
MASTER THESIS

Bc. Jakub Vondráček

Optimal Choice of Scenario Tree using
Reinforcement Learning

Department of Probability and Mathematical Statistics

Supervisor of the master thesis: doc. RNDr. Ing. Miloš Kopa, Ph.D.
Study programme: Probability, mathematical statistics

and econometrics
Study branch: MPSP

Prague 2023

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I am infinitely grateful to my supervisor doc. RNDr. Ing. Miloš Kopa, Ph.D. for
his expertise, patience and all the time and effort spent supervising my thesis and
for providing the necessary GAMS license.

I am also deeply indebted to my consultant RNDr. Karel Kozmı́k for many
great ideas, suggestions and always being ready to help whenever I needed guid-
ance.

I dedicate this thesis to my grandmother and my mother, as without them, I
would be nowhere near as far along in life as I am today. Thank you.

ii

Title: Optimal Choice of Scenario Tree using Reinforcement Learning

Author: Bc. Jakub Vondráček

Department: Department of Probability and Mathematical Statistics

Supervisor: doc. RNDr. Ing. Miloš Kopa, Ph.D., Department of Probability and
Mathematical Statistics

Abstract: This thesis deals with multistage stochastic programs and explores
the dependence of the obtained objective value on the chosen structure of the
scenario tree. In particular, the scenario trees are built using the moment match-
ing method, a multistage mean-CVaR model is formulated and a reinforcement
learning agent is trained on a set of historical financial data to choose the best
scenario tree structure for the mean-CVaR model. For this purpose, we imple-
mented a custom reinforcement learning environment. Further an inclusion of a
penalty term in the reward obtained by the agent is proposed to avoid scenario
trees that are too complex. The reinforcement learning agent is then evaluated
against an agent that chooses the scenario tree structure at random and outper-
forms the random agent. Further the structure of scenario trees chosen by the
reinforcement learning agent is analyzed.

Keywords: Stochastic optimization, Multistage problem, Reinforcement learning

iii

Contents

Introduction 3

1 Stochastic programming 4
1.1 Basic definitions . 4
1.2 Multistage stochastic programming 5

1.2.1 Notation and general idea 5
1.2.2 Nonanticipativity . 5
1.2.3 General multistage optimization problem formulation . . . 6
1.2.4 Linear programming formulation 7
1.2.5 Methods for generation of scenario trees 11
1.2.6 Curse of dimensionality . 13

2 Risk measures 15
2.1 Minimising CVaR using scenarios 18

2.1.1 CVaR formulation . 18
2.1.2 Mean-CVaR formulation 19

2.2 Minimising CVaR using scenarios in the multistage setting 20
2.2.1 End of horizon CVaR . 20

3 Reinforcement learning 22
3.1 Basic definitions . 22
3.2 Exploration vs exploitation . 25
3.3 Algorithm classes . 25

3.3.1 Model free vs. model based algorithms 25
3.3.2 Model free methods . 26
3.3.3 Trust region policy optimization 29
3.3.4 Proximal policy optimization 30

4 Optimal scenario tree selection 31
4.1 Methods . 31
4.2 Data . 31
4.3 Environment . 32

4.3.1 Tree Building Environment 33
4.3.2 Predictors . 34

4.4 Rewards . 35
4.4.1 Penalty . 35

4.5 Implementation . 36
4.5.1 Moment matching . 36
4.5.2 Mean-CVaR model . 37

1

4.5.3 Reinforcement agent . 37
4.6 Experimental results . 38

4.6.1 Exploratory analysis . 39
4.6.2 No penalty . 40
4.6.3 Penalty . 44

4.7 Computational difficulties . 48

Conclusion 49

Bibliography 50

Appendix 54
A.1 Definitions of asset sets . 54
A.2 Electronic attachment . 55

2

Introduction

Stochastic programming is a branch of mathematical optimization that allows to
account for uncertain parameters when solving mathematical programs, which
led to the widespread adoption of stochastic programming in fields such as fi-
nance, transportation, scheduling and telecommunications (Shapiro et al. [35],
Ruszczynski and Shapiro [31]).

This makes it a very powerful tool, which however comes at a significant
computational cost. Due to the fact that the random parameters may follow
a continuous distribution, approximating such distributions by a discrete set of
scenarios is necessary to even be able to formulate the model and also to be
able to solve it in finite time. Even more demanding are so called multistage
programs, which allow multiple decision periods. To be able to solve multistage
programs, the scenarios approximating the continuous distributions in every stage
are arranged in a scenario tree. The structure of this tree is very important for
the obtained solution, as a tree that is very simple may not approximate the
underlying distribution correctly, while a tree that is too complex suffers from
extensive computational costs.

This is the main idea of this thesis – to discover whether it is possible to
predict a scenario tree structure that is optimal with regard to the objective
function and also potentially with regard to the complexity of the scenario tree.
To solve this problem, we propose an experiment to train a reinforcement learning
agent (Sutton and Barto [38]) using the solutions of a mean-CVaR model (Salahi
et al. [32], Rockafellar and Uryasev [29], Rockafellar and Uryasev [30]) calculated
using scenario trees generated from historical financial data.

Chapters 1, 2 and 3 provide the necessary theory for Multistage stochastic
programming, the mean-CVaR model and Reinforcement learning respectively.
The mean CVaR model formulated in Section 2.2.1, while certainly not novel, is
of our own design. The main contribution of this thesis is Chapter 4, the pinnacle
of this thesis, where we implement the experiment described above and analyse
the results. To the best of our knowledge, such an experiment has not been
proposed in the literature. Also a notable contribution is the compilation and
standardization of notation for several machine learning algorithms in Chapter 3
from multiple different sources.

3

Chapter 1

Stochastic programming

In this chapter, we give an introduction to the theory of stochastic programming
with particular focus on multistage linear programs. Most of the content in this
chapter is based on the material covered in Ruszczynski and Shapiro [31, Chapter
1], Shapiro et al. [35, Chapters 1-3] and Dupačová et al. [9, Part 2] if not specified
otherwise.

1.1 Basic definitions
Definition 1.1.1. Mathematical program in Rn (Dupačová et al. [9, p. 107])
Let p, m, n ∈ N. A mathematical program in Rn is defined as

min{f(x), x ∈M},

where M ⊂ Rn and f : M → R. The function f is called the objective function
and the set M is called the set of feasible solutions. This set is usually defined by
constraints as follows:

M = {x ∈ Rn : hj(x) = 0, j = 1, . . . , p, gk(x) ≤ 0, k = 1, . . . , m},

where hj and gk are real functions.

If all functions in Definition 1.1.1 are linear, we call the problem a Linear
program. Furthermore, if any of the functions mentioned in Definition 1.1.1 de-
pend on parameters, we call the problem a Parametric program. If any of the
parameters are random variables, we call the problem a Stochastic program.

However, this definition of a Stochastic program is not well formulated. Con-
sider the Definition 1.1.1 and let Ω be a non-empty set, F be a σ-algebra on Ω,
ω ∈ Ω and P be a probability measure on (Ω,F), leading to a probability space
(Ω,F ,P). In the context of a Stochastic program, the function f does not de-
pend on x only, but also on the realisation of ω. This would lead to a nonsensical
definition, as for different realisations of ω, the optimal value may be different.
The standard way to handle this problem is to consider minimisation of expected
value of the function f :

min{E [f(x, ω)] , x ∈M},
where E is the expected value operator defined with respect to the probability
measure P .

4

1.2 Multistage stochastic programming
In the most basic form, the stochastic programming paradigm allows to make
an optimal decision with regard to the expectation only for one decision period.
This is a considerable limitation, which can be overcome by extending the notion
of a Stochastic program to a Multistage stochastic program.

1.2.1 Notation and general idea
This section is heavily inspired by Ruszczynski and Shapiro [31, Section 3.3.].
Following the notation established there, consider the following sequence of events

Observation ξ1

↓
Decision x1

↓
Observation ξ2

↓
Decision x2

↓
Observation ξ3

↓
...
↓

Observation ξT

↓
Decision xT ,

where T is the number of decision stages, x = (x1, . . . , xT) is called the decision
process (x1 is a non-random vector of variables), ξ = (ξ1, ξ2, . . . , ξT) is a stochastic
data process (ξ1 is assumed to be known before making the decision x1 and can
thus be considered deterministic). The decision process x represents the decisions
made at each stage (i.e. for a portfolio optimization problem, xt may be a random
vector of proportions of some assets in a portfolio in stage t) and ξt is a random
vector representing the data process in stage t (i.e. it may be a vector of yearly
asset returns). Furthermore, the probability distribution of ξ is assumed to be
known. Usually, one more observation from the stochastic data process, denoted
as ξT +1, is considered to happen after the last decision xT .

1.2.2 Nonanticipativity
Both processes x and ξ are random and thus depend on the realised ω ∈ Ω. In
order for the program to be well defined, the decision process x must not take
into account future observations of either ξ or decisions x, but only the past and
present. This is formalised by the so called nonanticipativity constraints, which
assure that the xt at time t may depend only on (x1, . . . , xt−1) and (ξ1, ..., ξt).

5

Definition 1.2.1. Nonanticipativity constraints (Ruszczynski and Shapiro [31,
Ch. 1, Section 3.3., P. 35])
The decision process x is termed nonanticipative if

xt = E [xt|ξ1, . . . , ξt] , t = 1, . . . , T,

or equivalently, if Ft is the σ-algebra generated by (ξ1, . . . , ξt), then xt must be
measurable with respect to Ft, where F1 ⊂ F2 ⊂ · · · ⊂ FT ⊂ F .

This is in contrast to general deterministic (multiperiod) programs, where all
data are taken into account. Of course, this definition is not very practical from an
implementation standpoint. We provide explicit formulation of nonanticipavity
constraints in Section 2.2.1.

1.2.3 General multistage optimization problem
formulation

Considering the single period optimization in each stage recursively (in the reverse
order, i.e. from the last stage to the first stage) leads to the following nested
problem formulation, see Definition 1.2.2. This formulation is very similar to
problems found in dynamic programming.

Definition 1.2.2. Multistage nested problem formulation (Shapiro et al. [35,
Section 3.1.1.])
Let ξ = (ξ1, . . . , ξT) be the data process as defined in the previous sections,
x = (x1, . . . , xt) the decision vector, nt, dt ∈ N be the dimensions of xt and
ξt respectively, ft : Rnt × Rdt → R be continuous functions and Xt be the sets
of constraints at each stage t = 1, . . . , T . The general multistage optimization
problem is then formulated as follows:

min
x1∈X1

f1(x1) + E
[︃

inf
x2∈X2(x1,ξ2)

f2(x2, ξ2) + E
[︃
· · ·+ E

[︃
inf

xT ∈XT (xT −1,ξT)
fT (xT , ξT)

]︃]︃]︃
, (1.1)

where the multifunctions Xt(xt−1, ξt) are random, since they dependend on ξt and
xt−1, t = 2, . . . , T .

6

1.2.4 Linear programming formulation
If the functions ft and constraints defining the sets Xt, t = 1, . . . , T are linear in
Equation 1.1, then we say that the problem is a Multistage linear programming
problem, see Definition 1.2.3.

Definition 1.2.3. Multistage nested linear problem formulation (Ruszczynski
and Shapiro [31, Ch. 1, p. 25])
Considering the notation in Definition 1.2.2, let

f1 = cT
1 x1,

X1 = {x : A1,1x1 = b1, x ≥ 0},
ft = ct

T xt,
Xt = {x : At,t−1xt−1 + At,txt = bt , x ≥ 0},

t = 2, . . . , T , where At,t, At,t−1 are matrices and bt, ct are vectors of consistent
dimensions with xt and xt−1. Assuming that all infima are attained and all ex-
pectations exist, rewriting Equation 1.1, we obtain:

min
A1,1x1=b1

x1≥0

cT
1 x1 + E

⎡⎢⎣ min
A2,1x1+A2,2x2=b2

x2≥0

c2
T x2 + E

⎡⎢⎣· · · + E

⎡⎢⎣ min
AT,T −1xT −1+AT,T xT =bT

xT ≥0

cT
T xT

⎤⎥⎦
⎤⎥⎦
⎤⎥⎦ , (1.2)

where the quantities ct, At,t−1, At,t, bt are random, or according to notation estab-
lished earlier, ξt = (ct, At,t−1, At,t, bt), t = 2, . . . , T , while c1, A1,1, b1 are known
and deterministic.

If we view the decision process xt (at time t) as a function of the part of
the data process ξ known up to time t, i.e. xt = xt(ξ1, . . . , ξt), we can properly
rewrite the multistage linear programming problem (Equation 1.2) in the same
general form as other linear programming problems, see Definition 1.2.4.

Definition 1.2.4. Multistage linear problem formulation
(Ruszczynski and Shapiro [31, Ch. 1, p. 22])

min
x1≥0,x2,...,xT ≥0

E
[︁
cT

1 x1 + · · ·+ cT
T xT

]︁
(1.3)

s.t. A1,1x1 =b1

A2,1x1+A2,2x2 =b2

A3,2x2 + A3,3x3 =b3

...
AT,T −1xT −1 + AT,T xT =bT ,

xt ≥ 0, t = 1, . . . , T,

where the nonanticipativity constraints are included implicitly.

Remark. The decision process x is also called policy in the literature. Particularly
Ruszczynski and Shapiro [31, p. 95, Definition 29] define that x is called an
implementable policy if xt is a function of the part of the data process known up
to time t, i.e. (ξ1, . . . , ξt). Furthermore, if the implementable policy satisfies all
constraints, it is called a feasible policy.

7

All aforementioned stochastic programming problems contain random vari-
ables that may follow general distributions, which, in particular, may be continu-
ous. The literature suggests that while theoretically formulating such multistage
stochastic programs is possible, solving such programs is not feasible. Particularly
Pflug [27] mentions that this is “due to the fact that the decisions are functions,
making the problem a functional optimization problem, which cannot be numer-
ically solved as it is”. To get around this problem, the continuous distributions
can be approximated using discrete distributions. We need to keep in mind that
the resulting formulation is only approximate and solving it thus provides an
estimate of the true objective value (and true decision variables).

