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Abstract: In this thesis, we study exact black hole spacetimes of algebraic type D,
which are a part of much wider Plebanski-Demianski class of solutions. We re-
formulate the well-known form of this metric and obtain new improved repre-
sentation of this black hole family with simplified, explicit and (at least par-
tially) factorized metric functions. This new form of the spacetimes allows us
to gain the standard expressions for the well-known solutions such as the Kerr—
Newman-NUT—(anti-)de Sitter black hole, accelerating Kerr-Newman—(anti-)de
Sitter black hole, (possibly charged) Taub—NUT—(anti-)de Sitter black hole, accel-
erating Kerr—-NUT—(anti-)de Sitter black hole, and their special cases in asymp-
totically flat universe, just by putting the appropriate parameters to zero. We
also provide a thorough physical and geometrical analysis of this new form of
spacetimes. Furthermore, we analyze a solution corresponding to the accelerat-
ing Taub—NUT black hole, which was originally found by Chng, Mann and Stelea
in 2006. We perform an in-depth analysis of this solution, and study its relation
to the Plebanski-Demianski class.

Keywords: exact spacetimes, accelerating Taub-NUT, Plebanski-Demianski met-
ric, type D black holes, algebraic classification
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Abstrakt: V préci studujeme presné prostorocasy predstavujici ¢erné diry alge-
braického typu D, které jsou soucasti mnohem obsahlejsi Plebanského—Demian-
ského ttidy Teseni. Preformulujeme znamy tvar této metriky, ¢imz ziskdme novou
vylepSenou reprezentaci této rodiny feseni se zjednodusenymi, explicitnimi a (ale-
spon ¢astecné) faktorizovanymi metrickymi funkcemi. Tento novy tvar pros-
torocasi nam umoznuje ziskat standardni vyrazy pro znama teseni, jako jsou
Kerrova-Newmanova-NUT—(anti-)de Sitterova ¢erna dira, zrychlujici Kerrova—
Newmanova—(anti-)de Sitterova ¢erna dira, (nabitd) Taub-NUT-(anti-)de Sit-
terova Cernd dira, urychlend Kerrova-NUT—(anti-)de Sitterova Cernd dira a je-
jich specidlni pripady v asymptoticky plochém vesmiru, a to pouhym dosazenim
prislusnych parametrii za nulu. Uvadime také dikladnou fyzikdlni a geometrickou
analyzu tohoto nového tvaru prostorocasti. Déle analyzujeme feseni odpovidajici
urychlené Taub-NUT ¢erné dite, které ptivodné nalezli Chng, Mann a Stelea v
roce 2006. Provadime diikladnou analyzu tohoto feseni a studujeme jeho vztah
k Plebanského-Demianského tridé.
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X

“Understanding is, after all, what
science is all about — and science
s a great deal more than mindless

computation.”

Roger Penrose
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Preface

This thesis starts with an Initial overview. Its chapters are labeled by Roman
numbers, and equations simply as “(chapter.number)”. This is followed by chap-
ters containing our New results, divided into 3 main parts. These are labeled by
the Arabic numbers, and are linked to the attached publications. The original
publications are denoted as P1, P2, and P3, respectively. The corresponding
sections and subsections are labeled accordingly to the labeling in the original
publications. Each equation, denoted by “(number)” only, refers to the related
publication.

Our work uses the convention of standard textbooks, namely FEzact Space-
Times in Einstein’s General Relativity by Jerry B. Griffiths and Jiti Podolsky
[1], and Ezact Solutions of Einstein’s Field Equations by Stephani et al. [2]. In
particular, the standard convention of geometrical units ¢ = G =1 is adopted,
and we employ the notation for expressing coordinate components of a general
tensor as T),; ", where the Greek letters span 0,1,2,3. The metric tensor g,
describing a spacetime is assumed to have the Lorentzian signature (—, +, 4, +).






Introduction

More than a century has passed since Albert Einstein introduced his general the-
ory of relativity (see the original paper [3]), ushering in a new era of physics. His
original approach brought a completely new perspective into the understanding
of the fundamental concepts such as space, time, and gravity. Since then, this
theory has proven itself in many different areas of physics and astronomy, and
has withstood many attempts to disprove it.

The general theory of relativity has explained a number of problems that re-
mained unresolved until then, namely the principal problems of a non-relativistic
(and therefore acausal) behavior of the classical Newtonian theory of gravitation,
or the anomalous perihelion advance of Mercury, which the general relativity
managed to explain without any arbitrary parameter [4].

Not only has the theory achieved to answer some of the open problems of that
time, but it also predicted a completely new and unexpected phenomena. Among
the many interesting predictions of general relativity, let us mention especially
the (nowadays famous) black holes, gravitational waves, or gravitational lensing.

All of these marvelous predictions emerged from the Finstein field equations,
the fundamental set of relations for gravitational field of general relativity, which
are expressed in a single elegant equation:

1
R, — §ng, +Agy =811, (EFE)

where g, is the spacetime metric, R, is the corresponding Ricci tensor, R is the
Ricci scalar, A is the cosmological constant, and 7}, is the energy-momentum
tensor of matter.

The first of these surprising predictions was the black hole solution. This
solution of describing, in a general case, any spherically symmetric and
static vacuum spacetime was presented by Karl Schwarzschild already in 1916: it
is the famous Schwarzschild metric [5].

Finding this solution so early was for Einstein actually quite surprising:

“I had not expected that one could formulate the exact solution of the
problem in such a simple way.”

This was his reaction, when he received from Schwarzschild this first non-trivial
exact solution, less than two months after Einstein’s presentation of to the
Prussian Academy of Science [6].

The gravitational waves were also predicted in the very same year. In June
1916, and two years later in 1918, Albert Einstein published two papers [7], 8]
in which he derived and studied the “ripples in spacetime” directly from his
(linearized) field equations.

General relativity soon has also found its value in cosmology. In 1917, Albert
Einstein published his paper of the static universe [9], immediately followed by
Willem de Sitter with his fundamental vacuum model with a positive cosmological
constant [10].

Nevertheless, what made Albert Einstein instantly famous was the prediction
of gravitational deflection of starlight passing near the massive objects [I1]. This
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was confirmed by expedition, led by the British astronomer Arthur Stanley Ed-
dington, which measured deviations in the position of stars near the Sun during
the total solar eclipse of May 29, 1919. Still, general relativity remained outside
the mainstream of theoretical physics and astrophysics until sometime between
1960 and 1975.

The “golden age of general relativity”, as Kip Thorne refers to this era [12],
was associated primarily with the general acceptance of phenomena such as the
black holes, big bang, their singularities, or gravitational waves — which until
then were considered merely as theoretical constructs. Actually, Albert Einstein
himself was very sceptical about the physical relevance of all these predictions
6], 13].

The first attempts to prove the
real existence of gravitational waves
were initiated after 1960 [14]. These
were the famous Weber bars, large alu- o HoGianordDats | meoce:
minum cylinders constructed by physi- |
cist Joseph Weber as resonant anten-
nae for gravitational waves of a spe-
cific wave length. However, although
his measurements claiming detections
have been published [15, [16, [17], it is
now generally accepted that these de-
tectors were not efficient enough to be (o [ 60 Hanford Data ifed
able to find such a small spacetime dis-
tortions directly.

Strain (10%")
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Z
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LIGO Livingston Data

The first (somewhat indirect) evi- ]
dence of their existence was measured Time (sec)
after 1974, discovering the first binary
pulsar PSR B1913+16 in the constel-
lation of Aquila. From the timing ob- Figure 1: The first detection of gravi-
servations over the subsequent decades tational waves observed by both LIGO
there has been a decay of the orbital detectors (Hanford and Livingston) and
period corresponding to the loss of en- their comparison. (Image Credit: Cal-
ergy and angular momentum, as it tech/MIT/LIGO Lab. [20])
was predicted by the general relativ-
ity [I8, 19]. For the first direct detection of the gravitational waves we had to
wait for the development of highly sensitive laser interferometers LIGO till 2015
(see Fig. [1)).

This era, starting after 1960, also brought a number of new exact solutions
of Einstein’s field equations, representing gravitational waves, inhomogeneous
cosmological models, and various black holes. Let us mention just the most
important black hole solutions of that time: the Taub-NUT metric (1951, 1963)
[21), 22] (an axially symmetric solution with a “specific twist”), the C-metric
(named in 1962) [23| 24], see also [25], 26] (an accelerating black hole), or the
famous Kerr metric (1963) [27] (a rotating black hole). The whole family of
solutions of algebraic type D containing all these black holes was later found by
Plebanski and Demianski (1971, 1976) [28, 29].

In recent years, we have witnessed several breakthrough observations, con-




firming general relativity. The first is the rapid development of the new scientific
discipline called gravitational-wave astronomy. In fact, the first detection of grav-
itational waves was achieved only 7 years ago [30] (see Fig. [l). Now we detect a
surprising number of gravitational wave sources in the LIGO and VIRGO detec-
tors. The black hole mergers are among the most significant phenomena.

MS87*

April 11, 2017

I 00000 ]
0 1 2 3 4 5 6
Brightness Temperature (10° K)

Figure 2: The first images of the su-
permassive black hole at the core of
the galaxy Messier 87 produced by the
Event Horizon Telescope collaboration.
(Image Credit: [33])

was made public in May 2022 [35].

In addition, the launch of the Eu-
ropean LISA satellites is planned in
the next decade. This should open
the gravitational-wave window to space
even further at different frequencies (see
for example [31], summarizing the cur-
rent topics to which LISA observa-
tions can make an essential contribu-
tion). This is also why the description
and study of the properties of various
black holes, albeit at a purely theoreti-
cal level, is still a very important topic
in Einstein’s theory of gravity and its
generalizations.

Another recent observational break-
through is the first-ever image of the
shadow of the supermassive black hole
in the center of the galaxy Messier
87 taken by the FEvent Horizon Tele-
scope collaboration in April, 2017. This
was analyzed and announced in 2019
[32, B3]. In March 2021, the col-
laboration team of EHT has revealed
a first polarized-based image of M87*
[34], and subsequently, also an image of
Sagittarius A* (the supermassive black
hole at the center of the Milky Way),

All these recent achievements indicate that we may be at the beginning of an
era that will bring us new and unexpected discoveries. This, of course, would
not be possible without a proper understanding of the physics behind all these
observations, which puts even more emphasis on the study of exact solutions of
Einstein’s theory. These are a main topic of this Doctoral Thesis.



Conception and contents of the Doctoral Thesis

This work focuses on exact four-dimensional black hole solutions with a high de-
gree of symmetry. More precisely, the entire thesis is (either directly or indirectly)
linked to the Plebanski-Demianski family of type D black hole solutions [28] 29].

Actually, it is the result of my long-lasting personal journey which I have
started already nine years ago. It began with a study of an article “Accelerating
Taub-NUT and Equchi-Hanson solitons in four dimensions” published by Brenda
Chng, Robert Mann and Cristian Stelea in 2006 [37]. In this paper, a brand new
solution, which seemed to represent an accelerating Taub—NUT solution, was
introduced. This was surprising, since there was no such a solution found in the
large Plebanski-Demianski class of black hole solutions [I], [38]-[40], although
the rotating accelerating Taub-NUT solution was included.

First, it was necessary to explicitly calculate all components of the Ricci tensor
to verify that the new solution is indeed a vacuum solution of the field equations.
However, this was difficult due to the complexity of the problem. Therefore,
we reformulated the metric into another form, more liable for our computations.
In fact, we developed two independent methods (algorithms) to compute the
Ricci tensor — one based on the direct computation, and the second utilizing the
relations of the curvature tensors of mutually conformal metrics.

From the Weyl tensor we then computed its Newman-Penrose scalars, and
using the scalar invariants I and J we have identified the general algebraic type
of this solution, with four distinct principal null directions.

These results were important. Not only we verified that this new metric is a
vacuum solution, but we also confirmed that it does not belong to the Plebanski—
Demianski family of type D solutions. It thus turned out to deviate from it.

Then, we introduced a new representation of this new metric in “spherical-
type” coordinates, which is more convenient for any physical analysis. Explicitly
depending on three physical parameters — namely the mass m, acceleration o
and the NUT parameter [ — this new representation makes possible to recover
the well-known spacetimes in the standard coordinates (that is the C-metric,
and the Taub-NUT metric in “spherical-like” coordinates) by switching off the
parameters [ and «, respectively.

Using this new convenient metric, we performed a thorough physical and geo-
metrical analysis of such accelerating NUT black hole. In particular, we localized
and study its four Killing horizons. Employing the scalar invariants, we investi-
gated the curvature. Interestingly, no curvature singularities occur while keeping
non-zero NUT parameter [. We provided a complete understanding of the global
structure by identifying the asymptotically flat regions and by relating them to
the conformal infinities.

We also proved that the solution can be analytically extended, so that it corre-
sponds to a pair of such black holes uniformly accelerating in opposite directions.
The source of this acceleration comes from the rotating cosmic strings (or struts)
located along the axes. The rotation is caused exclusively by the NUT parame-
ter [. Of course, similarly as in the Taub—NUT case without acceleration, there
occur a pathological regions with closed timelike curves in the vicinity of these
strings (or struts).

I addressed this topic already in my Bachelor Thesis [41], in which I verified
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the “vacuumness” of the original solution, computed the NP scalars, determined
the algebraic type of this spacetime, and outlined a new better representation of
this metric. I followed up on this work in my Diploma Thesis [42], reformulating
the key scalars and invariants in a new metric representation, verifying earlier
results, and providing the principal null directions. We carefully analyzed the
pathological regions and visualized their localization according to the concrete
values of the mass, acceleration and the NUT parameter. We also performed
some investigations of the non-accelerating Taub—NUT metric.

The outputs of the Diploma Thesis were presented as an article in the pro-
ceedings of Week of Doctoral Students organised by the Charles University [43].

My first two years of PhD studies focused, among other things, on completion
of open questions concerning this topic, and on writing them up (during the
COVID lockdown) in an exhaustive publication Accelerating NUT black holes
[44]. This article is summarized and attached in Chapter [1fof this thesis.

Another topic was outlined in my Diploma Thesis [42], namely the reinvesti-
gation of the whole Plebanski-Demianski metric. We started from the convenient
representation of this family found by Griffiths and Podolsky in 2005 [38]-[40],
and using a suitable redefinition of the physical parameters we managed to con-
siderably simplify and fully factorize the metric functions in the case of vanishing
cosmological constant A.

Our new metric depends on 6 physical parameters, namely the mass m, accel-
eration «, rotational parameter a, NUT parameter [, and electric and magnetic
charges e, g, whereby no other free parameter was left undetermined.

The main advantage of this new representation is that it is possible to simply
set an appropriate physical parameters to zero, thus obtaining the standard forms
of the simpler black hole solutions such as the Kerr—Newman-NUT black hole,
accelerating Kerr-Newman black hole, (possibly charged) Taub-NUT black hole,
or accelerating Kerr—NUT black hole, respectively. Extreme and hyperextreme
cases can also be discussed.

Moreover, it explicitly demonstrates that no accelerating Taub—NUT black
hole is included in this large family, which further confirms conclusions of our
previous work [44].

The new improved metric also enabled us to investigate various physical and
geometrical properties, such as the location and the nature of the horizons, or the
character of singularities. We also studied and visualized the ergoregions, and the
global structure of the solution including the Penrose conformal diagrams. We
analyzed the nature of the axes, namely their rotational character, conicity of
the cosmic strings or struts causing the acceleration of the black hole, and the
pathological behavior caused by the presence of the parameter NUT. Additionally,
we calculated the area and the surface gravity of the horizons from which we
provided basic thermodynamic quantities.

This was studied and published in a comprehensive publication New improved
form of black holes of type D [45] in 2021. The main results of this publication
are presented in Chapter [2|

However, this paper did not describe black holes in the (anti-)de Sitter back-
ground. Taking into the consideration a non-zero A causes multiple problems.
For example, it is not possible to fully factorize both key metric functions P(0)
and Q(r). Actually, this problem occurs already in the most simplest subcase
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of the Schwarzschild—de Sitter solution (see [1] for more details). Therefore, the
general analysis of the horizons is not as clear as in the A = 0 case.

Even though, we managed to simplify the metric functions, and to factorize
the function P(#). We introduced a new representation for a fully general black
hole of type D determined by the mass m, acceleration «, Kerr-like rotation a, the
NUT parameter [, the electric and magnetic charges e, g, and the cosmological
constant A, respectively.

This new metric reduces to the standard forms of the well-known black holes,
namely to the Kerr-Newman-NUT—(anti-)de Sitter black hole (o = 0), accel-
erating Kerr-Newman—(anti-)de Sitter black hole (I = 0), charged Taub-NUT-
(anti-)de Sitter black hole (a = 0), accelerating Kerr—-NUT—(anti-)de Sitter black
hole (e = g = 0) and their analogies in the flat universe (A = 0) just by switching
off the appropriate parameters. Even for A # 0 we explicitly observe that no
accelerating Taub-NUT—(anti-)de Sitter solution exists in this wide class.

We were able to fully analyze and explicitly evaluate physically and geomet-
rically relevant entities. We did localize all the horizons and classify generally
their multiplicity. We investigated the location of ergoregions, the character of
singularities, as well as the global structure including the Penrose conformal dia-
grams.

Moreover, we investigated the cosmic strings or struts along the axes of sym-
metry 6 = 0, or 6 = 7, respectively. Their conicity causing the acceleration of
the black hole was explicitly determined, and it can be regularized for a specific
combination of the parameters. Both axes are twisting, and one of them is encir-
cled by a pathological region with closed timelike curves caused by the presence
of the NUT parameter. Explicit thermodynamic properties, such as the entropy
or temperature of the horizons, were also evaluated.

We summarized and presented all these original results in the publication New
form of all black holes of type D with a cosmological constant [46]. This is the
basis of Chapter (3| of this Doctoral Thesis.

12



Initial overview
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I. Some basic tools

General relativity enables us to express physical variables for specific different
observers by using different coordinates and frames. In particular, we express the
key tensors in the most convenient “directions”. For that reason, we introduce
orthonormal frames (t,x,y,z) and null tetrads

k:%(t—i—z), l:%(t—z), m:%(x—iy), rh:%(x—l—iy).
This null tetrad is normalized as k-1 = —1 and m - m = 1. Its four vectors

can be transformed via the following relations:

k' =k, !'=1+Lm+Lm+LL]l, m"=m+ Lk,
K=k+Km+Km+KKI 1'=1, m' =m+ K1, (I.1)
k' = Bk, I'=B"1'1, m =e%m,

where K and L are any complex parameters, while B, ¢ are any real parameters.
Together these six transformations generate the whole Lorentz group.

1.1 Curvature

The fundamental geometrical object describing curvature of the spacetime is the
Riemann tensor R,,,,. Its contraction R, = RC“WV is the Ricci tensor. It
is usually expressed in the Newman—Penrose formalism. This means that the

components are projected to the appropriate null tetrad (k,1, m, m), namely

1 1

Pyy = iRWk:“k”, ®yy = iRWl“l”,
1 1

Dy = ERWkumu’ Py = §Ruvl“mu7 (L.2)
1 3} 1 , .

q)og == §Rﬂym“m i CI)H == iRm/ (k#l —m*m ) 5

where ®g;, Pgo, P15 are complex. The trace of the Ricci tensor R = R“M is the
Ricci scalar.

Remaining 10 independent components of the Riemann tensor form the Weyl
tensor defined by the expression

1
On)\;w - Rn/\uu - 5 (R)\,ugm/ + Rm/gku - R)xl/gnu - RH;AQAV)

+ (13 R (gH#gAV - gm/g)\#) : (13)

While the Ricci tensor is directly connected to the stress-energy tensor T,
of matter via the Einstein field equations , the Weyl tensor corresponds to
the curvature components representing a “free gravitational energy”. For vacuum
solutions the Riemann tensor is fully determined by the Weyl tensor, Cyy =

Rn)\,uu .
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All 10 independent components of the Weyl tensor are encoded in 5 complex
Newman—Penrose scalars ¥4 given by the expressions

Uy = Cuoauw kK"m km”
Uy = Cow K Nk m”
Uy = Cow k"m *m*1 (1.4)
Uy = Cow FEM" MY
Uy = Cow "M HmY.

The definitions and depend on the chosen null tetrad (k,1, m,m)
as there exists the freedom due to the Lorentz transformations .

I.2 Algebraic classification

A null vector k* is called the principal null direction if it satisfies the condition
i, Cy )\M[ng}k)‘k;“ = 0, which is equivalent to

\1[0:()’

see [47, 2].

The scalar ¥y can be expressed in a different null tetrad using the Lorentz
transformation ([.1)) by rotating the vector k while keeping 1 fixed. The null
rotation yields

W) =Wy — 4K Uy + 6K2 Wy — AK3 Wy + K0y = 0 (L5)

where K is the complex parameter from , see [I, 2]. In every event of the
spacetime there thus exist 4 principal null directions. Depending on their multi-
plicity we distinguish the algebraic type of the given metric.

More specifically, if k* is the double degenerate principal null direction, an
appropriate rotation achieving Wg = ¥U; = 0 can be found, and the spacetime is
of algebraic type II. If k* is a triple degenerate principal null direction, a trans-
formation for getting Wg = Wy = Uy = 0 exists, and the spacetime is of type III.
In the case of quadruply degenerate principal null direction k*, so called type N,
the tetrad can be found for which Vg = ¥, = Uy = U3 = 0.

Similarly, we can rotate the vector [* while having k* fixed. In that matter
we proceed “backwardly”, i.e. we are looking for such L from ([.1)) which could
satisfy that ¥, = 0. When the direction which is aligned with the null vector [* is
double aligned, we can found a transformation which satisfies that ¥, = W3 =0
ete.

Depending on the existence of two double degenerate directions (corresponding
to both k* and I*) we distinguish the type D (i.e. Wg=V; =0= V3 =V,). If
not, we have the type II.

The remaining two types are the general algebraic type [ with all distinct
PNDs, and a trivial conformally flat solution (type O) for which all NP scalars
are zero, ¥4 = 0, and for which does not make sense to define PNDs.

16



This algebraic classification is summarized in the following table:

Type Multiplicity WV, in an appropriate null tetrad

I 1111 W, = 0, other components are nonzero

II 211 Uy = WU, =0, other components are nonzero
D 22 Ug=U; =0=V3=",, Uy #0

III 31 Ug=U; =Uy =0, U3#£0

N 4 \1102\111:\1’2:‘11320,\114#0

O no PND Up=U; =V =U3=U,=0

There exists an invariant way, how to determine the algebraic type of any
solution. Originally, the algorithm was presented by d’Inverno and Russell-Clark
in 1971 [48], but we employ the notation from the textbook Stephani et al.,
2003 [2].

This approach to classification is based on the scalar invariants I, J, K, L, N,
defined using the NP scalars of the Weyl tensor explicitly as:

Vo Wy Uy
I= \110\1’4 —4 \:[11\1]3 + 3 \IJ% s J = \Ijl \1’2 \113 s (16)
Wy W3 Wy

KE\IJ1\DZ—3\IJ4\D3\PQ+2‘I/§, LE\I’QLIQL—‘I/%, N512L2—\DZI

Interestingly in vacuum, the real part of I is proportional to the Kretschmann
scalar. This relation will be extended in the next section.

The advantage of these scalar invariants is that they can easily be used to
determine the algebraic structure of a given metric. More precisely, only an
algebraically special spacetimes (all types except the trivial type O and a general
type I) comply the equation

I’ =27J%. (1.7)

Moreover, we distinguish whether the condition I = 0 = J holds. If it holds,
then we further need to investigate whether the equation K = 0 = N holds as
well. If yes, then the spacetime is of algebraic type II. If not the solution has the
type D structure.

If the condition I = 0 = J does not hold, then we further verify the condition
K = 0 = L. If this condition does not hold then the solution is of algebraic
type III, otherwise we have the type N metric.

All these possibilities with an appropriate structure of the NP scalars
are illustrated in the schematic diagram in Fig.|[[.1} For further details please see
Griffiths and Podolsky, 2009 [I], or Stephani et al., 2003 [2].
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LIJO' Lpli LIJZ! LIJBJ LIJ4

Type O
,QYES
gYes

No @
No I
NO NO

2y Yes @

Yo=W¥, =¥, =¥=¥,=0

A4

Yes

Type | Type ll Type D ||| Type Il

Y, =0, Yo=Y, =0, Y=, =0=V, =Y, Yo=YV =¥, =0,

W, %0 W, £ 0 W, %0 Y, # 0

Figure I.1: A schematic diagram of the algebraic classification of a general metric,
using the scalar invariants I, J, K, L and N computed from the NP scalars of the Weyl

tensor via the relations .

1.3 The scalar invariant I

There exist relations between the Newman—Penrose scalars WV 4, the Weyl scalar

C = Cabcd Cabcd
and the Kretschmann scalar

K = Rapeg R*.
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Let us assume a general Weyl tensor Cy;q and its components W4 with respect
to its null directions (k,1, m, m).
Now, by introducing a complex Weyl tensor

wbed = Cabed +1C04 5 (I.8)

where C7; ., is the right dual

wbed = ;Ecdef Cu” (L9)
we find out that
Oy CHaed = (O g CObed — O abed) | 9j gabed o~ (1.10)
and C7; Co~abed — O 5o that
v Crabed — o(Croabed 4 abed oy (1.11)

The complex Weyl tensor C7; , can be also expressed in the bivector base
Uw = —lomyp + lymg, Vo = Koy — kyma, Wa = memy — mymg — kuly + kyla,
constructed from the null tetrad, as

1
5 Cated = WoUaplUea + 13 (Uachd + WabUcd> (1.12)

L, (vabUcd b UVt + Wabwcd) W, (vabwcd + Wabvcd) U VoV,
see eq. (3.58) of [2].

Using the fact that all contractions vanish except U, V% = 2 and W, W =
—4, we obtain

g O = 32 (\110\1/4 — 40, Uy + 3\1/3) =321 . (I1.13)
From ([.11)) it follows that

Coapea O = 16 Re (1). (1.14)

For type D spacetimes, for which the only non-vanishing component of the Weyl
tensor is Wy, we simply get

C = CupegC™ = 48 Re (V2). (1.15)

1.4 Relation to the Kretschmann scalar

From the definition of the Weyl tensor (L.3)), we easily prove
1
C =K —2R,R® + 532 : (1.16)
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Splitting up the Ricci tensor Ry, into its trace-less tensor Sy, and the Ricci
scalar R, we get, in terms of the NP scalars &,

R = S+ iRQab
=2®glaly — 2P0 (lamp + Mals)
—2®¢; (lgmy + Maly) + 2Pga Mgy + 2Poamamy,
+2P1 (kolp + Lok + mamy + mamy) — 289 (kg + mgks)

= 1
—2<I)12 (kamb + makb) + 2@22 kakb + ZRgab . (117)
By contraction

_ _ _ 1
RapR™ = 8(Pog®Pay — 2P0 D1y — 2001 P1o + Poy®Ppy + 20%)) + ZR2 (I1.18)

(see also the equation (19) of [49]). With the expressions (I.14), and (I.16)), we
get

_ _ _ 1
K =16 Re (1) + 16(PooPas — 201 P1 — 2Pg1 P 1o + PpaPpy + 207,) + ERZ' (1.19)

Specially for the Plebanski—Demianski metric, which is of type D solution with
the only non-zero component of the Ricci tensor ®;; and the Ricci scalar equal
to 4A (see the following section, eq. (.16, we obtain

K =48 Re (V3) + 3202, + §A2 : (1.20)

This relation will be importing in the arguments contained in the following chap-
ters.
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II. Plebanski—Demianski class of
solutions

This Doctoral Thesis mainly concentrates on the Plebanski-Demianski family of
exact solutions — a general class of type D spacetimes with a double-aligned non-
null electromagnetic field and (possibly) non-zero cosmological constant. This
large class of solutions was originally found by Debever in 1971 [28] and later
reformulated in a more convenient form by Plebanski and Demianski in 1976
[29], namely

1 (s A A2
A= —— = OO s~ prasyr 4 TP g5
(Q—=pr)*| P +p Q)
j;) A A2 | A2
+3 (ng (d# + 72d6)? + fip dp*| , (IL.1)
P P(p)
with the metric functions
P(p)=k+2ap—ep? +2mp> — (k+ e+ 9>+ A/3)p*, (11.2)
Q) = (k+ &+ %) — 2mp + &7 — 20 — (h+ A/3) i (IL3)

This metric contains seven arbitrary real parameters m, n, €, g, €, /%, and A, of
which the first four are, according to Plebariski and Demianski [29], somehow con-
nected to the mass, NUT parameter, electric and magnetic charges, respectively,
while A is the cosmological constant. The meaning of ¢ and k was unclear.

I1.1 The Griffiths—Podolsky representation

Our study is based on another representation of this metric introduced by Griffiths
and Podolsky in 2005 [38]-[40]. We will briefly describe the coordinate and the
parametric transformation they have used.

First of all, we rescale the original coordinates and the parameters, see [I],

p=+vawp, T—\/> 6= ia, 7= g7', (IL.4)

a3 a

3/2 o
m+in= () (m+in), e+ig=—(e+1ig), €=

w w
where m, n, é, g, €, a, k, w, and A is a new set of arbitrary real parameters,
and two of them can be set for convenience. An appropriate choice of the twist
parameter w is a mainstay of our papers [49] [46], and will be discussed in chapters

2] and Bl

INote that in this thesis we use both A and A as cosmological constants. The different
labeling is only to emphasize that the solutions are related to the Einstein field equations
with different values of cosmological constant. This is caused by the conformal rescaling
of the metric d3®> — ds?, which also changes the Ricci tensor R,,, and the Ricci scalar R.
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The metric (II.1)—(II.3) transforms into

1 Q(r) r? 4+ wip?

d~2 — o dr — 2d 2 d2
’ (1 —apr)? g (AT TP Ao Q)
P(p) 2 2 TPHWP

——— (wd d —d I1.5

1wy (wdr +r*do)” + 5 (y) |, (IL5)

where
P(p) =k + 2w ip — ep® + 2amp® — [ (whk + & + §) + w?A/3] p*, (IL6)
Q(r) = (W*k + & + %) — 2ir + er’ — 2w 'ard — (@®k + A/3)rt.  (ILT7)

Let us also mention an interesting relation between these metric functions (see
the unnumbered equation on page 340 of [40]), namely

Q(r) = —0427"413(637”) - /;\ <WQ +7r ) (IL.8)

The most convenient null tetrad naturally adapted to the metric (II.1])—(LI.3)
is given by the vectors

lL—apr [ 1 9
k re0; —wo, ) —+/Q(r)0,|,
\/2(r2+w2p2) _\/Q(r) ( ) ) 1
l—apr [ 1 9
1 = r 0, —wo,) +1/Q(r)0,|, I1.9
\/2(7“2+w2p2) _\/Q(T) ( ) ( ) 1 ( )
1—apr [ 1 9 .
m = — wp” 0y + 0, i\/P(p)o,|.
NCTEEes) R s (wp? 0 +8,) +i4/P(p) ]

In terms of this null tetrad, the spin coefficients are given by

k=c=A=v=0, (IL.10)

1+1 2

+1(,Wp , (IL.11)
7"2—|—w2 r+iwp

o2

wolar (I1.12)
7"2+w2 ) r+iwp’

1 l—apr dap— (1 )Q/}
- — —apr

! 2r2+w2 r+1wp ap— P Q
1

\/2r2+wp

which indicates that the null congruences tangent to the vectors k* and [* are both
geodesic, shear-free but with non-zero expansion and possibly twist. Moreover,
the twist of each congruence is proportional to the parameter w, which gives us
a hint for fixing it.

Utilizing the null tetrad , the only non-zero component of the Weyl tensor
in the Newman—Penrose formalism equals to

3 3
. . [ 1—=apr o 1—apr\ 1+ apr

U= —(m+in) | —P) 4+ @@+ P WPT (1115)
T+ 1wp r+1iwp | r—1wp

(IL.13)

: : P
r+1wp +21ar+1(1 —apr) P} , (IL.14)
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confirming that the metric is of algebraic type D. The corresponding projection

of the Ricci tensor onto the null tetrad (I1.9)) simply yields

1 5 o (1—apr)?
@11:*(624—92)( p)

—_ A. 11.16
2 (r2 +w?p?)?’ ( )

ANPELR:

Both relations ([1.15]) and ([I1.16]) indicate the presence of the curvature singularity
atp=0=r.

I1.2 Black hole solutions of type D

The character of the spacetime ([1.5)) is determined by the metric functions Q(r)
and P(p). We focus the function P(p). It turns out to be appropriate to change
the coordinates by the following transformation

l [ +a)?
R U ) T (I1.17)
w w a a

where a and [ are new arbitrary parameters, later interpreted as the Kerr-like
rotation and the NUT parameter. With these changes, the metric ([1.5)—(IL.7)
becomes, see [1],

i — L0 a2 p)ae] + L ar
2 5/~ 2
P 4o PO) l 2 2 ]
+=—dp” + adt — (r" + (a+1)7)dp| |, I1.18
5t (r* + (a+)?) (IL.18)
where
Q= 1- 21 +ap)r, (11.19)
w
p* = P+ (l+ap)?, (11.20)
P(p) = ao+ap+ ap’ + asp’ + asp* (I1.21)
Q(r) (W48 + %) — 2mr + er® — 2aw™tnr® — (@®k + A/3)r*, (11.22)

and

1 13 a? A
ap = 2<w2k‘+ 27l — el® + 2a—m — [2(w2k‘ +&+3°) + ] l4> :
a w w 3

2 2 2 A
a) = (ﬁ—ez+3alm-2l0‘2(&k+52+g2)+3]l3>,
W

l 2
gy = —e+6ar~rz—6[a?(w2k+62+§2)+1 ?, (11.23)
w



Concentrating on the metric function 15(]3), the most physically relevant case
corresponds to the situation of at least two distinct roots. In such a case, we can
utilize the coordinate freedom to set these roots at p = +1, that is

P(p) = (1= p*)(ao — asp — as”) . (11.24)
Comparing ([1.21)) and (II.24]) we get two constraints, namely a; = —a3 and
as = —ag — ay, leading directly to the expressions for € and 7, namely
w2k I . ) e ., . A
e:a2_12+4a;m—(a +3Z)E(wk‘—l—e +g)+§ , (I1.25)
- w?kl (a* =1 2 oy @ e A
A= —g—p—a— m+ (a —l)lﬁ(wque —l—g)—f—g . (11.26)

Furthermore, in terms of these expressions involving the parameter ag ([1.23)) can
be reexpressed as

2 l l2 _
( “ —|—304212>k:ao+2awm—3a2uﬂ(é2+§2)—ZQA. (11.27)

a2 — |2

We have to impose a condition for positive value of the parameter aqy to
preserve that 15(]3) is positive for p € [—1,1]. Using the freedom, we can consider
only the

ap =1

case.

Using the natural substitution p = cos @, where 6 € [0, 7], we finally obtain a
class of solutions describing a general Plebanski—Demianski black holes of type D
in a simple form (c.f. eq. (16.18) of [1]):

ds? = 52 [ _ Qp(;) [dt - (a sin®6 + 41 sinQZ) dgo] 2 + Qp(i) dr?  (I1.28)
+ pp:e) d6? + Pp(f ) sin% {adt — (P4 (a+ 1) d(p} 2} ,
where
Q = 1- g(l +acosf)r, (I1.29)
p* = 1+ (l+acosh)?, (I1.30)
P(6) ( = sin?0 P(cos 0)) =1—azcosf —aycos’ 0, (I1.31)
Q(r) = (Wk+e>+7) —2mr+er?—2awtnr® — (a®k+A/3)r*. (11.32)

This metric simplifies the Plebanski—-Demianski solution to a very convenient
form, and presents a clear and direct generalization of the well-known metrics
(see the scheme on Fig. [II.1)). The only remaining problem is a rather complex
form of the explicit metric functions P(f) and Q(r), and the ambiguity of the
parameter w. In this work we have succeeded in solving these open problems,
and we offer a new useful reparametrization of this metric. More specifically, we
use the metric form ([1.28)), which is already in the most convenient form, and we
simplify the metric functions (11.31]), . We also conveniently fix the twist
parameter w. All this is done in Chapters [2] and [3]
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Plebanski—Demianski black hole solutions

a>1

Accelerating (charged)

and rotating black hole
with NUT

m,la a(e g

a<l

Accelerating (charged)
and NUT black hole
with rotation

m,la a(e g

a<l

Accelerating

(charged) and (Charged) (Charged)
t tg black Kerr solution NUT solution
rota Lngl ac with NUT with rotation
ole

mlace g

m,lace g)

/

ma, o(e g

'

(Charged) Kerr metric / (Charged)
C-metric Kerr-Newman Taub-NUT
m ae g Reissner—Nordstrom metric metric
metric maf(eg) m, (e g

m,e, g I

y

Schwarzschild metric

m

Minkowski metric

Figure II.1: Schematic diagram of a Plebanski—-Demianski class of type D black hole
solutions — in a flat universe background (A = 0), see [I, 40] for a similar
diagram. A general metric solution can be separated into two cases — when the Kerr-like
rotation parameter is bigger than the NUT parameter a > [, or when the NUT param-
eter exceeds the Kerr-like rotation parameter, [ > a. The diagram illustrates all rele-
vant transitions to simpler black hole solutions, including the C-metric, the Taub-NUT
metric, Reissner—Nordstrom metric, Kerr-Newman metric, or Schwarzschild metric and
Minkowski flat space, respectively. We can see that no (possibly charged) accelerat-
ing Taub—NUT is included, because setting a = 0 simplifies the metric directly to the
(possibly charged) Taub—NUT metric.
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II1. Deviating solution —
accelerating Taub—NUT black
holes

Now, we come to an important observation. Although the Plebanski-Demianski
metric ([1.28]) generally includes an accelerating and rotating Taub-NUT black
hole, its non-rotating version (a = 0) turns out not to be possible, see the Figure

L1} This can be seen from ([I.28)—(I1.32) by fixing the twist parameter as w =
-

a .
Firstly, we express the parameter k given by ([[I.27)) for such a fixed w, and
expand it in the powers of the Kerr-like rotation parameter a as

klycgr = —a?l (1= PA) + O(a?). (111.1)

Now we put this into the expressions ([1.25]), ([1.26]), for the parameters €, 7,
that is

€|y =1—22A + O(a), (111.2)
Al = (1 _ ;‘m) I +0(a). (TIL.3)

which simplifies the metric function Q(r) to

Q(r)| g1 =—1? (1 — M) + &4+ —2mr + (1 —212A)r% — gr‘* + O(a).

We also substitute these expansions into ([[1.23]) for the parameters as, as defining
the metric function P(0) via (I1.31]), and we obtain

asl,_,-1 = O(a) and ay,_, 1 = O(a?). (IIT.4)
If we now set a = 0, we obtain
Q=1 and PO) =1. (IIL.5)

The resulting solution can thus be expressed as

1
f(r)

2
43> = —f(r) <dt — 4l sinQZ dgp) + o dr? o (12 4+ 12) (d6? + sin®0 dg?)

where

1
r2 -+ [2

A
f(r) = [7’2—12—2ﬁ1r+é2+§72—A(3T4+2l2r2+l4>} )
This is the non-accelerating charged Taub-NUT black hole in the (anti-)de Sitter
background (see eq. (12.19) in [I] and [36]), therefore we do not expect any
solution describing the accelerating Taub—NUT in the Plebanski-Demianski class
of metrics.
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III.1 The Chng—Mann—Stelea solution

It was thus a surprise when such a solution was found in a work of Brenda
Chng, Robert Mann and Cristian Stelea in 2006 [37]. It was constructed via
the generating method which utilizes the SL(2, R) symmetry of the reduced
Lagrangian (for more details see the second section of [37]). This method has
been applied on the accelerating version of the Zippoy—Vorhees metric (on the
metric form presented by Teo in 2006 [50]). The metric generated by this method
was presented in the form

G W -DF) €% ldH 1 <(1 —29)F() | 2M”> dcpr (IIL6)

a*(z —y)* H(x,y) O\ o?(z—y)? o
H(z,y) AV F() da? dy?
A (R i+ G
where
F(z)=142aMz, (I11.7)
Fly)=14+2aMy, (I11.8)
H(z,y)= ; + g (W) : (I1L.9)

In the following Chapter (1] we will investigate this solution in full detail.
More specifically, we will prove that this solution solves the vaccum Einstein field
equation, and examine the algebraic type of this solution. This will clarify its
existence outside the Plebanski-Demianski class of solutions. A thorough physical
and geometrical analysis of this solution will then also be provided.
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1. Accelerating Taub—NUT black
holes

This chapter is based on the paper Accelerating NUT black holes [44] by Podolsky
and Vratny, published in 2020 in the journal Physical Review D 102, 084024.

1.1 Checking the vacuum equations

Finding a solution of an accelerating Taub—NUT black hole by Chng, Mann and
Stelea [37] was surprising, as it was unexpected. Therefore it was desirable to
prove conclusively whether it is truly a vacuum solution of the Einstein field
equations. And if so, to clarify its relation to the Plebanski-Demianski class of
type D solutions.

First of all, we reparametrized the metric ([IL6)—([IL.9) introduced by Chng,
Mann and Stelea, using 7 = 2) (a*C't — ¢) and ds? — ds? = 2ds?, where a new
real parameter \ = g was introduced. This approach yield a better representa-
tion for subsequent direct computations, namely

s WP-1DFW) . x1—2xy+y2 ’
ds* = o2z — )2 H (1) [d + 22X F( )—<$_y)2 dgp] (1.1)
H(x,y) V() du? da? dy?
(- ) [“ FE T T * - 1>F<y>1 ’
where

(y> = 1)*F*(y)

H(z,y) =1+ )\ ,

(1.2)

and F(&) =14 2aM¢.

For computing all the components of the Ricci tensor we developed a com-
puter algebra method optimized for any stationary, axially symmetric solution
— final equations of this method are presented in [Appendix Al eq. [(A11)l In-
deed, using this direct method the computations were lasting via MATHEMATICA
on a standard PC just around 40 seconds, and resulted in all zero components.
Therefore, we could confidently say that the metric (L.1)—(L.2) (or (IIL6)—(IL.9),
respectively) is indeed a vacuum solution of Einstein’s field equations.

In addition, we developed an equivalent and independent method utilizing
the well known relations between the curvature tensors of conformally related
metrics. This alternative approach (described in the was applied on
the metric §,;, = Q2 gap, where Q2 = o? (1—2?)F(x) (v*— 1) F(y) (x—y)'° H(z, y),
verifying that all the Ricci components are identically zero. The second method
took just around 15 seconds.

1.2 Algebraic type of the spacetime

Next, it was necessary to understand the relation between this accelerating Taub—
NUT metric and the Plebanski-Demianski family, which seems not to involve such
a solution (see Chapter [[II]).
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To this end, we had to determine the algebraic structure of the new solution.
Adopting a natural null tetrad

k:—1< Lot a)
\/§ vV 0t ' vV Yyy v)

_ 1( P 3>

V2\V=g " aw )
_ it Jto 5 _ 1

m—\/i< Dag,—i— 0 m@c);

with D = g1 9,4, — gfw, we were able to compute the NP scalars U4 of the Weyl
tensor. These were simplified to the following factorized form:

(1.3)

Wy =Wy=—3a’X(1—2*)F(z) (y* — 1)F(y) Z(z,y)

Uy = U3 =—30°Ai/(1—22)F(z) /(2 = DF(y) S(x,9) E(z,y),  (14)

U, = [az)\ H(z,y) +ia*M(x —y)°| Z(z,y),
where
E(z,y)= .i(x o) 3
[(ac —y)? =iy -1+ QOzMy)}
S(z,y) =2y — 1 —aMz (1 - 3y*) — aMy (1 +57), (1.5)

(z,y) =25z, y) - [(1 = 2)F(z) — aM(z - y)*| (y* = ) F(y).

Following the procedure summarized in Sec. (especially the scheme on
Fig. [[.1)), we computed the scalar invariants I and J and verified that the
condition I* = 27J? does not hold. This clearly means that the metric is of
a general algebraic type I, and therefore cannot be included in the wide Plebariski—
Demianski class of type D solutions.

1.2.1 The principal null directions

Using the NP scalars (1.4])—(1.5) we were able to transform the null tetrad (1.3])
via the Lorentz transformations (I.1}),

E=k+Km+Km+KKI, =1, m=m+KIL, (1.6)

and compute explicitly the four distinct principal null directions. These corre-
spond to the null vector k' obtained by (1.6) with the following four complex
coefficients:

hip K3, — 4 20y 403 — 20, (30, — ) )
7 S

i = 9 ) K12

Thus, we answered both main questions concerning this new interesting solu-
tion.
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1.3 A new convenient form of the metric

Although the metric f was useful for the hard computations, it was no
more suitable for geometrical analysis and the physical interpretation than the
original metric form f.
Therefore, we applied a specific set of transformations on the metric f
(L11.9), namely
1 Ty —T_

— _cosf — - = t
v cosvh Y a(r—r_)’ 220C

(1.8)

and we introduced the NUT parameter [ and a new real mass parameter m via
the relations

l=—ry, m=vVM?—-12. (1.9)

Specific combinations of the mass parameter m and the NUT parameter [ can be
conveniently defined as

ry=m+vm?+ 12,
ro=m—vm?+102. (1.10)

Finally, we rescaled the metric as ds? = rf%r_ ds?, and we got a very conve-
nient form of the metric:

1 2
ds? = o | 732 <dt — 2[((:089 — aTsin@)dgp)
2 d92
+7; dr? + R? (P + Psin’f dcp2>} , (1.11)

where the metric functions are

Qr,0)=1—a(r—r_)cosb,
PO)=1-«
(

(ry —r_)cosf,

Q(r)= (r — 74) (r — h) (1 —a(r— 7’,)) (1 + or — TL)), (1.12)
T(r, H)ZW’

1—a2(r—r )2
R (r, 6):7&1[2 (ri(r —r 2P (r—1ry)? [1[ ( (_ ) ) }9}4)

This new metric form is described by spherical-like coordinates, and is more
suitable for investigation of geometric properties or physical interpretation. It
explicitly depends on 3 free parameters — the mass m, the NUT parameter [, and
the acceleration parameter «.

Clearly, the biggest advantage of our new metric is that we can easily recover
the well-known forms of the special metrics just by setting the parameters « or [
to zero.
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These are:

e Taub—NUT metric (o = 0):

d 2
ds*=—f (dt — 21 cosﬁdg@)2 + ; + (r? + 1%)(d6* + sin*0 de?),  (1.13)

where

_r2—2mr—12

f= 7% et (1.14)
e C-metric (I =0):
ds? = = aicos@)Q [— Qdt* + dé; +r? <d£2 + Psin29d¢2>] , (1.15)
where
P=1-2amcos#,
_ 7%”:(1—2:1>(1—m)(1+m). (1.16)

Both of these metrics (1.13)—(1.14}), or (1.15)—(1.16)), respectively, are the

standard forms of the well known black holes (see [I] for more details).

1.4 Physical analysis of the new metric

Then, we could take the full advantage of the new metric form f and
perform a thorough physical and geometrical analysis (see Sec. [P1.VI])).

