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Ph.D. for his patience, leadership and invaluable help he has provided me with
throughout this work. I am also thankful to my family and friends, whose emo-
tional support helped me finish this thesis.

ii
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dmı́nky, tud́ıž toto řešeńı přestává být platné. Matematicky jde o singulárńı
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Introduction
Neutron stars are some of the most extreme objects in the universe. The first
experimental evidence of neutron stars can be back traced to the 1960s, although
their existence was theoretically predicted 30 years prior by Baade and Zwicky
[1934]. Some experimental evidence comes from spectral analysis of X-rays emerg-
ing from systems containing these stars. Strong X-ray radiation is frequently
observed in low mass X-ray binary systems, in which the donor star transfers its
mass to a compact object, such as a black hole or a neutron star, creating an
accretion disk (see Figure 1 for artist’s impression). In the accretion process, a
significant fraction of the total energy of the accreted material is converted to
radiation, frequently reaching significant fractions of its rest-mass energy, given
by probably the most famous equation in physics, E = mc2. In fact, such high
efficiency of conversion is far beyond the current technical abilities of the human
race. The efficiency of chemical reactions when burning coal is around 10−10, and
in nuclear reactors the efficiency reaches 0.001. Accretion efficiency also signifi-
cantly exceeds the efficiency of nuclear fusion in future fusion reactors, or in the
stars, which is estimated to be around 0.007 (these values were taken from Kato
et al. [2008]).

The primary source of the energy release in accretion disks is the potential
energy of the matter in a strong gravitational field surrounding a compact object
(neutron star). To illustrate our point, let us imagine a compact object of mass
M accreting a test particle of mass m with zero total mechanical energy. In
accretion disks, the particles descend in the gravitational field towards the centre
on nearly circular orbits. At distance r from the central object, we can calculate
the particle’s potential energy as V = −GMm/r and its kinetic energy on the
circular orbit as T = GMm/(2r) (we chose to work with Newtonian gravity for
simplicity). The total mechanical energy of the particle therefore is −GMm/(2r).
Half of the difference of the potential energy of the particle has been converted to
the kinetic energy, and the other half has to be converted to other non-mechanical
types of energy. The amount of energy that has to be converted gets higher as the
material gets deeper in the gravitational field. For a sufficiently compact object
with the inner edge of the disk being close enough, the amounts of energy that
have to be converted are huge. This is satisfied for both the black holes as well
as the neutron stars, which are extremely dense and can have very small radii on
the order of 10 kilometres.

For the case of non-rotating black hole, the accretion disk terminates at
the innermost stable circular orbit located at 3Rs, where Rs = 2GM/c2 is the
Schwarzschild radius. Inside this orbit, the matter starts to fall freely on the
black hole, approximately conserving the mechanical energy and the angular mo-
mentum. This leads to an efficiency of around 0.06 (Kato et al. [2008]). If the
black hole is spinning, the efficiency of accretion grows as the innermost stable
circular orbit gets closer to the black hole and particles in the disk can achieve
larger difference in potential energies. The efficiency increases up to 0.42 for a
maximally rotating Kerr black hole, for which the innermost stable circular orbit
is at Rs/2 (Kato et al. [2008]). The innermost regions of black-hole accretion disk
have recenetly been resolved by the Event Horizon Telescope, see Figure 2.
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Neutron star accretion disks can be even more efficient than black holes at this
energy conversion due to the presence of a boundary layer, where the accreted
mass has to radiate most of its energy. The luminosity in the boundary layer is
proportional to (ΩK∗−Ω∗)2 (Shakura and Sunyaev [1988]), where ΩK∗ is the Ke-
plerian angular velocity at the stellar radius and Ω∗ is the stellar angular velocity.
If one includes relativistic effects, the luminosity of a boundary layer may exceed
the luminosity of the rest of the accretion disk. The cause of this luminosity is
following. Far from the star, the matter orbits with nearly Keplerian velocity.
However, as the matter aproaches the stellar surface, its rotation has to slow
down to the spin frequency of the star. This happens in a rather narrow region
in the vicinity of the star, where the matter has to lose a significant amount of
its kinetic energy. That is why we are interested in the structure of the boundary
layer for a neutron star.

