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Introduction
In this diploma thesis, we will first introduce classification and regression trees and
carefully build the theory involving them. Then we will briefly introduce boot-
strap aggregating. In the second part of the thesis, we will introduce the problem
of insurance claims reserving and apply the regression trees and bootstrap ag-
gregating techniques to the claim-by-claim reserving problem on simulated data.
Claim-by-claim reserving technique is also known as individual reserving, micro
reserving, or granular reserving.

Classification and regression trees are important tools in the field of machine
learning, which is concerned with the development of algorithms and models that
can learn patterns and make predictions from data. One of the key challenges
in machine learning is to develop models that can accurately predict outcomes
based on input data. Classification and regression trees are useful in this regard
because they can handle both categorical and continuous data and can handle
interactions between different features or variables.

A popular modification of classification and regression trees is bootstrap ag-
gregating or better known as bagging. Bagging uses bootstrapped datasets to
build many different classification or regression trees and then averages the re-
sults. We will also briefly introduce this concept and apply both classification
and regression trees together with bagging on the insurance claim reserving.

Our task will be to apply the theory from classification and regression trees
together with bagging in the field of insurance reserving, namely on a claim-by-
claim basis. The main idea is to model the reserves for each claim individually
instead of modeling the reserves for aggregates. This is done in the second part
of the thesis. We will apply both classification and regression trees on simulated
data and make predictions for the next year’s reserves and also for the ultimate
reserves.

The first theoretical part of the thesis will be based on Breiman et al. [1993].
The second, more practical part of this thesis will be based on Wüthrich [2018],
and we will try to elaborate on this article. We will try to extend the results from
that article to predict not only the number of payments but also the size of the
payments. Thanks to the bagging approach, we will have an empirical distribution
that allows us to calculate such things as confidence intervals, means, standard
deviations, and quantiles. This will also be used to calculate the Solvency Capital
Requirement that insurance companies need to fulfill according to Solvency II.
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1. Classification and regression
trees

1.1 Introduction to classification and regression
trees

In this chapter, we will build classification and regression trees theory. Classifi-
cation and regression trees are supervised machine learning algorithms that, in
each step, recursively partition the data into two subsets based on the outcome
of a question until some stopping criterion is reached. Answering the consecutive
questions then decides what to predict from new observations. This algorithm is
shortly called CART.

We will try to illustrate most of the terms defined in a simple illustrative
example regarding the risk of heart disease. We will have two covariates, age
(in years) and weight (in kilograms), and one response variable risk with three
classes: low risk, medium risk, and high risk. As we build the theory, we will
illustrate the defined terms in this simple example.

1.2 Classification

1.2.1 Classifiers, partitions and learning samples
We will begin our discussion with the topic of classification, covering classifiers
in general before delving into trees and their specific use in classification. In
this section, we will introduce fundamental terms such as feature space, vector of
covariates, and response variables.
Definition 1 (Feature space, vector of covariates and response variables)
Let X = (X1, X2, . . . , XM)⊤ be a random vector with values in a general M-
dimensional space X = X 1 × X 2 × . . . × X M . We will call X a feature vector or
vector of covariates and X a feature space.

Moreover, let J ∈ {2, 3, . . .}, i.e., J ∈ N \ {1}, and let Y be a categorical
random variable with values in the set {1, 2, . . . , J}. Variable Y will be called
response variable. The pair (X, Y )⊤ will be called feature-response pair.

Finally, we will define the probability space. Let Ω = X × {1, 2, . . . , J} =
X 1 × X 2 × . . . × X M × {1, 2, . . . , J}.

If Xi, i ∈ {1, 2, . . . , J} is continuous, then its sigma-algebra Xi is defined
as the Borel sigma-algebra B(X i). On the other hand if Xi, i ∈ {1, 2, . . . , J} is
categorical or nominal, then its sigma-algebra Xi is defined as the powerset 2X i

(or sometimes denoted by P(X i)). Then the sigma-algebra on Ω is defined as the
product sigma-algebra
F = X1 ⊗ X2 ⊗ . . . ⊗ XM ⊗ 2{1,2,...,J} =
= σ

(︂
{A1 × A2 × . . . × AM × B: Ai ∈ Xi, i ∈ {1, 2, . . . , J}, B ⊆ {1, 2, . . . , J}}

)︂
Lastly, the probability P is a mapping P: F → [0, 1] that satisfies the axioms

of probability measure, i.e.,
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1. P(F ) ≥ 0, for each F ∈ F

2. P(Ω) = 1

3. P
(︃+∞⋃︁

i=1
Fi

)︃
=

+∞∑︁
i=1

P(Fi) for all pairwise disjoint F1, F2, . . . ∈ F .

Example. In our illustrative example, the feature space is two-dimensional, and
it holds that X = X 1 × X 2, where X 1 = [0, 100] and X 2 = [0, 300]. An example
of a vector of covariates may have realization X = (35, 80)⊤ , i.e., an observation
of a 35-year-old weighing 80 kilograms.

J = 3 in our example, and naturally, we would code low risk as 1, medium
risk as 2, and high risk as 3. △
Remark. In the rest of this thesis, it is assumed that J belongs to the set of
natural numbers greater than or equal to 2, i.e., J ∈ {2, 3, . . .}. This assumption
will be implicitly understood and not repeated △

Our task now will be to assign a value from the set {1, 2, . . . , J} to each feature
vector X . This process will be called classifying.

Definition 2 (Classifier)
Let X be a feature space and Y be a response variable with J possible classes
{1, 2, . . . , J}. A function d: X → {1, 2, . . . , J} is called a classifier if the mapping
d: X ↦→ d (X) assigns for each X ∈ X exactly one element of the set {1, 2, . . . , J}.

Example. An example (although very naive) of a classifier in our illustrative ex-
ample would be a classifier that would classify each vector of covariates as medium
risk, i.e., d(X) = 2, for each X ∈ X . This classifier is probably a very bad one.
However, we do not know yet what even bad means for a classifier. We will define
ways to measure the goodness of a classifier later. △

We can view the mapping of the classifier as assigning a single element from
the set {1, 2, . . . , J} to each vector of covariates X in the feature space X . This
perspective allows us to see that the feature space X is partitioned into J regions
based on the output of the classifier. We refer to this partitioning as the partition
of X and the resulting regions as partitions. The following definition summarizes
this approach.

Definition 3 (Partitioning feature space into regions)
Let X be a feature space. We will say that X was partitioned into J regions
X1, X2, . . . , XJ , Xi ̸= ∅, if X =

J⋃︁
i=1

Xi and Xi
⋂︁ Xj = ∅ for any i, j ∈ {1, 2, . . . , J},

i ̸= j, i.e., if X can be represented as a disjoint union of nonempty sets
X1, X2, . . . , XJ .

The reader may notice that the definition of partitioning feature space into
regions does not depend on the classifier. However, we will think of classifiers as
a mathematical representation of partitioning.
Example. In our illustrative example, it could be the case that the feature space
X is partitioned into three regions X1 = {(a, w) ∈ [0, 30] × [0, 80]}, i.e., those
people with weight less than or 80 kilograms and younger or 30-year-old. X2 =
{(a, w) ∈ ([0, 65] × [0, 100]) \ ([0, 30] × [0, 80])}, i.e., those people who are either
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older than 30 and younger or 65 years old, or weight more than 80 and less than
or 100 kilograms. Finally, X3 = {(a, w) ∈ ([0, 100] × [0, 300]) \ ([0, 65] × [0, 100])},
i.e., those people who are older than 65 (and younger than or 100) or who weight
more than 100 kilograms (and less than or 300). The partitioning is depicted in
Figure 1.1. △

1

2

3

weight 80 100 300
age

40

65

100

Figure 1.1: An example of the partitioning of the feature space.

So far, we have discussed classifiers, feature spaces, partitions, and regions.
However, all these terms would be useless if we did not have any data. For this
reason, we will introduce the term learning sample in the following definition.
Definition 4 (Learning sample)
Let X be a feature space. The collection of N feature-response pairs (X1, Y 1)⊤,
(X2, Y 2), . . . , (XN , Y N), where X1, X2, . . . , XN ∈ X and
Y 1, Y 2, . . . , Y N ∈ {1, 2, . . . , J} will be called a learning sample or
learning dataset, and will be denoted by

L =
{︂(︂

X1, Y 1
)︂⊤

,
(︂
X2, Y 2

)︂⊤
, . . . ,

(︂
XN , Y N

)︂⊤}︂
.

Sometimes we refer to it as training sample/dataset.
Example. An example of a learning sample with 6 observations may be

L =
{︂ (︂

(30, 100)⊤ , 1
)︂⊤

,
(︂
(20, 90)⊤ , 1

)︂⊤
,
(︂
(50, 110)⊤ , 3

)︂⊤
,(︂

(48, 91)⊤ , 1
)︂⊤

,
(︂
(56, 130)⊤ , 2

)︂⊤
,
(︂
(78, 170)⊤ , 3

)︂⊤}︂
△
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As we mentioned before, we need some way to measure the goodness of a
classifier. We will cover this in the next subsection. We will define the true
misclassification rate and some ways to estimate it.

1.2.2 Goodness of a classifier
We have defined a classifier (at the moment, we do not care about how the
classifier assigns classes or how good or bad the classifier is).

As we mentioned earlier, an example of a classifier could be mapping d: X →
{1, 2, . . . , J} such that for all X ∈ X : d(X) = 2. It is obvious that such a classifier
cannot stand in general. However, we need some way to measure the goodness of
a classifier. This was done in the following definition.
Definition 5 (True misclassification rate)
Let L be a learning sample, d be a classifier on the feature space X with J possible
classes. Also let (X, Y )⊤ be a feature-response pair, where X is from X and Y
is a response variable with J classes, drawn randomly from the same probability
distribution

P (A, j) = P(X ∈ A, Y = j), A ⊆ X , j ∈ {1, 2, . . . , J}

independent of L.
Then we will call the quantity

R∗(d) = P(d(X) ̸= Y )
a true misclassification rate.

During the evaluation of the probability P(d(X) ̸= Y ), we consider the learn-
ing sample L to be fixed. Thus a more precise notation would be

P(d(X) ̸= Y | L),
i.e., the probability of misclassifying the new sample (X, Y )⊤ given the learning
sample L.

The true misclassification rate is a theoretical quantity that needs to be some-
how estimated. We will incorporate three methods of estimation similar to, for
example, simple linear regression.

The resubstitution estimate

Let L be the learning sample of size N and d be classifier that was built based
on the learning sample L.

The resubstitution estimate of the classifier d based on the learning data L
will be denoted by R(d) and is calculated by the following formula.

R(d) = 1
N

N∑︂
i=1

I(d(Xi) ̸= Yi),

i.e., it calculates the proportion of misclassified observations from the learning
sample L. (I(x) denotes an indicator function, i.e., it takes the value of 1 of the
statement x is true and 0 otherwise.)

The drawback of the resubstitution estimate is that it uses the same data as
it used for constructing the classifier d instead of an independent sample. Thus
it could give an overly optimistic estimation of the accuracy of d.
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Test sample estimation

The second method is based on randomly dividing the learning sample L into
two sets: L1 and L2 of sizes N1 and N2, where L = L1

⋃︁ L2 and L1
⋂︁ L2 = ∅ (and

thus N1 + N2 = N).
We use only the sample L1 to construct the classifier d and then we use the

sample L2 to estimate R∗(d). The test sample estimate (denoted by Rts(d)) is
calculated via:

Rts(d) = 1
N2

∑︂
{i:(xi,yi)∈L2}

I(d(Xi) ̸= Yi),

i.e., it calculates the proportion of misclassified observations from the test sample
L2. This method eliminates the drawback of the resubstitution method as it uses
different data for constructing the estimate and for calculating its accuracy, but
there arises another problem as we only use a part of the data for the construction
of d while the rest of the data had to be left out while constructing d so that
it can be used independently in testing. This problem may be neglected when
large datasets are used. In these cases, it is also preferred as it is much less
computationally demanding than the last method which is cross validation.

Cross validation

This method is called K-fold cross-validation, and it randomly divides all data
in L into K subsets of similar sizes (sizes of different subsets differ at most by
one). Let us denote these subsets by L1, L2, . . . , LK .

Now for k ∈ {1, 2, . . . , K}, the method uses all subsets apart from the k-th
one, that is L \ Lk as a learning sample (this was denoted by L1 in the previous
method-Test sample estimation) and Lk as L2. It calculates test sample estimate
of k-th group denoted by Rts(d(k)).

Then it does the same for all k ∈ {1, 2, . . . , K} and calculates the cross-
validation estimate RCV (d) as

RCV (d) = 1
K

K∑︂
k=1

Rts(d(k)),

i.e., it takes the average over all k ∈ {1, 2, . . . , K}. The most popular modi-
fications of cross-validations are leave-one-out cross-validation, i.e., we choose
K = N, the size of the learning sample L, and 10-fold cross-validation (where
we choose K = 10). This method combines the advantages of both previously
mentioned methods. Its drawback is that it is really computationally expensive
to calculate, especially for the leave-one-out cross-validation. Thus this method
is used when only small datasets are at hand, as it both eliminates the drawback
of the test sample method of using only a part of the data and is not so compu-
tationally expensive as we have only a small dataset. If we have large datasets,
it is preferred to use the test sample estimation.
Example. Let us assume that the classifier d partitioned the feature space X
into three regions depicted in Figure 1.1, i.e., into those regions described in
the example at the end of section 1.3.1. And let us assume that it partitioned
the feature space based on the learning sample L described in the example after

8



Definition 4. We will now describe how the resubstitution estimate is calculated:

R(d) = 1
6

(︃
I

(︂
d

(︂
(30, 100)⊤

)︂
̸= 1

)︂
+ I

(︂
d

(︂
(20, 90)⊤

)︂
̸= 1

)︂
+ I

(︂
d

(︂
(50, 110)⊤

)︂
̸= 3

)︂
+ I

(︂
d

(︂
(48, 91)⊤

)︂
̸= 1

)︂
+ I

(︂
d

(︂
(56, 130)⊤

)︂
̸= 2

)︂
+ I

(︂
d

(︂
(78, 170)⊤

)︂
̸= 3

)︂)︃
= 1

6 (I (2 ̸= 1) + I (2 ̸= 1) + I (3 ̸= 3) + I (2 ̸= 1) + I (3 ̸= 2) + I (3 ̸= 3)) = 2
3 .

Thus based on our (very limited) learning sample, the resubstitution estimate for
the true misclassification rate is 2

3 .
Describing the test sample and cross-validation estimation would be lengthy

and not so instructive. Thus, we will limit ourselves to only showing the resub-
stitution estimate as an example. △

1.3 Tree classifiers
So far, we have discussed only classifiers in general. Now, we will have a look
at a particular class of classifiers called binary tree-structured classifiers. As the
name suggests, the classifiers have something in common with binary trees. We
will start by defining binary trees and some terms regarding binary trees that we
will need in the future.

Definition 6 (A binary tree)
A binary tree is a set T of natural numbers containing at least the number 1,
together with a mapping son: T → T such that the mapping son: t ↦→ son(t),
satisfies:

• for each t ∈ T it either holds that son(t) = ∅ or son(t) = {2t, 2t + 1}

• for each s ∈ T \ {1} there exists exactly one t ∈ T such that s ∈ son(t).

We will call all elements of the set T nodes. The node numbered 1 will be
called the root node and nodes t ∈ T for which son(t) = ∅ will be called terminal
nodes or leaves. The set of all terminal nodes of tree T will be denoted by T̃ .

For a, b ∈ T , if a ∈ son(b) then we say that a is a son node (or son) of b and
that b is a father node (or father) of a.

For o, p ∈ T , if there exist a U ∈ N and a sequence a1, a2, . . . , aU of elements
of T satisfying:

• a1 is a son of o

• ai+1 is a son of ai for i ∈ {1, 2, . . . , U − 1}

• p is a son of aU ,

then we will call o an ancestor of p. And if o is an ancestor of p, then p will be
called a descendant of o.