The positions of the black hole and acceleration horizons Hi and H", respec-
tively, located at Q(r) = 0, were straightforward to find:

H r=rf =r. >0,

H, : r=r, =r_<0,

H: r=rf=r_+at, (1.17)
H, : r=r, =r_—a ',

where ry take the form (1.10)).
From (|1.17)), it is obvious that for a sufficiently small (positive) acceleration,
namely for

1
0<o< ———u (1.18)

2vm? + 2’
the ordering of its four horizons remains in the following natural order:

ro<r, <0<rl<rl. (1.19)
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1.4.1 Curvature, algebraic structure, and regularity

In Sec. [P1.VIL.B| we also rewrote the Newman—Penrose scalars W, ((1.4)—(1.5)) in
terms of the new metric form ((1.11)—(1.12)). Adopting the natural null tetrad

1 R v4o)
(ré) _
k _759 (@ 8t+—R 8r>,

1 R Ve
(r6) _ _
19— —_ (\/_ 0, ar>, (1.20)

1 Q
r0)

:ﬁR\/ﬁsiHH

we computed the components of the Weyl tensor as

&

m(

(aﬁzz(cose— o Tsin®) 0, —iPsinH(?@) ,
Ui =90 = 31021 PQ(r —r_)sin?0 X,
v = 0{® =301vPQsindS X, (1.21)
. [—u\/mQMMW/(r—r) X,
where the functions X, S, W read
2+ P)r =)
[r+(7“ —r_)2Q2 —il Qr) ,
S(r,0) = (1 —a?(r — 7"_)2>(7“ —ry)
_ {(r —r) VM B (1 - a¥(r - r_)Q)}Q, (1.22)
W(r,0) =25+ (1—a*(r—r)*)(r —rs) x
{\/m 0 — a®(r — r_)*Psin? 9] :

X(r,0) =

Computation of these scalars took a larger amount of time then for the scalars
U 4 from the previous metric ((1.4]). However, since we used the generalized met-
ric (1.11)) and chose an appropriate null tetrad ((1.20)), a standard form of the

Newman-Penrose scalars of the Taub-NUT metric \Ifge) = — (;"J:‘l§3 and the ac-
celerating C-metric \Ilére) = —% (1 — arcosf)® could be easily obtained.

Using this new representation of the NP scalars ¥ 4, we investigated the alge-
braic type and regularity of the horizons and axes as well. These were thoroughly
discussed in Sec. [PT.VL.B] Among that, we explicitly expressed the relation
I? — 27J% (see and the scheme on Fig. , namely

2
I? —27J)° = Z [<T+\/m2 +120° —1l [W/(T —7r_)—a*PQ(r —r_)sin® GD
—16 a*I*PQsin* 0 52] D?X?, (1.23)

where D is defined as

D =403 — 20,30, — W) = —18a’ I vVm2 + 2 PQ sin® 0’ X?Y . (1.24)
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Clearly, the relation (1.23)) is zero if the parameter D ([1.24]) vanishes. This
holds for either &« = 0 or [ = 0. Moreover, there occurs also a specific combination,
namely

W =a’PQ(r —r_)*sin’0 and r,vVm2+12Q°==+4alvV/PQsinfS, (1.25)

which generates a specific hypersurface of a special algebraic type. Following the
scheme on Fig. [[.I, we were able to assign this hypersurface the algebraic type II

or type N (see the discussion in Sec. [P1.VI.C|).
Furthermore, studying the scalars W, ((1.21)), we could easily determine the

location of the curvature singularity. That should occur only when the parameter
X (1.22) diverges. More specifically, the parameter X diverges when

ro(r—r_)2Q*—ilQ=0. (1.26)
Both the real and imaginary parts must be zero. The only possibility is
=0 and at the same time r=r_=0. (1.27)

This result corresponds to the standard C-metric [1].
We also verified these results by an explicit computation (c.f. eq. of Sec.
P1.VI.C)) and by the visualisations of the Kretschmann scalar (see and

Fiz 3

1.4.2 Conformal infinity and the global structure

Interestingly, all the components of Wy, factorized out the parameter X
. In fact, the limit X — 0 corresponds to asymptotically flat regions, and
we can identify them with a conformal infinity Z=. A similar deduction can be
found also for the NP scalars and the function =.

More specifically, the conformal infinity Z is localized at

rT=y for the metric (1.1)),
T:r=r_+ — for the metric (1.11)) and 6 # 7, (1.28)

acosf

+o0 for the metric (1.11)) and 6 = 7 .

Notice again, that both relations correspond to €(r, 8) = 0.

Using these results, the global structure of the whole spacetime could be
derived. This was visualized on of an attached article, and is repeated
here in Fig. (1.1}

For the metric form 7, we fixed the coordinates ¢, ¢, and plotted
the diagram for a general couple (z,y). It corresponds to the coordinates (r,#)
via the relation (|1.8). The coordinate 6 covers just a part of the coordinate x,
namely x € [—1,1]. This section is shaded in the diagram, and describes the
black hole part of the solution.

A new representation f allows us to understand the global struc-
ture. We can notice that the distinct limit values of y = +o0 correspond to a
single value of r, namely to the inner horizon at r_. These parts can thus be glued
together, yielding a new view on the global structure (see the right diagram of
Fig. [1.1)).
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Figure 1.1: The complete global structure of accelerating NUT black holes. These
sections are represented by mutually equivalent pair of coordinates =,y and 6,r. The
black hole spacetime is localized in the shaded region = € [—1,1] between the two ro-
tating cosmic strings. The spacetime is separated by four Killing horizons at special
values of y or . Namely, these are the two black-hole horizons 7-[2:, which are located
at v, =1r_, r;r =r4, and the two acceleration horizons Hai present at r} =r_ + éj
r, =Tr_ — é The lines » = 0 and r = Foo (indicated by horizontal dashed lines) are
only the coordinate singularities. Conformal infinity Z, where the spacetime is asymp-
totically flat (see eq. ), is located along the diagonal line x = y. For more detail,

see of an attached article.

Let us also mention that we were able to analytically extend the solution
through the acceleration horizons using the boost-rotation metric . Similar
approach was already employed earlier for the C-metric (see [51, 52, [53]).

This reveals that there exists actually a pair of such black holes which are
causally separated and accelerating in opposite directions. For more details, see

Sec. PL.VLDI

1.4.3 Character of the axes

Another part of our paper contains investigation of the nature of the axes # = 0
and § = 7w. Actually, in addition to the mass m, acceleration a or the NUT
parameter [, there is also the fourth free parameter C' hidden in the range of the
coordinate ¢ € [0,27C'). This parameter determines the magnitude of the deficit
(or excess) angle around the individual axes which causes the acceleration of the
black hole (for the C-metric this phenomena is discussed in detail in [1]). By an
appropriate fixing of C', we can regularize this topological pathology for one of
the axes.

Of course, there is also the NUT pathology around the axes, a similar as
in the classic Taub-NUT solution. This can be regularized by the coordinate
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transformation
t=ty+ 2p, (1.29)

removing this pathology from the § = 0 axis. The deficit angle then vanishes for

an appropriate choice
1

1—2avm2+12
With the choice ((1.30)), the second axis # = 7 remains with an ezcess angle
8ravm? + [2
_SmevmiEl g, (1.31)
1 —2avm? + [?

which we interpret as a strut causing the acceleration of this solution.
Analogously, we can perform the coordinate transformation

C=Cy= (1.30)

Op =

t=t.—2lp, (1.32)

and subsequently set the parameter C' to

1
14+ 2avm2+12

This choice would regularize the § = 7 axis, however it would introduce a deficit
angle around the # = 0 axis

C=C,= (1.33)

2 l2
5y — Sravm I (1.34)

It 2avmE 2
This would correspond to the string pulling the black hole. For more information
about computing the deficit or excess angles see [I], or our attached article.
These strings/struts are twisting. This can be observed from the function
w = %7 evaluated on the axes # = 0 or § = 7. This twisting parameter can be

adjusted using the coordinate transformations ([1.29)) or (1.32). Nevertheless, its
difference remains a constant Aw = 4.

1.4.4 Pathological regions

The last interesting phenomena which we investigated are the pathological regions
around the axes caused by the presence of the NUT parameter [. Indeed, with
a non-zero [, it can be seen from metric that there occur areas where the
metric coefficient is negative,

Jop < 0. (1.35)

Because it determines the negative norm of the Killing vector 0., it shows the
existence of regions where the closed timelike curves occur.

For the metric ((1.11)), these pathologies lie in the range such that
RYP(1 — cos®f) < 41*°Q (cos@ —aT(1— cos*d) )2 : (1.36)

The condition ((1.36)) is not explicitly solvable, and thus it needs to be visual-
ized by computer. This was made in of an attached article, and is recalled
also here in Fig. [1.2]
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Figure 1.2: Plot of the metric function g,, and the pathological regions along
the axes 6 =0 and =7 in the quasi-polar coordinates x = /72 + (2 sin ¥,
y = Vr2+12 cosf. The visualization shows the value of g,, for r > 0 (left figure)
and for r < 0 (right figure). Moreover, horizons r4, 7 and the conformal infinities are

visualized. For more detail, see the of an attached

The pathological regions modify when the coordinate transformations ((1.29))
or ([1.32) is provided. This situation is illustrated on |Fig 6| of [Paper 1}

1.5 Summary

In this chapter, we have described our studies of a new interesting class of space-
times representing accelerating black holes with a NUT parameter. Now, we
summarize the most important observations. In particular:

« By developing two independent methods, we verified that the metric ([11.6])—
(IT1.9) found by Chng, Mann and Stelea in 2006 is indeed an exact vacuum
solution to the Einstein’s field equations.

o Using the metric form (1.1]), we computed all the components W, of the
Weyl tensor with respect to the null tetrad (1.3)).

e From these, we calculated the corresponding curvature scalar invariants I
and J (L.6). Since generically I? # 27 J?, the solution is of algebraically

general type I with four distinct PNDs (given by egs. (1.6)—(L.7))).

e This confirms the previous observations about the deviation of this solu-
tion from the wide Plebanski-Demianski class of type D spacetimes (see

Chapter .

e In Sec. we have summarized the derivation of a new metric form (|1.11])
of the accelerating Taub-NUT in “spherical-type” coordinates, explicitly
depending on three physical parameters, namely the mass m, the accelera-
tion «, and the NUT parameter [.
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o By setting these physical parameters to zero, we recover the well-known
black holes in standard coordinates, namely the C-metric when [ = 0, the
Taub—NUT metric when o = 0, the Schwarzschild metric, and flat Minkow-
ski space.

o Using the new metric ((1.11]), we provided an indepth physical and geomet-
rical analysis of this new solution. In Sec.[T.4] we have summarized the main
results, namely:

« We localized the horizons H;* and HF at the roots of the metric function
Q(r) (1.17), and determined the condition (1.18) for their most natural
ordering r;, <1, <0< <rt.

o We analyzed the curvature of this solution. More precisely, adopting the
naturally chosen null tetrad ([1.20)), we calculated all the ¥ 4 components of

the Weyl tensor in terms of these new coordinates ((1.21))—(|1.22]).

» There may be special hypersurfaces of a special algebraic type, however the
overall spacetime is of a general algebraic type I.

o From the NP scalars we localized the curvature singularity at » = 0 while
necessarily [ = 0. It means, that the purely accelerating Taub-NUT s
non-singular.

o We identified the asymptotically flat regions which correspond to the confor-
mal infinities T+ given by Q = 0. This lead us to a complete understanding
of the global structure of this black hole, summarized in Fig. [1.1]

« We were able to analytically extend the solution across the acceleration
horizons, which revealed that there actually exists a pair of such (causally
separated) NUT black holes uniformly accelerating in opposite directions.

o A geometrical analysis of the axes of axial symmetry at 6 =0 and 0 =7
revealed that the physical source of the acceleration of this solution lies in
their topological defects.

o We were able to fully regularize these defects along one of the axes of sym-
metry by a suitable choice of the conicity factor C'.

o These cosmic strings/struts located along the axes of symmetry are twisting
when [ # 0. This phenomena characterizes their twist parameter w, which
is directly related to the NUT parameter [. There is always a constant
difference Aw = 4l between the twist parameter of each axis, and disappears
only for a vanishing NUT parameter [ = 0.

o Similarly to the case of non-accelerating Taub—NUT metric, pathological
regions with closed timelike curves occur. These areas are visualized in

Fig[L.2

The accelerating Taub-NUT metric is an interesting solution deviating from
the Plebanski-Demianski class of type D black holes. We hope that the new
explicit form (1.11))—(1.12)) will help further investigations in the field of the black
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hole thermodynamics, quantum gravity, or high-energy physics (for example by
extending the recent studies [54], 55]).

Furthermore, the case m = 0 was not explicitly studied, yet a black hole that
is twisting and accelerating, even though massless, could be an interesting topic
for further investigation. It can be easily computed that such a NUT twisting
string would be of a general algebraic type I (see equation ([1.23))). We thank
Ibrahim Seniz for pointing this out to us.

A great success would be to find any generalization to this accelerating Taub—
NUT solution, e.g. to charge the black hole (e # 0 # g), add the rotational
parameter (a # 0), or study such black holes in (anti-)de Sitter background
(A # 0). This task is however tricky due to the complexity of the metric functions

R? or of T in (1.12).
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We present and analyze a class of exact spacetimes which describe accelerating black holes with a
Newman-Unti-Tamburino (NUT) parameter. First, by two independent methods we verify that the intricate
metric found by Chng, Mann, and Stelea in 2006 indeed solves Einstein’s vacuum field equations of
general relativity. We explicitly calculate all components of the Weyl tensor and determine its algebraic
structure. As it turns out, it is actually of algebraically general type I with four distinct principal null
directions. It explains why this class of solutions has not been (and could not be) found within the large
Plebanski-Demianski family of type D spacetimes. Then we transform the solution into a much more
convenient metric form which explicitly depends on three physical parameters: mass m, acceleration a, and
the NUT parameter /. These parameters can independently be set to zero, recovering thus the well-known
spacetimes in standard coordinates, namely the C-metric, the Taub—NUT metric, the Schwarzschild metric,
and flat Minkowski space in spherical coordinates. Using this new metric, we investigate main physical and
geometrical properties of such accelerating NUT black holes. In particular, we localize and study four
Killing horizons (two black-hole plus two acceleration horizons) and carefully investigate the curvature.
Employing the scalar invariants we prove that there are no curvature singularities whenever the NUT
parameter is nonzero. We identify asymptotically flat regions and relate them to conformal infinities. This
leads to a complete understanding of the global structure of the spacetimes: each accelerating NUT black
hole is a “throat” which connects “our universe” with a “parallel universe.” Moreover, the analytic
extension of the boost-rotation metric form reveals that there is a pair of such black holes (with four
asymptotically flat regions). They uniformly accelerate in opposite directions due to the action of rotating
cosmic strings or struts located along the corresponding two axes. Rotation of these sources is directly
related to the NUT parameter. In their vicinity there are pathological regions with closed timelike curves.

DOI: 10.1103/PhysRevD.102.084024

I. INTRODUCTION

Exact solutions of Einstein’s general relativity play an
important role in understanding strong gravity. Among the
first and most fundamental such spacetimes, which were
found, investigated and understood, were black holes. They
exhibit many key features of the relativistic concept of
gravity with surprising applications in modern astrophys-
ics. It is now clear that rotating black holes reside in the
hearts of almost all galaxies, and that binary black hole
systems in the last stage of their evolution are the strongest
sources of gravitational waves in our Universe.

In 1976, Plebanski and Demianski [1] presented a nice
form of a complete class of exact spacetimes of algebraic
type D (including a double aligned non-null electromag-
netic field and any cosmological constant), first obtained by
Debever [2] in 1971. This class involves various black
holes, possibly charged, rotating and accelerating. In
particular, this large family of solutions contains the

“podolsky @mbox.troja.mff.cuni.cz
‘Vratny.adam @seznam.cz

2470-0010/2020,/102(8),/084024(27)

084024-1
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well-known Schwarzschild (1915), Reissner—Nordstrom
(1916-1918), Schwarzschild—de Sitter (1918), Kerr
(1963), Taub—NUT (1963) or Kerr—-Newman (1965) black
holes, and also the C-metric (1918, 1962) which was
physically interpreted by Kinnersley—Walker (1970) as
uniformly accelerating pair of black holes.

Unfortunately, these interesting types of black holes—
and their combinations—had to be obtained from the
general Plebanski-Demianski metric by special limiting
procedures (degenerate transformations), see Sec. 21.1.2 of
the classic compendium [3] for more details. Moreover, it
was traditionally believed that the constant coefficients of
the two related Plebaniski—-Demianski quartic metric func-
tions directly encode the physical parameters of the
spacetimes.

In 2003, Hong and Teo [4,5] came with a simple but very
important idea of employing the coordinate freedom
to rewrite the C-metric in a new form such that its two
quartic (cubic in the uncharged case) metric functions
are factorized to simple roots. This novel approach enor-
mously simplified the associated calculations and—more
importantly—the physical analysis of the C-metric because

© 2020 American Physical Society
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the roots themselves localize the axes of symmetry and
position of horizons.

Inspired by these works of Hong and Teo, with Jerry
Griffiths we applied their novel idea to the complete family
of Plebanski—Demianski spacetimes [1]. This “new look”
enabled us to derive an alternative form of this family of
type D black hole solutions, convenient for physical and
geometrical interpretation, see [6—8] and Ch. 16 of [9] for
summarizing review. This form of the metric reads

1 Q . .50 2 ¢
ds? = —{ = |dr— 20 + 4lsin® = )d a2
s 2{ 2{ (asm + 4lsin ) qo} + r

2
0 P .
+ Fdez +?sm20[adl‘ - (r2 + (a + l)z)d(/}]z},

(1)

where P = 1 —ascos0 —a,cos’0, Q = (w’k +e* + ¢%) -
2mr+ er* = 2anw™'r? — (Pk+1A)r4, Q=1-a(l+
acos@)w™'r, 0> = r*+ (I+acos®)?, and as,ay, e n,k
are uniquely determined constants. The free parameters of
the solutions have a direct physical meaning, namely the
mass m, electric and magnetic charges e and g, Kerr-like
rotation a, Newman-Unti-Tamburino (NUT)-like param-
eter /, acceleration a, and the cosmological constant A. All
the particular subclasses of the Plebaniski—-Demianski black
holes can be easily obtained from (1) by simply setting
these physical parameters to zero.

At first sight, it would seem possible to obtain an
exact vacuum solution for accelerating black holes with
a NUT parameter simply by keeping @, m, [ and setting
a=e¢=g=A=0. However, in [6] we explicitly dem-
onstrated that in such a special case the constant a is a
redundant parameter which can be removed by a specific
coordinate transformation. In other words, the case a, m, [
is just the “static” black hole with a NUT parameter /. Thus
we argued convincingly in [6] that the solution which
would combine the Taub—NUT metric with the C-metric is
not included in the Plebafski-Demianski family of black
holes, despite the fact that a more general solution which
describes accelerating and rotating black holes with NUT
parameter is included in it (indeed, in the metric (1) it is
possible to keep a, a, I, m all nonvanishing). This led us in
2005 to a “private conjecture” that the genuine accelerating
Taub-NUT metric (without the Kerr-like rotation a) need
not exist at all.

Quite surprisingly, such a solution was found next year
in 2006 by Chng, Mann, and Stelea [10] by applying a
sequence of several mathematical generating techniques. It
was presented in the following form'

'We have only replaced the acceleration parameter A by @, and
the mass parameter m by M, and the constant C by c.

(P =DF(y) ¢%
o?(x—y)* H(x,y)

o (i)

ds? = -

H(x,y) — VF(x)de?
a*(x—y)? {(1 e
dx? dy?
+ (1=x)F(x) * O - l)F(y)}’ >
where
F(x) =1+ 2aMx, (3)
F(y) = 1+ 2aMy, 4
2 _ 2

i =343 () O

see Eq. (35) in [10]. This metric explicitly contains four
parameters, namely M, a, ¢, and 6. The authors of [10]
argued that the parameter ¢ is related to the NUT parameter
in the limiting case when the acceleration vanishes. And,
complementarily, when this parameter is set to zero, the
C-metric can be obtained. It is thus natural to interpret
the metric (2)—(5) as an exact spacetime with uniformly
accelerating black hole and a specific twist described by the
NUT parameter. This very interesting suggestion surely
deserves a deeper analysis. To our knowledge, during the
last 15 years this has not yet been done, and it is the main
purpose of this paper.

First, in Sec. II we will remove the redundant parameter
¢, simplifying the original metric of [10] to the form in
which the twist can be set to zero (leading to the standard
C-metric). Using it, in subsequent Sec. III we will confirm
that the metric (2)—(5) is indeed a vacuum solution of
Einstein’s field equations (we will do this by two inde-
pendent methods, based on the general results summarized
in Appendices A and B). In Sec. IV we will calculate the
NP scalars W, in a suitable null frame and determine the
algebraic type of the Weyl tensor. Since it will turn out to
be algebraically general with four distinct principal null
directions, it cannot belong to the class of type D
Plebanski-Demianski spacetimes (1). Then, in Sec. V
we will present a new metric form of the solution which
is much better suited for a geometrical and physical
interpretation of this class of black holes. When its three
parameters /, @, and m are set to zero, standard form of
the C-metric, the Taub-NUT metric, the Schwarzschild
metric and eventually Minkowski space are directly
obtained. Specific properties of this family of accelerating
NUT black holes are investigated in Sec. VI. In particular,
we study horizons, curvature singularities, asymptotically
flat regions, global structure of these spacetimes, and
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specific nonregularity of the two axes of symmetry, cor-
responding to rotating cosmic strings or struts (surrounded
by regions with closed timelike curves) which are the
physical source of acceleration of the pair of black holes.

II. REMOVING THE DEGENERACY
AND INITIAL COMMENTS

We immediately observe that the original metric (2)
does not admit setting ¢ =0 and 6 =0. The metric
degenerates and its investigation is thus complicated. In
fact, the constant ¢ is redundant. To solve these problems,
we found convenient to perform a transformation of the
time coordinate

7 =21(a’cT— @), (6)
where the new real parameter A > 0 is defined as
V6
A=—. 7
- @)

Rescaling trivially the metric (2) by a constant conformal
factor, d5> — ds? = 2d5?, we obtain a better representation
of the solution

o OP=DFG) [, ol 2wy
= Ay () {d TR e
+ 7;&)‘_’%2 {(1 - ) F(x)dg?
dx? dy?
TR s 1)F(y>}’ ®)

where the function H = 2H takes the form

(O —1)’F(y)
(x=y)* 7

and F(x) =14 2aMx, F(y) = 1+ 2aMy are the linear
functions (3) and (4), respectively. Without loss of general-
ity, we may assume a > 0.

It is now possible to set A = 0, in which case H = 1, and
the new metric reduces to a diagonal line element

H(x,y) =1+ 2 9)

ds? = m —(* = DF(y)de® + (1 — x*)F(x)d¢?
n dx? 4 dy?
(1=x)F(x) (= DFQy)]

This is the usual form of the C-metric, see e.g. Eqgs. (14.3),
(14.4) in [9] with the identification G(x) = (1 — x*)F(x),
y— —y and m =M. In such a special case, the metric
represents a spacetime with pair of Schwarzschild-like
black holes of mass M >0 and uniform acceleration a
caused by cosmic strings or struts.

(10)

2

The full metric (8) with a generic 1 is clearly a one-
parameter generalization of this C-metric. Additional off-
diagonal metric component dzdg also occurs, indicating
that the parameter A is related to an inherent twist/rotation
effect in the spacetime. It will be explicitly demonstrated in
Sec. V that this parameter is directly proportional to the
genuine NUT parameter /.

Preliminary physical interpretation of (8) can now also
be done using similar arguments as those for the C-metric,
as summarized in Ch. 14 of [9]. In particular, we can
comment on the character of coordinate singularities. In
order to keep the correct metric signature of (8) and obtain
the usual black-hole interpretation of the spacetime, it is
necessary to require (1 — x2)F(x) > 0. In view of the roots,
this restricts the range of the spatial coordinate to x €
[-1,1] and puts the constraint 0 < 2aM < 1. The coor-
dinate singularities at x = +1 are the two poles (axes).
On the other hand, the admitted zeros of the function
(y? — 1)F(y) represent the horizons, and F(y) can be both
positive and negative. More arguments on this will be given
in Sec. VI, where it will also be demonstrated that the
singularity of the metric (8) at x =y corresponds to
asymptotically flat conformal infinity T.

III. CHECKING THE VACUUM EQUATIONS

Next, it is desirable to verify that the metric (8) with (3),
(4), (9) is an exact solution of vacuum Einstein’s field
equations.

With trivial identification 7 =1, this metric clearly
belongs to the generic class of stationary axially symmetric
metrics

ds? = g,dr? + 2g,,dtdg + g,,,dg? + g, dx* + g,,dy?,
(11)

in which all the functions are independent of the temporal
coordinate ¢ and angular coordinate ¢. Indeed, the explicit
metric coefficients of the spacetime (8) are

(O = DF(y)

I T R (=) H(xy)
o, 0P = DF)F(x)(1 = 2xy +%)
G S T Sy
o 0P = DF)F(x)(1 = 2xy +°)?
for = T 2 H )
H(x,y)(1 = x*)F(x)
I P
e — H(x,y)
@A)
H(x,y)

P PO - D) "
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Interestingly, the subdeterminant

D= gttgwp - g?zp < 07 (13)
turns out to be very simple, namely
1-x)F(x)(y* - 1)F
p_ _U=SFWE-DFG)

at(x —y)*

Using the expressions (11)—(14), we need to evaluate the
Riemann and Ricci curvature tensors. Unfortunately, stan-
dard computer algebra systems did not provide us the
results (even after several hours of calculation on a standard
desktop PC) when we attempted to perform a direct
calculation starting from (12). Therefore, we had to employ
a more sophisticated approach. Actually, we developed rwo
independent methods.

A. Method A

It turned out much more convenient first to analytically
derive explicit expressions for the Christoffel symbols and
subsequently the corresponding components of the curva-
ture tensors of the generic stationary axisymmetric metric
(11). These results are summarized in Appendix A.

Moreover, instead of using standard textbook definitions
of the Riemann and Ricci tensors, we employed their
alternative (and equivalent) versions (A8), (A10). The main
advantage of this approach is that the second derivatives of
the metric are all involved explicitly in the simplest possible
way. It is not necessary to differentiate the Christoffel
symbols which also contain the inverse metric and thus
their first derivatives unnecessarily complicate the evalu-
ation of the curvature.

In the second step, we then substituted the explicit metric
functions (12), (14) into the general expressions (A5), (A9),
and (All). With a usual PC, such a symbolic-algebra
computational process using MATHEMATICA lasted only
around 40 seconds. The result of this computation con-
firmed that all the Ricci tensor components (A11) are zero.
The metric (8) is thus indeed a vacuum solution in
Einstein’s gravity theory.

B. Method B

To verify this result (and fasten the computation), we
also employed an alternative method based on the “con-
formal trick.” Its main idea is that, by multiplying the
physical metric (8) by a suitable conformal factor Q, the
metric components of the related unphysical metric become
polynomial expressions. Their differentiation and combi-
nation, which are necessary to evaluate the curvature
tensors, are performed much faster. Specifically, we intro-
duced an unphysical metric g, via the conformal relation

(15)

gnb = ngab?

where

Q= (1 = ?)F(x)(y* = 1)F(y)(x — y)°H(x,y),  (16)

and

H(x.y)= (x —y)*H(x.y) = (x = y)* + 2(* = 1)’ F*(y).
(17)

The metric functions §,, are then only polynomials of
x and y,

g = —(1 =x)F(x)(y* = 1)*F?(y) (x — y)®,
Gip = —22(1 = )P (x)(y* = 1)’ F*(y)
x (1 =2xy +y*)(x =),
oy = =422 (1 =) (x) (> = 1)*F2(y)
x (1 =2xy +y°)(x = y)*
+ (1= PF(x)(y* = DF(y)H?(xy),

o = (P = DFOH(x,y).

By, = (1 =2 F()H(x. ). (18)
Using the expressions summarized in Appendix A, we first
computed the Christoffel symbols I'*,, and the Ricci tensor
components R, for this conformal metric §,, (it also has
the stationary axisymmetric form (11), only the tilde
symbol is added everywhere). Then we employed the
expressions (B4)-(B6) derived in Appendix B to calculate
the Ricci tensor components R, of the physical metric g,
which is (12). The computer algebra manipulation using
MATHEMATICA again verified that R, = 0, confirming that
the metric is a vacuum solution of Einstein’s equations. In
fact, the conformal Method B is faster than Method A: the
computation took only 15 seconds.

IV. DETERMINING THE ALGEBRAIC
TYPE OF THE SPACETIME

It is now necessary to determine the algebraic type of the
spacetime which is given by the algebraic structure of the
Weyl tensor. The standard procedure is to evaluate all its ten
components [3,9]

\PO = Cabcdk”mbk”md,
W, = Cupegk®Pkfm?,
W, = Cpegk®mPmcld,
Wy = Copeal®kP16me,

W, = Copeal®mPleimd,

(19)

in properly normalized null tetrad {k,1,m,m}. We adopt
the most natural tetrad for the metric (11) in the coordinates
(#,¢,x,y), namely

084024-4

46



Paper 1, Phys. Rev. D 102, 084024 (2020)

Accelerating NUT black holes

ACCELERATING NUT BLACK HOLES

PHYS. REV. D 102, 084024 (2020)

1 1 1
k=— P +—av>,

\/i <\/ —9u ! V9

1 1 1
l=—(—0,——9, |,

\/i (\/ —9n ! \/gyy )

1 it g i )
m=—=\|4/=0,+ 0y ———0, |, 20

\/i( D~ vDg ! Gxx 20)

with D given by (13). All the scalar products vanish,
except for

—

k-1=-1,

S

(1)

For vacuum solutions, the Ricci tensor and Ricci scalar
vanish. The Weyl tensor is thus identical to the Riemann
curvature tensor, and in expressions (19) we can replace
Cpea bY Rypeq- In view of the vanishing components of the
null tetrad vectors (20) and the vanishing components of the
Riemann tensor (A9) of the metric (11), summarized in
Appendix A, the following formulas for the Weyl scalars
can be derived

2
WYy = }1 { D:}” (% Riyiy =219 R1ypy + g[fR(l’}'(/’y) - %R"lmﬂ
1 /1 1
+— (—Rmx - —Rmyﬂ
Gxx \Iu Yyy
T s
2|\/~Dy,, 5 Y ) T G gy
221{ ! (gi‘”R,, = 2GRy + GuR ) + 1R
4| Dgyy \gy o tp vy T Julovey | T 5 Rt
()
Gxx \YGn Yyy
_%%D\/g—i—g\—v (%Rmy + Ry = Rtwy) ’
V=Y,
v, =Y, (22)

Notice that, interestingly, the long expressions for ¥, and
W, are very similar. In fact, they only differ in signs of
three terms.

Now, by substituting the explicit components (12) of the
metric and the corresponding Riemann tensor (A9) into
(22), the computer algebra system MAPLE rendered the
following Weyl scalars:

Wy = W, = 3021 — 2)F(x)(5® - DF(y) E(x.y).

¥, =¥, = —3a2iy/(1 - x)F(0)y/ (6%~ DF()
x Z(x,y) B(x,y).
¥, = [o?210(x. y) +ia’M(x = y)’] E(x. y), (23)
where the functions =, X, and II are defined as
o (H=9VH-T1+i(4-3H)
S L
(x,y) = xy — L —aMx(1 = 3y?) — aMy(1 + y?),
(x,y) = 22 (x,y) = [(1 = *)F(x) = aM(x = y)?]
x (Y2 = 1)F(y), (24)

with H = H(x, y) given by (9), and F(x), F(y) by (3), (4).
Surprisingly, the key function E(x, y) which factorizes all
the Weyl scalars can be written in an explicit and compact
form as

i(x—y)*
[(x = y)* = 2i(y* = 1)(1 + 2aMy)]*

[

(25)

From these curvature scalars, we then computed the
scalar invariants I and J, defined as

Y, ¥, ¥,
I=Y,¥, — 49, W, + 393, J=|¥, ¥, ¥;|, (26)
lez \P3 \P4

and using MAPLE we verified that the equality I° = 27.J°
does not hold. This means (see [3,9]) that the metric (8) is
algebraically general, that is of type 1.

Consequently, the accelerating NUT metric (8) cannot
be included in the Plebariski—-Demiariski family because
this is of algebraic type D.

Of course, this conclusion is only valid when A # 0.
In the case of vanishing A, implying H =1 and thus
E=i/(x—y)? the only nontrivial Weyl scalar remains
W, = —Ma3(x — y)3. Such spacetime is of algebraic type
D, with double degenerate principal null directions k and /.
In fact, it is the C-metric (10) which belongs to the
Plebanski—-Demianski class.

Deeper analysis of the algebraic structure will be
presented in Secs. VIB and VIC.

A. The principal null directions

Actually, it is possible to determine four principal null
directions (PNDs) of the Weyl tensor, and to prove
explicitly that they are all distinct.

As usual [3,9], we employ the dependence of the Weyl
scalars (19) on the choice of the null tetrad, namely their
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transformation properties under a null rotation which keeps
[ fixed,
K =k + Km + Km + KKI,

I'=1, m=m+KI,

27)

where K is a complex parameter. The component ¥, then
transforms to

V) =¥, + 4K, + 6K>¥, + 4K3P; + K*P,. (28)
The condition for k' to be a principal null direction is
W¥,' = 0, which is equivalent

¥, 4+ 4KY, + 6K>W, + 4K, + K*¥, =0.  (29)

Since this is a quartic expression in K, there are exactly
four complex roots K; (i = 1, 2, 3, 4) to this equation. Each
K; corresponds via (27) to the principal null direction k.

In the case of the metric (8), the Weyl scalars with respect
to the null tetrad (20) are (23). Due to the special property
¥, =Y, and ¥Y; = ¥,, the key algebraic equation (29)
simplifies to

¥, <K2 +%) +4Y, <K + %) +6%¥, =0, (30)

(K must be nonvanishing in (29) because ¥, # 0). It is
convenient to introduce a new parameter

1

=K+— 1
K + X (31)
so that (30) reduces to the quadratic equation in «,
Wok? +4¥ k + 2(3%, — ¥;) = 0, (32)
with two solutions
2%, £ /497 - 2¥,(3¥, — ¥,
Kir = 1 \/ 1 0(3%, 0). (33)

o

Finally, we find the roots K; by solving (31), that is the
quadratic equation K* — kK + 1 = 0:

K> —4
_— 34
- (34)
where k¥ = k; and k = k,. Indeed, we have thus obtained
four explicit complex roots K; corresponding to four
distinct PNDs k/, which can be expressed using (27).

V. A NEW CONVENIENT FORM OF THE METRIC

The metric (2) can be put in an alternative form which is
suitable for its physical interpretation, in particular for

determining the meaning of its three free parameters. This
is achieved by performing the coordinate transformation

1 r,—r
= —cosé, . — f=—t =

* o8 Y a(r—r_) 2alc

(35)
We introduce the NUT parameter | as
o
lElr+:i2—r+, (36)
a

using the definition (7), and a new real mass parameter m
via the relation

m=\M* -1

Specific combinations of m and [ can conveniently be
defined and denoted as

re=mA4+Vm? + P,
=m—-vVm*+ B,

(37)

r (38)

so that r, is always positive while r_ is always negative.
Actually, it will soon be seen that these constants describe
the location of two Taub-NUT horizons. From these

definitions, important identities immediately follow,
namely
ry +r_=2m,
ry—r_=2 m*+12=2M >0,
ror. = -2,
r(re—r)=r2+1 (39)
The original metric (2) with (3)—(5) then becomes
1 —r.)? F
ds? = — _7(r+ zr,) (1-a?(r—r_)% )
Q 2ry H(x,y)
— r_)*F(x)sin’0 2
x (ar =21 cos g — TV E OO 4
(ry —ro)Q
1
+ 7 (r—r_)2H(x,y)
« dr?
Fy)(r=ro*(1=a*(r—r_)%)
+ ao° + F(x)sin’0dg? (40)
Rl X )
F(x) v

where Q =1 — a(r — r_) cos 0. Of course, the metric func-
tions F(x), F(y), and H(x,y) = 2H, given by (3), (4), and
(9), respectively, must be expressed in terms of the new
coordinates r and 6. It is useful to relabel them as
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F(x) > P(@)=1—a(r, —r_)cosé,
F(y) = F(r) ===,
2 (”_"+)2

H(wy) = HO0) = 14 5 s

[ —a?(r—r_)*?

[1—a(r—r_)cos]*

(41)

Notice that H is always positive. Finally, it is natural to
introduce two new functions replacing F(r) and H(r,6),
namely

Qr)=F(r)(r—r_ (1 —a*(r—r_)%).
R2(r,0) =—*— (r — r_)H(r,0),

& (42)

rL—7_

and to perform a trivial rescaling of the whole metric by a
constant conformal factor as

2r,

ds? = ds>. (43)

r.—
Thus, the exact solution found in [10] simplifies consid-
erably to a new convenient form of the metric

L]0 :
ds* = o | %2 dt — 2l(cos @ — aT sin’0)dg
de?
+ & dr* +R? <— + Psinzgdq)z)} , (44)
Q P
where

Q(r,0)=1—-a(r—r_)cos0,
P@)=1-a(r, —r_)cosé,

Q)= (r=r)(r=ro)(I=a(r—r_))(1 +a(r-r.)),
Loy rmrr
7(r,0)= TR
R*(r,0 =7 +lz( r—r_)?+P(r—r,)?
[1—a?(r—r_)*?

) (45)

This new metric form can be used for investigation of
geometric properties of the spacetime and for its physical
interpretation. It explicitly contains 3 free parameters,
namely m, [ and a [the first two uniquely determining
the constants r, and r_ via the relations (38)]. They can
independently be set to any value. In particular, it is
possible to set them to zero, thus immediately obtaining
important special subclasses of the spacetime metric (44).
This is the main advantage of (44) if compared to the
original form (2) in which, in particular, it is not possible to

[1—a(r—r_)cosO*

set @ =0, and also the NUT parameter is not explicitly
identified.

Let us now investigate the spacetime, based on the new
form of its metric (44), (45).

A. The case [=0: The C-metric
(accelerating black holes)

For [ = 0 the constants (38) become

(46)

Q(r,0) =1—-arcosé,
P(6) =1 —2amcos0,
o(r) =r(r=2m)(1 —ar)(1 + ar),
R3(r,0) = 12 (47)

The metric (44) thus simplifies to a diagonal line element

1
ds?=——
y (1 —arcosf)?
2 2
X {—lez + % +r? (g + Psinzﬁd(pz)} ,  (48)
where

P=1-2amcos0,
2
QE%: (1—Tm)(l—ar)(1+ar)- (49)

This is exactly the C-metric expressed in spherical-type
coordinates, see Eqgs. (14.6) and (14.7) in [9]. As has been
thoroughly described in Ch. 14 of [9], this metric represents
the spacetime with a pair of Schwarzschild-like black holes
of mass m which uniformly accelerate due to the tension of
cosmic strings (or struts) located along the half-axes of
symmetry at € =0 and/or € = z. Their acceleration is
determined by the parameter a. This gives the physical
interpretation to the two constant parameters of the solution.

B. The case a=0: The Taub—NUT metric
(twisting black holes)
Complementarily, it is possible to directly set @ = 0 in
the metric (44). In such a case the functions (45), using the
identities (39), reduce to simple quadratics

Q(r,0) =1,
PO) =1,
Qr) = (r=ri)(r=ro)=r*=2mr-1,
R (r,0) =1 + I (50)
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The metric (44) remains nondiagonal, but has a compact
explicit form

5 . ) dr?
ds? = —f(dt — 2l cos dg) +7

+ (P2 + 2)(d6? + sin® 6dg?), (51)
where
Q rP-2mr-1P_2
=— = 52
! R? P+ (52)

It is exactly the standard Taub-NUT metric, see Eqs. (12.1)
and (12.2) in [9]. As summarized in Ch. 12 of [9], this
metric is interpreted as a spacetime with black hole of mass
m and NUT twist parameter l. There are horizons located at
r=r, and r = r_, but there is no curvature singularity at
r = 0. Whenever the NUT parameter [ is nonvanishing,
there is an internal twist in the geometry, related to spinning
cosmic strings located along the axes # = 0 and/or 6 = 7.
In the vicinity of these “torsion singularities” there appear
closed timelike curves.

C. The case a=0 and /=0: Schwarzschild black hole

By simultaneously setting both the acceleration a and the
NUT parameter [ to zero, we immediately obtain the
standard spherically symmetric metric

2 2m\ -1
ds? = —(1 ——m)dt2+ (1 ——m> ar
r r

+ r2(d6? + sin’0dg?).
As is well known (see, e.g., Ch. 8 of [9]), it represents the
spherically symmetric Schwarzschild black hole of mass m
in asymptotically flat space. There is no acceleration and no
twist, the axes are regular (there are no cosmic strings,
struts, or torsion singularities).

(53)

D. The case a=0 and /=0 and m=0:
Minkowski flat space

By setting a =0=m in (48), (49) which implies
P =1=0, or by setting / =0 =m in (51), (52) which
implies f = 1, or by setting m = 0 in (53), we obtain

ds? = —df® +dr? + r2(d@* + sin? 0de?).  (54)
This is obviously the flat metric in spherical coordinates
(Eq. (3.2) in [9]).

Since all such subcases are directly obtained as special
cases, it is indeed natural to interpret the general metric
(44), (45) as a three-parameter family of exact spacetimes
with uniformly accelerating black holes with the twist NUT
parameter.

The structure of the new family of spacetimes which
represent accelerating NUT black holes is shown in Fig. 1.
Previously known spacetimes are obtained in their classic

type I

accelerating
NUT black holes

(
‘y

type D

type D
1) @
l

5)

type D

Schwarzschild

53)

'

flat,

(54)

44)

0=1

o=

0

3

FIG. 1. Schematic structure of the complete family of accel-
erating black holes with a NUT parameter. This 3-parameter class
of vacuum solutions to Einstein’s field equations is of general
algebraic type I, reducing to double degenerate type D whenever
the acceleration a or the NUT parameter / (or both) vanish. By
setting any of the three independent parameters a, I, m to zero, the
well-known classes (namely the NUT solution, the C-metric,
Schwarzschild black hole and Minkowski flat space) are obtained
directly in their usual forms, whose equation numbers are also
indicated in the diagram.

form by simply setting the acceleration a, the NUT
parameter /, or the mass m to zero. With these settings,
algebraically general solution of Einstein’s vacuum equa-
tions reduces to type D.

VI. PHYSICAL INTERPRETATION OF
THE NEW METRIC FORM

A. Position of the horizons

The metric (44) is very convenient for investigation of
horizons. In these coordinates, 0, is one of the Killing vectors
(the second is Blp). Its norm is —Q/ (QR)Z, so that 7 is a
temporal coordinate in the regions where Q(r) > 0, whileitis
a spatial coordinate in the regions where Q(r) < 0. These
regions are separated by the Killing horizons localized at
Q(r) = 0. The form of the metric function Q is given by (45),
which is clearly a quartic factorized into four roots. There are
thus four Killing horizons, located at

H;r: r:r;Er+>0,
H,:r=r,=r_<0,
Hi:r=ri=r_+a,
Ho:r=r,=r_—al, (55)
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(see Fig. 4) where r,. are defined by (38). Recall also (39), that
is r, —r_=2Vm? + > > 0 (unless m = 0 = [, in which
casery, =0=r_).

The horizons H;,H; at r},ry; are two black-hole
horizons. Interestingly, they are located at the same values
r,, r_ of the radial coordinate r as the two horizons in the
standard (nonaccelerating) Taub—NUT metric, see (50).

The horizons Hj,H, at r},r; are two acceleration
horizons. Their presence is the consequence of the fact that
the black hole accelerates whenever the parameter a is
nonzero. They generalize the acceleration horizons
+a~!, —a™! present in the C-metric, see (49).

These pairs of roots are clearly ordered as r} > rj, and
ri > r, (naturally assuming that the acceleration param-
eter « is positive). Their mutual relations, however, depend
on the specific values of the three physical parameters m, [,
a. Concentrating on the physically most plausible case
when the acceleration is small, the value of a~! is very
large, and rj becomes bigger than rj. This condition
ry > rj explicitly reads

1
2Vmr+ 2

For such a small acceleration of the black hole, the ordering
of its four horizons is

a<

(56)

rg<r, <0<rj<rf. (57)

The first two horizons ‘H; and Hj (acceleration and
black-hole, respectively) are in the region r < 0, while the
remaining two horizons H; and Hj (black-hole and
acceleration, respectively) are in the region r > 0. Such
a situation can be naturally understood as the Taub-NUT
spacetime with usual two “inner” black hole horizons H;‘f,
which are here surrounded by two additional “outer”
acceleration horizons HE (one in the region r > 0 and
the second in the region r < 0).

Evaluating Q(r), generally given by (45), at r =0 we
obtain using (39)

Qr=0)=ror_(1-a?r2) = -P(1-a*r%). (58)
From the condition (56) and (38) it follows that
2m? P4 2mvm? + 2
TP I e el L R S
4(m* + I?)
so that Q(r=0)<0. It implies Q<0 for any

r € (ry. r) ). We conclude that the coordinate ¢ is temporal
in the regions (r},rf) and (ry,ry), that is between the
black-hole and acceleration horizons, while it is spatial in
the complementary three regions of the radial coordinate r.

Moreover, when the condition (56) is satisfied, the metric
coefficient P(0) in (44) is always positive. Indeed,

Pmin:P(gzo)zl_a(r+_r—)

=1-2avm?>+1?>0.

Of course, for other choices of the physical parameters,
different number and different ordering of the horizons can
be achieved. They also may coincide, thus becoming
degenerate horizons. In particular, in the limit of vanishing
acceleration a — 0, the two outer acceleration horizons
disappear (formally via the limits rj — +o0, r; = —00),
and only two Taub-NUT black hole horizons M}, Hj
remain. On the other hand, for vanishing NUT parameter
| — 0, one of the black-hole horizon disappears (formally
via the limit r; =r_ — 0), while the second becomes
ri=r, - 2m. There is just one black-hole horizon at
2m surrounded by two acceleration horizons located at
+a~!, which is exactly the case of the C-metric with a
curvature singularity at r = 0.

(60)

B. Curvature of the spacetime, algebraic structure,
and regularity

1. The Weyl scalars

We now employ the Weyl scalars ¥, given by (23), (24),
(25) to discuss the algebraic properties of the spacetime,
including the subcases [ =0 and a = 0, the location of
physical curvature singularities and its global structure.