In standard accretion disks, proposed by Shakura and Sunyaev [1973], the
excess of the mechanical energy is immediately released in the form of thermal
radiation. However, there are other types of so-called radiatively inefficient ac-
cretion flows, where the energy is stored in the form of internal energy of the
accreted matter. This type of flow is called the advection-dominated accretion
flow, ADAF for short. ADAFs were discovered by Narayan and Yi [1994], see
Kato et al. [2008] chap. 9 for an overview. Another model is the slim-disk model
(Abramowicz et al. [1988]). In this model, the accretion rate exceeds a critical ac-
cretion rate making the standard model unusable. Part of the energy is stored in
the energy of radiation trapped inside the accretion flow. These disks are highly
luminous and stable with respect to the thermal instability. We again refer to
Kato et al. [2008] for more information. There are also other types of disk models;
however, in this work, we make the same assumptions as Shakura and Sunyaev
[1973] that all the mechanical energy the material has to lose is locally converted
into thermal radiation that immediately leaves the disk.

In general, the structure of the accretion flow is determined by a few parame-
ters, namely mass M of the central object, accretion rate Ṁ , which measures the
amount of matter that falls to the central object per unit time, and the viscosity
parameter α, which describes the magnitude of friction between adjacent layers
of the disk. This friction realises the process of angular momentum transfer. In
the standard model, the faster rotating inner layer is losing angular momentum
through viscous interaction with the slower rotating adjacent outer layer causing
the mass to fall towards the centre while the momentum is transferred outwards.
Molecular viscosity on its own would not be enough to drive accretion in Keplerian
disks, hence a turbulence in the disk must occur in order to transfer the angu-
lar momentum. In the simplest approach of the mixing length theory (Prandtl
[1925]), the turbulent angular momentum transfer can be modelled by viscosity
with artificial kinematic viscosity coefficient. Shakura and Sunyaev [1973] sug-
gested the kinematic viscosity to be ν = αc2

s/ΩK, where c2
s is the speed of sound

and ΩK is the local Keplerian angular velocity. The parameter α must be less
than 1 in order for the turbulent velocity fluctuations to be subsonic. The tur-
bulence also heats the disk up. In the standard-disk model, the local viscous
heating calculated with the Shakura-Sunyaev prescription is exactly balanced by
radiative losses. The turbulence is crucial in describing the flow as the matter
must lose its angular momentum to be able to stay on nearly circular orbits.
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The accretion of rotating matter is essentially a two-dimensional problem with
mutually connected radial and vertical structure of the disk. However, in most
disk models, the vertical structure of the disk is oversimplified. The authors
usually simplify the vertical structure by a priori assuming vertical hydrostatic
equilibrium. Vertical structure found this way is then averaged over the thickness
of the disk and the vertically integrated quantities are used in the equations for
the radial structure. In fact, this treatment replaces the original problem that is
two-dimensional by two separated one-dimensional problems without solving the
two-dimensional structure properly.

Kluźniak and Kita [2000] found self-consistent equations that take vertical
structure fully into account for an α-disk. In their equations, the vertical hy-
drostatic equilibrium is a natural part of the solution and does not need to be
assumed a priori. Their solution works well far from the central object but leads
to a singularity at the radius, where the torque of the viscous force vanishes. This
singularity is caused by the implicit assumption that the quantities describing the
disk structure change in the radial direction on a much larger scale than in the ver-
tical direction. This is no longer true when the radial coordinate approaches the
zero torque radius. This radius lies in the vicinity of the marginally stable radius
for the case of a black hole, where a transition zone arises. In the case of a neu-
tron star, a boundary layer arises as the zero-torque radius is close to the stellar
surface. Boundary layers have already been examined in papers such as Shakura
and Sunyaev [1988], Regev [1983] and more, but they were mostly studied with
the simplifying assumption of vertical hydrostatic equilibrium. Our primary focus
in this work will be a model of the boundary layer with self-consistent treatment
of the vertical structure.

