ 0 for θ ¼ π=2;

0 < jlj < jaj∶ singularity at r ¼ 0 for cos θ ¼ −l=a;

l ¼ þa∶ singularity at r ¼ 0 for θ ¼ π;

l ¼ −a∶ singularity at r ¼ 0 for θ ¼ 0;

jlj > jaj > 0∶ no singularity;

l ≠ 0; a ¼ 0∶ no singularity: ð89Þ

Recall that throughout this paper we naturally assume
that all physical parametersm; e; g; α; a; l are non-negative.
However, for the sake of completeness, in the above table
we have admitted the situation in which a and l can be any

FIG. 1. Plot of the metric function gtt (84) for the accelerating black hole (1) with axes θ ¼ 0 and θ ¼ π. The values of gtt are
visualized in quasipolar coordinates x≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ ðaþ lÞ2
p

sin θ, y≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðaþ lÞ2

p
cos θ for r ≥ 0. The grey annulus in the center of

each figure localizes the black hole bordered by its horizonsH�
b at rþ and r− (0 < r− < rþ). The acceleration horizonHþ

a at rþa (big red
circle) and the conformal infinity I at Ω ¼ 0 are also shown. The grey curves are contour lines gttðr; θÞ ¼ const., and the values are
color-coded from red (positive values) to blue (negative values). The green curves are the isolines gtt ¼ 0 determining the boundary of
the ergoregions (85) in which gtt > 0 (green regions). They occur close to the horizons near the equatorial plane θ ¼ π=2. The plot is
made for the choice m ¼ 3, a ¼ 1, l ¼ 0.2, e ¼ g ¼ 1.6, α ¼ 0.12 (left) and m ¼ 3, a ¼ 1.5, l ¼ 0.6, e ¼ g ¼ 1.6, α ¼ 0.12 (right).
For larger values of a and l the ergoregions are bigger and shifted toward θ ¼ π. In fact, it can be seen that the ergoregion above the black
hole horizon at rþ is merged with the ergoregion below the acceleration horizon at rþa in the equatorial part.
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real numbers. In fact, the reflection symmetry φ → −φ of
the metric (1), or equivalently t → −t, can be used to
change a → −a or l → −l when l ¼ 0 or a ¼ 0, respec-
tively. However, in the generic case when both a and l are
nontrivial, their relative sign plays the role.
Of course, these results agree with the standard character

of the singularity r ¼ 0 of the Schwarzschild, Reissner–
Nordström and (possibly charged) C-metric spacetimes
(l ¼ 0, a ¼ 0), the ring singularity structure of the Kerr and
Kerr–Newman black holes (l ¼ 0, α ¼ 0), and the absence
of curvature singularities in (possibly charged) Taub–NUT
spacetime (a ¼ 0, α ¼ 0).
Finally, it may be useful to graphically represent the

global curvature and horizon structure of these black hole
spacetimes. On a schematic picture in Fig. 2 we depict the
section t ¼ const., φ ¼ const., taking the full range of
θ ∈ ½0; π� distinct from the specific value cos θ ¼ −l=a.
Therefore, the curvature singularity located at r ¼ 0 is not
encountered, and it is possible to consider the full range of
the coordinate r ∈ ð−∞;þ∞Þ. In the vicinity of r ¼ 0 the
curvature of the spacetime is maximal, in the region r > 0
(the right part of the surface) it decreases to zero, and
similarly in the region r < 0 (the left part of the surface)—
far away from the origin the spacetime becomes asymp-
totically flat. The angular coordinate θ ∈ ½0; π� is plotted
perpendicularly, completing the full circles r ¼ const.

(considering also the antipodal section φþ π in the second
half of the circle). The resulting “neck” or “wormhole”
connects two distinct universes. Positions of the two black
hole horizons Hþ

b at rþb ≡ rþ and H−
b at r−b ≡ r− are

indicated by red and green circles, respectively. Here we
assume 0 < l < a ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ e2 þ g2

p
, so that 0 < r− < rþ.

In this plot we also show the position of the two distinct full
axes θ ¼ 0 and θ ¼ π. These are indicated by dashed lines
on top and bottom of the surface.
It should be emphasized that this is only a schematic

picture, not an embedding and rigorous construction (it
cannot be done because the r-coordinate is temporal
between the horizons H−

b and Hþ
b , and also because the

“point” cos θ ¼ −l=a, r ¼ 0 is actually the curvature
singularity.
Using the same schematic plot of the central domain of

the black hole spacetime, we can also indicate the location
of the curvature singularity at r ¼ 0, cos θ ¼ −l=a for
various values of the NUT parameter l (assuming the same
a and other physical parameters). As in Fig. 2, the origin
r ¼ 0 is plotted in Fig. 3 as a black circle around the
“neck,” and the two axes located at θ ¼ 0 and θ ¼ π are
indicated by dashed lines on top and bottom of the surface.
There are 7 such plots in Fig. 3 corresponding to 7

specific values of l=a. When the NUT parameter vanishes,
l ¼ 0, the curvature singularity is located at r ¼ 0 for
θ ¼ π=2. In the middle plot in Fig. 2 such a singularity is
indicated by red dots. In fact, considering also the addi-
tional angular coordinate φ ∈ ½0; 2πÞ, this forms a ring
singularity of the Kerr–Newman black hole, shown here as
the red dashed circle in extra dimension. In the case when
l ¼ a the curvature singularity is located at the pole θ ¼ π
(the bottom right plot), while for l ¼ −a it is located at the
opposite pole θ ¼ 0 (the top left plot). In the generic case
jlj < jaj, the ring curvature singularity is located at specific
θ between these extremes, such that cos θ ¼ −l=a (the
bottom left and the top right plots). Finally, when jlj > jaj,
there is no curvature singularity (the top and the bot-
tom plots).
In a similar way, by the red dots and the red dashed line

we have indicated the position of the ring-like curvature
singularity at r ¼ 0 in Fig. 1.

D. Conformal diagrams: Global structure and infinities

In Sec. VAwe have already clarified that the coordinate
singularities of the metric located at r�b and r�a correspond
to four distinct horizons H�

b and H�
a (provided

m2 þ l2 ≥ a2 þ e2 þ g2). We will now explicitly construct
coordinates which cover the whole spacetime, including
these horizons given by the roots QðrÞ ¼ 0 of the quartic
function (70). They will enable us to subsequently derive
the corresponding Penrose conformal diagrams showing
the global structure of this family of type D black holes
represented by the metric (1).

FIG. 2. A schematic visualization of the curvature structure of
the generic black hole spacetime (1) using a section with fixed
coordinates t and φ. Away from the singularity located at cos θ ¼
−l=a; r ¼ 0 it is possible to cross r ¼ 0 from the asymptotically
flat universe in the region r > 0 (right part) to another universe in
the region r < 0 (left part). In this diagram we also plot the
positions of the two black hole horizonsHþ

b andH−
b at rþ and r−

(red and green circles, respectively), and the two distinct infinite
axes θ ¼ 0 and θ ¼ π (dashed lines).
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To this end, we first introduce the retarded and advanced
null coordinates

u ¼ t − r� and v ¼ tþ r�; ð90Þ

with the tortoise coordinate

r� ≡
Z

r2 þ ðaþ lÞ2
QðrÞ dr; ð91Þ

and also the corresponding untwisted angular coordinates

ϕu ≡ φ − a
Z

dr
QðrÞ and ϕv ≡ φþ a

Z
dr

QðrÞ : ð92Þ

Using the advanced pair of coordinates fv;ϕvg, the
metric (1) takes the form

ds2 ¼ 1

Ω2

�
a2Psin2θ −Q

ρ2
ðdv − T dϕvÞ2

þ 2ðdv − T dϕvÞðdr − aPsin2θ dϕvÞ

þ ρ2
�
dθ2

P
þ Psin2θ dϕ2

v

��
: ð93Þ

The function

T ðθÞ≡ a sin2 θ þ 4l sin2 1
2
θ ð94Þ

was introduced to abbreviate the expression. It also enters a
useful identity

r2 þ ðaþ lÞ2 − aT ¼ r2 þ ðlþ a cos θÞ2 ≡ ρ2: ð95Þ

Obviously, the metric (93) is regular at QðrÞ ¼ 0, so that
the coordinate singularity at the horizons has been
removed.
By employing the complementary retarded pair of

coordinates fu;ϕug, the metric (1) reads

FIG. 3. Schematic visualization of the curvature singularity located at r ¼ 0, cos θ ¼ −l=a in the black hole spacetime (1) for 7
distinct choices of the NUT parameter l. For jlj ≥ jaj such singularity is absent and it is possible to regularly cross r ¼ 0 at any θ,
entering another asymptotically flat universe.
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ds2 ¼ 1

Ω2

�
a2Psin2θ −Q

ρ2
ðdu − T dϕuÞ2

− 2ðdu − T dϕuÞðdrþ aPsin2θ dϕuÞ

þ ρ2
�
dθ2

P
þ Psin2θ dϕ2

u

��
; ð96Þ

which is also regular at QðrÞ ¼ 0.
Actually, these metrics are a considerable generalization

of the original coordinate forms of the rotating Kerr–
Newman black hole solutions, see Eq. (1) in [13],
Eq. (5.31) in [14], or Eq. (11.4) in [4]. Now it includes
not only the usual physical parameters m, a, e (and/or g),
but also the NUT parameter l and the acceleration param-
eter α.
As usual, the next step in construction of the maximal

analytic extension of the manifold is to introduce both the
null coordinates u and v simultaneously (dropping r as a
coordinate). Clearly, for fixed values of ϕv and θ the radial
null geodesics are simply given by v ¼ const., while for
fixed values of ϕu and θ the complementary radial null
geodesics are given by u ¼ const. Therefore, by employing
both the coordinates u and v, the causal structure of the

spacetime is naturally revealed. Using the relation (90) we
immediately obtain

v − u ¼ 2r�ðrÞ; ð97Þ

so that

2dr ¼ Q
r2 þ ðaþ lÞ2 ðdv − duÞ: ð98Þ

This relation can be used to eliminate the dr-term either
from the metric (93) or (96).
Moreover, due to the simple factorized form (70) of the

metric functionQðrÞ, the integral (91) defining the function
r�ðrÞ in (97) can be calculated explicitly as

r�ðrÞ ¼ kþb log

				1 − r
rþb

				þ k−b log

				1 − r
r−b

				
þ kþa log

				1 − r
rþa

				þ k−a log

				1 − r
r−a

				; ð99Þ

where the auxiliary constant coefficients are

kþb ¼ ða2 þ l2Þ2½r2þ þ ðaþ lÞ2�
2mða2 þ l2 þ αaða − lÞrþÞða2 þ l2 − αaðaþ lÞrþÞ

;

k−b ¼ −
ða2 þ l2Þ2½r2− þ ðaþ lÞ2�

2mða2 þ l2 þ αaða − lÞr−Þða2 þ l2 − αaðaþ lÞr−Þ
;

kþa ¼ −
ða2 þ l2Þ½ða2 þ l2Þ2 þ α2a2ðaþ lÞ4�

2αa2ða2 þ l2 − αaðaþ lÞrþÞða2 þ l2 − αaðaþ lÞr−Þ
;

k−a ¼ ða2 þ l2Þ½ða2 þ l2Þ2 þ α2a2ða2 − l2Þ2�
2αa2ða2 þ l2 þ αaða − lÞrþÞða2 þ l2 þ αaða − lÞr−Þ

; ð100Þ

each associated with the corresponding horizonH�
h located

at r ¼ r�h , where h ¼ b (for the black-hole horizons) or
h ¼ a (for the acceleration horizons). Inverting the function
(99), we can express the metric functions Q, ρ2 and Ω2 in
terms of the null coordinates v − u instead of r by using the
relation (97).
To obtain the maximal extension of the black-hole

manifold represented by (1), we now “glue together”
different “coordinate patches” (charts of the complete atlas)
crossing all the horizons, until a curvature singularity or
conformal infinity (the scri I) is reached. In order to derive
the correct causal structure, it is essential to employ the null
coordinates u and v. Therefore, we apply the coordinate
patches of the metric form (93) for extending the spacetime
across the horizons in the null direction given by the
advanced coordinate v, while we apply the coordinate
patches of the metric form (96) for extending the spacetime
across the horizons in the complementary null direction

given by the retarded coordinate u. Since both these
metrics are regular for Q ¼ 0, the coordinate singularities
at all the horizons H�

h are removed, step-by-step.
However, to perform this procedure exactly and cor-

rectly, two complicated issues must also be clarified. The
first problem is the fact, that the distinct coordinate patches
(93) and (96) employ distinct angular coordinates ϕv
and ϕu, respectively. The second problem is to prove that
thus obtained maximal extension of the manifold is
analytic.
To resolve the first problem associated with distinct

angular coordinates ϕv and ϕu, we can employ the general
strategy suggested by Boyer and Lindquist [15] for the Kerr
spacetime and subsequently used also for the charged Kerr–
Newman spacetime by Carter [13]. The trick is based on
using the specific Killing vector fields which are the null
generators of the horizons. In terms of the two coordinate
patches (93) and (96), such special vector fields read
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ξa ≡ ∂u þΩh∂ϕu
; and also ξa ≡ ∂v þΩh∂ϕv

; ð101Þ

where the angular velocity of the given horizon H is

Ωh ¼
a

r2h þ ðaþ lÞ2 : ð102Þ

Indeed, using the corresponding metric coefficients of (93)
and (96), evaluated at Q ¼ 0, it is straightforward to show
that ξaξaðHÞ ¼ 0 whenever Ωh ¼ a=ðρ2h þ aT Þ. Applying
the identity (95), we obtain the expression (102) for both
the Killing vector fields (101).
Now, following [13,15] we introduce a special angular

coordinate ϕh which is constant along the trajectories of
both the Killing vector fields (101). Being the generators of
the specific bifurcate Killing horizon (a 2-dimensional
spatial intersection of the “advanced” and the “retarded”
null horizons), via such new angular coordinate ϕh a
suitable transition between the corresponding patches is
achieved. Technically, it is introduced by the 1-form
condition

2dϕh ≡ dϕu þ dϕv − Ωhðduþ dvÞ; ð103Þ

because dϕhðξaÞ ¼ 0 for both the Killing vector fields
(101). Using (90) and (92), this condition can be integrated
to

ϕh ¼ φ −Ωht: ð104Þ

Unfortunately, the specific choice of the angular coordinate
ϕh depends on the given horizon via its value rh and thus
Ωh. For this reason, it is not possible to find a single and
simple global coordinate ϕ which would conveniently
“cover” all the four horizons. This drawback was met
many years ago already in the Kerr spacetime, so it is not
surprising that it reappears in the current context of the
complete family of type D black holes.
An explicit general metric form constructed in this

way reads

ds2 ¼ 1

4Ω2

�
−
Q
ρ2

ðð1 − T ΩhÞðduþ dvÞ − 2T dϕhÞ2 þQρ2
ðdu − dvÞ2

½r2 þ ðaþ lÞ2�2 þ 4
ρ2

P
dθ2

þ Psin2θ
ρ2

ðða − ½r2 þ ðaþ lÞ2�ΩhÞðduþ dvÞ − 2½r2 þ ðaþ lÞ2�dϕhÞ2
�
: ð105Þ

For nontwisting black holes without the Kerr-like rotation
(a ¼ 0) and the NUT parameter (l ¼ 0), the metric func-
tions simplify to Ω ¼ 1, P ¼ 1, ρ2 ¼ r2, T ¼ 0, Ωh ¼ 0,
so that

ds2 ¼ −
Q
r2
dudvþ r2ðdθ2 þ sin2θ dϕ2

hÞ; ð106Þ

which is the usual form of the spherically symmetric black
holes in the double-null coordinates [4].
On any 2-dimensional section θ ¼ const. andϕh ¼ const.,

using (102), the general metric (105) reduces to

dσ2 ¼ 1

4Ω2

�
−
ð1 − T ΩhÞ2

ρ2
Qðduþ dvÞ2

þ ρ2

½r2 þ ðaþ lÞ2�2 Qðdu − dvÞ2

þ a2
Psin2θ
ρ2

ðrþ rhÞ2ðr − rhÞ2
½r2h þ ðaþ lÞ2�2 ðduþ dvÞ2

�
; ð107Þ

which is indeed null at any horizon rh because QðrhÞ ¼ 0.

Let us now move to the second problem, which is the
global extension and investigation of the degree of smooth-
ness (analyticity) of the horizonsH�

h . Restricting ourselves
to the sections given by constant values of the angular
coordinates θ and ϕh, we introduce the couples of new null
coordinates U�

h and V�
h , defined as

U�
h ¼ ð−1Þisignðk�h Þ exp

�
−

u
2k�h

�
; ð108Þ

V�
h ¼ð−1Þjsignðk�h Þ exp

�
þ v
2k�h

�
: ð109Þ

Each couple covers the corresponding horizon H�
h .

Moreover, it is characterized by a particular choice of
two integers ði; jÞ which specify a certain region in the
manifold. Generally, there are 5 types of regions which are
separated by the four types of horizons H�

h , namely
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Region Description Specification of ði; jÞ
I∶ asymptotic time-dependent domain betweenHþ

a and I ðn − 2mþ 1; nþ 2m − 1Þ
II∶ stationary region betweenHþ

b andHþ
a ð2n −m; 2nþm − 1Þ

III∶ time-dependent domain between the black-hole horizons ðn − 2m; nþ 2mÞ
IV∶ stationary region betweenH−

a andH−
b ð2n −mþ 1; 2nþmÞ

V∶ asymptotic time-dependent domain betweenI andH−
a ðn − 2mþ 1; nþ 2m − 1Þ

where m, n are arbitrary integers. The corresponding
Kruskal–Szekeres-type dimensionless coordinates for
every distinct region are

T�
h ¼ 1

2
ðV�

h þ U�
h Þ; R�

h ¼ 1

2
ðV�

h − U�
h Þ: ð110Þ

Of course, the presence of the curvature singularity at
r ¼ 0 (implying r� ¼ 0) for certain values of θ restricts the
range of the corresponding coordinates U−

b and V−
b in the

region IV to the domain outside U−
bV

−
b ¼ �1.

In terms of these coordinates, the extension across the
horizon is regular (in fact, analytic). Indeed, by multiplying
and dividing the null coordinates (108) and (109) we obtain

U�
h V

�
h ¼

�
1 −

r
rþb

�kþ
b
k�
h

�
1 −

r
r−b

�k−
b

k�
h

�
1 −

r
rþa

�kþa
k�
h

�
1 −

r
r−a

�k−a
k�
h ;

ð111Þ

U�
h

V�
h

¼ð−1Þiþj exp

�
−

t
k�h

�
: ð112Þ

The terms ðdu� dvÞ2 in the metric (107) become

ðdu� dvÞ2 ¼ 4ðk�h Þ2
U�

h V
�
h

�
V�
h

U�
h

ðdU�
h Þ2

∓ 2dU�
h dV

�
h þ U�

h

V�
h

ðdV�
h Þ2

�
: ð113Þ

A nonanalytic behavior across the horizon rh may thus
occur only at zeros of the product U�

h V
�
h . However, they

exactly cancel the zeros of the functions QðrÞ in the metric
(107). For example, by choosing the black hole horizon
rh ¼ rþb ≡ rþ, be get Uþ

b V
þ
b ∝ ðr − rþÞ which clearly

compensates the corresponding root Q ∝ ðr − rþÞ in (5).
Notice also that the last term in (107) actually vanishes.
Therefore, the metric (107) remains finite at rþ. Of course,
the same argument applies to the remaining three horizons.
Now we can construct the Penrose conformal diagrams

which visualize the global structure of the extended
manifold. This is achieved by a suitable conformal rescal-
ing of U�

h and V�
h to the corresponding compactified null

coordinates ũ�h and ṽ�h defined as

tan
ũ�h
2
≡−signðk�h ÞðU�

h Þ−signðk
�
h Þ ¼ ð−1Þiþ1exp

�
þ u
2jk�h j

�
;

ð114Þ

tan
ṽ�h
2
≡−signðk�h ÞðV�

h Þ−signðk
�
h Þ ¼ ð−1Þjþ1exp

�
−

v
2jk�h j

�
:

ð115Þ

Applying the identity arctan xþ arctan y ¼ arctanð xþy
1−xyÞ

ðmod πÞ we get

T̃�
h ≡ 1

2
ðṽ�h þ ũ�h Þ

¼ − arctan

�ð−1Þj expð− tþr�
2jk�h j

Þ þ ð−1Þi expð t−r�
2jk�h j

Þ
1 − ð−1Þiþj expð− r�

jk�h j
Þ

�
;

ð116Þ

R̃�
h ≡ 1

2
ðṽ�h − ũ�h Þ

¼ − arctan

�ð−1Þj expð− tþr�
2jk�h j

Þ − ð−1Þi expð t−r�
2jk�h j

Þ
1þ ð−1Þiþj expð− r�

jk�h j
Þ

�
:

ð117Þ

From these general relations it follows that

T̃�
h ¼

8>>>>>>>><
>>>>>>>>:

ð−1Þjþ1 arctan
cosh t

2jk�
h
j

sinh r�
2jk�

h
j

for iþ j even;

ð−1Þj arctan
sinh t

2jk�
h
j

cosh r�
2jk�

h
j

for iþ j odd; r� < 0;

ð−1Þj arctan
sinh t

2jk�
h
j

cosh r�
2jk�

h
j
þ π for iþ j odd; r� ≥ 0;

ð118Þ

and
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R̃�
h ¼

8>>>>>>>><
>>>>>>>>:

ð−1Þj arctan
sinh t

2jk�
h
j

cosh r�
2jk�

h
j

for iþ j even;

ð−1Þjþ1 arctan
cosh t

2jk�
h
j

sinh r�
2jk�

h
j

for iþ j odd; r� < 0;

ð−1Þjþ1 arctan
cosh t

2jk�
h
j

sinh r�
2jk�

h
j
þ π for iþ j odd; r� ≥ 0:

ð119Þ

Recall that the function r�ðrÞ is given by (99) and the
coefficients k�h by (100). In particular, the lines of constant
r thus coincide with the lines of constant r�. Moreover, the
condition (81) for a reasonably small values of the accel-
eration parameter α guarantees that kþa ; k−b < 0 while
k−a ; k

þ
b > 0. Therefore, for every single region the coor-

dinate r� spans the whole range ð−∞;þ∞Þ, and similarly
the coordinate t.
The explicit relations (118), (119) between the compac-

tified coordinates fT̃�
h ; R̃

�
h g and the original coordinates

ft; rg of the metric (1) for all ði; jÞ can be used for graphical
construction of the Penrose diagram which represents the
global structure of the extended black-hole manifold,
composed of various “diamond” regions. The resulting
picture is shown in Figs. 4 and 5. Fig. 4 is the Penrose

diagram of a generic 2-dimensional section through the
whole spacetime for any θ ¼ const such that cos θ ≠ −l=a.
It does not contain the curvature singularity at r ¼ 0. Fig. 5
is the complementary Penrose diagram for the special value
of θ such that cos θ ¼ −l=a which contains the curvature
singularity at r ¼ 0 in all its regions IV (see Sec. V C
and Fig. 3).
It can be seen that the complete manifold consists of an

infinite number of the regions I, II, III, IV and V, each
identified by the specific pair of integers ði; jÞ. These
regions are separated by the corresponding horizons.
Namely, the regions I and II are separated by the accel-
eration horizonHþ

a at rþa , with the asymptotic region I also
bounded by the conformal infinity I (the scri) for very large
values of r. The regions II and III are separated by the
black-hole horizon Hþ

b at rþb ≡ rþ, while the regions III
and IVare separated by the inner black-hole horizon H−

b at
r−b ≡ r−. Finally, the regions IV and V (if present) are
separated by the acceleration horizon H−

a at r−a , with the
asymptotic region V bounded by the conformal infinity I
with negative values of r. The curves in each region
represent the lines of constant t and r (dashed or solid,
respectively).
In the diagonal null directions of these Penrose diagrams

we can identify the particular coordinate patches covered
by the “advanced” metric form (93), extending from the

FIG. 4. Penrose conformal diagram of the completely extended spacetime (1) showing the global structure of this family of
accelerating and rotating charged black holes. We assume the ordering of the four horizons as r−a < r− < rþ < rþa , see (80), which
occurs for reasonably small acceleration parameter α, restricted by (81), and small values of the NUT parameter l such that jlj < jaj.
Here we show a typical 2-dimensional section θ;ϕh ¼ const without the curvature singularity at r ¼ 0, i.e., for any θ ¼ const such that
cos θ ≠ −l=a. The double dashed vertical parallel lines indicate a separation of distinct asymptotically flat regions close to I� (different
“parallel universes” that are not necessarily identified). Grey areas in regions II and IV close to the horizons denote the ergoregions.
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bottom left I− to the top right Iþ [for example the pink
regions I–V between ð1;−1Þ and (1, 3)], and also the
complementary “retarded” metric form (96), extending
from the bottom right I− to the top left Iþ [these are
not colored but also contain the regions I–V, for example
between ð−1; 1Þ and (3, 1)]. These patches “share” the
“central regions” III [for example (1, 1)]. Each of such
central region III is bounded by the inner and outer black-
hole horizons at r− and rþ, localizing thus the interior of
the corresponding black hole. In the whole extended
universe, there are thus infinitely many black holes—
they are identified by the regions III, and labeled by the
corresponding specification ði; jÞ, for example (0, 0), (1, 1),
(2, 2), ð−2; 2Þ, ð−1; 3Þ, (0, 4), etc.
Recall that all these black holes are rotating, NUTed,

charged, and accelerating. Due to their rotation, there are
ergoregions associated with all the horizons, see Sec. V B
and Fig. 1. They are represented by the grey areas in the
regions II and IV close to the horizons.
As shown in Sec. V C and schematically depicted in

Fig. 2, there are two distinct asymptotically flat universes
associated with each original coordinate patch given by the
metric (1), one for r → þ∞ and the other for r → −∞.
These can now be identified in the Penrose diagram in
Fig. 4 as the regions I and V beyond the acceleration
horizons close to I , respectively. However, the maximal
extension has now revealed that each black hole, identified
by the specific region III, is in fact associated with four
asymptotically flat regions, namely the pair of the regions I
and a pair of the regions V. Two such regions are in the

causal future, while the remaining two are in the past.
Moreover, each asymptotically flat region bounded by I is
“shared” by two distinct black holes.
For example, the “infinite chain” of black holes (regions

III) given by …; ð3;−1Þ; ð1; 1Þ; ð−1; 3Þ;… are located in
the “future universes” (regions I) …; ð5;−1Þ; ð3; 1Þ;
ð1; 3Þ; ð−1; 5Þ;…, while their “past universes” (regions
V) are …; ð3;−3Þ; ð1;−1Þ; ð−1; 1Þ; ð−3; 3Þ;…, respec-
tively. However, these “past universes” need not be the
same asymptotically flat regions. Therefore, we inserted the
double dashed vertical parallel lines in them to indicate
their separation: in general the two regions such as ð1;−1Þ
are different “causal-past parallel universes” with respect to
the distinct causal-future universes of the chain of the black
holes. Of course, it is possible to “artificially” identify
(some of) them—both the black-hole regions III and/or
their asymptotically flat regions I and V. Since there are
infinitely many possibilities of such identifications, a
plethora of various topologically extremely complicated
manifolds can be constructed.
Finally, let us remark that the conformal infinities I

plotted in Figs. 4, 5 does not look null. This may be
surprising because in all the regions I and V the spacetime
is asymptotically flat (excluding the cosmic strings along
the axes θ ¼ 0 and θ ¼ π, arising as specific topological
defects which we will investigate in the next three sections
of this paper). Being Minkowski-like, the scri I is indeed
null. However, it should be emphasized that the Penrose
diagrams in Fig. 4 and Fig. 5 are just 2-dimensional
sections through the global conformal structure of the

FIG. 5. Penrose conformal diagram of the spacetime (1) representing the same black hole as in Fig. 4 but for the section θ;ϕh ¼ const
containing the curvature singularity at r ¼ 0, i.e., for the special value of θ such that cos θ ¼ −l=a. In this section, the regions IVare “cut
in half” by this singularity at r ¼ 0, so that the acceleration horizon at r−a < 0 can not be reached, and the region V is thus absent.
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four-dimensional Lorentzian manifold which is not spheri-
cally symmetric. In particular, it turns out that in the
presence of acceleration, the null conformal infinity I of
the asymptotically flat regions is indeed represented as the
non-null curve in the given section. This has been thor-
oughly discussed and analyzed in our previous work on the
C-metric [16], see also Chapter 14 in [4].
The global extension of the type D black-hole family of

spacetimes obtained in this section seems to be more
elegant and also more complete than the preliminary
investigation [17] which employed rather complicated
transformations to the Weyl–Lewis–Papapetrou form and
subsequently to the boost-rotation-symmetric form of the
metric. Moreover, here it is explicitly compactified.