These scalars correspond to the metric (8) with coor-
dinates x, y, and it is thus natural to denote them as ‘I’Ef"’).
It will also be convenient to express these curvature scalars
as ‘Pﬁ{‘g) for the metric form (44) with coordinates r, 6.
Using the transformation (35) and definitions (41), (42)
we immediately derive a?(1 —x*)F(x)(y* = 1)F(y) =
PQ(r—r_)"*sin’@, with P = P() and Q = Q(r) given
by (45), and similarly we express the functions E, X, and IT.
However, it is also necessary to properly rescale the scalars
‘I‘X'v) given by (23) to get ‘I’Xﬁ) because the metrics (8) and
(44) are not the same: They are related by a constant
conformal factor,

I+
ry—r_

(r6) _

()
9 Xy

2 0 2
@O°G,p =

= where @

(61)

Iy
ro-r_

Gab» See (43). The
corresponding Weyl tensor components are related as
Cg?i?d = mZC%yg 4> see [11]. The null tetrad (20) also needs
to be rescaled in such a way that it remains properly
normalized in the coordinates r, € as (21). This requires
k0 = o) 100 — (=) g (0) — = lp) I
view of (19), we obtain the relation

Indeed, g% = 27, while ¢/ =2
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(o) — 2 gl (62)
Using (23)—(25) and (61)—(62), we thus calculate the Weyl
curvature scalars for the metric (44) with respect to the null

tetrad

I R Vo
) — —_ Q= Y=
k 5 (\/.Q.E?, + 3 8,),
1(r0) — Lg(ﬂat - @@)’
V2 \Va R
1
m\0) = 0, + 21(cos 0 — aT sin® )0
\/—R\/ﬁsme( ’ ( “ )0
—iPsin009y). (63)
It turns out that
U — e — _3i21PQ(r — r_)sin?0 X,
‘I’(l ) =9 = 3a1,/PQsinOS X,
—r Vm? 4 PQ+ilW/(r—r )] X, (64)
where
(rX + P)(r—r_)’Q*
X(r,0) = - s
(0 = G =P —uQl
S(r,0)=(1-a?(r—r_))(r—ry)

—[(r=r) = Vm? + P(1 = (r = r_ ).
W(r.0) =28+ (1—=a*(r—r_)*)(r—ry)

x [Vm? + Q% —a?(r —r_)3Psin?0).  (65)
These functions are related to (24) via
—i(ry —r.) _ ) 3
X= =, S= —r_)’x,
azr%r(r— r_)5 a(r=r)
W=a*(r—r_)°I, (66)

and Q=Q(r,0), P=P(#), and Q = Q(r) are given
by (45).

As we have already argued in Sec. IV, this class of
spacetimes with accelerating Taub—NUT black hole is
generically of type I, i.e., it is algebraically general.
However, it may degenerate. When either a =0 or
| = 0, the only nontrivial curvature component is given by

—r Vm? + P +1W/(r—r_)|X.

Such spacetimes are clearly of algebraic type D, with two
double-degenerate principal null directions k') and 19 of
the Weyl/Riemann tensor.

(67)

This is fully consistent with the fact that the case [ = 0
(implying r, = 2m, r_ =0, see (46), and X = (r, Q%))
corresponds to the type D accelerating C-metric, for which

(r0)
Y, =

—%(1 —arcos6)?, (68)

see Ch. 14 in [9].
The complementary case a =0, which cannot be

directly obtained from ‘P(”) given by (23), corresponds
to the type D twisting Taub—NUT metric. It follows
from (50) that in such a case Q=1 and Q(r) =
(r = ry)(r = r_). With the help of relation (39) we thus get

ri—i—l2

T r—r) —il(r—r)P

(ry —il)(ry +il)

S (ry—iD3(r+ i)

S=vVm?+ P, W= vVm>+P(r-r), (69)
so that

) 12 il
W = 2 P(r, —il)x = - et

=il (rtil)
vm? + % (ry +il)?

TRl (rril) (70)
Applying the identities
P+P=r(r,—r))=2r,Vm®+ 2, and
(ry +1il)? = 2r (m +il), (71)
we finally obtain
Tt (7

which is the standard form of the scalar ¥, for the Taub—
NUT spacetime, see Ch. 12 in [9].

2. Algebraic type and regularity of the horizons

It can be immediately observed from (64) that on the
horizons (55), defined by Q =0, all the Weyl scalars
vanish except

lI‘(zr'g)(at any horizon ry,)

2vVm? + I w
— 1293 ' .
BT o L e P e

(73)

Therefore, all horizons are of algebraic type D. This is true
in a generic case with any acceleration a and any NUT
parameter [. Moreover, at these horizons the spacetime is
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regular, that is free of curvature singularities. This can be
proved as follows:
(i) At the acceleration horizons r}, r;, the values are
rp—r_=%a"!, so that Q(r,) =1 F cos@ and
W(ry) = 2a72(1 F 2avVm?® + [2)2Q2, implying

Vm?+ 2
2
<

x [F ar,vVm* + P(1 F cos0)?
+2il(1 F 2av/m? + B).

At the positive black hole horizon err =r, > 0,the
value of the factor is r, — r_ = 2vm? 4 [%, so
that Q(ry) =1-2avm?+Pcos0=P, W(r;) =
2(m? + 1) (1 — 4a?(m® + 17))>Q2. Thus,

W (HE) = 202

(74)

(i)

1
4P Nmr + I
x [ry (1 =2avm? + > cos 0)?

—il(1 — 402 (m? + I7))?].

) = -

(75)
(iii) At the negative black hole horizon r, =r_ <0,
the expression (73) seems to diverge. However,
a careful analysis of the limit r — r_ of (67)
shows, using X — ir, (48B(m>+P))™", Q-1
and W/ (rp—r_)=>Vm?+(1—6avm?+*cos)

that
() H) = — ry
2 ( b) 413\/’”2—_’_12
x [[(1 = 6av/m* + > cos0) +ir,].

(76)

The expressions (74)—(76) explicitly demonstrate
that at any horizon the gravitational field is finite,
without the curvature singularities.

3. Algebraic type of the axes and principal
null directions

Similarly, along both the axes @ =0 and 6 = 7 the
function sin € vanishes, which implies that ‘P(()"e) = ‘PE”?) =

0=\ =W\ This proves that the algebraic structure
of the spacetime on these axes is also of type D, with the
only curvature component (67).

Finally, let us comment on the principal null directions
(PNDs) of the curvature tensor introduced in Sec. IVA.
Using the Weyl scalars (64) we can express the key
discriminant of the equation (33) as

D=4 — 2¥,(3¥, — ¥,)
= —18a%IV/ m? + PPQsin% 03 X?Y,

where Y(r,0)=1(1-a?(r—r_)*)(r—ry) +ir, (r—=r_)Q2.
Therefore, there are in generaltwo distinctroots k,x, of (33),
and subsequently there are four distinct roots K ; of (34). They
correspond to four distinct PNDs of the Weyl tensor, con-
firming that the metric (44) is of algebraically general type I.
However, if (and only if) @ = 0 or / = 0, the discriminant
(77) everywhere vanishes and there is only one double
root k of (33). In such cases, there are just two roots

(77)

(78)

corresponding to two doubly degenerate PNDs ki, of
type D spacetimes (the Taub—NUT metric and the C-metric,
respectively). In particular, in this limit K; — 0 and
K, — oo which effectively corresponds to PND k(") and
PND (%) given by (63).

C. Curvature singularities and invariants

1. Investigation of possible singularities
The Weyl scalars ‘Pf:y ) given by (23)—(25), or their

equivalent forms ‘I‘i”g) given by (64)—(65), can be used to
study curvature singularities in the family of accelerating
NUT black holes.

By inspection we observe that all functions entering
these scalars are bounded’ except the function X(r, ), or
equivalently E(x, y), whose denominator can be zero. This
key function appears as a joint factor in all the Weyl scalars
(64). Regions of spacetime where X(r, §) — oo thus clearly
indicate the possible presence of a physical singularity. In
view of (65), such a curvature singularity corresponds to
the vanishing denominator of X (provided its numerator
remains nonzero), that is

ro(r=r_)?Q*—ilQ =0. (79)

Both the real and imaginary parts must vanish. Since
ro=m+vVm*+ >0, Q is everywhere a positive
conformal factor, and Q = 0 identifies regular horizons
(as shown in previous section), the only possibility is when

[ =0 and at the same time r = r_ =0, (80)
where in the last equality we applied the relation r_ =m —

v'm? + I? for [ = 0. The curvature singularity thus appears
only in the C-metric spacetime at the origin r = 0. All other

%As will be demonstrated in Sec. VID, a possible divergence
for r — oo corresponds to asymptotically flat regions.
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FIG.2. The value of the Kretschmann curvature scalar (85) plotted as the function XC(r), where 7 is the radial coordinate, for 6 = 0, 3,

and z. The black-hole parameters are m =8, [ =5, and a = 0.025.

spacetimes in the large class of accelerating NUT black
holes are nonsingular. The presence of the NUT parameter
[ (even a very small one) thus makes the spacetime regular.
This property is well known for classic Taub-NUT space-
time (see Ch. 12 in [9]), and the same property holds also in
this new class of accelerating NUT black holes.
Consequently, to describe the complete spacetime mani-
fold, it is necessary to consider the full range of the radial
coordinate r € (—o0, +00).

To confirm these observations, we employ the scalar
curvature invariant 1 defined in (26). Introducing a

convenient new function A, defined as
A=Y, - Y, (81)

and using the special geometrical property of the spacetime
Yy =¥, and ¥, = ¥;, this invariant is simplified to
[ =92 — 492 + 393 =3A2-D, (82)

where the discriminant D is given by (77). Explicit
evaluation now leads to

1=3 (ri(m2 +12)Q!0

— 120?12 PQsin05? — 3a* I (r — r_)*P> Q%sin*0

—PW?/(r—r_)? =2ilr v/ m? + POW/(r — r,))Xz.

(83)

Since (as already argued) even the function W/(r — r_) is
finite at the black hole horizon r}, = r_, the scalar curvature
invariant / becomes unbounded only if the function
X diverges. This happens if, and only if, both the conditions
(80) hold.

Recall also that the real part of the invariant / is
proportional to the Kretschmann scalar,

K = RypegR = 16Re(1), (84)
which can thus be evaluated as
K = 48{Re(¥3) — 30*I*PQsin’0
[48? + a*(r — r_)*PQsin’0|Re(X?)}. (85)

In this form it is explicitly seen that the Kretschmann scalar
for the C-metric or the Taub-NUT black hole is simply
obtained by setting / = 0 or a = 0, respectively. In both
cases, it leads to
Kioramo = 48R6(T%)’ (86)
where ¥, is given by (68) or (72), in full agreement with
[12,13]. Interestingly, K = 48Re(¥3) also on the horizons
(55) where Q@ =0, and on the axes 6 = 0,7 where
sind = 0.
In the general case of accelerating NUT back holes, the
Kretschmann curvature scalar K is given by expression
(85). This explicit but somewhat complicated function of
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Accelerating Taub-NUT:

Taub-NUT:

C-metric:

-5

10

FIG. 3. The Kretschmann curvature scalar (85) visualized in quasipolar coordinates as K(x,y), where x =V r2 + 2sin0,
y=Vr? +>cos6, so that r = 0 is a circle of radius /. The left column corresponds to r > 0, while the right column represents
r < 0. The first row plots the Kretchmann scalar for the accelerating NUT black hole with m = 8, [ = 5 and @ = 0.025. It can be seen
that the curvature is everywhere finite, even in the vicinity of » = 0, and it smoothly continues across r = 0 from r > 0 to r < 0.
The second and third rows correspond to special cases of this metric, namely the Taub—NUT metric (with m = 8,/ = 5, @ = 0) and the
C-metric (withm = 8,1 = 0, @ = 0.025). The Taub-NUT metric has no divergence of /', which is independent of 6. On the other hand,
the C-metric becomes singular as » — 0, that is at x = 0 = y (therefore we plot only the region r > 0). The two separate cosmic strings
along the axes @ = 0 and @ = x are indicated as dashed curves.
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the coordinates r and @ is visualized in the two illustrative
figures.

In Fig. 2 we plot the Kretschmann scalar K(r) as a
function of the radial coordinate r for three fixed privileged
values of 0, namely € = 0,0 = 7 and 6 = 7. In fact, we will
argue later that the two poles/axes at € =0 and =«
correspond to the position of (rotating) cosmic strings,
while @ =7 is the equatorial section “perpendicular” to
them. It can be seen that for each 6 there are several local
maxima and local minima. Half of these extremes are in the
region r > 0, the remaining are located in the region r < 0.
The curvature is everywhere finite, and its maximal values
are localized close to the origin r = 0 inside the black hole,
that is within the shaded region r € (r_,r,) = (r;, r}).

In Fig. 3 we include the angular dependence on 6. The
left column corresponds to the region r > 0, while the right
column represents the region r < 0. The first row plots the
Kretchmann scalar K(r, 0) for the accelerating NUT black
hole (with m = 8, [ = 5, a = 0.025), the second and third
rows correspond to special cases of this metric, namely the
Taub-NUT metric (m = 8, [ = 5, @ = 0) and the C-metric
(m =38,1=0,a=0.025). From these visualizations of the
Kretschmann curvature scalar it is seen that the dependence
on both r and @ is smooth, and the curvature is everywhere
finite, except for the C-metric at r = 0, in full agreement
with the condition (80). The two distinct cosmic strings
located on the axes 6§ =0 and 6 = x, respectively, are
indicated as dashed curves.

2. Scalar invariants and algebraic types

Let us conclude this part by returning to the scalar
curvature invariants I and J. We can express J, defined in
(26), in terms of the discriminant D and the function A as

J:%A(D—ZAZ). (87)

Using (82), the key expression I° —27J2 thus takes the
compact form

1

P =217 = 7l (9A? — 4D)D?, (88)
which is explicitly
9
P-27J% = 7l [(r+ Vm? +PQ —il[W/(r—r_)
—a*PO(r — r_)sin?0))?
- 16a212PQsin29S2} DX (89)

According to standard classification scheme for determin-
ing the algebraic type (see, e.g., page 122 of [3]), the
spacetime is of a general algebraic type I if (and only if)

I? #27J2. This is clearly the generic case of (89), con-
firming the results of Sec. IV. Only for D =0 (or X =0
which is, however, a subcase of D = 0), the spacetime
degenerates and becomes algebraically special. In particu-
lar, it follows from (77) that D = 0 whenever @ = 0 or
[ =0, and such spacetimes are actually of type D every-
where, as we have already demonstrated in previous
sections.

Zeros of the big square bracket in (89) identify alge-
braically more special regions in a given spacetime. It
requires

W =a?PQ(r —r_)%sin’0 and
ro/m? + PQS = +4al\/PQsin 0S.

Clearly, this can happen only for the generic case of
accelerating NUT black holes with a # 0 # [. It is inter-
esting to observe from (64) that these two conditions imply

(90)

1
‘Pzz—g(‘l‘oi4‘l’1), (91)
and thus D = 4(¥y + ¥,)? and A = —% (¥, &= ¥,), which
now implies a specific relation D = %Az. In such degen-
erate regions, the scalar curvature invariants take the form

3 1

1= ZAZ. J= §A3, and further
9, 1

KzglylA N L:Z(\PO:‘::;TI)A

9
= N =W (3%, +2%)A (92)

confirming I* = 27J2. Therefore, using the classification
scheme, as summarized in [3], for A = 0 & ¥, = F ¥, the
region is of algebraic type N (because I =J=0=
K = L), while for A #0 it is of type II. It degenerates
to algebraic type D if, and only if, ¥, = 0 # ¥, (because
I#0#Jbut K=0=N).

D. Description of the conformal infinity Z=
and global structure

The coordinates employed in (44) are comoving in the
sense that they are adapted to the accelerating black holes.
This is clearly seen from the fixed position of the
geometrically unique horizons which are still at the same
values (55) of the radial coordinate r, despite the fact that
the black hole moves. This has many advantages, and
greatly simplifies physical and geometrical analysis of the
spacetime. However, as thoroughly discussed in the simpler
case of the C-metric (when [ = 0) in [9], such accelerating
comoving coordinates cannot naturally cover the whole
conformal infinity 7 (scri).
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FIG. 4. The complete spacetime structure of the class of accelerating NUT black holes, suppressing the coordinates ¢ and ¢
(corresponding to stationary and axial symmetry). These fundamental sections are represented by (mutually equivalent) coordinates x, y
and 6, r. The black hole spacetime is localized in the shaded region x € [—1, 1] between two rotating cosmic strings at the two opposite
poles @ = 0 and @ = z. In the complementary (vertical) direction, the spacetime is separated by four Killing horizons at special values of
y and equivalently r, namely the two black-hole horizons Hi are located at r;, = r_, rj = r, and two acceleration horizons HZ are at
rf=r_+ % ry=r_— é They separate different regions of the spacetimes in which the coordinate r is spatial (regions 11*) or temporal
(regions I* and TIT). The values 7 = 0 and » == oo, indicated by horizontal dashed lines, are only coordinate singularities. Conformal
infinity Z, where the spacetime is asymptotically flat, is located along the diagonal line x = y. There are thus two asymptotically flat
regions corresponding to our universe where r > 0 and the parallel universe where r < 0, which are connected through the region IIT
with the highest (but finite) curvature in the black hole interior r € (r_, r,.). Notice, however, that only along the equatorial section 6 = %
the corresponding two conformal infinities Z* are represented by r = 4-co. Unlike in the C-metric or Schwarzschild black hole, with the
NUT parameter [ there is no curvature singularity at r = 0. It is thus obvious that there are two complete strings (not just semi-infinite
strings) at @ = 0 and 6 = x, both connecting the two distinct universes as r € (—oo, +o0). In fact, to obtain a geodesically complete
spacetime, it is necessary to “glue the two universes” along the regular horizon H), at r = r;, =r_, both at y = —co and y = +o0, by
identifying the corresponding parts of these lower and upper boundaries of the diagram indicated by two finely dashed line segments
between x € [—1, 1]. Thus we obtain a complete diagram of the spacetime with accelerating NUT black holes, shown in the right part of
this figure.

1. Asymptotically flat regions holes will provide us with the complete picture summarized

From the Weyl scalars (64), (65) it follows that asymp- in Fig. 4. . . .
totically flat regions without any curvature, locally resem- To describe and investigate the complete conformal

bling the null infinity Z of Minkowski space, are reached inﬁnity. I of spacetimes With_ accelerating NUT blac.k
for X(r.0) — 0. It occurs in the vicinity of Q=1— holes, it is much more convenient to consider the metric

a(r—r_)cos = 0, that is for r— r_+1/(acosd). This form (8). Similarly as for the spherical-like coordinates, it
N S Ll L directly follows from expressions (23) that the correspond-
corresponds to the largest possible finite positive values of r in . A lars P, all h = — 0. Such
the angular half-range 6 € (0.5), but to the lowest possible 1ng curvature scafars ¥y ail vants for _(x,.y )=0. e
finite negative values of r forthe second half-range 0 € (%, 7) regions are thus asymptotically flat, representing Z. In view
2:7)

. ’ - ) : of the explicit form of this function (25) it is clear that this
In the equatorial section @ = 7, such asymptotically flatregion . Jition is equivalent to x — y = 0. Therefore, the asymp-

is reaghed both at r = +0 gnd r= —o0. ) totically flat infinity is located at
It is necessary to clarify these somewhat puzzling

observations. Such an understanding of the global structure )
of the spacetime manifold with accelerating NUT black Iix=y, (93)
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see also Fig. 4. The admitted range of the coordinate x is
x € [—1, 1] (see the subsequent section) and thus the range
of yonZ is also y € [—1, 1]. Interestingly, it is exactly the
same situation as for the C-metric (10), see [9].

It can now be understood, what are the specific draw-
backs of the spherical-like coordinates r, @ of the metric
(44) to represent Z. There is no problem in the equatorial
plane @ = % corresponding to x = 0, which symmetrically
divides the spacetime into two regions between the two
axes (strings). Due to (93), the scri Z in such “transverse
section” is located at y =0, and it follows from the
transformation (35) that this occurs at infinite values of r,

7
T at9=5: r = too, (94)
as naively assumed. However, at any other section 0 =
const., the conformal infinity 7 is located at finite values
of r. Indeed, (93) with (35) reads cos@ = 1/[a(r — r_)],
that is

1

_— 95
acosf (93)

Iatany@;ég: r=r_+
Therefore, close to the first string at & =0 we obtain
r—r_+a'=r}, while close to the second string at
O=nx we get r—r_—a ' =r;, see (55) and Fig. 4.
Notice that this is exactly the condition for vanishing
conformal factor in the metric (44), (45),

Q(r,0) =0. (96)
Such a behavior is analogous to the situation in the
simpler C-metric [9]. However, in the present case of
accelerating NUT black holes, there are two distinct
asymprotically flat regions, namely Z* which is the
conformal boundary of “our universe” in the region I,
and Z~ which is the conformal boundary of “parallel
universe” in the region /~. In order to cover the part
0>1% of Z* in “our universe,” it is necessary to also
consider r < 0. And vice versa: to cover the part § <7 of
7~ in parallel universe, it is necessary to also employ r > 0.
This is surely possible, but quite cumbersome.

2. Boost-rotation metric form and its analytic extension

To further elucidate the global structure of the new
solution (44) for accelerating NUT black holes, it is useful
to express it in a form in which its boost and rotation
symmetries are explicitly manifested. This will also provide

sin @

V==, (98)
(so that ¢, p > 0) with ¢/ = ar and ¢ unchanged. Clearly,
¢ = 0 at both acceleration horizons H, whereas p = 0 at
both black-hole horizons H;, and also along the two
strings located at @ = 0 and 6 = 7. An application of the

transformation (97), (98) takes the metric (44) to the form

ds? = —e#*(dF — Adg)? + e4(dS? + dp?) + e #p?de?,

(99)
where the functions u, 4, and A are
o (r=r)r=r)
R*P '
et =R72 <(r —r ) (r=r_)P
+ M+ P)[1 - a*(r— r_)z]sin29> ,
a r—r
A =2al( cos) - ———— ~P 2). 100
(cos0-5 "= r ). (100)

Of course, these metric functions need to be rewritten in
terms of the variables ¢ and p.

When the NUT parameter vanishes, [ = 0, the metric
becomes static because A = 0. In fact, the remaining
functions e# and e™* then reduce exactly to expressions
(14.30), (14.31) in [9] for the C-metric. For m — 0, the
metric (99) further reduces to the uniformly accelerated flat
metric, since ¢ — 1 and e — 1, yielding

ds? = —¢2dr? +d&? + dp? + pPde?. (101)
It is equation (14.25) in [9], equivalent to the Bondi—
Rindler metric (3.14) whose coordinates are adapted to the
uniform acceleration. This weak-field limit thus provides a
reasonable justification that the black-hole sources are
indeed accelerating. Moreover, in view of (97), the accel-
eration is given by the parameter a (see also Sec. 3.5 in [9]
for more details).

Now, the metric (99) in the stationary regions II can be
analytically extended through the acceleration horizons
located at { = 0 by transforming it to the boost-rotation
symmetric form with rotating sources (see [14-16]). In
particular, by performing the transformation®

— 1 / i /
a clear argument indicating that the analytically extended T =+{sinh?, Z = E{cosh?, (102)
space-time represents a pair of accelerated blac_k-hale the metric becomes
sources. It is achieved by applying the transformation
VP 5 N *An analogous transformation in the nonstationary
= a_Q |1 - (r - V_) |, (97) regions 1 close to the conformal infinity Z is 7 = +{ cosh?,
Z = +{sinht'.
084024-16
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et

ZZ _ TZ

(ZdZ — 1dT)?
ZZ _ TZ

ds? = — (2dT — TdZ) - A(Z* - T?)dg)?

+et +dp?| + eHp?de?. (103)

Clearly, ¢ = |Z% — T?|, so that the acceleration horizons
HZ are now located at T = +Z. They separate the domains
of types I and II. For the whole range of the coordinates 7'
and Z, the boost-rotation symmetric metric (103) covers all
these regions, with u, A, and A being specific functions of p
and Z? — T2, independent of ¢ and ¢.

Notice, however, that the coordinates (¢, p) and equiv-
alently (r,0) with the “4” sign in (102) each cover only
half of the section # = const corresponding to a single
domain of type II, because necessarily Z > 0. To cover
also the analytically extended regions Z < 0, a second
copy of these coordinates is required by choosing the
“—" sign in (102). This indicates that the complete
spacetime actually contains a pair of uniformly accel-
erating NUT black holes, similarly as in the case of the
C-metric (see Ch. 14 in [9] for the details). These two
black holes accelerate away from each other, and are
causally separated. The analytically extended manifold
thus contains four asymptotically flat regions, a pair of
Z" and a pair of Z~, each in our universe and in the
parallel universe.

Let us finally remark that at large values of the radial
coordinate r close to Z= where Q =0, for any fixed
value of @ the metric functions behave as R ~r, P is a
constant, and Q~r (the case ¢ =7 must be treated
separately). It thus follows from (100) that the functions
e’ e™* A remain finite in this limit, demonstrating the
correct asymptotic behavior of the boost-rotation metric
form (103). In fact, analogously to the procedure pre-
sented in [16], by a properly performed rescaling of the
coordinates and uniquely chosen linear combination of #
and ¢, for the given @ it is possible to achieve e#,e* — 1,
and A — 0 in the asymptotically flat regions of these
spacetimes.

E. Character of the axes 0=0 and 0=r:
Rotating cosmic strings

We have seen in Sec. VIA that the coordinate singu-
larities given by Q(r) = 0 represent four horizons (55)
associated with the Killing vector field 0,. There is also the
second Killing vector field 0, and its degenerate points
identify the spatial axes of symmetry.

They are located at the coordinate singularities of the
function sin @ in the new metric (44), and these appear
at the poles 8 = 0 and € = &. Therefore, the range of the
spatial coordinate @ must be constrained to 6 € [0, z].
Via the simple relation x = —cos @ this is equivalent to
the range x € [—1, 1] between the two poles x = =1 of
the function (1 —x?) in the original form of the metric

(8). The location of these poles is indicated in Fig. 4,
defining the boundary of the physical spacetime with
black holes (the shaded region). Expressed in terms of
the coordinates of the boost-rotation/axially symmetric
metric (103), related by (98), these poles 6 =0,7
correspond to p =0 which naturally identifies the
corresponding two axes.

In analogy with the C-metric, such degenerate axes
represent cosmic strings or struts. Their tension is the
physical source of the acceleration of the black holes.

We have proven in Sec. VIB that the algebraic
structure of (generic) type I spacetime degenerates along
these axes to type D, with the only curvature component
Y, given by (67). Subsequently, in Sec. VIC we have
demonstrated that for # = 0 and € = z the Kretschmann
scalar K(r) = 48Re(W3) [see the expression (85)]
is everywhere finite, as is explicitly plotted in Figs. 2
and 3. There is thus no curvature singularity along
these axes. Instead, these are basically topological
defects associated with conical singularities given by
deficit or excess angles around the two distinct axes. In
addition, due to the nonvanishing NUT parameter /,
these cosmic strings or struts are rotating, thus intro-
ducing an internal twist to the entire spacetime with
accelerating NUT black holes. We will now analyze
them in more detail.

1. Cosmic strings or struts

We have seen that there are three explicit physical
parameters of the spacetime (44), namely the mass m,
the acceleration a, and the NUT parameter / of the black
holes [which determine the horizon parameters r. = m=+
Vm? + 2, see (38) and (55)]. In fact, there is also the
fourth free parameter C, which is hidden in the range of
the angular coordinate ¢ € [0,2zC). It has not yet been
specified. We will demonstrate its physical meaning by
relating it to the deficit (or excess) angles of the cosmic
strings.

Let us start with investigation of the (non)regularity of
the first axis of symmetry @ = 0 in (44). Consider a small
circle around it given by 6 = const, with the range
@ € 10,27C), assuming fixed 7 and r. The invariant length
of its circumference is foz”c V/Ippde, While its radius is
J¢ \/Geadd. The axis is regular if their fraction in the limit
6 — 0 is equal to 27. In general we obtain

im 27C\ /Gy
-0 0,/ Joo ’
Now, the conceptual problem is that the metric function g,,,,
in (44), and thus the circumference, does not approach zero
in the limit @ — 0 due to the presence of cos @ in the first

term in the metric. This problem can be resolved by the
same procedure as for the classic Taub—NUT solution (see

circumference I

fo=lim (104)

radius
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the transition between the metrics (12.1) and (12.3) in [9]):
By applying the transformation of the time coordinate
t=ty+ 2lp, (105)

the metric (44) becomes

ast = 2 (i, + 21(2sim2 2 4 asinto)ap)’
s ol = to + sin E—i-a sin @
R2 de?
+ 4R 4 R2 (7 + Psinzed(pz)} , (106)
Q P
so that

_ ! R2Psin%0 4129 2'29 7'202
!]Wfﬁ sin“6 — =2 sin z—i—a sin s

RZ

=——. 107
QZP ( )

Yoo

For very small values of 6 we obtain g,,, ~ R*PO*/Q?
because the terms proportional to /> become negligible.
Evaluating the limit (104) we thus obtain

fo=22C(1 —a(r, —r_)) = 22C(1 - 2av/m® + P).
(108)

The axis 0 =0 in the metric (106) can thus be made

regular by the choice

_ 1

Tl-2aVm + B

Analogously, it is possible to regularize the second axis
of symmetry @ = r. Performing the complementary trans-
formation of the time coordinate

C=C, (109)

t=t,—2lg, (110)

the metric (44) becomes

1 0 2
ds? = o {— % (dt,[ -21 <2cos2 5- aTsin29> dga)
—‘,—Ezdrz—I—R2 d—02+Psin2€d 2 (111)
o) P 7))
ie.,
1 0 2
oo = o [RzPsinze — 42 % (2c0s2 3 aTsin20> } ,
R2
=___. 112
Yoo Q2p ( )

“It leads to a closed circle instead of an open helical orbit of the
axial Killing vector around @ = 0. For a recent related study of
geometrical and physical properties of symmetry axes of black
holes with NUT parameters see [17].

For 0 — n we thus obtain g, ~ R*P(x — 0)?/Q?. The
radius of a small circle around the axis 6 = 7 is fg” /Ggad0.
Evaluating the fraction

Fo=lim circumf.erence — tm 272C\ /Gy )
0-z  radius 0—r (1w —0)\/Gg
we obtain

fro=22C(1 +a(ry —r_)) =22C(1 + 2a/m? + 7).
(114)

The axis @ = r in the metric (111) is thus regular for the
unique choice

1
1+ 2avVm®+ 2

It is now explicitly seen that it is not possible to
regularize simultaneously both the axes because Cy # C,
and ty) #t, = to+4lp (unless a =0 =1 which is just
the Schwarzschild solution, regular for the standard
choice C = 1).

When the second axis of symmetry 6 =z is made
regular by the choice (115), there is necessarily a deficit
angle &, (conical singularity) along the first axis € = 0,
namely

C

=C,= (115)

_ 8rzav m? + I
1+ 2avVm?* + 2

The corresponding tension in this cosmic string located
along 0 =0 pulls the black hole, causing its uniform
acceleration. Such string extends to the full range of the
radial coordinate r € (—o0,+o0), connecting thus our
universe with the parallel universe through the nonsingular
NUT black-hole interior, see Fig. 4. Moreover, as argued in
Sec. VID, there is a pair of causally separated NUT black
holes accelerating away from each other by the action of
two such cosmic strings, one string in each copy Z > 0
and Z < 0.

Complementarily, when the first axis of symmetry 8 = 0
is made regular by the choice (109), there is necessarily an
excess angle 0, along the second axis 6 = z, namely

8rav/m? + 12
1 —2avVm? + I

This represents the cosmic strut located along 6 =
between the two black holes, pushing them away from
each other in opposite spatial directions +Z.

In particular, for black holes with vanishing NUT
parameter [/ =0, the general results (116) and (117)
reduce to

> 0. (116)

S, =2n—f, = <0. (117)
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8zmam
1-=2am’

8zam

Sp=——"
71+ 2am

and 6, = (118)
which fully agree with the known expressions for the

C-metric, see Eqs. (14.15)—(14.17) in [9].

2. Rotation of these cosmic strings or struts

With a generic NUT parameter /, these cosmic strings/
struts are rotating. This can be seen by calculating the
angular velocity parameter @ of the metric along the two
different axes [10],

Y1
w=""2.

119
9u ( )

For the general form of the new metric (44) we obtain
@ = —21(cos @ — a7 sin’>@). Evaluating it on the axis
6 = 0 and the axis 6 = 7, we immediately get
wy=-21 and w,=2I, (120)
respectively. Both cosmic strings/struts thus rotate. In fact,
they are contrarotating with exactly opposite angular
velocities 21 determined solely by the NUT parameter.
If the first axis of symmetry € = 0 is made regular by
considering the metric (106) with the time #,, then @ =
21(2sin?9 + a7 sin*@) and the corresponding angular
velocities of the axes are
wy=0 and w, =4[ (121)
On the other hand, when the second axis 6 =7 is
regularized by switching to the metric (111) with 7, then
@ = —2I(2cos?§ — aT sin? §) and the angular velocities of
the axes are
wy=—4l and w,=0. (122)
Clearly, there is always a constant difference Aw = w, —
w, = 4l between the angular velocities of the two rotating
cosmic strings or struts, directly given by the NUT
parameter /.

F. Regions with closed timelike curves around the
rotating strings

In the vicinity of the rotating cosmic strings or struts,
which are located along 6 = 0 and 0 = #, the spacetime
with accelerating NUT black holes can serve as a specific
time machine. Indeed, similarly as in the classic Taub-NUT
solution, there are closed timelike curves.

To identify these pathological causality-violating
regions, let us again consider simple curves in the space-
time which are circles around the axes of symmetry 0 = 0
and @ = x such that only the periodic angular coordinate
@ €[0,27C) changes, while the remaining three

coordinates f, r and 0 are kept fixed. The corresponding
tangent (velocity) vectors are thus proportional to the
Killing vector field 0,,. Its norm is determined just by
the metric coefficient g, which for the general metric (44)
reads

1
Gpp = o R2Psin’6 — 4[> % (cos @ — aTsin’0)?|.
(123)

When [ =0, i.e., for nonrotating cosmic strings, this
metric coefficient is always positive, so that the circles
are spacelike curves. However, with the NUT parameter
[, there are regions where g,, <0 in which the circles
(orbits of the axial symmetry) are closed timelike curves.
These pathological regions are explicitly given by the
condition

RAP(1 — cos? 0) < 412Q(cos @ — aT (1 — cos? 0))?,
(124)

where the functions P, Q, 7, R have been defined in
(45). Although this condition is quite difficult to be
solved analytically, some general observations can easily
be made.

In particular, the condition can not be satisfied in the
regions where Q(r) < 0. Assuming that the acceleration
a is not too large, satisfying (56) which implies (57),
the closed timelike curves can thus only appear
between the black hole horizon H, and the acceleration
horizon H,, that is only in the region II" given by
r € (rf,r}) or in the region II~ given by r € (r7,r3).
On the contrary, the pathological domain can not occur
in the region III inside the black hole or close to the
conformal infinities Z* which are the boundaries of the
dynamical regions I* where r is temporal because
Q <0, see Fig. 4.

These observations are nicely confirmed by plotting the
values of the relevant function g,,(r,6) given by (123),
obtained numerically for various choices of the black-hole
parameters. A typical example m = 0.5,/ =3, a = 0.05 is
presented in Fig. 5, for r > 0 (left) and r < O (right). The
grey curves are contour lines (isolines) of a constant value
of g,,(r.0), red color depicts large positive values, while
blue color depicts negative values (dark gray domains
indicate extremely large values, both positive and negative).
Zeros of g, in light yellow, determining the boundary of
the pathological regions given by the condition (124), are
exactly indicated by the thick black curves. As expected,
these regions with closed timelike curves occur close to the
both axes = 0 and 6 = =, were the rotating cosmic strings
at located. Such regions are indeed restricted to the
concentric domains (two annuli) between the black hole
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FIG.S. Plot of the metric function g,,, (123) for the general accelerating NUT black hole (44) with rotating cosmic strings on both axes
0 =0 and 6 = z. Its values are visualized in quasipolar coordinates x = V7> + >sin @, y = V1> + I cos 0 for r > 0 (left) and < 0
(right). The gray annulus in the center of each figure localizes the black hole bordered by its horizons Hi at 7, > 0 and r_ < 0. The
acceleration horizons H; at r} and r; (big red circles) and the conformal infinity Z at Q = 0 are also shown. The grey curves are
contour lines g,,,(r, @) = const, and the values are color-coded from red (positive values) to blue (negative values). Extremely large/low
values are cut and depicted in dark gray. The thick black curves in the light yellow domain are the isolines g,,, = 0 determining the
boundary of the pathological regions (124) with closed timelike curves. They occur close to both the axes @ = 0 and 6 = x (purple
dashed lines), but also near the acceleration horizons, forming an additional symmetric pair of “lobes” around € = 0 just below H_ and
around 6 = x just above H. This plot for the choice m = 0.5, I = 3, a = 0.05 is typical.

horizons Hif at rif = r,. and the acceleration horizons H
at rF =r_+al.

Interestingly, for » > 0 there is another pair of symmetric
“lobes” around @ = 0 near the acceleration horizon H
(big red circle). At a given r close to r;, these lobes
extend to surprisingly large values of 6. Similarly, there
is a “mirror” pair of such pathological regions near H;
and 0 =z for r <0. In both cases, the lobes are
localized around such axis, along which the acceleration
horizon H, closely approaches the conformal infinity Z
at Q =0.

In Fig. 5 we visualized the regions containing the closed
timelike curves for the accelerating black hole with a big
value of the NUT parameter / = 6m = 3. However, our
investigation of a large set of the parameters m, [, and a
shows that the overall picture displayed here is quite
generic.

Similarly, it is possible to investigate the regions
with closed timelike curves in the special cases when
one of the axes is regular. The case with regular axis

while the complementary case with regular axis 6 =«
is described by the metric (111), and the corresponding
metric function (112) yields for fixed ¢,

R4P(1 —cos @) < 42Q(1 + cos)(1 —aT (1 —cos9))>.
(126)

For a direct comparison with Fig. 5, analogous visual-
izations of the pathological regions in such special cases
are shown in Fig. 6 for the same choice of the black-
hole parameters.

Finally, we can observe that the conditions (124)-(126)
for the pathological regions simplify considerably in the
absence of acceleration. Indeed, for @ = 0 the key functions
reduce to P=1, Q= (r—r.)(r—r_)=r*=2mr-P
and R? = 2 + 12, see (50), so that the above three con-
ditions (124)—(126) for the regions with closed timelike
curves become, respectively,

2., p
6 =0 is described by the metric (106), and the corre- cos26 > %
sponding metric function (107) gives for fixed £, the o+ F+4rf
condition 0 2P =4l f
<=
B Ty
RAP(1 +cos0) < 42Q(1 —cos0)(1 + a7 (1 + cos 6))?, 2L 2 _gp
cosf > M (127)
(125) 2+ P2 Arf
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FIG. 6. The functions g, given by (107) and (112) for the accelerating NUT black hole metric (106) with the regular axis 6 = 0 (top
row) and for the metric (111) with the regular axis € = x (bottom row). The regions with closed timelike curves surround the remaining
rotating cosmic string, and there is always an additional symmetric pair of such pathological regions near the acceleration horizons.

where f(r) = Q/R?, see (52). The result (127) fully agrees
with the equation for the Taub—-NUT spacetime presented in
Sec. 12.1.4 of the monograph [9].

VII. CONCLUDING SUMMARY

We presented and carefully investigated a remarkable
class of spacetimes which represent accelerating black
holes with a NUT parameter. In particular:

(i) By two independent methods we verified in Sec. I1I
that the metric (2) found by Chng, Mann and Stelea
in 2006 is indeed an exact solution to Einstein’s
vacuum field equations.

084024-21
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(i)

(iif)

@iv)

To achieve this, we employed a modified version
(8) of the solution in which one redundant param-
eter was removed and the original metric simpli-
fied, so that the standard C-metric (10) is
immediately obtained by setting the NUT-like twist
parameter A to zero.

Using the metric form (8), in Sec. IV we calculated
all components of the Weyl tensor in the natural null
tetrad (20), namely the NP scalars ¥, (23), and the
corresponding curvature scalar invariants / and J (26).
Since generically I° # 27J7, the Weyl tensor is
of algebraically general type I with four distinct
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(vi)

(vii)

(viii)

(ix)

x)

(xi)

(xii)

(xiii)

(xiv)

principal null directions, explicitly given by ex-
pressions (27) with (34), (33).

It explains why this class of solutions with accel-
erating NUT black holes has not been previously
found within the large Plebafiski-Demianski family
of type D spacetimes.

In Sec. V we derived and introduced a new
metric form (44) of these solutions in “spheri-
cal-type” coordinates which is much more
convenient for understanding of this class of black
holes.

In particular, its metric functions (45), with r, =
m £ vVm? + I? given by (38), explicitly depend on
three physical parameters, namely the mass m, the
acceleration a, and the NUT parameter [

These black-hole parameters can be separately set
to zero, recovering the well-known spacetimes in
standard coordinates, namely the C-metric (48)
when [ =0, the Taub-NUT metric (51) when
a =0, the Schwarzschild metric (53), and flat
Minkowski space (54).

The structure of this complete family of accelerat-
ing NUT black holes is shown in Fig. 1. By setting
a=0 or [ =0, algebraically general spacetime
reduces to the type D.

Using the new metric (44), in Sec. VI we inves-
tigated main physical and geometrical properties of
this family of accelerating NUT black holes. In
particular:

In Sec. VIA we localized the position of the
horizons associated with the Killing vector field
0,. There are two black-hole horizons H; located at
ry =r_and r} = r, plus two acceleration horizons
HE at rf=r_+1 and r;=r_ -1 For small
acceleration a < . \/”1127 they are ordered as
rg <ry <0<rf <rf, see (57).

We carefully analyzed the curvature of the spacetime
in Sec. VI B. We expressed the Weyl scalars (64) in
the new coordinates and frames. For /=0 and

a =0, only the Newtonian component ‘P(ng) re-
mains, and its special subcases (68) and (72) fully
agree with standard expressions for the C-metric and
the Taub—NUT metric, which are both of algebraic
type D.

Evaluating these Weyl scalars on the horizons, we
proved that they are all regular (that is free of
curvature singularities), and of a double degenerate
algebraic type D.

Using the curvature invariants, including the
Kretschmann scalar, we proved in Sec. VIC that
there are no curvature singularities whenever the
NUT parameter / is nonzero. This is visualized in
Figs. 2 and 3. Maximal (finite) values of the
curvature are inside the black hole.

(xv)

(xvi)

(xvii)

(xviii)

(xix)

(xx)

(xxi)

(xxii)

(xxiii)
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Curvature singularity appears only in the C-metric
case [ =0 at r = 0. All other spacetimes in the
class of accelerating NUT black holes are non-
singular, and to describe their complete manifold it
is thus necessary to consider the full range of the
coordinate r € (—oo0, +00).

There may occur special regions in a given space-
time which are of algebraic type D, II or N,
according to the values of the scalar curvature
invariants (92).

In Sec. VID we identified asymptotically flat
regions which correspond to the conformal infin-
ities ZF given by Q = 0. These are simply given by
the condition x = y in the coordinates of the metric
form (8).

Using the spherical-like coordinates of (44), the
position of Z* is given by the conditions (94) and
(95), which look less intuitive.

All these investigations lead us to a complete
understanding of the global structure of this class
of spacetimes, summarized in Fig. 4. The accel-
erating NUT black hole can be understood as a
“throat” of maximal curvature which connects our
universe located in the region r > 0 with the second
(also asymptotically flat) parallel universe in the
region r < 0.

Analytic extension across the acceleration horizons,
using the boost-rotation symmetric form of the
metric (103), revealed that there is actually a pair of
such (causally separated) NUT black holes, which
together involve four asymptotically flat regions.
The two black holes uniformly accelerate in oppo-
site directions, as in the case of the C-metric
with / = 0.

We clarified in Sec. VIE that the physical
source of the acceleration of this pair of black
holes is the tension (or compression) in the
rotating cosmic strings (or struts) located along
the corresponding two axes of axial symmetry at
0=0 and 0 = .

These strings or struts are related to the deficit or
excess angles which introduce topological defects
along the axes. However, their curvature remains
finite, and of algebraic type D.

In general, there are strings/struts along both the
axes, but one of the axis can be made fully
regular by a suitable choice of the constant C in
the range ¢ € [0,27C). The first axis 6 =0 is
regular in the metric form (106) with the choice
(109), whereas the second axis € = r is regular
in the form (111) with the choice (115). In the
first case, there is a cosmic strut along 0 ==
with the excess angle (117), while in the second
case there is a cosmic string along 6 = 0 with
the deficit angle (116).
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(xxiv) In addition to the deficit/excess angles, these
cosmic strings/struts located along the axes of
symmetry are characterized by their rotation param-
eter @ (angular velocity). Their values are directly
related to the NUT parameter /, see expressions
(120)—(122).

There is always a constant difference Aw = 4/
between the angular velocities of the two rotating
cosmic strings or struts. If, and only if / = 0, both
the axes are nontwisting.

In the neighborhood of these rotating strings/struts
there occur pathological regions with closed time-
like curves. They are given by the conditions (124)—
(126) and visualized in Figs. 5 and 6.

We hope that, with these geometrical and physical
insights, the new explicit form (44) of the class of
accelerating NUT black holes can be used as an interesting
example for various types of investigations in Einstein’s
general relativity, black hole thermodynamics, quantum
gravity, or high-energy physics, for example by extending
the recent studies [18,19].