We will call the set S ⊆ N a subtree of T if

• S ⊆ T

• S is a binary tree.

9



Let t ∈ T . The subtree consisting of the node t and all its descendats will be
called branch and will be denoted by Tt. The root node of the tree Tt is the node
t.

In the rest of the thesis, every time we mention a tree, it is meant as a binary
tree.

A binary tree is usually graphically displayed as in Figure 1.2 with root up
and leaves down. In the figure, we can see a tree with 11 nodes, and 6 of them
are terminal. They are the nodes numbered: 5, 7, 8, 9, 12, 13.

1

2 3

4 5 6 7

8 9 12 13

Figure 1.2: An example of a binary tree (root is depicted in a circle, nodes in a
square and terminal nodes in diamonds).

Now that we have defined a binary tree, we will move to classifiers that can
be represented by a binary tree, i.e., binary tree-structured classifiers. However,
before defining binary tree-structured classifiers, we need to define standardized
set of questions that will be used in the definition of the binary tree-structured
classifier.

Definition 7 (Standardized set of questions)
We say that a question Q is from the standardized set of questions denoted by Q
if it follows:

1. Each split depends on the value of a single variable;

2. For each numerical and ordered variable Xm, m ∈ {1, 2, . . . , M} the set
Q includes all questions of the form {Is Xm ≤ c?} and {Is Xm ≥ c?} for
c ∈ R;

3. For each categorical and nominal variable Xm, m ∈ {1, 2, . . . , M} taking
values from the set {b1, b2, . . . , bO, O ∈ N} the set Q includes all questions
of the form {Is Xm ∈ S?} for S ranging over all subsets {b1, b2, . . . , bO, O ∈
N}.

Example. In our illustrative example, a splitting question from the standardized
set of questions Q could be, for example: {Is X1 ≤ 100? } (This is exactly the
way we will split the feature space in 1.3.1).
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An example of a question that does not belong to the standardized set of
questions Q could be, for example, {Is X1 ≤ 100, or is X2 ≤ 20? }, because it
depends on two variables. Also, a question {Is 0 ≤ X1 < 5? } is not allowed as it
has to be split into two questions. △

Now we can finally define binary tree-structured classifiers.

Definition 8 (Binary tree-structured classifier)
Let L be a learning sample. A classifier d built based on the learning sample L
and constructed by repeatedly partitioning subsets of the feature space X (that will
be denoted X1) into two descendant subsets will be called binary tree-structured
classifier.

If we partition a part of the feature space X numbered k ∈ N, then the two
descendant subsets will be numbered 2k and 2k + 1. Thus, we can write that
X2k

⋃︁ X2k+1 = Xk and X2k
⋂︁ X2k+1 = ∅.

Those subsets which are not partitioned anymore are called terminal subsets.
The terminal subsets form a partitioning of the feature space X . Each terminal
subset is assigned a class label (we will discuss later how it is done). It is possible
that two or more terminal subsets have the same class label. The partition into
regions corresponding to the classifier d is achieved by a union of all terminal
subsets corresponding to the same class. The partitions are formed by conditions
on the coordinates of the covariates vector X.

The binary tree-structured classifier predicts a class for each vector of covari-
ates X in the following way: We look at the questions laid upon the vector of
covariates X and depending on the outcome of the question we decide to which
subset it belongs to. The questions have to be from the standardized set of ques-
tions Q. When the vector of covariates reaches the terminal subset, its predicted
class is given by the class label assigned to that terminal subset.

By size of a region Xt, we will denote the number of observations from the
training sample L contained in Xt.

Thanks to the standardized set of questions Q, if the vector of covariates X
consists of only ordinal and numerical variables, we can look at the decision tree as
a procedure that recursively partitions the feature space into (hyper-)rectangles
with sides parallel to the axes. This is illustrated in Figure 1.3.

The partitioning of a feature space X1 into terminal subsets satisfies the Def-
inition 3 of partitioning into regions. The numbering that Xk is partitioned into
X2k and X2k+1 was chosen so that it corresponds to the terminology of binary
trees, i.e., sons of node k are nodes 2k and 2k + 1.

Now that we have defined binary trees and binary tree-structured classifiers,
we can switch our terminology to the more natural one adapted from the binary
trees.

Definition 9 (Tree theory terminology)
Additionally, we will use a slightly different notation:

• Each subset of the feature space X will be named node.
Specifically for u ∈ N, the subset Xu will be denoted by node number u.

• The whole feature space X also denoted by X1 will be called root node.

11
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40

65

100

Figure 1.3: An example of the partitioning of the feature space.

• Terminal subsets will be called terminal nodes.

• Partitioning a subset Xl, l ∈ N of the feature space X will be called splitting
of node l and will be precisely defined in the following definition.

Now that we have defined binary tree-structured classifiers, we can switch in
the notation from d as a classifier to T as a binary tree-structured classifier.

Lastly, in this subsection, we will look more closely at what a split means in
the following definition.

Definition 10 (Split)
Let T be a binary tree-structured classifier and t ∈ T . We say that the node t is
split by a split s into two son nodes 2t (also called tL as a left son) and 2t+1 (also
called tR as a right son) if the subset Xt of the feature space X was partitioned
into regions X2t and X2t+1.

The split s is made upon an answer to a question Q regarding the vector of
covariates from the standardized set of questions Q. Usually, the part of observa-
tions answering by ”yes” will become a part of the left son node (tL), while the
others answering by ”no” will become a part of the right son node (tR). How-
ever, this is not considered a strict rule, and it does not have any impact on the
outcome.

12



Construction of a tree

In this section, we will have a look at the construction of a binary tree-structured
classifier. To construct a tree, we need to find answers to the three following
questions:

• How to select a split?

• What class to assign to a terminal node?

• When to stop splitting?

We will start with the first question.

1.3.1 How to select a split?
Let us look at the first problem, which means finding binary splits of the root
node 1 into smaller nodes based on the learning sample L. The intuitive idea is
to make each of the son nodes more homogeneous than the father node.
Example. In our illustrative example, it would mean that for the first split, we
could choose to split the data into two parts based on the weight of the observed
persons. If they weigh over 100 kilograms, we would divide them into the first
group and, if less, into the second group.

That means we would have in node 2 the following observations:(︂
(50, 110)⊤ , 3

)︂⊤
,
(︂
(56, 130)⊤ , 2

)︂⊤
,
(︂
(78, 170)⊤ , 3

)︂⊤

and in node 3 observations:(︂
(30, 100)⊤ , 1

)︂⊤
,
(︂
(20, 90)⊤ , 1

)︂⊤
,
(︂
(48, 91)⊤ , 1

)︂⊤
.

Let us call this split s. △
Once a good split of node 1 is found, we look at both son nodes 2 and 3

independently and try to find a good split for them, and we continue iteratively
to nodes of smaller and smaller sizes.

Let us now have a look at how to measure the homogeneity mentioned in
the previous paragraphs. We will define something called impurity. For that, we
need to define node proportions. As the name suggests, it is the proportion of
observations of a given class j in a given node t.

Definition 11 (Node proportions)
Let T be a binary tree-structured classifier with J classes, t ∈ T , j ∈ {1, 2, . . . , J}
and

(︂
(X1, Y1)⊤ , (X2, Y2)⊤ , . . . , (XN , YN)⊤

)︂
be a vector of feaure-response pairs,

where Xi ∈ X , i ∈ {1, 2, . . . , N}, and Yi ∈ {1, 2, . . . , J}, i ∈ {1, 2, . . . , N}.
We define the p(j | t) as the proportion of covariate vectors X1, X2, . . . , XN

from t belonging to class j ∈ {1, 2, . . . , J}, i.e., p(· | t) is a mapping p(· | t): J →
[0, 1]

p(j | t) =

N∑︁
i=1

I(Xi ∈ t)I(Yi = j)
N∑︁

i=1
I(Xi ∈ t)

.

13



The quantity
N∑︁

i=1
I(Xi ∈ t) denotes the number of observations in node t and

will be denoted by N(t).
The quantity

N∑︁
i=1

I(Yi = j) denotes the number of observations in the whole
tree T with class j and will be denoted by Nj.

The quantity
N∑︁

i=1
I(Xi ∈ t)I(Yi = j) denotes the number of observations in

node t belonging to class j and it will be denoted by Nj(t).

Example. To continue with our illustrative example: the node proportions for
node 2 are: p(1 | 2) = 0, p(2 | 2) = 1

3 and p(3 | 2) = 2
3 and for node 3 p(1 | 3) = 1

and p(2 | 3) = p(3 | 3) = 0.
The number of observations in node 2 and 3 is in our example following:

N(2) = N(3) = 3. The number of observation with classes 1, 2, and 3 is N1 = 3,
N2 = 1, N3 = 2. The number of observations in nodes 2 and 3 with classes 1, 2,
and 3 are: N1(2) = 0, N1(3) = 3, N2(2) = 1, N2(3) = 0, N3(2) = 2, N3(3) = 0. △

It is easy to see that for each t ∈ T that
J∑︁

j=1
p(j | t) = 1. Now that we have

defined node proportions, we can define the impurity.

Definition 12 (Impurity)
Let T be a binary tree-structured classifier with J classes and t ∈ T . We define
impurity of node t denoted by

i(t) = φ(p(1 | t), p(2 | t), . . . , p(J | t)),

where φ is a non-negative function

φ: [0, 1]J → [0, +∞), φ: u1, u2, . . . uJ ↦→ φ(u1, u2, . . . uJ)

that satisfies the following assumptions:

• φ is maximized if and only if the proportions are spread equally over all
classes, i.e.,

argmax
(u1,u2,...,uJ )∈[0,1]J

φ(u1, u2, . . . , uJ) =
{︄ (︃ 1

J
,

1
J

, . . . ,
1
J

)︃}︄
.

• φ is symmetric, i.e.,

φ(u1, u2, . . . , uJ) = φ
(︂
uσ(1), uσ(2), . . . , uσ(J)

)︂
for each permutation σ on the set {1, 2, . . . , J}.

• φ takes its minimal value of 0 if and only if only one class is present, i.e.,
if

φ(1, 0, . . . , 0) = φ(0, 1, . . . , 0) = φ(0, . . . , 0, 1, 0, . . . , 0)
= φ(0, . . . , 1, 0) = φ(0, . . . , 0, 1) = 0,

and if a, b > 0, then φ(a, b, 0, . . . , 0) > 0.

14



We will now define two ways how to measure impurity: Gini index and cross-
entropy.

Definition 13 (Gini index)
Let T be a binary tree-structured classifier with J classes and t a node within T
with class proportions p(1 | t), p(2 | t), . . . , p(J | t), then we will call

G(t) =
J∑︂

j=1
p(j | t)(1 − p(j | t))

a Gini index of node t.

Theorem 1 (Gini index is an impurity)
Let T be a binary tree-structured classifier with J classes, t ∈ T , and G(t) be
the Gini index of node t, then the Gini index is an impurity as defined in Defini-
tion 12.

Proof. Let J ∈ N be fixed and let ui denote p(i | t). We need to show that for
u1, u2, . . . , uJ ∈ [0, 1], such that

J∑︁
j=1

uj = 1 it holds that

φG (u1, u2, . . . , uJ) =
J∑︂

j=1
uj(1 − uj)

is non-negative and:

• φG(u1, u2, . . . , uJ) is maximized if and only if u1 = u2 = . . . = uJ = 1
J
.

• φG(u1, u2, . . . , uJ) = φG(uσ(1), uσ(2), . . . , uσ(J)) for any permutation σ on the
set {1, 2, . . . , J}.

• φG(u1, u2, . . . , uJ) takes its minimal value of 0 if an only if uj = 1, j ∈
{1, 2, . . . , J} (consequently u1, u2, . . . , uj−1, uj+1, . . . , uJ = 0).

The proof of non-negativity is obvious as ui(1 − ui) is non-negative for ui ∈
[0, 1], and the sum of non-negative numbers is also non-negative.

The second point is easy to see as

φG(u1, u2, . . . , uJ) =
J∑︂

j=1
uj(1 − uj) =

J∑︂
j=1

uσ(j)(1 − uσ(j))

= φG(uσ(1), uσ(2), . . . , uσ(J)),

where the second equality is obvious, as the order of summation does not matter.
For the first point, We will divide the set [0, 1]J into the open set (0, 1)J and

the border [0, 1]J \ (0, 1)J . We prove the first part using the Lagrange multiplier
technique. We will denote the function we want to find extremes for by f and
the function denoting the constraints by g.

Thus we need to find extremes of function

f(u1, u2, . . . uJ) = u1(1 − u1) + u2(1 − u2) + . . . + uJ(1 − uJ)
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on the open set (0, 1)J . We will take the constraint u1 + u2 + . . . + uJ = 1 as
function g such that

g(u1, u2, . . . uJ) = u1 + u2 + . . . + uJ − 1 = 0.

Then the Lagrange function ϕ is:

ϕ(u1, u2, . . . , uJ , λ) = f(u1, u2, . . . , uJ) + λg(u1, u2, . . . , uJ)
= u1(1 − u1) + u2(1 − u2) + . . . + uJ(1 − uJ) + λ(u1 + u2 + . . . + uJ − 1).

Thanks to the symmetry, it holds for the partial derivatives with respect to
ui, where i ∈ {1, 2, . . . , J} that

∂

∂ui

ϕ(u1, u2, . . . , uJ , λ) = 1 − 2ui + λ,

thus if we set it to equal to zero, we get ui = 1+λ
2 for i ∈ {1, 2, . . . , J} and for the

partial derivative with respect to λ, it holds that

∂

∂λ
ϕ(u1, u2, . . . , uJ , λ) = u1 + u2 + . . . + uJ − 1.

If we also set the second derivative to be equal to zero, we get back to the
constraint that u1 + u2 + . . . + uJ = 1.

By plugging the derivatives with respect to ui’s into the derivative with respect
to λ, we get J 1+λ

2 = 1 from which we get that λ = 2
J

− 1 and finally by plugging
λ back into the expressions for ui we get that for i ∈ {1, 2, . . . , J} it holds that

ui = 1 + λ

2 =
1 + 2

J
− 1

2 = 1
J

.

If we take the second partial derivative of f, we get that

∂2

∂ui∂uj

f(u1, u2, . . . , uJ) = −2I(i = j).

Thus it is easy to see that for the Hessian matrix H it holds that

H = diag
{︃

−2, −2, . . . , −2
}︃

,

therefore the matrix has only negative eigenvalues, and thus the matrix is negative
definite, and the point

(︂
1
J
, 1

J
, . . . , 1

J

)︂
is the only point of local maximum.

For the values in the set [0, 1]J \ (0, 1)J , i.e., in the set {ui ∈ {0, 1}, i ∈
{1, 2, . . . , J}} it is easy to see that all the numbers in the sum are equal to zero
as either ui or 1 − ui is equal to zero. If we also incorporate the constraint that
u1 + u2 + . . . + uJ = 1, we get that only one of the components is equal to 1,
and the others have to be zero. This proves the third point and, thus, the whole
theorem.
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Example. Let us continue with our motivation example. We will calculate the
Gini index of nodes 1, 2, and 3.

G (1) =
J∑︂

j=1
p (j | 1) (1 − p (j | 1)) = p (1 | 1) (1 − p (1 | 1))

+ p (2 | 1) (1 − p (2 | 1)) + p (3 | 1) (1 − p (3 | 1))

= 3
6

(︃
1 − 3

6

)︃
+ 1

6

(︃
1 − 1

6

)︃
+ 2

6

(︃
1 − 2

6

)︃
= 9

36 + 5
36 + 8

36 = 22
36 = 11

18 .