E. Cosmic strings (or struts) and deficit angles
at θ= 0 and θ =π

As shown already in previous works [5,7], the metric
form (1) is convenient for explicit analysis of the regularity
of the poles/axes located at θ ¼ 0 and θ ¼ π, respectively.
This is now further improved with the new metric functions
(2)–(5).
The spatial axes of symmetry are associated with the

Killing vector field ∂φ, identified as its degenerate points.
These are located at the coordinate singularities of the
function sin θ in the metric (1) which appear at θ ¼ 0 and
θ ¼ π. Therefore, the range of the spatial coordinate θ must
be constrained to θ ∈ ½0; π�.
Recall that there are six physical parameters in the new

metric (1), namely m; a; l; α; e; g, which represent mass,
Kerr-like rotation, NUT parameter, acceleration, electric
and magnetic charges of the black hole, respectively.
However, there is also the seventh free parameter—the
conicity C hidden in the range of the angular coordinate

φ ∈ ½0; 2πCÞ; ð120Þ

which has not yet been specified. We will demonstrate its
physical meaning by relating it to the deficit (or excess)
angles of the cosmic strings (or struts). Their tension is the

physical source of the acceleration of the black holes.
These are basically topological defects associated with
conical singularities around the two distinct axes. In
addition, for nonvanishing NUT parameter l these cosmic
strings or struts are rotating, thus introducing specific
internal twist to the entire spacetime. We will now analyze
them in more detail.
Let us start with investigation of the (non)regularity of

the first axis of symmetry θ ¼ 0 in the metric (1). Consider
a small circle around it given by θ ¼ const., with the range
of φ given by (120), assuming fixed t and r. The invariant
length of its circumference is

R
2πC
0

ffiffiffiffiffiffiffigφφ
p dφ, while its

radius is
R
θ
0

ffiffiffiffiffiffi
gθθ

p
dθ. The axis is regular if their fraction

in the limit θ → 0 is equal to 2π. However, in general we
obtain

f0 ≡ lim
θ→0

circumference
radius

¼ lim
θ→0

2πC ffiffiffiffiffiffiffigφφ
p

θ
ffiffiffiffiffiffi
gθθ

p : ð121Þ

For the metric (1), the relevant metric functions are

gφφ¼
1

Ω2ρ2

�
Pðr2þðaþ lÞ2Þ2 sin2θ

−Q

�
asin2θþ4lsin2 1

2
θ

�
2
�
; gθθ¼ ρ2

Ω2P: ð122Þ

For very small values of θ, the second term in gφφ
proportional to Q becomes negligible with respect to the
first term proportional to P, so that we obtain
gφφ ≈ Pðr2 þ ðaþ lÞ2Þ2θ2=Ω2ρ2. Straightforward evalu-
ation of the limit (121) gives

f0¼2πCPð0Þ¼2πC

�
1−α

a2þal
a2þ l2

rþ

��
1−α

a2þal
a2þ l2

r−

�
:

ð123Þ

The axis θ ¼ 0 in the metric (1) can thus be made regular
by the unique choice

C ¼ C0 ≡
��

1 − α
a2 þ al
a2 þ l2

rþ

��
1 − α

a2 þ al
a2 þ l2

r−

��
−1

¼
�
1 − 2αm

a2 þ al
a2 þ l2

þ α2
�
a2 þ al
a2 þ l2

�
2

ða2 − l2 þ e2 þ g2Þ
�
−1
; ð124Þ

where we have employed the relations (6), (7). Notice that
for vanishing acceleration α, this regularization condition is
simply C0 ¼ 1.
Analogously, it is possible to regularize the second axis

of symmetry θ ¼ π. Now, the conceptual problem is that the
metric function gφφ in (122), and thus the circumference,

does not approach zero in the limit θ → π due to the
presence of the term 4l sin2 1

2
θ. This problem can be

resolved by the same procedure as for the classic Taub–
NUT solution (see the transition between the metrics (12.1)
and (12.3) in [4]), namely by applying the transformation of
the time coordinate
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tπ ≡ t − 4lφ: ð125Þ

The metric (1) then becomes

ds2¼ 1

Ω2

�
−
Q
ρ2

h
dtπ−

�
asin2θ−4lcos2 1

2
θ
�
dφ

i
2þρ2

Q
dr2

þρ2

P
dθ2þ P

ρ2
sin2θ½adtπ−ðr2þða− lÞ2Þdφ�2

�
;

ð126Þ

i.e.,

gφφ¼
1

Ω2ρ2

�
Pðr2þða− lÞ2Þ2sin2θ

−Q

�
asin2θ−4lcos2 1

2
θ

�
2
�
; gθθ¼ ρ2

Ω2P: ð127Þ

Thus, for θ → π we get gφφ ≈ Pðr2 þ ða − lÞ2Þ2
ðπ − θÞ2=Ω2ρ2. The radius of a small circle around the
axis θ ¼ π is

R
π
θ

ffiffiffiffiffiffi
gθθ

p
dθ, so that the fraction

fπ ≡ lim
θ→π

circumference
radius

¼ lim
θ→π

2πC ffiffiffiffiffiffiffigφφ
p

ðπ − θÞ ffiffiffiffiffiffi
gθθ

p ; ð128Þ

is

fπ¼2πCPðπÞ¼2πC

�
1þα

a2−al
a2þ l2

rþ

��
1þα

a2−al
a2þ l2

r−

�
:

ð129Þ

The axis θ ¼ π in the metric (126) can thus be made
regular by the unique choice

C ¼ Cπ ≡
��

1þ α
a2 − al
a2 þ l2

rþ

��
1þ α

a2 − al
a2 þ l2

r−

��
−1

¼
�
1þ 2αm

a2 − al
a2 þ l2

þ α2
�
a2 − al
a2 þ l2

�
2

ða2 − l2 þ e2 þ g2Þ
�
−1
: ð130Þ

With such a choice, there is a deficit angle δ0 (conical singularity) along the first axis θ ¼ 0, namely

δ0 ≡ 2π − f0

¼ 8πα
a2½mða2 þ l2Þ − αalða2 − l2 þ e2 þ g2Þ�

ða2 þ l2Þ2 þ 2αmða2 − alÞða2 þ l2Þ þ α2ða2 − alÞ2ða2 − l2 þ e2 þ g2Þ : ð131Þ

For black holes without the NUT parameter (l ¼ 0) this
expression simplifies to

δ0 ¼
8παm

1þ 2αmþ α2ða2 þ e2 þ g2Þ ; ð132Þ

recovering the previous results for rotating charged
C-metric, see Chapter 14 in [4]. The tension in the cosmic
string along θ ¼ 0 pulls the black hole, causing its uniform

acceleration. Such a string extends to the full range of the
radial coordinate r ∈ ð−∞;þ∞Þ, connecting “our uni-
verse” with the “parallel universe” through the nonsingular
black-hole interior close to r ¼ 0.
Complementarily, when the first axis of symmetry

θ ¼ 0 is made regular by the choice (124), there is
necessarily an excess angle δπ along the second axis
θ ¼ π, namely

δπ ≡ 2π − fπ

¼ −8πα
a2½mða2 þ l2Þ − αalða2 − l2 þ e2 þ g2Þ�

ða2 þ l2Þ2 − 2αmða2 þ alÞða2 þ l2Þ þ α2ða2 þ alÞ2ða2 − l2 þ e2 þ g2Þ ; ð133Þ

which simplifies to

δπ ¼ −
8παm

1 − 2αmþ α2ða2 þ e2 þ g2Þ ; ð134Þ

for l ¼ 0. As in the C-metric, this represents the cosmic
strut located along θ ¼ π between the pair of black holes,
pushing them away from each other in opposite spatial
directions.
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We observe that δ0 ¼ 0 ¼ δπ whenever α ¼ 0. In such a
case both the axes are regular, there is no physical cause of
the acceleration and the Kerr–Newman–NUT black holes
do not move.
Interestingly, both the axes θ ¼ 0 and θ ¼ π can be

simultaneously regular even for nonvanishing acceleration
α when all six physical parameters satisfy the special
constraint

mða2 þ l2Þ ¼ αalða2 − l2 þ e2 þ g2Þ: ð135Þ
The nontrivial constraint requires both a ≠ 0 and l ≠ 0.
Actually, this is a nice compact form of the condition given
on page 313 of [4], when the relations (15) for the physical
parameters and also the convenient gauge choice (30) are
employed. This again demonstrates the advantages of the
new form of the metric (1).
However, the condition (135) is not satisfied for small

values of the accelerationα obeying the inequality (81)which
guarantees the natural ordering of the four horizons (80).
Indeed, (135) can be rewritten as mða2 þ l2Þ ¼ αalrþr−.
Now applying (81), and assumingm, a, l all positive, we get
the relation

m <
l

aþ l
r− < r−: ð136Þ

It is in clear contradiction with (7) which implies m > r−.

F. Rotation of the cosmic strings (or struts)

With a generic NUT parameter l, the cosmic strings (or
struts) are rotating. This can be seen by calculating the
angular velocity parameter ωθ of the metric, see [12], along
the two different axes θ ¼ 0 and θ ¼ π, namely

ωθ ≡ gtφ
gtt

: ð137Þ

For the general form of the new metric (1), where

gtφ ¼ 1

Ω2ρ2

h
Q
�
asin2θ þ 4lsin2 1

2
θ
�

− aðr2 þ ðaþ lÞ2ÞPsin2θ
i
;

gtt ¼
−1
Ω2ρ2

½Q − a2Psin2θ�; ð138Þ

we obtain

ωθ ¼ −
Qðasin2θ þ 4lsin2 1

2
θÞ − aðr2 þ ðaþ lÞ2ÞPsin2θ

Q − a2Psin2θ
:

ð139Þ
Now we take any fixed value of r away from the horizons,
so that Q ≠ 0 is a nonvanishing constant. Then the limits
θ → 0 and θ → π are

ω0 ¼ 0 and ωπ ¼ −4l; ð140Þ

respectively. The first axis θ ¼ 0 is thus nonrotating, while
the second axis θ ¼ π rotates and its angular velocity is
directly and solely determined by the NUT parameter l.
Notice that ωπ is independent of the Kerr-like parameter a,
and it also does not depend on the conicity parameter C.
The rotational character of the axis is thus a specific feature
determined by the NUT parameter l, which is clearly
independent of the possible deficit angles defining the
cosmic string/strut along the same axis.
By changing the time coordinate as (125), we obtain the

alternative metric (126) for which

gtπφ ¼ 1

Ω2ρ2

h
Q
�
asin2θ − 4lcos2 1

2
θ
�

− aðr2 þ ða − lÞ2ÞPsin2θ
i
;

gtπtπ ¼
−1
Ω2ρ2

½Q − a2Psin2θ�; ð141Þ

so that

ωθ¼−
Qðasin2θ−4lcos2 1

2
θÞ−aðr2þða− lÞ2ÞPsin2θ

Q−a2Psin2θ
:

ð142Þ

The corresponding angular velocities of the two axes are
thus

ω0 ¼ 4l and ωπ ¼ 0: ð143Þ

In this case, the situation is complementary to (140): the
axis θ ¼ 0 rotates, while the axis θ ¼ π is nonrotating.
It is interesting to observe that there is a constant

difference Δω≡ ω0 − ωπ ¼ 4l between the angular veloc-
ities of the two rotating cosmic strings or struts, directly
given by the NUT parameter l (irrespective of the value of a
or the choice of C). The NUT parameter is thus responsible
for the difference between the magnitude of rotation of the
two axes θ ¼ 0 and θ ¼ π.

G. Closed timelike curves around the rotating
strings (or struts)

In the vicinity of the rotating cosmic strings or struts
located along θ ¼ 0 or θ ¼ π, the black-hole spacetimewith
twist can serve as a specific time machine because (as in the
classic Taub–NUTsolution) there are closed timelike curves.
To identify these pathological causality-violating regions

we will consider simple curves in the spacetime, namely
circles around the axes of symmetry θ ¼ 0 or θ ¼ π such
that only the periodic angular coordinate φ ∈ ½0; 2πCÞ
changes, while the remaining coordinates t, r and θ are kept
fixed. The corresponding tangent (velocity) vectors are thus
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proportional to the Killing vector field ∂φ. Its norm is
determined just by the metric coefficient gφφ, which for the
general metric (1) has the form (122). There exist regions
such that gφφ < 0, where the circles (orbits of the axial
symmetry) are closed timelike curves. These pathological
regions are explicitly given by the condition

PðθÞðr2 þ ðaþ lÞ2Þ2sin2θ < QðrÞ
�
asin2θ þ 4lsin2 1

2
θ
�
2
;

ð144Þ

where the functions PðθÞ, QðrÞ are given by (4), (5). In
particular, for l ¼ 0, g ¼ 0, α ¼ 0 this reduces to r2 þ a2 þ
ρ−2ð2mr − e2Þa2 sin2 θ < 0 which is exactly the condition
(27) derived in [13] for the Kerr–Newman family of
black holes.
Although this condition is difficult to be solved analyti-

cally, some general observations can be made. Clearly, the
condition cannot be satisfied in the regions where
QðrÞ < 0. Naturally assuming a sufficiently small accel-
eration α satisfying the inequality (81), the function PðθÞ is
positive, while the four distinct horizons are ordered
as r−a < r−b < rþb < rþa , see (80). For l < a, the metric
function Q satisfies QðrÞ > 0 only in the regions ðr−a ; r−b Þ
and ðrþb ; rþa Þ, in which r is a spatial coordinate. The closed

timelike curves can thus only appear between the black
hole horizon H�

b and the corresponding acceleration
horizon H�

a , that is only in the region IV given by r ∈
ðr−a ; r−b Þ or in the region II given by r ∈ ðrþb ; rþa Þ. On the
contrary, the pathological domain can not occur in the
region III inside the black hole or close to the conformal
infinities I� which are the boundaries of the dynamical
regions I and V where r is temporal because Q < 0.
This fact is explicitly seen in the exact plots shown
in Fig. 6.
Moreover, it can be proven analytically that these

pathological regions with closed timelike curves do not
overlap with the ergoregions (shown in Fig. 1), although
they are both in the same domains II and IV. Recall that the
ergoregions are identified by the condition gtt > 0 (together
with grr > 0), that is

Q < Pa2 sin2 θ; ð145Þ

see Eq. (84). By substituting this inequality into (144),
which is the condition gφφ < 0 for the pathological regions,
we obtain the relation

r2 þ ðaþ lÞ2 < a2 sin2 θ þ 4al sin2 1
2
θ; ð146Þ

FIG. 6. Plot of the metric function gφφ (122) for the accelerating black hole (1) with a regular axis θ ¼ 0 and rotating cosmic string
along θ ¼ π. The values of gφφ are visualized in quasipolar coordinates x≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ ðaþ lÞ2
p

sin θ, y≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðaþ lÞ2

p
cos θ for r ≥ 0

(left) and r ≤ 0 (right). The grey annulus in the center of the left figure localizes the black hole bordered by its horizonsH�
b at rþ and r−

(0 < r− < rþ). The acceleration horizons H�
a at rþa and r−a (big red circles) and the conformal infinity I at Ω ¼ 0 are also shown. The

grey curves are contour lines gφφðr; θÞ ¼ const, and the values are color-coded from red (positive values) to blue (negative values);
extremely large values are cut. The purple curves are the isolines gφφ ¼ 0 determining the boundary of the pathological regions (144)
with closed timelike curves. They occur close to the axis θ ¼ π (purple regions where gφφ < 0). This plot is for the choicem ¼ 3, a ¼ 1,
l ¼ 0.2, e ¼ g ¼ 1.6, and α ¼ 0.12.
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that is the same as r2 þ a2 cos2 θ þ 2al cos θ þ l2 < 0. In
view of (3), we have thus obtained

ρ2 ≡ r2 þ ðlþ a cos θÞ2 < 0; ð147Þ

which is a contradiction.
Interestingly, there is thus no intersection of the patho-

logical regions with the ergoregions. This is in accord with
a physical intuition: the pathological regions with closed
timelike curves are located here in the vicinity of the
twisting axis θ ¼ π, while the ergoregions are concentrated
mostly near the equatorial plane θ ¼ π

2
of the rotating black

hole horizons.

H. Thermodynamic properties

Finally, we evaluate basic thermodynamic quantities of
this class of black holes, namely the entropy

S≡ 1

4
A; ð148Þ

given by the horizon area A, and the temperature

T ≡ 1

2π
κ; ð149Þ

given by the corresponding horizon surface gravity κ,
see [18].
We obtain the horizon area by integrating both angular

coordinates of the metric (1) for fixed values of t and
r ¼ rh,

AðrhÞ ¼
Z

2πC

0

Z
π

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gθθgφφ

p
dθdφ; ð150Þ

where the metric functions are given by (122). Using the
fact that QðrhÞ ¼ 0 on any horizon, this expression
simplifies to

A ¼ 2πCðr2h þ ðaþ lÞ2Þ
Z

π

0

sin θ
Ω2ðrhÞ

dθ: ð151Þ

Applying the explicit form of the conformal factor (2), an
integration immediately leads to

A ¼ 4πCðr2h þ ðaþ lÞ2Þ
ð1 − α a2þal

a2þl2 rhÞð1þ α a2−al
a2þl2 rhÞ

: ð152Þ

With the gauge (30), this is the same expression as Eq. (51)
in [10]. In particular, for the four distinct horizons H
introduced in (71)–(74) we thus obtain that

area ofHþ
b isA

þ
b ¼ 4πCðr2þþðaþ lÞ2Þ

ð1−αa2þal
a2þl2 rþÞð1þαa2−al

a2þl2 rþÞ
; ð153Þ

areaofH−
b isA

−
b ¼

4πCðr2−þðaþ lÞ2Þ
ð1−αa2þal

a2þl2 r−Þð1þαa2−al
a2þl2 r−Þ

; ð154Þ

area ofHþ
a is infinite; ð155Þ

area ofH−
a is infinite: ð156Þ

The area of the acceleration horizons H�
a is thus

unbounded, while the black-hole horizons H�
b have finite

values given by (153), (154).
Interestingly, there exists a relation between these

horizon areas and the conicities, namely

Aþ
bA

−
b ¼ 16π2C2C0Cπðr2þ þ ðaþ lÞ2Þðr2− þ ðaþ lÞ2Þ;

ð157Þ

where C0 and Cπ , given by (124) and (130), are the specific
conicities which regularize either the θ ¼ 0 or the θ ¼ π
axis, respectively. For vanishing acceleration α the con-
icities are C ¼ C0 ¼ Cπ ¼ 1, so that the two horizons of
the complete family of Kerr–Newman–NUT black holes
(31)–(33) located at r� ¼ m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2 − a2 − e2 − g2

p
have the corresponding areas

A�
b ¼ 4πðr2� þ ðaþ lÞ2Þ: ð158Þ

This simple expression reduces to the well-known
formulas for Kerr–Newman black holes (l ¼ 0),
charged Taub–NUT (a ¼ 0), Kerr (l ¼ 0, e ¼ 0 ¼ g),
Reissner–Nordström (a ¼ 0, l ¼ 0), and Schwarzschild
(a ¼ 0, l ¼ 0, e ¼ 0 ¼ g) with a single horizon of the
area Ab ¼ 4πr2h ¼ 16πm2.
The surface gravity κ is defined as the “acceleration” of

the null normal ξa generating the horizon at rh via the
relation ξa;bξ

b ¼ κξa (so that κ2 ¼ − 1
2
ξa;bξ

a;b). Previously
in [10] we showed that for the general metric form (1) this
can be expressed as

κ ¼ 1

2

Q0ðrhÞ
r2h þ ðaþ lÞ2 ; ð159Þ

where the prime denotes the derivative with respect
to the coordinate r. With the new factorized form (5) of
the metric function QðrÞ this can now be easily evaluated,
yielding
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surface gravity ofHþ
b is κþb ¼

1
2
ðrþ − r−Þð1þ α a2−al

a2þl2 rþÞð1 − α a2þal
a2þl2 rþÞ

r2þ þ ðaþ lÞ2 ; ð160Þ

surface gravity ofH−
b is κ

−
b ¼ −

1
2
ðrþ − r−Þð1þ α a2−al

a2þl2 r−Þð1 − α a2þal
a2þl2 r−Þ

r2− þ ðaþ lÞ2 ; ð161Þ

surface gravity ofHþ
a is κþa ¼ − α

a2

a2 þ l2
ðrþa − rþÞðrþa − r−Þ
ðrþa Þ2 þ ðaþ lÞ2 ; ð162Þ

surface gravity ofH−
a is κ−a ¼ α

a2

a2 þ l2
ðr−a − rþÞðr−a − r−Þ
ðr−a Þ2 þ ðaþ lÞ2 : ð163Þ

Recall that the specific values rþ, r−, rþa , r−a of the horizons
position are explicitly given by (71)–(74). In particular,

1

2
ðrþ − r−Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2 − a2 − e2 − g2

q
: ð164Þ

Notice that the surface gravities κ (and thus the corre-
sponding temperatures T) of the black-hole horizon Hþ

b
and the acceleration horizonH−

a are positive, while they are
negative for the complementary horizons H−

b and Hþ
a .

It is also very interesting that even in the most general
case the product of the area and the surface gravity of the
black-hole horizons are the same, and expressed simply as

Aþ
b κ

þ
b ¼ −A−

b κ
−
b ¼ 2πCðrþ − r−Þ: ð165Þ

Consequently, the product of the temperature and the
entropy of the black-hole horizons H�

b is

ðTSÞþ ¼ −ðTSÞ− ¼ 1

2
C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2 − a2 − e2 − g2

q
: ð166Þ

Moreover, it is seen from (160) and (161) that

κþb ¼ 0 ¼ κ−b if and only if rþ ¼ r− ð167Þ

(assuming a reasonably small acceleration α). This fully
confirms that an extremal horizon has vanishing surface
gravity. As described in Sec. IV, if the extremality condition
(44) is satisfied the double-degenerate extremal horizon is
located at

rh ¼ m; ð168Þ

and the metric function QðrÞ takes the form (47),

QðrÞ ¼ ðr −mÞ2
�
1þ αa

a − l
a2 þ l2

r

��
1 − αa

aþ l
a2 þ l2

r

�
:

ð169Þ

Clearly, QðrhÞ ¼ 0 and also Q0ðrhÞ ¼ 0, so that κ ¼ 0 due
to (159). Such a degenerate black-hole horizon at r ¼ m in
the family of accelerating extremal Kerr–Newman–NUT
spacetimes has zero surface gravity, and thus zero thermo-
dynamic temperature T.
Let us consider the special case with vanishing accel-

eration (α ¼ 0). In such a situation, the expressions (160)–
(163) simplify:

surface gravity ofHþ
b is κþb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2 − a2 − e2 − g2

p
r2þ þ ðaþ lÞ2 ;

ð170Þ

surface gravity ofH−
b is κ

−
b ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2 − a2 − e2 − g2

p
r2− þ ðaþ lÞ2 ;

ð171Þ

surface gravity ofH�
a is κ�a ¼ 0: ð172Þ

(Actually, both the acceleration horizons H�
a disappear in

this limit.) Writing (170) fully explicitly, we obtain the
surface gravity of the black-hole horizon Hþ

b

κþb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2 − a2 − e2 − g2

p
ðmþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2 − a2 − e2 − g2

p
Þ2 þ ðaþ lÞ2

: ð173Þ

This generalizes for the case l ≠ 0 and g ≠ 0 the expression

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2 − e2

p

2mðmþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2 − e2

p
Þ − e2

; ð174Þ

which is the usual surface-gravity formula for the Kerr–
Newman black hole, see Eq. (12.5.4) in [18]. For the
Schwarzschild black hole it reads κ ¼ 1=ð4mÞ.
Finally, let us remark that our explicit and fully general

expressions (160)–(163) for the surface gravity κ of each of
the 4 horizons at rh agree with the results obtained directly
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from the definition ξa;bξ
b ¼ κξa if the appropriate null

normal generator ξa of the horizon is employed. In
particular, the corresponding Killing vector field is

ξa ≡ ∂t þΩh∂φ; ð175Þ

where the constant Ωh is the angular velocity of the given
horizon H. Using (138) and (122), the norm ξaξa of the
Killing vector ξa at the horizon (where Q ¼ 0) vanishes if
and only if

Ωh ¼
a

r2h þ ðaþ lÞ2 : ð176Þ

For the particular horizons r�b ≡ r� and r�a given
by (71)–(74) this gives the constants

Ω�
b ¼ a

r2� þ ðaþ lÞ2 ; ð177Þ

Ω�
a ¼ α2a3ða� lÞ2

ða2 þ l2Þ2 þ α2a2ðaþ lÞ2ða� lÞ2 : ð178Þ

It can be seen that for vanishing Kerr-like rotation
(a ¼ 0) the angular velocities of all four horizons become
zero, whereas for vanishing NUT parameter (l ¼ 0) they all
remain nonzero,

Ω�
b ¼ a

r2� þ a2
; Ω�

a ¼ α2a
1þ α2a2

: ð179Þ

I. Concluding summary

In this work we presented a new metric form (1)–(7) of
the remarkable family of exact black holes of algebraic
type D, initially found by Debever (1971) and by Plebański
and Demiański (1976). Moreover, we demonstrated that
this improved metric representation has many advantages
which simplify the investigation of its geometrical and
physical properties. In particular:

(i) In Sec. II we started with a convenient Griffiths–
Podolský (2005, 2006) form of this class of space-
times, but we further improved it. By introducing a
modified set of the mass and charge parametersm, e,
g, applying a special conformal rescaling S, and
choosing a useful gauge of the twist parameter ω, we
obtained an explicit compact form of the metric.

(ii) Themetric functions (2)–(5) are very simple, depend-
ing only on the radial coordinate r and the angular
coordinate θ. Moreover, the key functions PðθÞ and
QðrÞ are factorized. They explicitly localize the axes
of symmetry and the horizons, respectively.

(iii) The metric depends on six parameters m; a; l; α; e; g
with direct physical meaning, namely they represent
the mass, Kerr-like rotation, NUT parameter, accel-

eration, electric, and magnetic charges of the black
hole, respectively.

(iv) Interestingly, the new metric (1) depends on the
parameters a, l, α directly, while the dependence on
the remaining three parameters m, e, g is encoded in
the two constants rþ and r− defined by (6) and (7).
In fact, these expressions localize the two black-hole
horizons, and they only appear in the factorized
metric functions P and Q.

(v) Very nice feature of the new metric form (1)–(5) is
that any of its six physical parameters can be
independently set to zero, and this can be done in
any order. In this way, specific subclasses of type D
black holes are easily obtained.

(vi) This property is demonstrated in Sec. III where the
general family of accelerating, charged, rotating and
NUTed black holes naturally reduce to its large
subclasses with five physical parameters. These are
the Kerr–Newman–NUT black holes without accel-
eration (α ¼ 0), accelerating Kerr–Newman black
holes without NUT (l ¼ 0), charged Taub–NUT
black holes without rotation (a ¼ 0), and accelerat-
ing Kerr–NUT black holes without electric or
magnetic charges (e ¼ 0 or g ¼ 0).