(XXV)

(xxvi)
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Ly =0, qu =0,
Ly =0, Ly =0,
Lo = %gtt,m F¢tx = %gt(p.xv

iy = %gttw Loy = %gfw"
Lipp =0, Lypp =0,
thax = %gt(p.x’ ppx = %g(p(p.x*
Ly %g,q,_‘ Loy = %g(/lr/h.v’
FtXX = ’ F(/)X/\' = O’
Iy =0, Ty =0,
Ly =0, Ly =0,

APPENDIX A: CURVATURE OF GENERAL
STATIONARY AXISYMMETRIC SPACETIMES

Let us assume a general form of stationary axisymmetric
metric in coordinates (7, ¢, x,y) given by (11), that is

9t Yip
99 Ypp 0 0
_ , Al
G 0 0 g. 0 (A1)
0 0 0 g,

in which all the metric functions can only depend on
x and y. The inverse matrix is

g(p(p/D _gtlp/D 0 0
g — _gt(/;/D 9u/D 0 0 (A2)
0 0 1/g.x 0 ’
0 0 0 1/g,
where
D= gng{p(// - glzr/) (A3)

The corresponding Christoffel symbols of the first kind
Fa/}y = % (ga[ty + gym/} - gﬁy.a) are

Iy = _%gtt.x’ Fyn = _%gn,y’
Lip = _%gfw,X* Ly = _%«%ww
FX[X = 0’ ]‘—‘y’,\' = 0’

l—‘x,}, =0, Fy,y =0,

_ _ 1
warlrf“* zgwu Fyt/)tl/:* 2gwtlhy’ (A4)
xpx = U yox = U
Fipy =0, Fypy =0,
Fxxx = %gxx.x’ Fyxx = _%gxx,yi
Fxxy = %gxx.yv Fyxy = %gyy.xs
Loy = =39 Ly =30

and usual Christoffel symbols of the second kind Iy, = g*°I',p, are thus
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I, =0, I7,=0,
F‘,q, =0, r”, =o,
I, = % (g{//(/)gtt,x - gu/;grrp,x)/Ds v, = %(gngl(p.x - gt(/)gtt,x)/D*
Ftty = % (g(p(pgtt,y - gt(pgnp,y)/D! Fq)ty = %(gngtq).y - gt(pgtt,y)/D’
[y =0, 14y =0, (A3)
Ftt/)x = %(g{pgogt(p,x - gr{/)gz/)(p,x)/D’ Fw(p}c = % (gngz/)(p,x - gr(pg[zp,x)/Dﬂ
I, = %(gwgt«i,y = 91999/ D 7y = % (9149pg.y = G991/ D
M =0. I, =0,
I, =0, 7, =0,
F’yy =0, 7, =0,
Fxn = _%gtt,x/gxm l"y” = %gtt,y/gyy
rth = _%gt(p.x/gxxv Fytqz = %gtqzy/gyy'
I, =0, M, =0,
I, =0, r, =0,
_ 1 |
oy = =390/ Gux: L = = 39005/ 9yy- (A6)
I, =0, Y, =0,
¥y, =0, Yy, =0,
Fxx)c = %gxx.x/gxx’ Fyxx = - %gxx,y/gyy?
Fxxy = %gxx.y/gxxv Fyxy = %gyy‘x/gyys
My =— % Gyyox/ Gxxs My = %gy.v-.v/ Yyy
Now, we compute the Riemann curvature tensor. However, instead of using the usual definition
R”wc/l = l_wwl,lc - l_wmc./l + l—wﬂxrpbi - Fﬂp/lrﬂwc- (A7)
for our purposes we found that it is much more convenient to employ the equivalent expression
l G ‘G
R;wkl = E (g;M.,Kb + gKb./M - gwc.wl - gwl.;m) + FJ;MF vk T Fo‘;ucr vA* (Ag)

Its advantage is that there is no need to differentiate the complicated Christoffel symbols of the second kind. This greatly
simplifies subsequent computer algebra manipulations. Direct evaluation using (A4) and (AS5) leads to
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R o 1 (gzg(p,x - gn.xg(p(p,x gzgq).)' - gtt,yg(p(p,_v)
otp = 7 + s
4 Goex Gyy
Rt(ptx =0,
Ry =0,
Rigpr =0,
Rigyy =0
1
Ripey = Y Y gn(gtqy.ygq;q;.x - gt(/),xg(/)lp,y) ) (gtt,ygrpzp,x - gtt,xg(p(ﬁ.)') + gr/)(/)(gn.ygup,x - gtt,xgrr/z,y) ,
4(gn‘g(p(p - gt(p)
R _ 1 1 gttgz?(p,x - 2gt(pgtt‘xgt(p.x + g(pwg%t.x gmxgxxx gtt.ygxx,y
txtx — T Egtt,xx + Z + - )
91t99p — g%q) xx Gyy
R 1 1 (94919x910.y — gl{/)(gn,xgt(p.y + gtr/),xgtt,y) + 9pp9uxGiry | Gux9xxy | Girydyyx
txty _Egttm +Z + + s
911999 — g%q) Gxx Gyy
R 1 l gn‘gt(p.xg(pw.x - gtqa (g%qxx + gtt,xg(pgo.x) + ng(pgn,xgup,x gt(pachx,x gt(p.ygxx.y
txpx - 5 gt(ﬂ.xx + Z 2 + - ’
91999 — Jip Yxx Gyy
1 ] gttgtw.yg(p(p.x - gtqa (gtq).xgttp.y + gtt.yg(pgo.x) + g(p(pgn,ygtw,x gt(p.xgxx,y gtq).ygyy.x
Rtxq}y gtq) Xy + - 2 + + B
2 4 91999 — Y19 Gxx gyy
Rtxxy =0,
1 gttgz?(p,y - 29t(pgtt.ygtw.y + ggawg%t.y grr.xgy_v.x gtt,ygyy,y
Rtytv gtt vy - + ,
9u99pp — 912(/) Gxx gyy
Rty(/lx = Rtxq}v - Rt(pxy?
R o 91t919.y9pp.y — Yo (g%(p,y + gtt.yg(p(p.y) + 9op91y91py  Gipxyyx | Gipyyyy
typy = 9f<ﬂ wt — - + ’
gttg(/)zp gt(/) gxx gyy
Rtyxy = 0
U (949p0.x = 29199199005 T 9poTipx _ Ippaecx _ IppyTucy
R(pxqax gw(p XX + Z 2 + - ’
911999 — Y1p Gxx Gyy
1 91999 x99y — Gip (gt(p,xg(pr/;.y + g(p(p.xgt(p.y) + 999919919y | Jppx9xxy | Gpp.yIyy.x
Ryxpy gw xy T 1 > + + R
911999 — Gip Gxx yy
Ry =0,
R 1 (9uG00y = 29091039005 + JooTiny _ JooxIvsx | JopsTrvy
oYy gw w T 1 ) - + ,
911999 — Gip Yxx 9yy
Ry =0,
1 1 g,%x y T Gxx xGyyx g%vx + Grx y9yy.y
Riyxy = =5 (Guxyy + 9y --)+—( . S DI SRR )
XXy 7 \Jxxyy yy.xx 4 Tor oy
Finally, we employ a general expression for the Ricci tensor,

1
_guK(g)M.,Ku + gKl/./.M. - gw(,u/l - gu/l.;ac) + gﬂxr(mlrguk - gﬂkrrmlcro-mﬂ

RM = chR;w;d = 2
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which yields the following nontrivial components for the Ricci tensor of the metric (Al):

1 Yn, Gy w P 2 P
Ry =— E (f + %) - Z(F t(prltx + F"t(pr/ty)

- r‘x” (Fttx - ngax + Fxx)( - F'vxy) - Fytt(rtly - F(p(py - Fxxy + Fy_vy)~
L (Gipax | Grpyy : : - :
= " E (% + %) - Fxttrtqzx -7 ttrrwy - erxrxzpqz - F‘/’,),F}Wp - th)(rxxx - Fyxy) +IY rz/)(r“xy - F)yy)v
xx vy
L (Gppxx | 9oy ) .
Ryp == 2 ( Gxx * Yyy B Z(Fthr’wx +17, [wy)
- r‘x(w(_rtm + Fw(px + Fxxx - Fyxy) - r‘yww(_rtty + Fw(py - l—*ny + Fyy,v)?
1 o — 2 + " yoax v
Rxx — _ E (g(pwgtt.,\x gt(pgthxxz gttg(p(a,xA + gyyxx gx)a)y) + (F’u‘)z + 21—*411)(1—*1(’” + (Fw(//x)z
gug{p(p - g/{p Gyy

+ Fxxx(rttx + F(p(px) + F'ny (Fxxx + Fy)ry) + F".xx (Ftly + F(ﬂ(/)y - Fxxy - Fyyy)v

1 [ xr_2 7] (rv+ PP.X:
va =75 (gﬂﬂg”- : JigShe. JZ Jun. y) + Fttxr‘trv + Fqltxrtq)v + Fwtvrr#’x + F(/’lﬂxrwgov
’ 2 911999 — g : : . :
+ Fxxy (Ftr.x + Fq}gox) + Fyx)'(rtty + F(/’q)y) + Fxxyr‘y:(y - nyyryxx#
R,, = 1 (gqlwg’hyy ~ 2919Y1p.yy + GuIpoyy n Gxxyy + gyy-XX) F () + e, I, + (Fww)z
. 2 gng{/)(p - g?{p Yxx ’ ’ ’
+ l—‘y”(l“tl'V +1I? f/'y) + Fxxy (Fxxy + FYW) + I’xi‘,y([‘t“ + Frp(/}x B [‘,\'Xy)_ ( Al 1)
[
. ~ (038 A .
APPENDIX B: RICCI TENSORS OF Ry=R,+—gy——=([",Q, +1,9).
CONFORMALLY RELATED METRICS Q Q ’
~ [} 2 . -
For the conformally related metrics (15), R, =R, + o Ty — a (M, Q, +17,Q,),
~ O 2 o
Tap = QL% Gup (B1) Ryp = Ry + ﬁgfﬂ(ﬂ e} (TR +T7,,Q,).
- (o) 2 - -

R, =R —3 —(Q,, —I",Q, —-17,.Q.),
the corresponding Ricci tensors are connected as (see, = et Q7 * Q (Rr e 02y)
e.g., [11]) ~ (O3 2 o -

Ry, =Ry, + o Jw + o) (Qy —T7,Q, — FVX).Q,_V),
I - - cd . D 2 =y =
Rab = Rab —-2Q lvavbg -Q lgabg lvcde Ry} = Ryy + ﬁgyy + ﬁ (Q,yy -I )*)'Q,x - Fyy)'g,y)a

Jr 4Q’2V‘IQV,,Q - QizgabngvCdeQ. (B2) (B4)

This implies relation between the physical and unphysical where
Ricci tensors R, and R, respectively,
) | ) o= —% (Tl 1t = 2008 1 + Gl ) Q.
Rap = Rap, + o [(Tap G + 2656) (Qea = T¢ caQ2.) 2
= 30ab5°'Q. Q4. (B3)

+ (g(pwﬁ'vtr - thwﬁyt(p + gttﬁ'vwzp)gy]

1 - -
+ (Qxx - rxxe.x - F?]xxg.y)

XX

1 - - 3/0% Q%
+=— (vi - F/\ Q.x -7, Qv) - A <~_A + ~_‘> s
gyy ) YYEE, YYEED Q T gyy

For the metric (15), (18), the conformal factor (16) is
independent of ¢ and ¢, so that the resulting metric is again
stationary and axisymmetric, in which case the relations
(B3) simplify to (B5)
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and the determinant for the metric (18) reads

[) = ?]nf](/;(/; - gtqu = Q4D

= —(x =y (1 = 2P F(x)(y* = 1)3FP(y) H*(x. y).
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2. New improved form of black
holes of type D

This chapter is based on the paper New improved form of black holes of type D
[45] by Podolsky and Vratny, published in 2021 in the journal Physical Review
D 104, 084078.

2.1 Derivation of the new metric form

In this contribution, we studied the whole Plebanski-Demianski class of black hole
solutions in asymptotically flat universe (that is for A = 0). More specifically, we
derived a new metric form based on the well-known representation of this large
family originally found by Griffiths and Podolsky in 2006 f. We also
provided a thorough physical and geometrical analysis of this solution.

The main reason, why we decided to (re)analyze this solution, was a general
simplicity and the ability to factorize the metric function Q(r) given by
in the case A = 0. This factorization was already introduced by Griffiths and
Podolsky in 2005 (see the equation (15) in [38]). The question was whether also
the second metric function P(f) could be factorized. We achieved this.

First of all, we introduced a set of new parameters, namely

a’ —1?

m=—a—Mm—a (a®> = I+ e* + ¢?),
w w
2 _ 12

= 2.1

a?—1* _

=57
w?k

Using it, we were able to pull a common constant factor S~! out of the metric

functions P(#) (I1.31)) and Q(r) (I1.32), that is
Q(r)=57"1Q(r),  P(0)=S""P(0), (2.2)
where the prefactor is simply

g1 Wik

_a2—l2'

(2.3)

Then, we performed the transformations t — St and ¢ — S ¢ which effec-
tively pulled out the constant .S from the complete metric. This could be removed
by a simple conformal rescaling of the whole metric, ds* = S ds>.

The last step was to appropriately fix the twist parameter w. Recall that from
(I1.11)) it is clear that w represents a twist behavior. By studying the choices made
for w in [38], [40] for gaining the standard forms of the well-known metrics, we
finally decided to fix the parameter as

a? + 2
a

. (2.4)
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With such a unique choice, we derived a completely new form of the Plebarnski—
Demianski metric describing all the type D black hole solutions with zero cosmo-
logical constant, namely

as? = 1 (9 L4 — (asin?0 + 4tsin?20) do]* + 2= dp?
5—@ —E[ —(asm + sm§) @}—l—ar
p2 2 P 2p 2 2 2
—i—de +Esm {adt—(r + (a+1) )d@} ) (2.5)
where
Qzl—afifpr(ﬂracosﬁ), (2.6)
p? =1+ (I +acosf)?, (2.7)
aa aa
P(Q) = <1 — m T’+(l + acos 9)) (]. — m T’_(l + acos 0))7 (28)

o) =(r—r)(r-r)(1raa b (1-aa 270 o)

and the convenient parameters r1 determining the two main roots of Q(r) are

rizmj:\/mQ—l—lQ—aQ—e?—gQ. (2.10)

The whole metric is now described by the following physical parameters:

moo.... mass ,
a ... Kerr-like rotation,
[ ... NUT parameter,
e ... electric charge,

g ... magnetic charge,

a . acceleration .

The great advantage of this new metric form is that we can now easily ob-
tain the standard forms of the most important black holes by simply setting the
corresponding physical parameters to zero, namely

e o =(0: KerrrNewman—NUT black holes ,

e [ =0: Accelerating Kerr—-Newman black holes ,

e o = (0: Charged Taub—NUT black holes ,

e ¢ =0 = g: Uncharged accelerating Kerr—NUT black holes .

The new metric (2.5]) describes black hole solutions with distinct horizons only
when the condition m? + 12 > a? + €2 + ¢? holds. This representation, however,
also admits extreme and hyperextreme cases for which m? + ? < a? + €% + ¢°. For

these cases we use a slightly modified metric functions (2.8)), (2.9), namely

I+ a cosf s o(l+acost)? o o 5
a—1 a+1
Q(T):(?"2—2mr+(a2—l2+€2+92)>(1+aaMT)(l—CVCLMT>.

Extreme and hyperextreme solutions are described in section (P2.1V)).
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2.2 Physical analysis of the new metric form

Another benefit of this new metric form is its suitability for physical and geomet-
rical analysis. The fact that the metric is a direct generalization of the standard
forms of well-known black hole metrics means that physically relevant variables
or invariants are easily comparable with the ones from these simpler solutions.
Similarly, other well studied phenomena such as the ergoregions, pathological re-
gions, cosmological strings/struts, singularities, etc., are also expected to appear

in the general case.
First, we introduced a natural null tetrad inspired by the null tetrad (I1.9):

kz;ﬁf:\/l@«r%r (a+l)2) at+aa¢> + \/687"1 :

1:\}52 \/1@<(r2 T (a+1p) 8t+a(?¢> _ \/éar] , (2.12)
1 Qf 1
=3|m0 (

Adopting this null tetrad the only non-zero NP scalars corresponding to the Weyl
and Ricci tensors are

U, = 2 )}3l—(m—|—il)(1—iaaa2_l2)

{r—i—i(l—i—acos@ a? + 12

m

asin’ 0 + 41 sin%@) 8t) +1 \/ﬁ@g] .

(€* +9%) aa .
Fi —|—acos€)( T {a’r’cos&—i-ll(l —i—acos@)D ,(2.13)
Q4
®1 = 5(e* +g°) ra (2.14)

while the Ricci scalar R vanishes (c.f. the NP scalars of the previous form of the

metric ([T.15), (TT.16)).

The spin coefficients are given by

k=v =20, c=A=0,
Q:u:—\/\gag (1—1—1&2@_5[2(l+acos€)2)<r—i(l+a0080)>, (2.15)
p
ax/ﬁsin@( __ea
V2 p? a4+ (2

which correspond to the expressions f. Also the remaining coeffi-
cients &« =  and € =~ are non-zero, but we do not explicitly write them here
due to their complexity.

Therefore, both PNDs k and 1 are geodetic and shear-free, but with ezpansion
and a generally non-zero twist given by

T=T = —

2) (r—i(l+acos€)),

=—Re(p) = —Re(u) = \/\ggp?) (7’ + CL?L—SZQ (I +acos 0)3) . (2.16)

Ve
_\/§p3 (I +acosb). (2.17)
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w=—1Im(p) = —Im(p) =




The Newman-Penrose scalars of the Mazwell 2-form F for the charged solu-
tion (e # 0 # g) was also evaluated. Its 4-potential is

,
A = —\/ez+g2ﬁ [dt— (asin® @ + 4l sin® 1) dgp} , (2.18)
and the corresponding NP scalars gives only one non-zero component

Ve + g2 02

Dy = LE, (kM + m*m®) = 5 -
(7“—1—1([ + acosG))

(2.19)

Furthermore, we were able to explicitly expressed the corresponding Weyl

scalar C = CpegC®? (see the equations [(65)—(66)). However, we mistakenly
called it the Kretschmann scalar IC which is true only for the uncharged solution

(see Sec. for a full explanation, in particular equation ([.20])).

2.2.1 Horizons

The black hole horizons ’Hgt and the acceleration horizons HE given by the equa-
tion Q(r) = 0 are immediately apparent from the factorized form of the metric

function Q(r) given by (22.9)), that is

Hy  at rjzr+:m+\/m2+l2—a2—62—g2, (2.20)

H, at r,=r_=m— \/mZ—i—lz—aQ—eQ—gQ, (2.21)
1 a®+1?

HI at ri=+-— rrl , (2.22)
aa®+al
1 a*+ 12

Ho oat r=—— o 0 92.23

where . were already introduced in (2.10)).
Clearly r is positive for any choice of parameters (assuming m > 0), but r_
can have any sign:

r->0 <& P<a+e*+ g2, (2.24)
ro<0 & ?2>a?+e?+ g%, (2.25)
ro=0 & P=a+e*+g°. (2.26)

Moreover, for a sufficiently small (positive) acceleration

1 a®>+ 12

_ 2.27
rya?+al’ (227)

the 4 horizons of the Plebanski-Demianski black hole takes the most natural
ordering

r,<r, <rf<rl, (2.28)

where the two black hole horizons H;" are surrounded by two “outer” acceleration
horizons HE.
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2.2.2 Ergoregions

Due to the presence of the rotation parameter a, the existence of ergoregions,
commonly known for the Kerr black hole and other related metrics, can be ex-
pected. The ergoregions occur in the situation when

(Pa*sin”60 — Q) > 0. (2.29)

1
it = 022

This equation is not directly solvable by analytic means, but we provided
some visualization by computer plotting, see the Fig. [2.1

Figure 2.1: Plot of the metric function gy given by in quasi-polar coordinates
Xx=/r?+ (a+1)?sinf, y = \/r?2 + (a +1)? cosf for r > 0. The green regions localize
the ergoregions. The gray annulus in the center of each figure localizes the black hole
within its horizons H;" at 7 and r_. The acceleration horizon H; at r} (big red circle)
and the conformal infinity Z at {2 = 0 are also shown. For more details, see the
of the attached Paper [2]

2.2.3 Curvature singularities

Curvature singularities of a generic type D black hole were discussed in Sec.
They correspond to the case when the only non-zero component of the
Weyl tensor ¥, diverges. This happens only for p> = r +i(l + acosf) = 0,
that is when both the real and imaginary parts vanish:

r=20 and at the same time l+acosf =0. (2.30)

This condition can be also seen from the Ricci scalar (2.14), or the Weyl

scalar C (equations |(65)—(66)| of the attached paper).
From the conditions (2.30]), we can discuss all possible cases of the mutual
relation between the Kerr-like rotation a and the NUT parameter [. More specif-
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Figure 2.2: A schematic visualization of the ring singularity of the generic PD black
hole for fixed coordinates t and . Visualization depicts the closest neighborhood
of the origin r = 0 (black circle), the ring singularity (red circle) for various values of
the Kerr-like rotation a or the NUT parameter . For more details, see the of
an attached article.

ically, the character of the curvature singularity is:

[=0,a=0: singularity at r = 0 for any @,
=0, a#0 : ring singularity at r =0 for 6 =7/2,
0 < |l] <la| : ring singularity at r =0 for cosf = —l/a, (2.31)

[ =+a : singularity at » = 0 for § = 7,
l=—a : singularity at » = 0 for =0,
]| > |a| >0 no singularity ,
l#0,a=0: no singularity .

We illustrate all these situations in a schematic visualization in Fig. 2.2, show-
ing the closest neighborhood of the coordinate origin » = 0 (denoted by a black
vertical circle). The coordinates t and ¢ are fixed, and we plot (a part of) the
radial coordinate r and the angular coordinate 6 € [0, 7].

2.2.4 Global structure and the conformal diagrams

We carefully derived the coordinate transformations to compactified coordinates
{T:, R:} (eq. |(118)|and|(119)|0f the attached paper) and the appropriate angular
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coordinate ¢, (Ibid., eq. . This allowed us to rigorously construct the
conformal Penrose diagrams. It generalized the previous works on special cases
of non-accelerating black holes [56]—[63], or black holes with non-zero acceleration
53, [64].

Each couple of compactified coordinates {Tf7 R:} covers the correspond-
ing horizon Hj. The distinct regions of the manifold between the horizons are
characterized by two integers (i, j). There are 5 types of regions, namely:

Region Description Specification of (i, j)
n—2m+1n+2m—1)
2n —m,2n+m — 1)

I:  asymptotic time-dependent domain between H} and Z
1I: stationary region between H;  and H;
Iv: stationary region between H_, and H, 2n —m+1,2n +m)

(
(
III:  time-dependent domain between the black-hole horizons (n —2m,n + 2m)
(
(n—2m+1,n+2m—1)

V:  asymptotic time-dependent domain between Z and H;

The complete global structure was visualized for two cases: one for a special 6
on which the ring curvature singularity at » = 0 occurs, the second without any
curvature singularity (see Fig. [5| and Fig. [4] of the attached paper, respectively).
We present here only the case with the singularity, however in a slightly modified
form then Fig. |5 of the publication. Fig. here takes into account the fact,
recently pointed out by MacCallum [65], that although the geodesics end for a
certain 6 in a singularity, the diagram can still be extended for other types of
curves bypassing the curvature singularity at » = 0 via different values of 6.

7/ \
ra Iy y
H

Ry SR RN :
N N o N N R 7

Figure 2.3: Penrose conformal diagram of the completely extended spacetime for
the section 0, ¢, = const. containing the curvature singularity at » = 0. In this case,
the regions IV are “cut in half” by this singularity, but it can be extended to a negative
r with curves having a different value of 0 at r = 0.

o
i
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2.2.5 Regularity of the axes

Similarly as in Chapter [I} we investigated the nature of the axes # = 0 and § = 7.
Also in this case the angular coordinate ¢ € [0, 27C) has the range depending on
the parameter C. This conicity factor represents a possible topological incom-
pleteness around the axes which physically causes the acceleration of this black
hole.

We started from the metric (2.5) with a vanishing NUT pathology around the
f = 0 axis, and we just removed its conicity. This was easily achieved by the
convenient choice

B a® +al a® + al -1
a® + al o, (a*+al\? 5, 5 o ]t
:[1—204ma2+l2 (a2+l2> (a*—1"+e —i—g)] ,

which necessarily left an excess angle around the second axis # = 7w, namely

a® [m(a® + %) — aal(a® — I + €* + ¢%)]
(a® 4+ 12)2 = 2am(a® + al)(a®> + 12) + o?(a®> + al)?(a®> = 2 + €2 + ¢?)

0, =—8T«

Notice that it vanishes whenever aa = 0, that is for non-accelerating black holes.
On the other hand, performing the coordinate transformation

t=1t, —4lyp, (2.33)

which effectively removes the NUT pathology around the complementary 0 = w
axis, and assuming an appropriate choice of the conicity parameter

a’® — al a’® — al -1
a’® — al N A N
:[1+2ama2+l2 <a2+12> (a® =1 +e +g)} ,

the axis § = m becomes completely regular, with a deficit angle

a® [m(a® + 1) — aal(a® — I + €* + ¢%)]
(a® +12)? + 2am(a® — al)(a® + 1?) + a?(a® — al)?(a® — I + e + g?)

0o =87 «v

around the axis # = 0. Again, it vanishes for aa = 0.
Interestingly, there exists a specific combination of physical parameters

m(a* + %) = aal (a* — >+ e* + ¢%), (2.35)

which regularizes both axes. Nevertheless, such a combination does not satisfy
the natural restrictions on the acceleration . For more information see the
book by Griffiths and Podolsky [I], or our attached Paper .

From the function w = % on the axes § = 0 and # = m, it is also clear
that these strings/struts are twisting. It is possible to modify the twist of the
individual axes by the coordinate transformation , but the difference always
remains the same, namely Aw = 4{.

Another interesting phenomena which we have investigated is the occurrence
of the pathological regions around the rotating strings/struts along the axes,
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caused by the presence of the NUT parameter [. Indeed, with a non-zero [ there
are areas where g,, < 0. This causes the existence of closed timelike curves. For
the form of the metric , these pathologies lie in the range of the coordinates
for which )

RYP(1 — cos®f) < 41*Q (cos@ —aT(1 - cosd) > . (2.36)

These regions has been visualized in of the attached Paper [2]

2.2.6 Thermodynamic properties

Finally, we computed the basic thermodynamic properties such as the entropy S
and the temperature T'. They are directly connected to the area of the horizons A
and the surface gravity x via the standard relations

S

e

A, T

1
— 2.
5 K, (2.37)

see [66] for more details.
The area of all four horizons is given by the following expressions

AnC (13 + (a +1)?
area of H; is A = ( v ) ) (2.38)

a’® + al a’® — al ’
(1_aa2+l2 T+)(l+aa2—|—l2 T+>

4mC (’l"% + (a + l)2>

area of H, is A, = Z 1 al pe— . (2.39)
(i (s

area of H is  infinite, (2.40)

area of H_, is  infinite, (2.41)

from which we can easily compute the entropy S via ([2.37)).
The surface gravity of the horizons is:

fro )1+ a1 afr

(s = a— 27’+)( - 227"+)

surface gravity of Hj is k; = CQL + 1 ot
i+ (a+1)?

surface gravity of H, is Kk, =—

2+ (a+1
2 (rt —r ) (rt — 7”_)
. e “ ( © = ( ‘
surface gravity of H; is Kk =— a2+12  (rF)2+(a+0)?
. o B a2 (ra T4 (7"; - 72)
surface gravity of H, is Kk, =« a2+02 (r;)2+(a+0)?2

which determines the temperature 7', via (2.37)).

It can be easily seen that extreme black holes, for which ry = r_, have zero

temperature, because k, =0 = /<;b+.
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2.3 Summary

In this second Chapter, we have summarized the new metric form of the large
Plebanski-Demianski class of type D black holes (2.5)—(2.9). This form is much

more convenient for geometrical or physical analysis. In particular:

o In Sec. 2.1} we outlined the derivation of a new form of the metric. By in-
troducing a reparametrization , applying the special conformal rescal-
ing S , and fixing a useful gauge of the twist parameter w (2.4]), we
were able to significantly simplify and neatly factorize the metric functions

299

e The metric depends on six physical parameters, namely on the mass m,
the rotational parameter a, the NUT twist parameter [, the acceleration
parameter «, and the charges e and g, respectively.

o Putting these parameters to zero, we recover the standard forms of the well-
known simpler metrics, such as the Kerr-Newman-NUT black hole (for
a = 0), accelerating Kerr—-Newman black hole (for [ = 0), charged Taub-
NUT black hole (for a = 0), and uncharged accelerating Kerr—-NUT black
holes (for e = 0 = g).

o By setting the Kerr-like rotation a to zero, the new metric becomes
completely independent of the acceleration «, and simplifies directly to the
charged Taub—NUT black hole. This confirms the previous observation that
there is no accelerating NUT black hole in the Plebanski-Demianski class
of type D spacetimes.

o We evaluated the NP scalars of the Weyl and Ricci tensors in the natural
tetrad (2.12)). The only non-zero components are the ¥y and @11, see (2.13)
and ([2.14), confirming the type D algebraic structure.

o We calculated the spin coefficients. Both the double-degenerate PNDs are
expanding and (generally) twisting.

o There are four distinct horizons localized as the roots of the metric function
Q(r). These are a pair of black-hole horizons H; at ri and a pair of
acceleration horizons HF at 7. The roots ri and rF are explicitly expressed

and simple, see ([2.20)—(2.23).

o For a sufficiently small « (2.27)), the four horizons follows the natural or-
dering r, <r, <rj <r}.

o Similarly to the Kerr black hole, there are ergoregions due to the non-zero
rotational parameter a. These were visualized in Fig. [2.1

o Using the curvature scalars, we clarified the presence of a ring curvature
singularity. It can occur if and only if » = 0 and at the same time [ +
a cos = 0. Various possibilities were summarized in (2.31]) and illustrated

in Fig. [2.2
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o We constructed the corresponding Kruskal -Szekeres-type coordinates, and
generated the corresponding Penrose conformal diagrams. In Fig. we
presented the version of the Penrose diagram for an appropriate 8 = const.
including the singularity. This figure is, however, modified compared to
Fig. 5 of the attached Paper [2] due to the recent findings of MacCallum.

o The physical source of the acceleration comes from the topological defects
along the two axes of axial symmetry at # = 0 and § = 7. By an appropriate
choice of the conicity parameter ', we managed to regularize one of the
axes. For a vanishing acceleration «, both the axes are regular.

» These cosmic strings/struts are twisting. This is characterized by the twist
parameter w, which is always directly related to the NUT parameter [. The
difference between the twist parameters of each axis is always the constant

Aw = 4.

e The NUT-like pathology in the neighborhood of these rotating strings or
struts was studied. These regions with closed timelike curves are generally

given by the condition ([2.36)).

o The metric form ([2.5)) is also suitable for an easy analysis of the black hole
thermodynamics. We have explicitly evaluated the area of the four horizons,
their surface gravity, and thus their related temperature T and entropy S

2-37).

To conclude, all this demonstrates the usefulness of the new improved metric
form of the family of type D black holes. We hope that various other investigations
of this interesting class of accelerating and rotating black holes with charges and
a NUT parameter can now be performed.

Although the results, published in Paper [2] cover all the main aspects of this
family of black holes, the cosmological constant A was missing.

As the next step we generalized our results to any value of A, completing thus
the derivation of the new better form of full family of type D black holes. This is
the contents of our Paper [} summarized in the following Chapter [3]
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We derive a new metric form of the complete family of black hole spacetimes (without a cosmological
constant) presented by Plebanski and Demiafiski in 1976. It further improves the convenient representation
of this large family of exact black holes found in 2005 by Griffiths and Podolsky. The main advantage of
the new metric is that the key functions are considerably simplified, fully explicit, and factorized. All four
horizons are thus clearly identified, and degenerate cases with extreme horizons can easily be discussed.
Moreover, the new metric depends only on six parameters with direct geometrical and physical meaning,
namely m,a,l,a,e,g which characterize mass, Kerr-like rotation, Newman-Unti-Tamburino (NUT)
parameter, acceleration, electric and magnetic charges of the black hole, respectively. This general metric
reduces directly to the familiar forms of either (possibly accelerating) Kerr—Newman, charged Taub—-NUT
solution, or (possibly rotating and charged) C-metric by simply setting the corresponding parameters to
zero, without the need of any further transformations. In addition, it shows that the Plebanski—-Demiafiski
family does not involve accelerating black holes with just the NUT parameter, which were discovered by
Chng, Mann and Stelea in 2006. It also enables us to investigate various physical properties, such as the
character of singularities, horizons, ergoregions, global conformal structure including the Penrose
diagrams, cosmic strings causing the acceleration of the black holes, their rotation, pathological regions
with closed timelike curves, or explicit thermodynamic properties. It thus seems that our new metric is a
useful representation of this important family of black hole spacetimes of algebraic type D in the

asymptotically flat settings.

DOI: 10.1103/PhysRevD.104.084078

I. INTRODUCTION

In this contribution, we derive and analyze a new
coordinate representation of the Plebanski—-Demianski
spacetimes [1] describing a large class of black holes
(identified also by Debever [2]). It contains, as special
cases, all the well-known simpler black holes, namely the
Schwarzschild (1915), Reissner—Nordstrom (1916-1918),
Kerr (1963), Taub-NUT (1963) or Kerr—Newman (1965)
black holes, and also the C-metric (1918, 1962), physically
interpreted by Kinnersley—Walker (1970) as uniformly
accelerating pair of black holes, see e.g., [3,4]. These
accelerating black holes can also be charged, rotating, and
can admit the NUT twist parameter.

The class of Plebanski-Demianski spacetimes, which
includes all these famous black holes, is a family of exact
solutions to Einstein—-Maxwell equations of algebraic
type D with double-aligned non-null electromagnetic field
(in the present paper we restrict ourselves only to the case
of vanishing cosmological constant)—see Chapter 16 of
the monograph [4] for the recent review and number of
related references.

“podolsky @mbox.troja.mff.cuni.cz
‘Vratny.adam @seznam.cz

2470-0010/2021,/104(8)/084078(26)

084078-1

Our new form of the metric, which further improves the
convenient representation of the class of Plebanski—
Demianski black holes found by Griffiths and Podolsky
[5-7], reads

1 0 . . 2 p?
ds? = — ——[dz—( 20+ 41 219)d } +7qp
A 2( pz asin S 2 @ r

P P 2 2 2
A0 4 sin H[adt—(r Fa+]) )d(/)] ()

where

Q:l—aza—jlzr(l—l-acose), (2)
P =1+ (I+acosh)?, (3)

aa
P(0) = (1 —mr+(l+acosé))

X (1—612(17;1[2r_(l+acos0)). 4)

© 2021 American Physical Society
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O(r) = (r=ry)(r=r)

-1 | a+1
r —aa
a’ + I

+

a
x(1+aa 5
a

r>. (s)

The main roots of Q(r), which identify the two black-hole
horizons, are (independently of a) located at

ry m+\/m2+lz—a2—e2—g2, (6)

r

m—\/mz-i—lz—az—ez—gz, (7)

with the (naturally positive) physical parameters

....Mmass,
Kerr-like rotation,

[ .....NUT parameter,

e .....electric charge,
g ..... magnetic charge,
a..... acceleration.

This is a further simplification of the previous Griffiths—
Podolsky form of the metric. The generic structure of the
metric has remained basically the same (compare (1) with
Eq. (16.18) in [4], renaming P — P, Q — Q and ¢ — p),
but the new metric functions P(6) and Q(r) are now much
more compact and explicit than previous P(6) and Q(r).
They are nicely factorized, with P determining the deficit
angles corresponding to the cosmic strings along the axes
6 = 0,  of the black holes (causing the acceleration), while
the roots of Q clearly determine the four horizons.
Moreover, the ambiguous twist parameter w has been
removed by its most convenient fixing.

To see these improvements explicitly, let us recall the
original Griffiths—Podolsky form [5] of the metric func-
tions, namely

1
Q=1 —a(7+gc059>r,
®

Pt =12+ (I+acosh)?,

(8)

l
[(wzk +e2+7) (1 + 2a—r> — 27r +
w

w*k a? -
_ 2 -
Ta-P {r T T

a

l
<1 + 2a—r> (az -+
@

and

P(0) =1 —ascos@ — a, cos> 0,

©)

2
Q(r) = [(w2k+ 2+ ) (l +2aé r) —omr+ -2 k r?

(12—12
a+l]
r,

X {lJraa—_lr} {l—a
w 0]

(10)
where the constants are

l
az = Zagrh —4a2%(w2k+ 2+,

2
ha

a; = —a ;(wszr 2+ 7,

(11)
and w’k is given by

1+ 2alm—3a? L (22 + )
1430 L (a - 1)

£
2]

w*k
a? = -

, (12)

which implies the expression

(@ =P +&+ ) +2al(a® - P)m

0k +E+F = :
g 1+3a2(%(a2—12)

(13)

Substituting (11)—(13) into (9) and (10) gives explicit but
cumbersome expressions for the key metric functions P(6)
and Q(r). This is now simplified in the new compact form
of the metric (1)—(5).

II. DERIVATION OF THE NEW METRIC

The first step in improving the form of the spacetime
is to concentrate on the first factor of the metric function
Q(r) given by (10), which is quadratic in r. It can be
rewritten as

.

2
2_12

a? =P

(14)
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It can now be observed that this rather complicated
expression nicely simplifies if we introduce a new set of
the mass and charge parameters m, e, g in such a way that

a* - l
ey i —()(;(a2 —P+e+ ),

2
7 (15)
Indeed, the factor (14) then takes the explicit form
2
k
%[rz—ZmrJr(az—lereergf)}. (16)

Provided m? + 1> > a® + e* + ¢, it has two explicit roots
r,. and r_ given by (6) and (7), respectively. The metric
function (10) can thus be factorized to

Q) =7 (r=r)(r=r.)

X (l +aa_lr> (1 —aa+lr), (17)
w w

where the constant S is a shorthand for the inverse of (12),
namely

_ w*k
1= P (18)
Substitution from (15) into (12), rewritten as
o’k 2
ﬂ 1 +3a2?(a2—l2)
L 2 r 52 -2
=14 2a—m-3a"— (& + 7). (19)

w 0]

yields the explicit expression for S in terms of the new
physical parameters

l s
S=1-2a—m+a*—(@*-FP+e+g). (20)
w ()

Notice that it can also be expressed in terms of the roots r .
and r_ as
|

l 2
Szl—ag(u—&-r,)—s—az;ur,

/ /
=(1-a— l—a—r_).
(1-at ) (1-atr)

One may be worried about the change of the “main
physical parameters” introduced by (15). However, by
inspecting the expressions (19), (20) it is immediately seen
that

(1)

az_lz
2k :1’

@
and consequently m = i, e = &, g = g. (22)

S =

/
a—=0 implies
@

It means, that in all the subcases o = 0 or [ = 0 (namely for
Schwarzschild, Reissner—Nordstrom, Kerr, Taub—NUT or
Kerr—Newman black holes, and also for their accelerating
generalizations with vanishing NUT parameter /) the mass
parameter m and the charges e, g actually remain the same.
And since there are no accelerating purely NUT black holes
in the Plebanski—Demianski class of type D solutions, see
[8], the difference between m, e, g and i, &, § occurs only if
aal # 0, cf. (30). That is the most general case of accel-
erating black holes with both the rotation a and the NUT
parameter [, whose geometric and physical properties have
not yet been studied.

After factorizing the function Q(r), as the second step
we now turn to the metric function 7P(6) determined by the
constants az and ay. It is known that these two Plebanski—
Demianski metric functions are related, and for vanishing
cosmological constant they share the root structure. It can
thus be expected that also the function P(6) could be
factorized by the suitable reparametrization (15). This is
indeed the case. Expressing (11) in terms of the new
parameters m, e, g we get

a o’k l
—=2a- DL S N e
ay =205 |m am(a F+e*+g%)|,
2 2
__aa w°k 2lp 5 5 )
a @ S (a +et+ 7). (23)

Using (18), (20) and substituting (23) into (9) we obtain

2 (I+ acos0)?

2
k
PO) =S zw 12—a3c059—a4cos20
a2 —
_ w*k 1_2al+acos¢9m+
a’ =2 @

_ 571(1 _ar+1+acos€) (l _
®

l+acos9)
ar_—————|.

" (@ =P +e*+ )

) (24)
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The metric function P(0) is thus also factorized when
m?> + 1> > a® + e* + g%, i.e., when the roots r, and r_
exist.

To summarize, we have obtained the key expressions
(17) and (24), which can be written as

Q) =570(r).  PO)=S"PO). (25)
where
0(r) = (r—r+)(r—r,)(1 +a“;’r> (1 —aa+lr>,
(26)
P(6) = <1 — ar, H 2008 “;059) <1 — qr_LFacos6 — 9).
27)

Putting these into the original metric [5—7] (which has the
same form as (1) with Q, P replaced by Q, P, respectively)
we get

S

=

0

v

ds?

) 2
-=8572 {dr— <asin20+4lsin2%0) dq)} +p§dr2

P P 2
+Fd92+?sm295‘2 {adz—(rz—&—(a—i-l)z)d(p} )
(28)

The third step in deriving the new metric is now based on
an observation (first made in [9]) that it is possible to
rescale the coordinates t and ¢ by a constant scaling factor
S # 0 (because their range has not yet been specified). In
other words, we perform the transformation ¢ — St and
@ — S¢ which effectively removes the constants S from the
conformal metric d§? = S~'ds2. Moreover, a constant
conformal factor S~ does not change the geometry of
the spacetime (recall also (22), according to which § =1
whenever aal = 0). Therefore, the Plebanski—-Demiafiski
black-hole solutions can equivalently be represented by the
metric d§%. Dropping the hat, we arrive at the metric (1).

In fact, this specific rescaling procedure removes the two
coordinate singularities hidden in the expression (21) for §
at alr. = w, making our new metric form (1)-(5) some-
what richer.

To complete the derivation, it only remains to fix the
remaining twist parameter . In the original Griffiths—
Podolsky form of the metric [5], this was left as a free
parameter which could be set to any value (if at least one of
the parameters a or [ are nonzero, otherwise w = 0—see
the discussion in [5,7]) using the remaining coordinate
freedom. This ambiguity is unfortunate since the metric
explicitly contains nonunique @ coupled both to the Kerr-
like rotation a and the NUT parameter . We can now

improve this drawback. It was found in [9], and conven-
iently employed in [10], that the most suitable gauge choice
of the twist parameter is

a?+ 2
= , 29
w=" (29)
so that
a a? l al
= R 30
o a*+ o a4+ (30)

Substituting this gauge into the expressions (8), (27) and
(26), we obtain the explicit metric functions Q, P and Q
presented in (2), (4) and (5), respectively. The new form of
the metric (1)—(5), which nicely represents the large family
of type D black holes, is thus completely derived.

III. MAIN SUBCLASSES OF TYPE D
BLACK HOLES

When m? 4 > > a® + > + ¢, the new metric (1)—(5)
naturally generalizes the standard forms of the most impor-
tant black hole solutions. These are now easily obtained by
setting the corresponding physical parameters to zero.

A. Kerr-Newman-NUT black holes
(x=0: no acceleration)
By setting the acceleration parameter o to zero, the
functions (2), (4) reduce to Q =1, P =1, so that the
generic metric (1) simplifies as

ds? = - /% [dt ~ (asin®0 + 4isin* 1 0) d(p} g gdrz
+p2d6* + Si:# {adt (P +(a+ l)z)d(ﬂ:| 2,
(31)
where
O(r) = (r—ry)(r-r), (32)
p? =1+ (I+acosh)>. (33)

The two roots of Q(r) identify the two black-hole horizons
located at

rizmzl:\/mz-i-lz—az—ez—gz. (34)
Famous subcases are readily obtained, namely the black
holes solution of Kerr—Newman (/ = 0), charged Taub—
NUT (a=0), Kerr (I=0, e¢=0=g), Reissner—
Nordstrom (a =0, [ =0), and Schwarzschild (a =0,
[=0,e=0=yg).
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B. Accelerating Kerr—Newman black holes
(I=0: no NUT)

Without the NUT parameter /, the new metric (1)
simplifies to

1 0 . 2 p?
ds? = o (—{7 {dt — asin®0 d(p} + Edr2
/’2 o, Py 2 2 :
+Fd0 —0—/?51119 adt — (r* + a*)de| |, (35)
where
Q=1-arcosé, (36)
P> =12 4 a*cos? 6, (37)
P(0) = (1 —ar, cos@)(1 —ar_cos0), (38)
o(r)=(r—ry)(r=r_)(1 +ar)(l —ar). (39)

This is a compact factorized form of the class of accel-
erating, rotating, and charged black holes. The spacetime

admits 4 horizons, namely two black hole horizons at r, =

m 4+ \/m? — a*> — ¢* — ¢ and two acceleration horizons at
+a~!. For vanishing charges (e = 0 = g), it is equivalent to
the rotating C-metric identified by Hong and Teo [11]. For
vanishing acceleration (a = 0), the standard form of Kerr—
Newman solution in Boyer—Lindquist coordinates is
recovered.

C. Charged Taub-NUT black holes
(a=0: no rotation)

By setting the Kerr-like rotation parameter a to zero, the
new metric (1) considerably simplifies and becomes inde-
pendent of the acceleration a (because the metric functions
(2)—(5) depend on a only via the product aa). Indeed,
Q =1, P=1, so that

ds? — _p% (dz — 4lsin?L 0 dso)2
+ gdrz + (2 + P)(d6? +sin’0 dg?),  (40)
where
0(r) = (r=r.)(r=r.). 4D
pPr=rr4 P (42)

This explicitly demonstrates that there is no accelerating
NUT black hole in the Plebariski—-Demiariski family of
spacetimes. This observation was made already in the original
works [5—7], and recently clarified. It was proven in [8] that
the metric for accelerating (nonrotating) black holes with

purely NUT parameter—which was found in 2006 by Chng,
Mann and Stelea [12] and analyzed in detail in [8]—is of
algebraic type 1. Therefore, it cannot be contained in the
Plebanski—Demianski class which is of type D.

The charged Taub—NUT spacetime (40) is nonsingular
(its curvature does not diverge at r = 0), away from the axis
6 = & (where the rotating cosmic string is located) it is
asymptotically flat as r — +o0, and the interior of the black
hole is located between the two horizons r, > 0 and

r_ > 0, where ry =mi\/m2+l2—ez—g2.

D. Uncharged accelerating Kerr—NUT black holes
(e=0=g: vacuum)

Another nice feature of our new metric (1)—(5) is that it
has the same form for vacuum spacetimes without the
electromagnetic field. Indeed, the electric and magnetic
charges e and g, which generate the electromagnetic field,
enter only the expressions for ry introduced in (6), (7). In
other words, e and g just change the positions of the two
black hole horizons. In the vacuum case, these constant
parameters simplify to

re=m+Vm?+ P -ad.

The metric (1)—(5) with (43) represents the full class of
accelerating Kerr—-NUT black holes. It reduces to accelerat-
ing Kerr black hole when / = 0, and nonaccelerating Kerr—
NUT black hole when a = 0. For a = 0 it simplifies directly
to the Taub—NUT black hole (40) without acceleration.

(43)

IV. EXTREME BLACK HOLES AND
HYPEREXTREME CASES

The new form of the generic black hole (1)—and also all
its subclasses—naturally admits a special case with a
degenerate horizon, which is the situation when the two
horizons coincide, r, = r_. In view of (6), (7), this occurs
if and only if the extremality condition

m*+ > =a® + e* + ¢ (44)
is satisfied, and in such a case the extremal horizon is
located at

r=nm. (45)
Consequently, the metric functions take the form
aam 2
P(G) = 1- a2—-‘,-12 (l + acos@) N (46)
a—1 a+1
Q(r) = (r—m)2(1 +aamr) (1 —aamr).
(47)
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while all the remaining expressions in the metric (1) remain
the same. Apart from the degenerate black hole horizon at
r = m with zero surface gravity (and thus zero tempera-
ture), there are two acceleration horizons.

This large family of extremal accelerating Kerr—
Newman—-NUT  black holes admits various natural
subclasses which are easily obtained by setting the corre-
sponding physical parameters «, [, a, e, g to zero. In
particular, Kerr—-Newman—NUT black holes without accel-
eration (a = 0) take the form

Y S
d? = -2 [dz - (asin29 +disin10) dqa} +2ar
p 0
+ p?d&® + [adt — (P + (a+1)>)dg)*, (48)
where
0 (r—m)? (49)
p* P4 (I+acosf)?

The subcases are Kerr—Newman (/ = 0), charged Taub—
NUT (a=0), Kerr (=0, ¢ =0=g), and Reissner—
Nordstrom (a = 0, [ = 0) extremal black holes, satisfying
the extremality condition (44).

Interestingly, in our recent work [10] we proved the
equivalence of degenerate horizons in this family (48), (49)
of type D black holes to a complete class of extremal
isolated horizons with axial symmetry.

Finally, if the physical parameters satisfy the relation

m*+ P <a®+e+ g (50)
the black hole horizons are absent. This case represents
hyperextreme spacetimes with very large rotation a and/or
charges e, g. The metric function Q(r) does not admit the
real roots r,,r_. Instead, it involves a nonfactorizable
|

o
1

s

sin @

1
- V2p

(8 +<asm29+4lsm219> > 1\/—89}

quadratic term of the form (16). In such a case, the metric
(1) remains valid, but its metric functions P and Q are

[+ acos@
P(Q)zl—ZaaTw
[+ acos0
+c 22(( lz)z)(2_12+€2+92)' (51)
O(r) = (* =2mr+ (a® = P + &> + ¢%))
l
<1+aa 5 lz)(l aa Z+lz) (52)

This exact spacetime represents a naked singularity of mass
m with rotation @, NUT parameter /, electromagnetic charges
e, g, and acceleration a caused by the tension of rotating
cosmic strings attached to it along the axes. There are only
two acceleration horizons. For a = 0, the metric simplifies
considerably to the form (48) with

0

P

r?=2mr+ (a®> — P+ &> + ¢%)
r* + (I + acos 6)?

(53)

The new metric form (1)—(5) thus nicely describes the
complete family of black holes of type D, as well as their
extreme cases and hyperextreme spacetimes with naked
singularities.