G (2) =
J∑︂

j=1
p (j | 2) (1 − p (j | 2)) = p (1 | 2) (1 − p (1 | 2))

+ p (2 | 2) (1 − p (2 | 2)) + p (3 | 2) (1 − p (3 | 2))

= 0 (1 − 0) + 1
3

(︃
1 − 1

3

)︃
+ 2

3

(︃
1 − 2

3

)︃
= 0 + 2

9 + 2
9 = 4

9 .

And because node 3 is pure, G(3) = 0. △

Definition 14 (Cross entropy)
Let T be a binary tree-structured classifier with J classes and t a node within T
with class proportions p(1 | t), p(2 | t), . . . , p(J | t), then we will call

D(t) = −
J∑︂

j=1
p(j | t) log2(p(j | t)).

a cross entropy of node t.

In the following theorem and its proof, we will frequently use the identity
log2(x) = log(x)

log(2) for x ∈ (0, +∞). If we write simply log(x) we mean the natural
logarithm, i.e., loge(x) = ln (x). We will also use notation log(0) which means
lim

x→0+
log(x) and consequently common limit known from the basic courses of

analysis: lim
x→0+

x log(x) = 0.

Theorem 2 (Entropy is an impurity)
Let T be a binary tree-structured classifier with J classes, t ∈ T , and D(t) be
the Cross-entropy of node t, then the Cross-entropy is an impurity as defined in
Definition 12.

Proof. Let J ∈ N be fixed and let ui denote p(i | t). We need to show that for
u1, u2, . . . , uJ ∈ [0, 1], such that

J∑︁
j=1

uj = 1 it holds that

φE (u1, u2, . . . , uJ) = −
J∑︂

j=1
uj log2(uj)

is non-negative and:

• φE(u1, u2, . . . , uJ) is maximized if and only if u1 = u2 = . . . = uJ = 1
J
.

• φE(u1, u2, . . . , uJ) = φE(uσ(1), uσ(2), . . . , uσ(J)) for any permutation σ on the
set {1, 2, . . . , J}.
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• φE(u1, u2, . . . , uJ) takes its minimal value of 0 if an only if uj = 1, j ∈
{1, 2, . . . , J} (consequently u1, u2, . . . , uj−1, uj+1, . . . , uJ = 0).

The proof of non-negativity is obvious as −ui log2(ui) is non-negative for ui ∈
[0, 1], as − log2(ui) is non-negative, and the sum of non-negative numbers is also
non-negative.

The second point is easy to see as

φE(u1, u2, . . . , uJ) = −
J∑︂

j=1
uj log2(uj) = −

J∑︂
j=1

uσ(j) log2(uσ(j))

= φE(uσ(1), uσ(2), . . . , uσ(J)),

where the second equality is again obvious, as the order of summation does not
matter.

We will prove the second point again by splitting [0, 1]J into two sets (0, 1)J

and [0, 1]J \ (0, 1)J and the first part again by the Lagrange multiplier technique.
We need to find extremes of function

f(u1, u2, . . . uJ) = − (u1 log2(u1) + u2 log2(u2) + . . . + uJ log2(uJ))

on the open set (0, 1)J . We will take the constraint u1 + u2 + . . . + uJ = 1 again
as function g such that g(u1, u2, . . . uJ) = u1 + u2 + . . . + uJ − 1 = 0. Then the
Lagrange function ϕ is:

ϕ(u1, u2, . . . , uJ , λ) = f(u1, u2, . . . , uJ) + λg(u1, u2, . . . , uJ)
= −(u1 log2(u1) + u2 log2(u2) + . . . + uJ log2(uJ)) + λ (u1 + u2 + . . . + uJ − 1)

Thanks to the symmetry, it holds for the partial derivatives with respect to
ui, where i ∈ {1, 2, . . . , J} that

∂

∂ui

ϕ(u1, u2, . . . , uJ , λ) = −1
log(2)(log(ui) + 1) + λ,

thus if we set it to equal to zero, we get

ui = exp{−1 + log(2)λ} = 2λ

e

and for the partial derivative with respect to λ, it holds that

∂

∂λ
ϕ(u1, u2, . . . , uJ , λ) = u1 + u2 + . . . + uJ − 1.

If we also set the second derivative to be equal to zero, we get back to the
constraint that u1 + u2 + . . . + uJ = 1.

By plugging the derivatives with respect to ui’s into the derivative with respect
to λ, we get J 2λ

e
= 1 from which we get that λ = log2

(︂
e
J

)︂
and finally by plugging

λ back into the expressions for ui we get that

ui = 2λ

e
=

e
J

e
= 1

J
.
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If we take the second partial derivative of f, we get that

∂2

∂ui∂uj

f(u1, u2, . . . , uJ) = −I(i = j)
log(2)ui

.

Thus it is easy to see that for the Hessian matrix H it holds that

H = diag
{︃ −1

log(2)u1
,

−1
log(2)u2

, . . . ,
−1

log(2)uJ

}︃
.

Thus the matrix has only negative eigenvalues, and thus the matrix is negative
definite, and the point

(︂
1
J
, 1

J
, . . . , 1

J

)︂
is the only point of local maximum.

For the values in the set [0, 1]J \ (0, 1)J , i.e., in the set {ui ∈ {0, 1}, i ∈
{1, 2, . . . , J}} it is easy to see that all the numbers in the sum are equal to
zero as ui log2(ui) is equal to zero. If we also incorporate the constraint that
u1 + u2 + . . . + uJ = 1, we get that only one of the components is equal to 1,
and the others have to be zero. This proves the third point and, thus, the whole
theorem.

The Gini index and Cross entropy graphs for the case when there are only two
classes (J = 2) are depicted in Figure 1.4. We can see that it does not differ very
much. This corresponds to the result that it does not really matter which one of
these two we choose. In part regarding how to stop splitting, we will see that the
choice of stopping criterion is much more important than the choice between the
Gini index and Cross entropy.

Figure 1.4: Graph of Gini index and cross-entropy for J = 2.

Decrease in impurity

What we want split s to do is to decrease impurity as much as possible. Thus we
define the decrease in impurity.
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Definition 15 (Decrease in impurity)
Let t ∈ T and s be a split that divides node t into nodes tL and tR such that a
proportion ptL

of cases in node t goes into node tL and proportion ptR
of cases in

node t goes into node tR

We say that the split s of node t has a decrease in impurity of

∆i(s, t) = i(t) − (ptL
i(tL) + ptR

i(tR)) .

Example. Now we can measure the decrease in the impurity of split s we described
in Section 1.3 of node 1. We will use the Gini index to measure impurity.

∆G(s, 1) = G(1) − (p2G(2) + p3G(3)) = 11
18 −

(︃1
2 · 4

9 + 1
2 · 0

)︃
= 11

18 − 4
18 = 7

18 .

△
As we already mentioned, we want the decrease in impurity to be as large

as possible. Thus we will always choose a split that yields the highest possible
decrease in impurity.

If we now jump to the question of when to stop splitting. We can come up
with the idea that we could stop splitting when the decrease in impurity does not
exceed some threshold β ≥ 0. We will discuss in the later part of the thesis why
this is not a very successful approach.

Definition 16 (Probability of being in a given node and/or belonging to a given
class)
The probability of a new feature-response pair (X, Y )⊤, randomly drawn from the
same distribution as was the learning sample L, to be in node t and belonging to
class j will be denoted by P (j, t).

The probability of a new feature response pair (X, Y )⊤, randomly drawn from
the same distribution as was the learning sample L, to be in node t denoted by
P (t).

And finally, the probability of a new data-line (X, Y )⊤, randomly drawn from
the same distribution as was the learning sample L, to belong to class j given that
it is in node t is denoted by P (j | t).

For the quantities we have just defined, we have the following resubstitution
estimates:

p(j, t) = Nj(t)
N

.

P (t) can be estimated by

p(t) =
J∑︂

j=1
p(j, t) = Nt

N
.

P (j | t) can be estimated by

p(j | t) = p(j, t)
p(t) ,

we have seen this earlier in the definition of node proportions (definition 11).
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Example. In our illustrative example, it holds for example that p(1, 3) = 1
2 as

there are three observation in the node 3 and all of them are of class 1, p(3) = 1
2

as there are three observations in the node 3. △
It is worth mentioning that there is always a finite number of distinct splits.

For numerical and ordered data from learning sample L of size N, we have at
most N − 1 possibilities to split. We can find them simply by ordering the data
and choosing midpoints between two consecutive distinct values of the desired
variable.

For a categorical variable from learning sample L of size N , there are 2N−1 −1
possible combinations to split N data into two indistinguishable sets. And as it
grows exponentially, it quickly becomes computationally infeasible as for N = 31,
there are over a billion possible combinations.

Now back to answering the question of how to select splits. At node t, the
algorithm searches through the variables one by one, starting with X1 and going
to XM . For each variable it finds the best split s and calculates the decrease in the
impurity of the split ∆i(s, t). It then compares all M possible splits and selects
the best one, i.e., the one with largest decrease in impurity ∆i(s, t).

1.3.2 What class to assign to a terminal node?
To discuss this topic, we first need a precise definition of what a class assignment
is.

Definition 17 (Class assignment rule)
Let T be a binary tree-structured classifier with J classes. A function q: T →
{1, 2, . . . , J} is called a class assignment rule if it assigns a class j ∈ {1, 2, . . . , J}
to a node t ∈ T and it will be denoted by q(t).

Similarly to the very beginning of the thesis, where we defined the true mis-
classification rate, we will define the probability of misclassification of a node.

Misclasification probability

Definition 18 (Probability of misclassification)
Let T be a binary tree-structured classifier with J classes, and q be a class as-
signment rule. The probability of misclassification for node t ∈ T and class
assignment rule q is given by

r∗
q(t) =

∑︂
j ̸=q(t)

P (j | t).

The resubstitution estimate of the probability of misclassification is given by

rq(t) =
∑︂

j ̸=q(t)
p(j | t).

It is easy to see that the estimate rq(t) is minimized for class assignment rule
q∗(t) = argmaxi∈{1,2,...} p(i | t), t ∈ T . If the maximum is achieved for two or more
different classes q∗(t) assigns class arbitrarily as any of the maximizing cases.

21



Thus we can omit the choice of class assignment rule because it will always
be the same and write only

r(t) = 1 − max
j∈{1,2,...,J}

p(j | t).

Recall from Definition 5 that the true misclassification rate of a classifier d is
denoted by R∗(d) and can be estimated by its resubstitution estimate R(d) =
1
N

N∑︁
i=1

I(d(Xi) ̸= Yi).
Our task now will be to find a similar estimate for the true misclassification

rate of a binary tree-structured classifier T . The calculation follows directly from
the general probability rule in the following way:

R(T ) =
∑︂
t∈T̃

r(t)p(t),

i.e., by the sum over all terminal nodes of the product of the probability of
misclassification given that the observation was classified to node t (r(t)) and the
probability of a case being classified to node t (p(t)).

We will now denote for t ∈ T : R(t) = r(t)p(t). Then the resubstitution
estimate of the overall misclassification rate of the binary tree-structured classifier
T -R∗(T ) is

R(T ) =
∑︂
t∈T̃

R(t).

1.3.3 How to stop splitting?
An important observation for this section will be formulated as the following
theorem.

Theorem 3
Let T be a binary tree-structured classifier and let T ′ be a binary tree-structured
classifier obtained from T by splitting any of the terminal nodes of T , then
R(T ′) ≤ R(T ).

This theorem comes from the formula R(T ) = ∑︁
t∈T̃

R(t) and from the fact

that for t ∈ T it holds R(t) ≥ R(tL) + R(tR). The proof of this can be found in
Breiman et al. [1993] at page 95.

After Definition 15, we suggested that one way how to stop splitting is when
the decrease in impurity does not exceed a certain threshold, i.e., if ∆i(s, t) < β,
for β ≥ 0. However, this approach is not really useful if β is too low, there are
too many splits, and the tree is too large. On the other hand, for increasing β,
there may appear a situation when the best possible split s for node t ∈ T has a
small decrease in impurity ∆i(s, t), so we stop splitting.

However, if we did perform this split, there would be much better splits sL

and sR of the nodes tl and tR with large ∆i(sL, tL) and ∆i(sR, tR) coming after
the split s that are not performed because we stopped splitting at node t.

It was discovered that looking for the right stopping rule is the wrong way of
looking at the problem. A much more satisfactory approach is to grow a tree that
is much too large (we will explain how to do that soon) and then prune (we will
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again explain precisely what that means) it upwards in the right way until it is
pruned back to the root node. We will define the terms precisely in this section.

The first step is to grow a very large tree, also called initial tree, that will
be denoted by Tmax, by letting the splitting procedure continue until all terminal
nodes are either small, pure or they consist of identical vectors of covariates.

The ideal case would be to grow the tree until each terminal node contains
only 1 case with identical vectors of covariates. However, when it is not compu-
tationally feasible, it is possible to use a compromise method. This method also
grows sufficiently large initial trees by specifying a number Nmin and continuing to
split until each terminal node t ∈ T̃ is pure, satisfies the condition N(t) ≤ Nmin,
i.e., there are at most Nmin observations in the node t, or it contains only identical
vectors of covariates.

After growing the tree Tmax, it then prunes the tree upwards, i.e., it produces a
sequence of subtrees of Tmax and after a finite number of steps eventually collapses
to the root node {1} itself. We will define pruning now.

Definition 19 (Pruning)
Let T be a binary tree-structured classifier, t ∈ T and Tt a branch of T . We will
call deleting all descendants of node t from the tree T pruning a branch Tt. The
tree pruned this way will be denoted by T − Tt.

A binary tree-structured classifier T ′ that was obtained from T by successive
pruning will be called a pruned subtree of T and it will be denoted by T ′ < T .

Naturally, pruning only makes sense if t is a non-terminal node.
Example. In our example, pruning can be illustrated by deleting the nodes 2 and
3 and thus having all observations in node 1. △

Even for relatively small sizes of Tmax, there are incredibly many different
ways to prune up to the root node. Therefore it is necessary to find a way to
selectively prune the tree so that each subtree selected is the best subtree in its
size.

We need to specify what we mean by best. As one may think, we will again
measure the goodness of a subtree by the resubstitution estimate R(T ).

The selective pruning starts with a given initial tree Tmax. It completely dis-
regards how the tree Tmax was grown, what splitting criterion was chosen etc. It
computes R(t) for each t ∈ Tmax and progressively prunes Tmax such that at each
step of the pruning, R(T ) is as small as possible. We will denote the pruned
subtree of tree T after j-th pruning by Tj.

However, this approach has a severe disadvantage. The sequence of subtrees
Tmax, T1, T2, . . . is not descending, i.e., it does not necessarily hold that Tn+1 is
a subtree of Tn. For this reason, a different approach was adopted, and we will
devote the following section to this approach.

1.3.4 Minimal cost-complexity pruning
This approach will be called minimal cost-complexity pruning, and we will start
by defining what complexity means and then define the minimal cost-complexity
pruning.
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Definition 20 (Complexity, cost-complexity)
Let T be a binary tree-structured classifier. We will call the number of its terminal
nodes |T̃ | the complexity of tree T . Also let α ≥ 0, that will be called complexity
parameter and the quantity Rα(T ) = R(T ) + α|T̃ | will be called cost-complexity.

It is easy to see that Rα(T ) is a linear combination of the cost of the tree
R(T ) and its complexity |T̃ |.

Our task now will be to find for each α ∈ [0, +∞) a pruned subtree T (α) <
Tmax that minimizes Rα.

By a simple observation, we can see that for small values of α, the cost for
having more terminal nodes is small, so the tree T (α) will be large. As the
complexity parameter α increases, the tree T (α) minimizing Rα will have fewer
and fewer terminal nodes. Obviously, for α → +∞, T (α) will consist only of the
root node {1}.