(vii) All the metric functions (2)–(5) depend on the
acceleration α only via the product αa. Therefore,
by setting the Kerr-like rotation a to zero, the new
metric (1) becomes independent of α, and simplifies
directly to charged Taub–NUT black holes. This
explicitly confirms the previous observation made
by Griffiths and Podolský that there is no accelerat-
ing NUT black hole in the Plebański–Demiański
family of type D spacetimes. Quite surprisingly,
such a solution for accelerating nonrotating black
hole with purely NUT parameter exists [8,12], but it
is of distinct algebraic type I.

(viii) The simplest subcases of our general metric (1) with
just the massm and one additional physical parameter
reveal the famous black holes, namely the Schwarzs-
child,Reissner–Nordström,Kerr, Taub–NUTor theC-
metric solutions, all in their standard coordinate forms.

(ix) As shown in Sec. IV, the improved metric (1)
naturally contains also extreme black holes with
double-degenerate horizons (rþ ¼ r−) located at
r ¼ m, whenever m2 þ l2 ¼ a2 þ e2 þ g2. Such a
family of extremal accelerating Kerr–Newman–
NUT black holes also admits various subclasses,
obtained by setting any of the parameters α, l, a, e, g
to zero. In fact, they represent the complete class of
extremal isolated horizons with axial symmetry [10].

(x) The hyperextreme cases, when the parameters sat-
isfy the relation m2 þ l2 < a2 þ e2 þ g2, represent
exact spacetimes with an accelerated naked singu-
larity. The metric functions P, Q are not (fully)
factorizable, and take the form (51), (52). There are
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thus only two acceleration horizons, which are
absent when αa ¼ 0.

The new convenient metric (1) considerably simplifies the
investigationof various properties of this large family of black
holes, as demonstrated in the subsequent sections of ourwork,
namely:

(i) First, in Sec. V we evaluated the Weyl and Ricci
tensors of (1), expressed as the Newman–Penrose
scalars in the natural tetrad (54) adapted to the
double-degenerate principal null directions. The
only such scalars are Ψ2 and Φ11, confirming
the type D algebraic structure of the gravitational
field, aligned with the non-null electromagnetic field
(67)–(69).

(ii) Their explicit form (55) and (56) reveals that generic
black-hole spacetimes are asymptotically flat at
Ω ¼ 0. For vanishing acceleration α, the spacetimes
(1) become asymptotically flat for large values of the
radial coordinate jrj (except along the axes of
symmetry θ ¼ 0 and θ ¼ π if the cosmic strings
or struts are present).

(iii) Both the double-degenerate principal null directions
are expanding. They are twisting if and only if
a ¼ 0 ¼ l. On the horizons, the expansion and twist
always vanish.

(iv) In general, there are four distinct horizons identified
in Sec. VA as the roots of the metric function
QðrÞ. Since its form (70) is fully factorized, the
corresponding positions are simply expressed in
terms of the physical parameters as (71)–(74).
There is a pair of black-hole horizons H�

b at

r�b ≡ r� ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2 − a2 − e2 − g2

p
, and a

pair of acceleration horizons H�
a at r�a≡

�α−1ða2 þ l2Þ=ða2 � alÞ, which simplifies to r�a ≡
�α−1 when l ¼ 0.

(v) Interestingly, these positions of the black-hole hori-
zons are independent of the acceleration α, while the
acceleration horizons do not depend on the mass m
and the charges e, g.

(vi) For sufficiently small acceleration α such that
αrþ < ða2 þ l2Þ=ða2 þ alÞ, with 0 ≤ l < a, the four
horizons are ordered as r−a < r−b < rþb < rþa , see (81).

(vii) Whenever the Kerr-like rotation parameter a
is nonzero, each of these four horizons is accom-
panied by the corresponding ergoregion, see
Sec. V B. It “touches’ the horizon at its poles,
extending from the horizon near the equatorial
region. This is shown in Fig. 1. For the Kerr–
Newman–NUT black holes without acceleration,
the ergoregions are bounded by the surface
re�ðθÞ ¼ m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2 − e2 − g2 − a2 cos2 θ

p
.

(viii) Using the Weyl scalar Ψ2 and also the Kretschmann
scalar K≡ RabcdRabcd, in Subsec. V C we clarified
the presence and the structure of the curvature

singularities. Such a singularity is present at r ¼ 0,
but only if lþ a cos θ ¼ 0 which requires jlj ≤ jaj.
There is thus no curvature singularity in the
black-hole spacetimes with large NUT parameter
jlj > jaj ≥ 0.

(ix) For 0 ≤ jlj ≤ jaj the curvature singularity is present
at r ¼ 0, but only in the section with special value of
the angular coordinate θ such that cos θ ¼ −l=a.
Various possibilities are summarized in (89).

(x) This singularity has a ring structure which can be
crossed from the asymptotically flat region r > 0 to
the distinct asymptotically flat region r < 0, as
schematically shown in Fig. 2 and Fig. 3. Only in
the section cos θ ¼ −l=a (or for any value of θ if
l ¼ 0 ¼ a) we have to restrict the range of r to two
separate domains r > 0 and r < 0.

(xi) To complete our understanding of the global causal
structure of the entire family of black-hole space-
times (1), in Sec. V Dwe introduced the retarded and
advanced null coordinates in which the correspond-
ing metric forms (93) and (96) have no coordinate
singularities at the horizons.

(xii) Then we explicitly constructed the corresponding
Kruskal–Szekeres-type coordinates which enabled
us to perform the maximal analytic extension across
all the horizons. It revealed an infinite number of
time-dependent regions (of type I, III, V) and sta-
tionary regions (of type II, IV) which are separated by
the black hole and acceleration horizonsH�

b andH�
a .

(xiii) The complicated global structure of this large family
of spacetimes is visualized in the Penrose diagrams
obtained by a suitable conformal compactification,
drawn in Fig. 4 and Fig. 5. The complete manifold
contains an infinite number of black holes in various
asymptotically flat universes identified by distinct
(future and past) conformal infinities I—unless a
special topological identification is made.

(xiv) In Sec. V E we clarified that the physical source of
acceleration of the black holes is the tension (or
compression) in the rotating cosmic strings (or
struts) located along the two axes of axial symmetry
at θ ¼ 0 and θ ¼ π. Such strings or struts are related
to the deficit or excess angles which introduce
topological defects along these axes (while the
curvature remains finite).

(xv) In general, there are strings/struts along both the
axes, but one of the axis can be made fully regular by
a suitable choice of the conicity parameter C in the
range φ ∈ ½0; 2πCÞ. The first axis θ ¼ 0 is regular in
the metric form (1) with the choice (124), whereas
the second axis θ ¼ π is regular in the form (126)
with the choice (130). In the first case, there is a
cosmic strut along θ ¼ π with the excess angle
(133), while in the second case there is a cosmic
string along θ ¼ 0 with the deficit angle (131). For
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vanishing acceleration, both the axes can be made
regular simultaneously (except for a possible NUT-
like pathology).

(xvi) In addition to the deficit/excess angles, these cosmic
strings/struts located along the axes of symmetry are
characterized by their rotation parameter ω (angular
velocity). We demonstrated in Sec. V F that their
values are directly related to the NUT parameter l,
see expressions (140) and (143).

(xvii) There is always a constant difference Δω ¼ 4l
between the angular velocities of the two rotating
cosmic strings or struts. If and only if l ¼ 0, both the
axes are nontwisting.

(xviii) In the neighborhood of these rotating strings/struts
there occur pathological regions with closed timelike
curves. As shown in Sec. VG, these regions are
generally given by the condition (144). They appear
close to the rotating strings/struts, but only between
the black hole horizon H�

b and the corresponding
acceleration horizon H�

a (that is in the domains of
type II and IV), see Fig. 6.

(xix) Although the pathological regions with closed time-
like curves are located in the same domains as the
ergoregions, they do not overlap with each other.

(xx) The convenient metric form (1) with straight-
forward identification of the horizons is also suitable
for an easy investigation of the black hole
thermodynamics. Indeed, in Sec. V H we explicitly
evaluated the area of the four horizons (153)–(156),
their surface gravity (160)–(163), and their angular
velocity (177)–(178).

(xxi) These expressions generalize the usual formulas
for the Kerr–Newman family to black holes with
acceleration α and NUT parameter l. They reveal
interesting relations for the horizons temperature
and entropy, for example ðTSÞþ ¼ −ðTSÞ− ¼
1
2
C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2 − a2 − e2 − g2

p
.

To conclude, the simple new metric form (1)–(7) has
clear advantages. We hope that it will be employed for
various studies and applications of this interesting class of
accelerating and rotating black holes which charges and the
NUT parameter.
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JIřÍ PODOLSKÝ and ADAM VRÁTNÝ PHYS. REV. D 104, 084078 (2021)

084078-26

Paper 2, Phys. Rev. D 104, 084078 (2021)
New improved form of black holes of type D

108



3. New improved form of black
holes of type D with Λ
This last chapter is based on the paper New form of all black holes of type D with
a cosmological constant [46] by Podolský and Vrátný, published as a preprint
in December 2022, and accepted to the journal Physical Review D on March 9,
2023. The version shown here is the proofreading of the accepted manuscript.

In this paper, we generalized our previous work [45], in which we studied the
Plebański–Demiański class of black hole solutions for zero cosmological constant
(see the previous Chapter 2). Recently, we succeeded in generalizing our new
metric form (2.5)–(2.9) by including also a cosmological constant Λ ̸= 0, still
preserving the (partial) factorization of the metric functions.

We also provided a thorough analysis of this solution. Among other things we
computed and studied its special and extreme cases, localized the horizons, eval-
uated the curvature tensors and scalars, visualized ergoregions and pathological
regions around the axes, performed the Kruskalization followed by the construc-
tion of the conformal diagram, and started to analyze the thermodynamics of
these black holes.

3.1 Derivation of the new metric form
As in the previous Chapter 2, we started with a set of changes on the metric form
(II.28) and its metric functions P(θ) (II.31) and Q(r) (II.32). We applied the
reparametrization

m ≡ S m̃ − α
l

ω
(a2 − l2 + e2 + g2) ,

e2 ≡ S ẽ2 , (3.1)
g2 ≡ S g̃2 ,

Λ ≡ S Λ̃ ,

where the prefactor S is defined as

S ≡ a2 − l2

ω2k
. (3.2)

Notice, that now we also rescale the cosmological constant Λ̃ (compare the
equations (2.1)). This can raise some questions since the cosmological constant
enters the Einstein field equations (EFE). However, at the end we will rescale
the whole metric ds2 → S ds2, and the field equations require the corresponding
rescaling of Λ̃ to Λ.

Indeed, using (3.1), the metric functions P(θ) and Q(r), changes as

Q(r) = S−1 Q(r) , P(θ) = S−1 P (θ) , (3.3)

and the coordinate transformations t → S t and φ → S φ, enabled us to pull out
S completely from the whole metric as a specific constant conformal factor (see
Sec. P3.II for the full derivation).
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We have also set the twist parameter to

ω ≡ a2 + l2

a
. (3.4)

Thus we derived a new representation for the complete family of type D black
holes, including any cosmological constant:

ds2 = 1
Ω2

(︄
− Q

ρ2

[︂
dt −

(︂
a sin2 θ + 4l sin2 1

2θ
)︂
dφ
]︂2

+ ρ2

Q
dr2

+ ρ2

P
dθ2 + P

ρ2 sin2 θ
[︂
a dt −

(︂
r2 + (a + l)2

)︂
dφ
]︂2)︄

, (3.5)

where

Ω = 1 − α a

a2 + l2 r (l + a cos θ) , (3.6)

ρ2 = r2 + (l + a cos θ)2 , (3.7)

P (θ) = 1 − 2
(︃

α a

a2 + l2 m − Λ
3 l
)︃

(l + a cos θ)

+
(︃

α2a2

(a2 + l2)2 (a2 − l2 + e2 + g2) + Λ
3

)︃
(l + a cos θ)2 , (3.8)

Q(r) =
[︃

r2 − 2m r + (a2 − l2 + e2 + g2)
]︃(︃

1 + α a
a − l

a2 + l2 r
)︃(︃

1 − α a
a + l

a2 + l2 r
)︃

−Λ
3 r2

[︃
r2 + 2α a l

a2 − l2

a2 + l2 r + (a2 + 3l2)
]︃

, (3.9)

with the physical parameters

m ..... mass parameter ,

a ..... Kerr-like rotation ,

l ..... NUT parameter ,

e ..... electric charge ,

g ..... magnetic charge ,

α ..... acceleration ,

Λ ..... cosmological constant .

For Λ = 0 and m2 + a2 ≥ a2 − l2 + e2 + g2 both the metric functions P (θ)
and Q(r) can be fully and nicely factorized (see equations (2.8) and (2.9)). For
Λ ̸= 0 this is not generally possible. Nevertheless, we were able to factorize (at
least) the metric function P (θ), and appropriately simplify the function Q(r). By
defining the convenient parameters

rΛ+ ≡ µ +
√︂

µ2 + l2 − a2 − e2 − g2 − λ , (3.10)

rΛ− ≡ µ −
√︂

µ2 + l2 − a2 − e2 − g2 − λ , (3.11)

where

µ ≡ m − Λ
3 l

a2 + l2

α a
, λ ≡ Λ

3
(a2 + l2)2

α2a2 , (3.12)
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the metric functions are simplified to

P (θ) =
(︃

1 − α a

a2 + l2 rΛ+ (l + a cos θ)
)︃(︃

1 − α a

a2 + l2 rΛ− (l + a cos θ)
)︃

, (3.13)

Q(r) =
(︂
r − rΛ+

)︂(︂
r − rΛ−

)︂(︃
1 + α a

a − l

a2 + l2 r
)︃(︃

1 − α a
a + l

a2 + l2 r
)︃

(3.14)

−Λ
3

[︃
r4 + (a2 + l2)2

α2a2

]︃
.

This is possible only for µ2 + l2 ≥ a2 + e2 + g2 + λ, in which case the expres-
sions (3.10), (3.11) yield real constants. Notice also the similarity between these
two metric functions and the relation (II.8) already pointed out by Griffiths and
Podolský in 2006 [40].

Similarly as in Chapter 2, the advantage of this new metric representation is
that we can easily gain the standard forms of the most important black holes by
simply switching off the appropriate parameters, namely

• Λ = 0 : Black holes in flat universe (P3.IV.A) ,
• α = 0 : Kerr–Newman–NUT–(anti-)de Sitter

black holes (P3.IV.B) ,
• l = 0 : Accelerating Kerr–Newman–(anti-)de Sitter

black holes (P3.IV.C) ,
• a = 0 : Charged Taub–NUT–(anti-)de Sitter black holes (P3.IV.D) ,
• e = 0 = g : Uncharged accelerating Kerr–NUT–(anti-)de Sitter

black holes (P3.IV.E) .
Notice again, how easily can we now perform the transition to the charged

Taub–NUT–(anti-)de Sitter black hole for a vanishing Kerr-like rotation (a = 0).
This confirms that no solution representing (possibly charged) accelerating Taub–
NUT with a (possibly non-zero) cosmological constant exists in the complete
family of type D black holes.

3.2 Physical analysis of the new metric form
The new representation of the full family of exact type D black holes (3.5)–(3.9)
can be used for a thorough physical analysis (see section P3.V). The procedure
we have chosen is essentially similar to the one we used in Chapter 2. We defined
a natural null tetrad (2.12):

k = 1√
2

Ω
ρ

[︄
1√
Q

(︃(︂
r2 + (a + l)2

)︂
∂t + a ∂φ

)︃
+
√︂

Q ∂r

]︄
,

l = 1√
2

Ω
ρ

[︄
1√
Q

(︃(︂
r2 + (a + l)2

)︂
∂t + a ∂φ

)︃
−
√︂

Q ∂r

]︄
, (3.15)

m = 1√
2

Ω
ρ

[︄
1√

P sin θ

(︃
∂φ +

(︂
a sin2 θ + 4l sin2 1

2θ
)︂

∂t

)︃
+ i

√
P ∂θ

]︄
.

The only nontrivial NP scalars corresponding to the Weyl tensor and the Ricci
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tensor are

Ψ2 = Ω3[︂
r + i (l + a cos θ)

]︂3
[︄

− (m + i l)
(︃

1 − i α a
a2 − l2

a2 + l2

)︃
− i Λ

3 l (a2 − l2)

+ (e2 + g2)
r − i (l + a cos θ)

(︃
1 + α a

a2 + l2

[︂
a r cos θ + i l (l + a cos θ)

]︂)︃]︄
, (3.16)

Φ11 = 1
2(e2 + g2) Ω4

ρ4 , (3.17)

while the Ricci scalar now equals to

R = 4 Λ . (3.18)

For Λ = 0, we simply recover equations (2.13)–(2.14) and the vanishing Ricci
scalar.

Let us also recall the relation between the Kretschmann scalar K ≡ Rabcd Rabcd

and its related Weyl scalar C ≡ Cabcd Cabcd derived in Sec. I.4. Using it, we
computed and explicitly expressed these scalars for the metric (3.5)–(3.9), see
equations (98), (99).

The 4-potential of the charged solution is

A = −
√︂

e2 + g2 r

ρ2

[︃
dt − (a sin2 θ + 4l sin2 1

2θ) dφ
]︃

, (3.19)

and the corresponding Newman–Penrose scalars have only the component

Φ1 ≡ 1
2Fab(kalb + m̄amb) =

√
e2 + g2 Ω2(︂

r + i (l + a cos θ)
)︂2 . (3.20)

Since the only nontrivial NP Weyl scalar is Ψ2, both vectors k and l are the
principal null directions. Both are double-degenerate, yielding that the metric
is of algebraic type D. The electromagnetic field for e ̸= 0 ̸= g is non-null and
double-aligned.

The spin coefficients for the null tetrad (3.15) are the same as (2.15). Both
k, l (3.15) are geodetic (κ = 0 = ν) and shear-free (σ = 0 = λ), with expansion Θ
and twist ω, namely

Θ =
√

Q√
2 ρ3

(︃
r + α a

a2 + l2 (l + a cos θ)3
)︃

, (3.21)

ω = −Ω
√

Q√
2 ρ3

(l + a cos θ) . (3.22)

Notice that all the equations (3.19)–(3.22) depend on the cosmological con-
stant Λ only implicitly via the metric functions Q(r), P (θ).

From (3.22) we see directly that the black hole is everywhere non-twisting if
(and only if) a = 0 = l. The conformally flat regions, where Ψ2 (3.16) vanishes,
correspond to Ω = 0. This is the conformal infinity. The curvature singularity
localized at the region where Ψ2 (3.16) diverges occurs if and only if ρ2 = 0. This
can happen only when

r = 0 and at the same time l + a cos θ = 0 . (3.23)

It means that we obtained the very same result as for the asymptotically flat
black holes (2.31).
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3.2.1 Horizons
One of the key topics in our latest publication [46] was the calculation and gen-
eral classification of possible horizons. They are fully determined by the quartic
equation Q(r) = 0. Their explicit calculation is however quite cumbersome and
does not provide simple answers on a desired analysis. We had to proceed in a
systematic way.

First of all, we defined the polynomial coefficients of Q(r) in the following
way:

Q(r) = q4 r4 + q3 r3 + q2 r2 + q1 r + q0 , (3.24)

where

q4 = − α2a2 a2 − l2

(a2 + l2)2 − Λ
3 ,

q3 = 2 α a

[︄
α a m

a2 − l2

(a2 + l2)2 − l

a2 + l2 − l
a2 − l2

a2 + l2
Λ
3

]︄
,

q2 = 1 + 4 α a m
l

a2 + l2 − α2a2 a2 − l2

(a2 + l2)2 (a2 − l2 + e2 + g2) − (a2 + 3l2) Λ
3 ,

q1 = −2m − 2 α a
l

a2 + l2 (a2 − l2 + e2 + g2) , (3.25)

q0 = a2 − l2 + e2 + g2 .

Then we employed the analysis presented in [67]. More specifically, with the
parameters

N ≡ 8q4q2 − 3q2
3 , (3.26)

R ≡ 8q2
4q1 − 4q4q3q2 + q3

3 , (3.27)
S ≡ 256q3

4q0 − 64q2
4q3q1 + 16q4q

2
3q2 − 3q4

3 , (3.28)
∆ ≡ 256q3

4q3
0 − 192q2

4q3q1q
2
0 − 128q2

4q2
2q2

0 + 144q2
4q2q

2
1q0

−27q2
4q4

1 + 144q4q
2
3q2q

2
0 − 6q4q

2
3q2

1q0 − 80q4q3q
2
2q1q0

+18q4q3q2q
3
1 + 16q4q

4
2q0 − 4q4q

3
2q2

1 − 27q4
3q2

0

+18q3
3q2q1q0 − 4q3

3q3
1 − 4q2

3q3
2q0 + q2

3q2
2q2

1 . (3.29)

We concluded that the following possibilities arise:

For ∆ > 0:
The metric function Q(r) has either none, or four distinct real roots. That de-
pends on:

• If N < 0 and N2 > S: all four roots are real and distinct.
• If N < 0 and N2 < S: there exist two pairs of complex conjugate non-real

roots.
• If N ≥ 0: there are also two pairs of complex conjugate non-real roots.

For ∆ < 0:
The metric function Q(r) has two distinct real roots and two complex conjugate
non-real roots.
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For ∆ = 0:
The only case when the metric function Q(r) has at least one multiple root. Here
are the different cases that can occur:
• If N < 0 together with:

• N2 < S: there exists one real double root and two complex conjugate roots.
• N2 = S: there are two distinct real double roots.
• N2 > S and N2 > −3S: there occurs one real double root and two distinct

simple real roots.
• N2 = −3S: there is one real triple root and one distinct simple real root.

• If N > 0 together with:
• S = 0: there exists one real double root and two complex conjugate roots.
• S > 0 and R ̸= 0: there is also one real double root and two complex

conjugate roots.
• S = N2 and R = 0: there are only two complex conjugate double roots.

• If N = 0 together with:
• S > 0: there is one real double root and two complex conjugate roots.
• S = 0 (implying R = 0): there is one real quadruple root at rh = − q3

4 q4
.

Our main interest lies in the most physically relevant case of four distinct
roots, that is when

∆ > 0 and N < 0 and N2 > S . (3.30)

Under these special conditions, the metric function Q(r) is fully factorized
with four distinct horizons r+

b , r−
b , r+

c , r−
c . More specifically, the metric function

reads

Q(r) = −N
(︂
r − r+

b

)︂(︂
r − r−

b

)︂(︂
r − r+

c

)︂(︂
r − r−

c

)︂
, (3.31)

where

N = α2 a2 a2 − l2

(a2 + l2)2 + Λ
3 , (3.32)

while the roots localize the horizons H±
h , namely

H+
b at r+

b is the outer black-hole horizon, (3.33)
H−

b at r−
b is the inner black-hole horizon, (3.34)

H+
c at r+

c is the outer cosmo-acceleration horizon, (3.35)
H−

c at r−
c is the inner cosmo-acceleration horizon. (3.36)

We presume a natural ordering of these horizons as

r−
c < r−

b < r+
b < r+

c . (3.37)

We were able even to explicitly find these roots. Their complexity is however
big (see equations (140)–(148) of the attached Paper 3).
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3.2.2 Ergoregions

Similarly as in the case Λ = 0 with a ̸= 0, the occurrence of ergoregions can
be expected in the vicinity of the horizons. More precisely, their presence will
appear for

gtt = 1
Ω2ρ2 (P a2 sin2 θ − Q) > 0 . (3.38)

The condition (3.38) depends on the cosmological constant via the metric
functions P and Q. We presented the visualization of these areas for different
values of a and Λ, see Fig. 3.1.

Figure 3.1: Plot of the metric function gtt given by (3.38) in quasi-polar coordinates
x ≡

√︁
r2 + (a + l)2 sin θ, y ≡

√︁
r2 + (a + l)2 cos θ for r ≥ 0. Ergoregions are localized

within the green areas between the gray annulus in the center which localizes the black
hole horizons H±

b at r+
b and r−

b . The cosmo-acceleration horizon H+
c at r+

c (big red
circle) and the conformal infinity I at Ω = 0 are also illustrated. For more details, see
the attached Paper 3.
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Notice that the ergoregions occur not only in the vicinity of the black hole
horizons but also near the cosmo-acceleration horizons as well. Not only does
the area of ergoregions increase for a larger Kerr-like rotation a, as it was in the
asymptotically flat universe (see Fig. 2.1), but the cosmological constant also
affects the size of these regions. Moreover, for a sufficiently large rotation a or Λ,
these ergoregions around the different horizons can even merge near the equatorial
plane.

3.2.3 Global structure and the conformal diagrams
Similarly, as in the case of Λ = 0 summarized in the previous Chapter 2 (see
Sec. 2.2.4), we were able to explicitly construct the compactified coordinates
{T̃

±
h , R̃

±
h } (eq. (175) and (176) of the attached paper).

There are 5 types of regions bounded by the black hole horizons H±
b and the

cosmo-acceleration horizons H±
c . They are characterized by two integers (i, j),

namely
Region Description Specification of (i, j)

I: asymptotic time-dependent domain between H+
c and I+ (n − 2m + 1, n + 2m − 1)

II: stationary region between H+
b and H+

c (2n − m, 2n + m − 1)
III: time-dependent domain between the black-hole horizons (n − 2m, n + 2m)
IV: stationary region between H−

c and H−
b (2n − m + 1, 2n + m)

V: asymptotic time-dependent domain between I− and H−
c (n − 2m + 1, n + 2m − 1)

They form the conformal Penrose diagram, see the Fig. 3.2 (or the original
Fig. 2 of the Paper 3 for more details).

Figure 3.2: Penrose conformal diagram of the completely extended spacetime (3.5) for
the section ϕh = const. and such θ that the spacetime contains the curvature singularity
at r = 0. In this case, the regions IV are “cut in half” by this ring singularity at r = 0,
but can be non-geodetically extended.
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3.2.4 Regularity of the axes
Recall that there are seven physical parameters in the metric (3.5): mass m,
acceleration α, Kerr-like rotation and NUT twist parameters a and l, electric and
magnetic charges e and g, and the cosmological constant Λ.

But there is also an additional free parameter – the conicity parameter C
hidden in the range of the angular coordinate φ ∈ [0, 2πC) corresponding to the
magnitude of the deficit/excess angle of the cosmic string/strut.

The conical degeneracy of the θ = 0 axis can be removed by a suitable choice
of C, namely

C0 ≡
[︂
1 − 2

(︂ α a m

a2 + l2
− Λ

3 l
)︂
(a + l) +

(︂ α2a2

(a2 + l2)2 (a2 − l2 + e2 + g2) + Λ
3
)︂
(a + l)2

]︂−1
.

This leaves a deficit/excess angle on the other axis:

δπ =
−8πa

[︂
αa [ m(a2 + l2) − αal(a2 − l2 + e2 + g2)] − 2

3 Λl(a2 + l2)2
]︂

[︂
1 + 1

3 Λ(a + l)(a + 3l)
]︂
(a2 + l2)2 − 2αam(a + l)(a2 + l2) + α2a2(a + l)2(a2 − l2 + e2 + g2)

.

To regularize the second axis, we perform the coordinate transformation

tπ ≡ t − 4l φ , (3.39)

and chose

Cπ ≡
[︂
1 + 2

(︂ α a m

a2 + l2
− Λ

3 l
)︂
(a − l) +

(︂ α2a2

(a2 + l2)2 (a2 − l2 + e2 + g2) + Λ
3
)︂
(a − l)2

]︂−1
.