V.PHYSICAL DISCUSSION OF THE NEW METRIC

To study the global structure of the spacetime and to
analyze its physical properties, it is first necessary to
determine the gravitational field, in particular the specific
curvature of the geometry, and the electromagnetic field.
These are encoded in the Newman—Penrose scalars—the
components of the Riemann and Maxwell tensors with
respect to the null tetrad. Its most natural choice is

(<r2+<a+z>2>a,+aa¢)+\/§ar},
((* + (a+ 1)), + ad,) \/_a,},

(54)

A direct calculation reveals that the only nontrivial Newman—Penrose scalars corresponding to the Weyl and Ricci tensors are

a? =P

a2+l>

2

Q3
Y¥y=—————— |- in(1—i
2 [r-‘ri(l-‘racosg)}z’{ (m+1)< 1
2, 2
T Gty
r—i(l+acos®)

N azaj 7 [arcos@ +il(l + acos 9)])} .

(55)
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94
@) == (e* + gz)p_4’ (56)

N —

while the Ricci scalar vanishes (indeed, R = 0 for electro-
vacuum solutions with A = 0). Recall also (2), (3), i.e.,

aa
r

S
a’+ 2

(I+acosf), p*=r*+(I+acosd)>.

(57)

The curvature for the main subclasses of type D black
holes, summarized in Sec. III, are now easily obtained by
setting up the corresponding physical parameters to zero:

(i) Kerr—-Newman-NUT (a = 0: no acceleration)

1
[r+i(l+ acosd)]?

\I‘Z—

x[—(m+il)+ < +g } (58)

r—i(l+ acos0)
(ii) Accelerating Kerr—-Newman (/ = 0: no NUT)

(1 —arcosf)?

Yy=—"—=
2 (r +iacos 6)?
1 4 arcos®
_ 1—1i 2 2y AR ,
x{ m(1 —iaa) + (e +g)r—iacos€}
(59)
(iii) Charged Taub-NUT (a = 0: no rotation)
il 2 2
‘PZ:—m+1 e +g (60)

(r+il)> (P + ) (r+il)?>"

Of course, these expressions further simplify if (some of)
the remaining parameters are zero. In particular, the Kerr—
Newman black hole is recovered from (58) if / = 0. The
C-metric (accelerating charged black holes without rota-
tion) are obtained from (59) when a = 0. The Reissner—
Nordstrom black hole follows from (60) when / = 0. The
uncharged (vacuum) black holes are obtained for
e = 0 = g. Moreover, all these particular expressions for
J

a* -1
K. = m(Fi :I:aaaz—_i_le;) F 1<F; F aa

Fy=(rFL)(rP+4rL+L?),

a2—12+e2+92
a’> + 12
T, = (r?+2rL - L?),

Y, agree with those presented in the corresponding
chapters of the monograph [4].

It is also useful to calculate the spin coefficients for the
null tetrad (54). It turns out that

k=v=0, 6=41=0,
Y . aa
N |
I\ e
aﬁsinﬂ(l . aa
—i
\/5/)3 a*+

(l+acos€)2> (r—i(l+acosb))

T=n—

2 rz)(r—i(l—i-acosﬁ)).
(61)

Also the coefficients « = f# and ¢ = y are nonzero (we do
not write them because they are not simple). Both double-
degenerate principal null directions generated by k and 1
are thus geodetic and shear-free. However, they have
expansion and twist given by ¢ = u = —(0 + iw), that is

%Y aa
= \/5[)3 (r“rm(l +ac050)3), (62)
w:—g\z/_\z/g(ﬂracosﬁ). (63)

It is now explicitly seen that these black-hole spacetimes of
algebraic type D are nontwisting (for a general r, 0) if
and only if a = 0 = . Moreover, on the horizons identified
by Q(r) =0, both the expansion and the twist vanish
©®=0=w).

For investigation of the curvature singularities and
asymptotically flat regions, it is also useful to evaluate
the Kretschmann scalar

K = RypeqR! = 48Re(WV3), (64)

for type D spacetimes. Interestingly, it takes the factorized
form

96
K=48—5 K. K_, (65)
P
where

aa
F:E) - (€2 _;’_gz)(l +02—+12rL)Ti’

L =1+ acosé. (66)
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These expressions characterize the gravitational field.

When e, g are not zero, the black-hole spacetime also
contains a specific electromagnetic field represented by the
Maxwell 2-form F =1F,dx? A dx* =dA. Its 1-form
potential A = A, dx“ is

A=/ + ¢ [% [dz— (asin2¢9+4lsin2%9> dgo] . (67)

Therefore, the nonzero components of F,, = A, — A,

are
Fpo=—\/&+¢@p~*(r* = (I+ acosB)?),
F, =-F, (a sin20 + 41 sin2%6’>,

Fy=2ay/e® + ¢@p~*rsin0(l + acos ),

Fo=—2\/&* + ¢@p~*rsin0(l + acos0)(r* + (a + 1)%).

(68)
The corresponding Newman—Penrose scalars are
@y = F kmb =0, ®, = Fml’ = 0, and
1 b » Ve + g Q?
D) == Fop (k0 +m'm’) = —————"——s. (69)
2 (r+i(l+acos®))

It follows that ®,®, = 2d,,, in fully agreement with (56).

A. Position of the horizons

The new metric form (1) is very convenient for inves-
tigation of horizons. Clearly, the “radial” coordinate r is
spatial in the regions where Q(r) > 0, while it is a temporal
coordinate where Q(r) < 0. These regions are separated
by horizons localized at Q(r) =0. In the case when
m? + 12 > a® + e + ¢?, the metric function Q is given
by (5).

O(r) = (r=ry)(r=r2)

a a+1
2

l
2 r) (1 —aa r). (70)

It is a quartic expression explicitly factorized into four real
roots, so that there are four horizons, namely

+

X (1+aa
a

H  at rZEq:m—i—\/mz—i-lz—az—ez—gz,

la®>+ 17
Soat ri=+4-— 73
Ha at rg +aa2+al (73)
_ _ la>+ 1
H, at r,= Al —al (74)

see the definitions of r introduced in (6), (7). It is clear that
r, > 0 for an arbitrary choice of the physical parameters
(assuming m > 0), but r_ can take any sign. In particular,

>0l <ad+e+ ¢, (75)
ro<0elP>a+e+ ¢, (76)
r.=0eP=d+c*+ g (77)

The horizons Hj at rif are two black-hole horizons.
Interestingly, in our new metric form these are independent
of the acceleration parameter a. In fact, they are located at
the same values r., r_ as the two horizons in the class of
standard (nonaccelerating) Kerr—Newman—-NUT black
holes given by a = 0, see [4].

The horizons Hy at ri are two acceleration horizons.
Their presence is the consequence of the fact that the black
holes accelerate whenever the parameter a is nonzero. It is
interesting that their location is now independent of mass m
and charges e, g of the black holes. The values of r depend
only on the acceleration a and the specific combination of
the twist parameters a, [. Moreover, when [ = 0 these are
simply given just by the acceleration parameter as
ri = da7!. They retain the same values as in the C-metric
[4] even if it is generalized to include the charges
and rotation, that is for accelerating Kerr—Newman
black holes.

Of course, there may be less than 4 horizons. As
already discussed in Sec. IV, when the physical parameters
satisfy the extremality relation m? + 1> = a® + > + ¢° the
two black-hole horizons Hf,’, ‘H, coincide because
r. = r_. In such a degenerate case the extremal horizon
is located at

ri=r, =m, (78)
see (44) and (45), while the two distinct acceleration
horizons H: given by (73) and (74) remain the same.
This is the horizon structure for the family of extremal
accelerating Kerr—Newman-NUT black holes, recently
studied in [10]. If the parameters satisfy m? + 1> < a® +
e + ¢* the black-hole horizons HZ, ‘H,, are absent. Such

(71) hyperextreme spacetimes involve accelerating naked sin-
gularities with just two acceleration horizons H.
Hy at rp=r_=m-— \/mz Ny P S gz, In the limit @ — 0 of vanishing acceleration, from (73),
(74) we formally obtain r — 4co which is consistent
(72) " with the fact that the two horizons ‘HE disappear for
084078-8
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nonaccelerating Kerr—Newman—-NUT black holes. In the
complementary limit @ — 0 of vanishing Kerr-like rotation,
we also obtain ri — co. This explicitly confirms that
there are no accelerating purely NUT black holes in the
Plebanski—-Demianski family of type D spacetimes. Indeed,
by setting a = 0 the metric (1) becomes independent of «,
and the metric reduces to (40) representing charged Taub—
NUT black holes without acceleration. Nevertheless, accel-
erating black holes with purely NUT parameter exist
outside the Plebanski-Demianiski family [12]—they are
of algebraic type I, and have been recently analyzed in
detail in [8].

Returning now to the generic case with four distinct
horizons, it immediately follows from (71)—(74) that
(assuming non-negative parameters @, a, and /)

0<Ll<a.
(79)

r, <r} always, while r;<rf for

In the limiting case [ — a we obtain r} = a~!

while for [ > a there is 0 < r} < rj.
The physically most natural ordering of the horizons

s g = —00,

rg<r,<ri<rg, (80)
in which the two black hole horizons H; are surrounded by
two “outer” acceleration horizons HZ, requires a sufficiently
small acceleration. The condition r; < r; explicitly reads
1 a®+ P
<=, (81)
r.a”+al
while r; < ry for any 0 </ < a because in such a case
r; <0but0 < ry.
By evaluating Q given by (70) at » = 0 we obtain

[ <a.

(82)

Qr=0)=rr.=a*-P+e+¢ >0 for

Consequently, Q > 0 for any (r,, ;). It follows that the
coordinate r is spatial in the regions (ry, r;,) and (ry, ry),
that is berween the black-hole and acceleration horizons,
while it is temporal in the complementary three regions.
Moreover, using the condition (81) we infer that

aa
— = I_
a’+ 2

aa
(I4+acosf) < oo

e ry(l+ acos0)

P < (83)

It means that both brackets in the metric coefficient P(6) given
by (4) are positive, and thus the function P in (1) is always
positive, retaining the correct signature of the spacetime.

B. Ergoregions

With the rotation parameter a, the family of black holes
(1) contains ergoregions similar to those known from the
famous Kerr solution.

The boundary of the ergoregion is defined by the condition
g, = 0, where the corresponding metric coefficient reads

1 .
G = Qz—pz (Pa2 Sll’l2 60— Q) (84)
The corresponding condition is thus
O(r,) = a?sin’0 P(0), (85)

where the metric functions P(6) and Q(r) are given by (4) and
(5), respectively. For a fixed value of the angular coordinate 6,
the right-hand side of (85) is some constant. And since the
function Q(r) is of the fourth order, it follows that there are (at
most) four distinct boundaries r, of the ergoregions in the
direction of §. These are associated with the corresponding
four horizons H; and H, defining the surfaces of infinite
redshift, and also the stationary limit at which observers on
fixed r and @ cannot “stand still”.

Solving the Eq. (85) explicitly is generally complicated
but can be plotted using computer, see Fig. 1. It is also
obvious that the ergoregion boundary “touches” the
corresponding horizon at the poles 8§ =0 and 0 =7n
because there the condition (85) reduces to Q(r,) = 0.

In the case of vanishing acceleration a = 0, the metric
functions (4) and (5) simplify to P=1and Q = (r—r,)
(r—r_). Equation (85) reduces to r2—2mr,+
(a®cos® @ — I> + €* + ¢g*) = 0 which has two roots

Fex(0) =m =+ \/m2 + 12 —e*— g —a*cos’h. (86)

This explicitly localizes the two ergoregions for the
Kerr—Newman-NUT black holes. As for the standard
Kerr black hole, it extends most from the corresponding
horizon in the equatorial plane @ = z/2, in which case
Fox =mE/m? + P — e — ¢

On the other hand, for a = 0 there are no ergoregions
because the condition (85) reduces to Q(r,) =0, i.e., the
boundaries coincide with the black hole horizons Hj
at ry of the Taub—-NUT spacetime (possibly charged).
In fact, such horizons become the Killing horizons
associated with the Killing vector field 0,, located at
m =+ \/m? + > — e* — g*>. To summarize, the ergoregions
are related only to the Kerr-like rotation represented by the
parameter a, not to the NUT parameter /. There are no
ergoregions in the purely NUT spacetimes.
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-5 5 = 0 5

FIG. 1. Plot of the metric function g, (84) for the accelerating black hole (1) with axes @ = 0 and € = z. The values of g, are
visualized in quasipolar coordinates x = /1% + (a + [)?sin6, y = \/r* + (a + [)? cos @ for r > 0. The grey annulus in the center of
each figure localizes the black hole bordered by its horizons Hj at r, and r_ (0 < r_ < r, ). The acceleration horizon H; at r; (big red
circle) and the conformal infinity Z at Q = 0 are also shown. The grey curves are contour lines g,,(r, 0) = const., and the values are
color-coded from red (positive values) to blue (negative values). The green curves are the isolines g, = 0 determining the boundary of
the ergoregions (85) in which g,, > 0 (green regions). They occur close to the horizons near the equatorial plane @ = z/2. The plot is
made for the choicem =3,a=1,1=02,e=9g=16,a=0.12 (left) and m =3,a =1.5,1 = 0.6, ¢ = g = 1.6, a = 0.12 (right).
For larger values of a and / the ergoregions are bigger and shifted toward @ = 7. In fact, it can be seen that the ergoregion above the black
hole horizon at r, is merged with the ergoregion below the acceleration horizon at r in the equatorial part.

C. Curvature singularities because K, K_ ~ % in the vacuum case, and K,K_ ~ *in
By inspecting the Weyl NP scalar P, given explicitly by ~ the electrov:':lcuum case. o
the expression (55) we conclude that the curvature singu- Now, the important observation is that the necessary (but

larities occur if and only if r+i(/ +acos@) = 0 (or its ~ not sufficient) singularity condition /4 acos® =0 can
complex conjugate). Notice that this complex equation  Only be satisfied if 7] < |al. Otherwise, the expression / +
implies also p* = 2 + (I + a cos 0)* = 0 which represents a cos @ remains nonzero because cos @ is bounded to the

the curvature singularity in the Ricci scalar ®,; given by ~ Tange [-1.1].

(56) when the electric and magnetic charges e, g are We thus conclude that in the whole family of type D
nonzero. Both the real and imaginary parts must vanish spacetimes (1) the curvature singularity structure depends
so that the curvature singularity condition reads on the relative values of the two twist parameters, i.e., the

Kerr-like rotation a versus the NUT parameter /, as follows:
r=0 andatthesametime [+ acosf=0. (87)
=0, a=0: singularityatr =0 forany®8,
The presence of the curvature singularity is confirmed by . .
the behavior of the Kretschmann scalar K = R, ,R%*¢ =0, a#0: singularityatr =0 for 0 = z/2,
given by (65). The second condition (87), that is L = 0, 0<|l <lal: singularityatr = 0 for cos@ = —I/a,
implies Q =1, p> =12, F, =3, T, = 1, and

l=+a: singularityatr =0 for = =,
2 _ 12 [P : : — —
Ki:m(lzl:aaaz 2)r3 l=—-a: singularityatr =0 for 6 =0,
a’+1 |l| > |a| > 0: no singularity,
222
F l<1 F aa%) P —(+ @) [#0,a=0: no singularity. (89)
a

Recall that throughout this paper we naturally assume

In the limit » — O the Kretschmann scalar thus diverges, X .
that all physical parameters m, e, g, @, a, [ are non-negative.

K — 48 K K_ S e (88) However, for the sake of completeness, in the above table
ri? ' we have admitted the situation in which a and I can be any
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real numbers. In fact, the reflection symmetry ¢ — —¢ of
the metric (1), or equivalently # — —f, can be used to
change a - —a or [ - —[ when [ =0 or a = 0, respec-
tively. However, in the generic case when both a and [ are
nontrivial, their relative sign plays the role.

Of course, these results agree with the standard character
of the singularity » = 0 of the Schwarzschild, Reissner—
Nordstrom and (possibly charged) C-metric spacetimes
(I = 0, a = 0), the ring singularity structure of the Kerr and
Kerr—Newman black holes (I = 0, @ = 0), and the absence
of curvature singularities in (possibly charged) Taub—NUT
spacetime (a = 0, a = 0).

Finally, it may be useful to graphically represent the
global curvature and horizon structure of these black hole
spacetimes. On a schematic picture in Fig. 2 we depict the
section t = const., ¢ = const., taking the full range of
0 € [0, 7] distinct from the specific value cos@ = —I/a.
Therefore, the curvature singularity located at r = 0 is not
encountered, and it is possible to consider the full range of
the coordinate r € (—o0, 4+00). In the vicinity of r = 0 the
curvature of the spacetime is maximal, in the region r > 0
(the right part of the surface) it decreases to zero, and
similarly in the region r < 0 (the left part of the surface)—
far away from the origin the spacetime becomes asymp-
totically flat. The angular coordinate 6 € [0, z] is plotted
perpendicularly, completing the full circles r = const.

-
oy,
0

FIG. 2. A schematic visualization of the curvature structure of
the generic black hole spacetime (1) using a section with fixed
coordinates ¢ and ¢. Away from the singularity located at cos 8 =
—Il/a,r =0 it is possible to cross r = 0 from the asymptotically
flat universe in the region r > 0 (right part) to another universe in
the region r < 0 (left part). In this diagram we also plot the
positions of the two black hole horizons H;, and H; at r, and r_
(red and green circles, respectively), and the two distinct infinite
axes 0 = 0 and € = x (dashed lines).

(considering also the antipodal section ¢ + 7 in the second
half of the circle). The resulting “neck” or “wormhole”
connects two distinct universes. Positions of the two black
hole horizons H; at rj =r, and H, at r, =r_ are
indicated by red and green circles, respectively. Here we

assume 0 <l <a<+/a’+e>+ ¢ sothat0<r_<r,.
In this plot we also show the position of the two distinct full
axes # = 0 and € = #. These are indicated by dashed lines
on top and bottom of the surface.

It should be emphasized that this is only a schematic
picture, not an embedding and rigorous construction (it
cannot be done because the r-coordinate is tremporal
between the horizons H; and ‘H;", and also because the
“point” cos@ = —I/a, r=0 1is actually the curvature
singularity.

Using the same schematic plot of the central domain of
the black hole spacetime, we can also indicate the location
of the curvature singularity at r =0, cos@ = —I/a for
various values of the NUT parameter / (assuming the same
a and other physical parameters). As in Fig. 2, the origin
r =20 is plotted in Fig. 3 as a black circle around the
“neck,” and the two axes located at # = 0 and # = 7 are
indicated by dashed lines on top and bottom of the surface.

There are 7 such plots in Fig. 3 corresponding to 7
specific values of //a. When the NUT parameter vanishes,
[ =0, the curvature singularity is located at r =0 for
6 = x/2. In the middle plot in Fig. 2 such a singularity is
indicated by red dots. In fact, considering also the addi-
tional angular coordinate ¢ € [0,2x), this forms a ring
singularity of the Kerr—-Newman black hole, shown here as
the red dashed circle in extra dimension. In the case when
| = a the curvature singularity is located at the pole 0 = «
(the bottom right plot), while for / = —a it is located at the
opposite pole & = 0 (the top left plot). In the generic case
|I| < |al, the ring curvature singularity is located at specific
6 between these extremes, such that cos@ = —I/a (the
bottom left and the top right plots). Finally, when |I| > |a|,
there is no curvature singularity (the top and the bot-
tom plots).

In a similar way, by the red dots and the red dashed line
we have indicated the position of the ring-like curvature
singularity at » = 0 in Fig. 1.

D. Conformal diagrams: Global structure and infinities

In Sec. VA we have already clarified that the coordinate
singularities of the metric located at r and ri correspond
to four distinct horizons Hj and HI (provided
m? + 12 > a® + €> + g*). We will now explicitly construct
coordinates which cover the whole spacetime, including
these horizons given by the roots Q(r) = 0 of the quartic
function (70). They will enable us to subsequently derive
the corresponding Penrose conformal diagrams showing
the global structure of this family of type D black holes
represented by the metric (1).

084078-11

93



Paper 2, Phys. Rev. D 104, 084078 (2021)
New improved form of black holes of type D

JIff PODOLSKY and ADAM VRATNY PHYS. REV. D 104, 084078 (2021)

L €(-1,0)
a

“e=rr

FIG. 3. Schematic visualization of the curvature singularity located at r = 0, cos@ = —[/a in the black hole spacetime (1) for 7
distinct choices of the NUT parameter I. For |/| > |a| such singularity is absent and it is possible to regularly cross r = 0 at any 0,
entering another asymptotically flat universe.

To this end, we first introduce the retarded and advanced 1 [a*Psin®0 — Q
, , 5
null coordinates ds” = o {/’42 (dv—Tdg,)
+2(dv — Td¢,)(dr — aPsin®0 d¢,)
u=t—r, and v=r1+r,, (90) do?
+p? (T + Psin’¢ d¢§>} : (93)
with the fortoise coordinate .
The function
2 2 e 91
r*z/r +Q(?;rl) dr. 1) T (0) = asin® 6 + 4lsin* 30 (94)
r

was introduced to abbreviate the expression. It also enters a

. . . useful identity
and also the corresponding untwisted angular coordinates

P4+ (a+1)?—aT =12+ (I+acosh)>=p*  (95)

_ dr _ dr
bu=¢p—a o0 and ¢, =¢+a o0 (92) Obviously, the metric (93) is regular at Q(r) = 0, so that
the coordinate singularity at the horizons has been

removed.
Using the advanced pair of coordinates {v,¢,}, the By employing the complementary retarded pair of
metric (1) takes the form coordinates {u, ¢, }, the metric (1) reads
084078-12
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1
ey
—2(du — Td¢,)(dr + aPsin?0 dg,)

de?
+p? (7 + Psin?0 d¢§>} ,

ds?

{azPsinZG -0 (du—Tdgs,)?

Pz

(96)

which is also regular at Q(r) = 0.

Actually, these metrics are a considerable generalization
of the original coordinate forms of the rotating Kerr—
Newman black hole solutions, see Eq. (1) in [13],
Eq. (5.31) in [14], or Eq. (11.4) in [4]. Now it includes
not only the usual physical parameters m, a, e (and/or g),
but also the NUT parameter / and the acceleration param-
eter a.

As usual, the next step in construction of the maximal

spacetime is naturally revealed. Using the relation (90) we
immediately obtain

v—u=2r/r), (97)
so that
_ Y .
2dr = Py p e (dv —du). (98)

This relation can be used to eliminate the dr-term either
from the metric (93) or (96).

Moreover, due to the simple factorized form (70) of the
metric function Q(r), the integral (91) defining the function
r.(r) in (97) can be calculated explicitly as

analytic extension of the manifold is to introduce both the r r
null coordinates u and v simultaneously (dropping r as a r.(r) = k; log|1 - s + kj, log|1 - -
coordinate). Clearly, for fixed values of ¢, and 6 the radial b b
null geodesics are simply given by v = const., while for kloell = | + k1ol = = 99
fixed values of ¢, and @ the complementary radial null +halog + +halog - (99)
geodesics are given by # = const. Therefore, by employing
both the coordinates u and v, the causal structure of the where the auxiliary constant coefficients are
J
o= (@ + P)?[r2 + (a + 1)}
b T om(a® 4+ P+ aala—Dry)(a® + B —aala+Dr.)’
- — (@> + P)*[r2 + (a+ 1)7
b 2m(a® 4+ B +aa(a—Dro)(a® + P2 —aala+ Dr_)’
o= (@® + P)[(a® + P)* + &?a’(a + 1))
“ 20a*(a® + P —aa(a+ )r,)(a®> + 2 —aala + r_)’
20 PV 4+ P 4 Pl (d? — P)?
ko = (a* + P)[(a* + I*)* + oa*a*(a )?] (100)

each associated with the corresponding horizon H; located
at r = rﬁ, where h = b (for the black-hole horizons) or
h = a (for the acceleration horizons). Inverting the function
(99), we can express the metric functions Q, p? and Q in
terms of the null coordinates v — u instead of r by using the
relation (97).

To obtain the maximal extension of the black-hole
manifold represented by (1), we now “glue together”
different “coordinate patches” (charts of the complete atlas)
crossing all the horizons, until a curvature singularity or
conformal infinity (the scri 7) is reached. In order to derive
the correct causal structure, it is essential to employ the null
coordinates u and v. Therefore, we apply the coordinate
patches of the metric form (93) for extending the spacetime
across the horizons in the null direction given by the
advanced coordinate v, while we apply the coordinate
patches of the metric form (96) for extending the spacetime
across the horizons in the complementary null direction

" 20 (@ + B +aala—Dro)(a® 4+ P+ aala—Dr.)’

[

given by the retarded coordinate u. Since both these
metrics are regular for Q = 0, the coordinate singularities
at all the horizons Hi are removed, step-by-step.

However, to perform this procedure exactly and cor-
rectly, two complicated issues must also be clarified. The
first problem is the fact, that the distinct coordinate patches
(93) and (96) employ distinct angular coordinates ¢,
and ¢, respectively. The second problem is to prove that
thus obtained maximal extension of the manifold is
analytic.

To resolve the first problem associated with distinct
angular coordinates ¢, and ¢,, we can employ the general
strategy suggested by Boyer and Lindquist [15] for the Kerr
spacetime and subsequently used also for the charged Kerr—
Newman spacetime by Carter [13]. The trick is based on
using the specific Killing vector fields which are the null
generators of the horizons. In terms of the two coordinate
patches (93) and (96), such special vector fields read
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&'=0,+Q,0,, andalso &'=0,+Q,0,, (101)

where the angular velocity of the given horizon H is

a

= 102
ry+ (a+1)? (102)

Qh

Indeed, using the corresponding metric coefficients of (93)
and (96), evaluated at Q = 0, it is straightforward to show
that £%¢,(H) = 0 whenever Q;, = a/(p2 + aT). Applying
the identity (95), we obtain the expression (102) for both
the Killing vector fields (101).

Now, following [13,15] we introduce a special angular
coordinate ¢, which is constant along the trajectories of
both the Killing vector fields (101). Being the generators of
the specific bifurcate Killing horizon (a 2-dimensional
spatial intersection of the “advanced” and the “retarded”
null horizons), via such new angular coordinate ¢, a
suitable transition between the corresponding patches is
achieved. Technically, it is introduced by the I-form
condition

2d¢py, = dgp, + dgp, — Q(du +dv),  (103)

because d¢,(£9) =0 for borh the Killing vector fields
(101). Using (90) and (92), this condition can be integrated
to

b= —Qut. (104)

Unfortunately, the specific choice of the angular coordinate
¢y, depends on the given horizon via its value r;, and thus
Q,,. For this reason, it is not possible to find a single and
simple global coordinate ¢ which would conveniently
“cover” all the four horizons. This drawback was met
many years ago already in the Kerr spacetime, so it is not
surprising that it reappears in the current context of the
complete family of type D black holes.

An explicit general metric form constructed in this
way reads

_ 1 0 (du — dvw)? p?
ds? i —p—z((l = T,)(du + dv) = 27d¢;,)* + szm + 4Fd62
Psin?0
+——=—((a—=[r*+ (a+ 1)?]Q;)(du + dv) = 2[r* + (a + [)*]d¢)*|. (105)

p

For nontwisting black holes without the Kerr-like rotation
(a = 0) and the NUT parameter (/ = 0), the metric func-
tions simplify to Q =1, P=1,p> =12, T =0, Q;, =0,
so that

ds? = —r—deudv + r2(d6* + sin?0 dgp?),  (106)

which is the usual form of the spherically symmetric black
holes in the double-null coordinates [4].

On any 2-dimensional section & = const. and ¢);, = const.,
using (102), the general metric (105) reduces to

L[ (1-7Q)?

P

2
p
TP e do)”
S Psin@ (r + r,)?(r — r,)?

P+ (a+ D

QO(du + dv)?

(du +dv)?|, (107)

which is indeed null at any horizon r), because Q(r,) = 0.

Let us now move to the second problem, which is the
global extension and investigation of the degree of smooth-
ness (analyticity) of the horizons ;. Restricting ourselves
to the sections given by constant values of the angular
coordinates 6 and ¢,,, we introduce the couples of new null
coordinates U and Vi, defined as

Ui = (—1)'sign(kif) exp (—Li) (108)
2k

ViE =(—1)/sign(kif) exp (Jr%) (109)
2%

Each couple covers the corresponding horizon H}f.
Moreover, it is characterized by a particular choice of
two integers (i, j) which specify a certain region in the
manifold. Generally, there are 5 types of regions which are
separated by the four types of horizons H;", namely
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Region Description
I: asymptotic time-dependent domain between H,} and 7
1I: stationary region between H; and H;}
II: time-dependent domain between the black-hole horizons
1v: stationary region between H_ and
V: asymptotic time-dependent domain between Z and H

where m, n are arbitrary integers. The corresponding

Kruskal-Szekeres-type dimensionless coordinates for
every distinct region are
| + TR +
zi(vll + Ui R, :E(Vh - Up).  (110)

Of course, the presence of the curvature singularity at
r = 0 (implying r, = 0) for certain values of @ restricts the
range of the corresponding coordinates U, and V; in the
region IV to the domain outside U,V = £1.

Specification of (i, j)
(n—2m+1,n+2m—1)
2n—m,2n+m—1)
(n=2m,n+2m)
(2n—m+1,2n+ m)
(n=2m+1,n+2m—1)

h —

tan—- = —sign(k) (UE) Sk = (= 1)itlexp (JrLi) ;
2 2|k |
(114)
~i : + : v
tanjh— —sign(k) (Vi) Sen®i) = (—1)i+ exp (_2\Thi|) .

(115)

In terms of these coordinates, the extension across the  Applying the identity arctanx + arctany = arctan(”‘)
horizon is regular (in fact, analytic). Indeed, by multiplying (mod 7) we get
and dividing the null coordinates (108) and (109) we obtain
Ky 5 [ (A 1 (% + i)
E (o (o o
r r r r i r, i —r,
b b ‘ i (—1) exp(= 555) + (~1)' exp(375)
1 = —arctan L - o
(1 = ()T exp- £
U i t (116)
V—hi:(—l)ﬂexp(—%). (112)
The terms (du + dv)? in the metric (107) become R = %(ﬁ —ii¥)
k _1)J _Hny (i 1or
(d +dv ) (ih)i —4 (dUi)z _ " ( 1) exp( z‘km) ( l) exp(z‘km)
U V UI = arctan 1 ] [ T .
g . + (=1)"7 exp( \kﬂ)
F 2dUdVF + V—i(dvf)z) (113) (117)
h
A nonanalytic behavior across the horizon r, may thus From these general relations it follows that
occur only at zeros of the product Ui Vi. However, they
exactly cancel the zeros of the functions Q(r) in the metric sht_
(107). For example, by choosing the black hole horizon (=1)/*1 arctanm‘,‘ for i + j even,
rp=rf=r,, be get UfV} o (r—r,) which clearly 2041
compensates the corresponding root Q o (r—r,) in (5). . , sinhzgy o
Notice also that the last term in (107) actually vanishes. Tj; = { (~1) arctan sh- T ot o for i+ jodd,r. <0,
Therefore, the metric (107) remains finite at r, . Of course, bt
the same argument applies to the remaining three hf)rizons. (=1)/ arctan - i G k| 4 fori+joddr, >0,
Now we can construct the Penrose conformal diagrams oshe oy 0]
which visualize the global structure of the extended (118)
manifold. This is achieved by a suitable conformal rescal-
ing of UF and Vi to the corresponding compactified null
coordinates @i and 7 defined as and
084078-15
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FIG. 4. Penrose conformal diagram of the completely extended spacetime (1) showing the global structure of this family of
accelerating and rotating charged black holes. We assume the ordering of the four horizons as r; < r_ < r, < r, see (80), which
occurs for reasonably small acceleration parameter a, restricted by (81), and small values of the NUT parameter / such that |/| < |a].
Here we show a typical 2-dimensional section 0, ¢, = const without the curvature singularity at » = 0, i.e., for any § = const such that
cos @ # —I/a. The double dashed vertical parallel lines indicate a separation of distinct asymptotically flat regions close to Z* (different
“parallel universes” that are not necessarily identified). Grey areas in regions II and IV close to the horizons denote the ergoregions.

sinh——
1 o] for it i
(-1 arctan gt or i + j even,
2l
h
cosh_t
LOShz‘k+

for i + j odd,r, <O,

j—f—n for i + j odd, r, > 0.

(119)

Recall that the function r,(r) is given by (99) and the
coefficients kif by (100). In particular, the lines of constant
r thus coincide with the lines of constant r,. Moreover, the
condition (81) for a reasonably small values of the accel-
eration parameter o guarantees that k},k, <O while
k. k; > 0. Therefore, for every single region the coor-
dinate r, spans the whole range (—oo, +0), and similarly
the coordinate z.

The explicit relations (118), (119) between the compac-
tified coordinates {7}, R;} and the original coordinates
{t, r} of the metric (1) for all (, j) can be used for graphical
construction of the Penrose diagram which represents the
global structure of the extended black-hole manifold,
composed of various “diamond” regions. The resulting
picture is shown in Figs. 4 and 5. Fig. 4 is the Penrose

diagram of a generic 2-dimensional section through the
whole spacetime for any € = const such that cos 0 # —[/a.
It does not contain the curvature singularity at r = 0. Fig. 5
is the complementary Penrose diagram for the special value

of @ such that cos @ = —I/a which contains the curvature
singularity at » =0 in all its regions IV (see Sec. VC
and Fig. 3).

It can be seen that the complete manifold consists of an
infinite number of the regions 1, 11, III, IV and V, each
identified by the specific pair of integers (i,j). These
regions are separated by the corresponding horizons.
Namely, the regions I and II are separated by the accel-
eration horizon H,} at r;, with the asymptotic region I also
bounded by the conformal infinity 7 (the scri) for very large
values of r. The regions II and III are separated by the
black-hole horizon M, at rj =r,, while the regions III
and IV are separated by the inner black-hole horizon H, at
r, = r_. Finally, the regions IV and V (if present) are
separated by the acceleration horizon H at r,, with the
asymptotic region V bounded by the conformal infinity Z
with negative values of r. The curves in each region
represent the lines of constant ¢ and r (dashed or solid,
respectively).

In the diagonal null directions of these Penrose diagrams
we can identify the particular coordinate patches covered
by the “advanced” metric form (93), extending from the

084078-16

98



Paper 2, Phys. Rev. D 104, 084078 (2021)
New improved form of black holes of type D

NEW IMPROVED FORM OF BLACK HOLES OF TYPE D

PHYS. REV. D 104, 084078 (2021)

N

FIG. 5.

Penrose conformal diagram of the spacetime (1) representing the same black hole as in Fig. 4 but for the section 6, ¢, = const

NI
A

containing the curvature singularity at r = 0, i.e., for the special value of @ such that cos @ = —//a. In this section, the regions IV are “cut
in half” by this singularity at » = 0, so that the acceleration horizon at r; < 0 can not be reached, and the region V is thus absent.

bottom left Z~ to the top right Z* [for example the pink
regions I-V between (1,—1) and (I, 3)], and also the
complementary “retarded” metric form (96), extending
from the bottom right Z~ to the top left Z* [these are
not colored but also contain the regions I-V, for example
between (—1,1) and (3, 1)]. These patches “share” the
“central regions” III [for example (1, 1)]. Each of such
central region III is bounded by the inner and outer black-
hole horizons at r_ and r,, localizing thus the interior of
the corresponding black hole. In the whole extended
universe, there are thus infinitely many black holes—
they are identified by the regions III, and labeled by the
corresponding specification (i, j), for example (0, 0), (1, 1),
2, 2), (-2,2), (-1,3), (0, 4), etc.

Recall that all these black holes are rotating, NUTed,
charged, and accelerating. Due to their rotation, there are
ergoregions associated with all the horizons, see Sec. VB
and Fig. 1. They are represented by the grey areas in the
regions II and IV close to the horizons.

As shown in Sec. VC and schematically depicted in
Fig. 2, there are two distinct asymptotically flat universes
associated with each original coordinate patch given by the
metric (1), one for » - +oco and the other for r — —oo.
These can now be identified in the Penrose diagram in
Fig. 4 as the regions I and V beyond the acceleration
horizons close to Z, respectively. However, the maximal
extension has now revealed that each black hole, identified
by the specific region Il is in fact associated with four
asymptotically flat regions, namely the pair of the regions I
and a pair of the regions V. Two such regions are in the

causal future, while the remaining two are in the past.
Moreover, each asymptotically flat region bounded by Z is
“shared” by two distinct black holes.

For example, the “infinite chain” of black holes (regions
1) given by ..., (3,-1),(1,1),(=1,3), ... are located in
the “future universes” (regions I) ..., (5,-1),(3,1),
(1,3),(~1,5), ..., while their “past universes” (regions
V) are ..., (3,-3),(1,-1),(-1,1),(=3,3),..., respec-
tively. However, these “past universes” need not be the
same asymptotically flat regions. Therefore, we inserted the
double dashed vertical parallel lines in them to indicate
their separation: in general the two regions such as (1, —1)
are different “causal-past parallel universes” with respect to
the distinct causal-future universes of the chain of the black
holes. Of course, it is possible to “artificially” identify
(some of) them—both the black-hole regions III and/or
their asymptotically flat regions I and V. Since there are
infinitely many possibilities of such identifications, a
plethora of various topologically extremely complicated
manifolds can be constructed.

Finally, let us remark that the conformal infinities 7
plotted in Figs. 4, 5 does not look null. This may be
surprising because in all the regions I and V the spacetime
is asymptotically flat (excluding the cosmic strings along
the axes € = 0 and 6 = z, arising as specific topological
defects which we will investigate in the next three sections
of this paper). Being Minkowski-like, the scri Z is indeed
null. However, it should be emphasized that the Penrose
diagrams in Fig. 4 and Fig. 5 are just 2-dimensional
sections through the global conformal structure of the
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four-dimensional Lorentzian manifold which is not spheri-
cally symmetric. In particular, it turns out that in the
presence of acceleration, the null conformal infinity 7 of
the asymptotically flat regions is indeed represented as the
non-null curve in the given section. This has been thor-
oughly discussed and analyzed in our previous work on the
C-metric [16], see also Chapter 14 in [4].

The global extension of the type D black-hole family of
spacetimes obtained in this section seems to be more
elegant and also more complete than the preliminary
investigation [17] which employed rather complicated
transformations to the Weyl-Lewis—Papapetrou form and
subsequently to the boost-rotation-symmetric form of the
metric. Moreover, here it is explicitly compactified.

E. Cosmic strings (or struts) and deficit angles
at@=0and =r

As shown already in previous works [5,7], the metric
form (1) is convenient for explicit analysis of the regularity
of the poles/axes located at @ = 0 and 6 = z, respectively.
This is now further improved with the new metric functions
2.

The spatial axes of symmetry are associated with the
Killing vector field 0,,, identified as its degenerate points.
These are located at the coordinate singularities of the
function sin @ in the metric (1) which appear at @ = 0 and
6 = n. Therefore, the range of the spatial coordinate & must
be constrained to 6 € [0, 7).

Recall that there are six physical parameters in the new
metric (1), namely m,a,l, a, e, g, which represent mass,
Kerr-like rotation, NUT parameter, acceleration, electric
and magnetic charges of the black hole, respectively.
However, there is also the seventh free parameter—the
conicity C hidden in the range of the angular coordinate

¢ €0,27C), (120)
which has not yet been specified. We will demonstrate its
physical meaning by relating it to the deficit (or excess)
angles of the cosmic strings (or struts). Their tension is the
J

2+EF

24 al
C=C,= [(1—01u

physical source of the acceleration of the black holes.
These are basically topological defects associated with
conical singularities around the two distinct axes. In
addition, for nonvanishing NUT parameter / these cosmic
strings or struts are rotating, thus introducing specific
internal twist to the entire spacetime. We will now analyze
them in more detail.

Let us start with investigation of the (non)regularity of
the first axis of symmetry @ = 0 in the metric (1). Consider
a small circle around it given by € = const., with the range
of ¢ given by (120), assuming fixed 7 and r. The invariant
length of its circumference is [3€ /g,,dp, while its
radius is [¢ \/gged0. The axis is regular if their fraction
in the limit @ — 0 is equal to 2z. However, in general we
obtain

circumference in 27C\ /Gy
=1li .
0=0 60\/Ggo

For the metric (1), the relevant metric functions are

fo = lim

) radius

(121)

1
— P 2 12 2 29
e Qzﬂz{ (r*+(a+1)?)*sin

2
—Q(asin29+4lsin2%9> } ge=rs.  (122)
For very small values of 0, the second term in g,
proportional to Q becomes negligible with respect to the
first term proportional to P, so that we obtain
Gpp & P(r? + (a + 1)2)?60°/Qp*. Straightforward evalu-
ation of the limit (121) gives

a*+al a*+al
fo=27CP(0) =2ﬂC<1 —awr+> (1 —awr_).

(123)

The axis @ = 0 in the metric (1) can thus be made regular
by the unique choice

1 a? +al -1
—Q—5——>T
a?+ 1P

a® +al

a® +al
= {1—2(1ma2+12+a2<

where we have employed the relations (6), (7). Notice that
for vanishing acceleration a, this regularization condition is
simply Cy = 1.

Analogously, it is possible to regularize the second axis
of symmetry 6 = x. Now, the conceptual problem is that the
metric function g,, in (122), and thus the circumference,

a?+ P

)2(a2 e gz)} N (124)

T
does not approach zero in the limit § — n due to the
presence of the term 4lsin2%9. This problem can be
resolved by the same procedure as for the classic Taub—
NUT solution (see the transition between the metrics (12.1)
and (12.3) in [4]), namely by applying the transformation of
the time coordinate
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t,=1t—4lgp. (125)

The metric (1) then becomes

1 Y . 2 p?
ds2:—<——{dt,,—<a51n29—4lcoszlt9)d ] +2ar
2\ 2 20 )de 0
P P 2 2\doy]2
+Fd9 +—sin*0adz, — (r* 4+ (a—1)*)de]* |,
P
(126)
ie.,
1 2 224312
g‘/"/’:QZP2 P(r*+(a—1)*)*sin’*0
2
—Q(asin20—410052%6‘> } do=d.  (127)

a® —al

(0

a’—al

Thus, for 0—nx we get g,,~P(*+ (a—1)>)?
(m—0)?/Q%p*. The radius of a small circle around the
axis @ =7 is fg /Gped0, so that the fraction

.= 1lim circumference im 27C.\ /Gy L (2s)
6-z  radius 0-r (7 —0)\/Jgo

is

a*—al a*—al
f»=27nCP(n) :2ﬂC<l +amr+> (1 +oa—s—7z ) _).
(129)

The axis 0 = r in the metric (126) can thus be made
regular by the unique choice

a® —al -1
+a———> 210 r_

= |1+ 2am
2

az—alJr 5
a
+ 2

a’ + 1P

) (a2-12+e2+92)}_' (130)

With such a choice, there is a deficit angle , (conical singularity) along the first axis 6 = 0, namely

a*lm(a* + P) — aal(a® — > + €* + ¢°)]
2

(@* + )* + 2am(a* - al)(a* + P) + a*(a* — al)*(a

For black holes without the NUT parameter (I = 0) this
expression simplifies to

8ram
1 + 2am + o?(a*

5y = (132)

++ )

recovering the previous results for rotating charged
C-metric, see Chapter 14 in [4]. The tension in the cosmic
string along 0 = 0 pulls the black hole, causing its uniform
|

67[ =2r- fir
a*lm(a®

+ ) —aal(a® — P + ¢* + ¢%))

. 131
—-Pte*+ ) (131)

[
acceleration. Such a string extends to the full range of the
radial coordinate r € (—c0,+00), connecting “our uni-
verse” with the “parallel universe” through the nonsingular
black-hole interior close to r = 0.

Complementarily, when the first axis of symmetry
6 =0 is made regular by the choice (124), there is
necessarily an excess angle &, along the second axis
6 = m, namely

= —8ra

(a*> + 1?)? = 2am(da?

which simplifies to

+al)(a®

) 133
+ )+ a*(a® + al)*(a> = P + e* + ¢%) (133)

[
for / =0. As in the C-metric, this represents the cosmic
strut located along 0 = & between the pair of black holes,

5, =— 8721(1}7; — (134)  pushing them away from each other in opposite spatial
1 =2am +a*(a’ +e* + g°) directions.
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We observe that 5, = 0 = 6, whenever a = 0. In such a
case both the axes are regular, there is no physical cause of
the acceleration and the Kerr—Newman—-NUT black holes
do not move.

Interestingly, both the axes € =0 and 6§ =z can be
simultaneously regular even for nonvanishing acceleration
a when all six physical parameters satisfy the special
constraint

m(a® + %) = aal(a®> —= > + &> + ¢2). (135)
The nontrivial constraint requires both a #0 and [ # 0.
Actually, this is a nice compact form of the condition given
on page 313 of [4], when the relations (15) for the physical
parameters and also the convenient gauge choice (30) are
employed. This again demonstrates the advantages of the
new form of the metric (1).

However, the condition (135) is not satisfied for small
values of the acceleration a obeying the inequality (81) which
guarantees the natural ordering of the four horizons (80).
Indeed, (135) can be rewritten as m(a® + I?) = aalr r_.
Now applying (81), and assuming m, a, [ all positive, we get
the relation

m <

ro<r_.

1
a+l -~ (136)

It is in clear contradiction with (7) which implies m > r_.

F. Rotation of the cosmic strings (or struts)
With a generic NUT parameter [, the cosmic strings (or
struts) are rotating. This can be seen by calculating the
angular velocity parameter w, of the metric, see [12], along
the two different axes @ = 0 and 6 = x, namely
Yo

137
9u ( )

Wy =
For the general form of the new metric (1), where
_ ! in%0 + 4lsin> 16
Gip 792—[)2 0| asin”6 + 4lsin” 5

—a(P+(a+ l)z)Psinze] ,

710 - @ Psin’e) (138)

we obtain

_ Q(asin?d + 4lsin® 16) — a(r? + (a + [)?) Psin’0
@ 0 — a’Psin’0 ’

(139)

Now we take any fixed value of » away from the horizons,
so that Q # 0 is a nonvanishing constant. Then the limits
60 — 0 and 6 — 7 are

wy=0 and w,= -4/, (140)
respectively. The first axis @ = 0 is thus nonrotating, while
the second axis @ = z rotates and its angular velocity is
directly and solely determined by the NUT parameter L.
Notice that @, is independent of the Kerr-like parameter a,
and it also does not depend on the conicity parameter C.
The rotational character of the axis is thus a specific feature
determined by the NUT parameter /, which is clearly
independent of the possible deficit angles defining the
cosmic string/strut along the same axis.

By changing the time coordinate as (125), we obtain the
alternative metric (126) for which

I = Q%ﬂz [Q (aSin29 - 410052%0)

—a(r* +(a- l)z)Psinze],
G, = Q_z—;z [Q — a*Psin’6)], (141)
so that

O(asin?0—4lcos*10) —a(r* + (a—1)*)Psin*0
0 —a?Psin*0 '

Wy = —
(142)

The corresponding angular velocities of the two axes are
thus

wy=4l and w,=0. (143)
In this case, the situation is complementary to (140): the
axis @ = 0 rotates, while the axis § = x is nonrotating.

It is interesting to observe that there is a constant
difference Aw = wy — w, = 4l between the angular veloc-
ities of the two rotating cosmic strings or struts, directly
given by the NUT parameter / (irrespective of the value of a
or the choice of C). The NUT parameter is thus responsible
for the difference between the magnitude of rotation of the
two axes § =0 and 6 = 7.