Even though α is running through the non-negative real line [0, +∞), it is easy
to see that the tree Tmax has only a finite number of terminal nodes, so there will
be only a finite sequence subtrees Tmax, T1, T2, . . . . Because of the finiteness, what
happens is that for a given α if T (α) is the minimizing tree, then it continues
to be the minimizing tree until we find α′ > α such that T (α′) < T (α) is now
minimizing and continues to be minimizing until we find a different value α′′ > α′

and so on.
The process of pruning is easy to describe, but we need to answer some im-

portant questions:

1. Is there a unique subtree T < Tmax minimizing Rα(T ) for each value of
α ∈ [0, +∞)?

2. Is the sequence of subtrees T1, T2, T3, . . . decreasing (in the subset sense)?

3. Is there a computationally feasible algorithm for the pruning process?

Let us answer the first question now. We will start by defining a smallest
minimizing subtree.

Definition 21 (Smallest minimizing subtree)
Let Tmax be an initial tree and let α ∈ [0, +∞) be a complexity parameter. We
say that T (α) is the smallest minimizing subtree of the initial tree tree Tmax for
given α, if both following conditions hold:

• Rα(T (α)) = min
{T ;T <Tmax}

Rα(T )

• if Rα(T ) = Rα(T (α)), then T (α) < T .

The second condition states that if trees T and T (α) have the same cost-
complexity, then T (α) must be a pruned subtree of T , i.e., it breaks ties as it
says that if two trees have the same cost complexity, then the pruned subtree is
chosen.

Theorem 4
For every value of α, there exists a smallest minimizing subtree.

Proof. The proof can be found in Breiman et al. [1993] on the page 68.
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For the next section, we will need the following statement: R(t) ≥ R(tL) +
R(tR). It intuitively holds because if R(t) < R(tL) + R(tR) held, it would mean
that we performed a split that increased the misclassification costs. The formal
proof of this can be found in Breiman et al. [1993] on page 96.

To start pruning the tree, we need to do one more adjustment. We do not
begin with pruning the tree Tmax but rather T1 = T (0) that is the smallest (in
the sense of inclusion) subtree of Tmax satisfying that R(T1) = R(Tmax).

T1 is obtained from Tmax, by pruning branches Tt for such t ∈ Tmax such that t
is the father node of terminal nodes tL and tR, that satisfy R(t) = R(tL) + R(tR).

Thanks to this adjustment and the previous statement, it now holds R(t) >
R(Tt) for each t ∈ T − T̃ , i.e., for each nonterminal node.

1.3.5 Weakest-link cutting
For α ∈ [0, +∞) and non-terminal node t of the tree T1 it holds

Rα({t}) = R(t) + α.

From the previous statement, we also know that R(t) > R(Tt). It is then easy
to see that there exists a value of α that we will denote by α1 for which it holds:

• Rα({t}) > Rα(Tt) for α < α1

• Rα({t}) = Rα(Tt) for α = α1

• Rα({t}) < Rα(Tt) for α > α1.

(by {t} we denote tree consisting only of its root node t) and

Rα(Tt) = R(Tt) + α|T̃ t|.

Thus we prefer the branch Tt over the node t for α < α1. However, if α ≥ α1,
then we prefer the node t over the branch Tt (in case of equality, we prefer trees
with fewer terminal nodes).

To find the value of α1 we need to solve following inequality Rα(Tt) < Rα({t})
from which we get

α <
R(t) − R(Tt)

|T̃ t|−1
.

The statement R(t) > R(Tt) guarantees positivity.
So we will choose α1 = R(t)−R(Tt)

|T̃ t|−1
. This means we found the value of α such

that we would be better off pruning some branches. Now we need to find which
branch to prune. For this, we define a function: g1(t): T → R such that

g1(t) =
⎧⎨⎩

R(t)−R(Tt)
|T̃ t|−1

for t /∈ T̃ 1

+∞ for t ∈ T̃ 1.

And we will prune node t1 such that g1(t1) = min
t∈T1

g1(t). Now let us use tree
T2 = T1 − Tt1 . The node t1 will be called the weakest-link, and it is meant in the
sense that for the complexity parameter α increasing from 0, Tt1 will be the first
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branch to be pruned off, because Rα({t}) becomes less than or equal to Rα(Tt),
so thee node t becomes preferable to the branch Tt.

When we apply this approach recursively, i.e., we define the function

gi(t) =
⎧⎨⎩

R(t)−R(Tt)
|T̃ t|−1

for t /∈ T̃ i

+∞ for t ∈ T̃ i.

and thanks to the function, find the i-th weakest-link ti such that gi(ti) =
mint∈Ti

gi(t) and the value of α: αi = gi(ti) and finally prune it of by stating
Ti+1 = Ti −Tti

for i ∈ N. And in case there happens to be a tie such that gk(tk) =
gk(t′

k), then we prune off both branches, i.e., we take Tk+1 = (Tk − Ttk
) − Tt′

k
.

The last contribution in this section will be the following statement:
Let {αk}k=0 be the sequence of α’s found by the algorithm we just described.

Then it holds α0 = 0 and for k ∈ N and α ∈ [αk, αk+1): T (αk) = Tk = T (α).
This statement describes how minimal cost-complexity pruning works. It

starts with the tree T1, finds the weakest-link branch Tt1 , and prunes it to get T2
when α reaches α1 and then recursively continues with the calculations.

This approach also fulfills the last criterion, i.e., computational feasibility. It
is not hard to calculate because the value of the function gi(t) does not depend
on i as long as the node t is a part of the tree Ti, which has to hold as it was not
pruned yet. Thus we only need to calculate the value of gi(t) once for i ∈ N.

The parameter α ∈ [0, +∞) is then chosen by K-fold cross-validation in the
following way:

• Randomly divide the training sample L into K subsets of similar sizes (sizes
of different subsets differ at most by one). Let us denote these subsets by
L1, L2, . . . , LK .

Now for k ∈ {1, 2, . . . , K}, the method uses all subsets apart from the k-th
one, that is L \ Lk as a learning sample.

• Based on this learning sample, build a large tree Tmax.

• Apply cost-complexity pruning with cost parameter α to Tmax to obtain
T (α) for α ∈ [0, +∞).

• Evaluate the prediction error with the chosen impurity measure, e.g., Gini
impurity or cross-entropy.

• Average the results for each value of α, and pick the value of α so that
it minimizes the average error calculated by the Gini impurity or cross-
entropy.

A leave-one-out cross-validation technique would be so computationally ex-
hausting here that 10-fold cross-validation is usually used instead.

On the use of cp in rpart

This subsection is based on Greenwell [2022]. In the statistical software R and its
implementation rpart, it is more common to use complexity parameter cp rather
than α.

Rcp(T ) = R(T ) + cp × |T̃ |×R(T1)
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The main advantage of this approach is that the scale now does not matter.
The choice of cp = 0 results in the full tree T0, and the choice of cp = 1 results
in a tree with zero splits, i.e., the root node 1.

1.4 Regression trees
So far, we have discussed classification problems, i.e., problems where the response
variable Y is nominal or categorical. Our task now will be to build up theory
also for problems where the response variable Y is continuous.

Fortunately, most of the theory from classification trees stays the same also
for regression trees. We will now define what is different. However, we will use the
same notation so that we can jump back and forth from regression to classification
trees. Thus the reader needs to keep track of what kind of problem we are solving
at the moment.

We will start with the feature space and response variables as we have to
define continuous response variables.

Definition 22 (Feature space, vector of covariates and response variables)
Let X = (X1, X2, . . . , XM)⊤ be a random vector with values in a general M-
dimensional space X = X 1 × X 2 × . . . × X M . We will call X a feature vector or
vector of covariates and X a feature space.

Moreover, let Y be a real random variable. It will be called response variable,
and the pair (X, Y )⊤ will be called feature-response pair.

The probability space stays the same as in classification trees with the minor
adjustment that the set {1, 2, . . . , J} is now replaced by R, and all terms related
to it change as well.

Now we can move on to redefining the term classifier. As the name suggests,
classifiers are used for classification. However, our goal is not to classify a nominal
or categorical random variable but to predict a continuous random variable. Thus
we will call the function d predictor.

Definition 23 (Predictor)
Let X be a feature space and Y be a response variable. A function d: X → R
is called a predictor if the mapping d: X ↦→ d (X) assigns for each X ∈ X some
y ∈ R.

The definition of the learning sample is almost the same as in section 1.2. We
only have to take into account that the response variable is continuous.

1.4.1 Goodness of a predictor
Now the most obvious difference between classification and regression trees comes.
In classification problems, the goodness of a classifier was measured by the ac-
tual misclassification rate (Definition 5), i.e., as the probability of misclassifying.
However, because the response variable is now continuous, we have to use a dif-
ferent way to measure the goodness of a predictor. We will use mean squared
error for this purpose.
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Definition 24 (Mean squared error)
Let L be a learning sample, and d be a predictor on the feature space X . Also,
let (X, Y )⊤ be a feature-response pair, where X is from X and Y is a response
variable, drawn randomly from the same probability distribution.

P (A, y) = P(X ∈ A, Y = y), A ⊆ X , y ∈ R

independent of L. The mean squared error of predictor d is defined as

R∗(d) = E P[(Y − d(X))2].

During the evaluation of the expectation E P[(d(X) − Y )2], we consider the
learning sample L to be fixed. Thus a more precise notation would be

E P[(d(X) − Y )2 | L].

The mean squared error is a theoretical quantity that needs to be somehow
estimated. We will again incorporate three methods of estimation similar to
classification trees.

The resubstitution estimate

Let L =
{︃

(X1, Y 1)⊤
, (X2, Y 2)⊤

, . . . ,
(︂
XN , Y N

)︂⊤
}︃

be the learning sample of size
N and d be a predictor built based on the learning sample L..

The resubstitution estimate of the predictor d based on the learning sample
L will be denoted by R(d) and calculated using the following formula.

R(d) = 1
N

N∑︂
i=1

(Yi − d(Xi))2.

Again, the drawback of the resubstitution estimate is that it uses the same
data as it used for constructing the predictor d instead of an independent sample.
Thus it could give an overly optimistic estimation of the accuracy of d.

Similar to the classification problem, we also define test sample estimation
and cross-validation estimation for regression problems.

Test sample estimation

This method is based on randomly dividing the learning sample L into two sets:
L1 and L2 of sizes N1 and N2, where L = L1

⋃︁ L2 and L1
⋂︁ L2 = ∅ (and thus

N1 + N2 = N). Let d be a binary tree-strucutred predictor built based on the
learning sample L.

We use only the sample L1 to construct the predictor d and then we use the
sample L2 to estimate R∗(d). The test sample estimate (denoted by Rts(d)) is
calculated via:

Rts(d) = 1
N2

∑︂
{i:(xi,yi)∈L2}

(Yi − d(Xi))2.

This again eliminates the drawback of the resubstitution method as it uses
different data for constructing the estimate and for calculating its accuracy, but
there arises another problem as we only use a part of the data for the construction
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of d while the rest of the data had to be left out while constructing d so that
it can be used independently in testing. This problem may be neglected when
large datasets are used. In these cases, it is also preferred as it is much less
computationally demanding than the last method.

Cross validation

This method randomly divides all data in L into K subsets of similar sizes
(sizes of different subsets differ at most by one). Let us denote these subsets
by L1, L2, . . . , LK .

Now for k ∈ {1, 2, . . . , K}, the method uses all subsets apart from the k-th
one, that is L \ Lk as a learning sample (this was denoted by L1 in the previous
method) and Lk as L2 from the previous method. It calculates test sample
estimate of k-th group denoted by Rts(d(k)).

Then it does the same for all k ∈ {1, 2, . . . , K} and calculates the cross-
validation estimate RCV (d) as

RCV (d) = 1
K

K∑︂
k=1

Rts(d(k)),

i.e., it takes the average over all k ∈ {1, 2, . . . , K}. The most popular modifi-
cations of cross-validations are, again, leave-one-out cross-validation and 10-fold
cross-validation. The advantages and drawbacks of each method are the same as
for classification trees.

Similarly to Definition 8 we will define binary tree-structured predictors.
Definition 25 (Binary tree-structured predictor)
A binary tree-structured predictor d is a predictor constructed by repeatedly parti-
tioning subsets of the feature space X (that will be denoted X1) into two descendant
subsets.

If we partition part of the feature space X numbered k ∈ N, then the two
descendant subsets will be numbered 2k and 2k + 1. Thus, we can write that
X2k

⋃︁ X2k+1 = Xk and X2k
⋂︁ X2k+1 = ∅.

Those subsets which are not partitioned anymore are called terminal subsets.
The terminal subsets form a partitioning of the feature space X . To each vector
of covariates X from a subset Xt, t ∈ N is then predicted a value y(t) based on all
values in the subset Xt.

The partitions are formed by conditions on the coordinates of the covariates
vector X.

The binary tree-structured predictor predicts a class for each vector of covari-
ates X in the following way: We look at the questions laid upon the vector of
covariates X and depending on the outcome of the question we decide to which
subset it belongs to. The questions have to be from the standardized set of ques-
tions Q. When the vector of covariates reaches the terminal subset Xt, it predicts
value y(t).

By size of a region Xt, we will denote the number of observations from the
training sample L contained in Xt.

Now we can finally switch to tree terminology the same way as in Definition 9.
Also, Definition 10 stays the same, with the only change that T is now a binary
tree-structured predictor instead of the classifier.
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Lastly, we can come to the task of constructing a regression tree. This process
is fairly similar to classification trees.

Construction of a regression tree

The construction of a regression tree starts, of course, with a learning sample L.
And similarly to classification trees, we need to determine the following:

• How to select a split?

• How to determine a node terminal?

• How to assign value to every terminal node?

1.4.2 How to assign a value to a node?
Let L be a learning sample. We need to find the predicted value for each terminal
node t of tree T called y(t) that minimizes the term

R(d) = 1
N

N∑︂
i=1

(Yi − d(Xi))2 = 1
N

N∑︂
i=1

(Yi − y(t))2,

where t is a terminal node and y(t) is predicted value in node t. That means we
can split the observations according to the terminal nodes they belong to, i.e.,
the resubstitution estimate is

R(d) = 1
N

∑︂
t∈T̃

∑︂
{i;Xi∈t}

(Yi − y(t))2,

If we now have a look at each of the terminal nodes at once, we are trying to
minimize the term ∑︂

{i;Xi∈t}
(Yi − y(t))2.

Let ȳ(t) denote

ȳ(t) = 1
N(t)

N(t)∑︂
i=1

Yi,

where N(t) denotes the size of node t, i.e, the number of observations in that
node. From the following calculation, we can see that∑︂

{i;Xi∈t}
(Yi − y(t))2 =

∑︂
{i;Xi∈t}

(Yi − ȳ(t) + ȳ(t) − y(t))2

=
∑︂

{i;Xi∈t}
(Yi − ȳ(t))2 +

∑︂
{i;Xi∈t}

(ȳ(t) − y(t))2 + 2(ȳ(t) − y(t))
∑︂

{i;Xi∈t}
(Yi − (ȳ(t)).

The last sum sums up to 0, and it is easy to see that the first and second sums
are nonnegative and thus∑︂

{i;Xi∈t}
(Yi − y(t))2 =

∑︂
{i;Xi∈t}

(Yi − ȳ(t))2 +
∑︂

{i;Xi∈t}
(ȳ(t) − y(t))2,
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from which we get that∑︂
{i;Xi∈t}

(Yi − y(t))2 ≥
∑︂

{i;Xi∈t}
(Yi − ȳ(t))2,

and equality occurs if and only if

ȳ(t) = y(t).

To conclude, we will always assign the average of the response variables Yi’s
to a given node. Now we can come up with the question of how to select a split.

1.4.3 How to select a split?
Similarly to classification trees, regression trees also have the task of splitting a
node t into two son nodes tL and tR so that the son nodes are more homoge-
neous than the father node. However, instead of impurity (Definition 12) we are
now trying to minimize the mean squared error or, particularly its resubstitution
estimate R(d).