Formulation using scenario trees

To obtain a solvable program, we must obtain a suitable approximation of the
underlying continuous distribution. This approximation may be a discrete distri-
bution with a finite number of atoms (scenarios) ξi, i = 1, . . . , S where S is the
number of scenarios. The scenarios are usually organised in tree form as shown
in Figures 1.1 and 1.2. The following description of scenario tree formulation is
heavily inspired by Dupačová et al. [8, Section 2].

Consider a multistage program with T stages. In each of these stages, we need
to find a discretization of the underlying distribution, particularly the marginal
distribution in the first stage and the conditional distributions in the following
stages. The number of atoms in each of these stages need not be the same. If the
number of children is the same for each node in a given stage and this property
holds for all stages, the scenario tree is termed balanced, see Figure 1.1.

1

11 12

p=2/3p=1/3

111 112 122 123

p=1/6 p=2/6 p=2/6 p=3/6

113

p=3/6

121

p=1/6

t=1

t=2

t=3

Figure 1.1: Balanced scenario tree.

8

1

11 12

p=1/2p=1/2

111 112 122 123

p=1/4 p=3/4 p=1/2 p=1/4

121

p=1/4

t=1

t=2

t=3

Figure 1.2: Unbalanced scenario tree.

Define scenario at stage t as ξ[:t] = (ξ1, . . . , ξt). Let St(ξ[:t−1]) be the finite
support of the conditional probability distribution of ξt, t = 3, . . . , T and denote
S2(ξ1) the finite support of the marginal probability distribution of ξ2. Naturally,
we only want to consider scenarios in the set

S = {ξ|ξt ∈ St(ξ[:t−1]), t = 2, . . . , T}.

Let us now define the probabilities associated with each scenario. Let P (ξi
[:T]) be

the probability of scenario i at the very last stage, i.e.

P (ξi
[:T]) = pi = P (ξi

2)
T∏︂

t=3
P (ξi

t|ξ[:t−1]), i = 1, . . . , S, (1.4)

where S (which earlier represented the number of scenarios of a given distribution)
now represents the number of scenarios in the very last stage, i.e. the number
of leaves of the scenario tree), P (ξi

2) is the unconditional marginal probability on
S2 in the first stage and P (ξi

t|ξ[:t−1]) are the conditional probabilities on St(ξ[:t−1])
in the following stages of scenario i. The probabilities P (ξi

2) and P (ξi
t|ξ[:t−1]) are

termed arc probabilities and their products

P (ξi
[:t]) = P (ξi

2)
t∏︂

τ=3
P (ξi

τ |ξ[:τ−1]), i = 1, . . . , S, t = 3, . . . , T, (1.5)

are called path probabilities. Obviously, the path probability of scenario i at time
T coincides with pi.

We define two special cases of a scenario tree:

1. Interstage independent tree

• If P (ξi
t|ξ[:t−1]) = P (ξi

t) (the conditional probabilities are equal to the
marginal probabilities), then the tree is termed interstage independent.

2. Fan of scenarios

• If S2(ξ1) and St(ξ[:t−1]), t = 3, . . . , T are singletons, the tree collapses
into a fan of scenarios, see Figure 1.4.

9

1

2 3

p=2/3p=1/3

4 5 8 9

p=1/6 p=2/6 p=2/6 p=3/6

6

p=3/6

7

p=1/6

t=1

t=2

t=3

Figure 1.3: Balanced scenario tree illustration for how sets Kt are constructed.

Having defined the necessary notation for the scenario tree structure, we can now
formulate a multistage linear program using a scenario tree. Let Kt, t = 1, . . . , T
be disjoint sets of indices enumerating nodes in each stage of the scenario tree.
This is best illustrated using Figure 1.3, where K1 = {1}, K2 = {2, 3} and
K3 = {4, 5, 6, 7, 8, 9}. This leads to Definition 1.2.5.

Definition 1.2.5. Arborescent form of a scenario based linear program
(Dupačová et al. [8, p. 3])

min cT
1 x1 +

K2∑︂
k2=2

pk2cT
k2

xk2 +
K3∑︂

k3=k2+1
pk3cT

k3
xk3 + · · ·+

KT∑︂
kT =kT −1+1

pkT
cT

kT
xkT

(1.6)

s.t. A1,1x1 = b1

Ak2,1x1+Ak2,k2xk2 = bk2 , k2 ∈ K2

Ak3,a(k3)xa(k3)+Ak3,k3xk3 = bk3 , k3 ∈ K3

...
AkT ,a(kT)xa(kT) + AkT ,kT

xkT
= bkT

, kT ∈ KT ,

xkt
≥ 0, kt ∈ Kt, t = 1, . . . , T,

where K1 = 1, Kt = {Kt−1 + 1, . . . , Kt}, t = 2, . . . , T , a(kt) denotes the predeces-
sor of kt and Kt, t = 1, . . . , T are disjoint sets of indices enumerating nodes in
stage t of the scenario tree.

In definition 1.2.5, the nonanticipativity constraints are again included implic-
itly. With the explicit inclusion of nonanticipativity constraints and by taking
the expectation over all scenarios, we arrive at a formulation that is more suitable
for practical use, see Definition 1.2.6. This is the formulation that we will use in
the rest of this text as basis for formulating and solving scenario based multistage
linear programs.

10

Definition 1.2.6. Scenario splitted form of a scenario based linear program (De-
fourny et al. [7])

min
S∑︂

i=1
pi

[︁
(cT

1)xi
1 + (ci

2)T xi
2 + · · ·+ (ci

T)T xi
T

]︁
s.t. A1,1xi

1 = b1

Ai
2,1xi

1+Ai
2,2xi

2 = bi
2

Ai
3,2xi

2+Ai
3,3xi

3 = bi
3

...
Ai

T,T −1xi
T −1 + Ai

T,T xi
T = bi

T ,

i = 1, . . . , S

xi
t ≥ 0, i = 1, . . . , S, t = 1, . . . , T,

xj
t = xk

t , if ξj
[:t] = ξk

[:t] j, k ∈ {1, . . . , S}, t = 1, . . . , T, (1.7)

where pi is the probability of scenario i as defined in Equation 1.4, xi
t, Ai

t,t−1, Ai
t,t, bi

t

are respectively the decision variables, matrices and vector of constraints in sce-
nario i, t = 1, . . . , T . Equation 1.7 represents the nonanticipativity constraints
and obviously, the nonanticipativity constraints hold for t = 1, since ξ1 is deter-
ministic and common to all scenarios.

1.2.5 Methods for generation of scenario trees
There is a plethora of literature on the methods for scenario tree generation. In
this section, we aim to present a summary of the basic methods, of which only
the moment matching method is relevant for the purposes of this text in later
chapters (due to reasons explained in Section 4.7) and is therefore treated in much
more detail.

Prior to generating a scenario tree, we need to decide the structure of the
tree, particularly the number of stages and the branching structure of the tree
(i.e. how many descendants should each node have). This is in general not an
easy task, which we will come back to in Section 1.2.6.

Moment matching

Høyland and Wallace [15] presented a novel method of generating a scenario
tree from historical data that matches some statistical properties of the data,
particularly by minimising the distance between moments and correlations cal-
culated from historical data and the moments and correlations calculated from
the scenario tree. They formulated a nonlinear optimization program to solve
this task. In practical use, this method can be very time demanding and this
led to development of a heuristic method for generating scenario trees using mo-
ment matching in Høyland et al. [16]. Calfa et al. [5] further improved on top of
the non-heuristic method and proposed a way to also include empirical cumula-
tive distribution function matching in the program. We will follow the notation
established in Calfa et al. [5] and describe the optimization program used for gen-
erating a simple one stage scenario tree that consists only of a root and N child
nodes using the moment matching method (without the cumulative distribution
function matching).

11

Remark. For the purposes of this thesis, we can restrict the theory only to this
simple case, as we will be working with stagewise independent balanced scenario
trees and thus use the moment matching method sequentially in each stage. Fur-
ther details on how the moment matching method is used are described in Sec-
tion 4.5.1. For the more complex case, where the whole tree is generated at
once (which is in principle the same as presented here, only with more complex
notation), see Høyland and Wallace [15].

Definition 1.2.7. Moment matching (Calfa et al. [5, p. 9])
Let the scenario tree consist of only one stage, i.e. a root and N children. Let I
be the set of assets, K be the number of moments to be matched,
M = {1, . . . , K}, Mi,k the k-th sample moment calculated from historical data of
i-th asset, Ci,i′ be the sample correlation calculated from historical data between
i-th and i′-th assets. Then the moment matching problem can be formulated as
follows:

min
pj ,xi,j ,

j∈{1,...,N},i∈I

∑︂
i∈I

∑︂
k∈M

(mi,k −Mi,k)2 +
∑︂

(i,i′)∈I,i<i′

(ci,i′ − Ci,i′)2

s.t.
N∑︂

j=1
pj = 1

mi,1 =
N∑︂

j=1
pjxi,j, i ∈ I

mi,k =
N∑︂

j=1
pj(xi,j −mi,1)k, i ∈ I, k > 1

ci,i′ =
N∑︂

j=1
(xi,j −mi,1)(xi′,j −mi′,1)pj, i, i′ ∈ I, i < i′

xL
i,j ≤ xi,j ≤ xU

i,j, i ∈ I, j = 1, . . . , N,

0 ≤ pj ≤ 1, j = 1, . . . , N,

where mi,k are the moments and ci,i′ are the correlations between asset i and i′

calculated from the tree, pj are the probabilities of each child and xL
i,j and xU

i,j are
the lower and upper bounds on the decision variable xi,j.

Simulation and reduction

For the sake of completeness of this text, another common approach to generate
a scenario tree is to use a parametric model for the underlying process, simulate
multiple trajectories of such process and then use a reduction procedure to obtain
a valid tree.

Many reduction methods can be considered, examples include clustering of
similar trajectories together, nodal and scenario extraction methods and distance
based methods, which find a smaller tree that is in some sense close to the original
(based on a given metric). For an exhaustive summary, we recommend Vitali et al.
[41].

To demonstrate the procedure, we give an overview of the clustering method.

12

Figure 1.4: Illustration of a clustering procedure applied to a fan of scenarios
which generates an unbalanced scenario tree. Image sourced from Heitsch and
Roemisch [13, Figure 5].

Clustering

After a sufficient number of paths generated from a parametric model are ob-
tained, we are faced with a fan of scenarios (see the top left illustration in Fig-
ure 1.4.). To obtain a valid scenario tree, we need to cluster similar paths together
in each stage while preserving the tree structure. This is done by applying a clus-
tering algorithm that partitions the given set of observations in the first stage
into several groups (and then applying the algorithm again on each group recur-
sively). An algorithm that may be useful for this task is the k-means algorithm,
originally developed in MacQueen [20]. A precise description of the process can
be found in Šutiene et al. [42, Section 3].

1.2.6 Curse of dimensionality
The curse of dimensionality is a phenomenon where increasing the complexity
(dimension) of a problem leads to much higher (often exponentially higher) com-
putational and memory demands, many times so large that the problem becomes
unsolvable. A particularly relevant example is dynamic programming, where all
states of a system are (usually recursively) explored to obtain the optimal solu-
tion. This means that increasing the dimensionality of the problem exponentially
increases the number of states, leading to an unsolvable problem.

The scenario tree approach to stochastic optimization suffers from the curse
of dimensionality as well, since the number of scenarios grows with the number of
decision stages and the number of descendants in each stage. Many methods have
been developed to reduce the number of scenarios (as explained in the previous
section). However, many of these methods take the already generated fan of
scenarios as input and return a tree with predefined branching structure. The

13

branching structure is usually chosen ad hoc or by an expert opinion. This may
not be the optimal approach, as a different tree structure (different discretization
of the randomness) may yield better results in terms of the objective function.
Particularly choosing a tree with too many stages and many children in each
stage leads to a computationally intractable problem.

This is the main question we explore in this thesis – what is the dependence
of the objective function on the tree structure and can we find a scenario tree
structure that is optimal with regard to the objective function and potentially
also with regard to the size of the scenario tree?

14

Chapter 2

Risk measures

When investing, the investor has to make a decision whether to trade certainty
for potentially higher profit in the future. If he would invest in a risk free asset,
then some small positive return is guaranteed. Investing in a risky asset can yield
significantly higher returns, but of course, there is no free lunch. The potentially
higher returns are compensated for by the fact that the investor may incur loss.
To quantify the degree of riskiness of such assets, several risk measures have been
introduced over time. In the following, we will follow mainly Leippold [19] and
Cornuejols and Tütüncü [6, p. 275-278] if not specified otherwise.

Definition 2.0.1. Measure of risk
Let V be the set of real random variables. A risk measure ρ maps the random
variable to a real value, i.e. ρ : V → R.

Let R be a random variable representing returns of a portfolio. In the last
century, one of the most popular risk measures was the variance of returns of an
asset, used famously in the Nobel Prize winning model in Markowitz [21], where
a porfolio selection model was formulated that maximised the expected return
while minimising the variance in returns. To be precise, variance in returns is
defined as

E(R− ER)2.

Although at the time the achievement of the Markowitz model was groundbreak-
ing, the use of variance as a risk measure has been a subject of debate. The
problem is that variance is symmetric and does not take into account the tails of
the distribution of R. To handle the symmetry problem, another risk measure
was proposed, the semivariance defined as

E(max(L − EL, 0))2 = E(max(−R+ ER, 0))2,

where L = −R is the loss random variable.
Let us now introduce the notion of a coherent measure of risk, which was de-

veloped in Artzner et al. [1, Defintion 2.4.] and aims to provide a set of properties
that a “nice” risk measure should satistfy.