This regularizes the axis θ = π, with a deficit/excess angle on the θ = 0 axis

δ0 =
8πa

[︂
αa [ m(a2 + l2) − αal(a2 − l2 + e2 + g2)] − 2

3 Λl(a2 + l2)2
]︂

[︂
1 + 1

3 Λ(a − l)(a − 3l)
]︂
(a2 + l2)2 + 2αam(a − l)(a2 + l2) + α2a2(a − l)2(a2 − l2 + e2 + g2)

.

Most interestingly, a coincidence of the physical parameters

2
3Λl(a2 + l2)2 = αa

[︂
m(a2 + l2) − αal(a2 − l2 + e2 + g2)

]︂
(3.40)

fully regularizes both axes.
The strings/struts are twisting. This can be seen from the function ω ≡ gtφ

gtt
,

and its evaluation on the axes θ = 0 or θ = π. The twisting parameters ω on
each axes can be adjusted using (3.39), but its difference remains always constant
∆ω = 4l.

As we have already mentioned, in the Λ = 0 case, we can expect the pathology
around the axis θ = π caused by the presence of the NUT parameter. Such a
region with closed timelike curves is defined by the condition

P (θ)
(︂
r2 + (a + l)2

)︂2
sin2θ < Q(r)

(︂
a sin2 θ + 4l sin2 1

2θ
)︂2

, (3.41)

where the metric functions P (θ), Q(r) are explicitly given by (3.8), (3.9). This is
plotted on Fig. 3 of Paper 3.
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3.2.5 Thermodynamic properties
We also evaluated the basic thermodynamic quantities of this class of black holes,
namely the entropy and the temperature T , generalizing the Λ = 0 case (2.37).

The area of both black hole horizons is now given as:

area of H+
b is A+

b =
4πC

[︂
(r+

b )2 + (a + l)2
]︂

(︃
1 − α

a2 + al

a2 + l2 r+
b

)︃(︃
1 + α

a2 − al

a2 + l2 r+
b

)︃ , (3.42)

area of H−
b is A−

b =
4πC

[︂
(r−

b )2 + (a + l)2
]︂

(︃
1 − α

a2 + al

a2 + l2 r−
b

)︃(︃
1 + α

a2 − al

a2 + l2 r−
b

)︃ , (3.43)

whereas the area of the cosmo-acceleration horizons depends on Λ. If Λ ≤ 0 then
both are infinite. On the other hand, if Λ > 0 they are finite and equal to

area of H+
c is A+

c =
4πC

[︂
(r+

c )2 + (a + l)2
]︂

(︃
1 − α

a2 + al

a2 + l2 r+
c

)︃(︃
1 + α

a2 − al

a2 + l2 r+
c

)︃ , (3.44)

area of H−
c is A−

c =
4πC

[︂
(r−

c )2 + (a + l)2
]︂

(︃
1 − α

a2 + al

a2 + l2 r−
c

)︃(︃
1 + α

a2 − al

a2 + l2 r−
c

)︃ . (3.45)

The surface gravity from which we can evaluate the temperature of the hori-
zons via (2.37) is:

surface gravity of H+
b is κ+

b = 1
2k+

b

= −N
2

(r+
b − r−

b )(r+
b − r+

c )(r+
b − r−

c )
(r+

b )2 + (a + l)2 ,

surface gravity of H−
b is κ−

b = 1
2k−

b

= −N
2

(r−
b − r+

b )(r−
b − r+

c )(r−
b − r−

c )
(r−

b )2 + (a + l)2 ,

surface gravity of H+
c is κ+

c = 1
2k+

c

= −N
2

(r+
c − r+

b )(r+
c − r−

b )(r+
c − r−

c )
(r+

c )2 + (a + l)2 ,

surface gravity of H−
c is κ−

c = 1
2k−

c

= −N
2

(r−
c − r+

b )(r−
c − r−

b )(r−
c − r+

c )
(r−

c )2 + (a + l)2 .

From these expressions, it immediately follows that any extremal horizon has
a vanishing surface gravity, and thus zero temperature T = 0.

3.3 Summary
In this final Chapter 3, we have built on the results of Paper 2, that is [45], and
we further generalized the new metric form of the Plebański–Demiański metric by
including a non-zero cosmological constant Λ. This solution was then physically
and geometrically investigated. In particular:

• In Sec. 3.1, we summarized a new metric form (3.5)–(3.9) of the general
accelerating, rotating and charged black hole with a NUT parameter and
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Λ ̸= 0. This was achieved by further improving the Griffiths–Podolský form
of this class of spacetimes using a new set of the physical parameters m, e, g,
by applying a unique conformal rescaling S, and suitably fixing the twist
parameter ω.

• This large family of black hole solution depends generally on 7 arbitrary
parameters, namely the mass m, the rotation and NUT parameters a and l,
the electric and magnetic charges e and g, the acceleration parameter α,
and the cosmological constant Λ.

• The clear advantage of this new metric is its ability to transit to the simpler
black hole solutions in their standard formats. These are the black holes in
asymptotically flat universe (for Λ = 0), discussed in detail in the previous
Chapter 2, Kerr–Newman–NUT–(anti-)de Sitter black holes (for α = 0),
accelerating Kerr–Newman–(anti-)de Sitter black holes (for l = 0), charged
Taub–NUT–(anti-)de Sitter black holes (with a = 0), and uncharged accel-
erating Kerr–NUT–(anti-)de Sitter black holes (when e = 0 or g = 0).

• The new metric form (3.5) becomes completely independent of the accel-
eration α when the Kerr-like rotation a is set to zero: The solution then
simplifies directly to the charged Taub–NUT–(anti-)de Sitter black holes.
This further confirms the previous observation that there is no accelerat-
ing NUT black hole present in the Plebański–Demiański family of type D
spacetimes (see Chapter III for more details).

• Applying the null tetrad (3.15), we calculated all the NP scalars. The only
non-zero components are Ψ2 (3.16) and Φ11 (3.17). The Ricci scalar is
simply R = 4Λ.

• The spin coefficients indicate that both principal null directions are geodesic,
shear-free, expanding and generally twisting.

• From the curvature tensors we localized the presence of the ring curvature
singularity. It is located at ρ2 = 0, i.e. r = 0, and at the same time
l + a cos θ = 0. This requires |l| ≤ |a|. Otherwise, no curvature singularity
is present (see the classification (2.31)).

• In Sec. 3.2.1, we identified the four distinct horizons corresponding to the
roots of the metric function Q(r). We also provided a general classification
based on the number and multiplicity of its roots.

• For non-zero Kerr-like rotation a, each of these four horizons is accompa-
nied by the corresponding ergoregion. This was visualized in Sec. 3.2.2 on
Fig. 3.1.

• In Sec. 3.2.3, the global structure was visualized by the rigorously con-
structed Penrose conformal diagram, see Fig. 3.2.

• The regularization of the axisymmetric axes θ = 0 and θ = π, which we
interpret as the physical source of acceleration of the black holes, was con-
sidered in Sec. 3.2.4. By an appropriate fixing of the conicity parameter C,
we were able to regularize one of the axes.
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• There exists a unique choice of the physical parameters (3.40) which regu-
larizes both the axes simultaneously.

• These cosmic strings/struts are twisting when l ̸= 0. In their vicinity there
are pathological regions with closed timelike curves. These regions are given
by the condition (3.41).

• The new metric (3.5) is also convenient for the investigation of thermody-
namic quantities, such as the temperature T or the entropy S, see Sec. 3.2.5.

This demonstrates that the new metric form (3.5)–(3.9) has considerable ad-
vantages.

Among further investigations which should be done, let us mention the in-
depth analysis of the various other cases given by the classification diagram of
possible horizons in Sec. 3.2.1. In fact, we are already preparing a publication
which is concerned with these cases — the four-horizons cases given by a different
horizon ordering, the reduced solutions when one or more of the horizons disap-
pear “at infinity”, the discussion of its exact roots, and their simplification for a
vanishing cosmological constant.

Also the multiple horizons should be analyzed. This topic has been recently
studied, for example in the works [68]–[74]. We hope that the new form of the
metric may simplify these investigations.
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7 We present an improved metric form of the complete family of exact black hole spacetimes of algebraic
8 type D, including any cosmological constant. This class was found by Debever in 1971, Plebański and
9 Demiański in 1976, and conveniently reformulated by Griffiths and Podolský in 2005. In our new form

10 of this metric the key functions are simplified, partially factorized, and fully explicit. They depend on
11 seven parameters with direct physical meanings, namely m; a; l; α; e; g;Λ which characterize mass, Kerr-
12 like rotation, NUT parameter, acceleration, electric and magnetic charges of the black hole, and the
13 cosmological constant, respectively. Moreover, this general metric reduces directly to the familiar forms of
14 (possibly accelerating) Kerr-Newman–(anti–)de Sitter spacetime, charged Taub-NUT–(anti–)de Sitter
15 solution, or (possibly rotating and charged) C-metric with a cosmological constant by simply setting the
16 corresponding parameters to zero. In addition, it shows that the Plebański-Demiański family does not
17 involve accelerating NUT black holes without the Kerr-like rotation. The new improved metric also enables
18 us to study various physical and geometrical properties, namely the character of singularities, two black
19 hole and two cosmo-acceleration horizons (in a generic situation), the related ergoregions, global structure
20 including the Penrose conformal diagrams, parameters of cosmic strings causing the acceleration of the
21 black holes, their rotation, pathological regions with closed timelike curves, or thermodynamic quantities.

DOI:22

23 I. INTRODUCTION

24 Black holes belong to the most remarkable predictions of
25 Einstein’s general relativity. Although their existence had
26 been doubted for many decades, it is now widely accepted
27 that such totaly gravitationally collapsed “objects” indeed
28 exist in our Universe. Recent (and spectacular) observa-
29 tional proofs of this fact are the detections of gravitational
30 waves emitted from binary black hole coalescences,
31 achieved by the LIGO Scientific Collaboration-Virgo
32 Collaboration [1,2], and also the first direct image of a
33 shadow of a supermassive black hole in M87* and in
34 Sgr A*, obtained by the Event Horizon Telescope
35 Collaboration [3,4].
36 First exact spacetimes representing black holes were
37 found very soon after the final formulation of Einstein’s
38 field equations of general relativity in November 1915.
39 Namely, it is the important solution of Schwarzschild
40 (1916), Reissner-Nordström solution with an electric
41 charge (1916–1918), and Kottler-Weyl-Trefftz solution
42 with a cosmological constant Λ (1918–1922). These were
43 followed in 1960s by rotating Kerr (1963), twisting Taub-
44 NUT (1963) or Kerr-Newman charged black holes (1965),
45 and also the so called C-metric (1918, 1962), physically

46interpreted by Kinnersley-Walker (1970) as uniformly
47accelerating pair of black holes.
48All these fundamental exact solutions are spherically/
49axially symmetric, and are of algebraic type D. In fact, they
50belong to a general family of type D spacetimes with any Λ
51and an aligned electromagnetic field. Nonaccelerating sol-
52utions of this family were obtained in 1968 by Carter [5].
53In the vacuum Λ ¼ 0 case, they include all the particular
54subclasses identified by Kinnersley [6]. Debever [7] in 1971
55found a wider class of such black holes which also admit
56acceleration. In 1976 a better metric representation of this
57complete class of type D exact solutions to Einstein-
58Maxwell equations with double-aligned non-null electro-
59magnetic field and Λ was found in a seminal work [8] by
60Plebański and Demiański (for more details and further
61references see [9,10], in particular Chap. 16).
62Unfortunately, the familiar forms of the well-known
63black holes were not included explicitly in the original
64Plebański-Demiański metric (specific degenerate transfor-
65mations had to be applied), and the physical interpretation
66of its seven free parameters was not clear. Both these
67drawbacks were overcome in 2006 in the works of Griffiths
68and Podolský [11–13], see also [10], enabling easier
69analysis of physical and geometrical properties of these
70exact black holes.
71In our recent paper [14] we demonstrated that this
72Griffiths-Podolský form of the generic black hole metric
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73 of type D can be further improved. This was achieved by
74 introducing a modified set of the mass and charge param-
75 eters, an appropriate conformal rescaling, and a useful
76 gauge choice of the twist parameter. The new improved
77 form of the metric is simple, fully explicit, and with
78 factorized metric functions. It is thus possible to investigate
79 and evaluate various properties of this large family of
80 rotating, charged, and accelerating black holes, namely
81 their singularities, horizons, ergoregions, infinities, cosmic
82 strings, or thermodynamics [14].
83 In such studies we restricted ourselves only to the case
84 Λ ¼ 0. It is the purpose of the present paper to extend the
85 new improved coordinate representation found in [14] to
86 any value of the cosmological constant, thus completing
87 our program to improve the metric description of the full
88 class of Plebański-Demiański black holes of algebraic
89 type D.
90 In Sec. II we systematically derive the new form of the
91 metric, with the results summarized in Sec. III. In sub-
92 sequent Sec. IV all the main subclasses of this large family
93 of type D black holes are discussed—these are obtained
94 by simply setting the corresponding physical parameters
95 Λ; α; l; a; e; g to zero. The second part of our paper, which
96 is contained in the long Sec. V, is devoted to the physical
97 and geometrical analysis of this class of black holes which
98 can be done fully explicitly using our improved form of
99 the generic metric. Such a study includes determining the

100 curvature of the gravitational field, evaluation of the
101 electromagnetic field, the structure and location of hori-
102 zons, finding the related ergoregions, analytic extension
103 and global structure, regularization of the symmetry axes,
104 properties of the possible cosmic strings or struts, their
105 rotation related to the NUT parameter, regions with closed
106 timelike curves in their vicinity, and calculation of the
107 entropy and temperature of the black hole and cosmo-
108 acceleration horizons. Final summary with further remarks
109 is contained in Sec. VI.

110 II. DERIVATION OF THE NEW FORM
111 OF THE METRIC

112 First, let us recall the convenient representation of the
113 complete class of Plebański-Demiański black holes of
114 algebraic type D found by Griffiths and Podolský in
115 2005 [11–13]. It is summarized in Eq. (16.18) of [10] as

ds̃2 ¼ 1

Ω2

�
−
Q
ρ2

�
dt−

�
a sin2θþ 4lsin2 1

2
θ

�
dφ

�
2

þ ρ2

Q
dr2

þ ρ2

P
dθ2 þ P

ρ2
sin2θ½adt− ðr2 þ ðaþ lÞ2Þdφ�2

�
; ð1Þ

116117 where the metric functions are

Ω ¼ 1 −
α

ω
ðlþ a cos θÞr; ð2Þ

118119ρ2 ¼ r2 þ ðlþ a cos θÞ2; ð3Þ
120121PðθÞ ¼ 1 − a3 cos θ − a4 cos2 θ; ð4Þ
122123QðrÞ ¼ ðω2kþ ẽ2 þ g̃2Þ − 2m̃rþ ϵr2

− 2α
n
ω
r3 −

�
α2kþ Λ̃

3

�
r4: ð5Þ

124125The constants a3 and a4 in (4) are

a3 ¼ 2α
a
ω
m̃ − 4α2

al
ω2

ðω2kþ ẽ2 þ g̃2Þ − 4
Λ̃
3
al; ð6Þ

126127
a4 ¼ −α2

a2

ω2
ðω2kþ ẽ2 þ g̃2Þ − Λ̃

3
a2; ð7Þ

128129while the coefficients ϵ, n, and k in (5)–(7) are determined
130by the relations,

ϵ¼ ω2k
a2− l2

þ4α
l
ω
m̃− ða2þ3l2Þ

�
α2

ω2
ðω2kþ ẽ2þ g̃2Þþ Λ̃

3

�
;

ð8Þ
131132

n ¼ ω2k
a2 − l2

l − α
a2 − l2

ω
m̃

þ ða2 − l2Þl
�
α2

ω2
ðω2kþ ẽ2 þ g̃2Þ þ Λ̃

3

�
; ð9Þ

133134and

�
ω2

a2− l2
þ3α2l2

�
k¼1þ2α

l
ω
m̃−3α2

l2

ω2
ðẽ2þ g̃2Þ− Λ̃l2;

ð10Þ

135136which implies

ω2k
a2 − l2

¼ 1 − Λ̃l2 þ 2α l
ω m̃ − 3α2 l2

ω2 ðẽ2 þ g̃2Þ
1þ 3α2 l2

ω2 ða2 − l2Þ ; ð11Þ

137138ðω2kþ ẽ2 þ g̃2Þ

¼ ð1 − Λ̃l2Þða2 − l2Þ þ ðẽ2 þ g̃2Þ þ 2α l
ω ða2 − l2Þm̃

1þ 3α2 l2

ω2 ða2 − l2Þ :

ð12Þ

139140141The fully explicit form of the metric (1) is thus quite
142complicated because substituting (6)–(12) into (4) and (5)
143gives cumbersome expressions. Another fundamental prob-
144lem is the actual physical meaning of the seven parameters
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145 m̃; a; l; ẽ; g̃; α; Λ̃. These have been clearly interpreted only
146 in special subcases when some of the other parameters were
147 set to zero. In such subcases, they represent mass, Kerr-like
148 rotation, NUT parameter, electric charge, magnetic
149 charge, acceleration, and cosmological constant, respec-
150 tively. Their meaning in a completely general situation is
151 still an open problem. Moreover, there is an additional
152 (auxiliary) twist parameter ω. In previous works [11–13] it
153 was argued that ω is related both to a and l, and in some
154 cases can be scaled appropriately using the remaining
155 coordinate freedom. A satisfactory insight into all these
156 problems is still missing. It is the aim of the present work to
157 clarify such issues. We achieve this by presenting a new
158 compact, explicit and considerably simplified form of the
159 Plebański-Demiański metric, namely (47)–(51), for a com-
160 plete family of black holes.
161 The first step in improving the form of the spacetime is to
162 introduce a new set of the mass and charge parameters m,
163 e, g. Following our previous paper [14], we define them as

m≡ Sm̃ − α
l
ω
ða2 − l2 þ e2 þ g2Þ;

e2 ≡ Sẽ2;

g2 ≡ Sg̃2; ð13Þ

164165 where S is a specific scaling constant

S≡ a2 − l2

ω2k
: ð14Þ

166167Notice that

ðω2kþ ẽ2 þ g̃2Þ ¼ S−1ða2 − l2 þ e2 þ g2Þ; ð15Þ

168169which is a much simpler expression than (12).
170In terms of these new parametersm, e, g, the coefficients
171(6)–(9) take the form,

a3 ¼ S−1
a
ω

�
2αm − 2α2

l
ω
ða2 − l2 þ e2 þ g2Þ − 4

3
Λ̃Slω

�
;

ð16Þ
172173

a4 ¼ −S−1
a2

ω2

�
α2ða2 − l2 þ e2 þ g2Þ þ 1

3
Λ̃Sω2

�
; ð17Þ

174175

ϵ ¼ S−1
�
1þ 4α

l
ω
m − α2

a2 − l2

ω2
ða2 − l2 þ e2 þ g2Þ

−
1

3
Λ̃Sða2 þ 3l2Þ

�
; ð18Þ

176177
n ¼ S−1

�
l − α

a2 − l2

ω
mþ 1

3
Λ̃Sða2 − l2Þl

�
: ð19Þ

178179The key metric functions (4), (5) thus nicely simplify to

PðθÞ ¼ S−1PðθÞ; QðrÞ ¼ S−1QðrÞ; ð20Þ

180181where
182183

PðθÞ ¼ 1 − 2

�
α

ω
m −

1

3
Λ̃Sl

�
ðlþ a cos θÞ þ

�
α2

ω2
ða2 − l2 þ e2 þ g2Þ þ 1

3
Λ̃S

�
ðlþ a cos θÞ2; ð21Þ

184
185

QðrÞ ¼ ½r2 − 2mrþ ða2 − l2 þ e2 þ g2Þ�
�
1þ α

a − l
ω

r

��
1 − α

aþ l
ω

r

�
−
1

3
Λ̃Sr2

�
r2 þ 2α

l
ω
ða2 − l2Þrþ ða2 þ 3l2Þ

�
:

ð22Þ

186187 With (20), the metric (1) now reads

ds̃2 ¼ S
Ω2

�
−
Q
ρ2

S−2
�
dt −

�
asin2θ þ 4lsin2 1

2
θ

�
dφ

�
2

þ ρ2

Q
dr2 þ ρ2

P
dθ2

þ P
ρ2

sin2θS−2½adt − ðr2 þ ðaþ lÞ2Þdφ�2
�
: ð23Þ

188189 Recall that it is a solution to the Einstein-Maxwell field
190 equations with a cosmological constant Λ̃.
191 As the second step, we now rescale the coordinates t and
192 φ by a constant scaling factor S ≠ 0. (This is possible

193because their ranges have not yet been specified.) In other
194words, we perform the transformation,

t → St; φ → Sφ; ð24Þ

195196which completely removes all the constants S from the
197conformally related metric,

ds2 ≡ S−1ds̃2; ð25Þ

198199that is
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ds2 ¼ 1

Ω2

�
−
Q
ρ2

�
dt −

�
asin2θ þ 4lsin2 1

2
θ

�
dφ

�
2

þ ρ2

Q
dr2 þ ρ2

P
dθ2

þ P
ρ2

sin2θ½adt − ðr2 þ ðaþ lÞ2Þdφ�2
�
: ð26Þ

200201202 Since the energy-momentum tensor of the Maxwell field
203 4πTab ¼ FacFb

c − 1
4
gabFcdFcd in four dimensions is trace-

204free, Einstein’s equations read Rab ¼ Λgab þ 8πTab, and
205the Ricci scalar is R ¼ 4Λ. Under the constant conformal
206rescaling (25) of the metric, the Ricci tensor is invariant:
207gab¼S−1g̃ab implies Rab¼ R̃ab and R¼ R̃S. Consequently,
208the new metric (26) is a solution to the Einstein-Maxwell
209field equations with a cosmological constant Λ, provided

Λ≡ Λ̃S; Fab ≡ F̃ab

ffiffiffi
S

p
: ð27Þ

210211The corresponding metric functions (21), (22) are thus
212213

PðθÞ ¼ 1 − 2

�
α

ω
m −

Λ
3
l

�
ðlþ a cos θÞ þ

�
α2

ω2
ða2 − l2 þ e2 þ g2Þ þ Λ

3

�
ðlþ a cos θÞ2; ð28Þ

214
215

QðrÞ ¼ ½r2 − 2mrþ ða2 − l2 þ e2 þ g2Þ�
�
1þ α

a − l
ω

r

��
1 − α

aþ l
ω

r

�
−
Λ
3
r2
�
r2 þ 2α

l
ω
ða2 − l2Þrþ ða2 þ 3l2Þ

�
:

ð29Þ

216217 As the third step, it remains to fix the auxiliary twist
218 parameter ω, coupled with both the Kerr-like rotation a
219 and the NUT parameter l. It was found in [15] and
220 conveniently employed in [14,16,17] that the most suitable
221 gauge choice of this twist parameter is

ω≡ a2 þ l2

a
; ð30Þ

222223 so that

a
ω
¼ a2

a2 þ l2
;

l
ω
¼ al

a2 þ l2
: ð31Þ

224225Substituting these expressions into (2), (28) and (29), we
226obtain the explicit functions Ω, P and Q, namely

Ω ¼ 1 −
αa

a2 þ l2
rðlþ a cos θÞ; ð32Þ

227228

229230

PðθÞ ¼ 1 − 2

�
αa

a2 þ l2
m −

Λ
3
l

�
ðlþ a cos θÞ þ

�
α2a2

ða2 þ l2Þ2 ða
2 − l2 þ e2 þ g2Þ þ Λ

3

�
ðlþ a cos θÞ2; ð33Þ

231232
233 QðrÞ¼ ½r2−2mrþða2− l2þe2þg2Þ�

�
1þαa

a− l
a2þ l2

r

��
1−αa

aþ l
a2þ l2

r

�
−
Λ
3
r2
�
r2þ2αal

a2− l2

a2þ l2
rþða2þ3l2Þ

�
: ð34Þ

234235 In fact, for a generic class of black holes the metric
236 functions P andQ can be further simplified. To this end, let
237 us define convenient parameters μ, λ, and A (representing
238 the “modified” mass, cosmological constant, and acceler-
239 ation, respectively) as

μ≡m − λA ¼ m −
Λ
3
l
a2 þ l2

αa
; ð35Þ

240241

λ≡ Λ
3

ða2 þ l2Þ2
α2a2

; ð36Þ

242243
A≡ αal

a2 þ l2
: ð37Þ

244245Moreover, we introduce a pair of special constants rΛþ and
246rΛ− by

rΛ� ≡ μ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ l2 − a2 − e2 − g2 − λ

q
: ð38Þ

247248249From these definitions it immediately follows that

αa
a2 þ l2

ðrΛþ þ rΛ−Þ ¼ 2

�
αa

a2 þ l2
m−

Λ
3
l

�
;

α2a2

ða2 þ l2Þ2 rΛþrΛ− ¼ α2a2

ða2 þ l2Þ2 ða
2 − l2 þ e2 þ g2Þ þΛ

3
;

ð39Þ
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250251 so that (33) can be reexpressed as

PðθÞ ¼
�
1 −

αa
a2 þ l2

rΛþðlþ a cos θÞ
��

1 −
αa

a2 þ l2
rΛ−ðlþ a cos θÞ

�
: ð40Þ

252253 The metric function PðθÞ is thus nicely factorized.
254 Using (35)–(38), the expression (34) for the metric function QðrÞ is also simplified to

QðrÞ ¼ ½r2 − 2μrþ ða2 − l2 þ e2 þ g2 þ λÞ�
�
1þ αa

a − l
a2 þ l2

r

��
1 − αa

aþ l
a2 þ l2

r

�
− λ

�
1þ α2a2

ða2 þ l2Þ2 r
4

�
: ð41Þ

255256 In the cases when μ2 þ l2 > a2 þ e2 þ g2 þ λ, the definition (38) yields two real distinct constants rΛþ and rΛ−, and (41)
257 takes the form,

QðrÞ ¼ ðr − rΛþÞðr − rΛ−Þ
�
1þ αa

a − l
a2 þ l2

r

��
1 − αa

aþ l
a2 þ l2

r

�
−
Λ
3

�
r4 þ ða2 þ l2Þ2

α2a2

�
: ð42Þ

258259

260 Interestingly, when Λ ¼ 0, the constants rΛ� defined
261 by (38) reduce to

r� ≡m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2 − a2 − e2 − g2

q
: ð43Þ

262263 These parameters then identify (independently of the
264 acceleration α) the two black hole horizons because
265 they are also the roots of the metric functions QðrÞ given
266 by (42), cf. [14].
267 Finally, although the unique scaling constant S defined
268 by (14) does not enter the final form of the metric (26)
269 with (32)–(34), it may be useful to present its explicit form
270 in terms of the new parameters. Substitution from (13)
271 into (11) with Λ ¼ Λ̃S yields the relation,

S ¼ 1 − 2α
l
ω
mþ α2

l2

ω2
ða2 − l2 þ e2 þ g2Þ þ Λl2; ð44Þ

272273 that is, using (30), (37)–(39),

S ¼ ð1 −ArΛþÞð1 −ArΛ−Þ: ð45Þ

274275 The rescaling transformation (25) thus actually removes
276 two coordinate singularities hidden in the expression (45) at
277 ArΛ� ¼ 1. This fact was already observed for the Λ ¼ 0
278 case in our previous article [14].
279 Moreover, it can be seen that S ¼ 1 whenever
280 ArΛþ ¼ 0 ¼ ArΛ−. For Λ ¼ 0, this happens if l ¼ 0 or
281 α ¼ 0 or a ¼ 0, in which cases m ¼ m̃, e ¼ ẽ, g ¼ g̃.
282 For Λ ≠ 0, the value of the scaling factor is generically
283 S ≠ 1. In the case l ¼ 0 it follows from (44) that S ¼ 1, but
284 in the case l ≠ 0 we get S ¼ 1þ Λl2 even if α ¼ 0 or

285a ¼ 0. Generally, S ¼ 1 only for a special value of the
286cosmological constant,