We know that for the predictor d (also known as tree T ) it holds that:

R(T ) = 1
N

∑︂
t∈T̃

∑︂
{i;Xi∈t}

(Yi − y(t))2.

Thus for each node t ∈ T it holds that the resubstitution estimate of the
mean squared error of node t is

R(t) = 1
N

∑︂
{i;Xi∈t}

(Yi − y(t))2.

So we can conclude that the resubstitution estimate of the mean squared
error of tree T is the sum of resubstitution estimates of mean squared errors of
all terminal nodes t ∈ T̃ .

R(T ) =
∑︂
t∈T̃

R(t).

Now let us have a look at splits again. Similarly to classification trees, the
goodness of a split will be quantified by the decrease in R(T ). If we look at one
particular terminal node t, we can calculate its resubstitution estimate of the
mean squared error R(t). Let us assume that split s had split node t into two son
nodes tL and tR. Then, the decrease of the resubstitution estimate of the mean
squared error is

∆R(s, t) = R(t) − (R(tl) + R(tR)) .

Let T ′ be the tree obtained from tree T by splitting node t by the split s into
nodes tL and tR as mentioned before. Then it holds that

R(T ) =
∑︂

u∈T̃ \{t}

R(u) + R(t),

and

R(T ′) =
∑︂

u∈T̃ \{t}

R(u) + R(tL) + R(tR).

31



Thus it holds that
R(T ) = R(T ′) + ∆R(s, t).

Now, similarly to classification trees, we will always select the split that gives
the highest decrease of the resubstitution estimate R(T ), i.e., the split that best
separates high response values from the low response ones.

When to stop splitting?

Fortunately, as we mentioned before, the pruning criterion does not depend on
the way the tree was built. Thanks to that, we can adopt techniques described
in the section 1.3.3 such as minimal cost-complexity pruning and weakest-link
cutting.

This concludes the part of the thesis that extends the theory also to continuous
response variable Y.

We will now briefly introduce bootstrap aggregating alias bagging.

1.5 Bootstrap aggregating
This section is based on Breiman [1996]. Bootstrap aggregating, or bagging in
short, is an algorithm based on aggregating from bootstrapped samples.

It uses learning sample L of size N defined in Definition 4. In classification
and regression trees, we used the learning sample to form a tree called T that
was later used for predicting.

We will now make some adjustments to this technique. We will use a boot-
strapped learning sample, i.e., we draw N cases from L with replacement to build
a learning sample Lb.

Then we build a classification or regression tree called Tb based on this learning
sample Lb.

Lastly, we repeat this for B ∈ N times with independently drawn bootstrapped
samples L1, L2, . . . , LB. As a result we get an ensamble of trees {Tb}B

b=1. From
which we build our prediction.

For regression trees the prediction for a vector of covariates X will be the
average, i.e.,

1
B

B∑︂
b=1

Tb(X).

For classification trees, the prediction for a vector of covariates X will be the
plurality vote, i.e., the most common class j ∈ {1, 2, . . . , J} among the predictions
{Tb}B

b=1. Again, in case of a tie, we arbitrarily chose one of the most common
classes.

The main advantage of bootstrap aggregating over classification and regression
trees is that it lowers the variance because it uses averages (or plurality votes)
over more bootstrapped samples.
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2. Regression trees in individual
claims reserving

2.1 Individual claims reserving introduction
This section is based on Wüthrich and Merz [2015]. We will describe non-life
individual claims reserving terms in greater detail.

One of the essential properties of non-life insurance is that the claims usually
cannot be settled immediately. There are some delays in reporting the claims
and also some delays in settling the claims. Because of these delays, we need to
predict future cash flows of claims that have occurred in the past but are to be
settled in the future. Based on the predictions, we price the future contracts.
This prediction task is called claims reserving, and it assesses the outstanding
loss liabilities of past claims.

Typically the most significant portion of the liability side of the balance sheet
of a non-life insurance company is made of these claim reserves. Therefore it is
very important to have a reasonable prediction of said reserves.

2.1.1 Claims reserving terms
We will introduce some basics of insurance claims terminology such as period
insured, accident date, reporting delay, reporting date, settlement delay, and
settlement date.

Let U1, U2 be times such that U2 > U1. U1 is called the beginning of insurance
period and U2 is called the end of insurance period. We will always assume that
U2 < +∞. The interval [U1, U2] is called period insured. This period is specified
in the insurance contract.

For our purposes, we will always assume that the beginning of the insurance
period is 1, i.e., U1 = 1 and the end of the insurance period will be denoted by
I ∈ N.

A non-life insurance claim is triggered by accident causing damage covered by
an insurance contract. The date of the claim’s occurrence is called accident date,
and we will denote it by T1. The insurance company is liable only for those claims
whose accident date T1 falls into the period insured [U1, U2]. For that reason, we
are only interested in cases when the accident date falls into the period insured.
We will thus neglect the cases when T1 /∈ [U1, U2].

After the claim occurs, it has to be reported to the insurance company, and it
is usually not reported immediately. It may take days or even years, depending
on the nature of the insurance contract. As reporting date (denoted by T2 and
it holds T2 ≥ T1), we will consider the date when all the necessary information
is fully incorporated into the insurance company systems and thus is available
for statistical analysis. The time elapsed between the claim’s occurrence and its
reporting to the insurance company (T2 − T1) will be called reporting delay. It is
worth mentioning that reporting date may be outside of the insured period, i.e.,
T2 > U2. Nevertheless, the company is liable for all claims with the accident date
in the period insured.
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When the claim is reported, it typically cannot be settled immediately, as the
insurance company needs more detailed information about the claim. There can
be several reasons for this delay. The insurance company may start an investiga-
tion for the details of the accident or wait for external information and bills from
external companies to come.

Of course, the client would not be pleased if he had to wait several years
for claim payments. For this reason, the insurance company pays out once some
claims benefits are fully justified. These claim benefits payments form a cash flow
sequence that takes place after the reporting date T2. Our task will be to model
these payments.

The time when the final assessment of a claim takes place is called settlement
time or closing time and is denoted by T3. It holds T2 ≤ T3 and the interval
[T2, T3] is called settlement period. The difference T3 − T2 is called settlement
delay. It is also possible for the claims to reopen after being settled.

If we denote today’s time by t, we could have five different situations:

1. t < U1. No insurance contract exists. There is nothing to be calculated;

2. U1 ≤ t < T1

There is an insurance contract, but no claims have yet occurred. The insur-
ance company may be fortunate enough so that T1 > U2, i.e., the accident
happens after the insurance period. That means that the insurance com-
pany is not liable unless renewal happens. The only information available
at this time is that the insurance contract had been signed;

3. T1 ≤ t < T2 and U1 ≤ T1 ≤ U2

The accident occurred during the insured period but has not been reported
to the insurance company yet. These claims are called Incurred But Not yet
Reported (IBNR) claims. The insurance company does not have any claim-
specific data for claims from this group. It has only external information.
It can be split into global data such as economic data (market situation) or
worldwide relevant facts such as the COVID pandemic, war, nuclear power
plant accident, and local data such as weather conditions (storms, floods,
hailstorms, earthquakes) and economic (unemployment rate, interest rate
and inflation of a country or region the insurance company is interested
in). This external data could give a hint to the insurance company if they
should expect more or fewer claims to be reported;

4. T2 ≤ t < T3 and U1 ≤ T1 ≤ U2

The claims are reported to the insurance company, but the final assess-
ment is missing. The insurance company is gathering data about individual
claims. The more data it gathers, the more precise the prediction of the
final assessment is. However, these claims are not completely settled yet.
They are called Reported But Not Settled (RBNS) claims. The settlement
period [T2, T3] is the period within which cash flows are done.
During the settlement period, the insurance company gathers more and
more claim-specific information such as accident date, cause of the accident,
type of the accident, location of the accident, line-of-business and insurance
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contracts involved, claims assessments, medical assessments, already paid
cash flows and so on in addition to the external information it had before;

5. T3 ≤ t and U1 ≤ T1 ≤ U2

The claim is settled, the file is closed and stored, and we expect no further
information or payment for this claim. In some cases, it may be necessary
to reopen a closed file due to unexpected development.

period insured settlement period time

claim cash flows

closing date T3

accident date T1
reporting date T2

pr
em

iu
m

π

Figure 2.1: A non-life insurance claim progress illustration.

2.1.2 Notation
In order to predict and use statistical inference about insurance contracts and
claims, we need to build as homogeneous groups as possible so that we can apply
statistical tools such as the law of large numbers.

Once the homogeneous groups are built, we can study all claims that belong
to the same group. These claims are further categorized by their accident date.
Claims occurring in the same accident period may be triggered by similar external
factors such as weather or economic situations.

Since the usual time scale for insurance contracts is years, the claims are
typically gathered on a yearly time scale. Thus we consider calendar years denoted
by i ∈ {1, 2, . . . , I}. In our case, we will consider accounting years to be the same
as calendar years, and thus we will refer to calendar years only. All claims with
accident date T1 ∈ [1/1/i, 31/12/i] are called claims with accident year i. These
claims generate cash flows which are also considered on a yearly level, i.e., all
payments done in the same calendar year are aggregated.
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We will start with the following notation. For the insurance period [1, I], we
will denote by

X

the sum of all payments done for claims in the insurance period.
We can divide these payments by their accident years. For fixed

i ∈ {1, 2, . . . , I} let
Xi

denote the sum of all payments done for claims with accident year i. It holds

X =
I∑︂

i=1
Xi.

Naturally, we can split this quantity according to the reporting delay d, which
means that for fixed i ∈ {1, 2, . . . , I} and d ∈ N0, we define

Xi,d

as the sum of all payments done for claims with accident year i reported in
calendar year i + d. Then it holds

Xi =
+∞∑︂
d=0

Xi,d.

We will also introduce a maximal reporting delay of D ∈ N0. This means that for
all claims with reporting delay d > D the insurance company is no more liable
and thus Xi,d = 0. This results in the modification of the previous sum

Xi =
D∑︂

d=0
Xi,d.

Let Ni,d denote the number of claims with accident year i ∈ N and reporting
delay of d ∈ N0, i.e., the number of claims that occurred in calendar year i and
were reported in calendar year i + d.

Then, for v ∈ {1, 2, . . . , Ni,d}, we will define the sum of all payments for claim
v-th claim of accident year i and reporting delay d by:

X
(v)
i,d

and it holds that

Xi,d =
Ni,d∑︂
v=1

X
(v)
i,d ,

as we defined Xi,d as the sum all payments with given accident year i and reporting
delay d. Now we can address each claim by the triplet (i, d, v).

Furthermore, each of these claims generates a sequence of payments that will
be denoted by

X
(v)
i,d | 0, X

(v)
i,d | 1, . . . ,

where X
(v)
i,d | k denotes the payments done in calendar year i + d + k for claim

(i, d, v). Now we can address each claim payment by the quadruplet (i, d, k, v)
and it holds

X
(v)
i,d =

+∞∑︂
k=0

X
(v)
i,d | k.

36



The main task of the thesis will be to model these payments.
For that, we need a little bit different approach. We need to look at the claim

payments, not as payments in year i + d + k but rather as payments l = d + k
years after the accident year i.

We will also introduce maximal settlement delay L. That means that for claim
payments (i, d, k, v) such that d + k > L, we again set X

(v)
i,d | k = 0.

Thus we can again simplify the previous sum

X
(v)
i,d =

L−d∑︂
k=0

X
(v)
i,d | k

Altogether, it holds that

X =
I∑︂

i=1
Xi =

I∑︂
i=1

D∑︂
d=0

Xi,d =
I∑︂

i=1

D∑︂
d=0

Ni,d∑︂
v=1

X
(v)
i,d =

I∑︂
i=1

D∑︂
d=0

L−d∑︂
k=0

Ni,d∑︂
v=1

X
(v)
i,d | k.

As we suggested before, the quantity Xi can also be expressed differently. Let

lXi

for i ∈ N and l ∈ N0 denote the sum of all payments for claims with accident
year i paid in year i + l. Then it holds

lXi =
l∑︂

d=0

Ni,d∑︂
v=1

X
(v)
i,d | l−d

and for the total sum of claim payments with accident year i it holds

X =
I∑︂

i=1
Xi =

I∑︂
i=1

L∑︂
l=0

lXi =
I∑︂

i=1

L∑︂
l=0

l∑︂
d=0

Ni,d∑︂
v=1

X
(v)
i,d | l−d.

Lastly, one more modification brings a slightly different approach is the fol-
lowing let for l ∈ N

lX

denote the sum of all payments in the year l, then it holds

lX =
min{l,I}∑︂

i=max{1,l−L}
l−iXi.

The sum of all payments is then expressed via lX in the following way:

X =
I+L∑︂
l=1

lX

and the sum of all payments is calculated via

X =
I+L∑︂
l=1

lX =
I+L∑︂
l=1

min{l,I}∑︂
i=max{1,l−L}

l−iXi =
I+L∑︂
l=1

min{l,I}∑︂
i=max{1,l−L}

l−i∑︂
d=0

Ni,d∑︂
v=1

X
(v)
i,d | l−i−d.
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2.2 Outstanding loss liabilities
At the time t ∈ N, the insurance company is liable for all claims that have
occurred in accident years i ≤ t.

These claims are called past exposure claims. The claims can be divided into
three groups: closed (t ≥ T3), RBNS (T2 ≤ t ≤ T3), and IBNR (T1 ≤ t < T2).
Let us now assume that t > L, i.e., at the current time, at least for the claims
with accident year i = 1, the maximal settlement period is over, and thus we are
not expecting any further payments for claims within this accident year. Let t
and L be fixed, and let us choose a stochastic basis(︂

Ω, F , (Ft)I+L
t=0 ,P

)︂
with discrete filtration, (Ft)I+L

t=0 that is an increasing (in the subset sense) sequence
of σ-algebras

{∅, Ω} = F0 ⊆ F1 ⊆ . . . ⊆ FI+L = F .

Ft represents the information available at time t ∈ {0, 1, . . . , I + L}. We will
always assume that lXi is Fl+i-measurable, i.e., observable at time t = l + i and
integrable with respect to P for i ∈ {1, 2, . . . , I}, l ∈ {0, 1, . . . , L}.

At time t ∈ {0, 1, . . . , I + L} we have observed claim payments

Dt = {lXi : i + l ≤ t, i ∈ {1, 2, . . . , I}, l ∈ {0, 1, . . . , L}},

i.e., the payments from claims with accident years i paid l years later when
i + l ≤ t, in other words, all the payments that have happened up until time t.

The claims that occurred in the past but are not closed yet will generate cash
flows in future calendar years. We will denote these cash flows by

Dc
t = {lXi : i + l > t, i ∈ {1, 2, . . . , I}, l ∈ {0, 1, . . . , L}}.

This will be called outstanding loss liabilities at time t. Predicting these quan-
tities will be the main task of this thesis.

When an insurance company ceases to issue new insurance contracts, i.e.,
t ≥ I, a so-called run-off situation described by Dt and Dc

t arises. This situation
is illustrated in Table 2.1 where Dt is depicted in blue and Dc

t in red. The
insurance company no longer issues the insurance, so they cannot expect any
premium payments in the future. Thus the insurance company needs to build
enough reserves so that it is able to fulfill the future cash flows of past exposure
claims. The resulting reserves for outstanding loss liabilities are called claims
reserves. The claims reserves should satisfy that all past information should be
used when evaluating the claims reserves and the claims reserves should also be
the best estimate for the outstanding loss liabilities.

That means our goal is to predict Dc
t based on (all) available information

Ft ⊇ σ(Dt) at time t ≥ I. It is often the case that Ft and σ(Dt) are identical, i.e.,
we have no further information than the cash flows. Particularly, our goal is to
define a stochastic model on a stochastic basis

(︂
Ω, F , (Ft)I+L

t=0 ,P
)︂

that satisfies:

1. it includes past information Ft through a filtration (Ft)I+L
t=0 .