15

Definition 2.0.2. Coherent measure of risk
Let V be the set of real random variables. We say that a risk measure ρ : V → R
is coherent if it satisfies the following properties:

1. Monotony: X, Y ∈ V , X(ω) ≤ Y (ω)∀ω ∈ Ω =⇒ ρ(X) ≥ ρ(Y).

2. Subadditivity: X, Y, X + Y ∈ V =⇒ ρ(X + Y) ≤ ρ(X) + ρ(Y).

3. Positive homogeneity: X ∈ V , h ≥ 0, hX ∈ V =⇒ ρ(hX) = hρ(X).

4. Translation equivariance: X ∈ V , a ∈ R =⇒ ρ(X + a) = ρ(X)− a.

The properties have a quite nice interpretation. The monotony property im-
plies that a portfolio Y that is more favourable in all possible scenarios should
have smaller risk compared to the less favourable portfolio X. The subaddi-
tivity property pertains to the notion of diversification, as it says that if we
combine two portfolios X and Y , the resulting combined portfolio should not be
riskier than the portfolios separately. The positive homogenity property implies
that lowering/increasing the size of the portfolio by the factor h ≥ 0, the risk
lowers/increases proportionally to h. Last is the property of translation equiv-
ariance, which says that increasing the value of portfolio by risk free a, the risk
is decreased by a. Unfortunately, neither variance nor semivariance are coherent
risk measures.

Let us now introduce another risk measure, the value at risk. Using the
notation developed in Cornuejols and Tütüncü [6], let f(x, Υ) be a loss function
of a vector x which may be considered as a portfolio and a random vector Υ
which represents the unknown returns or other random aspects influencing the
distribution of loss and denote the loss random variable L(x, Υ) = f(x, Υ). We
assume that the probability distribution of Υ is known and for simplicity that Υ
has a probability density p(y). The cumulative distribution function of L(x, Υ)
is then defined as

Ψ(x, υ) =
∫︂

f(x,y)≤υ
p(y) dy.

Definition 2.0.3. Value at risk (Cornuejols and Tütüncü [6, p. 275])
Let α be the chosen confidence level and let L(x, Υ) have the meaning of loss
distribution as defined above with the cumulative distribution function Ψ(x, υ).
Then the value at risk V aRα(x) is defined as

V aRα(x) = qα(x)

where qα(x) = min{υ ∈ R : Ψ(x, υ) ≥ α} is the lower α quantile of distribution
of L(x, Υ). α is usually chosen as 0.95 or 0.99.

Value at risk also comes with several advantages and disadvantages. While
it is simple to understand and globally accepted by regulators, it is not coherent
in general (the subadditivity requirement is not fulfilled), it doesn’t quantify the
losses exceeding V aRα(x) and it is not convex (this makes it hard to optimize a
portfolio with regard to value at risk).

Due to the aforementioned disadvantages of value at risk, another risk measure
was considered. Considering the expected loss exceeding the V aRα(x) level leads
to the notion of Conditional value at risk. For an illustration, see Figure 2.1.

16

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

Loss

Pr
ob

ab
ilit

y d
en

sit
y

5% probability

Figure 2.1: Illustration of V aR0.95 and CV aR0.95. The crosshatching indicates
that the indicated area under the curve represents 5% probability.

Definition 2.0.4. Conditional value at risk (Rockafellar and Uryasev [30, Defi-
nition 3])
Let α be the chosen confidence level and let L(x, Υ) have the meaning of loss
distribution as defined above and assume that E(|L(x, Υ)|) < ∞. Then the con-
ditional value at risk or expected shortfall CV aRα(x) is defined as

CV aRα(x) = EΨα [L(x, Υ)] , (2.1)

where

Ψα(x, υ) =
⎧⎨⎩0, υ < V aRα(x),

Ψ(x,υ)−α
1−α

, υ ≥ V aRα(x),

where EΨα refers to the fact that the expectation is calculated with regard to the
distribution function Ψα.

The definition of CVaR may seem a little convoluted. This is due to the
fact that the definition is generalised to handle both discrete and continuous
distributions. We will be using mainly the discrete case, which is why we present
the general version.

Compared to value at risk, conditional value at risk is a coherent risk measure
(for the proof, see McNeil et al. [23, Example 2.26.]), but since value at risk is
present in its definition, optimizing a portfolio with regard to conditional value at
risk according to this definition suffers from many of the same problems as opti-
mizing a portfolio with regard to value at risk. Therefore, a new method has been
developed in Rockafellar and Uryasev [29] that allows optimization of conditional
value at risk without computing value at risk using linear programming.

17

2.1 Minimising CVaR using scenarios
In this section, we closely follow the exposition provided in
Cornuejols and Tütüncü [6, p. 275-278]. Let

Fα(x, γ) = γ + 1
1− α

∫︂
f(x,y)≥γ

(f(x, y)− γ)p(y) dy, (2.2)

where γ ∈ R. The function Fα(x, γ) has three important properties:

Lemma 1. Properties of Fα(x, γ) (Cornuejols and Tütüncü [6, p. 276])
The following three properties hold for Fα(x, γ):

1. It is a convex function of γ.

2. V aRα(x) = argmin
γ

Fα(x, γ).

3. CV aRα(x) = min
γ

Fα(x, γ).

Proof. For the proof, see Rockafellar and Uryasev [29, Theorems 1 and 2] for the
continuous case or Rockafellar and Uryasev [30, Theorems 10, 14 and Corrolary
11] for the general case.

2.1.1 CVaR formulation
If we want to choose a portfolio x that minimises CV aRα(x), we can now do so
by minimising Fα(x, γ) over x ∈ X and γ ∈ R (where X is some set of portfo-
lios) thanks to the third property in Lemma 1. Of course, Equation 2.2 is not
particularly suitable for numerical computations. In practice, as was explained
in detail in Chapter 1, the distribution of Υ is approximated using scenarios γs

with associated probabilities ps, s = 1, . . . , S.
We can then calculate an approximation of Fα(x, γ) as

F̂ α(x, γ) = γ + 1
1− α

S∑︂
s=1

ps max(f(x, γs)− γ, 0). (2.3)

We have arrived at the optimization problem

min
x∈X ,γ

F̂ α(x, γ) = min
x∈X ,γ

γ + 1
1− α

S∑︂
s=1

ps max(f(x, γs)− γ, 0). (2.4)

A trick can be used to turn Equation 2.4 into a linear programming problem. If
we create new variables zs ≥ 0 such that zs ≥ f(x, γs)− γ, we can write:

min
x∈X ,zs≥0,γ

γ + 1
1− α

S∑︂
s=1

pszs, (2.5)

s.t. zs ≥ f(x, γs)− γ, s = 1, . . . , S, (2.6)

which is a linear programming problem.

18

2.1.2 Mean-CVaR formulation
In this section, we present a more precise formulation for practical use adopted
from Salahi et al. [32], particularly when we want to choose a portfolio that min-
imises the conditional value at risk and also allows for controlling the minimum
expected return or setting the degree of risk aversion.

Formulation with prescribed minimal expected return

Let x = (x1, . . . , xn) be a vector denoting the weights of each of n assets in
a portfolio and consider that µ = (µ1, . . . , µn) is a random vector representing
the returns of the assets. Consider S scenarios, each with probability ps and let
rs = (r1,s, . . . , rn,s) be the particular realisation of µ in scenario s and let r0 be the
minimal required expected return. For simplicity, we do not allow short selling
(condition xi ≥ 0, i = 1, . . . , n). Then we can write

min
xi≥0,zs≥0,γ

γ + 1
(1− α)

S∑︂
s=1

pszs, (2.7)

s.t. zs ≥ −
n∑︂

i=1
xiri,s − γ, s = 1, . . . , S,

n∑︂
i=1

xiRi
¯ ≥ r0, (2.8)

n∑︂
i=1

xi = 1,

where Ri
¯ = ∑︁S

s=1 psri,s, which is still a linear programming problem. Equation
2.8 assures the prescribed minimal expected return.

Formulation using risk aversion

Another equivalent formulation might be useful when the decision maker does
not require a prescribed minimal expected return explicitly, but rather wants to
set his risk aversion expectations. This can be achieved by introducing a risk
aversion parameter λ ≥ 0 and writing

min
xi≥0,zs≥0,γ

−
n∑︂

i=1
xiRi

¯ + λ

(︄
γ + 1

(1− α)

S∑︂
s=1

pszs

)︄
, (2.9)

s.t. zs ≥ −
n∑︂

i=1
xiri,s − γ, s = 1, . . . , S,

n∑︂
i=1

xi = 1.

19

2.2 Minimising CVaR using scenarios in the
multistage setting

In the multistage setting, the problem is a bit more complicated. Since the returns
now do not occur at one single time but rather it is a sequence of returns, the
notion of a risk measure must be extended accordingly. For the purposes of this
thesis, we focus on the end of horizon CV aR, for more advanced topics such as
Nested CV aR model or Sum of CV aR model, we refer the reader to the summary
in Kozmı́k [18, Section 1.4.].

2.2.1 End of horizon CVaR
Definition 2.2.1. End of horizon CV aR.
Consider Definition 2.0.4. If we consider the CV aR calculated from the last stage
(at the end of the investment horizon), we call it end of horizon CV aR.

The definition of end of horizon CV aR is very similar to the definition of
regular CV aR, with the small difference that the multistage formulation now
allows the decision maker to reallocate funds during the investment period (in
each stage).

End of horizon CVaR - scenario formulation

We now extend Formulations 2.7 and 2.9 to the multistage case. Consider we want
to optimise a portfolio consisting of n stocks over T stages, consider a scenario
tree with S leaves and denote sets S = {1, . . . , S} and I = {1, . . . , n}. The
problem 2.7 can then be reformulated as Equation 2.10 by introducing variables
wt,s which represent the wealth in scenario s at time t and tots which is the final
wealth in scenario s.

min γ + 1
(1− α)

S∑︂
s=1

pszs, (2.10)

s.t. zs ≥ −tots − γ, ∀s ∈ S,
S∑︂

s=1
pstots ≥ r0,

w1,s = 1,∀s ∈ S,

wt,s =
n∑︂

i=1
xi,t,s,∀s ∈ S,∀t ∈ {1, . . . , T − 1}, (2.11)

wt+1,s =
n∑︂

i=1
ri,t,sxi,t,s,∀s ∈ S,∀t ∈ {1, . . . , T − 1}, (2.12)

tots = wT,s,∀s ∈ S,

zs ≥ 0,∀s ∈ S,

xi,t,s ≥ 0,∀s ∈ S,∀i ∈ I,∀t ∈ {1, . . . , T − 1},
γ ∈ R,

+ nonanticipativity constraints,

20

The initial wealth w1,s is set to 1 and in each stage, the wealth increases by the
returns obtained in the previous stage (Equation 2.12) and is distributed again
(Equation 2.11, at the end of the investment horizon we do not need to distribute
the wealth into assets again). ri,t,s is the return obtained from stock i at stage
t in scenario s (we consider returns indexed by t to occur at the end of stage t
(after the portfolio allocations xi,t,s are set), so that Equation 2.12 makes sense).
The returns ri,t,s are calculated as

ri,t,s = pricei,t+1,s

pricei,t,s

,

where pricei,t,s is the price of asset i at the beginning of stage t in scenario s.
This justifies Equation 2.12.
Remark. The cautious reader would expect the equation for total scenario return
tots = wT,s to read tots = wT,s/w1,s. This would make the program nonlinear and
we overcome this problem by using the assumption w1,s = 1.
Remark. We do not include the nonanticipativity constraints in the above for-
mulation, since they must be specified explicitly according to the structure of
the scenario tree. To illustrate the explicit formulation of nonanticipativity con-
straints, consider Figure 1.1. In the context of the above problem, there are 6
scenarios (111, 112, 113, 121, 122, 123). For this illustration, let xt,s be the vector
of allocations to each asset at time t and in scenario s. The nonanticipativity
constraints then are:

xt1,111 = xt1,112 = xt1,113 = xt1,121 = xt1,122 = xt1,123

xt2,111 = xt2,112 = xt2,113, xt2,121 = xt2,122 = xt2,123.

Similarly, the problem 2.9 can then be reformulated as Equation 2.13:

min −
S∑︂

s=1
pstots + λ

(︄
γ + 1

(1− α)

S∑︂
s=1

pszs

)︄
, (2.13)

s.t. zs ≥ −tots − γ, ∀s ∈ S,

w1,s = 1,∀s ∈ S,

wt,s =
n∑︂

i=1
xi,t,s,∀s ∈ S,∀t ∈ {1, . . . , T − 1},

wt+1,s =
n∑︂

i=1
ri,t,sxi,t,s,∀s ∈ S,∀t ∈ {1, . . . , T − 1},

tots = wT,s,∀s ∈ S,

zs ≥ 0,∀s ∈ S,

xi,t,s ≥ 0,∀s ∈ S,∀i ∈ I, ∀t ∈ {1, . . . , T − 1},
γ ∈ R,

+ nonanticipativity constraints,

where λ ≥ 0 is a risk aversion parameter and the nonanticipativity constraints
would again need to be provided explicitly according to the structure of the
scenario tree.

21

Chapter 3

Reinforcement learning

Reinforcement learning is a machine learning paradigm inspired by the natural
learning process of humans – learning by interacting with an environment. All
actions we take in our daily lives are in some way punished or rewarded.

For an example, consider touching a hot stove. An immediate negative reward
(pain) is received and one learns quickly not to do it again. On the other hand,
eating something sweet usually produces a feeling of pleasure (positive reward)
and that makes us want to eat more sweets.

Reinforcement learning methods work in pretty much the same way: an agent
is placed in an artificial environment and based on the actions it takes, it re-
ceives rewards (positive or negative) and learns to perform the actions that yield
the most positive rewards. This is in constrast to the other machine learning
paradigms (supervised and unsupervised learning), where no environment exists
and the model is taught by minimising some kind of loss over a given dataset.