Λ ¼ αa
a2 þ l2

�
2
m
l
−

αa
a2 þ l2

ða2 − l2 þ e2 þ g2Þ
�
: ð46Þ

287288
289III. SUMMARY OF THE NEW FORM OF A
290GENERIC BLACK HOLE

291It is now useful to summarize our new metric representa-
292tion of the complete family of black holes contained in the
293class of Plebański-Demiański spacetimes [8]. Recall that
294such spacetimes are the most general exact solutions to
295Einstein-Maxwell equations of algebraic type D with dou-
296ble-aligned non-null electromagnetic field (see Chap. 16
297of the monograph [10] for the recent review and number of
298related references).
299The new metric form, which improves the previous
300representation found by Griffiths and Podolský [11–13],
301reads

ds2 ¼ 1

Ω2

�
−
Q
ρ2

�
dt−

�
asin2θþ 4lsin2 1

2
θ

�
dφ

�
2

þ ρ2

Q
dr2

þ ρ2

P
dθ2 þ P

ρ2
sin2θ½adt− ðr2 þ ðaþ lÞ2Þdφ�2

�
;

ð47Þ
302303where

Ω ¼ 1 −
αa

a2 þ l2
rðlþ a cos θÞ; ð48Þ

304305ρ2 ¼ r2 þ ðlþ a cos θÞ2; ð49Þ
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306307

PðθÞ ¼ 1 − 2

�
αa

a2 þ l2
m −

Λ
3
l

�
ðlþ a cos θÞ þ

�
α2a2

ða2 þ l2Þ2 ða
2 − l2 þ e2 þ g2Þ þ Λ

3

�
ðlþ a cos θÞ2; ð50Þ

308309

QðrÞ¼ ½r2−2mrþða2− l2þe2þg2Þ�
�
1þαa

a− l
a2þ l2

r

��
1−αa

aþ l
a2þ l2

r

�
−
Λ
3
r2
�
r2þ2αal

a2− l2

a2þ l2
rþða2þ3l2Þ

�
: ð51Þ

310311

312 The spacetime depends on seven physical parameters,
313 namely

m …:: mass parameter;

a …:: Kerr-like rotation;

l …:: NUTparameter;

e …:: electric charge;

g …:: magnetic charge;

α …:: acceleration;

Λ …:: cosmological constant:

314315

316This metric is compact and fully explicit, and the
317ambiguous twist parameter ω has been removed by its
318most convenient choice. Moreover, the standard forms of
319famous black hole spacetimes—namely Kerr-Newman–
320(A)dS, charged Taub-NUT–(A)dS, their accelerated ver-
321sions, and others—can easily be obtained as direct subcases
322of (47)–(51) by setting the corresponding physical param-
323eters to zero.
324When Λ ¼ 0, both metric functions P and Q are
325factorized, see [14] for more details. With Λ ≠ 0 this
326cannot be in general achieved. However, it is possible to
327explicitly factorize the function P and compactify the
328function Q as

329330

PðθÞ ¼
�
1 −

αa
a2 þ l2

rΛþðlþ a cos θÞ
��

1 −
αa

a2 þ l2
rΛ−ðlþ a cos θÞ

�
; ð52Þ

331332
333 QðrÞ ¼ ðr − rΛþÞðr − rΛ−Þ

�
1þ αa

a − l
a2 þ l2

r

��
1 − αa

aþ l
a2 þ l2

r

�
−
Λ
3

�
r4 þ ða2 þ l2Þ2

α2a2

�
; ð53Þ

334 using the two specific constants,

rΛ� ≡ μ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ l2 − a2 − e2 − g2 − λ

q
; ð54Þ

335336 where

μ≡m −
Λ
3
l
a2 þ l2

αa
; λ≡ Λ

3

ða2 þ l2Þ2
α2a2

: ð55Þ

337338 This is possible provided μ2 þ l2 > a2 þ e2 þ g2 þ λ, in
339 which case the expressions (54) yield two distinct real
340 constants (or a double root of P given by rΛþ ¼ rΛ− ¼ μ in
341 the specific situation when μ2 þ l2 ¼ a2 þ e2 þ g2 þ λ).
342 The new form of the metric (47)–(51) nicely represents the
343 complete family of type D black holes. Moreover, it naturally
344 generalizes the standard forms of the most important black

345hole solutions, with two black hole horizons (outer and
346inner) and two cosmological/acceleration horizons.

347IV. THE MAIN SUBCLASSES OF TYPE D
348BLACK HOLES

349These are easily obtained by setting the appropriate
350physical parameters to zero, as follows.

351A. Black holes in flat universe
352(Λ= 0 : no cosmological constant)

353In the case Λ ¼ 0, we get μ ¼ m and λ ¼ 0. When
354m2 þ l2 > a2 þ e2 þ g2 (which guarantees that two dis-
355tinct roots rþ and r− exist) the metric functions (52), (53)
356thus take the form,

PðθÞ ¼
�
1 −

αa
a2 þ l2

rþðlþ a cos θÞ
��

1 −
αa

a2 þ l2
r−ðlþ a cos θÞ

�
; ð56Þ

357358

QðrÞ ¼ ðr − rþÞðr − r−Þ
�
1þ αa

a − l
a2 þ l2

r

��
1 − αa

aþ l
a2 þ l2

r

�
; ð57Þ
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359360 where

r� ≡m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2 − a2 − e2 − g2

q
; ð58Þ

361362 cf. (43). The constants rþ and r− now directly identify
363 (independently of the acceleration α) the two black hole
364 horizons because they are also the roots of the metric
365 functions QðrÞ given by (57). This large family of black
366 holes was thoroughly analyzed in our previous work [14],
367 and it is not necessary to repeat all the arguments and
368 results here.

369 B. Kerr-Newman-NUT–(anti-)de Sitter black holes
370 (α= 0 : No acceleration)

371 By setting the acceleration parameter α to zero, the
372 metric function (48) reduces to Ω ¼ 1, while (49) remains
373 the same. Concerning the functions P and Q given by (52)
374 and (53), respectively, one has to be more careful in
375 evaluating the limits of the terms αarΛ� because the
376 acceleration α → 0 appears also in the denominator of
377 the parameters μ and λ, defined by (55), which enter rΛ�. In
378 this case it is more convenient to directly set α ¼ 0 in the
379 most general forms of these metric functions (50) and (51).
380 In any case, we obtain the metric,

ds2 ¼ −
Q
ρ2

�
dt −

�
asin2θ þ 4lsin2 1

2
θ

�
dφ

�
2

þ ρ2

Q
dr2

þ ρ2

P
dθ2 þ P

ρ2
sin2θ½adt − ðr2 þ ðaþ lÞ2Þdφ�2;

ð59Þ

381382 where

ρ2 ¼ r2 þ ðlþ a cos θÞ2: ð60Þ
383384

PðθÞ ¼ 1þ 2
Λ
3
lðlþ a cos θÞ þ Λ

3
ðlþ a cos θÞ2; ð61Þ

385386 QðrÞ ¼ r2 − 2mrþ ða2 − l2 þ e2 þ g2Þ

−
Λ
3
r2ðr2 þ a2 þ 3l2Þ: ð62Þ

387388389 This result is the same as the limit α → 0 of the metric
390 functions (52) and (53). Indeed,

lim
α→0

αa
a2 þ l2

rΛ� ¼ −
Λ
3
l�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Λ
3
l

�
2

−
Λ
3

s
≡ L�; ð63Þ

391392 lim
α→0

ArΛ� ¼ lL�; ð64Þ

393394 so that

Lþ þ L− ¼ −2
Λ
3
l; LþL− ¼ Λ

3
: ð65Þ

395396Thus limα→0PðθÞ¼ð1−LþðlþacosθÞÞð1−L−ðlþacosθÞÞ
397gives (61), which can be rewritten as

PðθÞ ¼ ð1þ Λl2Þ þ 4

3
Λa l cos θ þ 1

3
Λa2cos2θ: ð66Þ

398399In a similar way, the limit of (53) using (39) yields (62).
400Moreover, in the limit of vanishing acceleration the scaling
401factor (45), using (64) and (65), becomes

lim
α→0

S ¼ 1þ Λl2: ð67Þ

402403404We must emphasize that the forms (66) and (62) of
405the metric functions PðθÞ and QðrÞ are different from
406the analogous metric functions for the Kerr-Newman-
407NUT–(anti-)de Sitter black holes as given by Eq. (16.23)
408in [10]. In fact, they are equivalent reparametrization of
409this solution. Indeed, we have to take into account the
410nontrivial scaling (20), that is

PðθÞ ¼ S−1PðθÞ; QðrÞ ¼ S−1QðrÞ; ð68Þ

411412where S is the constant (67). Straightforward calculation
413using the relations (13), (27) between the physical param-
414eters then yields

PðθÞ ¼ 1þ 4

3
Λ̃ a l cos θ þ 1

3
Λ̃a2cos2θ; ð69Þ

415416QðrÞ ¼ ða2 − l2 þ ẽ2 þ g̃2Þ − 2m̃rþ r2

− Λ̃
�
ða2 − l2Þl2 þ

�
1

3
a2 þ 2l2

�
r2 þ 1

3
r4
�
; ð70Þ

417418which is exactly the form of the metric functions given by
419Eq. (16.23) in [10].
420All famous subcases of this general family of (nonaccel-
421erating) Kerr-Newman-NUT-(anti–)de Sitter black holes,
422expressed now in a compact way by the metric (59) with
423(60)–(62) [or (66), equivalent to (61)], are readily obtained.
424These are the black hole solutions of Kerr-Newman-(anti–)de
425Sitter (l ¼ 0), charged Taub-NUT-(anti–)de Sitter (a ¼ 0),
426Kerr-(anti–)de Sitter (l ¼ 0, e ¼ 0 ¼ g), Reissner-
427Nordström-(anti–)de Sitter (a ¼ 0, l ¼ 0), and
428Schwarzschild-(anti–)de Sitter (a ¼ 0, l ¼ 0, and
429e ¼ 0 ¼ g). Of course, by setting Λ ¼ 0, the corresponding
430black holes in asymptotically flat universe are obtained (the
431same as in Sec. IVA).

432C. Accelerating Kerr-Newman-(anti–)de Sitter
433black holes (l = 0 : no NUT)

434Without the NUT parameter l, the new metric (47)
435reduces to

2
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ds2 ¼ 1

Ω2

�
−
Q
ρ2

½dt − asin2θdφ�2 þ ρ2

Q
dr2

þ ρ2

P
dθ2 þ P

ρ2
sin2θ½adt − ðr2 þ a2Þdφ�2

�
; ð71Þ

436437 where

Ω ¼ 1 − αr cos θ; ð72Þ
438439 ρ2 ¼ r2 þ a2 cos2 θ; ð73Þ
440441 PðθÞ ¼ ð1 − αrΛþ cos θÞð1 − αrΛ− cos θÞ; ð74Þ
442443 QðrÞ ¼ ðr − rΛþÞðr − rΛ−Þð1þ αrÞð1 − αrÞ

−
Λ
3

�
r4 þ a2

α2

�
; ð75Þ

444445 where the specific constants rΛ� are now simplified to

rΛ� ≡m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2 − e2 − g2 −

Λ
3

a2

α2

s
: ð76Þ

446447 The metric functions PðθÞ and QðrÞ can be equivalently
448 rewritten as

PðθÞ ¼ 1− 2αm cos θþ
�
α2ða2 þ e2 þ g2Þ þΛ

3
a2
�
cos2θ;

ð77Þ
449450 QðrÞ ¼ ½r2 − 2mrþ ða2 þ e2 þ g2Þ�ð1þ αrÞð1 − αrÞ

−
Λ
3
r2½r2 þ a2�: ð78Þ

451452453 In this explicit form we easily obtain all possible
454 subcases by simply setting the corresponding physical
455 parameters to zero. For vanishing acceleration (α ¼ 0),
456 the metric of the Kerr-Newman-(anti–)de Sitter black hole
457 solution is recovered, which then yields the standard form
458 of the Kerr-Newman solution in the Boyer-Lindquist
459 coordinates in the case of vanishing cosmological constant
460 (Λ ¼ 0). Contrarily, by setting Λ ¼ 0 first, we obtain the
461 general metric of accelerating Kerr-Newman black holes.
462 For vanishing charges (e ¼ 0 ¼ g), it is equivalent to the
463 rotating C-metric, first identified by Hong and Teo [18].

464 D. Charged Taub-NUT-(anti–)de Sitter black holes
465 (a= 0 : No rotation)

466 By setting the Kerr-like rotation parameter a to zero,
467 the new metric (47) considerably simplifies and becomes
468 independent of the acceleration α [because the metric
469 functions (48)–(53) depend on α only via the product αa].
470 Indeed, Ω ¼ 1 and P ¼ 1þ Λl2, so that

ds2 ¼ −
Q
ρ2

ðdt − 4l sin2 1
2
θdφÞ2 þ ρ2

Q
dr2

þ ρ2
�

dθ2

1þ Λl2
þ ð1þ Λl2Þ sin2 θdφ2

�
; ð79Þ

471472where

QðrÞ ¼ ð1 − Λl2Þr2 − 2mrþ ðe2 þ g2 − l2Þ − Λ
3
r4; ð80Þ

473474
ρ2 ¼ r2 þ l2: ð81Þ

475476This explicitly demonstrates that there is no accelerating
477“purely” NUT-(anti–)de Sitter black hole in the Plebański-
478Demiański family of spacetimes.
479For Λ ¼ 0, this observation was made already in the
480original works [11–13], and recently clarified in [19]. It was
481proven that the metric for accelerating (nonrotating) black
482holes with purely NUT parameter—which was found by
483Chng et al. [20] in 2006 and analyzed in detail in [19]—is
484of algebraic type I. Therefore, it cannot be contained in the
485Plebański-Demiański class which is of type D. We have just
486shown that the same is true also in the case of a non-
487vanishing cosmological constant Λ.
488It should again be emphasized that the metric
489function (80) for QðrÞ is different from the analogous
490metric function for the charged Taub-NUT-(anti–)de Sitter
491black hole as given by Eq. (12.19) in [10]. Actually, it is
492simpler. Such a difference is caused by the nontrivial
493rescaling S ¼ 1þ Λl2; see (67), (68). Considering the
494relations (13), (20) and (27), we get

PðθÞ ¼ 1; ð82Þ
495496

QðrÞ ¼ r2 − l2 − 2m̃rþ ẽ2 þ g̃2 − Λ̃
�
1

3
r4 þ 2l2r2 − l4

�
;

ð83Þ

497498which is the expression (70) for a ¼ 0, exactly the same as
499the metric function presented in Eq. (12.19) of [10] for the
500case ϵ ¼ þ1 (with g̃ ¼ 0).
501It will be shown below that the charged Taub-NUT-
502(anti–)de Sitter spacetime (79) is nonsingular (its curvature
503does not diverge at r ¼ 0), away from the axis θ ¼ π
504(where the rotating cosmic string is located) it is asymp-
505totically (anti–)de Sitter, and the interior of the black hole is
506located between its two horizons, that can be surrounded by
507two “outer” cosmological horizons.

508E. Uncharged accelerating Kerr-NUT-(anti–)de Sitter
509black holes (e= 0 = g : Vacuum with Λ)
510Another nice feature of our new metric (47)–(53) is that
511it has the same form for vacuum spacetimes without the
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512 electromagnetic field. Indeed, the electric and magnetic
513 charges e and g, which generate the electromagnetic field,
514 enter only the expressions for rΛ� introduced in (54).
515 In other words, e and g just change the values of these
516 two constant parameters. In such a vacuum case, they
517 simplify to

rΛ� ≡ μ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ l2 − a2 − λ

q
: ð84Þ

518519 The metric (47)–(53) with (84) represents the full class of
520 accelerating Kerr-NUT-(anti–)de Sitter black holes. It
521 reduces to accelerating Kerr-(anti–)de Sitter black hole
522 when l ¼ 0, and nonaccelerating Kerr-NUT-(anti–)de
523 Sitter black hole when α ¼ 0. For a ¼ 0 it simplifies
524 directly to the Taub-NUT-(anti–)de Sitter black hole (79)
525 without acceleration and charges.

526V. PHYSICAL ANALYSIS OF THE NEW METRIC

527The explicit new metric form (47)–(53) [or, more
528generally, (50)–(51)] of the complete class of accelerating
529Kerr-Newman-NUT-(anti–)de Sitter black holes is very
530convenient for investigation of geometric and physical
531properties of this large family of black holes. This will
532now be demonstrated by deriving and presenting some of
533the key quantities and facts, namely those concerning the
534global structure of the spacetime, the stringy sources of the
535acceleration, and thermodynamic properties.

536A. Curvature of the gravitational field
537and the electromagnetic field

538First, it is necessary to determine the gravitational field,
539namely the specific curvature of the geometry. It is encoded
540in the corresponding Newman-Penrose (NP) scalars, that is,
541components of the curvature tensors with respect to the null
542tetrad. Its most natural choice is

543544

k ¼ 1ffiffiffi
2

p Ω
ρ

�
1ffiffiffiffi
Q

p ððr2 þ ðaþ lÞ2Þ∂t þ a∂φÞ þ
ffiffiffiffi
Q

p
∂r

�
;

l ¼ 1ffiffiffi
2

p Ω
ρ

�
1ffiffiffiffi
Q

p ððr2 þ ðaþ lÞ2Þ∂t þ a∂φÞ −
ffiffiffiffi
Q

p
∂r

�
;

m ¼ 1ffiffiffi
2

p Ω
ρ

�
1ffiffiffiffi

P
p

sin θ

�
∂φ þ

�
a sin2θ þ 4l sin2 1

2
θ

�
∂t

�
þ i

ffiffiffiffi
P

p
∂θ

�
: ð85Þ

545546 A direct calculation shows that the only nontrivial Newman-Penrose scalars corresponding to the Weyl tensor and the
547 Ricci tensor are
548

Ψ2 ¼
Ω3

½rþ iðlþ a cos θÞ�3
�
−ðmþ ilÞ

�
1 − iαa

a2 − l2

a2 þ l2

�
− i

Λ
3
lða2 − l2Þ

þ ðe2 þ g2Þ
r − iðlþ a cos θÞ

�
1þ αa

a2 þ l2
½ar cos θ þ ilðlþ a cos θÞ�

��
; ð86Þ

549

550

Φ11 ¼
1

2
ðe2 þ g2ÞΩ

4

ρ4
; ð87Þ

551 respectively, where

Ω ¼ 1 −
αa

a2 þ l2
rðlþ a cos θÞ;

ρ2 ¼ r2 þ ðlþ a cos θÞ2; ð88Þ

552553 cf. (48), (49). The Ricci scalar is simply

R ¼ 4Λ; ð89Þ

554555 which is the usual relation valid for any solution of Einstein-
556 Maxwell equations with a cosmological constant Λ. While
557 Φ11 is independent of Λ, the Weyl curvature component
558 Ψ2 contains the term proportional to Λlða2 − l2Þ. The

559dependence of Ψ2 on the cosmological constant thus
560disappears if (and only if) l ¼ 0 or l ¼ �a.
561For an invariant identification of curvature singularities
562and regions which asymptotically become conformally flat,
563it is necessary to evaluate the key (second-order) scalar
564invariants, namely the Kretschmann invariant K and the
565Weyl invariant C,

K≡ RabcdRabcd; ð90Þ
566567

C≡ CabcdCabcd: ð91Þ

568569This can be conveniently achieved in the NP formalism.
570Indeed, it is well known that
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C�
abcdC

�abcd ¼ 32ðΨ0Ψ4 − 4Ψ1Ψ3 þ 3Ψ2
2Þ; ð92Þ

571572 in which C�
abcd ≡ Cabcd þ iC∼

abcd, where C∼
abcd is the dual

573 tensor to Weyl, C∼
abcd ≡ 1

2
ϵcdefC

ef
ab. Since C∼

abcdC
∼abcd ¼

574 −CabcdCabcd, we get CabcdCabcd þ iC∼
abcdC

abcd ¼
575

1
2
C�
abcdC

�abcd; see e.g. [9], or Eq. (17) in [21].
576 Therefore, the Weyl invariant is

C ¼ 16ReðΨ0Ψ4 − 4Ψ1Ψ3 þ 3Ψ2
2Þ: ð93Þ

577578579 From the definition of the Weyl tensor it follows that the
580 Kretschmann invariant reads

K ¼ C þ 2RabRab −
1

3
R2; ð94Þ

581582 where R ¼ 4Λ, while RabRab can be expressed as1

1

8
RabRab ¼ Φ00Φ22 þΦ02Φ̄02 − 2ðΦ01Φ̄12 þ Φ̄01Φ12Þ

þ 2Φ2
11 þ

1

32
R2: ð95Þ

583584585 For the black hole spacetimes (47)–(53), which are of
586 algebraic type D, the only nontrivial NP scalars are Ψ2 and
587 Φ11, as given by (86) and (87), respectively. Therefore, the
588 corresponding scalar curvature invariants are

C ¼ 48ReðΨ2
2Þ; ð96Þ

589590
K ¼ C þ 32Φ2

11 þ
8

3
Λ2: ð97Þ

591592 Interestingly the Weyl invariant takes the explicit factorized
593 form,

C ¼ 48
Ω6

ρ12
CþC−; ð98Þ

594595 where

C� ¼m

�
F� � αa

a2 − l2

a2 þ l2
F∓

�
∓ l

��
1þ 1

3
Λða2 − l2Þ

�
F∓

∓ αa
a2 − l2þ e2þ g2

a2 þ l2
F�

�

− ðe2þ g2Þ
�
1þ αa

a2 þ l2
rL

�
T�; ð99Þ

596597 in which F� ¼ ðr ∓ LÞðr2 � 4rLþ L2Þ, T� ¼ ðr2 �
598 2rL − L2Þ, and L ¼ lþ a cos θ.

599This is a generalization of the previously known expres-
600sions for the Kerr-Newman geometry; see [21,22] and
601elsewhere, in which case Λ; l; g; α ¼ 0 so that Ω ¼ 1,
602ρ2 ¼ r2 þ a2 cos2 θ, and C� ¼ mðr ∓ a cos θÞðr2�
6034ar cos θ þ a2 cos2 θÞ − e2ðr2 � 2ar cos θ − a2 cos2 θÞ.
604The spacetime also contains electromagnetic field
605represented by the Maxwell tensor Fab, forming a
6062-form F ¼ 1

2
Fabdxa ∧ dxb ¼ dA. Its 1-form potential

607A ¼ Aadxa is

A ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 þ g2

q
r
ρ2

�
dt −

�
asin2θ þ 4lsin2 1

2
θ

�
dφ

�
:

ð100Þ
608609Therefore, the nonzero components of Fab ¼ Ab;a − Aa;b

610are

Ftr ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 þ g2

q
ρ−4ðr2 − ðlþ a cos θÞ2Þ;

Fφr ¼ −Ftr

�
asin2θ þ 4lsin2 1

2
θ

�
;

Ftθ ¼ 2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 þ g2

q
ρ−4r sin θðlþ a cos θÞ;

Fφθ ¼ −2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 þ g2

q
ρ−4r sin θðlþ a cos θÞðr2 þ ðaþ lÞ2Þ:

ð101Þ
611612The corresponding Newman-Penrose scalars are Φ0 ≡
613Fabkamb ¼ 0, Φ2 ≡ Fabm̄alb ¼ 0, and

Φ1≡1

2
Fabðkalbþm̄ambÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2þg2

p
Ω2

ðrþ iðlþacosθÞÞ2 : ð102Þ

614615It follows that Φ1Φ̄1 ¼ 2Φ11, in fully agreement with (87).
616The electromagnetic field thus vanishes if (and only
617if) e ¼ 0 ¼ g.
618Since the only nontrivial NP Weyl scalar is Ψ2, both
619vectors k and l are principal null directions (PNDs). In
620fact, both are double-degenerate, demonstrating that the
621gravitational field is of algebraic type D. The electromag-
622netic field is non-null, and double-aligned with these PNDs
623because the only nonzero NP Maxwell scalar is Φ1.
624Moreover, by evaluating the spin coefficients for the null
625tetrad (85) one obtains

κ ¼ ν ¼ 0; σ ¼ λ ¼ 0;

ϱ ¼ μ ¼ −
ffiffiffiffi
Q

pffiffiffi
2

p
ρ3

�
1þ i

αa
a2 þ l2

ðlþ a cosθÞ2
�

× ðr− iðlþ a cosθÞÞ;

τ ¼ π ¼ −
a

ffiffiffiffi
P

p
sinθffiffiffi
2

p
ρ3

�
1− i

αa
a2 þ l2

r2
�
ðr− iðlþ a cosθÞÞ:

ð103Þ

1There are nine independent (real) quantities encoded in the
complex NP scalars ΦAB ¼ Φ̄BA. Due to their usual definition,
the projections on the null tetrad (85) of the Ricci tensor Rab and
of the related traceless Ricci tensor Sab ≡ Rab − 1

4
Rgab give the

same results. The additional tenth independent component of Rab
is given by 1

4
Rgab containing the Ricci scalar R, so that RabRab

also involves the term 1
16
R2gabgab ¼ 1

4
R2.

JIŘÍ PODOLSKÝ and ADAM VRÁTNÝ PHYS. REV. D XX, 000000 (XXXX)

10

Paper 3, Phys. Rev. D XX, 000000 (XXXX)
New form of all black holes of type D with a cosmological constant

130



626627 Also α ¼ β and ϵ ¼ γ are nonzero, but we do not write
628 them here due to their complexity.
629 Both double-degenerate PNDs generated by k and l (85)
630 are thus geodetic (κ ¼ 0 ¼ ν) and shear-free (σ ¼ 0 ¼ λ).
631 However, they have expansion Θ and twist ω defined,
632 respectively, by the real and imaginary parts of
633 ϱ≡ −ðΘþ iωÞ≡ μ, namely

Θ ¼
ffiffiffiffi
Q

pffiffiffi
2

p
ρ3

�
rþ αa

a2 þ l2
ðlþ a cos θÞ3

�
; ð104Þ

634635

ω ¼ −
Ω

ffiffiffiffi
Q

pffiffiffi
2

p
ρ3

ðlþ a cos θÞ: ð105Þ

636637638 It is now immediately seen from (105) that
639 (i) The black-hole spacetime is everywhere nontwisting
640 if (and only if)

a ¼ 0 ¼ l: ð106Þ

641 In addition, on the horizons identified by QðrÞ ¼ 0
642 (see below) both the expansion and the twist always
643 vanish (Θ ¼ 0 ¼ ω).
644 By inspecting the NP scalars (86)–(89) and (102),
645 it is also obvious that
646 (ii) The curvature singularities occur if (and only if)

r¼ 0 and at the same time lþacosθ¼ 0: ð107Þ

647 Indeed, both these conditions must be satisfied to
648 have rþ iðlþ a cos θÞ ¼ 0. With its complex con-
649 jugate, this implies

ρ2 ≡ r2 þ ðlþ a cos θÞ2 ¼ 0: ð108Þ

650 This agrees with the Weyl scalar (98).
651 (iii) The region of a generic spacetime is conformally flat
652 if (and only if)

Ω ¼ 0: ð109Þ

653 With this condition, the spacetime is also locally
654 vacuum, cf. (87), with a cosmological constant Λ.
655 The condition Ω ¼ 0 thus localizes the asymptotic
656 (anti–)de Sitter/Minkowski conformal infinity.
657 (iv) In the case whenm ¼ 0 ¼ l and also e ¼ 0 ¼ g then
658 Ψ2 ¼ 0 ¼ Φ11, so that

the space time is everywhere

conformally flat and vacuum: ð110Þ

659 The metric (47)–(55) then represents de Sitter
660 spacetime (for Λ > 0), anti–de Sitter spacetime
661 (for Λ < 0), and Minkowski spacetime (for Λ ¼ 0).