G. Closed timelike curves around the rotating
strings (or struts)

In the vicinity of the rotating cosmic strings or struts
located along @ = 0 or @ = =, the black-hole spacetime with
twist can serve as a specific time machine because (as in the
classic Taub—NUT solution) there are closed timelike curves.

To identify these pathological causality-violating regions
we will consider simple curves in the spacetime, namely
circles around the axes of symmetry @ = 0 or 6 = & such
that only the periodic angular coordinate ¢ € [0,27C)
changes, while the remaining coordinates #, r and 0 are kept
fixed. The corresponding tangent (velocity) vectors are thus
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proportional to the Killing vector field 0,,. Its norm is
determined just by the metric coefficient g,,,, which for the
general metric (1) has the form (122). There exist regions
such that Gpp <0, where the circles (orbits of the axial
symmetry) are closed timelike curves. These pathological
regions are explicitly given by the condition

P(0)(r? + (a + 1)*)?sin?0 < Q(r) (asinzﬁ + 4lsin? %0)2,
(144)

where the functions P(6), Q(r) are given by (4), (5). In
particular, for [ = 0, g = 0, a = 0 this reduces to > + a*> +
p2(2mr — €*)a® sin® @ < 0 which is exactly the condition
(27) derived in [13] for the Kerr—-Newman family of
black holes.

Although this condition is difficult to be solved analyti-
cally, some general observations can be made. Clearly, the
condition cannot be satisfied in the regions where
0O(r) < 0. Naturally assuming a sufficiently small accel-
eration a satisfying the inequality (81), the function P(6) is
positive, while the four distinct horizons are ordered
as r; <ry <rf <rf, see (80). For [ < a, the metric
function Q satisfies Q(r) > 0 only in the regions (r,, r})
and (r}, ry), in which r is a spatial coordinate. The closed

timelike curves can thus only appear between the black
hole horizon Hf and the corresponding acceleration
horizon HZE, that is only in the region IV given by r €
(rz.ry) or in the region II given by r € (r}, ry). On the
contrary, the pathological domain can not occur in the
region III inside the black hole or close to the conformal
infinities Z* which are the boundaries of the dynamical
regions I and V where r is temporal because Q < 0.
This fact is explicitly seen in the exact plots shown
in Fig. 6.

Moreover, it can be proven analytically that these
pathological regions with closed timelike curves do not
overlap with the ergoregions (shown in Fig. 1), although
they are both in the same domains II and I'V. Recall that the
ergoregions are identified by the condition g,, > 0 (together
with g, > 0), that is

Q < Pa’sin’ 0, (145)
see Eq. (84). By substituting this inequality into (144),
which is the condition g, < O for the pathological regions,
we obtain the relation

2+ (a+1)* < a’sin? 0 + 4alsin® 10,  (146)

-10 -5 0 5 10

FIG. 6. Plot of the metric function g,,, (122) for the accelerating black hole (1) with a regular axis 6 = 0 and rotating cosmic string

along 6 = x. The values of g, are visualized in quasipolar coordinates x = V2 +(a+1)?sing,y =

r* + (a+1)? cos @ for r > 0

(left) and r < 0 (right). The grey annulus in the center of the left figure localizes the black hole bordered by its horizons H at r, and r_
(0 < r_ < r,). The acceleration horizons HZ at - and r; (big red circles) and the conformal infinity Z at Q = 0 are also shown. The
grey curves are contour lines g,,,(r, ) = const, and the values are color-coded from red (positive values) to blue (negative values);
extremely large values are cut. The purple curves are the isolines g, = 0 determining the boundary of the pathological regions (144)
with closed timelike curves. They occur close to the axis @ = z (purple regions where g,,,, < 0). This plot s for the choice m = 3, a = 1,

[=02,e=9g=1.6,and a =0.12.
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that is the same as 1> + a* cos? @ + 2alcos 0 + I> < 0. In
view of (3), we have thus obtained

pP=r’+(I+acosh)? <0, (147)
which is a contradiction.

Interestingly, there is thus no intersection of the patho-
logical regions with the ergoregions. This is in accord with
a physical intuition: the pathological regions with closed
timelike curves are located here in the vicinity of the
twisting axis € = z, while the ergoregions are concentrated
mostly near the equatorial plane & = 7 of the rotating black
hole horizons.

H. Thermodynamic properties

Finally, we evaluate basic thermodynamic quantities of
this class of black holes, namely the entropy

“n
Il

Al (148)

Bl —

given by the horizon area A, and the temperature

T= (149)

1
27
given by the corresponding horizon surface gravity x,
see [18].

‘We obtain the horizon area by integrating both angular
coordinates of the metric (1) for fixed values of t and
r=ry,

"2nC T
A(ry) = /) A\/““geagwdedfﬂs (150)

where the metric functions are given by (122). Using the
fact that Q(r,) =0 on any horizon, this expression
simplifies to

7 sin6
. 151
@i Y

A=27C(r} + (a+ l)z)/
0

Applying the explicit form of the conformal factor (2), an
integration immediately leads to

A 4rC(rj + (a +1)?) . (152)

(1- azzzi‘l‘z’ ) (1 + (1221‘1’21 )

With the gauge (30), this is the same expression as Eq. (51)
in [10]. In particular, for the four distinct horizons H
introduced in (71)—(74) we thus obtain that

area of H is A = 472C(r2+ *lat 1)22) —.  (153)
(1 —azzfl‘!q)(l +asThry)
4zC(r? 1)?
areaof H; is A, = z (-t (at 1)) , (154)
b b (1—a%tdy )(1+a“2_“[r )
A+ - a+P =
area of H is infinite, (155)
area of H, is infinite. (156)

The area of the acceleration horizons Hi is thus
unbounded, while the black-hole horizons H,f have finite
values given by (153), (154).

Interestingly, there exists a relation between these
horizon areas and the conicities, namely

Af Ay =167 C?CoCr(r2 + (a + 1)) (r2 + (a + 1)),
(157)

where C and C,, given by (124) and (130), are the specific
conicities which regularize either the 8 = 0 or the § = #
axis, respectively. For vanishing acceleration a the con-
icities are C = Cy = C, = 1, so that the two horizons of
the complete family of Kerr—Newman-NUT black holes
(31)—(33) located at r. =m =+ \/m2 +P—a? - — ¢
have the corresponding areas

Af =dn(rh + (a+1)?). (158)
This simple expression reduces to the well-known
formulas for Kerr—Newman black holes (I =0),
charged Taub-NUT (a =0), Kerr (=0, e=0=g),
Reissner—Nordstrom (a =0, [ =0), and Schwarzschild
(a=0,1=0, e=0=g) with a single horizon of the
area A, = 4zr} = 16zm?>.

The surface gravity k is defined as the “acceleration” of
the null normal & generating the horizon at r;, via the
relation .fa;hfb = k&, (so that k> = —% a;bé‘”b). Previously
in [10] we showed that for the general metric form (1) this
can be expressed as

_ 1 Q/(rh)
K—Em, (159)

where the prime denotes the derivative with respect
to the coordinate r. With the new factorized form (5) of
the metric function Q(r) this can now be easily evaluated,
yielding
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. +7%(r+—r

surface gravity of H}! is k} =

2 2
_)(1 +(132+‘l’2’r+)(1 _afﬂ:([l:lr‘f’)
2

surface gravity of H is x, = —

surface gravity of H} is k} = —«a

i) ’ (160)

Ly —r)(l+aSdr )(1 —alidr.) (161)
2+ (a1 ’

@ (r;—r)(rg—r) (163)

surface gravity of H is k; = a

Recall that the specific values r_, r_, ry, r; of the horizons
position are explicitly given by (71)—(74). In particular,

1
E(m —-r_)= \/m2 +P-a*-e2—-g. (164)

Notice that the surface gravities x (and thus the corre-
sponding temperatures 7') of the black-hole horizon H,f
and the acceleration horizon H, are positive, while they are
negative for the complementary horizons H; and H;.

It is also very interesting that even in the most general
case the product of the area and the surface gravity of the
black-hole horizons are the same, and expressed simply as

Afkf = -Ajk; =22C(r, —r2). (165)
Consequently, the product of the temperature and the
entropy of the black-hole horizons Hf is

1
(TS)* = ~(TS)- = Ec\/m2 YR_a—— 2 (166)
Moreover, it is seen from (160) and (161) that

kf =0=x, ifandonlyif r, =r_  (167)
(assuming a reasonably small acceleration @). This fully
confirms that an extremal horizon has vanishing surface
gravity. As described in Sec. 1V, if the extremality condition
(44) is satisfied the double-degenerate extremal horizon is
located at

(168)

rp =m,
and the metric function Q(r) takes the form (47),

-1 +1
o(r) = (r—m)z(l +aa£7+lzr) (1 —aa;iJrlzr)
(169)

a+ P (r7)*+ (a+1)?

[
Clearly, Q(r,) = 0 and also Q'(r;,) = 0, so that k = 0 due
to (159). Such a degenerate black-hole horizon at r = m in
the family of accelerating extremal Kerr—Newman-NUT
spacetimes has zero surface gravity, and thus zero thermo-
dynamic temperature 7.

Let us consider the special case with vanishing accel-
eration (o = 0). In such a situation, the expressions (160)—
(163) simplify:

T 22
m> + 1 —a’>—e* - ¢
surface gravity of H;" is k7 = v
SV OLTE 18 5 %+ (a+1)?

5

(170)

\/mz+lz_a2_ez_gz
2+ (a+1)?

surface gravity of Hj is k;, = —

(171)
surface gravity of Hz is k5 = 0. (172)
(Actually, both the acceleration horizons HZ disappear in

this limit.) Writing (170) fully explicitly, we obtain the
surface gravity of the black-hole horizon H;

o — \/mz—i-lz—az—ez—g2
b (m4/m*+ 1P —a?—e*— PP+ (a+1)?

. (173)

This generalizes for the case [ # 0 and g # 0 the expression

mz—az—ez

_Zm(m—&-\/mz—az—ez)—ez’

K

(174)

which is the usual surface-gravity formula for the Kerr—
Newman black hole, see Eq. (12.5.4) in [18]. For the
Schwarzschild black hole it reads k = 1/(4m).

Finally, let us remark that our explicit and fully general
expressions (160)—(163) for the surface gravity « of each of
the 4 horizons at r;, agree with the results obtained directly
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from the definition &,,&” = «&, if the appropriate null
normal generator &4 of the horizon is employed. In
particular, the corresponding Killing vector field is

&= 0,4 9,0, (175)
where the constant €, is the angular velocity of the given
horizon H. Using (138) and (122), the norm &“¢, of the
Killing vector & at the horizon (where Q = 0) vanishes if
and only if

a

Q=5—-. 176
h r% + (a+1)? (176)
For the particular horizons rf =r. and rf given
by (71)—(74) this gives the constants
a
Qf = 177
P (et 12 (177)
2,30 + )2
L a*a’(a+t1) (178)

QF = .
“ (@ + )+ PaP(a+ 1) a £ 1)?

It can be seen that for vanishing Kerr-like rotation
(a = 0) the angular velocities of all four horizons become
zero, whereas for vanishing NUT parameter (/ = 0) they all
remain nonzero,

aza

+__ - -
14 a?a?’

a

Qf = (179)

I. Concluding summary

In this work we presented a new metric form (1)—(7) of
the remarkable family of exact black holes of algebraic
type D, initially found by Debever (1971) and by Plebanski
and Demianski (1976). Moreover, we demonstrated that
this improved metric representation has many advantages
which simplify the investigation of its geometrical and
physical properties. In particular:

(1) In Sec. II we started with a convenient Griffiths—
Podolsky (2005, 2006) form of this class of space-
times, but we further improved it. By introducing a
modified set of the mass and charge parameters m, e,
g, applying a special conformal rescaling S, and
choosing a useful gauge of the twist parameter @, we
obtained an explicit compact form of the metric.

(i1) The metric functions (2)—(5) are very simple, depend-
ing only on the radial coordinate r and the angular
coordinate 6. Moreover, the key functions P(6) and
Q(r) are factorized. They explicitly localize the axes
of symmetry and the horizons, respectively.

The metric depends on six parameters m, a, [, a, e, g
with direct physical meaning, namely they represent
the mass, Kerr-like rotation, NUT parameter, accel-

(iii)

(i)

()

(vi)

(vii)

(viii)

(ix)

x)
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eration, electric, and magnetic charges of the black
hole, respectively.

Interestingly, the new metric (1) depends on the
parameters a, [, a directly, while the dependence on
the remaining three parameters m, e, ¢ is encoded in
the two constants r, and r_ defined by (6) and (7).
In fact, these expressions localize the two black-hole
horizons, and they only appear in the factorized
metric functions P and Q.

Very nice feature of the new metric form (1)—(5) is
that any of its six physical parameters can be
independently set to zero, and this can be done in
any order. In this way, specific subclasses of type D
black holes are easily obtained.

This property is demonstrated in Sec. III where the
general family of accelerating, charged, rotating and
NUTed black holes naturally reduce to its large
subclasses with five physical parameters. These are
the Kerr-Newman—-NUT black holes without accel-
eration (a = 0), accelerating Kerr—Newman black
holes without NUT (I = 0), charged Taub-NUT
black holes without rotation (a = 0), and accelerat-
ing Kerr—NUT black holes without electric or
magnetic charges (e =0 or g = 0).

All the metric functions (2)—(5) depend on the
acceleration a only via the product aa. Therefore,
by setting the Kerr-like rotation a to zero, the new
metric (1) becomes independent of a, and simplifies
directly to charged Taub—NUT black holes. This
explicitly confirms the previous observation made
by Griftiths and Podolsky that there is no accelerat-
ing NUT black hole in the Plebanski-Demiaiski
family of type D spacetimes. Quite surprisingly,
such a solution for accelerating nonrotating black
hole with purely NUT parameter exists [8,12], but it
is of distinct algebraic type 1.

The simplest subcases of our general metric (1) with
just the mass m and one additional physical parameter
reveal the famous black holes, namely the Schwarzs-
child, Reissner—Nordstrom, Kerr, Taub-NUT or the C-
metric solutions, all in their standard coordinate forms.
As shown in Sec. IV, the improved metric (1)
naturally contains also extreme black holes with
double-degenerate horizons (r, = r_) located at
r = m, whenever m? + I> = a% + €% + gz. Such a
family of extremal accelerating Kerr—Newman—
NUT black holes also admits various subclasses,
obtained by setting any of the parameters a, [, a, e, g
to zero. In fact, they represent the complete class of
extremal isolated horizons with axial symmetry [10].
The hyperextreme cases, when the parameters sat-
isfy the relation m? + I> < a® + e* + ¢°, represent
exact spacetimes with an accelerated naked singu-
larity. The metric functions P, Q are not (fully)
factorizable, and take the form (51), (52). There are
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thus only two acceleration horizons, which are
absent when aa = 0.

The new convenient metric (1) considerably simplifies the
investigation of various properties of this large family of black
holes, as demonstrated in the subsequent sections of our work,
namely:

®

(i)

(iii)

(iv)

)

vi)

(vii)

(viii)

First, in Sec. V we evaluated the Weyl and Ricci
tensors of (1), expressed as the Newman—Penrose
scalars in the natural tetrad (54) adapted to the
double-degenerate principal null directions. The
only such scalars are ¥, and @;;, confirming
the type D algebraic structure of the gravitational
field, aligned with the non-null electromagnetic field
(67)-(69).

Their explicit form (55) and (56) reveals that generic
black-hole spacetimes are asymptotically flat at
Q = 0. For vanishing acceleration a, the spacetimes
(1) become asymptotically flat for large values of the
radial coordinate |r| (except along the axes of
symmetry § =0 and 6 = z if the cosmic strings
or struts are present).

Both the double-degenerate principal null directions
are expanding. They are twisting if and only if
a = 0 = [. On the horizons, the expansion and twist
always vanish.

In general, there are four distinct horizons identified
in Sec. VA as the roots of the metric function
O(r). Since its form (70) is fully factorized, the
corresponding positions are simply expressed in
terms of the physical parameters as (71)—(74).
There is a pair of black-hole horizons Hjf at
rf=re=mEtm+P—a> - - F,
pair of acceleration horizons HE at ri=
+a7'(a*> + 1)/ (a* + al), which simplifies to r}f =
+a~! when [ = 0.

Interestingly, these positions of the black-hole hori-
zons are independent of the acceleration «, while the
acceleration horizons do not depend on the mass m
and the charges e, g.

For sufficiently small acceleration @ such that
ar, < (a*+ P)/(a*+ al), with 0 < I < a, the four
horizons are ordered as r; < ry < rj < rf,see(81).
Whenever the Kerr-like rotation parameter a
is nonzero, each of these four horizons is accom-
panied by the corresponding ergoregion, see
Sec. VB. It “touches’ the horizon at its poles,
extending from the horizon near the equatorial
region. This is shown in Fig. 1. For the Kerr—
Newman-NUT black holes without acceleration,
the ergoregions are bounded by the surface
Fer(0) = m =+ \/m* + 2 — &% — ¢* — a® cos2 6.
Using the Weyl scalar ¥, and also the Kretschmann
scalar K = R 4R, in Subsec. V C we clarified
the presence and the structure of the curvature

(ix)

x)

(xi)

(xii)

(xiii)

(xiv)

(xv)
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singularities. Such a singularity is present at r = 0,
but only if / + a cos @ = 0 which requires |/| < |al.
There is thus no curvature singularity in the
black-hole spacetimes with large NUT parameter
[l| > |a| = 0.

For 0 < |I| < |a| the curvature singularity is present
at r = 0, but only in the section with special value of
the angular coordinate 6 such that cos@ = —//a.
Various possibilities are summarized in (89).

This singularity has a ring structure which can be
crossed from the asymptotically flat region r > 0 to
the distinct asymptotically flat region r <0, as
schematically shown in Fig. 2 and Fig. 3. Only in
the section cos@® = —I/a (or for any value of 6 if
| = 0 = a) we have to restrict the range of r to two
separate domains r > 0 and r < 0.

To complete our understanding of the global causal
structure of the entire family of black-hole space-
times (1), in Sec. V D we introduced the retarded and
advanced null coordinates in which the correspond-
ing metric forms (93) and (96) have no coordinate
singularities at the horizons.

Then we explicitly constructed the corresponding
Kruskal-Szekeres-type coordinates which enabled
us to perform the maximal analytic extension across
all the horizons. It revealed an infinite number of
time-dependent regions (of type I, III, V) and sta-
tionary regions (of type II, IV) which are separated by
the black hole and acceleration horizons H; and HZ.
The complicated global structure of this large family
of spacetimes is visualized in the Penrose diagrams
obtained by a suitable conformal compactification,
drawn in Fig. 4 and Fig. 5. The complete manifold
contains an infinite number of black holes in various
asymptotically flat universes identified by distinct
(future and past) conformal infinities Z—unless a
special topological identification is made.

In Sec. V E we clarified that the physical source of
acceleration of the black holes is the tension (or
compression) in the rotating cosmic strings (or
struts) located along the two axes of axial symmetry
at @ = 0 and @ = z. Such strings or struts are related
to the deficit or excess angles which introduce
topological defects along these axes (while the
curvature remains finite).

In general, there are strings/struts along both the
axes, but one of the axis can be made fully regular by
a suitable choice of the conicity parameter C in the
range ¢ € [0,2zC). The first axis @ = 0 is regular in
the metric form (1) with the choice (124), whereas
the second axis @ = x is regular in the form (126)
with the choice (130). In the first case, there is a
cosmic strut along € = 7 with the excess angle
(133), while in the second case there is a cosmic
string along € = 0 with the deficit angle (131). For
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vanishing acceleration, both the axes can be made
regular simultaneously (except for a possible NUT-
like pathology).

(xvi) In addition to the deficit/excess angles, these cosmic
strings/struts located along the axes of symmetry are
characterized by their rotation parameter @ (angular
velocity). We demonstrated in Sec. VF that their
values are directly related to the NUT parameter /,
see expressions (140) and (143).

(xvii) There is always a constant difference Aw = 4/
between the angular velocities of the two rotating
cosmic strings or struts. If and only if / = 0, both the
axes are nontwisting.

(xviii) In the neighborhood of these rotating strings/struts
there occur pathological regions with closed timelike
curves. As shown in Sec. VG, these regions are
generally given by the condition (144). They appear
close to the rotating strings/struts, but only between
the black hole horizon Hi and the corresponding
acceleration horizon H} (that is in the domains of
type II and 1V), see Fig. 6.

(xix) Although the pathological regions with closed time-
like curves are located in the same domains as the
ergoregions, they do not overlap with each other.

(xx) The convenient metric form (1) with straight-
forward identification of the horizons is also suitable
for an easy investigation of the black hole
thermodynamics. Indeed, in Sec. V H we explicitly
evaluated the area of the four horizons (153)—(156),
their surface gravity (160)—(163), and their angular
velocity (177)—(178).

(xxi) These expressions generalize the usual formulas
for the Kerr—Newman family to black holes with
acceleration @ and NUT parameter I They reveal
interesting relations for the horizons temperature
and entropy, for example (7S)" =—(TS)” =
%C\/m2 +P—a*-e* - g

To conclude, the simple new metric form (1)—(7) has
clear advantages. We hope that it will be employed for
various studies and applications of this interesting class of
accelerating and rotating black holes which charges and the

NUT parameter.
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3. New improved form of black
holes of type D with A

This last chapter is based on the paper New form of all black holes of type D with
a cosmological constant [46] by Podolsky and Vratny, published as a preprint
in December 2022, and accepted to the journal Physical Review D on March 9,
2023. The version shown here is the proofreading of the accepted manuscript.

In this paper, we generalized our previous work [45], in which we studied the
Plebanski-Demianski class of black hole solutions for zero cosmological constant
(see the previous Chapter . Recently, we succeeded in generalizing our new
metric form — by including also a cosmological constant A # 0, still
preserving the (partial) factorization of the metric functions.

We also provided a thorough analysis of this solution. Among other things we
computed and studied its special and extreme cases, localized the horizons, eval-
uated the curvature tensors and scalars, visualized ergoregions and pathological
regions around the axes, performed the Kruskalization followed by the construc-
tion of the conformal diagram, and started to analyze the thermodynamics of
these black holes.

3.1 Derivation of the new metric form

As in the previous Chapter [2] we started with a set of changes on the metric form
(I1.28]) and its metric functions P(6) ([1.31)) and Q(r) (I1.32). We applied the

reparametrization

l
m=Sm—a—(a®—1?+e*+g?),

w
e’ =S9¢%, (3.1)
=57,
A=SA,

where the prefactor S is defined as

a® —[?

w2k

S = (3.2)

Notice, that now we also rescale the cosmological constant A (compare the
equations (2.1))). This can raise some questions since the cosmological constant
enters the Einstein field equations (EFE]). However, at the end we will rescale
the whole metric ds®> — S ds?, and the field equations require the corresponding

rescaling of A to A.
Indeed, using (3.1)), the metric functions P(6) and Q(r), changes as

Q(r) =S1Q(r), PH) =St P(H), (3.3)

and the coordinate transformations ¢ — St and ¢ — S ¢, enabled us to pull out
S completely from the whole metric as a specific constant conformal factor (see

Sec. |P3.11| for the full derivation).
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We have also set the twist parameter to
a® + 12
a

. (3.4)

Thus we derived a new representation for the complete family of type D black
holes, including any cosmological constant:

ds? i @ dt — (asin® 0 + 41sin®10)d 2+p—2d7“2
e ( 30)de

NG Q
PP e Py 2 2 2
+Fd9 —I—Esm Q[adt—(r —I—(a+l))d<p} : (3.5)
where
Qzl—%r(l—{—acos@), (3.6)
p>=7r*+ (I +acosh)?, (3.7)
aa A
2.2 A
—|—<(a2()é_i_al2)2(cz2 —PP+e+ %)+ 3>(l +a cosf)?, (3.8)
—1 l
Q(r)= [7”2 —2mr+ (a* — >+ e* + ¢%) (1+aaaz+l2 r) (1 —aaa(;::__pr>
A 2 _ l2
—3r2[r2+2aa132+l2r+(a2+3l2)}, (3.9)
with the physical parameters
moo..... mass parameter ,
a ... Kerr-like rotation ,
L. NUT parameter,
€ electric charge,
g ... magnetic charge,
a ... acceleration ,
AL cosmological constant .

For A =0 and m? + a® > a®> — > + € + ¢g* both the metric functions P(6)
and Q(r) can be fully and nicely factorized (see equations and (2.9)). For
A # 0 this is not generally possible. Nevertheless, we were able to factorize (at
least) the metric function P(#), and appropriately simplify the function Q(r). By
defining the convenient parameters

rA+E,u+\/u2—|—l2—a2—62—g2—)\, (3.10)
T’A_E,LL—\//JJ2+Z2—CL2—€2—Q2—)\, (3.11)
where
A a?+ 12 A (a® +1?)?
=m-——1 A= ————— 3.12
H=m=gi=ya 3 a2a? (312)



the metric functions are simplified to

aaq aaq
P(@) = (1 — m?a/\+ (l —+ a cos 9)) (1 — mr/\, (l —+ a cos 6)), (313)

Q(r):(r—rA+)(r—rA_> (1+Ozaa§;§2r> <1—aaaz::__§2r> (3.14)
i)

a?a?

This is possible only for p? + 1% > a® + €? + ¢? + ), in which case the expres-
sions , yield real constants. Notice also the similarity between these
two metric functions and the relation (II.8) already pointed out by Griffiths and
Podolsky in 2006 [40].

Similarly as in Chapter [2| the advantage of this new metric representation is
that we can easily gain the standard forms of the most important black holes by
simply switching off the appropriate parameters, namely

e A = 0: Black holes in flat universe (P3.IV.A)),

e o =0: Kerr-Newman-NUT—(anti-)de Sitter
black holes (P3.1V.B)),

e [ =0: Accelerating Kerr—-Newman—(anti-)de Sitter
black holes (P3.1V.C) ,

e ¢ = 0: Charged Taub—NUT—(anti-)de Sitter black holes (P3.1V.D|),
e ¢ =0 = g: Uncharged accelerating Kerr—NUT—(anti-)de Sitter

black holes (P3.1V.E] .

Notice again, how easily can we now perform the transition to the charged
Taub-NUT-(anti-)de Sitter black hole for a vanishing Kerr-like rotation (a = 0).
This confirms that no solution representing (possibly charged) accelerating Taub—
NUT with a (possibly non-zero) cosmological constant exists in the complete
family of type D black holes.

3.2 Physical analysis of the new metric form

The new representation of the full family of exact type D black holes ([3.5)—(3.9)
can be used for a thorough physical analysis (see section [P3.V]). The procedure
we have chosen is essentially similar to the one we used in Chapter |2 We defined

a natural null tetrad (2.12)):

k:\};p):\/l@«rz + (a+l)2) 8t+a&p> - \/aarl :
l:\}ﬁ (pl \/1@<(r2 + (a+l)2) O +a(9¢> — \/é&«] : (3.15)
m:\}i i)z -\/ﬁlsmg(ﬁw + (asin29+4lsin2%6) 8t) —H\/ﬁ@g] )

The only nontrivial NP scalars corresponding to the Weyl tensor and the Ricci
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tensor are

0 M L
7, — 3l_<m+11)(1—iaaa22>—il(a2_l2)
[r+i(l+a0089)} v :
(e + ¢%) < Lo [arc089+il(l+aC059)D (3.16)
r—i(l+ acosf) a? + 2 o
Q4
@11:%(62""92)?7 (317)

while the Ricci scalar now equals to
R=4A. (3.18)
For A = 0, we simply recover equations (2.13)—(2.14)) and the vanishing Ricci

scalar.

Let us also recall the relation between the Kretschmann scalar K = Rypeq R4
and its related Weyl scalar C = Clpeg C% derived in Sec. . Using it, we
computed and explicitly expressed these scalars for the metric (3.5)—(3.9)), see

equations .

The 4-potential of the charged solution is

,

A= —\/624—92? [dt— (asin® @ + 4l sin® 1) dcp} , (3.19)
and the corresponding Newman—Penrose scalars have only the component
Ve + g2 02

(r+i(l+acos€))2 '

Py = LF, (k" + m*m®) = (3.20)

Since the only nontrivial NP Weyl scalar is Wy, both vectors k and 1 are the
principal null directions. Both are double-degenerate, yielding that the metric
is of algebraic type D. The electromagnetic field for e # 0 # g is non-null and
double-aligned.

The spin coefficients for the null tetrad are the same as . Both
k, 1 are geodetic (k = 0 = v) and shear-free (o0 = 0 = \), with ezpansion ©

and twist w, namely

_ Ve

V2 p?

w:—%(H—acosQ). (3.22)
V2 p?

Notice that all the equations f depend on the cosmological con-
stant A only implicitly via the metric functions Q(r), P(0).

From we see directly that the black hole is everywhere non-twisting if
(and only if) a = 0 = I. The conformally flat regions, where W, (13.16)) vanishes,
correspond to €2 = 0. This is the conformal infinity. The curvature singularity
localized at the region where ¥y diverges occurs if and only if p? = 0. This
can happen only when

©

aa 5
(r + prRT (Il +acosh) ) : (3.21)

r=20 and at the same time [+ acost=0. (3.23)

It means that we obtained the very same result as for the asymptotically flat

black holes (2.31]).
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3.2.1 Horizons

One of the key topics in our latest publication [46] was the calculation and gen-
eral classification of possible horizons. They are fully determined by the quartic
equation Q(r) = 0. Their explicit calculation is however quite cumbersome and
does not provide simple answers on a desired analysis. We had to proceed in a
systematic way.

First of all, we defined the polynomial coefficients of Q(r) in the following
way:

Qr) = qur' + g7 + 2> + 17 + qo, (3.24)
where
! (a2 +122 3’
a? — 2 [ a?—1%2 A
Q3:2OZCL aam(a2+l2)2_a2+l2_ a2—|—l2§ ’
q2:1+4aam l —a2&2ﬂ(a2—l2+62+g2)—(a2+3[2)é,
a? + 12 (a2 + 2)2 3
q1:—2m—2aam(a2—l2+62+g2), (3.25)

gp=a—F+e*+g°.

Then we employed the analysis presented in [67]. More specifically, with the
parameters

N = 8quq2 — 3¢5, (3.26)
R = 8¢iq1 — 4q4q3q2 + 45 , (3.27)
S = 256q5q0 — 64450301 + 16q4q5q2 — 35 , (3.28)

A = 256q;q5 — 192¢5q3q195 — 128q305q5 + 144459247 g0
—27q3q1 + 1449130205 — 6414365 90 — 809493654140
+18G443¢2G; + 1604G500 — 4944507 — 27q5q2

+18¢3¢20190 — 44507 — 44305490 + 430341 - (3.29)
We concluded that the following possibilities arise:

For A > 0:

The metric function Q(r) has either none, or four distinct real roots. That de-
pends on:

o If N <0 and N? > S: all four roots are real and distinct.

o If N < 0 and N? < S: there exist two pairs of complex conjugate non-real
T00ts.

e If N > 0: there are also two pairs of complex conjugate non-real roots.

For A < 0:

The metric function Q(r) has two distinct real roots and two complex conjugate
non-real 100ts.
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For A = 0:
The only case when the metric function Q(r) has at least one multiple root. Here
are the different cases that can occur:
o If N <0 together with:

e N2 < S: there exists one real double root and two complex conjugate roots.

e N? = S: there are two distinct real double roots.

e N2 > S and N? > —3S: there occurs one real double root and two distinct
simple real roots.

e N2 = —3S: there is one real triple root and one distinct simple real root.
o If N > 0 together with:

e S = 0: there exists one real double root and two complex conjugate roots.

e S >0 and R # 0: there is also one real double root and two complex
conjugate 1oots.

e S =N?and R = 0: there are only two complex conjugate double roots.
o If N =0 together with:

e S > 0: there is one real double root and two complex conjugate roots.

g3

e S =0 (implying R = 0): there is one real quadruple root at ry = —ig

Our main interest lies in the most physically relevant case of four distinct
roots, that is when

A>0 and N<O0O and N?*>S. (3.30)

Under these special conditions, the metric function Q(r) is fully factorized

with four distinct horizons r;, 7, , v}, ro. More specifically, the metric function

reads

Q(r)=-N (r — r;r) (r — rb’) (7’ — rj) (r — 'rg) : (3.31)
where
2 _ 2
9 o a°—1 A

= s 3.32

while the roots localize the horizons Hj, namely
H;” at r; is the outer black-hole horizon, (3.33)
H, at r, is the inner black-hole horizon, (3.34)
H at r} is the outer cosmo-acceleration horizon,  (3.35)
‘H_ at r_ is the inner cosmo-acceleration horizon. (3.36)

We presume a natural ordering of these horizons as

roo<ry <rf<rl. (3.37)

We were able even to explicitly find these roots. Their complexity is however

big (see equations |(140)—(148)| of the attached Paper 3)).
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3.2.2 FErgoregions

Similarly as in the case A = 0 with a # 0, the occurrence of ergoregions can
be expected in the vicinity of the horizons. More precisely, their presence will
appear for

1 :
it = o (Pa*sin’0 — Q) > 0. (3.38)

The condition (3.38) depends on the cosmological constant via the metric
functions P and (). We presented the visualization of these areas for different
values of a and A, see Fig. |3.1

a=15 A=0.003

Figure 3.1: Plot of the metric function gy given by in quasi-polar coordinates
x=r2+ (a+1)2sinb, y=+/r2+ (a+1)? cos for r > 0. Ergoregions are localized
within the green areas between the gray annulus in the center which localizes the black
hole horizons ’Hgt at r; and r, . The cosmo-acceleration horizon H} at r} (big red
circle) and the conformal infinity Z at {2 = 0 are also illustrated. For more details, see
the attached Paper E’}
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Notice that the ergoregions occur not only in the vicinity of the black hole
horizons but also near the cosmo-acceleration horizons as well. Not only does
the area of ergoregions increase for a larger Kerr-like rotation a, as it was in the
asymptotically flat universe (see Fig. , but the cosmological constant also
affects the size of these regions. Moreover, for a sufficiently large rotation a or A,
these ergoregions around the different horizons can even merge near the equatorial
plane.

3.2.3 Global structure and the conformal diagrams

Similarly, as in the case of A = 0 summarized in the previous Chapter [2| (see
Sec. [2.2.4), we were able to explicitly construct the compactified coordinates
{T:, R, } (eq. |(175)| and |(176)| of the attached paper).

There are 5 types of regions bounded by the black hole horizons Hg‘t and the

cosmo-acceleration horizons HE. They are characterized by two integers (i, j),
namely

Region Description Specification of (3, j)
n—2m-+1,n+2m—1)
2n—m,2n+m —1)

I:  asymptotic time-dependent domain between HI and Zt (
(
III:  time-dependent domain between the black-hole horizons (n — 2m,n + 2m)
(
(

II: stationary region between 7—[2’ and H}
Iv: stationary region between H_ and H, 2n—m+1,2n+m)

V: asymptotic time-dependent domain between Z~ and H, (n—2m+1,n+2m —1)

They form the conformal Penrose diagram, see the Fig. (or the original
Fig. 2| of the Paper [3| for more details).

(2,-2)

(-2,2)

(0,0)

\/b I \QIV I \/b I \1V I \/h

Figure 3.2: Penrose conformal diagram of the completely extended spacetime for
the section ¢, = const. and such 8 that the spacetime contains the curvature singularity
at r = 0. In this case, the regions IV are “cut in half” by this ring singularity at r = 0,
but can be non-geodetically extended.
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3.2.4 Regularity of the axes

Recall that there are seven physical parameters in the metric (3.5): mass m,
acceleration «, Kerr-like rotation and NUT twist parameters a and [, electric and
magnetic charges e and g, and the cosmological constant A.

But there is also an additional free parameter — the conicity parameter C'
hidden in the range of the angular coordinate ¢ € [0,27C') corresponding to the

magnitude of the deficit/excess angle of the cosmic string/strut.

The conical degeneracy of the § = 0 axis can be removed by a suitable choice
of C', namely

2.2

a“a 2 52 2 2 A 917t
s(a” —1"+e +g)+§)(a+l)} .

aam A
-2 @ P

This leaves a deficit/excess angle on the other axis:

—8ma {aa [m(a? +12) — aal(a® — 1> + €% + ¢?)] — %AZ(QQ + 12)2}
Op =

[1 + 2A(a+1)(a+ 3Z)} (a® +12)2 — 2aam(a + 1)(a® +12) + a2a®(a + 1)%2(a®? — 12 + €2 + ¢?) ’
To regularize the second axis, we perform the coordinate transformation

t.=t—4lp, (3.39)
and chose

o= (25~ 5000+ (@t et e et

This regularizes the axis = 7, with a deficit/excess angle on the 6 = 0 axis

8ma [aa [m(a® +1%) — aal(a® — I + € + g%)] — 2Al(a® + 12)2}
do =

[1 + 3A(a—1)(a— 31)} (a® +12)2 4+ 2aam(a — 1)(a®? +12) + a?a?(a — 1)%(a® — 12 4+ €2 + ¢?) .
Most interestingly, a coincidence of the physical parameters
2Al(a® 4+ 1%)* = aa [m(a2 + 1) — aal(a® — 1> + % + 92)} (3.40)

fully regularizes both axes.

The strings/struts are twisting. This can be seen from the function w = ggtTf,
and its evaluation on the axes §# = 0 or § = w. The twisting parameters w on
each axes can be adjusted using , but its difference remains always constant
Aw = 4.

As we have already mentioned, in the A = 0 case, we can expect the pathology
around the axis § = 7w caused by the presence of the NUT parameter. Such a

region with closed timelike curves is defined by the condition
2 2\2 . 2 .2 2102
P(G)(r + (a+1) ) sin“f < Q(r)(asm 6 + 4l sin 59) , (3.41)

where the metric functions P(6), Q(r) are explicitly given by (3.8), (3.9)). This is
plotted on of Paper [3]
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3.2.5 Thermodynamic properties

We also evaluated the basic thermodynamic quantities of this class of black holes,
namely the entropy and the temperature T', generalizing the A = 0 case ([2.37).
The area of both black hole horizons is now given as:

47 C [(rj)z + (a+ l)z]

a’ + al a’® —al
(1—04@2_“2 r;r)(l—i—a a?+ 12 r;r)
4rC [(rb_)z + (a+ l)z]

a?+al _ a’?—al _\’
(1—04@2_“2 rb)(1+aa2+12 rb)
whereas the area of the cosmo-acceleration horizons depends on A. If A < 0 then
both are infinite. On the other hand, if A > 0 they are finite and equal to

area of H; is A =

. (3.42)

area of H, is A, = (3.43)

47C [(r})? + (a+1)?]

a’ + al a® — al
<1_a a?+ 12 Tj)(1+a a?+ 12 TZF)
4rC [(r;)? + (a+1)?]

(1 a’ + al _)(1+ a® — al _>'
—« r o ——
CL2 + l2 c 2 + l2
The surface gravity from which we can evaluate the temperature of the hori-
zons via ([2.37)) is:

area of H is Al =

. (3.44)

area of H_ is A, =

(3.45)

s N (ry =)y =)y —77)

surface gravity of Hj is &

k2 Pt
surface gravity of H, is &, = 2;}) = —j;[( b~ 752()2 _i__(;:_) (l) — Tc_),
surface gravity of H is ) = 21{1? = —j;/( (7“3;)7; +_<;b _|_> (l§+ —re) )
surface gravity of H_ is k, = 21{310_ = —J;/( c r(’;;z ()T T +>(Z) —re) )

From these expressions, it immediately follows that any extremal horizon has
a vanishing surface gravity, and thus zero temperature 7" = 0.

3.3 Summary

In this final Chapter [3, we have built on the results of Paper [2| that is [45], and
we further generalized the new metric form of the Plebanski-Demianski metric by
including a non-zero cosmological constant A. This solution was then physically
and geometrically investigated. In particular:

« In Sec. 3.1] we summarized a new metric form (3.5)-(3.9) of the general
accelerating, rotating and charged black hole with a NUT parameter and
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A # 0. This was achieved by further improving the Griffiths—Podolsky form
of this class of spacetimes using a new set of the physical parameters m, e, g,
by applying a unique conformal rescaling S, and suitably fixing the twist
parameter w.

This large family of black hole solution depends generally on 7 arbitrary
parameters, namely the mass m, the rotation and NUT parameters a and [,
the electric and magnetic charges e and ¢, the acceleration parameter «,
and the cosmological constant A.

The clear advantage of this new metric is its ability to transit to the simpler
black hole solutions in their standard formats. These are the black holes in
asymptotically flat universe (for A = 0), discussed in detail in the previous
Chapter [2, Kerr-Newman-NUT—(anti-)de Sitter black holes (for o = 0),
accelerating Kerr—-Newman—(anti-)de Sitter black holes (for [ = 0), charged
Taub-NUT-(anti-)de Sitter black holes (with @ = 0), and uncharged accel-
erating Kerr-NUT—(anti-)de Sitter black holes (when e = 0 or g = 0).

The new metric form becomes completely independent of the accel-
eration o when the Kerr-like rotation a is set to zero: The solution then
simplifies directly to the charged Taub-NUT—(anti-)de Sitter black holes.
This further confirms the previous observation that there is no accelerat-
ing NUT black hole present in the Plebanski-Demianski family of type D
spacetimes (see Chapter [[1I] for more details).

Applying the null tetrad (3.15]), we calculated all the NP scalars. The only

non-zero components are Wy (3.16) and ®q; (3.17). The Ricci scalar is
simply R = 4A.

The spin coefficients indicate that both principal null directions are geodesic,
shear-free, expanding and generally twisting.

From the curvature tensors we localized the presence of the ring curvature
singularity. It is located at p* = 0, i.e. r =0, and at the same time
[+ acos® = 0. This requires |I| < |a|. Otherwise, no curvature singularity
is present (see the classification ([2.31)).

In Sec. [3.2.1] we identified the four distinct horizons corresponding to the
roots of the metric function Q(r). We also provided a general classification
based on the number and multiplicity of its roots.

For non-zero Kerr-like rotation a, each of these four horizons is accompa-
nied by the corresponding ergoregion. This was visualized in Sec. on
Fig. [3.1]

In Sec. |3.2.3, the global structure was visualized by the rigorously con-

structed Penrose conformal diagram, see Fig. |3.2

The regularization of the axisymmetric axes § =0 and 6 = 7, which we
interpret as the physical source of acceleration of the black holes, was con-
sidered in Sec.[3.2.4] By an appropriate fixing of the conicity parameter C,
we were able to regularize one of the axes.
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» There exists a unique choice of the physical parameters (3.40) which regu-
larizes both the axes simultaneously.

o These cosmic strings/struts are twisting when [ # 0. In their vicinity there
are pathological regions with closed timelike curves. These regions are given
by the condition (3.41])).

o The new metric (3.5) is also convenient for the investigation of thermody-
namic quantities, such as the temperature T or the entropy S, see Sec.[3.2.5

This demonstrates that the new metric form f has considerable ad-
vantages.

Among further investigations which should be done, let us mention the in-
depth analysis of the various other cases given by the classification diagram of
possible horizons in Sec. 3.2.1] In fact, we are already preparing a publication
which is concerned with these cases — the four-horizons cases given by a different
horizon ordering, the reduced solutions when one or more of the horizons disap-
pear “at infinity”, the discussion of its exact roots, and their simplification for a
vanishing cosmological constant.

Also the multiple horizons should be analyzed. This topic has been recently
studied, for example in the works [68]-[74]. We hope that the new form of the
metric may simplify these investigations.
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‘We present an improved metric form of the complete family of exact black hole spacetimes of algebraic
type D, including any cosmological constant. This class was found by Debever in 1971, Plebanski and
Demianski in 1976, and conveniently reformulated by Griffiths and Podolsky in 2005. In our new form
of this metric the key functions are simplified, partially factorized, and fully explicit. They depend on
seven parameters with direct physical meanings, namely m, a, [, a, e, g, A which characterize mass, Kerr-
like rotation, NUT parameter, acceleration, electric and magnetic charges of the black hole, and the
cosmological constant, respectively. Moreover, this general metric reduces directly to the familiar forms of
(possibly accelerating) Kerr-Newman—(anti—)de Sitter spacetime, charged Taub-NUT—(anti-)de Sitter
solution, or (possibly rotating and charged) C-metric with a cosmological constant by simply setting the
corresponding parameters to zero. In addition, it shows that the Plebarniski-Demianski family does not
involve accelerating NUT black holes without the Kerr-like rotation. The new improved metric also enables
us to study various physical and geometrical properties, namely the character of singularities, two black
hole and two cosmo-acceleration horizons (in a generic situation), the related ergoregions, global structure
including the Penrose conformal diagrams, parameters of cosmic strings causing the acceleration of the
black holes, their rotation, pathological regions with closed timelike curves, or thermodynamic quantities.

DOI:

I. INTRODUCTION

Black holes belong to the most remarkable predictions of
Einstein’s general relativity. Although their existence had
been doubted for many decades, it is now widely accepted
that such fotaly gravitationally collapsed “objects” indeed
exist in our Universe. Recent (and spectacular) observa-
tional proofs of this fact are the detections of gravitational
waves emitted from binary black hole coalescences,
achieved by the LIGO Scientific Collaboration-Virgo
Collaboration [1,2], and also the first direct image of a
shadow of a supermassive black hole in M87* and in
Sgr A*, obtained by the Event Horizon Telescope
Collaboration [3,4].

First exact spacetimes representing black holes were
found very soon after the final formulation of Einstein’s
field equations of general relativity in November 1915.
Namely, it is the important solution of Schwarzschild
(1916), Reissner-Nordstrom solution with an electric
charge (1916-1918), and Kottler-Weyl-Trefftz solution
with a cosmological constant A (1918-1922). These were
followed in 1960s by rotating Kerr (1963), twisting Taub-
NUT (1963) or Kerr-Newman charged black holes (1965),
and also the so called C-metric (1918, 1962), physically

*podolsky@ mbox.troja.mff.cuni.cz
'Vratny.adam @seznam.cz

interpreted by Kinnersley-Walker (1970) as uniformly
accelerating pair of black holes.

All these fundamental exact solutions are spherically/
axially symmetric, and are of algebraic type D. In fact, they
belong to a general family of type D spacetimes with any A
and an aligned electromagnetic field. Nonaccelerating sol-
utions of this family were obtained in 1968 by Carter [5].
In the vacuum A = 0 case, they include all the particular
subclasses identified by Kinnersley [6]. Debever [7] in 1971
found a wider class of such black holes which also admit
acceleration. In 1976 a better metric representation of this
complete class of type D exact solutions to Einstein-
Maxwell equations with double-aligned non-null electro-
magnetic field and A was found in a seminal work [8] by
Plebanski and Demianski (for more details and further
references see [9,10], in particular Chap. 16).

Unfortunately, the familiar forms of the well-known
black holes were not included explicitly in the original
Plebanski-Demianski metric (specific degenerate transfor-
mations had to be applied), and the physical interpretation
of its seven free parameters was not clear. Both these
drawbacks were overcome in 2006 in the works of Griffiths
and Podolsky [11-13], see also [10], enabling easier
analysis of physical and geometrical properties of these
exact black holes.