In the recent years, machine learning has seen a large surge in activity due
to rising computational power and this has not avoided the field of reinforce-
ment learning. Many large institutions and corporations have built teams that
specialise in reinforcement learning and have produced groundbreaking results in
many disciplines, ranging from beating the best player in the world in the game
of Go (see Silver et al. [37]), solving the protein folding problem (see Jumper
et al. [17]), beating some of the best teams in Dota 2 (see Berner et al. [3]) or
most recently, finding a faster matrix multiplication algorithm than current state
of the art (see Fawzi et al. [10]).

In this chapter, we aim to provide the necessary exposition of reinforcement
learning methods used in the computational part of this thesis. We mainly follow
Sutton and Barto [38].

3.1 Basic definitions
As we mentioned, the agent operates in an environment. The agent is aware of
the environment and based on the current state of the environment chooses an
action. The action is usually chosen as the action that maximises the expected
cumulative reward (this may not always be the case, as choosing a less optimal
action might be beneficial, we will touch on this in Section 3.2). After the agent
performs an action, the state of the environment changes and the agent receives
a reward. This happens in a sequence of discrete timesteps until a terminal state

22

Figure 3.1: Illustration of the agent environment interaction. Agent is in state
St and received reward Rt for the last chosen action At−1, then At is chosen by
the agent and new state St+1 and reward Rt+1 are obtained. Image sourced from
Sutton and Barto [38, Figure 3.1.].

of the environment is reached (i.e., if the last chosen action led to winning/losing
in the game of chess). One iteration of solving an environment from the initial to
the terminal state is called an episode. This is best illustrated by the chart that
can be found in almost all reinforcement learning books, see Figure 3.1.

We now introduce the notion of a Markov decision process, which is a formal-
isation of the agent environment interaction discussed above. The following is
heavily inspired by Sutton and Barto [38, Chapter 3]

Definition 3.1.1. Markov decision process (Zelinka [46, Definition 2.1.2.], Sutton
and Barto [38, Chapter 3])

A Markov decision process is a 5-tuple (S,A,P ,R, γ), where

1. S is the set of all possible states,

2. A is the set of all possible actions,

3. P(st+1|st, at) = P (St+1 = st+1|St = st, At = at) is the probability that
choosing action at in state st yields state st+1,

4. R(st, at) = Rt+1(St = st, At = at) is the reward received by choosing action
at in state st,

5. γ ∈ [0, 1) is the discount factor,

where St, At and Rt are random variables representing the state, action and
reward at timestep t. The name Markov decision process is not a coincidence and
is related to the Markovian property. Notice that the state transition probabilities
depend only on previous state and chosen action and not on the preceeding history
(Zelinka [46, p.15]). This means that the state must contain all information and
no information is carried by the previously visited states and taken actions. Of
course, this is a simplification and does not hold in real life (for example, the
history of moves can hold information about the strength of an opponent in the
game of chess), but it suffices to model even complex phenomena and allows for
precise mathematical treatment.

23

The agent chooses an action based on the current state to maximise the ex-
pected cumulative reward. A function that maps states to probabilities of actions
is termed policy, see Definition 3.1.2.
Definition 3.1.2. Policy (Sutton and Barto [38, Section 3.5])
Let s ∈ S and a ∈ A. Then the policy is defined as

π(a|s) = P (At = a|St = s).

Another fundamental concept is the value function, see Definition 3.1.3.
Definition 3.1.3. Value function (Sutton and Barto [38, Section 3.5])
Let π be a policy and s ∈ S. Then we define the value function vπ(s) as

vπ(s) = Eπ

[︄ ∞∑︂
k=0

γkRt+k+1|St = s

]︄
,

where the subscript π in Eπ refers to the fact that the agent acts according
to policy π. The value function assigns each state the expected cumulative dis-
counted reward – the reward that the agent may expect to gain from state st into
the future. The discount factor γ weights the future rewards by how far into the
future they may be attained.

Another related notion is the action value function, see Definition 3.1.4.
Definition 3.1.4. Action value function (Sutton and Barto [38, Section 3.5])
Let π be a policy and s ∈ S and a ∈ A. Then we define the action value function
qπ(s, a) as

qπ(s, a) = Eπ

[︄ ∞∑︂
k=0

γkRt+k+1|St = s, At = a

]︄
.

The action value function is much the same as value function, but it maps
the actions taken in a state to the expected cumulative discounted reward rather
than just states. The action value function allows the agent to not always take
the immediate most rewarding (greedy) action, but rather optimise the reward
while taking into account the possible following states and actions.

The value function and action value functions must be learned by exploring
the environment. Unfortunately, the plethora of theory about estimation of these
functions (e.g. using the Bellman equations) is out of scope of this thesis. We refer
the interested reader to Sutton and Barto [38, Section 3.5.] and the references
therein.

Another related notion, which builds on the definitions given above is the
advantage function, see Defintion 3.1.5.
Definition 3.1.5. Advantage function (Mnih et al. [25, Section 3])
Let π be a policy and s ∈ S and a ∈ A. Denote the value function as vπ(s) and
the action value function as qπ(s, a). Then we define the advantage function as

Aπ(s, a) = qπ(s, a)− vπ(s).

The advantage represents the gain that is obtained by taking action a in state
s compared to following policy π.

Our aim is to obtain a policy that maximises the expected cumulative dis-
counted reward. We thus define the optimal policy, optimal value function and
optimal action value function, see Definition 3.1.6.

24

Definition 3.1.6. Optimal policy, value function and action value function
(Sutton and Barto [38, Section 3.6])
Let R(π) be the expected cumulative discounted reward obtained by following policy
π. Then we define the optimal policy as

π∗ = argmax
π

R(π).

Similarly, the optimal value function and optimal action value function are given
by:

v∗(s) = max
π

vπ(s)

and
q∗(s, a) = max

π
qπ(s, a).

respectively for s ∈ S and a ∈ A.

3.2 Exploration vs exploitation
The optimal policy, value function and action value function must be learned
by interacting with the environment. The agent now faces a dillema – either
to maximise his known reward (act greedily, but potentially get stuck with a
policy that is not optimal) or explore the environment and update the policy in
order to get the (globally) optimal policy. This exploration-exploitation tradeoff
is always present with reinforcement learning and many approaches for dealing
with it exist. An example are the ϵ-greedy methods, where the agent acts greedily
(1− ϵ) % of the time and performs a random action ϵ % of the time. ϵ is usually
set to a value close to 1 at the beginning of training and decreased over time, the
final threshold at which ϵ is kept constant is usually somewhere in [0, 0.1]. For
more information, we refer the reader to Sutton and Barto [38, Section 2.7.].

3.3 Algorithm classes
In this section, we aim to present a basic summary of current reinforcement
learning methods with particular focus on policy-gradient methods.

3.3.1 Model free vs. model based algorithms
The most fundamental dividing line between reinforcement learning algorithms
is whether the agent is given a model of the environment which allows the agent
to take into account future states before they are experienced. The model is
represented by the state transition function P as defined in Definition 3.1.1.
Having the model in hand obviously helps the agent learn tremendously, but
having such a model in practice is quite rare, thus the model free methods are
being used much more extensively. We focus on model free algorithms in this
text.

25

3.3.2 Model free methods
In comparison to model based methods, the model free methods learn by trial
and error. Examples of these methods are e.g. Monte Carlo Sampling, SARSA,
Q-learning, Actor critic, Proximal policy optimization (PPO) and Trust region
policy optimization (TRPO). These methods can be divided into two groups –
value based methods and policy based methods. In this thesis, we focus par-
ticularly on the Proximal policy optimization method (as it will be used in the
computational part of this thesis for reasons explained later), but we also give
an introduction to Q learning, as it helps with understanding of how deep neural
networks are used in the field of reinforcement learning, the Actor critic archi-
tecture and the Trust region policy optimization. We assume that the reader is
familiar with basics of deep learning (such as architecture of neural networks and
basic algorithms for training them such as stochastic gradient descent), a great
introduction can be found in Goodfellow et al. [12, Part 2].

Value based methods

Q learning

In this section, we follow Sutton and Barto [38, Section 6.5.]. The most famous
example of a value based method is Q learning. Let q∗(s, a) denote the optimal
action value function as defined in Definition 3.1.6 and let Q(s, a) be an estimate
of q∗(s, a), s ∈ S, a ∈ A. If the sets S and A are finite, then the values of
Q(s, a) can be represented by a table and updated according to the updating rule
presented in Equation 3.1.

Q(st, at)← Q(st, at) + φ
[︃
rt+1 + γmax

a∈A
Q(st+1, a)−Q(st, at)

]︃
, (3.1)

where φ is the learning rate, γ is the discount factor, st, at are the current state
and current chosen action respectively, st+1 is the next state following action at,
rt+1 is the reward obtained by choosing action at and the subscript t is added to
emphasize the transition between current and next step. The whole algorithm
can be summarised as follows:

Algorithm 1 Vanilla Q-learning (Sutton and Barto [38, p. 131])
Input: Choose the learning rate φ ∈ (0, 1] and exploration parameter ϵ > 0, number of

episodes, initialise Q(s, a) randomly, s ∈ {s for s inS if s is not terminal} and Q(s, a) =
0 for s terminal, a ∈ A (terminal state of the environment means that the episode is
finished).
for episode in {1,...,number of episodes} do

st ← s0 Reset environment state
while st is not terminal do

at ← Choose action at using an epsilon-greedy policy according to Q(st, ·).
st+1, rt+1 ← act on action at, obtain new state st+1 and reward rt+1
Update Q(st, at) using Equation 3.1
st ← st+1

end while
end for

26

It has been shown that under the assumption that all state-action pairs con-
tinue to be updated during training, then Q converges to q∗ almost surely, see
Sutton and Barto [38, p. 131]. This variant of Q-learning has an obvious prob-
lem – it depends on a table for keeping the values of the Q function and thus
does not generalise to complex state spaces (such as infinite ones). To tackle this
problem, a neural network has been introduced in place of the Q(s, a) table as
a function approximator, which we can then write as Q(s, a; θ), where θ are the
weights of the neural network. This approach has been popularised by Mnih et al.
[24], where they used Q-learning along with a neural network as a function ap-
proximator (and many other particular improvements such as experience replay,
that are unfortunately out of the scope of this thesis) to achieve superhuman per-
formance on several Atari 2600 games. The reader interested in deep Q-learning
can find the algorithm in Mnih et al. [24, Algorithm 1].

Policy approximation methods

The theory of value based methods assumed that we estimate the value function
and action value function and then based on them somehow choose the policy
(such as taking the action with maximum value). However, another approach is
possible – modelling the policy explicitly. In this section, we mostly follow Sutton
and Barto [38, Chapter 13] and Schulman et al. [34, Section 2].

Policy approximation methods assume that the policy π(a|s; θ), a ∈ A, s ∈ S
is dependent on parameters θ ∈ Rd where d ∈ N. In general, the aim of these
methods is to maximise some kind of performance measure J(θ). The perfor-
mance measure J is chosen such that the gradient ∇θJ exists and by estimating
the gradient as ˆ︂∇θτ J(θτ), the policy can be optimised using stochastic gradient
ascent (where the subscript τ implies that this estimate is computed in the τ -th
update in the stochastic gradient ascent process). In practice, ˆ︂∇θτ J(θτ) is esti-
mated by averaging a batch of samples, we will denote this as Eb

ˆ︂∇θτ J(θτ) where
the symbol Eb refers to the average of a batch of samples. We can then write the
very general update rule

θτ+1 = θτ + φEb
ˆ︂∇θτ J(θτ),

where φ is the learning rate. Due to the aforementioned updating rule, these
methods are also often called policy gradient methods.
Remark. When using policy approximation methods, we do not need to randomly
sample actions ϵ% of the time to ensure exploration. All that is needed is to ensure
that the policy does not become deterministic. This can be achieved by ensuring
that π(a|s; θ) ∈ (0, 1), see Sutton and Barto [38, Section 13.1].

A significant theoretical advantage compared to value based methods is that
“with continuous policy parameterization the action probabilities change smoothly
as a function of the learned parameter, whereas in ϵ-greedy selection the action
probabilities may change dramatically for an arbitrarily small change in the esti-
mated action values, if that change results in a different action having the maximal
value. Largely because of this stronger convergence guarantees are available for
policy-gradient methods than for action-value methods” Sutton and Barto [38,
Section 13.2]. We refer the reader to the Policy gradient theorem located therein.

27

There exist also hybrid methods between policy gradient methods and value
based methods, where the policy, value function and action value function are all
learned – such methods are called actor critic methods.

Advantage actor critic

In this section, we present the theory behind the (asynchronous) advantage actor
critic (A3C) algorithm as developed in Mnih et al. [25], as it shows well the
structure of the neural net that is used in the PPO algorithm.

The advantage actor critic is a policy approximation algorithm that learns
not only the policy but also the action value function. Let us first decipher the
name of the algorithm. Advantage refers to the advantage function defined in
Definition 3.1.5, actor refers to the learned policy approximation and critic refers
to the learned action value function approximation (both the actor and the critic
are neural networks that are used as function approximators). In practice, the
actor and critic networks share some parameters (they can be thought of as a
single neural net with diverging structure, such as a first shared layer and then
diverging such that the second layer is not shared between the actor and the
critic).

Denote the weights of the actor as θ and weights of the critic as θv, thus the
estimated policy can be written as π(a|s; θ), a ∈ A, s ∈ S. The performance
measure J that A2C maximises can be written as

log(π(a|s; θ)) ˆ︁A(s, a; θ, θv),

and the gradient of the performance measure can be written as

Eb∇θ′ log(π(ab|sb; θ′)) ˆ︁A(sb, ab; θ, θv),

where the gradient is taken only with respect to the actor variables affecting the
policy (the advantage can be thought of as constant with regard to the differ-
entiation) and where we add the subscript b to ab and sb to indicate that they
belong to a batch of samples and where ˆ︁A(sb, ab; θ, θv) is the estimated advantage
function (for details on how it can be estimated, see Mnih et al. [25, Section 4]).
Note that this update only updates the policy and not the value function. A dif-
ferent updating scheme is used for the parameters of the critic, where a quadratic
error between the estimated value function and observed rewards is minimised,
the details can be found in the original paper Mnih et al. [25, Algorithm S3].