662Curvature of the subclasses of type D black holes,
663summarized in Sec. IV, are easily obtained from the general
664expression (86) by setting up the corresponding physical
665parameters to zero:
666(i) Kerr-Newman-NUT-(anti–)de Sitter (α ¼ 0 : No ac-
667celeration)

Ψ2 ¼
1

½rþ iðlþacosθÞ�3
�
−m− il

�
1þ 1

3
Λða2− l2Þ

�

þ e2þ g2

r− iðlþacosθÞ
�
; ð111Þ

668669(ii) Accelerating Kerr-Newman-(anti–)de Sitter (l ¼ 0 :
670No NUT)

Ψ2 ¼
ð1 − αr cos θÞ3
ðrþ ia cos θÞ3

�
−mð1 − iαaÞ

þ ðe2 þ g2Þ 1þ αr cos θ
r − ia cos θ

�
; ð112Þ

671672(iii) Charged Taub-NUT-(anti–)de Sitter (a ¼ 0 : No
673rotation)

Ψ2 ¼ −
mþ ilð1 − 1

3
Λl2Þ

ðrþ ilÞ3 þ e2 þ g2

ðr2 þ l2Þðrþ ilÞ2 :

ð113Þ

674Observe that the cosmological constant Λ appears
675in the Weyl curvature scalar Ψ2 only if the NUT
676parameter l is also present.
677These expressions further simplify if some of the
678remaining parameters are zero. In particular, the curvature
679of Kerr-Newman-(anti–)de Sitter black hole is obtained
680from (111) if l ¼ 0. The curvature for generalized C-metric
681with Λ (accelerating charged black holes without rotation)
682are obtained from (112) when a ¼ 0. The curvature of
683Reissner-Nordström-(anti–)de Sitter black hole follows
684from (113) when l ¼ 0. The uncharged (vacuum) black
685holes are obtained for e ¼ 0 ¼ g.

686B. Horizons

687Next step is the investigation of horizons of the black
688hole metric (47), namely their number, possible degener-
689ation, and location. It is immediately seen that the “radial”
690coordinate r is spatial in the regions whereQðrÞ > 0, while
691it is a temporal coordinate where QðrÞ < 0. These regions
692are separated by horizons H located at rh such that

QðrhÞ ¼ 0; ð114Þ

693694where the key metric function QðrÞ is explicitly given by
695expression (51). In the particular “under-extreme” case
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696 μ2 þ l2 > a2 þ e2 þ g2 þ λ, the alternative form of this
697 function (53) with rΛþ ≠ rΛ− can be used.
698 These observations are in accordance with the behaviour
699 of the determinant of the metric (47) constrained on a
700 constant r which, due to the identity ρ2 ¼ r2 þ ðaþ lÞ2−
701 aða sin2 θ þ 4l sin2 1

2
θÞ, is simply

detðgμνjr¼constÞ ¼ −
ρ2

Ω6
Qsin2θ: ð115Þ

702703 Such a 3-surface is thus timelike when Q > 0, while it is
704 spacelike when Q < 0. On any horizon the determinant
705 vanishes (degenerates) due to (114).
706 Moreover, the determinant of the complete metric (47)
707 reads det gμν ¼ −Ω−8ρ4sin2θ. This indicates nonregularity
708 only at Ω ¼ 0 (conformal infinity), ρ ¼ 0 (curvature
709 singularity), Q ¼ 0 (horizons), and θ ¼ 0 or θ ¼ π
710 (poles/axes with possible cosmic strings).
711 Since the function QðrÞ does not directly enter the Weyl
712 scalar (86) or the Ricci scalar (87)—and thus the invariants
713 C and K given by (96) and (97)—there is no curvature/
714 physical obstacle located at any of the horizons rh. Explicit
715 extension of the coordinate system across the horizons H
716 will be presented in Sec. V F.

717To analyze the number, possible degeneration, and
718location of the horizons, it is thus necessary to find all
719root of the equation (114). Because the function (51) is a
720polynomial of the fourth order, it admits up to four real
721roots. In the generic black hole spacetime (47) there is thus
722four possible horizons H. We can call and denote them as
723follows:
724(i) two black hole horizons H�

b located at r�b ,
725(ii) two cosmo-acceleration horizons H�

c located at r�c .
726While the terminology black hole horizon is common
727and standard, we hereby introduce a new name cosmo-
728acceleration horizon which combines the usual names for
729cosmological and for acceleration horizons. These are
730mutually combined in this family of spacetimes due to
731the presence of both the acceleration α and the cosmo-
732logical constant Λ.
733Let us now analyze these horizons explicitly. The generic
734key metric function QðrÞ is the quartic polynomial of r,
735namely

QðrÞ ¼ q4r4 þ q3r3 þ q2r2 þ q1rþ q0; ð116Þ

736737where the coefficients are
738739

q4 ≡ −α2a2
a2 − l2

ða2 þ l2Þ2 −
Λ
3
;

q3 ≡ 2αa

�
αam

a2 − l2

ða2 þ l2Þ2 −
l

a2 þ l2
− l

a2 − l2

a2 þ l2
Λ
3

�
;

q2 ≡ 1þ 4αam
l

a2 þ l2
− α2a2

a2 − l2

ða2 þ l2Þ2 ða
2 − l2 þ e2 þ g2Þ − ða2 þ 3l2ÞΛ

3
;

q1 ≡ −2m − 2αa
l

a2 þ l2
ða2 − l2 þ e2 þ g2Þ;

q0 ≡ a2 − l2 þ e2 þ g2: ð117Þ

740741 The quartic equation QðrÞ ¼ 0 can have from zero to
742 maximally four explicit real roots rh corresponding to the
743 horizons. In particular, we may observe that
744 (i) Maximally four horizons is the general case which
745 will be discussed in detail in subsequent Sec. V C.
746 Some of the roots of (114) may coincide, resulting
747 in degenerate horizons (doubly, triply, or even
748 quadruply).
749 (ii) Maximally three horizons occur in spacetimes with
750 the physical parameters related in such a way that
751 q4 ¼ 0, that is for

Λ
3
¼ −α2a2

a2 − l2

ða2 þ l2Þ2 : ð118Þ

752 For these black hole spacetimes the metric function
753 QðrÞ reduces to a cubic function. Notice that in the

754case l ¼ 0, this condition is simply α2 ¼ −Λ=3, i.e.,
755a specific relation between the acceleration of the
756(rotating and charged) black hole and the negative
757cosmological constant (while the complementary
758case a ¼ 0 requires Λ ¼ 0). Further analysis of this
759case will be presented in our subsequent paper.
760(iii) Maximally two horizons occur in spacetimes with
761such parameters that—in addition to the condition
762(118)—also the second coefficient in (116) vanishes,
763q3 ¼ 0, that is for αa ¼ 0 ⇒ Λ ¼ 0, or for

αam ¼ l

�
a2 þ l2

a2 − l2
− α2a2

a2 − l2

a2 þ l2

�
: ð119Þ

764Equation (114) is then a quadratic equation
765q2r2 þ q1rþ q0 ¼ 0, from which both horizons
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766 rh can be easily calculated. If q21 − 4q2q0 ¼ 0, these
767 two horizons coincide (it is double degenerate), and
768 for q21 − 4q2q0 < 0 there is no horizon.
769 (iv) Maximally one horizon occurs when both the con-
770 straints (118) and (119) are satisfied, and moreover
771 q2 ¼ 0, that is

α2a2ðe2 þ g2Þ ¼ ða2 þ 3l2Þ
�
a2 þ l2

a2 − l2

�
2

: ð120Þ

772 The single horizon is then located at

rh ¼ −
q0
q1

¼ 1

4αal

�
a2 þ 3l2 þ α2a2

ða2 − l2Þ3
ða2 þ l2Þ2

�
:

ð121Þ

773 For q1 ¼ 0 there is no horizon.
774 These three conditions (118), (119), and (120) character-
775 ize very special black hole spacetimes in which the physical
776 parameters Λ, m, and e2 þ g2 have particular values in
777 terms of the Kerr-like rotational parameter a, NUT param-
778 eter l, and acceleration α.
779 It is a usual procedure that the general quartic equation
780 (114), (116) can be solved by first dividing it by a nonzero
781 prefactor q4 and then performing the substitution,

r≡ x −
q3
4q4

; ð122Þ

782783 leading to the depressed (reduced) quartic equation with-
784 out the cubic term,

1

q4
QðxÞ ¼ x4 þ N

8N 2
x2 −

R
8N 3

xþ S
256N 4

¼ 0; ð123Þ

785786 where N ≡ −q4, the coefficients are

N ≡ 8q4q2 − 3q23; ð124Þ
787788 R≡ 8q24q1 − 4q4q3q2 þ q33; ð125Þ
789790 S≡ 256q34q0 − 64q24q3q1 þ 16q4q23q2 − 3q43; ð126Þ

791792 and the constants qi are explicitly defined by (117).
793 Moreover, the discriminant Δ of the general quartic
794 polynomial (116) is

Δ≡ 256q34q
3
0 − 192q24q3q1q

2
0 − 128q24q

2
2q

2
0 þ 144q24q2q

2
1q0

− 27q24q
4
1 þ 144q4q23q2q

2
0 − 6q4q23q

2
1q0

− 80q4q3q22q1q0 þ 18q4q3q2q31 þ 16q4q42q0

− 4q4q32q
2
1 − 27q43q

2
0 þ 18q33q2q1q0 − 4q33q

3
1

− 4q23q
3
2q0 þ q23q

2
2q

2
1: ð127Þ

795796This is simply related to the discriminant of the depressed
797quartic function (123) via

Δ ¼ N 6Δdepressed;

798799so that the signs of Δ and Δdepressed are the same.
800In terms of these key quantities Δ, N, S and R, a
801complete analysis and a full description of the number and
802the possible multiplicity of roots can now be performed.
803Following [23], we can summarize that
804For Δ > 0:
805The metric function QðrÞ has either four distinct real
806roots, or none, and that depends on:
807(i) If N < 0 andN2 > S then all four roots are real and
808distinct.
809(ii) If N < 0 and N2 < S then there are two pairs of
810complex conjugate nonreal roots.
811(iii) If N ≥ 0 then there are also two pairs of complex
812conjugate nonreal roots.
813For Δ < 0:
814The function QðrÞ has two distinct real roots and two
815complex conjugate nonreal roots.
816For Δ ¼ 0:
817This is the only case when the metric function QðrÞ has
818at least one multiple root.
819The different cases that can occur are
820(1) If N < 0 together with
821(a) N2 < S: there is one real double root and two
822complex conjugate roots.
823(b) N2 ¼ S: there are two distinct real double
824roots.
825(c) N2 > S and N2 > −3S: there is one real double
826root and two distinct simple real roots.
827(d) N2 ¼ −3S: there is one real triple root and one
828distinct simple real root.
829(2) If N > 0 together with
830(a) S ¼ 0: there is one real double root and two
831complex conjugate roots.
832(b) S > 0 and R ≠ 0: there is also one real double
833root and two complex conjugate roots.
834(c) S ¼ N2 and R ¼ 0: there are only two complex
835conjugate double roots.
836(3) If N ¼ 0 together with
837(a) S > 0: there is one real double root and two
838complex conjugate roots.
839(b) S ¼ 0 (implying R ¼ 0): there is one real
840quadruple root x ¼ 0, that is rh ¼ − q3

4q4
.

841This exhausts all the possibilities.

842C. The case with two black hole and two
843cosmo-acceleration horizons

844We will now concentrate on physically most interesting
845case in which there are four distinct real roots. This may
846appear only in the case when q4 ≠ 0 (otherwise there are
847maximally three horizons), i.e., when the cosmological
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848 constant Λ is not “finely tuned” to acceleration α and the
849 two twist parameters a and l, that is for

Λ
3
≠ −α2a2

a2 − l2

ða2 þ l2Þ2 : ð128Þ

850851 In particular, we can observe that for Λ ¼ 0 there are no
852 nonaccelerating or nonrotating black holes (αa ¼ 0) with
853 four horizons.
854 In such generic black hole spacetimes there are two black
855 hole horizonsHþ

b andH−
b and also two cosmo-acceleration

856 horizons Hþ
c and H−

c . With the assumption that they are
857 generically distinct, we can rewrite the key metric function
858 QðrÞ given by (116), (117) in a factorized form as

QðrÞ ¼ −N ðr − rþb Þðr − r−b Þðr − rþc Þðr − r−c Þ; ð129Þ

859860 where N ≡ −q4 reads

N ¼ α2a2
a2 − l2

ða2 þ l2Þ2 þ
Λ
3
; ð130Þ

861862 while the four roots rþb , r
−
b , r

þ
c , r−c localize the four distinct

863 horizons, namely

Hþ
b at rþb is the outer black hole horizon; ð131Þ

864865
H−

b at r−b is the inner black hole horizon; ð132Þ
866867 Hþ

c at rþc is the outer cosmo-acceleration horizon; ð133Þ
868869 H−

c at r−c is the inner cosmo-acceleration horizon: ð134Þ

870871872 In view of the classification scheme summarized above,
873 this occurs if (and only if)

Δ > 0 and N < 0 and N2 > S: ð135Þ

874875 Moreover, we can assume a natural ordering of these
876 horizons as

r−c < r−b < rþb < rþc ; ð136Þ

877878 so that the cosmological horizons are located “outside” the
879 black hole horizons. BecauseQðrÞ < 0 for all r > rþc when
880 N > 0, such an ordering guarantees that these four
881 horizons separate the corresponding five regions of the
882 spacetime in such a way that they are, symbolically
883 expressed,

time-dependent < stationary < time-dependent

< stationary < time-dependent: ð137Þ

884885It means, for example, that in the whole range r ∈ ðrþb ; rþc Þ,
886the coordinate r is spatial. Therefore, the region between
887the outer black hole horizon Hþ

b and the outer cosmo-
888acceleration horizon Hþ

c is stationary.
889The natural ordering (136) implying (137) is present for
890a large range of values of the cosmological constant Λ,
891including Λ ¼ 0. In fact, it is a straightforward generali-
892zation of the ordering of two black hole horizons and two
893acceleration horizons in the family of type D black holes
894spacetimes without the cosmological constant; see Eq. (80)
895in our previous paper [14]. The ordering (137) depends on
896the constraint N > 0 which, using (130), reads

α2a2
a2 − l2

ða2 þ l2Þ2 þ
Λ
3
> 0: ð138Þ

897898In the Λ ¼ 0 case, this condition reduces simply to
899jlj < jaj, while in the case l ¼ 0 it is

Λ
3
> −α2: ð139Þ

900901Notice also that for jlj ≥ jaj only (a sufficiently large)Λ>0
902is admitted.
903An explicit evaluation of the four distinct roots of the
904metric function QðrÞ in the factorized form (129) in terms
905of the seven physical parameters m; a; l; e; g; α;Λ is quite
906cumbersome, leading to rather complicated expressions.
907Nevertheless, it may be useful to present them here. Using a
908standard procedure of Wolfram Mathematica 13 one
909obtains

r�b ¼ 1

2

� ffiffiffiffi
V

p
−H �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G − 2F=

ffiffiffiffi
V

pq �
; ð140Þ

910911

r�c ¼ 1

2

�
−

ffiffiffiffi
V

p
−H �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gþ 2F=

ffiffiffiffi
V

pq �
; ð141Þ

912913where

V ¼ H2 þ 1

3N

h
2X −

�
Z þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y3 − Z2

p �1
3

−
�
Z − i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y3 − Z2

p �1
3

i
; ð142Þ

914915
H¼−

K
N

; G¼3H2þ2X
N

−V; F¼H3þ2L
N

−
KX
N 2

;

ð143Þ

916917and

K ¼ αa
a2 þ l2

��
αa

a2 þ l2
m −

Λ
3
l

�
ða2 − l2Þ − l

�
; ð144Þ
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918919
L ¼ mþ αal

a2 þ l2
ða2 − l2 þ e2 þ g2Þ; ð145Þ

920921

X ¼ 1þ 4
αal

a2 þ l2
m − α2a2

a2 − l2

ða2 þ l2Þ2 ða
2 − l2 þ e2 þ g2Þ

− ða2 þ 3l2ÞΛ
3
; ð146Þ

922923 Y ¼ X2 þ 12KL − 12ða2 − l2 þ e2 þ g2ÞN ; ð147Þ
924925 Z ¼ X3 þ 18KLX − 54L2N þ 18ða2 − l2 þ e2 þ g2Þ

× ð3K2 þ 2NXÞ: ð148Þ

926927 Although these expression are fully explicit, they are not
928 telling much, and so we prefer to postpone their discussion
929 to our subsequent paper. For example, it is possible to show
930 that the complicated discriminant (127) can be nicely
931 expressed as

Δ ¼ 4

27
ðY3 − Z2Þ: ð149Þ

932933 The condition Δ ¼ 0 for the existence of multiple roots
934 thus simplifies to Y3 ¼ Z2.

935 D. Ergoregions

936 For the generic black hole metric (47) the condition,

gtt ≡ 1

Ω2ρ2
ðPa2 sin2 θ −QÞ ¼ 0; ð150Þ

937938 defines the boundary of the ergoregions, that are the
939 surface of infinite redshift and also the stationary limit at
940 which observers on fixed r and θ cannot “stand still”. It can
941 be seen that for a vanishing Kerr-like rotation parameter a
942 such a boundary coincides with a horizon determined by
943 Q ¼ 0, but for any a ≠ 0 there exists a nontrivial ergo-
944 region between the gtt ¼ 0 boundary and the horizon.
945 Moreover, the existence of ergoregions is related only to
946 the Kerr-like rotation parameter a, not to the twist NUT
947 parameter l.
948 There is an ergoregion associated with any of the
949 four horizons H�

b and H�
c . Indeed, the ergoregion boun-

950 dary (150) is located at

QðreÞ ¼ a2 sin2 θPðθÞ; ð151Þ

951952 where the metric functions PðθÞ andQðrÞ are given by (50)
953 and (51), or (52) and (53), respectively. For a fixed value of
954 the angular coordinate θ, the right-hand side of (151) is a
955 specific constant. Because the functionQðrÞ is of the fourth
956 order, it follows that there are (at most) four boundaries re
957 of the ergoregions in the direction of θ.

958From (151) it is also obvious that the ergoregion
959boundary “touches” the corresponding horizon at the
960poles because for θ ¼ 0 and θ ¼ π the condition (151)
961reduces to QðreÞ ¼ 0.
962It is generally complicated to explicitly solve Eq. (151),
963but it can be plotted using a computer. Typical results are
964shown and discussed in Fig. 1.

965E. Curvature singularities

966By inspecting the Newman-Penrose scalars Ψ2 and Φ11

967given explicitly as (86) and (87), we have already con-
968cluded that the curvature singularities occur if and only if
969ρ2 ¼ 0, that is when

r ¼ 0 and at the same time lþ a cos θ ¼ 0; ð152Þ

970971see (107). The presence of these curvature singularities
972has also been confirmed by the behavior of the Weyl
973invariant C≡ CabcdCabcd and the Kretschmann invariant
974K≡ RabcdRabcd, evaluated in (96) and (97).
975Now, the condition lþ a cos θ ¼ 0 can only be satisfied
976if jaj ≥ jlj. Otherwise, lþ a cos θ remains nonzero because
977cos θ is bounded to the range ½−1; 1�. Therefore, the
978curvature singularity structure of the complete family of
979type D spacetimes (47) depends on relative values of the
980two twist parameters, that is the Kerr-like rotation param-
981eter a and the NUT parameter l, as follows:

l ¼ 0; a ¼ 0∶ singularity at r ¼ 0 for any θ;

l ¼ 0; a ≠ 0∶ sin gularity at r ¼ 0 for θ ¼ π=2;

l ≠ 0; a ¼ 0∶ no singularity;

jlj > jaj > 0∶ no singularity;

l ¼ þa∶ singularity at r ¼ 0 for θ ¼ π;

l ¼ −a∶ singularity at r ¼ 0 for θ ¼ 0;

jaj > jlj > 0∶ singularity at r ¼ 0 for cos θ ¼ −l=a:

ð153Þ

982983These results agree with the well-known character of the
984r ¼ 0 singularity of the Schwarzschild-(anti–)de Sitter,
985Reissner-Nordström-(anti–)de Sitter and (possibly charged)
986C-metric spacetimes (l ¼ 0, a ¼ 0, in this order), the ring
987singularity structure of the Kerr-Newman-(anti–)de Sitter
988black holes (l ¼ 0, α ¼ 0), and the absence of curvature
989singularities in the Taub-NUT-(anti–)de Sitter spacetime
990(a ¼ 0, α ¼ 0). For a recent detailed analysis of the
991singular ring structure in these Kerr-like metrics see [24].
992Moreover, from the generic form (51) of the metric
993function QðrÞ, or equivalently (116), evaluated at r ¼ 0
994we obtain

Qð0Þ ¼ q0 ≡ a2 − l2 þ e2 þ g2: ð154Þ
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F1:1 FIG. 1. Plot of the metric function gtt (150) for the generic spacetime (47). The values of gtt are visualized in quasipolar coordinates
F1:2 x≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ ðaþ lÞ2
p

sin θ, y≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðaþ lÞ2

p
cos θ for r ≥ 0. The gray annulus around the center of each figure localizes the black hole

F1:3 bordered by its horizonsH�
b at rþb and r−b (0 < r−b < rþb ). The cosmo-acceleration horizonHþ

c at rþc (red circle) and the conformal infinity
F1:4 I atΩ ¼ 0 are also shown. The gray curves are contour lines gttðr; θÞ ¼ const, and the values are color-coded from red (positive values) to
F1:5 blue (negative values). The green curves are the isolines gtt ¼ 0 determining the boundary of the ergoregions (151) in which gtt > 0 (green
F1:6 regions). All six plots are made for the same choicem ¼ 3, l ¼ 0.2, e ¼ 1.6 ¼ g, α ¼ 0.12. There are two distinct choices of the Kerr-like
F1:7 rotation parameter, namely a ¼ 1.5 (left) and a ¼ 1.8 (right). The rows visualize three different signs of the cosmological constant, namely
F1:8 Λ ¼ 0.003 (top),Λ ¼ 0 (middle) andΛ ¼ −0.003 (bottom). For larger values of a andΛ the ergoregions are bigger. In fact, the ergoregion
F1:9 above the black hole horizonHþ

b is mergedwith the ergoregion below the cosmo-acceleration horizonHþ
c in the equatorial part near θ ¼ π

2
.
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995996 The singularity at r ¼ 0 occurs only if a2 ≥ l2, see (153), so
997 that it is located only in the stationary region where Q > 0.
998 In fact, in view of the natural ordering (136) and the scheme
999 (137), the ring singularity must be contained in the region

1000 r ∈ ðr−c ; r−b Þ between the horizons H−
c and H−

b . The
1001 alternative possibility r ∈ ðrþb ; rþc Þ would correspond to
1002 a naked singularity in the stationary region located outside
1003 the horizon Hþ

b .

1004 F. Global structure and conformal diagrams

1005 Now we analyze the global structure and the maximal
1006 extension of the spacetime. As in the previous parts, wewill
1007 assume the generic case with four distinct horizons H�

b

1008 and H�
c located at r�b and r�c , that are ordered as

1009 r−c < r−b < rþb < rþc ; see (136).
1010 The procedure is basically the same as in Sec. V.D of our
1011 previous paper [14], and extends special cases of non-
1012 accelerating black holes, see e.g. [22,25–31], or black holes
1013 with acceleration [32,33]. First, the retarded and advanced
1014 null coordinates are defined,

u ¼ t − r� and v ¼ tþ r�; ð155Þ

10151016 where the tortoise coordinate is

r� ¼
Z

r2 þ ðaþ lÞ2
QðrÞ dr; ð156Þ

10171018 and also the corresponding untwisted angular coordinates
1019 are introduced by

ϕu ¼ φ − a
Z

dr
QðrÞ and ϕv ¼ φþ a

Z
dr

QðrÞ : ð157Þ

10201021 Using the advanced pair of coordinates fv;ϕvg, the
1022 metric (47) takes the form,

ds2 ¼ 1

Ω2

�
a2P sin2 θ −Q

ρ2
ðdv − T dϕvÞ2

þ 2ðdv − T dϕvÞðdr − aP sin2 θdϕvÞ

þ ρ2
�
dθ2

P
þ P sin2 θdϕ2

v

��
; ð158Þ

10231024where T ðθÞ≡ a sin2 θ þ 4l sin2 1
2
θ, while using the

1025retarded pair of coordinates fu;ϕug it reads

ds2 ¼ 1

Ω2

�
a2P sin2 θ −Q

ρ2
ðdu − T dϕuÞ2

− 2ðdu − T dϕuÞðdrþ aP sin2 θdϕuÞ

þ ρ2
�
dθ2

P
þ P sin2 θdϕ2

u

��
: ð159Þ

10261027Both these metrics are regular at QðrÞ ¼ 0, so that the
1028coordinate singularities at the horizons has been removed.
1029The next step in construction of the maximal (analytic)
1030extension of the manifold is to introduce both the null
1031coordinates u and v simultaneously, revealing thus the
1032causal structure. The coordinate r is eliminated using the
1033relation (155) which implies

2 dr ¼ Q
r2 þ ðaþ lÞ2 ðdv − duÞ: ð160Þ

10341035In addition, it is necessary to construct a unique angular
1036coordinate ϕh across the horizon ar rh using the specific
1037relation,

ϕh ¼ φ −Ωht; where Ωh ¼
a

r2h þ ðaþ lÞ2 : ð161Þ

10381039The constant Ωh is the angular velocity of the horizon.
1040Actually, 2dϕh ¼ dϕu þ dϕv −Ωhðduþ dvÞ. This it the
1041unique way how to properly combine the distinct angular
1042coordinates ϕv and ϕu (for more details see [14]).
1043Unfortunately, the specific choice of the angular coor-
1044dinate ϕh depends on the given horizon via its value rh and
1045thus Ωh. For this reason, it is not possible to find a single
1046and simple global coordinate ϕ which would conveniently
1047“cover” all the four horizons. This drawback was met many
1048years ago already in the Kerr spacetime, so it is not
1049surprising that it reappears in the current context of the
1050complete family of type D black holes with seven physical
1051parameters.
1052An explicit general metric form of this family con-
1053structed in this way reads

10541055

ds2 ¼ 1

4Ω2

�
−
Q
ρ2

ðð1 − T ΩhÞðduþ dvÞ − 2T dϕhÞ2 þQρ2
ðdu − dvÞ2

½r2 þ ðaþ lÞ2�2 þ 4
ρ2

P
dθ2

þ Psin2θ
ρ2

ðða − ½r2 þ ðaþ lÞ2�ΩhÞðduþ dvÞ − 2½r2 þ ðaþ lÞ2�dϕhÞ2
�
: ð162Þ

1056 For nontwisting black holes without the Kerr-like rotation (a ¼ 0) and the NUT parameter (l ¼ 0), the metric functions
1057 simplify to Ω ¼ 1, P ¼ 1, ρ2 ¼ r2, T ¼ 0, Ωh ¼ 0, so that
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ds2 ¼ −
Q
r2

dudvþ r2ðdθ2 þ sin2 θdϕ2
hÞ; ð163Þ

10581059 which is the usual form of the spherically symmetric black
1060 holes in the double-null coordinates [10].
1061 It remains to analyze the global extension of (162) and to
1062 study the degree of smoothness (analyticity) of the four
1063 distinct horizonsH�

b andH�
c whereQðrhÞ ¼ 0. Restricting

1064 to any two-dimensional section θ ¼ const and ϕh ¼ const
1065 the general metric (162) reduces to

dσ2 ¼ 1

4Ω2

�
−
ð1 − T ΩhÞ2

ρ2
Qðduþ dvÞ2

þ ρ2

½r2 þ ðaþ lÞ2�2 Qðdu − dvÞ2

þ a2
Psin2θ
ρ2

ðrþ rhÞ2ðr − rhÞ2
½r2h þ ðaþ lÞ2�2 ðduþ dvÞ2

�
; ð164Þ

10661067 which is null at any horizon rh where QðrhÞ ¼ 0. Due to
1068 the simple factorized form (129) of the metric function
1069 QðrÞ, the integral (156) defining the function r�ðrÞ can be
1070 calculated explicitly as

r�ðrÞ ¼ kþb log

				1 − r
rþb

				þ k−b log

				1 − r
r−b

				
þ kþc log

				1 − r
rþc

				þ k−c log

				1 − r
r−c

				; ð165Þ

10711072 where the auxiliary coefficients are

kþb ¼ −
ðrþb Þ2 þ ðaþ lÞ2

N ðrþb − r−b Þðrþb − rþc Þðrþb − r−c Þ
;

k−b ¼ −
ðr−b Þ2 þ ðaþ lÞ2

N ðr−b − rþb Þðr−b − rþc Þðr−b − r−c Þ
;

kþc ¼ −
ðrþc Þ2 þ ðaþ lÞ2

N ðrþc − rþb Þðrþc − r−b Þðrþc − r−c Þ
;

k−c ¼ −
ðr−c Þ2 þ ðaþ lÞ2

N ðr−c − rþb Þðr−c − r−b Þðr−c − rþc Þ
: ð166Þ

10731074Each of these constants is associated with the correspond-
1075ing horizon H�

h located at r ¼ r�h , where h ¼ b (for the
1076black hole horizons) or h ¼ c (for the cosmo-acceleration
1077horizons).
1078We can express the metric functions QðrÞ, ρ2ðrÞ and
1079Ω2ðrÞ entering (164) in terms of the null coordinates
1080v − u instead of r by using the inversion of the relation
10812r�ðrÞ ¼ v − u. Finally, we introduce the couples of new
1082null coordinates U�

h and V�
h , defined as

U�
h ¼ ð−1Þisignðk�h Þ exp

�
−

u
2k�h

�
; ð167Þ

10831084
V�
h ¼ð−1Þjsignðk�h Þ exp

�
þ v
2k�h

�
: ð168Þ

10851086Each couple covers the corresponding horizon H�
h .