In our recent paper [14] we demonstrated that this
Griffiths-Podolsky form of the generic black hole metric

© 2023 American Physical Society
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of type D can be further improved. This was achieved by
introducing a modified set of the mass and charge param-
eters, an appropriate conformal rescaling, and a useful
gauge choice of the twist parameter. The new improved
form of the metric is simple, fully explicit, and with
factorized metric functions. It is thus possible to investigate
and evaluate various properties of this large family of
rotating, charged, and accelerating black holes, namely
their singularities, horizons, ergoregions, infinities, cosmic
strings, or thermodynamics [14].

In such studies we restricted ourselves only to the case
A = 0. It is the purpose of the present paper to extend the
new improved coordinate representation found in [14] to
any value of the cosmological constant, thus completing
our program to improve the metric description of the full
class of Plebanski-Demiafiski black holes of algebraic
type D.

In Sec. II we systematically derive the new form of the
metric, with the results summarized in Sec. III. In sub-
sequent Sec. IV all the main subclasses of this large family
of type D black holes are discussed—these are obtained
by simply setting the corresponding physical parameters
A, a,l,a,e,qgto zero. The second part of our paper, which
is contained in the long Sec. V, is devoted to the physical
and geometrical analysis of this class of black holes which
can be done fully explicitly using our improved form of
the generic metric. Such a study includes determining the
curvature of the gravitational field, evaluation of the
electromagnetic field, the structure and location of hori-
zons, finding the related ergoregions, analytic extension
and global structure, regularization of the symmetry axes,
properties of the possible cosmic strings or struts, their
rotation related to the NUT parameter, regions with closed
timelike curves in their vicinity, and calculation of the
entropy and temperature of the black hole and cosmo-
acceleration horizons. Final summary with further remarks
is contained in Sec. VI.

II. DERIVATION OF THE NEW FORM
OF THE METRIC

First, let us recall the convenient representation of the
complete class of Plebanski-Demianski black holes of
algebraic type D found by Griffiths and Podolsky in
2005 [11-13]. It is summarized in Eq. (16.18) of [10] as

d~2*—1 = |d in?@ 4 4lsin>10 |d 2+p—2d 2
== — 7 t—{ asin sin*30 | dg r
P P 2 2)d012

+=do +p251n Oladt— (r* + (a+1)*)de)* |, (1)

where the metric functions are

Q:]-g(l+acos0)r, (2

®
P> =1r* + (I +acosb)?, 3)
P(6) = 1 — a3 cos O — ay cos? 0, 4)

Q(r) = (w*k + &> + ) — 2imr + er?

n A
—2a—1r — [Pk +=|r. 5
a—r (a + 3) r (5)
The constants a3 and a4 in (4) are

l A
ay = 20" i — 40> 5 (Pk + & + ) — 42 al, (6)
0] W 3

a? A
a, = —a’ s (0*k+ &>+ %) — gaz, (7)

while the coefficients €, n, and & in (5)—(7) are determined
by the relations,

w*k l N ) o> ) P A
e—ﬂ+4a;m—(a +31 ){E((u k+ée +q2)+§}
(8)
w*k a? -1
n—ﬂ - P m
a? A
+(a® - P)1 {E (0’k + &+ ) + 5}, (9)
and

@ 3R k=1 + 20t -3 L@ 1) - AP
Z P o = awm awz e°+ s

(10)
which implies
k1 =AP+2alm-322 L5 (2 +7) an
at-P 1+3a2£)—22(a2—12) ’

(0%k +2 +7)
(1=AP)(@® = P) + (& + P) +2aL(a® - P)in
1+3a? 5 (a? - 1) ’

(12)

The fully explicit form of the metric (1) is thus quite
complicated because substituting (6)—(12) into (4) and (5)
gives cumbersome expressions. Another fundamental prob-
lem is the actual physical meaning of the seven parameters
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i, a,l, &g, a, A These have been clearly interpreted only
in special subcases when some of the other parameters were
set to zero. In such subcases, they represent mass, Kerr-like
rotation, NUT parameter, electric charge, magnetic
charge, acceleration, and cosmological constant, respec-
tively. Their meaning in a completely general situation is
still an open problem. Moreover, there is an additional
(auxiliary) twist parameter w. In previous works [11-13] it
was argued that w is related both to a and [, and in some
cases can be scaled appropriately using the remaining
coordinate freedom. A satisfactory insight into all these
problems is still missing. It is the aim of the present work to
clarify such issues. We achieve this by presenting a new
compact, explicit and considerably simplified form of the
Plebanski-Demianski metric, namely (47)—(51), for a com-
plete family of black holes.

The first step in improving the form of the spacetime is to
introduce a new set of the mass and charge parameters m,
e, g. Following our previous paper [14], we define them as

l

m=Sin—a—(a* -1+ e* + ),
®

2 = Se?,

g =57, (13)

where S is a specific scaling constant

Notice that
(@k+2+FP) =S a2 =P+ + ). (15
which is a much simpler expression than (12).

In terms of these new parameters m, e, g, the coefficients
(6)—(9) take the form,

l 4 .
a; =S87! @ {Zam 20— (a*> =P+ e+ ) —7ASlaJ},
® 0] 3
(16)

2 1.
a; = —S7! % {():z(a2 -P+e+ ) +§AS(02} ., (17)

i 2_12
e=S"! {1 +4afm—aza 5
w W

(@> =P +e*+ )
1~ 2 2
-3AS(@ +3P)|, (18)

a? =P

n=gs" [l—a m+%/~\S(a2—l2)l . (19)

The key metric functions (4), (5) thus nicely simplify to

PO) =S"'P@O).  Q(r)=S"0(r). (20)

a? =2
= 14
w*k (14) where
|
a 1< o N 2
PO =1-2 ;m—gASl (I+acosf) + ;(a —-P+e +g)+§AS (I+ acos0)?, (21)

-1 ) 1. l
Q(r):[r2—2mr+(a2—12+ez+gz)]<l+aa r> (l—aa+ r> ——ASrz{rz+2a—(a2—lz)r+(a2+3lz) .
) ) )

With (20), the metric (1) now reads

a5 = 5 (~ L g2 - (asince + a1sin 10 )dg|”
S QZ /)2 asim sy 7 @

2 2
22 P
+Qd +Pd0

+ ﬁzsinzG'S‘2 [adt — (> + (a + 1)2)d¢]2>. (23)
p

Recall that it is a solution to the Einstein-Maxwell field
equations with a cosmological constant A.

As the second step, we now rescale the coordinates t and
@ by a constant scaling factor S # 0. (This is possible

3
(22)

I
because their ranges have not yet been specified.) In other
words, we perform the transformation,

t — St, @ — So, (24)

which completely removes all the constants S from the
conformally related metric,

ds? = $-1ds2, (25)

that is
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1 0
dS2 :E (——2
P

2 2
4 2, P o
—d —do
+ [

2
{dz — <asin29 + 4lsin® % 0) d(p}

P .
+ ;smzﬁ[adt (P +(a+ l)z)dgo]z). (26)
Since the energy-momentum tensor of the Maxwell field
4rT oy = F oo Fp¢ — }TgachdF”d in four dimensions is trace-
|

a

P(O) = 1—2<;m—%l)(l+acos0)+

o(r) = [r? = 2mr + (a®> = P + ¢? +g2)}<1 +aa;

As the third step, it remains to fix the auxiliary twist
parameter @, coupled with both the Kerr-like rotation a
and the NUT parameter /. It was found in [15] and
conveniently employed in [14,16,17] that the most suitable
gauge choice of this twist parameter is

-

free, Einstein’s equations read R,, = Ag,, + 82T, and
the Ricci scalar is R = 4A. Under the constant conformal
rescaling (25) of the metric, the Ricci tensor is invariant:
Gab =S""G,p implies R, = R,, and R = RS. Consequently,
the new metric (26) is a solution to the Einstein-Maxwell
field equations with a cosmological constant A, provided
F ab = F ab\/g'

A=AS, (27)

The corresponding metric functions (21), (22) are thus

o? A
(3(“2—l2+ez+gz)+§)(l+acost9)2, (28)
l A l
ar r> ——rz{rz+2a—(a2—12)r+(a2+3[2) .
3 ®
(29)
a a? l al
—= —=——. 31
o a?+ P o dE+P (31)

Substituting these expressions into (2), (28) and (29), we
obtain the explicit functions Q, P and Q, namely

2 p
wza + 1 ’ (30) »

a Qzl—mr(lJracosH). (32)

so that
|
PO) = 1=2( =2 -2 (14 acoso) + (—EC (@ =P s+ )+ ) 1+ acosop (33)
= 212" 3 acos @17 a e+yg 3 acos0)?,
a—1 a+1 A a*-1

O(r)=[r*=2mr+(a®> -+ e*+¢)] (l +aa7a2+lzr> (1 —aa s h r) —grz[ 2+2“a17a2+lzr+(az+3lz) . (39

In fact, for a generic class of black holes the metric
functions P and Q can be further simplified. To this end, let
us define convenient parameters u, 4, and A (representing
the “modified” mass, cosmological constant, and acceler-
ation, respectively) as

A a*+ 2
=m-2 =m-—=1 , 35
p=m=aA "3 o (35)
A(a2+12)2
=3 (36)
aal
A=arr (37

T
Moreover, we introduce a pair of special constants r,, and
ra- by

rAiE,u:I:\/,uerlz—az—ez—f—/l. (38)
From these definitions it immediately follows that
aa aa A
Zaplaetin)= Z(T’" ‘3’)’
a?a? a?a? A
@rEE M @ @ TP e 4T
(39)
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so that (33) can be reexpressed as

aa aa
P(O) = (1 —az—Jrlzr,H(l + acosﬁ)) (1 —az—Jrler,(l—I— acose)). (40)

The metric function P(0) is thus nicely factorized.

Using (35)—(38), the expression (34) for the metric function Q(r) is also simplified to

a2

a a+1 a*a?
o(r) = [r2—2/4r+(a2—12+e2+gz+ﬂ)]<l +aa?r> (1 —aamr) —/1{1 +mr4]. (41)

In the cases when p? + 1> > a® + ¢* + ¢* + A, the definition (38) yields two real distinct constants r, and r_, and (41)

takes the form,

a—1 a+1 A
O(r) = (r=ras)(r— rA-)(l taa T p ’) (1 W”m’) 3 {r4+T

Interestingly, when A =0, the constants r,. defined
by (38) reduce to

riEm:I:\/m2+12—a2—ez—g2‘ (43)

These parameters then identify (independently of the
acceleration a) the two black hole horizons because
they are also the roots of the metric functions Q(r) given
by (42), cf. [14].

Finally, although the unique scaling constant S defined
by (14) does not enter the final form of the metric (26)
with (32)—(34), it may be useful to present its explicit form
in terms of the new parameters. Substitution from (13)
into (11) with A = AS yields the relation,

! IS
S=1-2a—m+a>— (> +e+¢)+ AP, (44)
w @

that is, using (30), (37)—(39),
S=(1-Ary)(1—Arp). (45)

The rescaling transformation (25) thus actually removes
two coordinate singularities hidden in the expression (45) at
Arp+ = 1. This fact was already observed for the A =0
case in our previous article [14].

Moreover, it can be seen that S =1 whenever
Arpy, =0= Ar,_. For A =0, this happens if /=0 or
a =0 or a =0, in which cases m =i, e =¢, g = g.

For A # 0, the value of the scaling factor is generically
S # 1. In the case [ = 0 it follows from (44) that S = 1, but
in the case [ #0 we get S =1+ A’ even if a =0 or

(a® + 12)2] ' W)

a“a

a = 0. Generally, S =1 only for a special value of the
cosmological constant,

aa [m aa

A= P
a*+ 7

[ ata@ PR o)

III. SUMMARY OF THE NEW FORM OF A
GENERIC BLACK HOLE

It is now useful to summarize our new metric representa-
tion of the complete family of black holes contained in the
class of Plebanski-Demianski spacetimes [8]. Recall that
such spacetimes are the most general exact solutions to
Einstein-Maxwell equations of algebraic type D with dou-
ble-aligned non-null electromagnetic field (see Chap. 16
of the monograph [10] for the recent review and number of
related references).

The new metric form, which improves the previous
representation found by Griffiths and Podolsky [11-13],
reads

ds? = Lz (—% {dt - (asinze + 41sin® %6‘) dq;} ’ —‘,—p—zdr2
Q\ p 0

>
4 P .
+ ngz +?sm29[adl (P +(a+ l)z)d(p]z) ,

(47)

where
Q=1 —az"f prll+acose),  (48)
p?=r>+ (I+acosh)?, (49)
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2.2

aa a~a

P(Q):l—2<7 él)(l—l—acosnﬁ’)-4—<

a2+12m_3

a—1

O(r)=[r*=2mr+(a® -+ e*+¢*)] (l +aaa +12r> (1

The spacetime depends on seven physical parameters,
namely

m ... massparameter,

a ... Kerr-like rotation,

[ ..... NUT parameter,

e ... electric charge,
magnetic charge,

a ..... acceleration,

cosmological constant.

aa

O (AT

a—1 a+1 A a+P)?
o(r) = (r—rA+)(r—rA_)<1 +(1a7a2+12r) (l —(xa7a2+12r> -3 {r4+7( 5> ) }

using the two specific constants,

rAiE,u:i:\/,uz—l—lz—az—ez—gz—/l, (54)
where
A a*+ 2 A(a® + P)?
=m—-—=1 , A=——5-". (55
p=m 3 aa 3 aPd? (53)

This is possible provided p? + I > a> + ¢> + ¢* + 1, in
which case the expressions (54) yield two distinct real
constants (or a double root of P given by ry, = ry_ = puin
the specific situation when % + 1> = a® 4+ ¢ + ¢ + A).
The new form of the metric (47)—(51) nicely represents the
complete family of type D black holes. Moreover, it naturally
generalizes the standard forms of the most important black|

P(O) = (1

a-1 a+1
or)=(r—=ry)(r—r_) (l +aa1127+12r> (1 —aamr>,

A
m(az—lz +62 —0—92) +§>(1+QC059)2,

_ azL—:ller_(l + acosH)),

_%M(Z—Facos&)) (l —Clzaijlzr,(l—o—acosﬁ)),

(50)

a+l1

A olvsaaa® =t i@ 43m)]. 1)
—Qd—~—xF | —=r|r aal———-xr a .
a*+ P a*+ P

3

This metric is compact and fully explicit, and the
ambiguous twist parameter @ has been removed by its
most convenient choice. Moreover, the standard forms of
famous black hole spacetimes—namely Kerr-Newman—
(A)dS, charged Taub-NUT-(A)dS, their accelerated ver-
sions, and others—can easily be obtained as direct subcases
of (47)—(51) by setting the corresponding physical param-
eters to zero.

When A =0, both metric functions P and Q are
factorized, see [14] for more details. With A # 0 this
cannot be in general achieved. However, it is possible to
explicitly factorize the function P and compactify the
function Q as

a~a

T
hole solutions, with two black hole horizons (outer and
inner) and two cosmological/acceleration horizons.

IV. THE MAIN SUBCLASSES OF TYPE D
BLACK HOLES

These are easily obtained by setting the appropriate
physical parameters to zero, as follows.

A. Black holes in flat universe
(A=0: no cosmological constant)

In the case A =0, we get 4 =m and 1= 0. When
m?> + P > a® + > + g (which guarantees that two dis-
tinct roots r, and r_ exist) the metric functions (52), (53)
thus take the form,

(56)

(57)
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where

rizmi\/szrlz—az—ez—gz, (58)

cf. (43). The constants r, and r_ now directly identify
(independently of the acceleration ) the two black hole
horizons because they are also the roots of the metric
functions Q(r) given by (57). This large family of black
holes was thoroughly analyzed in our previous work [14],
and it is not necessary to repeat all the arguments and
results here.

B. Kerr-Newman-NUT—(anti-)de Sitter black holes
(a=0: No acceleration)

By setting the acceleration parameter a to zero, the
metric function (48) reduces to Q = 1, while (49) remains
the same. Concerning the functions P and Q given by (52)
and (53), respectively, one has to be more careful in
evaluating the limits of the terms aar,, because the
acceleration a — 0 appears also in the denominator of
the parameters y and A, defined by (55), which enter 75 .. In
this case it is more convenient to directly set @ = 0 in the
most general forms of these metric functions (50) and (51).
In any case, we obtain the metric,

0 2 r
ds? = -5 {dt - (asin2€ + 4lsin? %9) d(p} + Eer
P

2
p P .
+ Fdeﬂ +;sm29[adt = (P + (a+1)?)dg)?,
(59)
where
p* =1+ (I+acosh)>. (60)
A A )

PO) =1 +2§l(l+acos6’) +§(l+acos¢9) , (61)

o(r)=r*=2mr+ (a®> =P+ e+ ¢)

A

—grz(r2+a2+312). (62)

This result is the same as the limit @ — 0 of the metric
functions (52) and (53). Indeed,

. aa A A N2 A
S e = T lE (?l) —3=Ls (63

limAry, = L. (64)

so that

A A
L, +L_=-2—-1, L,L_=—. (65)
3 3
Thus lim,_oP(6)=(1-L, (I4+acos))(1—L_(I+acosd))
gives (61), which can be rewritten as

4 1
PO) = (1+AP)+ §Aal cos @ + §Aa2c0529. (66)

In a similar way, the limit of (53) using (39) yields (62).
Moreover, in the limit of vanishing acceleration the scaling
factor (45), using (64) and (65), becomes

limS = 1+ AL, (67)

We must emphasize that the forms (66) and (62) of
the metric functions P(0) and Q(r) are different from
the analogous metric functions for the Kerr-Newman-
NUT—(anti-)de Sitter black holes as given by Eq. (16.23)
in [10]. In fact, they are equivalent reparametrization of
this solution. Indeed, we have to take into account the
nontrivial scaling (20), that is

PO)=SPO). Q) =5"0(. (68)
where S is the constant (67). Straightforward calculation
using the relations (13), (27) between the physical param-
eters then yields

4 1.
PO) =1+ gAa lcos @+ §Aa2c0529, (69)

or)=(a®>-P+& +§2) — 2ir + r?

- 1 1
-A {(a2 -+ (5 a® + 212> 2+ §r4] , (70)

which is exactly the form of the metric functions given by
Eq. (16.23) in [10].

All famous subcases of this general family of (nonaccel-
erating) Kerr-Newman-NUT-(anti-)de Sitter black holes,
expressed now in a compact way by the metric (59) with
(60)—(62) [or (66), equivalent to (61)], are readily obtained.
These are the black hole solutions of Kerr-Newman-(anti—)de
Sitter (I = 0), charged Taub-NUT-(anti-)de Sitter (a = 0),

Kerr-(anti-)de  Sitter (/ =0, e=0=g), Reissner-
Nordstrom-(anti-)de ~ Sitter (¢ =0, [=0), and
Schwarzschild-(anti-)de ~ Sitter (¢ =0, [=0, and

e = 0 = g). Of course, by setting A = 0, the corresponding
black holes in asymptotically flat universe are obtained (the
same as in Sec. IVA).

C. Accelerating Kerr-Newman-(anti-)de Sitter
black holes ({=0: no NUT)

Without the NUT parameter /, the new metric (47)
reduces to
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1 2
ds? = o (—/% [df — asin®0dg]? + %di’2
s P
+ 5 46 + 5 sin0ads — (1 + az)dgo]z), (71)
p
where
Q=1-arcosb, (72)
p? = r? 4 d*cos? 0, (73)
P(0) = (1 —ary, cos0)(1 —ary_cos@), (74)

O(r) = (r—rap)(r=ra)(1 +ar)(1 —ar)
a2
—§<r4+a7). (75)

where the specific constants r,. are now simplified to

A 2
rAi:mi\/mz—az—ez—gz—?,Zz. (76)

The metric functions P(0) and Q(r) can be equivalently
rewritten as

A
P(0) =1 —2am cos@ + {ozz(a2 +e?+ )+ gaz cos?0,
(17)
o(r) =[r? =2mr + (a®> + e* + *)|(1 + ar)(1 — ar)

Aoaral o
—gr[r + a?]. (78)

In this explicit form we easily obtain all possible
subcases by simply setting the corresponding physical
parameters to zero. For vanishing acceleration (a = 0),
the metric of the Kerr-Newman-(anti—)de Sitter black hole
solution is recovered, which then yields the standard form
of the Kerr-Newman solution in the Boyer-Lindquist
coordinates in the case of vanishing cosmological constant
(A = 0). Contrarily, by setting A = 0 first, we obtain the
general metric of accelerating Kerr-Newman black holes.
For vanishing charges (e = 0 = g), it is equivalent to the
rotating C-metric, first identified by Hong and Teo [18].

D. Charged Taub-NUT-(anti-)de Sitter black holes
(a=0: No rotation)

By setting the Kerr-like rotation parameter a to zero,
the new metric (47) considerably simplifies and becomes
independent of the acceleration a [because the metric
functions (48)—(53) depend on a only via the product aa].
Indeed, Q = 1 and P = 1 + A3, so that

ds? = — % (dt — 41 sin? %nﬁ'dqa)2 + p—zdrz
p 0
2 d¢? 2 cin2 2
+p m-‘r(l-‘r/\l )Sl[l Ode~ ), (79)
where

O(r)=(1=APY? =2mr+ (2 + ¢* - %) —%r“, (80)

=1 (81)

This explicitly demonstrates that there is no accelerating
“purely” NUT-(anti-)de Sitter black hole in the Plebariski-
Demiariski family of spacetimes.

For A =0, this observation was made already in the
original works [11-13], and recently clarified in [19]. It was
proven that the metric for accelerating (nonrotating) black
holes with purely NUT parameter—which was found by
Chng et al. [20] in 2006 and analyzed in detail in [19]—is
of algebraic type 1. Therefore, it cannot be contained in the
Plebanski-Demianski class which is of type D. We have just
shown that the same is true also in the case of a non-
vanishing cosmological constant A.

It should again be emphasized that the metric
function (80) for Q(r) is different from the analogous
metric function for the charged Taub-NUT-(anti—)de Sitter
black hole as given by Eq. (12.19) in [10]. Actually, it is
simpler. Such a difference is caused by the nontrivial
rescaling § =1 + A2; see (67), (68). Considering the
relations (13), (20) and (27), we get

PO) =1, (82)

~ (1
Q(r) :r2—12—2ﬁ1r+52+§2_A<§r4+212r2_l4)’
(83)

which is the expression (70) for a = 0, exactly the same as
the metric function presented in Eq. (12.19) of [10] for the
case ¢ = +1 (with g = 0).

It will be shown below that the charged Taub-NUT-
(anti—)de Sitter spacetime (79) is nonsingular (its curvature
does not diverge at r = 0), away from the axis § ==
(where the rotating cosmic string is located) it is asymp-
totically (anti—)de Sitter, and the interior of the black hole is
located between its two horizons, that can be surrounded by
two “outer” cosmological horizons.

E. Uncharged accelerating Kerr-NUT-(anti-)de Sitter
black holes (¢e=0=g: Vacuum with A)

Another nice feature of our new metric (47)—(53) is that
it has the same form for vacuum spacetimes without the
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electromagnetic field. Indeed, the electric and magnetic
charges e and g, which generate the electromagnetic field,
enter only the expressions for ry. introduced in (54).
In other words, e and ¢ just change the values of these
two constant parameters. In such a vacuum case, they
simplify to

Far =pEA PP —a? - (84)

The metric (47)—(53) with (84) represents the full class of
accelerating Kerr-NUT-(anti—)de Sitter black holes. It
reduces to accelerating Kerr-(anti—)de Sitter black hole
when /=0, and nonaccelerating Kerr-NUT-(anti—)de
Sitter black hole when a = 0. For a =0 it simplifies
directly to the Taub-NUT-(anti—)de Sitter black hole (79)
without acceleration and charges.

V. PHYSICAL ANALYSIS OF THE NEW METRIC

The explicit new metric form (47)—(53) [or, more
generally, (50)—(51)] of the complete class of accelerating
Kerr-Newman-NUT-(anti-)de Sitter black holes is very
convenient for investigation of geometric and physical
properties of this large family of black holes. This will
now be demonstrated by deriving and presenting some of
the key quantities and facts, namely those concerning the
global structure of the spacetime, the stringy sources of the
acceleration, and thermodynamic properties.

A. Curvature of the gravitational field
and the electromagnetic field

First, it is necessary to determine the gravitational field,
namely the specific curvature of the geometry. It is encoded
in the corresponding Newman-Penrose (NP) scalars, that is,
components of the curvature tensors with respect to the null
tetrad. Its most natural choice is

k= 7% {%((ﬂ + (a+1?)0, + ad,) + @a,} ,
h%%{%((ﬂﬂaﬂ) \+ ad,) fa,],
if% { \/ﬁlsme (a,,, + (a sin®0 + 41 sin2%9> a,) + i\/ﬁa(,}. (85)

A direct calculation shows that the only nontrivial Newman-Penrose scalars corresponding to the Weyl tensor and the

Ricci tensor are

@ -2\ A
i — n1- i~ l(a? - P
? [r+i(l+acosn9)]‘{ (m+1)< 2+12> '3 (a )
(€ +g) aa :
T il T acosd) 1+a2+12 [arcos@ +il(l+ acosO)] | |, (86)

1 Qt
D, = 2 2
11 *5(6’ +g )7)4,

respectively, where

Q=1 —aQaijlzr(lJracosH).
p* =r*+ (I+acos)?, (88)

cf. (48), (49). The Ricci scalar is simply
R =4A, (89)

which is the usual relation valid for any solution of Einstein-
Maxwell equations with a cosmological constant A. While
@, is independent of A, the Weyl curvature component
W, contains the term proportional to Al(a®> —{?). The

(87)

[
dependence of ¥, on the cosmological constant thus
disappears if (and only if) / =0 or [ = +a.

For an invariant identification of curvature singularities
and regions which asymptotically become conformally flat,
it is necessary to evaluate the key (second-order) scalar
invariants, namely the Kretschmann invariant K and the
Weyl invariant C,

K= RubcdRahpdﬂ (90)
C= Cabcdcllbcd' (91)

This can be conveniently achieved in the NP formalism.
Indeed, it is well known that
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ClpedCrPe = 32(Wo W, — 4%, W5 + 392),  (92)

in which C}, ., = Cypeq +1Cy,. 4 Where C7, , is the dual

tensor to Weyl, €.y =L q,CC). Since €, ,C~0¢d =

abc
_Cab dcahcd’ we get Cubcdcahm’ + iC;bch"de —
ICZH)C C*ab(‘d; see e.g. [9], or Eq (]7) in [21]

Therefore, the Weyl invariant is
C=16Re(¥,¥, — 4%, ¥; + 3¥3). (93)

From the definition of the Weyl tensor it follows that the
Kretschmann invariant reads

1
K =C+2R,,R? — 3R2, (94)
where R = 4A, while R,,R can be expressed as'
1 - - -
gRabR”h = QD@ + P Dy — 2(P; Py, + P P12)
1
plok 5
+20}, + 5 R (95)

For the black hole spacetimes (47)—(53), which are of
algebraic type D, the only nontrivial NP scalars are ¥, and
@, as given by (86) and (87), respectively. Therefore, the
corresponding scalar curvature invariants are

C =48 Re(¥2), (96)

K =C+ 3203, +§A2. (97)

Interestingly the Weyl invariant takes the explicit factorized
form,

Q6

c=48-5C.C, (98)
P

) T l({l +%A(a2—lz)} F-

where

2_12
C.= (Fi taa——— P

+eF
P-P+e+ g
e
aa
_(62+92)(1+az—+ler>Ti‘ (99)
in which Fy=(rFL)(r?+4rL+L1%), T,= (%

2rL - L?), and L = [ + acos@.

"There are nine independent (real) quantities encoded in the
complex NP scalars @,z = ®p,. Due to their usual definition,
the projections on the null tetrad (85) of the Ricci tensor R,;, and
of the related traceless Ricci tensor S,;, = R, — %Rg,,b give the
same results. The additional tenth independent component of R,
is given by Ry, contalnmg the Ricci scalar R, so that R, R
also mvolves the term 15 R?g,,9"" = [ R%.

This is a generalization of the previously known expres-
sions for the Kerr-Newman geometry; see [21,22] and
elsewhere, in which case A,l,g,a =0 so that Q =1,
pP=r*+a*cos’0, and C.=m(rF acosf)(r’+
4arcos @ + a* cos? 0) — e*(r* + 2arcos 6 — a* cos? 6).

The spacetime also contains electromagnetic field
represented by the Maxwell tensor F,,, forming a
2-form F =1F,dx* A dx? =dA. Its 1-form potential
A =A,dx"is

A=—\/?+F— [dt - (asmzﬁ + 4lsin? 1 6’) d(p}
p?
(100)
Therefore, the nonzero components of F, =A,, —A,,
are
Fe=—\/e®+@p(r* = (I + acos)?),

F, =-F, <asin29 + 41sin? %9) ,

F=2a\/e* + g@p~*rsin0(l + acos @),

Foo==2\/&* + @p~*rsin0(l + acos0)(r* + (a + 1)%).
(101)
The corresponding Newman-Penrose scalars are @, =
F,km? =0, ®, = F,,ml’> = 0, and
1 /2 L P2
O =2 F (ko tmb) =—YE TR (g9
2 (r+i(l+acosd))

It follows that ®,®, = 2®,,, in fully agreement with (87).
The electromagnetic field thus vanishes if (and only
if)e=0=g.

Since the only nontrivial NP Weyl scalar is ¥,, both
vectors k and 1 are principal null directions (PNDs). In
fact, both are double-degenerate, demonstrating that the
gravitational field is of algebraic type D. The electromag-
netic field is non-null, and double-aligned with these PNDs
because the only nonzero NP Maxwell scalar is ®;.

Moreover, by evaluating the spin coefficients for the null
tetrad (85) one obtains

k=v=0, c=21=0,
Q:M:—g3 <1+1 2_"_lz(l—l—acosﬁ’)>

x (r—i(l+ acos®)),

Psin6 (1
V2p?

aa
i
a? + 2

a
Il

r2> (r—i(l+acos?)).

(103)
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Also a = f and ¢ = y are nonzero, but we do not write
them here due to their complexity.

Both double-degenerate PNDs generated by k and 1 (85)
are thus geodetic (x = 0 = v) and shear-free (6 =0 = A).
However, they have expansion ©® and twist o defined,

respectively, by the real and imaginary parts of
0= —(0+iw) =y, namely
VO aa
= R r+m(l+acosé))3 . (104)
Y
=— I+ acos@). 105
N ( ) (105)

It is now immediately seen from (105) that
(1) The black-hole spacetime is everywhere nontwisting
if (and only if)
a=0=1 (106)

In addition, on the horizons identified by Q(r) =0
(see below) both the expansion and the twist always
vanish (@ = 0 = w).

By inspecting the NP scalars (86)—(89) and (102),
it is also obvious that
The curvature singularities occur if (and only if)

(i)

r=0 and at the same time [+ acosf@=0. (107)
Indeed, both these conditions must be satisfied to
have r 4 i(/ 4+ acos @) = 0. With its complex con-
jugate, this implies

p?=r*+ (I +acosd)? =0. (108)
This agrees with the Weyl scalar (98).

The region of a generic spacetime is conformally flat
if (and only if)

(iii)

Q=0. (109)
With this condition, the spacetime is also locally
vacuum, cf. (87), with a cosmological constant A.
The condition Q = 0 thus localizes the asymptotic
(anti-)de Sitter/Minkowski conformal infinity.

In the case when m = 0 = [ and also ¢ = 0 = g then
¥, =0 = @y, so that

(iv)

the space time is everywhere

conformally flat and vacuum. (110)
The metric (47)—(55) then represents de Sitter
spacetime (for A > (), anti-de Sitter spacetime
(for A < 0), and Minkowski spacetime (for A = 0).

Curvature of the subclasses of type D black holes,
summarized in Sec. IV, are easily obtained from the general
expression (86) by setting up the corresponding physical
parameters to zero:

(i) Kerr-Newman-NUT-(anti—)de Sitter (¢ = 0 : No ac-

celeration)

1 1

7 — 7] R R A
2 [r+i(l+acos€)]3{ " 1[ *3 (a )}
R

r—i(l+acos€)}’ (1)

(i1) Accelerating Kerr-Newman-(anti—)de Sitter (/ =0:

No NUT)
(1 —arcos®)? .
Y, =~ — 7 —m(l -
> (r+iacos6)? m(1 -~ iaa)
1 + arcos@
2 ) 112
e +g)r—iacos6}’ (112)

(iii) Charged Taub-NUT-(anti-)de Sitter (¢ =0: No
rotation)
m—+il(1 - %Alz)
(r+il)?

Etg
(r2 + ) (r+il)?*
(113)

) =

Observe that the cosmological constant A appears
in the Weyl curvature scalar ¥, only if the NUT
parameter [ is also present.

These expressions further simplify if some of the
remaining parameters are zero. In particular, the curvature
of Kerr-Newman-(anti-)de Sitter black hole is obtained
from (111) if / = 0. The curvature for generalized C-metric
with A (accelerating charged black holes without rotation)
are obtained from (112) when a = 0. The curvature of
Reissner-Nordstrom-(anti—)de Sitter black hole follows
from (113) when / = 0. The uncharged (vacuum) black
holes are obtained for ¢ =0 = g.

B. Horizons

Next step is the investigation of horizons of the black
hole metric (47), namely their number, possible degener-
ation, and location. It is immediately seen that the “radial”
coordinate r is spatial in the regions where Q(r) > 0, while
it is a temporal coordinate where Q(r) < 0. These regions
are separated by horizons H located at r;, such that

Q(ry) =0, (114)
where the key metric function Q(r) is explicitly given by
expression (51). In the particular “under-extreme” case

131



Paper 3, Phys. Rev. D XX, 000000 (XXXX)
New form of all black holes of type D with a cosmological constant

JIR[ PODOLSKY and ADAM VRATNY

PHYS. REV. D XX, 000000 (XXXX)

W+ P >a®+e*+ g* + 2, the alternative form of this
function (53) with r,, # r,_ can be used.

These observations are in accordance with the behaviour
of the determinant of the metric (47) constrained on a
constant r which, due to the identity p> = 1> + (a + [)>—
a(asin® @ + 4isin*10), is simply

2
det(gﬂv‘r:mnst) = - % Qsinze. (] 15)
Such a 3-surface is thus timelike when Q > 0, while it is
spacelike when Q < 0. On any horizon the determinant
vanishes (degenerates) due to (114).

Moreover, the determinant of the complete metric (47)
reads det g,, = —Q8p*sin?0. This indicates nonregularity
only at Q =0 (conformal infinity), p =0 (curvature
singularity), Q =0 (horizons), and ¢ =0 or ==
(poles/axes with possible cosmic strings).

Since the function Q(r) does not directly enter the Weyl
scalar (86) or the Ricci scalar (87)—and thus the invariants
C and K given by (96) and (97)—there is no curvature/

To analyze the number, possible degeneration, and
location of the horizons, it is thus necessary to find all
root of the equation (114). Because the function (51) is a
polynomial of the fourth order, it admits up to four real
roots. In the generic black hole spacetime (47) there is thus
four possible horizons H. We can call and denote them as
follows:

(i) two black hole horizons Hf located at r,f,

(i) two cosmo-acceleration horizons HZ located at r.

While the terminology black hole horizon is common
and standard, we hereby introduce a new name cosmo-
acceleration horizon which combines the usual names for
cosmological and for acceleration horizons. These are
mutually combined in this family of spacetimes due to
the presence of both the acceleration a and the cosmo-
logical constant A.

Let us now analyze these horizons explicitly. The generic
key metric function Q(r) is the quartic polynomial of r,
namely

= qqr* 3+ gor? 11
physical obstacle located at any of the horizons r;,. Explicit Q) = qur’ +asr” + @+ qir + g0, (116)
extension of the coordinate system across the horizons H
will be presented in Sec. V F. where the coefficients are
e @A
(a2 + 12)2 3’
. a* -2 l a’—PA
q3 = 2aa|aam @+ D) “are a3l
_ 20 @=P s 2 2 A
q2=1+4aama2+lz—aa (a2+12)2(a —P+e*+g°) - (a* +31 )§
l
q = —2m — 2aam(a2 - + e? + ,(]2),
qgo=a*-1P+e®+ . (117)
The quartic equation Q(r) =0 can have from zero to case [ = 0, this condition is simply o> = —A/3, i.e.,

maximally four explicit real roots r;, corresponding to the
horizons. In particular, we may observe that

(1) Maximally four horizons is the general case which
will be discussed in detail in subsequent Sec. V C.
Some of the roots of (114) may coincide, resulting
in degenerate horizons (doubly, triply, or even
quadruply).
Maximally three horizons occur in spacetimes with
the physical parameters related in such a way that
q4 = 0, that is for

(i)

2 a -2 .
3 (a*+12)?

For these black hole spacetimes the metric function
QO(r) reduces to a cubic function. Notice that in the

(118)

a specific relation between the acceleration of the
(rotating and charged) black hole and the negative
cosmological constant (while the complementary
case a = 0 requires A = 0). Further analysis of this
case will be presented in our subsequent paper.
Maximally two horizons occur in spacetimes with
such parameters that—in addition to the condition
(118)—also the second coefficient in (116) vanishes,
g3 = 0, that is for aa =0 = A =0, or for

2 12 2 _12
aam = l(a R a*a? a2 2)'
a“+1

aZ _ 12
Equation (114) is then a quadratic equation
G27* + q,r + qo =0, from which both horizons

(iif)

(119)
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r;, can be easily calculated. If g2 — 4¢,q, = 0, these
two horizons coincide (it is double degenerate), and
for g7 — 4q,qy < 0 there is no horizon.

Maximally one horizon occurs when both the con-
straints (118) and (119) are satisfied, and moreover
g, = 0, that is

(iv)

a*a*(e? + ¢?) = (a® +3P) (Zz J_r llj)z (120)

The single horizon is then located at

490 1 2 2 2 2(“2_12)3
=—-==— 3/ — .
I 7 daal (a +3Ftaa @+ PP
(121)

For g, = 0 there is no horizon.

These three conditions (118), (119), and (120) character-
ize very special black hole spacetimes in which the physical
parameters A, m, and e? + ¢* have particular values in
terms of the Kerr-like rotational parameter a, NUT param-
eter /, and acceleration a.

It is a usual procedure that the general quartic equation
(114), (116) can be solved by first dividing it by a nonzero
prefactor g, and then performing the substitution,

_

, 122
4q4 (122)

r=x

leading to the depressed (reduced) quartic equation with-
out the cubic term,

iQ(x)=x4+8imx2—;ﬁx+%M=0, (123)
where N = —gq,, the coefficients are
N = 8q4q, — 343, (124)
R =8q5q1 — 4449392 + 43 (125)
S = 2564390 — 644339, + 1644039, — 3¢4.  (126)

and the constants g; are explicitly defined by (117).
Moreover, the discriminant A of the general quartic
polynomial (116) is
A =25643q; — 19243939195 — 128439345 + 14443424790
= 274341 + 14444439245 — 644439790
— 809493939190 + 1844939247 + 16444340
— 4449391 — 279305 + 1843924190 — 4431

—44343q0 + BB (127)

This is simply related to the discriminant of the depressed
quartic function (123) via

— A6
A= N Adepressed~

so that the signs of A and Agepregsea are the same.

In terms of these key quantities A, N, S and R, a
complete analysis and a full description of the number and
the possible multiplicity of roots can now be performed.
Following [23], we can summarize that

For A > 0:

The metric function Q(r) has either four distinct real
roots, or none, and that depends on:

(i) If N < 0and N> > S then all four roots are real and

distinct.

(ii)) If N <0 and N? < S then there are two pairs of

complex conjugate nonreal roots.

(iii) If N > 0 then there are also two pairs of complex

conjugate nonreal roots.

For A < 0:

The function Q(r) has mwo distinct real roots and two
complex conjugate nonreal roots.

For A =0:

This is the only case when the metric function Q(r) has
at least one multiple root.

The different cases that can occur are

(1) If N <0 together with

(a) N2 < S: there is one real double root and two
complex conjugate roots.

(b) N> = S: there are two distinct real double
roots.

() N? > S and N? > —38: there is one real double
root and two distinct simple real roots.

(d) N? = —3S: there is one real triple root and one
distinct simple real root.

(2) If N > 0 together with

(a) S = 0: there is one real double root and two
complex conjugate roots.

(b) S > 0and R # 0: there is also one real double
root and two complex conjugate roots.

() S = N?and R = 0: there are only two complex
conjugate double roots.

(3) If N = 0 together with

(a) S > 0: there is one real double root and two
complex conjugate roots.
(b) S=0 (implying R =0): there is one real
quadruple root x = 0, that is r;, =
This exhausts all the possibilities.

C. The case with two black hole and two
cosmo-acceleration horizons

We will now concentrate on physically most interesting
case in which there are four distinct real roots. This may
appear only in the case when g4 # 0 (otherwise there are
maximally three horizons), i.e., when the cosmological
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constant A is not “finely tuned” to acceleration a and the
two twist parameters a and /, that is for

(128)

In particular, we can observe that for A = O there are no
nonaccelerating or nonrotating black holes (a¢a = 0) with
four horizons.

In such generic black hole spacetimes there are two black
hole horizons H;; and H;, and also two cosmo-acceleration
horizons HY and ‘H. With the assumption that they are
generically distinct, we can rewrite the key metric function
O(r) given by (116), (117) in a factorized form as

O(r) = =N(r=r))(r=ry)(r—r&)(r-rz). (129)
where N = —q, reads
-2 A
N=a2a2ﬁ+§, (]30)

while the four roots rj;, ), rf, rz localize the four distinct
horizons, namely

H; at r} istheouter black hole horizon, (131)
‘H,, at rj, istheinner black hole horizon, (132)
HF at rf  isthe outer cosmo-acceleration horizon, (133)
‘H; at r; istheinner cosmo-acceleration horizon. (134)

In view of the classification scheme summarized above,
this occurs if (and only if)

A>0 and N<O and N?>S. (135)
Moreover, we can assume a natural ordering of these
horizons as

re<ry,<rf<rf, (136)
so that the cosmological horizons are located “outside” the
black hole horizons. Because Q(r) < 0 forall r > r§ when
N >0, such an ordering guarantees that these four
horizons separate the corresponding five regions of the

spacetime in such a way that they are, symbolically
expressed,

time-dependent < stationary < time-dependent

< stationary < time-dependent. (137)

It means, for example, that in the whole range r € (r}, rf),
the coordinate r is spatial. Therefore, the region between
the outer black hole horizon H; and the outer cosmo-
acceleration horizon H_ is stationary.

The natural ordering (136) implying (137) is present for
a large range of values of the cosmological constant A,
including A = 0. In fact, it is a straightforward generali-
zation of the ordering of two black hole horizons and two
acceleration horizons in the family of type D black holes
spacetimes without the cosmological constant; see Eq. (80)
in our previous paper [14]. The ordering (137) depends on
the constraint A/ > 0 which, using (130), reads

A
—>0.

a2_12
2+3

(xam

(138)

In the A =0 case, this condition reduces simply to
/| < |a|, while in the case [ = 0 it is

S5 (139)

Notice also that for |/| > |a| only (a sufficiently large) A >0
is admitted.

An explicit evaluation of the four distinct roots of the
metric function Q(r) in the factorized form (129) in terms
of the seven physical parameters m, a, [, e, g, a, A is quite
cumbersome, leading to rather complicated expressions.
Nevertheless, it may be useful to present them here. Using a
standard procedure of Wolfram Mathematica 13 one

obtains
r,§:%<ﬁ—Hi\/G—2F/\/V), (140)
Ff=%(—\/V—Hi\/G+2F/\/V), (141)
where
1 1
—H? 4+ — — i 3 _ 723
V=B o[- (2+VP - 22)
- (Z—iv y? —Zz)%], (142)
K 2X 2L KX
H=-=, G=3H*+>-V, F=H +—--3,
N +/\/ +N e
(143)
and
aa aa A _—
=5 pl\ 2 a2Mm 3 - - 144
a2+12{<a2+12m 31)(a ) l} (144)
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L=m+

aal
e (@> =P +e*+ ), (145)

aal a? =P

X=1 +4mm—aza2m(a2—lz +62+92)
A

—(a2+312)§, (146)

Y =X?>+ 12KL - 12(a®> = P + &> + ¢*)N, (147)

Z =X+ 18KLX — 54L*’N + 18(a® = > + &* + ¢*)
X (3K? +2NX). (148)

Although these expression are fully explicit, they are not
telling much, and so we prefer to postpone their discussion
to our subsequent paper. For example, it is possible to show
that the complicated discriminant (127) can be nicely
expressed as

4

A=—
27

(Y3 - 2Z72). (149)

The condition A =0 for the existence of multiple roots
thus simplifies to Y3 = Z2.

D. Ergoregions

For the generic black hole metric (47) the condition,

(Pa*sin? 6 — Q) =0, (150)

1
9n = szz
defines the boundary of the ergoregions, that are the
surface of infinite redshift and also the stationary limit at
which observers on fixed r and @ cannot “stand still”. It can
be seen that for a vanishing Kerr-like rotation parameter a
such a boundary coincides with a horizon determined by
Q =0, but for any a # 0 there exists a nontrivial ergo-
region between the g, =0 boundary and the horizon.
Moreover, the existence of ergoregions is related only to
the Kerr-like rotation parameter a, not to the twist NUT
parameter L.

There is an ergoregion associated with any of the
four horizons Hi and HZ. Indeed, the ergoregion boun-
dary (150) is located at

Q(r,) = a*sin’ OP(0), (151)
where the metric functions P(6) and Q(r) are given by (50)
and (51), or (52) and (53), respectively. For a fixed value of
the angular coordinate 6, the right-hand side of (151) is a
specific constant. Because the function Q(r) is of the fourth
order, it follows that there are (at most) four boundaries r,
of the ergoregions in the direction of 6.

From (151) it is also obvious that the ergoregion
boundary “touches” the corresponding horizon at the
poles because for 6 =0 and @ = z the condition (151)
reduces to Q(r,) = 0.

It is generally complicated to explicitly solve Eq. (151),
but it can be plotted using a computer. Typical results are
shown and discussed in Fig. 1.

E. Curvature singularities

By inspecting the Newman-Penrose scalars ¥, and @,
given explicitly as (86) and (87), we have already con-
cluded that the curvature singularities occur if and only if
p2 = 0, that is when

r=0 andatthesametime [+ acos@=0; (152)
see (107). The presence of these curvature singularities
has also been confirmed by the behavior of the Weyl
invariant C = C.,;,C?*¢ and the Kretschmann invariant
K = R peqR™<4, evaluated in (96) and (97).

Now, the condition [ 4+ a cos @ = 0 can only be satisfied
if |a| > |1|. Otherwise, [ 4+ a cos @ remains nonzero because
cosf is bounded to the range [—I,1]|. Therefore, the
curvature singularity structure of the complete family of
type D spacetimes (47) depends on relative values of the
two twist parameters, that is the Kerr-like rotation param-
eter a and the NUT parameter /, as follows:

I =0,a = 0: singularity at r = 0 forany 6,
[=0,a#0: singularity at r =0 for = z/2,
l#0,a=0: nosingularity,
|I| > |a] > 0: nosingularity,
| = +a: singularity at r = 0 for@ = =,
[ = —a: singularity at r =0 for6 = 0,
la| > || > 0: singularity atr = 0 for cos@ = —I/a.
(153)

These results agree with the well-known character of the
r =0 singularity of the Schwarzschild-(anti-)de Sitter,
Reissner-Nordstrom-(anti—)de Sitter and (possibly charged)
C-metric spacetimes (/ = 0, @ = 0, in this order), the ring
singularity structure of the Kerr-Newman-(anti—)de Sitter
black holes (I =0, @ = 0), and the absence of curvature
singularities in the Taub-NUT-(anti-)de Sitter spacetime
(a=0, a=0). For a recent detailed analysis of the
singular ring structure in these Kerr-like metrics see [24].