In the original paper, they made use of asynchronous updates to supposedly
improve training stability. It was later shown in the paper Wu et al. [43] that the
asynchronicity provides no added benefit in performance.

28

3.3.3 Trust region policy optimization
The trust region policy optimization method, developed in Schulman et al. [33], is
a special case of policy gradient methods, as it introduces a special constraint on
the policy parameters, such that the change in the policy is not too large at each
step. This is done by imposing the constraint that the Kullback-Leibler Diver-
gence between the two policies is not too large. The Kullback-Leibler Divergence
is defined in Definition 3.3.1.

Definition 3.3.1. Kullback-Leibler Divergence
Let P and Q be discrete random variables with the same support S. Let P (x) and
Q(x) denote the probability distribution functions of P and Q, x ∈ S. Then the
Kullback-Leibler Divergence, denoted DKL(P, Q) is calculated is

DKL(P, Q) = EP log(P

Q
) =

∑︂
x∈S

P (x) log(P (x)
Q(x)),

where the subscript P in EP denotes that the expectation is taken with respect to
the probability distribution of the random variable P .

DKL quantifies the difference between discrete probability distributions. More
details can be found in Shlens [36].

In practice, DKL(πA, πB) between two policies πA and πB is bounded from
above using some parameter δ. At each step, the optimization problem that is
being solved to update the policy is given in Equation 3.2.

max
θτ+1

Eb
π(ab, sb|θτ+1)
π(ab, sb|θτ)

ˆ︁A(ab, sb) (3.2)

s.t. EbDKL(π(·, sb|θτ), π(·, sb|θτ+1)) ≤ δ,

where θτ+1 are the new parameters of the policy after the update and ˆ︁A(ab, sb)
is an estimate of the advantage function, where again the subscript b is added
to imply that ab and sb belong to a batch of samples. The objective function
that is maximised here is a local approximation of a quantity that “represents
the expected return of another policy π(·, ·|θτ+1) in terms of the advantage over
π(·, ·|θτ)”, see Schulman et al. [33, Equation 1]. For details (such as how ˆ︁A(ab, sb)
is calculated1), see Schulman et al. [33, Section 2-4].

1which we do not show, as it would require developing needlessly complex notation and it
is not particularly relevant for our purposes

29

3.3.4 Proximal policy optimization
The Proximal policy optimization algorithm (PPO) was developed in Schulman
et al. [34] by combining a neural network used for estimation of action value
function and the policy approximation with the trust region idea (limiting the
magnitude of change in KL diveregence) used in TRPO, we follow their exposi-
tion. Consider Equation 3.3.

LCLIP (θ′
τ , θτ) = min(r(θ′

τ , θτ) ˆ︁A(a, s), clip(r(θ′
τ , θτ), 1− δ, 1 + δ) ˆ︁A(a, s))), (3.3)

where r(θ′
τ , θτ) = π(a,s|θ′

τ)
π(a,s|θτ) , δ is a hyperparameter and

clip(a, 1− δ, 1 + δ) = min(1 + δ, max(a, 1− δ)), a ∈ R.

The first term in Equation 3.3 is the same as in the objective function of the
TRPO method, see Equation 3.2. The second term in the minimum clips the
ratio r(θ′

τ , θτ), which has the effect of limiting the change of the policy so that
the change is not too large (controlled by δ). The minimum in Equation 3.3 is
then taken to get a lower bound on the same objective as used in TRPO.

LCLIP (θ′
τ , θτ) is then combined with a value function error term LV F (θ′

τ) and
potentially also an entropy term (which is omitted in this exposition), giving rise
to the following performance measure L as given in 3.4.

L(θ′
τ , θτ) = LCLIP (θ′

τ , θτ)− c1LV F (θ′
τ), (3.4)

where c1 is a hyperparameter and LV F (θ′
τ) = (vθ′

τ
(s) − vtarget)2, where vtarget is

the observed cumulative return of the state s obtained during training. This
performance measure is then maximised using stochastic gradient ascent (again,
the stochastic gradient ascent update is performed using Eb∇θ′

τ
L(θ′

τ , θτ), which
is the average over a batch of samples). Note that while the parameters θ′

τ are
shared for the policy approximation and the value function approximation vθ′

τ
, a

similar shared neural net architecture as was used in the actor critic framework
can be used here such that only some of the parameters are shared (such as a
common first layer). Particularly, A2C is a special case of PPO as was shown in
Huang et al. [14].

Empirically, PPO performs better than A2C and TRPO and is more sample
efficient (requires less timesteps to reach a given level of performance). Partic-
ularly, in a blogpost, OpenAI said that “it has become the default reinforcement
learning algorithm they use due to its ease of use and good performance”, see
OpenAI [26].

30

Chapter 4

Optimal scenario tree selection

In this chapter we propose an experiment to find out if it is possible to predict
the optimal scenario tree structure with regard to the objective function and
also propose a way to control for the complexity of the scenario tree using re-
inforcement learning. For this purpose, we implemented the moment matching
method for generation of scenario trees, the multistage mean-CVaR model and a
reinforcement learning agent.

4.1 Methods
The whole implementation was programmed in Python (Van Rossum and Drake
[39, Version 3.11]), mathematical optimization problems were implemented in
GAMS (GAMS Development Corporation [11, version 40.3.0]) using the Python
API. Data were sourced from Yahoo Finance [44] using the yfinance [45, ver-
sion 0.1.74] package. The reinforcement agent was implemented using the Sta-
ble baselines 3 package (Raffin et al. [28, version 1.6.2]) and the environment was
implemented using the gym package (Brockman et al. [4, version 0.21.0]).

4.2 Data
For our experiments, we used data obtained from Yahoo Finance [44] using the
yfinance [45, version 0.1.74] package. We downloaded historical weekly asset
price data from 1.1.2000 to 31.12.2019 for 49 financial stocks given in Table A.1.
We consider two indexing sets with regard to time, set train (from 1.1.2000 to
31.12.2009) and set test (from 1.1.2010 to 31.12.2019) and also consider two sets
of assets, set A (see Table A.2) and set B (see Table A.3). This yielded us four
distinct sets:

• (train, A), denoted TrA,

• (test, A), denoted TeA,

• (train, B), denoted TrB,

• (test, B). denoted TeB,

31

and we write the set that contains all these sets as κ = {TrA, TeA, TrB, TeB}.
We trained the agent on the set TrA and evaluate its performance on all four
sets, to evaluate whether the agent is able to:

1. learn something from the training data (performance on TrA),

2. generalise to unseen assets in the same period (performance on TrB),

3. generalise to the training assets in the future (performance on TeA),

4. generalise to unseen assets in the future (performance on TeB).

Remark. We are mainly interested in the performance of the agent on sets TrA
and potentially also TrB. If the agent was able to generalise across time, this
would be a breaktrough finding. Such generalisation is however unlikely due to
the possibility that the distribution of the data may be different in the test time
period.

We set the investment horizon to 2.5 years and from each set in κ, we needed to
obtain data for the moment matching method in such a way that the scenario trees
were constructed with the same investment horizon independent of the number of
stages. This was achieved by splitting the investment horizon into equisized parts
based on the number of stages of the tree. Particularly, for a scenario tree with
a given number of stages (denoted as T), we split the investment period into T
equisized periods (we denote the length of these periods as L), each corresponding
to the given stage.

We then used the whole available 10 years of data to estimate the distribution
of returns in a period of length L by splitting the 10 years of data into equisized
parts of length L, calculating simple returns (this yielded 4T observations), and
calculating the first four sample moments and correlations between each of the
assets. These moments and correlations were then used as input for the moment
matching method, where the obtained moments and correlations were used for
generating each stage of the scenario tree.
Remark. We considered only stagewise independent scenario trees. This is in
line with the data preparation we used above, as financial returns are generally
considered independent when taken over a period of time that is longer than a
few days. The shortest period we used is about 6 months (which corresponds to
an investment period of 2.5 years with 5 stages), which is much longer than a few
days.

4.3 Environment
For the purposes of training the reinforcement agent to choose the best scenario
tree structure, we adapted the well known GridWorld environment to represent
iterative stage by stage building of the scenario tree.
Remark. The GridWorld environment is a well known introductory environment
for training reinforcement learning agents. It consists of a n by n grid, n ∈ N,
where the agent starts on a given tile (a position on the grid, i.e. for example the
bottom left corner) and must reach a target tile and upon reaching the tile, it
receives a reward. The agent can perform 4 actions – move up, move down, move

32

left and move right. None of the tiles apart from the target tile return rewards.
An illustration of such an environment is given in Figure 4.1.

Target
tile

Initial

tile

Figure 4.1: Illustration of a 4 by 4 GridWorld environment. The agent starts at
the Initial tile and must reach the Target tile to receive a reward.

We designed and implemented a custom GridWorld environment, which we
call Tree Building Environment.

4.3.1 Tree Building Environment
Tree Building Environment is an adaptation of the GridWorld environment to
allow the agent to build scenario trees based on given predictors, which consist
of return data of the assets that are used to build the scenario tree. The state
is given as a 8 by 8 tree building grid (which starts filled with zeros only in the
initial state) and the set of 9 predictors.

At the beginning of each episode, between 7 and 10 assets are randomly chosen
(with uniform probabilities for the number of assets) from the provided data (a
set from κ) and the set of predictors is obtained at the beginning of each episode
using the return data for the chosen assets for the whole time period and is
constant throughout the episode.

Each row in the tree building grid represents a part of the tree building pro-
cess. The first row corresponds to the chosen number of stages in the tree. The
following rows each represent the chosen branching (number of descendants of
each node) in each stage, from the first to last.

In each state, the agent can take any action in the set {3, 4, 5, 6, 7}, which
we from now on refer to as action set. In the initial state, we allow the agent to
perform only actions {3, 4, 5} from the action set to choose the depth of tree and
upon performing any of these actions, 1 is placed at the corresponding position
in the first row. If the agent chooses action 6 or 7, it is forced to perform action
51.

1We do not allow the number of stages to be 6 or 7, as the tree is then considerably more
complex and building it based on historical data and solving the resulting mean-CVaR model
takes too much time for it to be practical for our experiments. The action 5 is forced for the
reinforcement algorithm to be able to associate action 6 and 7 with the move to a state where
action 5 was chosen.

33

1

1

1

1

1

0 1 2 3 4 5 6 7

Depth

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Tree building table Predictors

Alpha

Number of assets

Sample maximal return

Sample minimal return

Sample 0.75 quantile of returns

Sample 0.5 quantile of returns

Sample 0.25 quantile of returns

Sample mean return

Sample variance of returns

Figure 4.2: Tree Building Environment. State illustration when a 4 stage tree
is generated with 5 children in the first stage, 6 in the second stage, 5 in the
third stage and 4 in the fourth stage. Crosshatching represents invalid actions.
Predictors are represented as an empty array, in reality they are populated with
numerical data on the whole period returns, see Section 4.3.2.

In the following states, where the agent chooses the branching (the number
of descendants) in each stage, the agent can perform any action in the action set
and again upon performing each action, 1 is placed at the position of the chosen
action in the next row (if the action is valid, see below).

To obtain reasonable trees, we had to constrain the size of the tree the agent
can take (the maximum number of scenarios). We always require that the tree
must have at least 100 scenarios and at most 1200. In each state, we check if it is
possible to perform the chosen action such that a final tree that remains within
these limits is possible. If it is not possible, the action is considered invalid and
the agent is forced to take the maximum2 valid action (where valid action refers
to any action for which building a tree that stays in the given limits is possible).
In case the chosen action was invalid, 1 is placed at the position of the forced
maximum valid action.

When the agent has taken as many actions as the chosen depth of tree, the
episode ends, the mean-CVaR problem is solved using the given scenario tree
structure and the obtained reward is returned (see Section 4.4). An illustration
of the environment can be found in Figure 4.2.

4.3.2 Predictors
At the beginning of each episode, between 7 and 10 assets are randomly chosen
(with uniform probabilities for the number of assets) from the provided data and
simple returns are calculated for the whole time range. α is randomly chosen
with uniform probabilities from the set {0.8, 0.85, 0.9, 0.95} and the following
predictors are provided to the agent:

2we use the maximum valid action, rather than a random action, so that the agent is able
to associate that an invalid action results in taking a large branching in the given stage

34

1. α (parameter of mean-CVaR model),

2. Number of sampled assets,

3. Sample maximum return,

4. Sample minimum return,

5. Sample 0.75 quantile of returns,

6. Sample 0.5 quantile of returns,

7. Sample 0.25 quantile of returns,

8. Sample mean of returns,

9. Sample variance of returns.

The predictors are then constant throught the entire episode.

4.4 Rewards
A reward is returned after every action the agents takes, which is 0 for every action
in states that are not terminal and at the end of the episode, in the terminal state,
a reward is returned based on the solved mean-CVaR problem using the scenario
tree structure that is specified by the terminal state.
Remark. Note that the fact that the reward is sparse (reward 0 is returned when
not in a terminal state) is actually quite a common occurence in reinforcement
learning. Reinforcement learning is, after all, designed exactly to handle such
problems.

We need to specify the reward in such a way that a higher reward corresponds
to a more favourable value of the objective function. We need to consider that
the mean-CVaR model, as formulated in Equation 2.13, is formulated using the
distribution of loss. This means that obtaining a smaller objective value from
the mean-CVaR model is beneficial. Denoting the obtained objective value from
solving the problem in Equation 2.13 as ς, we have to write the reward given to
the agent as

rterminal = −ς(sterminal),
where we add the subscript terminal to emphasize that this reward is calculated
at the terminal state of the episode and that the reward depends on the terminal
state (which represents the scenario tree structure). The objective of the agent
is then to maximise rterminal.