1087Moreover, it is characterized by a particular choice of
1088two integers ði; jÞ which specify a certain region in the
1089manifold. Generally, there are five types of regions which
1090are separated by the four types of horizons H�

h , namely

Region Description Specification of ði; jÞ
I∶ asymptotic time-dependent domain betweenHþ

c and Iþ ðn − 2mþ 1; nþ 2m − 1Þ
II∶ stationary region betweenHþ

b andHþ
c ð2n −m; 2nþm − 1Þ

III∶ time-dependent domain between the black-hole horizons ðn − 2m; nþ 2mÞ
IV∶ stationary region betweenH−

c andH−
b ð2n −mþ 1; 2nþmÞ

V∶ asymptotic time-dependent domain betweenI− andH−
c ðn − 2mþ 1; nþ 2m − 1Þ

10911092 where m, n are arbitrary integers. The corresponding
1093 Kruskal–Szekeres-type dimensionless coordinates for every
1094 distinct region are

T�
h ¼ 1

2
ðV�

h þ U�
h Þ; R�

h ¼ 1

2
ðV�

h − U�
h Þ: ð169Þ

10951096 [The presence of the curvature singularity at r ¼ 0 (imply-
1097 ing r� ¼ 0) for certain values of θ restricts the range of the
1098 coordinates U−

b and V−
b in the region IV to the domain

1099 outside U−
bV

−
b ¼ �1.]

1100In terms of these coordinates, the extension across the
1101horizon is regular (in fact, analytic). Indeed, by multiplying
1102and dividing the null coordinates (167) and (168) we obtain
1103the relations,

U�
h V

�
h ¼

�
1 −

r
rþb

�kþ
b
k�
h

�
1 −

r
r−b

�k−
b

k�
h

�
1 −

r
rþc

�kþc
k�
h

�
1 −

r
r−c

�k−c
k�
h ;

ð170Þ
11041105
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U�
h

V�
h

¼ð−1Þiþj exp

�
−

t
k�h

�
; ð171Þ

11061107 while the terms ðdu� dvÞ2 in the metric (164) become

ðdu� dvÞ2 ¼ 4ðk�h Þ2
U�

h V
�
h

�
V�
h

U�
h

ðdU�
h Þ2 ∓ 2dU�

h dV
�
h

þ U�
h

V�
h

ðdV�
h Þ2

�
: ð172Þ

11081109 A nonanalytic behavior across the horizon rh may thus
1110 occur only at zeros of the product U�

h V
�
h . However, they

1111 exactly cancel the zeros of the functions QðrÞ in the metric
1112 (164). For example, by choosing the black hole horizon
1113 rh ¼ rþb , we get Uþ

b V
þ
b ∝ ðr − rþb Þ which obviously com-

1114 pensates the corresponding root Q ∝ ðr − rþb Þ in (129).
1115 Notice also that the last term in (164) actually vanishes.
1116 Therefore, the metric (164) remains finite at rþb . Of course,
1117 the same argument applies to the remaining three horizons.
1118 Maximal extension (the complete atlas) of the black hole
1119 manifold represented by (47) is obtained by ‘gluing
1120 together” the different “coordinate patches” crossing all
1121 the horizons, until a curvature singularity or conformal
1122 infinity (the scri I) is reached. Such an extension has to be
1123 performed both along the advanced null coordinate v and
1124 the retarded null coordinate u, using the corresponding
1125 coordinatesU�

h and V�
h . By this step-by-step procedure, the

1126 coordinate singularities at all the horizonsH�
h are removed.

1127 Finally, we construct the Penrose conformal diagrams
1128 visualizing the global structure of this extended manifold.
1129 This is achieved by a suitable conformal rescaling of U�

h

1130 and V�
h to the compactified null coordinates ũ�h and ṽ�h

1131 defined as

tan
ũ�h
2

¼ −signðk�h ÞðU�
h Þ−signðk

�
h Þ; ð173Þ

11321133
tan

ṽ�h
2

¼ − signðk�h ÞðV�
h Þ−signðk

�
h Þ: ð174Þ

11341135 Consequently, for T̃�
h ¼ 1

2
ðṽ�h þ ũ�h Þ and R̃�

h ¼ 1
2
ðṽ�h − ũ�h Þ

1136 we obtain the following explicit expressions in terms of the
1137 original coordinates t, r of the metric (47):

T̃�
h ¼

8>>>>>>>>><
>>>>>>>>>:

ð−1Þjþ1 arctan
cosh t

2jk�
h
j

sinh r�
2jk�

h
j

for iþ j even;

ð−1Þj arctan
sinh t

2jk�
h
j

cosh r�
2jk�

h
j

for iþ j odd; r� < 0;

ð−1Þj arctan
sinh t

2jk�
h
j

cosh r�
2jk�

h
j
þ π for iþ j odd; r� ≥ 0;

ð175Þ

11381139and

R̃�
h ¼

8>>>>>>>>><
>>>>>>>>>:

ð−1Þj arctan
sinh t

2jk�
h
j

cosh r�
2jk�

h
j

for iþ j even;

ð−1Þjþ1 arctan
cosh t

2jk�
h
j

sinh r�
2jk�

h
j

for iþ j odd; r� < 0;

ð−1Þjþ1 arctan
cosh t

2jk�
h
j

sinh r�
2jk�

h
j
þ π for iþ j odd; r� ≥ 0:

ð176Þ

11401141Recall that the function r�ðrÞ is given by (165) and the
1142coefficients k�h by (166). In particular, the lines of constant
1143r thus coincide with the lines of constant r�. For every
1144single region the coordinate r� spans the whole range
1145ð−∞;þ∞Þ, and similarly the coordinate t.
1146These explicit relations between the compactified coor-
1147dinates fT̃�

h ; R̃
�
h g and the original coordinates ft; rg of the

1148metric (47) for all ði; jÞ can be used for graphical
1149construction of the Penrose diagram, composed of various
1150“diamond” regions. The resulting picture is shown in Fig. 2
1151for the special value of θ such that cos θ ¼ −l=a which
1152contains the curvature singularity at r ¼ 0 in all its
1153regions IV (see Sec. V E). In particular, for vanishing
1154NUT parameter l ¼ 0 this is the equatorial plane θ ¼ π

2
.

1155The complete manifold consists of an infinite number of
1156the regions I, II, III, IVand V, each identified by the specific
1157pair of integers ði; jÞ. These regions are separated by the
1158corresponding horizons. Namely, the regions I and II are
1159separated by the cosmo-acceleration horizon Hþ

c at rþc ,
1160with the asymptotic region I also bounded by the conformal
1161infinity I (the scri) for very large values of r. The regions II
1162and III are separated by the black hole horizon Hþ

b at rþb ,
1163while the regions III and IVare separated by the inner black
1164hole horizon H−

b at r−b . Finally, the regions IV and V are
1165separated by the cosmo-acceleration horizonH−

c at r−c , with
1166the asymptotic region V bounded by the conformal infinity
1167I with negative values of r. The curves in each region
1168represent the lines of constant t and r (dashed or solid,
1169respectively).
1170In the “diagonal” null directions of these Penrose
1171diagrams we can identify the particular coordinate patches
1172covered by the “advanced” metric form (158), extending
1173from the bottom left I− to the top right Iþ [for example the
1174pink regions I–V between ð1;−1Þ and (1,3)], and also the
1175complementary “retarded” metric form (159), extending
1176from the bottom right I− to the top left Iþ [these are not
1177colored but also contain the regions I–V, for example
1178between ð−1; 1Þ and (3,1)]. These patches “share” the
1179“central regions” III [for example (1,1)]. Each of such
1180central region III is bounded by the inner and outer black
1181hole horizons at r−b and rþb , localizing thus the interior of
1182the corresponding black hole. In the whole extended
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1183 universe, there are thus infinitely many black holes—they
1184 are identified by the different regions III.
1185 Provided jlj ≤ jaj, such black hole has the curvature
1186 singularity at r ¼ 0 in the region IV bounded by the inner
1187 black hole horizon H−

b at r−b (and also the inner cosmo-
1188 acceleration horizon H−

c at r−c ). In the section given by the
1189 special value of θ such that cos θ ¼ −l=a it is not possible
1190 to cross from the values r > 0 to r < 0. This is indicated by
1191 the vertical zigzag lines in the regions IV. However, as
1192 recently pointed out by MacCallum [34] in his interesting
1193 revisit of the maximal extension of the Kerr black hole
1194 spacetime, there is a “missing triangle” in usual plots (such
1195 as in [10]). Although it is not possible to cross the curvature
1196 singularity r ¼ 0 on this specific section, due to its ring
1197 structure there exist curves that decrease from r > 0 to
1198 r ¼ 0 and continue to r < 0, provided their value of θ is
1199 different form cos θ ¼ −l=a. On such a section there is no
1200 curvature singularity, so that the coordinate boundary r ¼ 0

1201 is no obstacle for continuation of the curve. The same
1202 argument is valid not only for the Kerr black hole but also
1203 for the whole family of rotating black hole spacetimes (such
1204 that jlj ≤ jaj) investigated here. Therefore, in Fig. 2 we
1205 represent the curvature singularity in (any) region IV

1206simply by a vertical zigzag line. The “missing triangle”
1207on the left of r ¼ 0 is the extension of the “present triangle”
1208on the right, continuing from positive to negative values
1209of the coordinate r, and vice versa, because the curvature
1210singularity can be “bypassed” on any section such
1211that cos θ ≠ −l=a.
1212Each of these black holes, identified by the specific
1213region III, is associated with four asymptotic regions,
1214namely the pair of the regions I with future conformal
1215infinity Iþ and a pair of the regions V with past conformal
1216infinity I−. Moreover, each asymptotically conformally flat
1217region bounded by I is “shared” by two distinct black
1218holes. For example, the conformal infinities Iþ of the
1219“infinite horizontal chain” of black holes (regions III)
1220given by …, ð3;−1Þ, (1,1), ð−1; 3Þ, … are located in the
1221“future universes” (regions I) …, ð5;−1Þ, (3,1), (1,3),
1222ð−1; 5Þ, …, while their “past universes” (regions V)
1223are …, ð3;−3Þ, ð1;−1Þ, ð−1; 1Þ, ð−3; 3Þ, …, respectively.
1224However, these “past universes” need not be the same.
1225Therefore, we inserted the double dashed vertical parallel
1226lines in them to indicate their separation. Of course, it is
1227possible to “artificially” identify (some of) them—both
1228the black hole regions III and/or their asymptotic regions

F2:1 FIG. 2. Penrose conformal diagram of the completely extended spacetime (47) showing the global structure of this family of
F2:2 accelerating and rotating charged NUT black holes with a cosmological constant. We assume the ordering of the four distinct horizons as
F2:3 r−c < r−b < rþb < rþc ; see (136). Here we show a two-dimensional section θ;ϕh ¼ const with the curvature singularity at r ¼ 0, i.e., for
F2:4 θ ¼ const such that cos θ ¼ −l=a. In such a section, the corresponding regions IVare “cut in half” by this curvature singularity at r ¼ 0,
F2:5 indicated by the vertical zigzag lines. The double dashed vertical parallel lines indicate a separation of distinct asymptotically flat regions
F2:6 close to I� (different “parallel universes” that are not necessarily identified).
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1229 I and V. An infinite plethora of various topologically
1230 complicated manifolds can thus be constructed.
1231 Let us emphasize that the Penrose conformal diagram
1232 shown in Fig. 2 represents the global structure of a generic
1233 black hole spacetime of type D (47) with four distinct
1234 horizons. It remains to investigate a great number of other
1235 special situations for particular choices of the physical
1236 parameters with degenerate (multiple) horizons or with a
1237 reduced number of horizons, as identified in Sec. V B and
1238 Sec. V C. Other specific situations also occur, for example
1239 jaj ¼ jlj. In all these cases the Penrose diagram will have
1240 different forms.

1241 G. Regularization of the axes of symmetry θ= 0
1242 and θ= π

1243 As shown in previous works [11,13,14], the metric (47)
1244 is convenient for explicit analysis of the regularity of the
1245 poles/axes located at θ ¼ 0 and θ ¼ π, respectively, which
1246 are the boundaries of the range θ ∈ ½0; π�.2 This is now
1247 further improved with the new metric functions (48)–(53).
1248 Recall that there are seven physical parameters in the
1249 metric (47), namely m; a; l; e; g; α;Λ, which represent
1250 mass, Kerr-like rotation, NUT parameter, electric and
1251 magnetic charges, acceleration, and cosmological constant
1252 of the black hole, respectively. But it should be emphasized

1253that, in fact, there is also the eighth free parameter—the
1254conicity C hidden in the range of the angular coordinate,

φ ∈ ½0; 2πCÞ; ð177Þ

12551256which has not yet been specified. It is directly related to the
1257deficit (or excess) angles of the cosmic strings (or struts)
1258located along the axes. The tension associated with these
1259topological defects is the physical source of the acceler-
1260ation of the black holes.
1261First, let us consider a small circle around the first axis of
1262symmetry θ ¼ 0 in the metric (47) given by θ ¼ const, with
1263the range of φ given by (177), assuming fixed t and r. The
1264invariant length of its circumference is

R
2πC
0

ffiffiffiffiffiffiffigφφ
p dφ, while

1265its radius is
R
θ
0

ffiffiffiffiffiffi
gθθ

p
dθ, so that

f0 ≡ lim
θ→0

circumference
radius

¼ lim
θ→0

2πC ffiffiffiffiffiffiffigφφ
p

θ
ffiffiffiffiffiffi
gθθ

p : ð178Þ

12661267For the metric (47) near the axis θ ¼ 0 we get

gφφ ≈
P

Ω2ρ2
ðr2 þ ðaþ lÞ2Þ2θ2; gθθ ¼

ρ2

Ω2P
; ð179Þ

12681269and thus, using (50),

f0 ¼ 2πCPð0Þ

¼ 2πC

�
1 − 2

�
αam

a2 þ l2
−
Λ
3
l

�
ðaþ lÞ þ

�
α2a2

ða2 þ l2Þ2 ða
2 − l2 þ e2 þ g2Þ þ Λ

3

�
ðaþ lÞ2

�
: ð180Þ

12701271 Therefore, the axis θ ¼ 0 in the metric (47) can always be made regular by the unique choice of C ¼ C0 such that

C0 ≡
�
1 − 2

�
αam

a2 þ l2
−
Λ
3
l

�
ðaþ lÞ þ

�
α2a2

ða2 þ l2Þ2 ða
2 − l2 þ e2 þ g2Þ þ Λ

3

�
ðaþ lÞ2

�
−1
: ð181Þ

12721273 Notice that for l ¼ −a, this is simply C0 ¼ 1.
1274 Analogously, we can regularize the second axis of symmetry θ ¼ π. By applying the transformation of the time
1275 coordinate,

tπ ≡ t − 4lφ; ð182Þ

12761277 the metric (47) becomes

ds2 ¼ 1

Ω2

�
−
Q
ρ2

�
dtπ −

�
asin2θ − 4lcos2 1

2
θ

�
dφ

�
2

þ ρ2

Q
dr2 þ ρ2

P
dθ2 þ P

ρ2
sin2θ½adtπ − ðr2 þ ða − lÞ2Þdφ�2

�
; ð183Þ

2Usually, θ ¼ 0 and θ ¼ π are considered as two semiaxes of the same axis of rotation (a single symmetry axis). This is natural in the
simplest spacetimes for which the coordinates ðr; θ;φÞ represent spherical(like) symmetry with r > 0 only. However, in the present
context of generic black hole spacetimes with the Kerr parameter a and the NUT parameter l, the range of the “radial coordinate” is
r ∈ ð−∞;þ∞Þ. In such a case, both the axes given by θ ¼ 0 and θ ¼ π have this full range of r, and thus they are not the same (unless
they are “artificially” identified, which would lead to nontrivial topologies). Therefore, they form two distinct infinite axes connecting
two different asymptotically flat regions in the whole spacetime. This fact is explained in more detail in our previous papers, in particular
see Fig. 4 of [19] and Fig. 2 of [14].
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12781279 Now, for θ → π the radius of a small circle around the axis
1280 θ ¼ π is

R
π
θ

ffiffiffiffiffiffi
gθθ

p
dθ, so that

fπ ≡ lim
θ→π

circumference
radius

¼ lim
θ→π

2πC ffiffiffiffiffiffiffigφφ
p

ðπ − θÞ ffiffiffiffiffiffi
gθθ

p ; ð184Þ

12811282where for the metric (183) now

gφφ≈
P

Ω2ρ2
ðr2þða− lÞ2Þ2ðπ−θÞ2; gθθ¼

ρ2

Ω2P
: ð185Þ

12831284Using (50) we obtain

fπ ¼ 2πCPðπÞ

¼ 2πC

�
1þ 2

�
αam

a2 þ l2
−
Λ
3
l

�
ða − lÞ þ

�
α2a2

ða2 þ l2Þ2 ða
2 − l2 þ e2 þ g2Þ þ Λ

3

�
ða − lÞ2

�
: ð186Þ

12851286 The axis θ ¼ π in the metric (183) can always be made regular by the unique choice C ¼ Cπ where

Cπ ≡
�
1þ 2

�
αam

a2 þ l2
−
Λ
3
l

�
ða − lÞ þ

�
α2a2

ða2 þ l2Þ2 ða
2 − l2 þ e2 þ g2Þ þ Λ

3

�
ða − lÞ2

�
−1
: ð187Þ

12871288 Notice that for l ¼ a, this is simply Cπ ¼ 1.

1289 H. Cosmic strings (or struts) and deficit (or excess) angles

1290 Regularizing the second axis θ ¼ π by the choice (187) there remains a deficit/excess angle δ0 ≡ 2π − f0 (conical
1291 singularity representing a cosmic string/strut) along the first axis θ ¼ 0, namely

δ0 ¼
8πa½αa½mða2 þ l2Þ − αalða2 − l2 þ e2 þ g2Þ� − 2

3
Λlða2 þ l2Þ2�

½1þ 1
3
Λða − lÞða − 3lÞ�ða2 þ l2Þ2 þ 2αamða − lÞða2 þ l2Þ þ α2a2ða − lÞ2ða2 − l2 þ e2 þ g2Þ :

12921293

1294 For nonrotating black holes (a ¼ 0) we immediately
1295 obtain δ0¼0 which means that both axes θ¼0 and θ¼π
1296 are regular. In such a case, the possible cosmic strings are
1297 absent, so that there is no source of acceleration. This is fully
1298 consistent with our previous observation made in Sec. IVD
1299 that there is no accelerating “purely” NUT-(anti–)de Sitter
1300 black hole in the Plebański-Demiański family of spacetimes.
1301 Indeed, by setting the Kerr-like rotation parameter a to zero,
1302 the metric (47) becomes independent of the acceleration α,
1303 and simplifies directly to (79).
1304 For black holes without the NUT parameter (l ¼ 0) this
1305 expression simplifies to

δ0 ¼
8παm

1þ 2αmþ α2ða2 þ e2 þ g2Þ þ 1
3
Λa2

; ð188Þ

13061307recovering the previous results for rotating charged
1308C-metric with a cosmological constant; see Chap. 14
1309in [10] [and generalizing Eq. (132) of [14] to any Λ].
1310The tension in the cosmic string along θ ¼ 0 characterized
1311by δ0 > 0 pulls the black hole, causing its uniform
1312acceleration. Such a string extends to the full range of
1313the radial coordinate r ∈ ð−∞;þ∞Þ, connecting “our
1314Universe” with the “parallel universe” through the non-
1315singular black hole interior close to r ¼ 0.
1316Complementarily, when the first axis of symmetry θ ¼ 0

1317is made regular by the choice (181), there is necessarily an
1318excess/deficit angle δπ ≡ 2π − fπ along the second axis
1319θ ¼ π, namely

13201321

δπ ¼
−8πa½αa½mða2 þ l2Þ − αalða2 − l2 þ e2 þ g2Þ� − 2

3
Λlða2 þ l2Þ2�

½1þ 1
3
Λðaþ lÞðaþ 3lÞ�ða2 þ l2Þ2 − 2αamðaþ lÞða2 þ l2Þ þ α2a2ðaþ lÞ2ða2 − l2 þ e2 þ g2Þ :

1322 For a ¼ 0 it gives δπ ¼ 0, while for l ¼ 0 it simplifies to

δπ ¼
−8παm

1 − 2αmþ α2ða2 þ e2 þ g2Þ þ 1
3
Λa2

; ð189Þ

13231324[generalizing Eq. (134) of [14] to any Λ]. This represents
1325the cosmic strut characterized by δπ < 0 located along
1326θ ¼ π between the pair of black holes, pushing them away
1327from each other in opposite spatial directions.
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1328 Interestingly, both axes θ ¼ 0 and θ ¼ π can be made
1329 simultaneously regular (δ0 ¼ 0 ¼ δπ) if (and only if) seven
1330 physical parameters of the black hole spacetime satisfy the
1331 special constraint,

2

3
Λlða2 þ l2Þ2 ¼ αa½mða2 þ l2Þ − αalða2 − l2 þ e2 þ g2Þ�:

ð190Þ
13321333 For such a special value of the cosmological constant Λ, the
1334 rotating charged black holes with the NUT parameter l ≠ 0

1335 accelerate without the presence of the cosmic strings or
1336 struts. In the Λ ¼ 0 case the simpler condition given by
1337 Eq. (135) of [14] is recovered. The condition (190) also
1338 corrects the wrong sign of the Λ-term in the corresponding
1339 unnumbered equation on p. 313 of [10].

1340 I. Rotation of the cosmic strings (or struts)

1341 With a NUT parameter l ≠ 0 these cosmic strings (or
1342 struts) are rotating. The angular velocity parameter ωθ of
1343 the metric (47) is

ωθ ≡ gtφ
gtt

¼ −
Qða sin2 θþ 4l sin2 1

2
θÞ− aðr2 þ ðaþ lÞ2ÞP sin2 θ

Q− a2P sin2 θ
:

ð191Þ
13441345 Now we consider any fixed value of r away from the
1346 horizons (so that Q ≠ 0 is a constant). Then the limits
1347 θ → 0 and θ → π near the two different axes θ ¼ 0 and
1348 θ ¼ π give

ω0 ¼ 0 and ωπ ¼ −4l; ð192Þ
13491350 respectively. The first axis θ ¼ 0 is thus nonrotating, while
1351 the second axis θ ¼ π rotates, and its angular velocity is
1352 directly (and solely) determined by the NUT parameter l.
1353 Indeed, ωπ does not depend on the Kerr-like parameter a,
1354 nor the conicity parameterC. The rotational character of the
1355 axis is thus a specific feature related to the NUT parameter
1356 l, which is independent of the possible deficit angles
1357 defining the cosmic string/strut along the same axis.
1358 By changing the time coordinate as in (182), we obtain
1359 the alternative metric (183) for which

ωθ ≡ gtπφ
gtπtπ

¼ −
Qða sin2 θ− 4l cos2 1

2
θÞ− aðr2 þ ða− lÞ2ÞP sin2 θ

Q− a2P sin2 θ
:

ð193Þ
13601361 The corresponding angular velocities of the two axes
1362 are thus

ω0 ¼ 4l and ωπ ¼ 0: ð194Þ

13631364In this case, the situation is complementary to (192): the
1365axis θ ¼ 0 rotates, while the axis θ ¼ π does not rotate.
1366Interestingly, there is a constant difference,

Δω≡ ω0 − ωπ ¼ 4l; ð195Þ

13671368between the angular velocities of the two cosmic strings
1369or struts given by l (irrespective of the value of a or the
1370choice of C). The NUT parameter l is thus responsible for
1371the difference between the magnitude of rotation of the two
1372axes θ ¼ 0 and θ ¼ π.

1373J. Pathological regions with closed timelike curves
1374near the rotating strings (or struts)

1375In the close vicinity of the rotating cosmic strings or
1376struts located along θ ¼ 0 or θ ¼ π, the black hole
1377spacetime can serve as a time machine because there are
1378closed timelike curves. To identify such “pathological”
1379causality-violating regions, let us consider circles around
1380the axes of symmetry θ ¼ 0 or θ ¼ π such that only the
1381periodic angular coordinate φ ∈ ½0; 2πCÞ changes, while
1382the remaining coordinates t, r and θ are constant. The
1383corresponding velocity vectors are thus proportional to
1384the Killing vector field ∂φ whose norm is determined just by
1385the metric coefficient gφφ of the general metric (47). There
1386exist regions with

gφφ < 0; ð196Þ

13871388in which the circles (orbits of the axial symmetry) are
1389closed timelike curves. Such pathological regions are given
1390by the condition,

PðθÞðr2 þ ðaþ lÞ2Þ2 sin2 θ < QðrÞða sin2 θ þ 4l sin2
1

2
θÞ2;

ð197Þ

13911392where the functions PðθÞ, QðrÞ are explicitly given
1393by (50), (51).
1394Since PðθÞ > 0, this condition can only be satisfied in
1395the regions where QðrÞ > 0. In the generic case admitting
1396four distinct horizons (129), with N > 0, ordered as
1397r−c < r−b < rþb < rþc , the pathological regions with closed
1398timelike curves can only appear in the stationary region
1399r ∈ ðrþb ; rþc Þ between the outer black hole horizon Hþ

b and
1400the outer cosmo-acceleration horizon Hþ

c , or in the sta-
1401tionary region r ∈ ðr−c ; r−b Þ between the inner cosmo-
1402acceleration horizon H−

c and the inner black hole horizon
1403H−

b containing the curvature singularity at r ¼ 0; see the
1404scheme (137). These are, respectively, the regions II and
1405the regions IV in the Penrose conformal diagram shown
1406in Fig. 2.
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1407 Moreover, it can be proven analytically that these
1408 pathological regions with closed timelike curves do not
1409 intersect with the ergoregions (shown in Fig. 1), although
1410 they are both in the same domains II and IV. Indeed, the
1411 ergoregions are identified by the condition gtt > 0 (together
1412 with grr > 0), that is

Q < Pa2 sin2 θ; ð198Þ

14131414 see Eq. (150). Substituting this inequality into (197)
1415 we obtain

r2 þ ðaþ lÞ2 < a2 sin2 θ þ 4al sin2 1
2
θ: ð199Þ

14161417 This is the same relation as r2 þ a2 cos2 θ þ 2al cos θþ
1418 l2 < 0, and in view of (49) it reads

ρ2 ≡ r2 þ ðlþ a cos θÞ2 < 0; ð200Þ

14191420 which is a contradiction.
1421 The pathological regions with closed timelike curves are
1422 indicated in Fig. 3 for several choices of the cosmological
1423 constant. They are the purple regions near the rotating
1424 cosmic string (strut) at θ ¼ π.