Moreover, from the generic form (51) of the metric
function Q(r), or equivalently (116), evaluated at r =0
we obtain

00)=qo=a*-P+e* + . (154)
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a=1.5A=0.003 a=1.8 A=0.003

FIG. 1. Plot of the metric function g,, (150) for the generic spacetime (47). The values of g,, are visualized in quasipolar coordinates

x=/r*+ (a+1)?sin@,y = \/r* + (a + 1)? cos 0 for r > 0. The gray annulus around the center of each figure localizes the black hole
bordered by its horizons H; at r; and r; (0 < r; < r}}). The cosmo-acceleration horizon H; at r} (red circle) and the conformal infinity
T at Q = 0 are also shown. The gray curves are contour lines g, (r, §) = const, and the values are color-coded from red (positive values) to
blue (negative values). The green curves are the isolines g,, = 0 determining the boundary of the ergoregions (151) in which g,, > 0 (green
regions). All six plots are made for the same choice m = 3,/ = 0.2, ¢ = 1.6 = g, @ = 0.12. There are two distinct choices of the Kerr-like
rotation parameter, namely @ = 1.5 (left) and @ = 1.8 (right). The rows visualize three different signs of the cosmological constant, namely
A = 0.003 (top), A = 0 (middle) and A = —0.003 (bottom). For larger values of @ and A the ergoregions are bigger. In fact, the ergoregion
above the black hole horizon H; is merged with the ergoregion below the cosmo-acceleration horizon H, in the equatorial part near = 3.
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The singularity at » = 0 occurs only if a> > /2, see (153), so
that it is located only in the stationary region where Q > 0.
In fact, in view of the natural ordering (136) and the scheme
(137), the ring singularity must be contained in the region
re(r;.ry) between the horizons H; and Hj. The
alternative possibility r € (r},rf) would correspond to
a naked singularity in the stationary region located outside
the horizon H;.

F. Global structure and conformal diagrams

Now we analyze the global structure and the maximal
extension of the spacetime. As in the previous parts, we will
assume the generic case with four distinct horizons HE
and HE located at ri and rf, that are ordered as
re <ry <r} <rf;see (136).

The procedure is basically the same as in Sec. V.D of our
previous paper [14], and extends special cases of non-
accelerating black holes, see e.g. [22,25-31], or black holes
with acceleration [32,33]. First, the retarded and advanced
null coordinates are defined,

u=t—r, and v=r1+r,, (155)
where the tortoise coordinate is
2 / 2
re = /4’ flatly, (156)
. o(r)

and also the corresponding untwisted angular coordinates
are introduced by

dr dr
qﬁu:(p—a/% and (bv:(p—i-a/% (157)

Using the advanced pair of coordinates {v,¢,}, the
metric (47) takes the form,

ds?

L[aQPsinze—Q(dv_Td(/} y

-2 Pg
+2(dv —Td¢,)(dr — aPsin® 6d¢,)

2 (462 02 9.2
+p T-ﬁ-Psm odoz )|, (158)

N
40| P2
Psin’@

ds?

e ((a=[r"+ (a+ 1)) (du + dv) = 2[r? + (a + 1)*]dg,)* |

((1=T9,)(du + dv) —2Td,)* + 0p?

where 7 (0) = asin® 0 + 4lsin*160, while using the
retarded pair of coordinates {u, ¢,} it reads
1 [a*Psin?6 - Q
ds? = o {T (du — Tdg,)?

—2(du — Tdep,)(dr + aP sin® 6d¢,,)

de? .
+p? T—&-Psmz odg? | |. (159)

Both these metrics are regular at Q(r) =0, so that the
coordinate singularities at the horizons has been removed.

The next step in construction of the maximal (analytic)
extension of the manifold is to introduce both the null
coordinates u and v simultaneously, revealing thus the
causal structure. The coordinate r is eliminated using the
relation (155) which implies

2dr=— 0

Py (dv — du).

E (160)

In addition, it is necessary to construct a unique angular
coordinate ¢, across the horizon ar r;, using the specific
relation,

¢ =@ —Q,t, where Q, = (161)

The constant Q,, is the angular velocity of the horizon.
Actually, 2d¢, = d¢, + dpp, — Q,(du + dv). This it the
unique way how to properly combine the distinct angular
coordinates ¢, and ¢, (for more details see [14]).

Unfortunately, the specific choice of the angular coor-
dinate ¢, depends on the given horizon via its value r;, and
thus . For this reason, it is not possible to find a single
and simple global coordinate ¢ which would conveniently
“cover” all the four horizons. This drawback was met many
years ago already in the Kerr spacetime, so it is not
surprising that it reappears in the current context of the
complete family of type D black holes with seven physical
parameters.

An explicit general metric form of this family con-
structed in this way reads

(du — dv)?

2
P m
S
Pt P

(162)

For nontwisting black holes without the Kerr-like rotation (@ = 0) and the NUT parameter (/ = 0), the metric functions
simplify to Q =1, P =1, p> =%, T =0, Q;, = 0, so that
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ds? = —%dudv + 2(de? + sin20dg?),  (163)

which is the usual form of the spherically symmetric black
holes in the double-null coordinates [10].

It remains to analyze the global extension of (162) and to
study the degree of smoothness (analyticity) of the four
distinct horizons H; and HZ where Q(r,) = 0. Restricting
to any two-dimensional section € = const and ¢;, = const
the general metric (162) reduces to

_ 2
L[ (1=7) ngh) O(du + dv)?

+ m O(du — dv)?
S Psin?0 (r + ry)*(r —rp)

2

)
du +dv)?|, (164

A Bt (@i Gt (68

which is null at any horizon r;, where Q(r;,) = 0. Due to
the simple factorized form (129) of the metric function

k= () +(a+1D)?

PN =)y =)y )

= (r)* +(a+1)?

PN =) =) - )
o = (rE)* + (a4 1)?

C N =) =) (rE = r7)

ke — (o)’ +(a+1)? (166)

Each of these constants is associated with the correspond-
ing horizon Hjf located at r = rj, where h = b (for the
black hole horizons) or 4 = ¢ (for the cosmo-acceleration
horizons).

We can express the metric functions Q(r), p?(r) and
Q*(r) entering (164) in terms of the null coordinates
v — u instead of r by using the inversion of the relation
2r,(r) = v — u. Finally, we introduce the couples of new
null coordinates Ui and Vi, defined as

+ _ i + u
O(r), the integral (156) defining the function r,(r) can be Uj, = (=1)'sign(kj;) exp (_ E) (167)
calculated explicitly as
Vi =(=1)sign(kt) exp (+ ii) (168)
n r B r 2k;
r(r) = k; log|1 — —| + k; log|1 — —
r
b b Each couple covers the corresponding horizon Hj.
+ kF log|1 _é + k- log|1 _L_ , (165) Moreover, it is characterized by a particular choice of
Te Te two integers (i, j) which specify a certain region in the
manifold. Generally, there are five types of regions which
where the auxiliary coefficients are are separated by the four types of horizons H;", namely
|
Region Description Specification of (i, j)
I: asymptotic time-dependent domain between H andZ* (n—2m+ 1,n+2m—1)
II: stationary region between H;} and H 2n—m,2n+m—1)
II: time-dependent domain between the black-hole horizons (n—2m,n +2m)
v: stationary region between 7 and (2n—m+1,2n+m)
V: asymptotic time-dependent domainbetweenZ-and’ H; (n—2m+ 1,n+2m—1)

where m, n are arbitrary integers. The corresponding
Kruskal-Szekeres-type dimensionless coordinates for every
distinct region are

1 1
Ty =5(Vi +Ui). Ry =5(Vi=Uj).  (169)
[The presence of the curvature singularity at r = 0 (imply-
ing r, = 0) for certain values of @ restricts the range of the
coordinates U, and V; in the region IV to the domain

outside UV, = £1.]

In terms of these coordinates, the extension across the
horizon is regular (in fact, analytic). Indeed, by multiplying
and dividing the null coordinates (167) and (168) we obtain
the relations,

58 k- 5 I

b b < Zc
o -5 -2 -2 -
b c c
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Us L t
o —(_1)itJ -,
o~ en(-)
while the terms (du + dv)? in the metric (164) become
Vic
Ui

Uy
+V—i(dvf)2).

(171)

2 4k)?
UiV

(du + dv) (dU%)? F 2dUEdVE

(172)

A nonanalytic behavior across the horizon r, may thus
occur only at zeros of the product U Vi. However, they
exactly cancel the zeros of the functions Q(r) in the metric
(164). For example, by choosing the black hole horizon
r, =rf, we get USV; o (r = r}) which obviously com-
pensates the corresponding root Q o« (r—ry) in (129).
Notice also that the last term in (164) actually vanishes.
Therefore, the metric (164) remains finite at r,f. Of course,
the same argument applies to the remaining three horizons.

Maximal extension (the complete atlas) of the black hole
manifold represented by (47) is obtained by ‘gluing
together” the different “coordinate patches” crossing all
the horizons, until a curvature singularity or conformal
infinity (the scri 7) is reached. Such an extension has to be
performed both along the advanced null coordinate v and
the retarded null coordinate u, using the corresponding
coordinates U; and V. By this step-by-step procedure, the
coordinate singularities at all the horizons H; are removed.

Finally, we construct the Penrose conformal diagrams
visualizing the global structure of this extended manifold.
This is achieved by a suitable conformal rescaling of U

and Vi to the compactified null coordinates i and 7
defined as
i ot
tanTh = —sign(k;)(U;)~senti), (173)
v, o (b (1 —sign(k)
tan - = — sign(ky) (Vi) e, (174)

Consequently, for T =1(#f + i) and Rff =1 (5 — i)

we obtain the following explicit expressions in terms of the
original coordinates ¢, r of the metric (47):

L
cosh2 =
I

sinh——

Z\k,i\
)

(=1)/*! arctan for i + j even,

sinh——

i 2K L

(=1)/ arctanm for i+ j odd, r, <0,
Z\kh |
sinh——

2E| L

e ol for i +j odd, r, > 0,

(=1)/ arctan ———
z\khi\

(175)

and
sinh——
f 2lk"| s . .
- T l ven,
1)/ arctan oo~ for i 4 j even
i z\khi\
~ . cosh#i‘
RE = ¢ (—1)/ arctan ——k- for i +j odd, r, <0,

+
2\kh\

cosh:
(=1)7*" arctan ——

sinh——
z\khi\

——
20kE|

+x for i+ jodd, r, >0.
(176)

Recall that the function r,(r) is given by (165) and the
coefficients k- by (166). In particular, the lines of constant
r thus coincide with the lines of constant r,. For every
single region the coordinate r, spans the whole range
(=00, +00), and similarly the coordinate 7.

These explicit relations between the compactified coor-
dinates {73, Ri' } and the original coordinates {t, r} of the
metric (47) for all (i,j) can be used for graphical
construction of the Penrose diagram, composed of various
“diamond” regions. The resulting picture is shown in Fig. 2
for the special value of 0 such that cos@ = —I/a which
contains the curvature singularity at r =0 in all its
regions IV (see Sec. VE). In particular, for vanishing
NUT parameter [ = 0 this is the equatorial plane 6 = 2.

The complete manifold consists of an infinite number of
the regions 1, 11, 111, IV and V, each identified by the specific
pair of integers (i, j). These regions are separated by the
corresponding horizons. Namely, the regions I and II are
separated by the cosmo-acceleration horizon HJ at rf,
with the asymptotic region I also bounded by the conformal
infinity 7 (the scri) for very large values of r. The regions II
and 111 are separated by the black hole horizon H} at 7},
while the regions III and IV are separated by the inner black
hole horizon H; at r; . Finally, the regions IV and V are
separated by the cosmo-acceleration horizon H at r;, with
the asymptotic region V bounded by the conformal infinity
7 with negative values of r. The curves in each region
represent the lines of constant ¢ and r (dashed or solid,
respectively).

In the “diagonal” null directions of these Penrose
diagrams we can identify the particular coordinate patches
covered by the “advanced” metric form (158), extending
from the bottom left Z~ to the top right Z* [for example the
pink regions I-V between (1, —1) and (1,3)], and also the
complementary “retarded” metric form (159), extending
from the bottom right Z~ to the top left Z* [these are not
colored but also contain the regions I-V, for example
between (—1,1) and (3,1)]. These patches “share” the
“central regions” III [for example (1,1)]. Each of such
central region III is bounded by the inner and outer black
hole horizons at r; and r}, localizing thus the interior of
the corresponding black hole. In the whole extended
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2,-2)

7

(0,0

A

(-2,2)

J
r n

FIG. 2. Penrose conformal diagram of the completely extended spacetime (47) showing the global structure of this family of
accelerating and rotating charged NUT black holes with a cosmological constant. We assume the ordering of the four distinct horizons as
re <ry <rj <rf;see (136). Here we show a two-dimensional section 6, ¢, = const with the curvature singularity at r = 0, i.e., for
6 = const such that cos @ = —I/a. In such a section, the corresponding regions IV are “cut in half” by this curvature singularity at r = 0,
indicated by the vertical zigzag lines. The double dashed vertical parallel lines indicate a separation of distinct asymptotically flat regions
close to Z* (different “parallel universes” that are not necessarily identified).

universe, there are thus infinitely many black holes—they
are identified by the different regions III.

Provided |I| < |al, such black hole has the curvature
singularity at r = 0 in the region IV bounded by the inner
black hole horizon H; at r; (and also the inner cosmo-
acceleration horizon H; at ;). In the section given by the
special value of € such that cos @ = —I/a it is not possible
to cross from the values r > 0 to r < 0. This is indicated by
the vertical zigzag lines in the regions IV. However, as
recently pointed out by MacCallum [34] in his interesting
revisit of the maximal extension of the Kerr black hole
spacetime, there is a “missing triangle” in usual plots (such
as in [10]). Although it is not possible to cross the curvature
singularity » = 0 on this specific section, due to its ring
structure there exist curves that decrease from r > 0 to
r = 0 and continue to r < 0, provided their value of 0 is
different form cos @ = —I/a. On such a section there is no
curvature singularity, so that the coordinate boundary r = 0
is no obstacle for continuation of the curve. The same
argument is valid not only for the Kerr black hole but also
for the whole family of rotating black hole spacetimes (such
that |/| < |a|) investigated here. Therefore, in Fig. 2 we
represent the curvature singularity in (any) region IV

20

simply by a vertical zigzag line. The “missing triangle”
on the left of » = 0 is the extension of the “present triangle”
on the right, continuing from positive to negative values
of the coordinate r, and vice versa, because the curvature
singularity can be “bypassed” on any section such
that cos 6 # —l/a.

Each of these black holes, identified by the specific
region III, is associated with four asymptotic regions,
namely the pair of the regions I with future conformal
infinity Z+ and a pair of the regions V with past conformal
infinity Z~. Moreover, each asymptotically conformally flat
region bounded by Z is “shared” by two distinct black
holes. For example, the conformal infinities Z* of the
“infinite horizontal chain” of black holes (regions III)
given by ..., (3,—1), (1,1), (—=1,3), ... are located in the
“future universes” (regions I) ..., (5,-1), 3,1), (1,3),
(=1,5), ..., while their “past universes” (regions V)
are ..., (3,-3), (1,-1), (=1,1), (=3,3), ..., respectively.
However, these “past universes” need not be the same.
Therefore, we inserted the double dashed vertical parallel
lines in them to indicate their separation. Of course, it is
possible to “artificially” identify (some of) them—both
the black hole regions III and/or their asymptotic regions
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I and V. An infinite plethora of various topologically
complicated manifolds can thus be constructed.

Let us emphasize that the Penrose conformal diagram
shown in Fig. 2 represents the global structure of a generic
black hole spacetime of type D (47) with four distinct
horizons. It remains to investigate a great number of other
special situations for particular choices of the physical
parameters with degenerate (multiple) horizons or with a
reduced number of horizons, as identified in Sec. VB and
Sec. V C. Other specific situations also occur, for example
|a| = |I]. In all these cases the Penrose diagram will have
different forms.

G. Regularization of the axes of symmetry =0
and O=x

As shown in previous works [11,13,14], the metric (47)
is convenient for explicit analysis of the regularity of the
poles/axes located at @ = 0 and 6 = =, respectively, which
are the boundaries of the range 6 € [0,z].” This is now
further improved with the new metric functions (48)—(53).

Recall that there are seven physical parameters in the
metric (47), namely m,a,l, e, g,a, A, which represent
mass, Kerr-like rotation, NUT parameter, electric and
magnetic charges, acceleration, and cosmological constant
of the black hole, respectively. But it should be emphasized
|

fo=27CP(0)

:2ﬂc{1—2<a l)(a+l)+<(

Therefore, the axis @ = 0 in the metric (47) can always be

1)(a+l)+((

A

3

aam
2 + 12

aam A
1-2({———-—=
[ (a2+12 3

Notice that for [ = —a, this is simply C, = 1.

Co

a*+ )

that, in fact, there is also the eighth free parameter—the
conicity C hidden in the range of the angular coordinate,

¢ €0,270), (177)
which has not yet been specified. It is directly related to the
deficit (or excess) angles of the cosmic strings (or struts)
located along the axes. The tension associated with these
topological defects is the physical source of the acceler-
ation of the black holes.

First, let us consider a small circle around the first axis of
symmetry @ = 0 in the metric (47) given by € = const, with
the range of ¢ given by (177), assuming fixed ¢ and r. The
invariant length of its circumference is foz”c /Gppdep, while
its radius is [ \/ggad®, so that

i fe 27C.\ /Tpe
£y = lim circum 'erence — lim \/W (178)
’ 6-0 radius N
For the metric (47) near the axis @ = 0 we get
e
~ 2 2\202 _
nggzpz(r + (a+1)*)%0%, 960 = orp (179)
and thus, using (50),
a?a? A
—asz)z(az—lz+e2+gz)+§)(a+l)2}. (180)

made regular by the unique choice of C = C, such that

2

aa?

a

2(a2—12+e2+g2)+%)(a+l)2}71. (181)

Analogously, we can regularize the second axis of symmetry 6 = z. By applying the transformation of the time

coordinate,

t,=t—4lp,

the metric (47) becomes

1
T

0

(-5

2

2 2
ds? {dt,, - (asin29 — 4cos? %9) d(p} +”Q d

(182)

2 P
r+ %dGz + —sin*0ladr, — (2 + (a - l)z)d(p]2>, (183)
p

2Usually, 60 = 0 and @ = = are considered as two semiaxes of the same axis of rotation (a single symmetry axis). This is natural in the

simplest spacetimes for which the coordinates (r, 0, ) represent spherical(like) symmetry with > 0 only. However, in the present
context of generic black hole spacetimes with the Kerr parameter ¢ and the NUT parameter /, the range of the “radial coordinate” is
r € (—o00, +00). In such a case, both the axes given by @ = 0 and 6 = x have this full range of r, and thus they are not the same (unless
they are “artificially” identified, which would lead to nontrivial topologies). Therefore, they form two distinct infinite axes connecting
two different asymptotically flat regions in the whole spacetime. This fact is explained in more detail in our previous papers, in particular
see Fig. 4 of [19] and Fig. 2 of [14].
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Now, for @ — = the radius of a small circle around the axis
0 =nis [F\/Gepdd, so that

where for the metric (183) now

P p2
gq;«vzm(rhr(‘1—1)2)2(”—9)2s 900 = 2 p (185)
. =lim circumference m 27C\ [Ty (184) P
=1 - =i R
0-z  radius 0=r (1 = 0)/Go Using (50) we obtain
|
fz=27CP(x)
aam A a?a? A

- 2nc{1 + 2(612—“2—?1) (a=1)+ <m (@-P+e+¢) +§> (a— 1)2} . (186)

The axis @ = x in the metric (183) can always be made regular by the unique choice C = C, where

. aam A a?a? N A !
C”: 142 az_—',-lz_gl (a—l)-l— m(ﬂ -l +e +g)+§ (a—l) . (187)

Notice that for / = q, this is simply C, = 1.

H. Cosmic strings (or struts)

Regularizing the second axis 8 = z by the choice (187)

and deficit (or excess) angles

there remains a deficit/excess angle &y = 2n — f( (conical

singularity representing a cosmic string/strut) along the first axis @ = 0, namely

60:

8ralaalm(a® + ) — aal(a® = > + €* + ¢)] =2 Al(a® + 2)?]

(1+1A(a—1)(a=-30)](a® + P)* + 2aam(a

For nonrotating black holes (a = 0) we immediately
obtain &, =0 which means that both axes 6 =0 and 0 ==
are regular. In such a case, the possible cosmic strings are
absent, so that there is no source of acceleration. This is fully
consistent with our previous observation made in Sec. IV D
that there is no accelerating “purely” NUT-(anti—)de Sitter
black hole in the Plebanski-Demianski family of spacetimes.
Indeed, by setting the Kerr-like rotation parameter a to zero,
the metric (47) becomes independent of the acceleration a,
and simplifies directly to (79).

For black holes without the NUT parameter (I = 0) this
expression simplifies to

_ 8ram
"1+ 2am + 2(a> + &2 + ¢F) +1Aa*’

5 (188)

—8ralaalm(a® + I?) — aal(a®

D@+ B)+?d(a-D)Ha*-P+ e+ )

recovering the previous results for rotating charged
C-metric with a cosmological constant; see Chap. 14
in [10] [and generalizing Eq. (132) of [14] to any A].
The tension in the cosmic string along @ = 0 characterized
by 8y >0 pulls the black hole, causing its uniform
acceleration. Such a string extends to the full range of
the radial coordinate r € (—o0,+o0), connecting “our
Universe” with the “parallel universe” through the non-
singular black hole interior close to r = 0.

Complementarily, when the first axis of symmetry 6 = 0
is made regular by the choice (181), there is necessarily an
excess/deficit angle 6, =2n — [, along the second axis
6 = m, namely

P+ + @) -3A(a® + 1)

3

B 1 +4A(a+ I)(a+3D)](a* + *)* = 2aam(a

For a = 0 it gives §, = 0, while for / = 0 it simplifies to

—8ram

o, = R
T 1—20:m+a2(a2+ez+g2) +%Aa2

(189)

+0(@*+P)+a*a*(a+ D> (a®> - P+ +¢%)’

[
[generalizing Eq. (134) of [14] to any A]. This represents
the cosmic strut characterized by 6, < 0 located along
6 = & between the pair of black holes, pushing them away
from each other in opposite spatial directions.
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Interestingly, both axes @ =0 and € = z can be made
simultaneously regular (5, = 0 = J,) if (and only if) seven
physical parameters of the black hole spacetime satisfy the
special constraint,

2
§Al(a2 +12)? = aa[m(a® + P) — aal(a® — P + &> + ¢*)].

(190)

For such a special value of the cosmological constant A, the
rotating charged black holes with the NUT parameter / # 0
accelerate without the presence of the cosmic strings or
struts. In the A = 0 case the simpler condition given by
Eq. (135) of [14] is recovered. The condition (190) also
corrects the wrong sign of the A-term in the corresponding
unnumbered equation on p. 313 of [10].

I. Rotation of the cosmic strings (or struts)

With a NUT parameter [ # O these cosmic strings (or
struts) are rotating. The angular velocity parameter wy of
the metric (47) is
wy = o

Iu
O(asin® 0+ 41sin*10) —a(r* + (a +[)*)Psin® 0
Q —a*Psin?0 ’

(191)

Now we consider any fixed value of r away from the
horizons (so that Q # 0 is a constant). Then the limits
6 — 0 and 0 — 7 near the two different axes 6 = 0 and
0 = give
wy=0 and w,= -4l (192)

respectively. The first axis @ = 0 is thus nonrotating, while
the second axis 0 = x rotates, and its angular velocity is
directly (and solely) determined by the NUT parameter .
Indeed, w, does not depend on the Kerr-like parameter a,
nor the conicity parameter C. The rotational character of the
axis is thus a specific feature related to the NUT parameter
[, which is independent of the possible deficit angles
defining the cosmic string/strut along the same axis.

By changing the time coordinate as in (182), we obtain
the alternative metric (183) for which

—Iue

9,1,
Q(asin® 0 —4lcos’10) — a(r* + (a—1)*)Psin> 0
0 —d?Psin?0 '

(27}

(193)

The corresponding angular velocities of the two axes
are thus

23

wy=4l and w,=0. (194)
In this case, the situation is complementary to (192): the
axis @ = 0 rotates, while the axis # = x does not rotate.
Interestingly, there is a constant difference,
Aw=w)—w, =41, (195)
between the angular velocities of the two cosmic strings
or struts given by [/ (irrespective of the value of a or the
choice of C). The NUT parameter / is thus responsible for
the difference between the magnitude of rotation of the two
axes § =0 and 0 = 7.

J. Pathological regions with closed timelike curves
near the rotating strings (or struts)

In the close vicinity of the rotating cosmic strings or
struts located along € =0 or 0 =z, the black hole
spacetime can serve as a time machine because there are
closed timelike curves. To identify such “pathological”
causality-violating regions, let us consider circles around
the axes of symmetry € = 0 or @ = 7z such that only the
periodic angular coordinate ¢ € [0,27C) changes, while
the remaining coordinates ¢, r and € are constant. The
corresponding velocity vectors are thus proportional to
the Killing vector field d,, whose norm is determined just by
the metric coefficient g,,, of the general metric (47). There
exist regions with

Gpp <0, (196)
in which the circles (orbits of the axial symmetry) are
closed timelike curves. Such pathological regions are given
by the condition,

P(0)(r? + (a + 1)?)?*sin® @ < O(r)(asin® 0 + 4lsin2%9)2,
(197)

where the functions P(6), Q(r) are explicitly given
by (50), (51).

Since P(6) > 0, this condition can only be satisfied in
the regions where Q(r) > 0. In the generic case admitting
four distinct horizons (129), with N > 0, ordered as
re <ry <r} <rf, the pathological regions with closed
timelike curves can only appear in the stationary region
r € (rf, r¥) between the outer black hole horizon H;; and
the outer cosmo-acceleration horizon H/, or in the sta-
tionary region r € (rz,r,) between the inner cosmo-
acceleration horizon 'H; and the inner black hole horizon
‘H;, containing the curvature singularity at r = 0; see the
scheme (137). These are, respectively, the regions II and
the regions IV in the Penrose conformal diagram shown
in Fig. 2.
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Moreover, it can be proven analytically that these
pathological regions with closed timelike curves do not
intersect with the ergoregions (shown in Fig. 1), although
they are both in the same domains II and IV. Indeed, the
ergoregions are identified by the condition g,, > 0 (together
with g, > 0), that is

Q < Pa’sin’ 9; (198)
see Eq. (150). Substituting this inequality into (197)
we obtain

P+ (a+1)? < a*sin® 0 +4alsin’10.  (199)

This is the same relation as r> + a®cos? 6 + 2al cos 6+
2 < 0, and in view of (49) it reads

pP=r*+ (I+acos)’ <0, (200)
which is a contradiction.

The pathological regions with closed timelike curves are
indicated in Fig. 3 for several choices of the cosmological
constant. They are the purple regions near the rotating
cosmic string (strut) at 6 = x.

K. Thermodynamic quantities

In this final section we evaluate some basic thermody-
namic quantities of the large class of black holes (47),
namely the entropy,

1
S=-A, 201
1A (201)
given by the horizon area A, and the temperature,
T ! (202)
=k,
2n

given by the corresponding horizon surface gravity «;
see [35].

The horizon area is obtained easily by integrating both
angular coordinates of the metric (47) for fixed values of t
and r = ry,

A(ry)

27C [ Omax
A A /9009, d0d . (203)

Because Q(r;,) =0 on any horizon, this expression sim-
plifies to

24

Onax  SIN O
Q*(ry)

Applying the explicit form of the conformal factor (48),
that is

A= 22C(R + (a+1)%) / . (204)

Ormin

aary,
Q(ry) =1- 2Ll (I+acosb), (205)
a simple integration leads to
2.2
+ 1/ —1 ] Omax
= 22C(r2 ) p— . (206
A=20C0 a4 1) s [grs] (200

Let us now assume the generic case of four distinct
horizons ‘H introduced in (131)—(134). For the black hole
horizons Hf the integration range is a full spherical angle,
[Oumin» Omax] = [0, 7], and this leads to the following result:

4nC[(r)* + (a + 1]
(1 —ast ) (1 + aliry)

a*+ 1
(207)

areaof H is A, =

For vanishing acceleration a the area of the black hole
horizons is simply

Af =4zC((rE)? + (a + 1)?). (208)
This reduces to the well-known expressions for Kerr—
Newman-NUT-(anti—)de Sitter black holes, and in particu-
lar the Schwarzschild solution with a single horizon of the
area A, = 4xr3.

Concerning the cosmo-acceleration horizons HE, it is
necessary to discuss three cases depending on the sign of
the cosmological constant. In our previous work [14] we
demonstrated that for A = 0 the area of both H = H and
‘H; = H_ is infinite. The same is true for A < 0. In this
case the reason is that the cosmo-acceleration horizons
extend up to conformal infinity given by Q = 0. This can
be seen, e.g., from the corresponding pictures in the
bottom row of Fig. 1 and Fig. 3 in which HZ are indicated
by big red circles. Consequently, Q(r/,6,) =0 and
Q(r7,0max) = 0. In both cases, the expression (206) for
AF diverges.

For a positive cosmological constant A > 0 the integra-
tion (206) over the full admitted range [0, Omax] = [0, 7]
implies that

4nC((re)’ + (a+1)’]
(1-asttre ) (1+ atiztd )

(209)

At =

areaof HE is

144



Paper 3, Phys. Rev. D XX, 000000 (XXXX)
New form of all black holes of type D with a cosmological constant

NEW FORM OF ALL BLACK HOLES OF TYPE D WITH A ... PHYS. REV. D XX, 000000 (XXXX)

A =0.005
i6=0

10

FIG. 3. Plot of the metric function g, for the accelerating black hole (47) with a regular axis 6 = 0 and rotating cosmic string (strut)
along the axis 6 = x. The values of g, are visualized in quasipolar coordinates x = \/r* + (a + [)?sin6, y = \/r> + (a + I)* cos 6 for
r > 0 (left) and r < 0 (right). The gray annulus in the center of the left figure localizes the black hole bordered by its horizons H; at r}
and Hj, at r; (0 < r, < ry). The cosmo-acceleration horizons HZ at r{ and r; (big red circles) and the conformal infinity Z at Q = 0
are also shown. The gray curves are contour lines g, (. 6) = const, and the values are color-coded from red (positive values) to blue
(negative values); extremely large values are cut. The purple curves are the isolines g,, =0 determining the boundary of the
pathological regions (197) with closed timelike curves. They occur close to the axis & = x (purple regions where g,,, < 0). This plot is
for the choice m =3, a=1.5,1=0.2, e =1.6 = g, and a = 0.12. The top row is plotted for positive values of the cosmological
constant (A = 0.003 on the left for » > 0, A = 0.005 on the right for r < 0), the middle row is for A = 0, while the bottom row is plotted
for negative values of the cosmological constant (A = —0.003 on the left for » > 0, A = —0.005 on the right for r <0).
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Interestingly, these areas of cosmo-acceleration horizons HE are finite.
Indeed, from the general form (51) of the metric function Q(r), namely

-1 1 A 2P
O(r)=[r* =2mr+(a* = >+ & + &) (1 +aaa(21+ 2 r) <1 —aaag—IPr) —grz {rz —‘,—Z(Jtalz2 " 12r+ (a>+30P)],
(210)
[
evaluated at the horizons r [which are defined as the two For m=a=Il=e=g=a=0 (so that C = 1) the
roots of Q(r.) = 01, it follows that function reduces to Q(r) = r2(1 — 4 r*). The cosmological
horizons are thus located at r2 = % and their areas given
a* +al a* —al _ 2 _ Sk B
l—a——r ) (1+a>—r, by (209) are A, = 4xr; = 122/ A which is the well-known
a?+ I a+ P result for the de Sitter space.
A 2 +2aalf§1§§ ro + (a2 +31) The temperature of the horizon is determined by its

(211)  surface gravity k. In [14,16] we showed that for the general

e > 2_12 . 2.2
35 =2mrot(a* =Pt et +g7) metric form (47) this can be expressed as

An infinite value of A¥ given by (209) would require

/
the left-hand side of (211) to be zero, implying its KZEZLU’)Z, (212)
roots r. ::tét’;zl'z By substituting such values into 2y +(a+1)

the numerator of the right-hand side of (211) we get . L .
N AP 2 an (@+2) N where the prime denotes the derivative with respect to r.
re+2aalszpre + (@ +3P) = 55 2n 4+ (a £ 1) which

PEEE a*(axl)? With the factorized form (129) of the metric function Q(r),
is strictly positive. For A > 0 we thus get a contradiction,  using the constant parameters (166), this can be easily

so that AF must be finite. evaluated as
|
1 N (rf =) (rf = rd)(rf = r2)
f; ityof H) is Kk = ="t biub “Cb T/ 213
surface gravity of H, is ) 2% > P+ (@t D) (213)
: : L N =)l —rd)(ry = o)
rf ty of Hj === 214
surface gravity of 1}, is  «, 2% > 7Vt (@t 1)y , (214)
. . 1 N (rE =) (rE =) (rE = 12)
surface gravity of H is  «f = TS =-3 Y+ (at P , (215)
: e L N =) =) (e =)
surface gravity of H7 is k7 = E =3 (=P + (a+ 1) (216)
[
It can now be seen from (213) and (214) that VI. SUMMARY

We presented a new metric form (47)—(51) of the large
K]+ =0=x; if r,f =75, (217) family of exact black holes of algebraic type D, initially
found by Debever (1971) and by Plebanski and Demianski
(1976). It generalizes our previous paper on this topic [14]
to any value of the cosmological constant A. We also
demonstrated that this improved metric representation
ki =0=xt if rf=rf. (218) simp!ify the in'vestigation. of various geometrical and
physical properties. In particular:
(1) In Sec. II we recalled the Griffiths—Podolsky (2005,

and from (213) and (215) that

This confirms that extremal horizons have vanishing sur- 2006) form of this class of spacetimes, and we
face gravity, and thus zero thermodynamic tempera- further improved it by introducing a modified set of
_ 1 .
ture T = 5_k. the mass and charge parameters m, e, g, applying a
26
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(i)

(iii)

(iv)

)

(vi)

(vii)

conformal rescaling S, and choosing a gauge of the
twist parameter .

As summarized in Sec. III, the metric (47) and its
functions (48)—(51) are simple, depending only on
the radial coordinate r and the angular coordinate 6.
Moreover, the key functions P(6) and Q(r) can be
further compactified to (52)—(53). In particular, P(6)
is factorized.

The metric depends on seven parameters m,a, !/,
e,g,a, A with direct physical meaning. They re-
present the mass parameter, Kerr-like rotation, NUT
parameter, electric and magnetic charges, acceler-
ation of the black hole, and the cosmological
constant, respectively.

Another nice feature of the new metric form
(47)—(51) is that any of its seven physical parameters
can be independently set to zero (and this can be
done in any order). As shown in Sec. IV, specific
subclasses of type D black holes are thus easily
obtained. These are the black holes with A =0,
obtained and analyzed previously in [14], Kerr-
Newman-NUT-(anti-)de Sitter black holes without
acceleration (@ = 0), accelerating Kerr-Newman-
(anti—)de Sitter black holes without NUT (/ = 0),
charged Taub-NUT-(anti-)de Sitter black holes
without rotation (¢ = 0), and accelerating Kerr-
NUT-(anti-)de Sitter black holes without electric
or magnetic charges (e =0 or g = 0).

All the metric functions (48)—(51) depend on the
acceleration a only via the product aa. Conse-
quently, by setting the Kerr-like rotation a to zero,
the new metric (47) always becomes independent of
a, and simplifies directly to the charged Taub-NUT-
(anti—)de Sitter black holes. This explicitly confirms
the previous observation made by Griffiths and
Podolsky that there is no accelerating purely NUT
black hole in the Plebanski-Demianiski family of
type D spacetimes. Quite surprisingly, such a sol-
ution for accelerating nonrotating black hole with
just the NUT parameter and A = 0 exists [19,20],
but it is of distinct algebraic type I. Its possible
generalization to any cosmological constant A re-
mains an open problem.

The simplest subcases of the metric (47) with just the
mass parameter m and a cosmological constant A, plus
one additional physical parameter, give famous black
holes, namely the Schwarzschild-(anti-)de Sitter,
Reissner-Nordstrom-(anti—)de Sitter, Kerr-(anti—)de
Sitter, Taub-NUT-(anti—)de Sitter black holes, or black
holes accelerating in de Sitter or anti-de Sitter
universes—all in their usual coordinate forms.

As shown in Sec. V, our convenient metric (47)—(51)
considerably simplifies the study of physical and
geometrical properties of this large family of black
holes. First of all, the Weyl and Ricci curvature
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(viii)

(ix)

)

(xi)

(xii)

(xiii)

(xiv)

(xv)

(xvi)
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tensors, expressed as the Newman-Penrose scalars ¥,
and @;; [with respect to the natural tetrad (85)
adapted to the double-degenerate principal null di-
rections] can be evaluated, confirming the type D
algebraic structure of the gravitational field, aligned
with the non-null electromagnetic field (100)—(102).
Their form (86) and (87), together with the explicit
expressions (96) and (97) for the Kretschmann scalar
K = RpeqR™¢! and the Weyl scalar C = C,,C¢,
clarifies the presence and the structure of the curvature
singularity. It is located at p?> =0, ie,at r =0, but
only if also / 4 a cos @ = 0, which requires |/| < |al.
There is no curvature singularity in the black hole
spacetimes with large NUT parameter |I| > |a| > 0.

Both the double-degenerate principal null directions
k and 1 given by (85) are geodetic, shear-free, and
expanding. They are twisting if and only ifa = 0 = .
The generic black hole spacetime becomes asymp-
totically conformally flat at the conformal infinity
localized by the condition Q = 0.

In general, there are four distinct horizons identified
by the roots Q(r,) =0 of the metric function
O(r)—which is explicitly given by (51)—a pair
of black hole horizons Hi at rf, and a pair of
cosmo-acceleration horizons HE at rf. The posi-
tions of these four horizons are explicitly given by
expressions (140) and (141), respectively. Their
natural ordering is r; < r; <rj <rf.

Of course, there may be less then four horizons, and
they can be degenerate (corresponding to multiple
roots of Q(r;,) = 0), as explicitly listed in Sec. V B.
Whenever the Kerr-like rotation parameter a is
nonzero, each of these four horizons is accompanied
by the corresponding ergoregion; see Sec. VD
and Fig. 1.

The ringlike curvature singularity at » = O such that
cos@ = —I/a (requiring a® > I?) is, for the black
hole solution, located in the stationary region IV
between the inner cosmo-acceleration horizon H;
and the inner black hole horizon 7, (assuming the
natural ordering r; < ry < r} <rf).

in Sec. V F we analyzed the global causal structure
of the generic family of black hole spacetimes (47)
by constructing the Kruskal-Szekeres-type coordi-
nates which enabled us to perform the maximal
analytic extension across all the horizons. It revealed
an infinite number of time-dependent regions (of
type I, 111, V) and stationary regions (of type II, IV)
which are separated by the black hole and cosmo-
acceleration horizons H; and HZ.

This global structure is visualized in the Penrose
diagrams obtained by a suitable conformal
compactification, drawn in Fig. 2. The complete
manifold contains an infinite number of black holes



Paper 3, Phys. Rev. D XX, 000000 (XXXX)
New form of all black holes of type D with a cosmological constant

JIR[ PODOLSKY and ADAM VRATNY

PHYS. REV. D XX, 000000 (XXXX)

in various universes identified by distinct (future and
past) conformal infinities Z.

In Sec. V G we investigated the regularization of the
two axes of axial symmetry § = 0 and € = z by an
appropriate setting of the conicity parameter C in the
range ¢ € [0,2xC). The first axis € = 0 is regular in
the metric form (47) with the choice (181), while the
second axis @ = z is regular in the metric form (183)
with the choice (187).

(xviii) Both these choices lead to the existence of a cosmic
string or a strut identified by the deficit or excess angle
on the complementary axis, see the expressions for
and 0, in Sec. V H. Such topological defects are the
physical source of acceleration of the black holes.
Interestingly, both the axes of symmetry can be
made regular simultaneously for the particular
choice (190) of the physical parameters.

In addition to such deficit/excess angles, the cosmic
strings/struts are characterized by their rotation @
(angular velocity). In Sec. VI we demonstrated that
their values are directly related to the NUT parameter /,
see the expressions (192) and (194). There is always a
constant difference Aw = 4/ between the angular
velocities of the two rotating cosmic strings or struts.
In the vicinity of these rotating strings/struts there
are pathological regions with closed timelike curves;
see Sec. VJ and Fig. 3.

Although the pathological regions with closed time-
like curves are located in the same domains as the

(xvii)

(xix)

(xx)

(xxi)

(xxii)

ergoregions, they do not overlap with each other, see
the end of Sec. VJ.

(xxiii) The new metric form (47) is also convenient for
the investigation of thermodynamic quantities. In
Sec. VK we evaluated the area and the surface
gravity of the black hole and cosmo-acceleration
horizons, simply related to their entropy and
temperature.

All this demonstrates the usefulness of the new
improved metric of the complete family of type D
accelerating and rotating black holes with charges and
the NUT parameter in (anti—)de Sitter universe. Various
other investigations can now be performed. Among them
is a systematic analysis of the degenerate cases with
smaller number of horizons, and with multiple horizons.
Recently, such extremal isolated horizons have been
studied, for example in the works [16,17,36—40]. Also,
extension of the Plebanski-Demianski solutions (includ-
ing a cosmological constant) to the framework of the
metric-affine gravity (MAG) theory was constructed
in [41]. It would be nice to see if the new and more
explicit metric (47)—(51) simplifies such investigations.
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Conclusions

In this thesis, we have studied exact black hole solutions of Einstein’s field equa-
tions that belong to the large Plebanski-Demianski family of all type D spacetimes
with a cosmological constant and double aligned Maxwell field.

In the first part, I got acquainted the reader with my personal journey through-
out the study of theoretical physics. I formulated the problems I have been
working on, and briefly presented their current state of knowledge.

One particular section deserves to be mentioned explicitly, namely that con-
taining the relations between the Kretschmann scalar, the analogous Weyl scalar,
and the scalar invariant I. Direct computer algebra calculation of the Kretsch-
mann scalar is often very complicated, and we offer an approach how to retrieve
the expression using the NP quantities. We believe that this could be helpful
even for other unrelated problems.

The second part of this thesis contains the new original results.

In the first chapter, we analyzed a solution, originally found by Chng, Mann
and Stelea in 2006 [37], which describes an accelerating black hole with a twist pa-
rameter NUT. Finding such a solution was surprising since it was shown by Grif-
fiths and Podolsky [3§] that no such solution is included in the large Plebanski-
Demianski family of type D black holes.

We proved that this solution is a vacuum solution of the Einstein field equa-
tions, that means that its Ricci tensor R, vanishes identically. This was verified
by two independent methods. We computed all the Weyl tensor components
in the null tetrad, and determined the algebraic type. It turned out that the
solution is of the general algebraic type I with four distinct principal null direc-
tions. This answered the main question, why this solution was not found in the
Plebanski-Demianski class of type D solutions.

We then introduced a new metric representation of this spacetime described by
three physical parameters — the mass m, acceleration o, and NUT parameter (.
[t enabled an easy transitions to the standard forms of C-metric or the Taub-NUT
metric, just by putting an appropriate physical parameter to zero.

Using this new convenient metric representation, we were able to compute and
analyze the main physical and geometrical properties, such as the location and
the nature of the Killing horizons, the curvature of the black hole, asymptotically
flat regions and the global structure of this metric. Furthermore, we analyzed the
axes which turned out to have the conicity, causing an acceleration of the black
hole, and also the twist, which is a clear contribution of the NUT parameter [.
Along these axes, pathological regions with closed timelike curves occur.

These results were published in Physical Review D in 2020 [44].

In the second chapter, we presented a new representation of the whole
Plebanski-Demianski class of black holes without a cosmological constant, A = 0.
This metric further improves the convenient representation found by Griffiths and
Podolsky in 2005.

This new form of the solution explicitly depends on 6 physical parameters,
namely the mass m, acceleration «, Kerr-like rotation a, NUT parameter [, and
on electric and magnetic charges e and g. The great advantage of this new metric
is that we obtain the well-known black holes just by setting the corresponding
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parameters to zero. These are, for example, (possibly accelerating) Kerr—-Newman
black hole, (possibly charged) Taub-NUT solution, or (possibly rotating and
charged) C-metric. No (possibly charged) accelerating Taub-NUT exists in this
form of the general and large family, which further confirms our conclusions from
Chapter

Very useful in the subsequent analysis of the solution proved to be the sim-
ple, explicit and factorized form of the key metric function P(#) and Q(r). We
were thus able to easily localize the horizons, and study their properties such as
their degeneration. Moreover, it enabled us to investigate various physical and
geometrical phenomena, such as the character of the singularities, visualization
of the ergoregions, nature of the axes (their conicity, rotational behavior or the
pathological regions with closed timelike curves caused by the presence of the
parameter NUT). Additionally, we provided the Kruskalization and generated
the corresponding Penrose conformal diagrams. We also expressed the area and
the surface gravity of the black hole horizons and the acceleration horizons, from
which we were able to calculate the basic thermodynamic quantities.

In 2021, we published all these results in the exhaustive paper in Physical
Review D [45].

In the third chapter, we built on the results of paper [45], and we further gen-
eralized the new metric form of the Plebanski-Demianski solution by admitting
any value of the cosmological constant, A # 0. This was achieved by generalizing
the key metric functions P(#) and Q(r).

Thus we derived a new representation of all black holes of algebraic type D,
determined by 7 physical parameters, namely the mass m, acceleration o, Kerr-
like rotation a, NUT parameter [, the electric and magnetic charges e and ¢, and
the cosmological constant A.

Our new metric form simplifies to the standard metrics of the well-known black
holes, namely to the Kerr-Newman-NUT—(anti-)de Sitter black hole (for v = 0),
accelerating Kerr—-Newman—(anti-)de Sitter black hole (for [ = 0), charged Taub-
NUT—(anti-) de Sitter black hole (for a = 0), accelerating Kerr—NUT—(anti-)de
Sitter black hole (for e = g = 0) and their analogies in asymptotically flat universe
(when A = 0), just by setting the appropriate physical parameters to zero.

Even for the A # 0 case we explicitly proved that no accelerating Taub—NUT-
(anti-)de Sitter solution exists in this large class of spacetimes.

Using this convenient representation, we were able to analyze various physical
and geometrical properties of this class of black holes. We localized the horizons
and generally classified their multiplicity. We visualized the ergoregions, clarified
the character of singularities, and described the global structure, providing the
Penrose conformal diagrams. The nature of the cosmic strings or struts along
the axes # = 0, or 0 = m, respectively, was also elucidated. We calculated their
conicity, which causes the acceleration of the black holes, and we managed to
regularize it for a balanced values of the physical parameters. Both axes are
twisting, and are surrounded by a pathological regions caused by the presence of
the NUT parameter [. We also evaluated the main thermodynamic properties,
namely the entropy or the temperature of the horizons.

All these results have been recently summarized in a comprehensive publica-
tion New form of all black holes of type D with a cosmological constant, accepted
to Physical Review D [46] in March 2023.
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