4.4.1 Penalty
As was mentioned in Section 1.2.6, choosing a scenario tree that has too many
stages and too many descendants in each stage leads to a computationally in-
tractable problem. On the other hand, choosing a scenario tree that is too small
in terms of number of stages and with too few descendants in each stage may

35

lead to a very rough approximation of the underlying continuous distributions,
leading to results with high variability.

To ameliorate these problems, we propose to include a penalty term in the
reward rterminal which penalizes such scenario trees. Particularly, we propose that
the penalty be dependent on the number of scenarios in the tree in the last stage,
i.e. the number of leaves in the tree. It is not straightforward to represent the
complexity of a tree due to the multidimensional structure, but we consider that
using the number of leaves provides a good enough proxy for the complexity of
the scenario tree, while being simple to implement.

Denoting the number of leaves in the tree as Ψ and the penalization function
as δ(Ψ), we thus propose that the reward rterminal be penalized as follows

rterminal = −ς(sterminal)− δ(Ψ(sterminal)),

where the dependence of Ψ on sterminal stresses the fact that Ψ(sterminal) is cal-
culated from the scenario tree structure represented in sterminal.

To penalize the scenario tree that is too complex, we propose a linear penal-
ization δ1

δ1(Ψ) = c
Ψ−Ψmin

Ψmax −Ψmin

,

where c is a chosen coefficient (which must be chosen based on the magnitude of
values obtained as solutions from solving the mean-CVaR problem) and Ψmax and
Ψmin are the maximum and minimum allowed number of leaves in the scenario
tree respectively.

Of course, this is just one possible penalization function out of infinite possi-
bilities. The shape of the penalty function can be adjusted based on the problem
at hand (and the parameter c has to be adjusted as well).

In this section, we proposed only a penalization function that penalizes trees
that are too complex. It might make sense to penalise also trees that are too
simple, but we do not use such a penalisation in this thesis, as we already have
a lower bound set on the number of leaves in the tree in the environment (the
lower bound is 100 scenarios).

4.5 Implementation

4.5.1 Moment matching
We used the moment matching method in the form given in Definition 1.2.7
sequentially on each stage using the first four sample moments and correlations
which were estimated as explained in Section 4.2 with one small adjustment.

When looking at the generated scenarios for larger numbers of descendants, we
noticed that usually, only 3 scenarios with positive probabilities were generated
and the rest had almost zero probability. This would fundamentally change the
properties of scenario trees that we want to explore (dependence of objective
function on tree size), since then we might think we are using a large tree, which
in reality is much smaller due to the scenarios with zero probability.

To counteract this effect, we added the constraint pj ≥ 0.03 to the implemen-
tation of Definition 1.2.7, which solved the problem. With the notation developed

36

in Definition 1.2.7, the model now reads

min
pj ,xi,j ,

j∈{1,...,N},i∈I

∑︂
i∈I

∑︂
k∈M

(mi,k −Mi,k)2 +
∑︂

(i,i′)∈I,i<i′

(ci,i′ − Ci,i′)2

s.t.
N∑︂

j=1
pj = 1

mi,1 =
N∑︂

j=1
pjxi,j, i ∈ I

mi,k =
N∑︂

j=1
pj(xi,j −mi,1)k, i ∈ I, k > 1

ci,i′ =
N∑︂

j=1
(xi,j −mi,1)(xi′,j −mi′,1)pj, i, i′ ∈ I, i < i′

0 ≤ xi,j, i ∈ I, j = 1, . . . , N,

3
100 ≤ pj ≤ 1, j = 1, . . . , N.

This means that we are generating stagewise independent balanced scenario
trees, where the probabilities of each child node may vary, but are at least 0.03.
This may lead to the fact that we are not able to account for scenarios with
very small probability, which is a limitation, as financial data distributions are
generally heavy tailed. However, for the purposes of this thesis, this assumption
is not too restrictive.

4.5.2 Mean-CVaR model
The mean-CVaR model was implemented exactly as given in Equation 2.13 using
the scenario tree generated from the moment matching method, where we used
the risk aversion parameter λ = 0.3.

4.5.3 Reinforcement agent
We chose to use a tried and tested implementation of state of the art algorithms in
the Stable Baselines 3 library (Raffin et al. [28]). We experimented with multiple
architectures and algorithms implemented therein, particularly A2C and PPO,
while eventually settling on using PPO in the results given in Section 4.6. Here
we share our experience with training the reinforcement agent.

We first experimented with the algorithms using a toy environment (Tree
Building Environment with synthetic predictors and rewards) to obtain some
semblance of how long it takes to obtain a reward better than random guessing.
We experimented with several neural net architectures and found out that PPO
usually outperformed A2C (converged much faster) with the same neural net
architecture.

We also experimented with neural net architectures and found that even for
very simple tasks (such as learning a different action based on the value of a single
predictor p), a very nontrivial number of neurons in the hidden layers is required
for the model to be able to solve the environment. Particularly, for a deterministic

37

toy example where p was randomly sampled from the set {0.1, 0.2} and based on
the given p the best number of stages to take was 3 if p = 0.1 and 5 if p = 0.2,
the reinforcement agent didn’t learn anything within hudreds of thousands of
timesteps, unless we used an architecture with at least two hidden layers of 128
and 64 neurons respectively, where the second layer is separate for the actor and
the critic (which estimate the policy and the action value). Furthermore, we used
ReLu activations between each layer.

Due to the results obtained from the synthetic toy environment, we decided to
use a very similar architecture as given above, where the only change is that we
use 256 and 128 neurons in the hidden layers instead of 128 and 64, as the task
we are trying to solve is much more difficult and stochastic. Unfortunately, due
to the computational difficulties presented in Section 4.7, we couldn’t experiment
with multiple neural network architectures by doing hyperparameter optimization
on the number of neurons in each layer. The final neural net architecture that
we use is visualised in Figure 4.3.

With regard to the hyperparameters, we used the learning rate φ = 0.001,
discount factor γ = 1 (which is used for the calculation of ˆ︁A(a, s), see Schulman
et al. [34, Section 5]) so that the agent is not penalised for using trees with more
stages and performed 192 timesteps per update of the parameters of the neural
network. Otherwise, we used the default hyperparameters, particularly c1 = 0.5,
where c1 is the value function coefficient given in Equation 3.4).

Hidden layer
256 neurons

ReLu

Hidden layer
128 neurons

ReLu

Hidden layer
128 neurons

ReLu

Critic Actor

Inputs

Figure 4.3: Illustration of the neural network architecture used for training the
PPO agent.

4.6 Experimental results
In this section, we present the results from evaluating the reinforcement agent.
We trained two agents, one without any penalty term and the other with inclusion
of a penalty term to penalize the complexity of the scenario trees. Exploratory
analysis of scenario trees generated for fixed asset sets is given in Section 4.6.1,
while the results from training agents without penalty and with penalty are given
in Sections 4.6.2 and 4.6.3 respectively.

38

4.6.1 Exploratory analysis
We chose 3 asset sets from set TrA and generated 250 scenario trees for each asset
set by randomly choosing the number of stages and branching in each stage using
Tree Building Environment with fixed α = 0.9. The specification of which stocks
belong to which set can be found in Table A.4. Boxplots of the obtained rewards
can be seen in Figure 4.4. What is particularly interesting is that for a fixed set
of assets, there are stark differences between the obtained rewards based on the
chosen number of stages, while the variance between trees that have the same
number of stages is smaller3. Furthermore, the best number of stages for one set
of assets is not the best for all sets of assets. This is a particularly interesting
result, as it shows that choosing the largest number of stages is not always the
best approach with regard to obtaining the best value of the objective function.

3 4 5

1.85

1.9

1.95

2

3 4 5

2.4

2.5

2.6

2.7

2.8

3 4 5

1.9

2

2.1

Number of stages

Number of stages

Number of stages

Re
w

ar
d

Re
w

ar
d

Re
w

ar
d

Asset set 1 - train period

Asset set 2 - train period

Asset set 3 - train period

Figure 4.4: Boxplots of rewards obtained from 250 scenario trees, each for a fixed
asset set obtained from set TrA. Notice the large differences based on number of
stages, while the variance within stages is not that significant.

3we note that in the top graph of Figure 4.4, the variance for 3 stage trees is rather large

39

4.6.2 No penalty
The main aim in this and the following section is to compare the trained reinforce-
ment agent to an agent that chooses the tree structure at random, evaluate the
performance in contrast to the random agent and also investigate the structure
of scenario trees chosen by the reinforcement agent. For this purpose, we ran the
reinforcement agent and a random agent in the Tree Building Environment each
for 500 episodes4 for each of the sets in κ. We used the same random seed for
initialising the environment for the reinforcement agent and the random agent,
which means that both agents have been evaluated on the same samples from the
given set in κ.

Figures 4.5a and 4.5b show the training curves (mean reward and mean
episode length) over the last 100 episodes for the reinforcement agent with no
penalty. We trained the agent for only 100k timesteps due to computational con-
straints. Notice that in Figure 4.5a, after about 30k timesteps the agent reached
the maximum mean reward and didn’t improve much from there. On the other
hand, in Figure 4.5b, notice that at the start of training (within 20k timesteps)
the mean length of the episode dropped quite significantly, which means that the
agent started to use more 3 stage trees.

20k 40k 60k 80k 100k

2.1

2.15

2.2

2.25

2.3

2.35

Reinforcement agent - no penalty

Mean reward over last 100 episodes

timesteps

M
ea

n
re

w
ar

d
ov

er
 la

st
 1

00
 e

pi
so

de
s

(a) Reward training curve. Mean reward
over last 100 episodes.

20k 40k 60k 80k 100k

4.4

4.6

4.8

5

5.2

Reinforcement agent - no penalty

Mean episode length over last 100 episodes

timesteps

M
ea

n
ep

is
od

e
le

ng
th

 o
ve

r
la

st
 1

00
 e

pi
so

de
s

(b) Mean training episode length over last
100 episodes. The episode length equals
number of stages in the tree + 1, since
the agent has to choose also the number
of stages.

Figure 4.5: Training curves for reinforcement agent with no penalty. Timestep
corresponds to a single state (acting on a single action) of the environment. An
episode consists of multiple timesteps (particularly 4 for 3 stage trees, 5 for 4
stage trees and 6 for 5 stage trees).

4which means that the reinforcement agent and the random agent both generated exactly
500 trees

40

Dataset Reinforcement agent Random agent Relative improvement of Reinforcement
mean reward mean reward agent over Random agent

TrA 2.2214 2.1043 5.5647%
TrB 2.3350 1.8356 27.2063%
TeA 2.0346 2.0285 0.3007%
TeB 2.0573 2.0499 0.3609%

Table 4.1: Mean rewards of the reinforcement agent and random agent on every
set in κ evaluated over 500 scenario trees. Last column is the relative mean
performance of the reinforcement agent compared to the random agent, calculated
as e.g. 2.2214/2.1043 ≈ 1.055647→ 5.5647% in the first row (set TrA).

Table 4.1 shows the absolute performance (mean reward over 500 evaluation
episodes) of the reinforcement agent and the random agent and also shows the
relative performance (relative improvement in the mean reward) of the reinforce-
ment agent compared to the random agent. Notice, that the reinforcement agent
outperformed the random agent on datasets TrA and TrB. This shows that it
is possible to train an agent to choose a scenario tree structure that is better
than the random agent. Furthermore, notice that the outperformance is quite
significant on sets TrA and TrB, while we refrain from making any claims about
outperformance in the cases of TeA and TeB (at least we can say that the agent
performs about the same as random guessing and doesn’t underperform).

It is not surprising that the reinforcement agent has outperformed the random
agent on set TrA, since this is the set that it was trained on and it has seen the
distribution of the underlying data. On the other hand, the sizable outperfor-
mance on TrB is quite surprising, since it seems that the agent has learned a
policy that fit very well to the distribution of assets in TrB. Figure 4.6 shows
boxplots of the achieved rewards on set TrB.

The fact that the performance of the reinforcement agent is comparable to
the random agent on sets TeA and TeB can be explained by the fact that the
distribution of the underlying data has shifted. This is not surprising, as the sets
TrA and TrB contain data from the years 2000–2009, while the sets TeA and
TeB contain data for the period 2010–2019. As is well known, there were several
crises affecting the markets (and financial stocks in particular) in the 2000–2009
period, while the 2010–2019 period contained an unprecedented bull run. We
thus conclude that the agent we trained does not generalise into the future.

41

3 4 5
0

1

2

3

4

5
Random agent Reinforcement agent

Number of stages

Re
w

ar
d

Figure 4.6: Boxplots of achieved rewards by number of stages in the scenario tree
for reinforcement and random agent without penalty evaluated on TrB. Note
the reinforcement agent chose only 3 stage trees. This figure implies that the
reinforcement agent indeed chose the three stage trees correctly to maximise the
reward.

Structure of predicted scenario trees

In this section, we analyse the structure of the scenario trees chosen by the
reinforcement agent. We must be particularly careful here, as the construction
of the environment as given in Section 4.3.1 constrains the built trees in such a
way that forces a particular structure on the chosen branching in each successive
stage. Particularly, since we require that the tree must have at least 100 leaves
in the last stage, a 3 stage tree, where the first chosen branching was low (e.g. 3)
will be forced to take a large branching in the next stages to actually end up with
at least 100 scenarios at the end. The same holds for trees with 5 stages, where
the choice of a large branching in the first and second stages will lead to forcing
low branching in the last few stages to stay below 1200 scenarios.

We must thus interpret the results given here in comparison to the random
agent, which shows the mean branching (mean number of descendants) given the
constraints discussed above. Consider Figure 4.7. First thing to notice is that
the reinforcement agent chooses trees with 3 stages much more frequently than
trees with 5 stages and trees with 4 stages are chosen only very infrequently.