1425 K. Thermodynamic quantities

1426 In this final section we evaluate some basic thermody-
1427 namic quantities of the large class of black holes (47),
1428 namely the entropy,

S≡ 1

4
A; ð201Þ

14291430 given by the horizon area A, and the temperature,

T ≡ 1

2π
κ; ð202Þ

14311432 given by the corresponding horizon surface gravity κ;
1433 see [35].
1434 The horizon area is obtained easily by integrating both
1435 angular coordinates of the metric (47) for fixed values of t
1436 and r ¼ rh,

AðrhÞ ¼
Z

2πC

0

Z
θmax

θmin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gθθgφφ

p
dθdφ: ð203Þ

14371438 Because QðrhÞ ¼ 0 on any horizon, this expression sim-
1439 plifies to

A ¼ 2πCðr2h þ ðaþ lÞ2Þ
Z

θmax

θmin

sin θ
Ω2ðrhÞ

dθ: ð204Þ

14401441Applying the explicit form of the conformal factor (48),
1442that is

ΩðrhÞ ¼ 1 −
αarh
a2 þ l2

ðlþ a cos θÞ; ð205Þ

14431444a simple integration leads to

A ¼ 2πCðr2h þ ðaþ lÞ2Þ a
2 þ l2

αa2rh

�
−1

ΩðrhÞ
�
θmax

θmin

: ð206Þ

144514461447Let us now assume the generic case of four distinct
1448horizons H introduced in (131)–(134). For the black hole
1449horizons H�

b the integration range is a full spherical angle,
1450½θmin; θmax� ¼ ½0; π�, and this leads to the following result:

area ofH�
b is Ab

� ¼ 4πC½ðr�b Þ2 þ ðaþ lÞ2�
ð1 − α a2þal

a2þl2 r
�
b Þð1þ α a2−al

a2þl2 r
�
b Þ

:

ð207Þ

14511452For vanishing acceleration α the area of the black hole
1453horizons is simply

A�
b ¼ 4πCððr�b Þ2 þ ðaþ lÞ2Þ: ð208Þ

14541455This reduces to the well-known expressions for Kerr–
1456Newman-NUT-(anti–)de Sitter black holes, and in particu-
1457lar the Schwarzschild solution with a single horizon of the
1458area Ab ¼ 4πr2b.
1459Concerning the cosmo-acceleration horizons H�

c , it is
1460necessary to discuss three cases depending on the sign of
1461the cosmological constant. In our previous work [14] we
1462demonstrated that for Λ ¼ 0 the area of bothHþ

a ≡Hþ
c and

1463H−
a ≡H−

c is infinite. The same is true for Λ < 0. In this
1464case the reason is that the cosmo-acceleration horizons
1465extend up to conformal infinity given by Ω ¼ 0. This can
1466be seen, e.g., from the corresponding pictures in the
1467bottom row of Fig. 1 and Fig. 3 in which H�

c are indicated
1468by big red circles. Consequently, Ωðrþc ; θminÞ ¼ 0 and
1469Ωðr−c ; θmaxÞ ¼ 0. In both cases, the expression (206) for
1470A�

c diverges.
1471For a positive cosmological constant Λ > 0 the integra-
1472tion (206) over the full admitted range ½θmin; θmax� ¼ ½0; π�
1473implies that

area ofH�
c is Ac

� ¼ 4πC½ðr�c Þ2 þ ðaþ lÞ2��
1 − α a2þal

a2þl2 r
�
c

��
1þ α a2−al

a2þl2 r
�
c

� :

ð209Þ
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F3:1 FIG. 3. Plot of the metric function gφφ for the accelerating black hole (47) with a regular axis θ ¼ 0 and rotating cosmic string (strut)

F3:2 along the axis θ ¼ π. The values of gφφ are visualized in quasipolar coordinates x≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðaþ lÞ2

p
sin θ, y≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ ðaþ lÞ2
p

cos θ for
F3:3 r ≥ 0 (left) and r ≤ 0 (right). The gray annulus in the center of the left figure localizes the black hole bordered by its horizonsHþ

b at rþb
F3:4 and H−

b at r−b (0 < r−b < rþb ). The cosmo-acceleration horizons H�
c at rþc and r−c (big red circles) and the conformal infinity I at Ω ¼ 0

F3:5 are also shown. The gray curves are contour lines gφφðr; θÞ ¼ const, and the values are color-coded from red (positive values) to blue
F3:6 (negative values); extremely large values are cut. The purple curves are the isolines gφφ ¼ 0 determining the boundary of the
F3:7 pathological regions (197) with closed timelike curves. They occur close to the axis θ ¼ π (purple regions where gφφ < 0). This plot is
F3:8 for the choice m ¼ 3, a ¼ 1.5, l ¼ 0.2, e ¼ 1.6 ¼ g, and α ¼ 0.12. The top row is plotted for positive values of the cosmological
F3:9 constant (Λ ¼ 0.003 on the left for r ≥ 0, Λ ¼ 0.005 on the right for r ≤ 0), the middle row is for Λ ¼ 0, while the bottom row is plotted

F3:10 for negative values of the cosmological constant (Λ ¼ −0.003 on the left for r ≥ 0, Λ ¼ −0.005 on the right for r ≤ 0).
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14741475 Interestingly, these areas of cosmo-acceleration horizons H�
c are finite.

1476 Indeed, from the general form (51) of the metric function QðrÞ, namely

QðrÞ ¼ ½r2 − 2mrþ ða2 − l2 þ e2 þ g2Þ�
�
1þ αa

a− l
a2 þ l2

r

��
1− αa

aþ l
a2 þ l2

r

�
−
Λ
3
r2
�
r2 þ 2αal

a2 − l2

a2 þ l2
rþ ða2 þ 3l2Þ

�
;

ð210Þ

14771478 evaluated at the horizons r�c [which are defined as the two
1479 roots of QðrcÞ ¼ 0], it follows that

�
1 − α

a2 þ al
a2 þ l2

rc

��
1þ α

a2 − al
a2 þ l2

rc

�

¼ Λ
3
r2c

r2c þ 2αal a
2−l2

a2þl2 rc þ ða2 þ 3l2Þ
r2c − 2mrc þ ða2 − l2 þ e2 þ g2Þ ; ð211Þ

14801481 An infinite value of A�
c given by (209) would require

1482 the left-hand side of (211) to be zero, implying its

1483 roots rc ¼ � 1
α
a2þl2

a2�al. By substituting such values into
1484 the numerator of the right-hand side of (211) we get

1485 r2cþ 2αal a
2−l2

a2þl2 rcþða2þ 3l2Þ ¼ ða2þl2Þ2
α2a2ða�lÞ2 þða� lÞ2 which

1486 is strictly positive. For Λ > 0 we thus get a contradiction,
1487 so that A�

c must be finite.

1488For m ¼ a ¼ l ¼ e ¼ g ¼ α ¼ 0 (so that C ¼ 1) the
1489function reduces to QðrÞ ¼ r2ð1 − Λ

3
r2Þ. The cosmological

1490horizons are thus located at r2c ¼ 3
Λ, and their areas given

1491by (209) areAc ¼ 4πr2c ¼ 12π=Λwhich is the well-known
1492result for the de Sitter space.
1493The temperature of the horizon is determined by its
1494surface gravity κ. In [14,16] we showed that for the general
1495metric form (47) this can be expressed as

κ ¼ 1

2

Q0ðrhÞ
r2h þ ðaþ lÞ2 ; ð212Þ

14961497where the prime denotes the derivative with respect to r.
1498With the factorized form (129) of the metric function QðrÞ,
1499using the constant parameters (166), this can be easily
1500evaluated as

surface gravity ofHþ
b is κþb ¼ 1

2kþb
¼ −

N
2

ðrþb − r−b Þðrþb − rþc Þðrþb − r−c Þ
ðrþb Þ2 þ ðaþ lÞ2 ; ð213Þ

15011502
surface gravity ofH−

b is κ−b ¼ 1

2k−b
¼ −

N
2

ðr−b − rþb Þðr−b − rþc Þðr−b − r−c Þ
ðr−b Þ2 þ ðaþ lÞ2 ; ð214Þ

15031504
surface gravity ofHþ

c is κþc ¼ 1

2kþc
¼ −

N
2

ðrþc − rþb Þðrþc − r−b Þðrþc − r−c Þ
ðrþc Þ2 þ ðaþ lÞ2 ; ð215Þ

15051506

surface gravity ofH−
c is κ−c ¼ 1

2k−c
¼ −

N
2

ðr−c − rþb Þðr−c − r−b Þðr−c − rþc Þ
ðr−c Þ2 þ ðaþ lÞ2 : ð216Þ

15071508 It can now be seen from (213) and (214) that

κþb ¼ 0 ¼ κ−b if rþb ¼ r−b ; ð217Þ

15091510 and from (213) and (215) that

κþb ¼ 0 ¼ κþc if rþb ¼ rþc : ð218Þ

15111512 This confirms that extremal horizons have vanishing sur-
1513 face gravity, and thus zero thermodynamic tempera-
1514 ture T ¼ 1

2π κ.

1515VI. SUMMARY

1516We presented a new metric form (47)–(51) of the large
1517family of exact black holes of algebraic type D, initially
1518found by Debever (1971) and by Plebański and Demiański
1519(1976). It generalizes our previous paper on this topic [14]
1520to any value of the cosmological constant Λ. We also
1521demonstrated that this improved metric representation
1522simplify the investigation of various geometrical and
1523physical properties. In particular:
1524(i) In Sec. II we recalled the Griffiths–Podolský (2005,
15252006) form of this class of spacetimes, and we
1526further improved it by introducing a modified set of
1527the mass and charge parameters m, e, g, applying a
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1528 conformal rescaling S, and choosing a gauge of the
1529 twist parameter ω.
1530 (ii) As summarized in Sec. III, the metric (47) and its
1531 functions (48)–(51) are simple, depending only on
1532 the radial coordinate r and the angular coordinate θ.
1533 Moreover, the key functions PðθÞ and QðrÞ can be
1534 further compactified to (52)–(53). In particular, PðθÞ
1535 is factorized.
1536 (iii) The metric depends on seven parameters m; a; l;
1537 e; g; α;Λ with direct physical meaning. They re-
1538 present the mass parameter, Kerr-like rotation, NUT
1539 parameter, electric and magnetic charges, acceler-
1540 ation of the black hole, and the cosmological
1541 constant, respectively.
1542 (iv) Another nice feature of the new metric form
1543 (47)–(51) is that any of its seven physical parameters
1544 can be independently set to zero (and this can be
1545 done in any order). As shown in Sec. IV, specific
1546 subclasses of type D black holes are thus easily
1547 obtained. These are the black holes with Λ ¼ 0,
1548 obtained and analyzed previously in [14], Kerr-
1549 Newman-NUT-(anti–)de Sitter black holes without
1550 acceleration (α ¼ 0), accelerating Kerr-Newman-
1551 (anti–)de Sitter black holes without NUT (l ¼ 0),
1552 charged Taub-NUT-(anti–)de Sitter black holes
1553 without rotation (a ¼ 0), and accelerating Kerr-
1554 NUT-(anti–)de Sitter black holes without electric
1555 or magnetic charges (e ¼ 0 or g ¼ 0).
1556 (v) All the metric functions (48)–(51) depend on the
1557 acceleration α only via the product αa. Conse-
1558 quently, by setting the Kerr-like rotation a to zero,
1559 the new metric (47) always becomes independent of
1560 α, and simplifies directly to the charged Taub-NUT-
1561 (anti–)de Sitter black holes. This explicitly confirms
1562 the previous observation made by Griffiths and
1563 Podolský that there is no accelerating purely NUT
1564 black hole in the Plebański–Demiański family of
1565 type D spacetimes. Quite surprisingly, such a sol-
1566 ution for accelerating nonrotating black hole with
1567 just the NUT parameter and Λ ¼ 0 exists [19,20],
1568 but it is of distinct algebraic type I. Its possible
1569 generalization to any cosmological constant Λ re-
1570 mains an open problem.
1571 (vi) The simplest subcases of the metric (47) with just the
1572 mass parameterm and a cosmological constantΛ, plus
1573 one additional physical parameter, give famous black
1574 holes, namely the Schwarzschild-(anti–)de Sitter,
1575 Reissner-Nordström-(anti–)de Sitter, Kerr-(anti–)de
1576 Sitter, Taub-NUT-(anti–)de Sitter black holes, or black
1577 holes accelerating in de Sitter or anti–de Sitter
1578 universes—all in their usual coordinate forms.
1579 (vii) As shown in Sec. V, our convenient metric (47)–(51)
1580 considerably simplifies the study of physical and
1581 geometrical properties of this large family of black
1582 holes. First of all, the Weyl and Ricci curvature

1583tensors, expressed as the Newman-Penrose scalarsΨ2

1584and Φ11 [with respect to the natural tetrad (85)
1585adapted to the double-degenerate principal null di-
1586rections] can be evaluated, confirming the type D
1587algebraic structure of the gravitational field, aligned
1588with the non-null electromagnetic field (100)–(102).
1589(viii) Their form (86) and (87), together with the explicit
1590expressions (96) and (97) for the Kretschmann scalar
1591K≡ RabcdRabcd and theWeyl scalar C≡ CabcdCabcd,
1592clarifies the presence and the structure of the curvature
1593singularity. It is located at ρ2 ¼ 0, i.e., at r ¼ 0, but
1594only if also lþ a cos θ ¼ 0, which requires jlj ≤ jaj.
1595There is no curvature singularity in the black hole
1596spacetimes with large NUT parameter jlj > jaj ≥ 0.
1597(ix) Both the double-degenerate principal null directions
1598k and l given by (85) are geodetic, shear-free, and
1599expanding. They are twisting if and only if a ¼ 0 ¼ l.
1600(x) The generic black hole spacetime becomes asymp-
1601totically conformally flat at the conformal infinity
1602localized by the condition Ω ¼ 0.
1603(xi) In general, there are four distinct horizons identified
1604by the roots QðrhÞ ¼ 0 of the metric function
1605QðrÞ—which is explicitly given by (51)—a pair
1606of black hole horizons H�

b at r�b , and a pair of
1607cosmo-acceleration horizons H�

c at r�c . The posi-
1608tions of these four horizons are explicitly given by
1609expressions (140) and (141), respectively. Their
1610natural ordering is r−c < r−b < rþb < rþc .
1611(xii) Of course, there may be less then four horizons, and
1612they can be degenerate (corresponding to multiple
1613roots of QðrhÞ ¼ 0), as explicitly listed in Sec. V B.
1614(xiii) Whenever the Kerr-like rotation parameter a is
1615nonzero, each of these four horizons is accompanied
1616by the corresponding ergoregion; see Sec. V D
1617and Fig. 1.
1618(xiv) The ringlike curvature singularity at r ¼ 0 such that
1619cos θ ¼ −l=a (requiring a2 ≥ l2) is, for the black
1620hole solution, located in the stationary region IV
1621between the inner cosmo-acceleration horizon H−

c
1622and the inner black hole horizon H−

b (assuming the
1623natural ordering r−c < r−b < rþb < rþc ).
1624(xv) in Sec. V F we analyzed the global causal structure
1625of the generic family of black hole spacetimes (47)
1626by constructing the Kruskal–Szekeres-type coordi-
1627nates which enabled us to perform the maximal
1628analytic extension across all the horizons. It revealed
1629an infinite number of time-dependent regions (of
1630type I, III, V) and stationary regions (of type II, IV)
1631which are separated by the black hole and cosmo-
1632acceleration horizons H�

b and H�
c .

1633(xvi) This global structure is visualized in the Penrose
1634diagrams obtained by a suitable conformal
1635compactification, drawn in Fig. 2. The complete
1636manifold contains an infinite number of black holes
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1637 in various universes identified by distinct (future and
1638 past) conformal infinities I .1639
1640 (xvii) In Sec. V G we investigated the regularization of the
1641 two axes of axial symmetry θ ¼ 0 and θ ¼ π by an
1642 appropriate setting of the conicity parameter C in the
1643 range φ ∈ ½0; 2πCÞ. The first axis θ ¼ 0 is regular in
1644 the metric form (47) with the choice (181), while the
1645 second axis θ ¼ π is regular in the metric form (183)
1646 with the choice (187).1647
1648 (xviii) Both these choices lead to the existence of a cosmic
1649 string or a strut identified by the deficit or excess angle
1650 on the complementary axis, see the expressions for δ0
1651 and δπ in Sec. V H. Such topological defects are the
1652 physical source of acceleration of the black holes.
1653 (xix) Interestingly, both the axes of symmetry can be
1654 made regular simultaneously for the particular
1655 choice (190) of the physical parameters.
1656 (xx) In addition to such deficit/excess angles, the cosmic
1657 strings/struts are characterized by their rotation ω
1658 (angular velocity). In Sec. V I we demonstrated that
1659 their values are directly related to theNUTparameter l,
1660 see the expressions (192) and (194). There is always a
1661 constant difference Δω ¼ 4l between the angular
1662 velocities of the two rotating cosmic strings or struts.
1663 (xxi) In the vicinity of these rotating strings/struts there
1664 are pathological regions with closed timelike curves;
1665 see Sec. V J and Fig. 3.1666
1667 (xxii) Although the pathological regions with closed time-
1668 like curves are located in the same domains as the

1669ergoregions, they do not overlap with each other, see
1670the end of Sec. V J. 1671
1672(xxiii) The new metric form (47) is also convenient for
1673the investigation of thermodynamic quantities. In
1674Sec. V K we evaluated the area and the surface
1675gravity of the black hole and cosmo-acceleration
1676horizons, simply related to their entropy and
1677temperature.
1678All this demonstrates the usefulness of the new
1679improved metric of the complete family of type D
1680accelerating and rotating black holes with charges and
1681the NUT parameter in (anti–)de Sitter universe. Various
1682other investigations can now be performed. Among them
1683is a systematic analysis of the degenerate cases with
1684smaller number of horizons, and with multiple horizons.
1685Recently, such extremal isolated horizons have been
1686studied, for example in the works [16,17,36–40]. Also,
1687extension of the Plebański-Demiański solutions (includ-
1688ing a cosmological constant) to the framework of the
1689metric-affine gravity (MAG) theory was constructed
1690in [41]. It would be nice to see if the new and more
1691explicit metric (47)–(51) simplifies such investigations.
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Conclusions
In this thesis, we have studied exact black hole solutions of Einstein’s field equa-
tions that belong to the large Plebański–Demiański family of all type D spacetimes
with a cosmological constant and double aligned Maxwell field.

In the first part, I got acquainted the reader with my personal journey through-
out the study of theoretical physics. I formulated the problems I have been
working on, and briefly presented their current state of knowledge.

One particular section deserves to be mentioned explicitly, namely that con-
taining the relations between the Kretschmann scalar, the analogous Weyl scalar,
and the scalar invariant I. Direct computer algebra calculation of the Kretsch-
mann scalar is often very complicated, and we offer an approach how to retrieve
the expression using the NP quantities. We believe that this could be helpful
even for other unrelated problems.

The second part of this thesis contains the new original results.
In the first chapter, we analyzed a solution, originally found by Chng, Mann

and Stelea in 2006 [37], which describes an accelerating black hole with a twist pa-
rameter NUT. Finding such a solution was surprising since it was shown by Grif-
fiths and Podolský [38] that no such solution is included in the large Plebański–
Demiański family of type D black holes.

We proved that this solution is a vacuum solution of the Einstein field equa-
tions, that means that its Ricci tensor Rµν vanishes identically. This was verified
by two independent methods. We computed all the Weyl tensor components
in the null tetrad, and determined the algebraic type. It turned out that the
solution is of the general algebraic type I with four distinct principal null direc-
tions. This answered the main question, why this solution was not found in the
Plebański–Demiański class of type D solutions.

We then introduced a new metric representation of this spacetime described by
three physical parameters — the mass m, acceleration α, and NUT parameter l.
It enabled an easy transitions to the standard forms of C-metric or the Taub–NUT
metric, just by putting an appropriate physical parameter to zero.

Using this new convenient metric representation, we were able to compute and
analyze the main physical and geometrical properties, such as the location and
the nature of the Killing horizons, the curvature of the black hole, asymptotically
flat regions and the global structure of this metric. Furthermore, we analyzed the
axes which turned out to have the conicity, causing an acceleration of the black
hole, and also the twist, which is a clear contribution of the NUT parameter l.
Along these axes, pathological regions with closed timelike curves occur.

These results were published in Physical Review D in 2020 [44].
In the second chapter, we presented a new representation of the whole

Plebański–Demiański class of black holes without a cosmological constant, Λ = 0.
This metric further improves the convenient representation found by Griffiths and
Podolský in 2005.

This new form of the solution explicitly depends on 6 physical parameters,
namely the mass m, acceleration α, Kerr-like rotation a, NUT parameter l, and
on electric and magnetic charges e and g. The great advantage of this new metric
is that we obtain the well-known black holes just by setting the corresponding
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parameters to zero. These are, for example, (possibly accelerating) Kerr–Newman
black hole, (possibly charged) Taub–NUT solution, or (possibly rotating and
charged) C-metric. No (possibly charged) accelerating Taub–NUT exists in this
form of the general and large family, which further confirms our conclusions from
Chapter 1.

Very useful in the subsequent analysis of the solution proved to be the sim-
ple, explicit and factorized form of the key metric function P (θ) and Q(r). We
were thus able to easily localize the horizons, and study their properties such as
their degeneration. Moreover, it enabled us to investigate various physical and
geometrical phenomena, such as the character of the singularities, visualization
of the ergoregions, nature of the axes (their conicity, rotational behavior or the
pathological regions with closed timelike curves caused by the presence of the
parameter NUT). Additionally, we provided the Kruskalization and generated
the corresponding Penrose conformal diagrams. We also expressed the area and
the surface gravity of the black hole horizons and the acceleration horizons, from
which we were able to calculate the basic thermodynamic quantities.

In 2021, we published all these results in the exhaustive paper in Physical
Review D [45].

In the third chapter, we built on the results of paper [45], and we further gen-
eralized the new metric form of the Plebański–Demiański solution by admitting
any value of the cosmological constant, Λ ̸= 0. This was achieved by generalizing
the key metric functions P (θ) and Q(r).

Thus we derived a new representation of all black holes of algebraic type D,
determined by 7 physical parameters, namely the mass m, acceleration α, Kerr-
like rotation a, NUT parameter l, the electric and magnetic charges e and g, and
the cosmological constant Λ.

Our new metric form simplifies to the standard metrics of the well-known black
holes, namely to the Kerr–Newman–NUT–(anti-)de Sitter black hole (for α = 0),
accelerating Kerr–Newman–(anti-)de Sitter black hole (for l = 0), charged Taub–
NUT–(anti-) de Sitter black hole (for a = 0), accelerating Kerr–NUT–(anti-)de
Sitter black hole (for e = g = 0) and their analogies in asymptotically flat universe
(when Λ = 0), just by setting the appropriate physical parameters to zero.

Even for the Λ ̸= 0 case we explicitly proved that no accelerating Taub–NUT–
(anti-)de Sitter solution exists in this large class of spacetimes.

Using this convenient representation, we were able to analyze various physical
and geometrical properties of this class of black holes. We localized the horizons
and generally classified their multiplicity. We visualized the ergoregions, clarified
the character of singularities, and described the global structure, providing the
Penrose conformal diagrams. The nature of the cosmic strings or struts along
the axes θ = 0, or θ = π, respectively, was also elucidated. We calculated their
conicity, which causes the acceleration of the black holes, and we managed to
regularize it for a balanced values of the physical parameters. Both axes are
twisting, and are surrounded by a pathological regions caused by the presence of
the NUT parameter l. We also evaluated the main thermodynamic properties,
namely the entropy or the temperature of the horizons.

All these results have been recently summarized in a comprehensive publica-
tion New form of all black holes of type D with a cosmological constant, accepted
to Physical Review D [46] in March 2023.
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theorie, Preuss. Akad. Wiss. Sitz. 6 142–152 (1917)

[10] de Sitter, W.: Over de relativiteit der traagheid: Beschouingen naar aan-
leiding van Einstein’s hypothese, Koninklijke Akademie van Wetenschappen
te Amstedam 25 1268–1278 (1917a), Proc. Akad. Amsterdam 19 1217–1225
(1918)

[11] Einstein, A.: Die Grundlage der allgemeinen Relativitätstheorie, Ann. Phys.,
Leipzig, 49 769 (1916)

[12] Thorne, K.: Warping spacetime in The future of theoretical physics and cos-
mology: celebrating Stephen Hawking’s 60th birthday, Cambridge University
Press, Cambridge, page 74 (2003)

[13] Pais, A.: Subtle Is the Lord: The Science and the Life of Albert Einstein,
Oxford University Press., Oxford (1982)

[14] Cervantes-Cota, J. L., Galindo-Uribarri, S. and Smoot, G. F.: A Brief His-
tory of Gravitational Waves, Universe 2 22 (2016)

[15] Weber, J.: Gravitational radiation, Phys. Rev. Lett. 18 498–501 (1967)

[16] Weber, J.: Gravitational-wave-detector events, Phys. Rev. Lett. 20
1307–1308 (1968)

153



[17] Weber, J.: Evidence for discovery of gravitational radiation, Phys. Rev. Lett.
22 1320–1324 (1969)

[18] Taylor, J. H., Fowler, L. A. and McCulloch, P. M.: Overall measurements of
relativistic effects in the binary pulsar PSR 1913 + 16, Nature 277 437–440
(1979)

[19] Taylor, J. H. and Weisberg, J. M.: A New Test of General Relativity: Gravi-
tational Radiation and the Binary Pulsar PSR 1913+16, Astrophysical Jour-
nal 253 908–920 (1979)

[20] Caltech/MIT/LIGO Lab: Gravitational Waves, As Einstein Predicted,
Available online: https://www.ligo.caltech.edu/image/ligo20160211a,
ligo20160211a (2016)

[21] Taub, A. H.: Empty space-times admitting a three parameter group of mo-
tions, Ann. Math. (The Annals of Mathematics) 53 472–490 (1951)

[22] Newman, E., Tamburino, L. and Unti, T.: Empty-space generalization of the
Schwarzschild metric, Journal of Mathematical Physics 4 915–923 (1963)

[23] Ehlers, J. and Kundt, W.: Exact solutions of the gravitational field equations
in Gravitation: an introduction to current research, (ed. L. Witten), Wiley,
New York 49–101 (1962)

[24] Kinnersley, W. and Walker, M.: Uniformly accelerating charges mass in gen-
eral relativity, Phys. Rev. D 2 1359–1370 (1970)

[25] Hong, K. and Teo, E.: A new form of the C-metric, Class. Quant. Grav. 20
3269–3277 (2003)

[26] Hong, K. and Teo, E.: A new form of the rotating C-metric, Class. Quant.
Grav. 22 109–117 (2005)

[27] Kerr, R. P.: Gravitational Field of a Spinning Mass as an Example of Alge-
braically Special Metrics, Phys. Rev. Lett. 11 237–238 (1963)

[28] Debever, R.: On type D expanding solutions of Einstein–Maxwell equations,
Bull. Soc. Math. Belg. 23 360–376 (1971)
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Supervisor: prof. RNDr. Pavel Krtouš, Ph.D.
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