2. it reflects past observations Dt

3. it can predict future cash flows Dc
t of the outstanding loss liabilities
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accident development year l

year i 0 1 . . . l . . . L

1 0X1 1X1 . . . LX1

... ... ... . . . ...

I − L 0XI−L 1XI−L . . . LXI−L

...

i
... ... . . . ...

...

I − 1 0XI−1 1XI−1 . . . LXI−1

I 0XI 1XI . . . LXI

Table 2.1: An illustration of a run-off situation.

2.3 Solvency II
This short section briefly introduces what Solvency II is and what it says about
Solvency Capital Requirement. It is based on European Union [2015].

Solvency II is a regulatory framework in the European Union implemented
in 2016 for insurance companies and other financial institutions operating within
the EU. It aims to ensure that the companies maintain adequate capital to cover
their risks and remain financially solvent. One of the key elements of Solvency II
is the Solvency Capital Requirement (SCR).

The Solvency Capital Requirement (SCR) shall be the amount of own funds
that an undertaking needs to hold so that the probability of its capital being less
than the SCR as a result of the risks to which it is exposed does not exceed a
pre-defined level over a one-year time horizon. This pre-defined level shall be set
at a level of 99.5% probability of adequacy over a one-year period.

2.4 The problem and the model considered
This section is based on Wüthrich [2018]. Let Ft denote the information available
at time t ∈ N0. Then the prediction of the total nominal payments for reported
claims of accident year i at time t is given by

min{t−i,D}∑︂
d=0

Ni,d∑︂
v=1

⎛⎝min{t−i−d,L−d}∑︂
k=0

X
(v)
i,d | k + I(L > t − i)

L−d∑︂
k=t−i−d+1

E
[︂
X

(v)
i,d | k | Ft

]︂⎞⎠ .
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Reported claims can be split into closed and RBNS. For closed claims, there
are no further payments coming, so the last summation is equal to 0, and this
the formula reduces to

min{t−i,D}∑︂
d=0

Ni,d∑︂
v=1

min{t−i−d,L−d}∑︂
k=0

X
(v)
i,d | k

as we do not have to predict any future payments if we know that they are not
coming. For RBNS claims, the last term is typically positive, as we expect some
future claim payments. If L ≤ t − i, then we have just reached the maximal
development delay and thus, the second summation again reduces to zero.

The nominal payments for IBNR claims of accident year i at time t are pre-
dicted by

D∑︂
d=t−i+1

E

⎡⎣Ni,d∑︂
v=1

L−d∑︂
k=0

X
(v)
i,d | k | Ft

⎤⎦ .

We will now state the model assumptions.

Assumption 1
Let

(︂
Ω, F , (Ft)I+L

t=0 ,P
)︂

be a stochastic basis with sufficiently rich and discrete
filtration (Ft)I+L

t=0 .

Also let all processes (Ni,d)i,d be (Ft)I+L
t=0 -adapted for time t = i + d and

(Y (v)
i,d | k)i,d,k,v be (Ft)I+L

t=0 -adapted for time t = i + d + k. Furthermore, let us
assume the following:

(a1) claim counts (Ni,d)i,d and claim payments (X(v)
i,d | k)i,d,k,v are independent;

(a2) the random variables (Ni,d)i,d and (X(v)
i,d | k)i,d,k,v are independent for different

accident years i ∈ {1, 2, . . . , I};

(a3) the processes (X(v)
i,d | k)k are independent for different reporting delays d ∈

{1, 2, . . . , D} and different claims v ∈ {1, 2, . . . , Ni,d};

(a4) The conditional distribution of X
(v)
i,d | k+1 given Fi+d+k is

X
(v)
i,d | k+1 | Fi+d+k ∼ pd+k

(︂
x(v)

i,d | k

)︂
,

where x(v)
i,d | k is a realization of X(v)

i,d | k, which is a Fi+d+k measurable vector
of covariates of the claim (i, d, k, v). It is contained in the feature space X
that will be described soon, and pd+k : X → [0, +∞) is some distribution.

Remark. We will explain why we assume this now.

• The independence assumption (a1) is necessary to receive compound dis-
tributions;

• The independence assumption (a2) guarantees that claims from different
accident year i can be modeled independently;
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• The independence assumption (a3) ensures that we can model payments
from a single claim X(v)

i,d independently for all claims v ∈ {1, 2, . . . , Ni,d}.
This assumption is conditionally on the regression function pd+k : X →
[0, +∞);

• The most important assumption for the claims modeling is the conditional
distribution given by the formula in (a4). It says that for every reported
claim up to time t = i + d + k there exists an Fi+d+k-measurable realization
x(v)

i,d | k of the vector of covariates X(v)
i,d | k ∈ X that determines the conditional

distribution of X
(v)
i,d | k+1. The probability function pd+k : X → [0, +∞) can

have any form. We calibrate it with machine learning techniques (mainly
regression trees and bagging).

△

2.5 Feature space and regression tree

2.5.1 Feature space
Under the model assumptions 1, the feature space consists of S-dimensional vec-
tors

X(v)
i,d | k =

(︂
X

(v)
i,d | k(s)

)︂⊤

s∈{1,2,...,S}
=

(︂
X

(v)
i,d | k(1), X

(v)
i,d | k(2), . . . X

(v)
i,d | k(S)

)︂⊤
∈ X .

Some components of the covariates vectors are categorical, e.g., claim type,
accident weekdays, or open/close status k years after the accident year, while
others components of the covariates vectors are continuous, e.g., age, reporting
delay, or payment k years after the accident year. In Table 2.2, we present
the structure of the vector of covariates. The vector of covariates X(v)

i,d | k has a
realization x(v)

i,d | k that we will now abbreviate to x = (x(1), x(2), . . . x(S))⊤ ∈ X .

x(1) : type of the insurance claim (type)
x(2) : age of the person insured (age)
x(3) : weekday of the accident (weekday)
x(4) : reporting delay (d)
x(5) : payment at time i (only present if d = 0) ((X0))
x(6) : payment at time i + 1 (only present if d ≤ 1) ((X1))

...
x(5 + d) : payment at time i + d (Xd+0)

x(5 + d + 1) : payment at time i + d + 1 (Xd+1)
...

x(5 + d + k) : payment at time i + d + k (Xd+k)
x(5 + d + k + 1) : empty

...
x(S) : empty

Table 2.2: Description of feature space components.
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Remark. Some remarks to Table 2.2 and the feature space.
• The components x(1), x(3) are categorical, and they take values in

{1, 2, 3, 4, 5, 6} and {Mon, Tue, Wed, Thu, Fri, Sat, Sun} respectively.
All the other components are continuous, x(2) takes values in [18, 65], x(4)
takes values in N0 and x(5), x(6), . . . , x(S) take values in R.

Thus we can conclude that the feature space holds
X = {1, 2, 3, 4, 5, 6} × [18, 65] × {Mo, Tu, We, Th, Fr, Sa, Su} ×N0 ×RS−4.

• The components x(5), x(6), . . . , x(5 + d + k) model the payment history up
to time i+d+k. The initial zeros correspond to reporting delay d, i.e., there
were no payments because the claim was not even reported. This is a part
of the Fi+d+k measurable claim. The components x(5+d+k +1), x(5+d+
k + 2), . . . , x(S) are kept empty as they will be observed and filled in later
in the claims development process and are not available at time i + d + k.

• The feature X(v)
i,d | k does not include any accident year i specific information.

Thanks to that, the regression function x(v)
i,d | k ↦→ pd+k(x(v)

i,d | k) can by applied
to any accident year.

• This setup allows us to make predictions recursively one-perioad ahead.
△

2.6 Regression trees, and bagging

2.6.1 Regression trees in rpart
We estimate the regression function pd+k : X → R using classification and regres-
sion tree (CART) techniques to achieve p̂d+k. These techniques were introduced
in chapter 1. At first, we build a large binary tree. In the second step, the tree
size (specifically the complexity parameter cp) is determined by 10-fold cross-
validation and pruned.

The standardized binary split tree growing algorithm is already implemented
in R. It is described in Greenwell [2022], and we will use the R library and command
rpart in the following way:

tree <-rpart(Xd+k+1∼ type + age + weekday + d + X0 + ... + Xd+k,
data=data_t, method="anova",
control=rpart.control(cp=0))

This command says that we regress the response X
(v)
i,d | k+1 from the feature

vector x(v)
i,d | k. The data data_t used at time t is given by all observations that are

Ft measurable, i.e., that hold i + d + k ≤ t. Method applied is regression trees,
thus we input ’anova’. The term control specifies that we want to build a very
large tree (cp=0) that was called T1 in chapter 1.

Now we find the value of complexity parameter cp that yields the smallest
cross-validation error denoted by xerror in the following way:

best <- tree$cptable[which.min(tree$cptable[,"xerror"]),"CP"]
Lastly, we prune the tree with the computed complexity parameter cp:

pruned_tree <- prune(tree, cp=best).
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2.6.2 Bagging in bagging
We will use bagging techniques to improve further the regression function pd+k.
These techniques were introduced in section 1.5. In R it is done in the following
way:

bag <- bagging(Xd+k+1∼ type + age + weekday + d + X0 + ... + Xd+k,
data=data_t, nbagg = 10000,
control=rpart.control(cp=0))

We use the same formula and data as in rpart.

2.7 Individual claims reserving analysis

2.7.1 Data description
Due to confidentiality reasons, we cannot use the data used in Wüthrich [2018].
Fortunately, the author invented a generator of individual claims for claims re-
serving studies. This generator is described in Wang and Wüthrich [2022]. Now
we will explain what the data consists of.

The dataset consists of 51,338 closed, 7,596 RBNS, and 2,436 IBNR claims
observed in years i ∈ {1, 2, . . . , 10}. We adjusted the data to have the structure
described in Table 2.2.

The generator also generated claim payments for t > 10. Therefore, we can
compare our methods with the (generated) reality.

From the context of the paper, it is not clear which type of business the data
come from.

2.7.2 Data exploration
In Figure 2.2, we can see some basic marginal distributions. In Figure 2.2(a), there
is the distribution of type. The type takes values from the set {1, 2, 3, 4, 5, 6},
and there is no further specification of what each type means. We can see that
type 1 claims are the most frequent, with almost 20,000 claims, while type 2 and
type 3 are the least common, with around 3,000 claims.

Figure 2.2(b) shows us the histogram of age. Apart from the youngest group,
which is significantly more common, and the oldest, which is considerably less
common, we cannot spot any abnormalities.

In Figure 2.2(c), we can see that accident years are slowly decaying to the
end. However, it is not very significant.

Lastly, Figure 2.2(d) shows the accident weekdays are almost uniformly dis-
tributed. There are hardly any changes on weekdays.

As mentioned before, for our data analysis, we have 58,934 reported claims
of an insurance company over I = 10 accident years and maximal development
delay of L = 9 years. That is, we have information available for claims (i, d, k, v)
such that i + d + k ≤ I = 10, which corresponds at time t = I to

Ft = σ
{︂
X(v)

i,d | k; i + d + k ≤ t, v ≤ Ni,d

}︂
.

This gives us the formal definition of the filtration (Ft)I+L
t=0 .
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Figure 2.2: Basic data exploration.

Our main goal is to predict

F c
t =

{︂
X(v)

i,d | k; i + d + k > t, v ≤ Ni,d

}︂
.

The last quantity can be split into two disjoint sets FRBNS
t and F IBNR

t , where

FRBNS
t =

{︂
X(v)

i,d | k, i + d + k > t, v ≤ Ni,d, i + d ≤ t
}︂

and

F IBNR
t =

{︂
X(v)

i,d | k, i + d + k > t, v ≤ Ni,d, i + d > t
}︂
.

2.7.3 Model calibration for reported claims
Because any claim can be reopened at any time, we decided that we would not
include any feature component that determines the openness of a claim. Thus,
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all reported claims are considered to be RBNS. Nevertheless, this extension of
modeling the openness/closeness of a claim is postponed to further research.

We will apply the regression tree growing algorithm and bagging algorithm to
calibrate the probabilities pl for the observed development periods
l ∈ {0, 1, . . . , L−1}, at time t = I, i.e., at the time the insurance company ceased
to issue new insurance contracts. We set l = d+k, and thus L = 9 is the maximal
observed development delay.

We consider for development periods l = d + k :

X
(v)
i,d | k+1 | Fi+d+k ∼ pl=d+k(x(v)

i,d | k)

and for reported claims (i, d, k, v) such that i + d + k + 1 ≤ I = 10. These are
the claims that generate the filtration FI .

The calibration of pl at time t = I obtained in the previous section will now
be used to predict the payments for reported claims.

Let us choose such a reported claim (i, d, v) such that i + d ≤ 10, and corre-
sponding payments (i, d, k, v) such that i + d + k ≤ 10, so the vector of covariates
X(v)

i,d | k is observed at time I = 10. Now our goal is to predict
(︂
X

(v)
i,d, | k+1, X

(v)
i,d, | k+2, . . .

)︂
.

Because we have also set the maximal development delay L to be 9, we can
mainly focus on the prediction of(︂

X
(v)
i,d, | k+1, X

(v)
i,d, | k+2, . . . , X

(v)
i,d, | L−d

)︂
.

For k′ > k we predict X
(v)
i,d, | k′ at time t = I = 10 by

X̂
(v)
i,d | k′ = E

[︂
X

(v)
i,d, | k′ | Ft

]︂
And by the rule of total expectation, we get that

E
[︂
X

(v)
i,d, | k′ | Ft

]︂
= E

[︂
E . . .

[︂
E

[︂
X

(v)
i,d, | k′ | Fi+d+k′−1

]︂
| Fi+d+k′−2

]︂
. . . | FI

]︂
.

The last term is complicated to calculate analytically. Thus we use rather
simulations.

If we replace the distribution pl by its Ft-measurable calibration p̂l and con-
sequently E by Ê, we can predict X

(v)
i,d, | k′ .

This gives for each claim (i, d, v), such that i + d ≤ I at time t = I = 10 the
estimate of the sum of all payments is

X̂
(v)
i,d =

min{t−i−d,L−d}∑︂
k=0

X
(v)
i,d | k + I(L > t − i)

L−d∑︂
k=t−i−d+1

Ê
[︂
X

(v)
i,d | k | Ft

]︂
,

where Ê denotes the expectation obtained from the calibration p̂l at time I.
Similarly to earlier parts, we can express the values involved differently.

lX̂
RBNS

i =
l∑︂

d=0

Ni,d∑︂
v=1

X̂
(v)
i,d | l−d,
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for i ∈ {1, 2, . . . , I}, l ∈ {1, 2, . . . , L}, d ∈ {0, 1, . . . , D}, such that i + l > I and
i + d ≤ I, where the first condition ensures that the payments are yet to come
and the second condition ensures that the claims have been reported. These are
the values for claims that have been reported from Table 2.1 depicted in red.

Then it for l > I holds

lX̂
RBNS =

min{l,I}∑︂
i=max{1,l−L}

l−iX̂
RBNS

i ,

and
X̂

RBNS =
2I−1∑︂

l=I+1
lX̂

RBNS
,

where X̂
(v)
i,d | k is a prediction for X

(v)
i,d | k for claims (i, d, v) such that i + d ≤ I

and payments (i, d, k, v) such that i + d + k > I.