A peculiar thing is visible in the very bottom plot of Figure 4.7, which shows
the mean branching of 5 stage trees chosen by the reinforcement agent and the
random agent. It is immediately noticeable that the reinforcement agent has
a particularly strong propensity to choose a large branching in the first stage

42

and then choose a lower/higher branching alternatively in the successive stages.
We must stress that this interpretation is considered with regard to the mean
branching chosen by the random agent, as the generally decreasing manner is
caused by the constraints on the size of the trees as discussed above.

164 obs
164 obs 164 obs

360 obs
360 obs

360 obs

1 2 3

3
4
5
6
7

167 obs 167 obs 167 obs 167 obs

4 obs 4 obs 4 obs 4 obs

1 2 3 4

3
4
5
6
7

169 obs 169 obs

169 obs
169 obs

169 obs

136 obs

136 obs 136 obs

136 obs 136 obs

1 2 3 4 5

3
4
5
6
7

Random agent Reinforcement agent

Stage

Stage

Stage

M
ea

n
br

an
ch

in
g

M
ea

n
br

an
ch

in
g

M
ea

n
br

an
ch

in
g

3 Stages

4 Stages

5 Stages

Figure 4.7: Mean branching (mean number of descendants) in each stage by
number of stages on dataset TrA. Crosshatching indicates that the number of
observations is less than 10.

It is interesting that for the 3 stage trees, the structure is radically different.
The agent chooses a smaller branching in the first two stages and then a larger
branching in the last stage. We refrain from interpreting the branching of 4 stage
trees due to the low number of observations.

In practice, the trees are usually built with as many stages as possible and
with as large branching as possible in the first stage, which then decreases in the
successive stages. This however is in disagreement with our results. First of all,
we have shown in Figure 4.4 that choosing the largest number of stages is not
always the best option. Furthermore, while the agent used a similar structure
(large initial branching) as the structure that is used in practice for the 5 stage
scenario trees, for the 3 stage scenario trees, the structure was different. We
thus conclude that there is room for improvement in the way that the structure
of scenario trees is usually chosen in practice and using a model to choose the
structure is preferable for the purpose of maximising the objective value.

43

4.6.3 Penalty
In this section, we show the results from training the reinforcement agent with
a penalty based on the number of scenarios in the last stage of the tree (the
number of leaves). We trained three agents with the penalty coefficients c = 0.05,
c = 0.075 and c = 0.1 (see Section 4.4.1 for how the penalty is applied). The
training curves are given in Figures 4.8a and 4.8b.

20k 40k 60k 80k 100k

2.05

2.1

2.15

2.2

2.25

2.3

2.35

Reinforcement agent - penalty, c=0.05
Reinforcement agent - penalty, c=0.075
Reinforcement agent - penalty, c=0.1

Mean reward over last 100 episodes

timesteps

M
ea

n
re

w
ar

d
ov

er
 la

st
 1

00
 e

pi
so

de
s

(a) Reward training curve. Mean reward
over last 100 episodes.

20k 40k 60k 80k 100k

4

4.2

4.4

4.6

4.8

5

5.2

Reinforcement agent - penalty, c=0.05
Reinforcement agent - penalty, c=0.075
Reinforcement agent - penalty, c=0.1

Mean episode length over last 100 episodes

timesteps

M
ea

n
ep

is
od

e
le

ng
th

 o
ve

r
la

st
 1

00
 e

pi
so

de
s

(b) Mean training episode length over last
100 episodes. The length equals number of
stages in the tree + 1, since the agent has
to choose also the number of stages.

Figure 4.8: Training curves for reinforcement agents trained with penalty coeffi-
cients c = 0.05, c = 0.075 and c = 0.1. Timestep corresponds to a single state
(acting on a single action) of the environment. An episode consists of multiple
timesteps (particularly 4 for 3 stage trees, 5 for 4 stage trees and 6 for 5 stage
trees).

It is immediately noticeable that the penalty coefficient has a significant effect
on the mean training episode length (Figure 4.8b). A large penalty makes the
agent consider 3 stage trees almost exclusively (c = 0.1), while with c = 0.075
the mean episode length is still low but allows also for larger trees compared to
the c = 0.1 case. The mean episode length in the case c = 0.05 is then only a
little bit lower compared to the no penalty case presented in the previous section.
Note that in Figure 4.8a, the effect of the penalty on the achieved mean reward is
not particularly noticeable, as the lines are almost indistinguishable5. We further
discuss only the performance of agents trained with c = 0.05 and c = 0.075, as
the case c = 0.1 is rather degenerate and was included mainly for the purpose
of demonstrating that choosing a penalty coefficient that is too large leads to a
rather degenerate behaviour.

Tables 4.2 and 4.3 report the achieved performance of the two agents trained
with c = 0.05 and c = 0.075 respectively. Note that we report both the perfor-
mance achieved when no penalty is considered in the environment (labeled “No

5if we disregard the variance

44

penalty”) and the performance achieved when the penalty is taken into account
(labeled “Penalty”). Note that the reinforcement agents have been trained with
the penalty coefficient included, the “No penalty” case corresponds to the agents
trained with a given penalty being evaluated in an environment where no penalty
is considered so that the results are comparable with Table 4.1.

No penalty Penalty c = 0.05
Set RFA RA RFA/RA RFA RA RFA/RA
TrA 2.2227 2.1043 5.6266% 2.2105 2.0823 6.1567%
TrB 2.3171 1.8356 26.2312% 2.3160 1.8135 27.7089%
TeA 2.0580 2.0285 1.4543% 2.0229 2.0064 0.8224%
TeB 2.0880 2.0499 1.8586% 2.0502 2.0453 0.2396%

Table 4.2: Results of evaluating reinforcement agent (RFA) trained with penalty
coefficient c = 0.05 on 500 scenario trees on each set in κ against the random
agent (RA). Two sets of results are given, No penalty – agent trained with penalty
included evaluated with penalty not included in the reward. Penalty – agent
trained with penalty included evaluated with penalty included in the reward. The
relative improvement of the reinforcement agent over the random agent RFA/RA
is reported similarly as in Table 4.1.

No penalty Penalty c = 0.075
Set RFA RA RFA/RA RFA RA RFA/RA
TrA 2.2101 2.1043 5.0278% 2.2034 2.0713 6.3776%
TrB 2.1476 1.8356 16.9971% 2.1390 1.8093 18.2225%
TeA 2.0549 2.0285 1.3015% 2.0166 1.9954 1.0624%
TeB 2.0860 2.0499 1.7610% 2.0473 2.0198 1.3615%

Table 4.3: Results of evaluating reinforcement agent (RFA) trained with penalty
coefficient c = 0.075 on 500 scenario trees on each set in κ against the random
agent (RA). Two sets of results are given, No penalty – agent trained with penalty
included evaluated with penalty not included in the reward. Penalty – agent
trained with penalty included evaluated with penalty included in the reward. The
relative improvement of the reinforcement agent over the random agent RFA/RA
is reported similarly as in Table 4.1.

The results are quite similar as in Table 4.1. It is not surprising that the
relative improvement is larger on sets TrA and TrB for the case of evaluating
the agent with penalty compared to no penalty – the agent learns to use particular
tree structures to incur lower penalty, while the random agent does not take the
penalty into account. The fact that the same does not hold for sets TeA and TeB
can again be explained by distribution shift of the underlying data and therefore
choosing a particular tree structure might not lead to the same benefits as on sets
TrA and TrB.

45

Structure of predicted scenario trees

In this section we analyse the structure of the scenario trees chosen by the rein-
forcement agents trained with penalty coefficients c = 0.05 and c = 0.075. We
stress that the same care must be taken when interpreting the tree structure as
in the case with no penalty as explained in the previous section.

Consider Figure 4.9, which shows the mean branching in each stage on TrA
obtained by evaluation on 500 trees for reinforcement agent trained with c = 0.05.
Note that in comparison to Figure 4.7, the agent trained with penalty chose a
very similar number of 3 stage trees and 5 stage trees, while not using any 4 stage
trees. What is more interesting is the structure of the 5 stage trees – inclusion of
the penalty coefficient made the agent use exactly the scenario tree structure that
is usually used in practice – a large branching (a large number of descendants)
in the first and second stages and then a smaller branching (small number of
descendants) in the following stages.

164 obs
164 obs 164 obs

367 obs
367 obs

367 obs

1 2 3

3
4
5
6
7

167 obs 167 obs 167 obs 167 obs

1 2 3 4

3
4
5
6
7

169 obs 169 obs

169 obs
169 obs

169 obs

133 obs
133 obs

133 obs
133 obs 133 obs

1 2 3 4 5

3
4
5
6
7

Random agent Reinforcement agent

Stage

Stage

Stage

M
ea

n
br

an
ch

in
g

M
ea

n
br

an
ch

in
g

M
ea

n
br

an
ch

in
g

3 Stages

4 Stages

5 Stages

Figure 4.9: Mean branching (mean number of descendants) in each stage by
number of stages on dataset TrA for reinforcement agent trained with c = 0.05.

Figure 4.10 shows the mean branching in each stage on TrA for the reinforce-
ment agent trained with c = 0.075. Note that in comparison to Figure 4.9, the
agent chose 5 stage trees much less frequently and also the structure of the 5 stage
trees has shifted due to the larger penalty incurred for choosing larger trees. It is
interesting to note that the agent still chooses a very large branching in the first
stage for the 5 stage trees.

46

164 obs
164 obs 164 obs

459 obs

459 obs
459 obs

1 2 3

3
4
5
6
7

167 obs 167 obs 167 obs 167 obs

1 2 3 4

3
4
5
6
7

169 obs 169 obs

169 obs
169 obs

169 obs

41 obs

41 obs 41 obs

41 obs
41 obs

1 2 3 4 5

3
4
5
6
7

Random agent Reinforcement agent

Stage

Stage

Stage

M
ea

n
br

an
ch

in
g

M
ea

n
br

an
ch

in
g

M
ea

n
br

an
ch

in
g

3 Stages

4 Stages

5 Stages

Figure 4.10: Mean branching (mean number of descendants) in each stage by
number of stages on dataset TrA for reinforcement agent trained with c = 0.075.

47

4.7 Computational difficulties
The writing of this thesis has been plagued by computational difficulties from
the start and we wish to share our experience with implementing all parts of this
thesis here.

First of all, the moment matching method, which seems quite easy to imple-
ment, required a significant amount of experimentation and trying different op-
timization frameworks and solvers to actually obtain a working implementation.
We have tried several python packages with open source solvers (most notably
SciPy (Virtanen et al. [40]) , Mystic (McKerns et al. [22]) and Gekko (Beal et al.
[2]) and the IPOPT solver) and none of them produced a suitable result despite
correct implementation due to low strength of the open source solvers. We fi-
nally settled on using GAMS with the CONOPT solver which worked out quite
nicely. This however required us to connect our Python code to GAMS using the
GAMS Python API, which meant that we could not use a compute cluster due
to licensing limitations.

Since we already had the dependence on GAMS, we also implemented the
mean-CVaR model in GAMS using the CPLEX solver. While the implementation
itself in GAMS was not terribly difficult, bending all data in the correct way and
formulating the nonanticipativity constraints correctly took significant effort.

Lastly, the reinforcement learning part. This part was plagued by slow train-
ing and therefore a significant amount of time was spent on training the models,
since the dependence on GAMS didn’t allow training the reinforcement agent on
a compute cluster with hundreds of cores, but we were rather constrained to a
personal computer with 6 cores. This was a significant limitation, since training
reinforcement agents is usually very computationally intensive (e.g. the state of
the art models mentioned in the beginning of Chapter 3 were usually trained for
months on hundreds of machines). We must note that training each agent took
over a day of runtime on a personal computer.

48

Conclusion

In this thesis, we explored the dependence of multistage scenario models on the
chosen scenario tree structure.

We explored the dependence of the objective value on the scenario tree struc-
ture and we have shown that the structure of scenario trees that is usually used
in practice may not always be the best. We found out that there are significant
differences in the obtained rewards when using a different number of stages, while
the differences between different scenario trees with a fixed number of stages are
not that staggering.

Further we proposed an experiment to explore the dependence of the value
of the objective function of the mean-CVaR model on the structure of a scenario
tree that was built using the moment matching method from historical data
using reinforcement learning. Further, we trained several reinforcement agents
and evaluated their performance, finding that it is possible to train such an agent
to aid in the task of choosing a scenario tree structure and we have shown that
for 3 and 5 stage trees, the structure of the scenario trees chosen by the agent is
rather different compared to the structure usually used in practice. We further
explored the effect of including a penalty for choosing a scenario tree structure
that is too complex.

This thesis could be extended in several ways. Due to computational limi-
tations, we had to constrain ourselves only to a small set of trees. It would be
interesting to extend the experiment such that more stages and more branchings
are allowed. Moreover, other scenario tree building methods than moment match-
ing could be explored. It would be also very interesting to train the agent for a
lot longer than we did, as we cannot be sure that a significantly longer training
would not lead to better results. All of these extensions would however come at
a significant computational cost with the current implementation.

49

Bibliography

[1] P Artzner, Fy Delbaen, E Jean-Marc, and D Heath. Coherent measures of
risk. Mathematical Finance, 9:203 – 228, 07 1999. doi: 10.1111/1467-9965.
00068.

[2] L Beal, D Hill, R Martin, and J Hedengren. Gekko optimization suite.
Processes, 6(8):106, 2018. doi: 10.3390/pr6080106.

[3] C Berner, G Brockman, B Chan, V Cheung, P Debiak, C Dennison, D Farhi,
Q Fischer, S Hashme, C Hesse, R Józefowicz, S Gray, C Olsson, J W
Pachocki, M Petrov, H Pondé de Oliveira Pinto, J Raiman, T Salimans,
J Schlatter, J Schneider, S Sidor, I Sutskever, J Tang, F Wolski, and S Zhang.
Dota 2 with large scale deep reinforcement learning. ArXiv, abs/1912.06680,
2019.

[4] G Brockman, V Cheung, L Pettersson, J Schneider, J Schulman, J Tang, and
W Zaremba. Openai gym, 2016. URL https://github.com/openai/gym.

[5] B.A. Calfa, A. Agarwal, I.E. Grossmann, and J.M. Wassick. Data-
driven multi-stage scenario tree generation via statistical property and
distribution matching. Computers and Chemical Engineering, 68:7–23,
2014. ISSN 0098-1354. doi: https://doi.org/10.1016/j.compchemeng.2014.
04.012. URL https://www.sciencedirect.com/science/article/pii/
S009813541400129X.

[6] G Cornuejols and R Tütüncü. Optimization Methods in Finance. Cambridge
University Press, 2006. doi: 10.1017/CBO9780511753886.

[7] B Defourny, D Ernst, and L Wehenkel. Multistage stochastic program-
ming: A scenario tree based approach to planning under uncertainty.
LE, Sucar, EF, Morales, and J., Hoey (Eds.), Decision Theory Models
for Applications in Artificial Intelligence: Concepts and Solutions. Her-
shey, Pennsylvania, USA: Information Science Publishing, 01 2011. doi:
10.4018/978-1-60960-165-2.ch006.

[8] J Dupačová, G Consigli, and S Wallace. Scenarios for multistage stochastic
programs. Annals of Operations Research, 100:25–53, 12 2000. doi: 10.1023/
A%3A1019206915174.

[9] J Dupačová, J Hurt, and J Štěpán. Stochastic Modeling in Economics and
Finance. 01 2003. ISBN 1-4020-0840-6. doi: 10.1007/b101992.

50

https://github.com/openai/gym
https://www.sciencedirect.com/science/article/pii/S009813541400129X
https://www.sciencedirect.com/science/article/pii/S009813541400129X

[10] A Fawzi, M Balog, A Huang, T Hubert, B Romera-Paredes, M Barekatain,
A Novikov, F Ruiz, J Schrittwieser, G Swirszcz, D Silver, D Hassabis, and
P Kohli. Discovering faster matrix multiplication algorithms with reinforce-
ment learning. Nature, 610:47–53, 10 2022.

[11] GAMS Development Corporation. General Algebraic Model System
(GAMS), 2017. https://www.gams.com.

[12] I Goodfellow, Y Bengio, and A Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[13] H Heitsch and W Roemisch. Generation of multivariate scenario trees to
model stochasticity in power management. pages 1 – 7, 07 2005. doi: 10.
1109/PTC.2005.4524696.

[14] S Huang, A Kanervisto, A Raffin, W Wang, S Ontañón, and R F J Dossa.
A2c is a special case of ppo, 2022. URL https://arxiv.org/abs/2205.
09123.

[15] K Høyland and S Wallace. Generating scenario trees for multistage decision
problems. Management Science, 47:295–307, 02 2001. doi: 10.1287/mnsc.
47.2.295.9834.

[16] K Høyland, M Kaut, and S Wallace. A heuristic for moment-matching sce-
nario generation. Computational Optimization and Applications, 24:169–185,
02 2003. doi: 10.1023/A:1021853807313.

[17] J Jumper, R Evans, A Pritzel, T Green, M Figurnov, O Ronneberger, K Tun-
yasuvunakool, R Bates, A Ž́ıdek, A Potapenko, A Bridgland, C Meyer,
S Kohl, A Ballard, A Cowie, B Romera-Paredes, S Nikolov, R Jain, J Adler,
and D Hassabis. Highly accurate protein structure prediction with alphafold.
Nature, 596:1–11, 08 2021. doi: 10.1038/s41586-021-03819-2.

[18] V Kozmı́k. Multi-Stage Stochastic Programming with CVaR: Modeling, Al-
gorithms and Robustness. PhD thesis, Univerzita Karlova, Matematicko-
fyzikálńı fakulta, Katedra pravděpodobnosti a matematické statistiky, 2015.
URL https://dspace.cuni.cz/handle/20.500.11956/67018.

[19] M Leippold. Value-at-risk and other risk measures. SSRN Electronic Journal,
01 2015. doi: 10.2139/ssrn.2579256.

[20] J. B. MacQueen. Some methods for classification and analysis of multivariate
observations. In L. M. Le Cam and J. Neyman, editors, Proc. of the fifth
Berkeley Symposium on Mathematical Statistics and Probability, volume 1,
pages 281–297. University of California Press, 1967.

[21] H Markowitz. Portfolio selection*. The Journal of Finance, 7(1):77–91,
1952. doi: https://doi.org/10.1111/j.1540-6261.1952.tb01525.x. URL
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1540-6261.
1952.tb01525.x.

51

http://www.deeplearningbook.org
https://arxiv.org/abs/2205.09123
https://arxiv.org/abs/2205.09123
https://dspace.cuni.cz/handle/20.500.11956/67018
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1540-6261.1952.tb01525.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1540-6261.1952.tb01525.x

[22] M M McKerns, L Strand, T Sullivan, A Fang, and M A G Aivazis. Building
a framework for predictive science, 2012. URL https://arxiv.org/abs/
1202.1056.

[23] A.J. McNeil, R. Frey, and P. Embrechts. Quantitative Risk Management:
Concepts, Techniques and Tools - Revised Edition. Princeton Series in
Finance. Princeton University Press, 2015. ISBN 9780691166278. URL
https://books.google.cz/books?id=REQLogEACAAJ.

[24] V Mnih, K Kavukcuoglu, D Silver, A Graves, I Antonoglou, D Wierstra, and
M Riedmiller. Playing atari with deep reinforcement learning. 12 2013.

[25] V Mnih, A Badia, M Mirza, A Graves, T Lillicrap, T Harley, D Silver, and
K Kavukcuoglu. Asynchronous methods for deep reinforcement learning. 02
2016.

[26] OpenAI. https://openai.com/blog/openai-baselines-ppo/.

[27] G Pflug. Scenario tree generation for multiperiod financial optimization by
optimal discretization. Mathematical Programming, 89:251–271, 01 2001.
doi: 10.1007/PL00011398.

[28] A Raffin, A Hill, A Gleave, A Kanervisto, M Ernestus, and N Dormann.
Stable-baselines3: Reliable reinforcement learning implementations. Journal
of Machine Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/
papers/v22/20-1364.html. https://stable-baselines3.readthedocs.
io/.

[29] R T Rockafellar and S Uryasev. Optimization of conditional value-at risk.
Journal of Risk, 3:21–41, 2000.

[30] R T Rockafellar and S Uryasev. Conditional value-at-risk for general
loss distributions. Journal of Banking and Finance, 26(7):1443–1471,
2002. ISSN 0378-4266. doi: https://doi.org/10.1016/S0378-4266(02)
00271-6. URL https://www.sciencedirect.com/science/article/pii/
S0378426602002716.

[31] A Ruszczynski and A Shapiro. Stochastic programming (handbooks in oper-
ations research and management science). Elsevier, 2003.

[32] M Salahi, F Mehrdoust, and F Piri. Cvar robust mean-cvar portfolio opti-
mization. ISRN Applied Mathematics, 2013, 01 2013. doi: 10.1155/2013/
570950.

[33] J Schulman, S Levine, P Moritz, M I Jordan, and P Abbeel. Trust region
policy optimization, 2015. URL https://arxiv.org/abs/1502.05477.

[34] J Schulman, F Wolski, P Dhariwal, A Radford, and O Klimov. Proximal
policy optimization algorithms. CoRR, abs/1707.06347, 2017. URL http:
//arxiv.org/abs/1707.06347.

52

https://arxiv.org/abs/1202.1056
https://arxiv.org/abs/1202.1056
https://books.google.cz/books?id=REQLogEACAAJ
https://openai.com/blog/openai-baselines-ppo/
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
https://stable-baselines3.readthedocs.io/
https://stable-baselines3.readthedocs.io/
https://www.sciencedirect.com/science/article/pii/S0378426602002716
https://www.sciencedirect.com/science/article/pii/S0378426602002716
https://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347

[35] A Shapiro, D Dentcheva, and A Ruszczyński. Lectures on Stochastic Pro-
gramming. Society for Industrial and Applied Mathematics, 2009. doi:
10.1137/1.9780898718751. URL https://epubs.siam.org/doi/abs/10.
1137/1.9780898718751.

[36] J Shlens. Notes on kullback-leibler divergence and likelihood. CoRR,
abs/1404.2000, 2014. URL http://arxiv.org/abs/1404.2000.

[37] D Silver, A Huang, C J Maddison, A Guez, L Sifre, G van den Driessche,
J Schrittwieser, I Antonoglou, V Panneershelvam, M Lanctot, S Dieleman,
D Grewe, J Nham, N Kalchbrenner, I Sutskever, T Lillicrap, M Leach,
K Kavukcuoglu, T Graepel, and D Hassabis. Mastering the game of
go with deep neural networks and tree search. Nature, 529:484–503,
2016. URL http://www.nature.com/nature/journal/v529/n7587/full/
nature16961.html.

[38] R S Sutton and A G Barto. Reinforcement learning: An introduction. MIT
press, 2018.

[39] G Van Rossum and F L Drake. Python 3 Reference Manual. CreateSpace,
Scotts Valley, CA, 2009. ISBN 1441412697.

[40] P Virtanen, R Gommers, T E Oliphant, M Haberland, T Reddy, D Cour-
napeau, E Burovski, P Peterson, W Weckesser, J Bright, S J van der Walt,
M Brett, J Wilson, K J Millman, N Mayorov, A R J Nelson, E Jones, R Kern,
E Larson, C J Carey, İ Polat, Y Feng, E W Moore, J VanderPlas, D Lax-
alde, J Perktold, R Cimrman, I Henriksen, E A Quintero, C R Harris, A M
Archibald, A H Ribeiro, F Pedregosa, P van Mulbregt, and SciPy 1.0 Con-
tributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python. Nature Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

[41] S Vitali, M Horeǰsová, M Kopa, and V Moriggia. Evaluation of scenario
reduction algorithms with nested distance. Computational Management Sci-
ence, 06 2020. doi: 10.1007/s10287-020-00375-4.

[42] K Šutiene, D Makackas, and H Pranevičius. Multistage k-means clustering
for scenario tree construction. Informatica, 21(1):123–138, jan 2010. ISSN
0868-4952.

[43] Y Wu, E Mansimov, S Liao, R B Grosse, and J Ba. Scalable trust-region
method for deep reinforcement learning using kronecker-factored approxi-
mation. CoRR, abs/1708.05144, 2017. URL http://arxiv.org/abs/1708.
05144.

[44] Yahoo Finance. https://finance.yahoo.com.

[45] yfinance. https://github.com/ranaroussi/yfinance, 2022.

[46] M Zelinka. Using reinforcement learning to learn how to play text-based
games. Master’s thesis, Univerzita Karlova, Matematicko-fyzikálńı fakulta,
Katedra teoretické informatiky a matematické logiky, 2017. URL https:
//dspace.cuni.cz/handle/20.500.11956/90588.

53

https://epubs.siam.org/doi/abs/10.1137/1.9780898718751
https://epubs.siam.org/doi/abs/10.1137/1.9780898718751
http://arxiv.org/abs/1404.2000
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://arxiv.org/abs/1708.05144
http://arxiv.org/abs/1708.05144
https://finance.yahoo.com
https://github.com/ranaroussi/yfinance
https://dspace.cuni.cz/handle/20.500.11956/90588
https://dspace.cuni.cz/handle/20.500.11956/90588

Appendix

A.1 Definitions of asset sets

ACGL AFL AIG AJG ALL AON AXP
BAC BEN BK BLK BRO C CB
CINF CMA COF FDS FITB GL GS
HBAN HIG IVZ JPM KEY L LNC
MCO MMC MS MTB NTRS PGR PNC
RE RF RJF SCHW SIVB SPGI STT
TFC TROW TRV USB WFC WRB ZION

Table A.1: Stock tickers used in Chapter 4.

ALL BK ACGL FDS ZION TROW
STT RJF SPGI AON LNC USB
AXP AIG AJG BLK RE SIVB
NTRS CB WRB BRO L IVZ
BAC GS WFC MTB MMC BEN

Table A.2: Stock tickers in set A.

HBAN COF JPM AFL
PGR CMA RF TFC
CINF MCO MS C
HIG FITB TRV GL
SCHW PNC KEY

Table A.3: Stock tickers in set B.

Asset set 1 ALL BK ACGL FDS ZION TROW STT RJF SPGI AON
Asset set 2 LNC USB AXP AIG AJG BLK RE SIVB NTRS CB
Asset set 3 WRB BRO L IVZ BAC GS WFC MTB MMC BEN

Table A.4: Specification of which stock tickers belong to which asset set.

54

A.2 Electronic attachment
The Python source code used to obtain the results in Chapter 4 is included in
the electronic attachment.

55

	Introduction
	Stochastic programming
	Basic definitions
	Multistage stochastic programming
	Notation and general idea
	Nonanticipativity
	General multistage optimization problem formulation
	Linear programming formulation
	Methods for generation of scenario trees
	Curse of dimensionality

	Risk measures
	Minimising CVaR using scenarios
	CVaR formulation
	Mean-CVaR formulation

	Minimising CVaR using scenarios in the multistage setting
	End of horizon CVaR

	Reinforcement learning
	Basic definitions
	Exploration vs exploitation
	Algorithm classes
	Model free vs. model based algorithms
	Model free methods
	Trust region policy optimization
	Proximal policy optimization

	Optimal scenario tree selection
	Methods
	Data
	Environment
	Tree Building Environment
	Predictors

	Rewards
	Penalty

	Implementation
	Moment matching
	Mean-CVaR model
	Reinforcement agent

	Experimental results
	Exploratory analysis
	No penalty
	Penalty

	Computational difficulties

	Conclusion
	Bibliography
	Appendix
	Definitions of asset sets
	Electronic attachment