0 1 2 3 4 5 6 7 8 9
1 0X1 1X1 2X1 3X1 4X1 5X1 6X1 7X1 8X1 9X1

2 0X2 1X2 2X2 3X2 4X2 5X2 6X2 7X2 8X2 9X̂2

3 0X3 1X3 2X3 3X3 4X3 5X3 6X3 7X3 8X̂3 9X̂3

4 0X4 1X4 2X4 3X4 4X4 5X4 6X4 7X̂4 8X̂4 9X̂4

5 0X5 1X5 2X5 3X5 4X5 5X5 6X̂5 7X̂5 8X̂5 9X̂5

6 0X6 1X6 2X6 3X6 4X6 5X̂6 6X̂6 7X̂6 8X̂6 9X̂6

7 0X7 1X7 2X7 3X7 4X̂7 5X̂7 6X̂7 7X̂7 8X̂7 9X̂7

8 0X8 1X8 2X8 3X̂8 4X̂8 5X̂8 6X̂8 7X̂8 8X̂8 9X̂8

9 0X9 1X9 2X̂9 3X̂9 4X̂9 5X̂9 6X̂9 7X̂9 8X̂9 9X̂9

10 0X10 1X̂10 2X̂10 3X̂10 4X̂10 5X̂10 6X̂10 7X̂10 8X̂10 9X̂10

Table 2.3: An illustration of how we learn to predict X1.

To conclude,
lX̂

RBNS

i

represents the prediction of the sum of all payments (i, d, k, v), such that d+k = l
and i + d + k = i + l > I for claims (i, d, v), such that i + d ≤ I with accident
year i, being paid in year i + l.

The quantity
lX̂

RBNS

represents the prediction of the sum of all payments (i, d, k, v), such that d+k = l,
and i + d + k = i + l > I for claims (i, d, v), such that i + d ≤ I being paid in
year l.

Lastly the quantity
X̂

RBNS

represents the prediction of the sum of payments (i, d, k, v), such that i+d+k > I
for claims (i, d, v), such that i + d ≤ I.
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2.7.4 Prediction for reported claims
This means that for development period l = d + k = 0 we will use information
X

(v)
i,0 | 0+1 and X(v)

i,0 | 0. That means we will regress X1 as the response from variables
Type, Age, weekday, d, X0. As it has to hold i+d+k+1 ≤ 10 and d = 0 that
means we can use data such that i ≤ 9. This approach is illustrated in Table 2.3,
where the known values of X1 are in the lighter green while the corresponding
values of X0 are in darker green.

Now that our method has learned how to predict X1, we can apply this and
predict 1X̂10. This is illustrated in Table 2.4, where we predict the values in light
yellow based on the values in darker yellow.

For illustration, the optimal tree for l = 0 is depicted in Figure 2.3.
After the prediction of 1X̂10 we are in a situation depicted in Table 2.5, where

we know the values in blue, have just predicted the value in yellow, and aim to
predict the missing values in red.

0 1 2 3 4 5 6 7 8 9
1 0X1 1X1 2X1 3X1 4X1 5X1 6X1 7X1 8X1 9X1

2 0X2 1X2 2X2 3X2 4X2 5X2 6X2 7X2 8X2 9X̂2

3 0X3 1X3 2X3 3X3 4X3 5X3 6X3 7X3 8X̂3 9X̂3

4 0X4 1X4 2X4 3X4 4X4 5X4 6X4 7X̂4 8X̂4 9X̂4

5 0X5 1X5 2X5 3X5 4X5 5X5 6X̂5 7X̂5 8X̂5 9X̂5

6 0X6 1X6 2X6 3X6 4X6 5X̂6 6X̂6 7X̂6 8X̂6 9X̂6

7 0X7 1X7 2X7 3X7 4X̂7 5X̂7 6X̂7 7X̂7 8X̂7 9X̂7

8 0X8 1X8 2X8 3X̂8 4X̂8 5X̂8 6X̂8 7X̂8 8X̂8 9X̂8

9 0X9 1X9 2X̂9 3X̂9 4X̂9 5X̂9 6X̂9 7X̂9 8X̂9 9X̂9

10 0X10 1X̂10 2X̂10 3X̂10 4X̂10 5X̂10 6X̂10 7X̂10 8X̂10 9X̂10

Table 2.4: An illustration of prediction of the X1.

0 1 2 3 4 5 6 7 8 9
1 0X1 1X1 2X1 3X1 4X1 5X1 6X1 7X1 8X1 9X1

2 0X2 1X2 2X2 3X2 4X2 5X2 6X2 7X2 8X2 9X̂2

3 0X3 1X3 2X3 3X3 4X3 5X3 6X3 7X3 8X̂3 9X̂3

4 0X4 1X4 2X4 3X4 4X4 5X4 6X4 7X̂4 8X̂4 9X̂4

5 0X5 1X5 2X5 3X5 4X5 5X5 6X̂5 7X̂5 8X̂5 9X̂5

6 0X6 1X6 2X6 3X6 4X6 5X̂6 6X̂6 7X̂6 8X̂6 9X̂6

7 0X7 1X7 2X7 3X7 4X̂7 5X̂7 6X̂7 7X̂7 8X̂7 9X̂7

8 0X8 1X8 2X8 3X̂8 4X̂8 5X̂8 6X̂8 7X̂8 8X̂8 9X̂8

9 0X9 1X9 2X̂9 3X̂9 4X̂9 5X̂9 6X̂9 7X̂9 8X̂9 9X̂9

10 0X10 1X̂10 2X̂10 3X̂10 4X̂10 5X̂10 6X̂10 7X̂10 8X̂10 9X̂10

Table 2.5: An illustration of the situation after the prediction of X1.
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Type = 1,3,4,5,6

Type = 1,4,6 payment_0 < 1592

payment_0 >= 6806

3592
100%

2749
94%

2244
74%

4649
20%

17e+3
6%

15e+3
5%

26e+3
1%

17e+3
1%

43e+3
0%

yes no

Figure 2.3: Optimal tree for l = 0.

Then for the development period l = d + k = 1 we will use information
X

(v)
i,1 | 0+1, X(v)

i,1 | 0, X
(v)
i,0 | 1+1, and X(v)

i,0 | 1. That means we will regress X2 as the
response from variables Type, Age, weekday, d, X0, X1. As it has to hold
i + d + k + 1 ≤ 10 and d ∈ {0, 1} that means we can use data such that i ≤ 8.
This approach is again depicted in Table 2.6, where the known values of X2 are
in lighter green and X1 and X0 are in darker green.

0 1 2 3 4 5 6 7 8 9
1 0X1 1X1 2X1 3X1 4X1 5X1 6X1 7X1 8X1 9X1

2 0X2 1X2 2X2 3X2 4X2 5X2 6X2 7X2 8X2 9X̂2

3 0X3 1X3 2X3 3X3 4X3 5X3 6X3 7X3 8X̂3 9X̂3

4 0X4 1X4 2X4 3X4 4X4 5X4 6X4 7X̂4 8X̂4 9X̂4

5 0X5 1X5 2X5 3X5 4X5 5X5 6X̂5 7X̂5 8X̂5 9X̂5

6 0X6 1X6 2X6 3X6 4X6 5X̂6 6X̂6 7X̂6 8X̂6 9X̂6

7 0X7 1X7 2X7 3X7 4X̂7 5X̂7 6X̂7 7X̂7 8X̂7 9X̂7

8 0X8 1X8 2X8 3X̂8 4X̂8 5X̂8 6X̂8 7X̂8 8X̂8 9X̂8

9 0X9 1X9 2X̂9 3X̂9 4X̂9 5X̂9 6X̂9 7X̂9 8X̂9 9X̂9

10 0X10 1X̂10 2X̂10 3X̂10 4X̂10 5X̂10 6X̂10 7X̂10 8X̂10 9X̂10

Table 2.6: An illustration of how we learn to predict X2.
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Now that our method has learned how to predict X2, we can apply this and
predict 2X̂9 and 2X̂10. This is illustrated in Table 2.7, where we predict the values
in light yellow based on the values in darker yellow. However, here comes one
small adjustment, we also include the value 1X̂̂X10 that we predicted in the first
step to the covariates vector and thus make a prediction based on this value. We
have now predicted the values 2X̂9 and 2X̂10.

0 1 2 3 4 5 6 7 8 9
1 0X1 1X1 2X1 3X1 4X1 5X1 6X1 7X1 8X1 9X1

2 0X2 1X2 2X2 3X2 4X2 5X2 6X2 7X2 8X2 9X̂2

3 0X3 1X3 2X3 3X3 4X3 5X3 6X3 7X3 8X̂3 9X̂3

4 0X4 1X4 2X4 3X4 4X4 5X4 6X4 7X̂4 8X̂4 9X̂4

5 0X5 1X5 2X5 3X5 4X5 5X5 6X̂5 7X̂5 8X̂5 9X̂5

6 0X6 1X6 2X6 3X6 4X6 5X̂6 6X̂6 7X̂6 8X̂6 9X̂6

7 0X7 1X7 2X7 3X7 4X̂7 5X̂7 6X̂7 7X̂7 8X̂7 9X̂7

8 0X8 1X8 2X8 3X̂8 4X̂8 5X̂8 6X̂8 7X̂8 8X̂8 9X̂8

9 0X9 1X9 2X̂9 3X̂9 4X̂9 5X̂9 6X̂9 7X̂9 8X̂9 9X̂9

10 0X10 1X̂10 2X̂10 3X̂10 4X̂10 5X̂10 6X̂10 7X̂10 8X̂10 9X̂10

Table 2.7: An illustration of prediction of X2.

This continues analogously until l = d + k = 8. The last learning process is
depicted in Table 2.8, where we can use only the data for accident year i = 1 as we
do not have any information for claims with accident years greater than 1 about
their development for l = 9. We will use information X

(v)
i,8 | 0+1, X(v)

i,8 | 0, X
(v)
i,7 | 1+1,

X(v)
i,7 | 1, . . . X

(v)
i,1 | 0+1, X(v)

i,1 | 0, X
(v)
i,0 | 8+1, and X(v)

i,0 | 8. That means we will regress X9
as the response from variables Type, Age, weekday, d, X0, X1, X2, X3, X4,
X5, X6, X7, X8. This approach is again depicted in Table 2.8, where the known
value of X9 is in lighter green and the corresponding values of X8, X7, X6, X5,
X4, X3, X2, X1 and X0 are in darker green.

Now that our method has learned how to predict X9, we can apply this and
predict 9X̂2, 9X̂3, . . . , 9X̂10. This is illustrated in Table 2.9, where we predict the
values in light yellow based on the values in darker yellow and again, we will
use the unknown values X8, X7, X6, X5, X4, X3, X2, X1 we predicted in the
previous steps.

2.7.5 Prediction for IBNR claims
In the previous section, we discussed the sums of payments for reported claims.
Now we aim to predict IBNR claims. These claims are given by

F IBNR
t =

{︂
x(v)

i,d | k, i + d + k > t, v ≤ Ni,d, i + d > t
}︂
.

The total numbers of reported claims Ni,d for i + d > 10 are not yet observed.
Thus we also need to predict this quantity. For this, we need another model
assumption. If we assume that the claims occurrence and reporting process can be
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0 1 2 3 4 5 6 7 8 9
1 0X1 1X1 2X1 3X1 4X1 5X1 6X1 7X1 8X1 9X1

2 0X2 1X2 2X2 3X2 4X2 5X2 6X2 7X2 8X2 9X̂2

3 0X3 1X3 2X3 3X3 4X3 5X3 6X3 7X3 8X̂3 9X̂3

4 0X4 1X4 2X4 3X4 4X4 5X4 6X4 7X̂4 8X̂4 9X̂4

5 0X5 1X5 2X5 3X5 4X5 5X5 6X̂5 7X̂5 8X̂5 9X̂5

6 0X6 1X6 2X6 3X6 4X6 5X̂6 6X̂6 7X̂6 8X̂6 9X̂6

7 0X7 1X7 2X7 3X7 4X̂7 5X̂7 6X̂7 7X̂7 8X̂7 9X̂7

8 0X8 1X8 2X8 3X̂8 4X̂8 5X̂8 6X̂8 7X̂8 8X̂8 9X̂8

9 0X9 1X9 2X̂9 3X̂9 4X̂9 5X̂9 6X̂9 7X̂9 8X̂9 9X̂9

10 0X10 1X̂10 2X̂10 3X̂10 4X̂10 5X̂10 6X̂10 7X̂10 8X̂10 9X̂10

Table 2.8: An illustration of how we learn to predict X9.

described by a homogeneous marked Poisson point process, then these numbers
of reported claims are in line with the classical chain-ladder method. This is
discussed in more detail in Section 6.1 in Verrall and Wüthrich [2016]. The
corresponding predictions for Ni,d are then easily obtained using the chain-ladder
method.

If, in addition to Assumption 1, we assume that the payments(︂
X

(v)
i,d | 0, X

(v)
i,d | 1, . . . , X

(v)
i,d | L−d

)︂
are independent of Ft for i + d > t, then we can predict the quantity

lX̂
IBNR

i ,

which represents the prediction of the sum of all payments (i, d, k, v), such that
d + k = l and i + d + k = i + l > I for claims (i, d, v), such that i + d > I with

0 1 2 3 4 5 6 7 8 9
1 0X1 1X1 2X1 3X1 4X1 5X1 6X1 7X1 8X1 9X1

2 0X2 1X2 2X2 3X2 4X2 5X2 6X2 7X2 8X2 9X̂2

3 0X3 1X3 2X3 3X3 4X3 5X3 6X3 7X3 8X̂3 9X̂3

4 0X4 1X4 2X4 3X4 4X4 5X4 6X4 7X̂4 8X̂4 9X̂4

5 0X5 1X5 2X5 3X5 4X5 5X5 6X̂5 7X̂5 8X̂5 9X̂5

6 0X6 1X6 2X6 3X6 4X6 5X̂6 6X̂6 7X̂6 8X̂6 9X̂6

7 0X7 1X7 2X7 3X7 4X̂7 5X̂7 6X̂7 7X̂7 8X̂7 9X̂7

8 0X8 1X8 2X8 3X̂8 4X̂8 5X̂8 6X̂8 7X̂8 8X̂8 9X̂8

9 0X9 1X9 2X̂9 3X̂9 4X̂9 5X̂9 6X̂9 7X̂9 8X̂9 9X̂9

10 0X10 1X̂10 2X̂10 3X̂10 4X̂10 5X̂10 6X̂10 7X̂10 8X̂10 9X̂10

Table 2.9: An illustration of prediction of X9.
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accident year i being paid in year i + l by the following formula:

lX̂
IBNR

i = N̂
(cCL)
i,l Ê[lX(1)

i ],

where N̂
(cCL)
i,l is the chain-ladder estimation of the cumulative number of claims

calculated from the reported claims. This represents the number of claims with
accident year i that have been reported up to the time i + d. The quantity

Ê[lX(1)
i ]

is the expected value of the payment (i, d, k, 1) such that d + k = l for a single
claim (i, d, v), such that i + d > I with accident year i.

Assuming homogeneity in the accident years i ∈ {1, 2, . . . , I} then for i ∈
{1, 2, . . . , I} it holds

Ê[lX(1)
i ] = Ê[lX(1)],

which is the expected value of a payment (i, d, k, v) such that d + k = l for a
single claim (i, d, v), such that i + d > I. This quantity is then easily estimated
via the average

1
I∑︁

i=1
N

(c)
i,l

I∑︂
i=1

lX̂ i,

where N
(c)
i,d =

d∑︁
j=1

Ni,j, i.e., it is the number of reported claims with accident year
i up to time i + d, i.e., the cumulative number of claims which represents how
many claims with accident year i have been reported so far.

Then it is easy to calculate for l > I

lX̂
IBNR =

min{l,I}∑︂
i=max{1,l−L}

l−iX̂
IBNR

i ,

and
X̂

IBNR =
2I−1∑︂

l=I+1
lX̂

IBNR
.

Overall, the quantity
lX̂

IBNR

i

represents the prediction of the sum of all payments (i, d, k, v), such that d+k = l
and i + d + k = i + l > I for claims (i, d, v), such that i + d > I with accident
year i, being paid in year i + l.

The quantity
lX̂

IBNR

represents the prediction of the sum of all payments (i, d, k, v), such that d+k = l,
and i + d + k = i + l > I for claims (i, d, v), such that i + d > I, being paid in
year l. Lastly, the quantity

X̂
IBNR

represents the prediction of the sum of payments (i, d, k, v), such that i+d+k > I
for claims (i, d, v), such that i + d > I.
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2.8 Numerical analysis

2.8.1 Our predictions
At the time t = I = 10 we have information about claims (i, d, v), such that
i + d ≤ 10 and about payments (i, d, k, v), such that i + d + k ≤ 10. This is
illustrated in Table 2.10, where in rows there are accident years i ∈ {1, 2, . . . , 10}.
And in columns there are development delays l ∈ {0, 1 . . . , 9}. Then the cell (i, l)
represents the sum of all payments with accident years i paid in year i + l. As we
mentioned before, our goal is to predict the payments lX̂ i such that i + l > 10,
i.e., those values in Table 2.10 that are in red.

0 1 2 3 4 5 6 7 8 9
1 0X1 1X1 2X1 3X1 4X1 5X1 6X1 7X1 8X1 9X1

2 0X2 1X2 2X2 3X2 4X2 5X2 6X2 7X2 8X2 9X̂2

3 0X3 1X3 2X3 3X3 4X3 5X3 6X3 7X3 8X̂3 9X̂3

4 0X4 1X4 2X4 3X4 4X4 5X4 6X4 7X̂4 8X̂4 9X̂4

5 0X5 1X5 2X5 3X5 4X5 5X5 6X̂5 7X̂5 8X̂5 9X̂5

6 0X6 1X6 2X6 3X6 4X6 5X̂6 6X̂6 7X̂6 8X̂6 9X̂6

7 0X7 1X7 2X7 3X7 4X̂7 5X̂7 6X̂7 7X̂7 8X̂7 9X̂7

8 0X8 1X8 2X8 3X̂8 4X̂8 5X̂8 6X̂8 7X̂8 8X̂8 9X̂8

9 0X9 1X9 2X̂9 3X̂9 4X̂9 5X̂9 6X̂9 7X̂9 8X̂9 9X̂9

10 0X10 1X̂10 2X̂10 3X̂10 4X̂10 5X̂10 6X̂10 7X̂10 8X̂10 9X̂10

Table 2.10: An illustration of our run-off situation.

If we fill in the numerical values we generated, we get Table 2.11. The values
to be predicted are in the red cells, and they are labeled lX̂ i, where i indicates
the accident year and l indicates the payment l years after the accident year.

0 1 2 3 4 5 6 7 8 9
1 5106 18504 19393 10596 6231 3239 1798 685 174 58
2 4578 19141 18642 11188 5586 2833 1415 246 238 9X̂2

3 5162 19699 17175 10372 5766 2368 580 347 8X̂3 9X̂3

4 3801 16529 15064 7587 3827 2306 674 7X̂4 8X̂4 9X̂4

5 4117 15932 14432 8564 2932 2772 6X̂5 7X̂5 8X̂5 9X̂5

6 3703 16250 12681 8287 3935 5X̂6 6X̂6 7X̂6 8X̂6 9X̂6

7 3839 16012 13974 7116 4X̂7 5X̂7 6X̂7 7X̂7 8X̂7 9X̂7

8 4425 16565 14693 3X̂8 4X̂8 5X̂8 6X̂8 7X̂8 8X̂8 9X̂8

9 3994 16425 2X̂9 3X̂9 4X̂9 5X̂9 6X̂9 7X̂9 8X̂9 9X̂9

10 5067 1X̂10 2X̂10 3X̂10 4X̂10 5X̂10 6X̂10 7X̂10 8X̂10 9X̂10

Table 2.11: The run-off situation for generated data (in thousands).
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In Table 2.12, we see what the real payments looked like. (We know these
data as the data generator from Wang and Wüthrich [2022] also produces the
payments after the time I = 10.)

0 1 2 3 4 5 6 7 8 9
1 5106 18504 19393 10596 6231 3239 1798 685 174 58
2 4578 19141 18642 11188 5586 2833 115 246 238 122
3 5162 19699 17175 10372 5766 2368 580 347 292 −83
4 3801 16529 15064 7587 3827 2306 674 118 −51 74
5 4117 15932 14432 8564 2932 2772 801 364 115 −5
6 3703 16250 12681 8287 3935 1471 942 268 182 77
7 3839 16012 13974 7116 3557 1609 756 314 15 27
8 4425 16565 14693 8148 2889 1254 260 367 249 93
9 3994 16425 13685 7823 3353 1032 1444 308 43 214
10 5067 16197 15631 7531 3835 2485 1005 190 57 29

Table 2.12: The full table with real payments that we want to predict (in thou-
sands).

It is interesting that there are even some negative values. This indicates that
there was more money given back to the insurance company than paid for claims.
Table 2.13 presents the estimates of outstanding loss liabilities calculated using
the Chain-ladder method.

0 1 2 3 4 5 6 7 8 9
1 5106 18504 19393 10596 6231 3239 1798 685 174 58
2 4578 19141 18642 11188 5586 2833 1415 246 238 80
3 5162 19699 17175 10372 5766 2368 580 347 153 52
4 3801 16529 15064 7587 3827 2306 674 227 100 34
5 4117 15932 14432 8564 2932 2772 1152 388 172 58
6 3703 16250 12681 8287 3935 2185 908 306 135 45
7 3839 16012 13974 7116 3556 1975 821 277 122 41
8 4425 16565 14693 8406 4200 2332 969 327 144 48
9 3994 16425 14935 8544 4269 2371 985 332 147 49
10 5067 20289 18448 10554 5273 2929 1217 410 181 61

Table 2.13: The table generated by chain-ladder method (in thousands).

In Table 2.14, we present the estimates of outstanding loss liabilities calculated
using regression trees. The first striking observation is that for the development
delay l = 6, there are very high values in the table. This is probably caused by
overfitting, and it very much affects the reserves calculated. In Table 2.15 we can
see reserves calculated via the bagging method for 10000 bags. We can see that
the values look much more reasonable.
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2.8.2 The results
In this part of the thesis, we present the results we obtained. A lot of work is
behind this. However, it cannot be seen here, as it lies in the programming part
in R that we attach together with this thesis.
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Figure 2.4: The violin plot of next year’s reserves. The blue horizontal line
represents the value of real payments, the red line represents the estimate of
payments calculated via the regression trees, and the orange line represents the
estimate of payments calculated via the bagging method. The grey dashed lines
represent the 95% confidence interval, and the green dashed line represents the
99.5% quantile.

0 1 2 3 4 5 6 7 8 9
1 5106 18504 19393 10596 6231 3239 1798 685 174 58
2 4578 19141 18642 11188 5586 2833 1415 246 238 58
3 5162 19699 17175 10372 5766 2368 580 347 219 62
4 3801 16529 15064 7587 3827 2306 674 413 203 57
5 4117 15932 14432 8564 2932 2772 711 415 205 58
6 3703 16250 12681 8287 3935 2473 34090 381 188 53
7 3839 16012 13974 7116 4138 4064 25239 363 179 50
8 4425 16565 14693 8257 3220 6802 20507 350 173 49
9 3994 16425 12876 7026 3188 4973 17449 334 165 46
10 5067 17179 10978 6954 3250 1959 24070 348 172 48

Table 2.14: The table generated by optimal regression trees (in thousands).
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0 1 2 3 4 5 6 7 8 9
1 5106 18504 19393 10596 6231 3239 1798 685 174 58
2 4578 19141 18642 11188 5586 2833 1415 246 238 55
3 5162 19699 17175 10372 5766 2368 580 347 159 49
4 3801 16529 15064 7587 3827 2306 674 300 676 31
5 4117 15932 14432 8564 2932 2772 665 970 821 31
6 3703 16250 12681 8287 3935 2028 2991 1484 1018 26
7 3839 16012 13974 7116 3875 4412 3157 1617 1107 52
8 4425 16565 14693 7673 4324 5514 3132 1605 1116 72
9 3994 16425 13369 6394 3995 5024 2775 1272 981 74
10 5067 17485 11651 7033 3670 4475 2035 1055 832 65

Table 2.15: The table generated by bagging method (in thousands).
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Figure 2.5: The violin plot of next year’s payments for RBNS claims. The blue
line represents the value of actual payments. The grey dashed lines represent the
95% confidence interval while the green dashed line represents the 99.5% quantile.

More than the sum of payments for claims with accident years i paid in year
i + l, we are interested in two aggregated quantities: the sum of payments for
next year that was in our case denoted by 11X and the sum of all payments in
the future that can be calculated by the sum 11X + 12X + . . . + 19X and their
estimates denoted by 11X̂ and 11X̂ + 12X̂ + . . . + 19X̂. Thanks to the bagging
approach, we have empirical distribution for (not only) these quantities.
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Next year’s reserves

In Figure 2.4, we can see a violin plot of the next year’s payments together with
the actual value of next year’s payments, represented by the horizontal blue line.
The red line in the plot represents the next year’s payment estimation obtained
from the regression tree. The orange line represents the estimate of next year’s
payments received by the bagging method. The grey dashed lines represent the
95% confidence interval, and the green dashed line represents the 99.5% quantile.

We can clearly see that both the bagging method and the tree method over-
estimate the sum of the next year’s payments. For comparison, the chain ladder
method estimates the next payments even worse by more than 5 · 107, which is
so much that it would not fit into our plot.

We tried to diagnose the cause of this trouble. In Figure 2.5 presents the
estimates for next year’s RBNS claims and Figure 2.6 for next year’s IBNR claims.
We can see in the first figure that the bagging method underestimates the reserves
needed for the RBNS claim. While in the second figure, we do not even have the
blue line representing the real value for IBNR payments because it is less than
37 · 105, while the values obtained by the bagging method range around 62 · 105.
Thus, we can conclude that the problem with overestimating the next year’s
reserves is caused by the IBNR claims.

6200000
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6260000

Figure 2.6: The violin plot of next year’s payments for IBNR claims. The value
of real payments is not in the figure as it is too low. The grey dashed lines
represent the 95% confidence interval while the green dashed line represents the
99.5% quantile.
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Ultimate reserves

Figure 2.7 displays the violin plot of the sum of all future payments together
with the actual value of the sum of all future reserves represented by the blue
horizontal line. The green horizontal line represents the estimate from the chain
ladder method, and the orange line represents the estimate from the bagging
approach. We can again see that the bagging method overestimates the total sum
of payments. The chain ladder method performs slightly better. For comparison,
the tree model predicted values larger than 26 · 107, which is again out of the
graph’s scale.
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Figure 2.7: The violin plot of the total sum of payments. The blue horizontal line
represents the real value of payments, while the green line represents the value
of payments calculated via the chain ladder method. The red line represents the
estimate of payments calculated via the regression tree method, and the orange
line represents the estimate of reserves calculated via the bagging method. The
grey dashed lines represent the 95% confidence interval.

We again tried to diagnose the cause of this trouble. In Figure 2.8, we present
the estimates for reserves for RBNS claims, and in Figure 2.9 for IBNR claims.
We can see that both RBNS and IBNR estimates overestimate the actual values
of reserves. We can conclude that the RBNS claims cause the main trouble thanks
to the scale.

Table 2.16 displays some main features describing the distribution generated
by the bagging approach for both the payments in the next year and the sum of
all outstanding payments.

To conclude, both of our methods work pretty well for calculating next year’s
reserves. However, they overestimate the reserves. The tree method suffers from
overfitting while predicting the reserves for l = 6, and this makes the total reserves
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calculated by this method unreliable. While calculating the reserves for all the
upcoming years using the bagging method, we suffer from overestimating. After
summing the reserves for years 11, 12, . . . , 19, this results in the fact that the sum
of all outstanding reserves overestimates the ultimate reserves by quite a lot.

The Solvency Capital Requirement introduced in section 2.3 thus corresponds
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Figure 2.8: The violin plot of the ultimate reserves for RBNS claims. The blue
horizontal line represents the real value of payments, while the green line repre-
sents the value of payments calculated via the chain ladder method. The red line
represents the estimate of payments calculated via the regression tree method,
and the orange line represents the estimate of reserves calculated via the bagging
method. The grey dashed lines represent the 95% confidence interval.

next year’s ultimate
real: 44,391,068 99,086,299

mean: 45,609,930 131,146,228
sd: 70,9815 16,920,947

maximum: 48,386,506 232,476,955
99.5% quantile: 47,470,514 188,363,958
97.5% quantile: 47,038,289 171,620,400

75% quantile: 46,083,806 140,646,058
median: 45,599,231 127,951,440

25% quantile: 45,111,226 118,884,735
2.5% quantile: 44,275,804 106,433,734

minimum: 43,024,020 94,354,990

Table 2.16: Summary statistics for next year’s and ultimate payments calculated
using the bagging technique.
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Figure 2.9: The violin plot of the ultimate reserves for IBNR claims. The blue
horizontal line represents the real value of payments, while the green line repre-
sents the value of payments calculated via the chain ladder method. The red line
represents the estimate of payments calculated via the regression tree method
and the orange line represents the estimate of reserves calculated via the bagging
method. The grey dashed lines represent the 95% confidence interval.

to the 99.5% quantile of next year’s reserves and would therefore be estimated by
47, 470, 514. The amount of reserves needed for next year, according to the bag-
ging technique, is 45, 609, 930 while the actual required reserves were 44, 391, 068.
The amount of ultimate reserves calculated using the bagging technique is
131, 146, 228, while the actual reserves are 99, 086, 299.

We can see that both reserves are overestimated. However, the calculation
of next year’s reserves is much more precise. We can probably attribute this
massive overestimation in the second case to the fact that many predicted values
were used in further prediction, and thus the errors get magnified.
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Conclusion
In this thesis, we introduced classification and regression trees, and bagging.
Then we introduced the basic insurance reserving terminology. The main core of
the thesis is the application of classification and regression trees and bagging on
the reserving problem, i.e., the application of completely different mathematical
tools in a practical way on the claim-by-claim reserving problem.

In the theoretical part, we worked on the base of Breiman et al. [1993]. The
theory in this book was sometimes not as punctual as it should be. There are
several instances in the book when Breiman skipped formal mathematical formu-
lation. These are the instances we tried to put more mathematical formalism into
the theory. As our contribution, we could mention the formulation and proof of
two theorems regarding the Gini index and cross-entropy and the fact that they
fulfill the requirements for an impurity.

The practical part elaborates on the article Wüthrich [2018], and it extends it.
We followed Wütrich’s suggestions on possible extensions and generalizations in
the outline of the article. One of the possible generalizations is to model the claim
payment amounts, not only the existence of a claim payment. We did exactly
this. Further generalization of the article we did was to implement bootstrap
aggregating (bagging), which drastically reduces the variance of the estimates.
Moreover, we also introduced the calculations needed for SCR in Solvency II.

The computational part has a lot of work behind it that is not visible as it
is involved in the R code that we include with the thesis. Another of our contri-
butions was the theoretical derivation of different formulas needed for reserving.
Wütrich does not calculate the claim payments on the yearly level as the sum of
all payments in a given year. He only calculates the payments for claims with a
given accident year paid a given number of years later. However, for instance,
for the calculation of SCR, we need to know the outstanding reserves needed for
next year regardless of what accident year the claim is from. Thus we needed to
invent a new notation and related formulas in order to calculate these quantities.

Overall, the results calculated using the classification and regression trees and
bagging are both overestimating the reserves. However, for next year’s reserves,
the actual reserves are in the 95% confidence interval. We can conclude that we
managed to summarize the theory of classification and regression trees together
with bagging techniques and added some more mathematical formalism to it.
Then we applied this theory to simulated insurance data, and we were able to
produce both interval and point predictions about needed reserves.
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