This thesis is organised in the following manner. In the first chapter, we
discuss the assumptions we make and the governing equations. From these equa-
tions stem two constants of integration, which we derive in the first chapter as
well. We then non-dimensionalise the equations of motion in order to obtain the
well-known outer disk solution. In the second chapter, we find the solution valid
sufficiently far from the zero-torque radius (”outer-disk solution”), which is in
accordance with Kluźniak and Kita [2000]. We also find a prescription for the
disk semi-thickness, which helps us to discuss the origin of the singular behaviour
of this solution. In the third chapter, we introduce briefly the concept behind the
singular perturbation theory, namely matched asymptotic expansions. Then we
attempt to make arguments for appropriate rescaling of the equations in order to
find a non-singular solution for the flow in the boundary layer. We later propose
an ansatz for the solutions and try to solve these equations. Finally, we arrive at
a single nonlinear ODE, which has to be solved numerically.
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Figure 1: Artist’s impression of a Low-Mass X-Ray Binary system, taken from
Orlando [2020].

Figure 2: The first ever image of a black hole in Messier 87 captured by the Event
Horizon Telescope, which demonstrates the power of accretion disks. (Credit:
EHT collaboration)
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1. Preliminaries

1.1 Assumptions for disk equations
Our assumptions for the outer solution will not differ much from the assumptions
of Kluźniak and Kita [2000] (we will further refer to them as KK). We will use
the cylindrical coordinates (r, φ, z) and Newtonian gravity. The assumptions will
be as follows:

1. The disk is axisymmetric.

2. Gravitational potential acting upon a fluid element can be described by the
Newtonian potential as

ψ(r, z) = − GM√
r2 + z2

, (1.1)

where G is the gravitational constant and M is the mass of the star.

3. The disk is in a steady state.

4. The disk is geometrically thin; we can write this at any given radius r as
H(r)≪ r, where H(r) is the semi-thickness of the disk at radius r.

5. The radial and the vertical velocities are subsonic inside of the disk.

6. The disk is symmetric under reflection about the mid-plane. Mid-plane is
defined by the surface of z = 0.

7. We will assume polytropic equation of state for the disk

P = Kρ(n+1)/n, (1.2)

where K is a polytropic constant, P is pressure, ρ is the density of the fluid
and n is the polytropic index.

8. The turbulent angular-momentum transport can be well described by shear
viscosity using the height-dependant version of the Shakura-Sunyaev pre-
scription (Umurhan et al. [2006])

ν = 2
3
α

ΩK

c2
s

(1 + 1/n) , (1.3)

where cs is the local sound speed and the proportionality parameter α is
assumed to be constant. The standard version of the viscosity prescription
relates the vertically integrated quantities.

A few remarks:

• The assumption 1) means that ∂/ (∂φ) = 0 and the assumption 3) means
∂/ (∂t) = 0.
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• The polytropic equation of state means adiabatic flow with entropy constant
in both space and time. We will work with n = 3/2, which stands for
monoatomic gas. The disk has a well-defined boundary given by the semi-
thickness H. Outside of the boundary, it holds that ρ = P = 0.

• Assumption 2) also assumes that the disk is not self-gravitating. We also
ignore any dynamic effects magnetic fields might cause in the disk.

1.2 Governing equations
As the viscosity plays a crucial role in the angular momentum tranport in ac-
cretion disks, we will work with Navier-Stokes equations of a viscous fluid and
the continuity equation to describe the accretion flow. As we are in fluid dynam-
ics, the complete hydrodynamical system can be described by the density ρ and
the velocity field −→v . However, we will use relations ensuing from the polytropic
equation of state to describe the system using the local speed of sound cs instead
of the density. The relations are following

c2
s = dP

dρ =
(︃

1 + 1
n

)︃
P

ρ
. (1.4)

Differentiating equation (1.4) by r and z we get respectively these identities

n
∂c2

s
∂r

= 1
ρ

∂P

∂r
, (1.5)

n
∂c2

s
∂z

= 1
ρ

∂P

∂z
. (1.6)

We will employ these relations in the future. Next, let us examine the governing
equations of motion without these polytropic relations. The equations follow
(Kluźniak and Kita [2000])

ρ(−→v · −→∇)−→v = −−→∇P − ρ−→∇ψ +−→∇ ·←→σ , (1.7)

−→
∇ · (ρ−→v ) = 0. (1.8)

We already disposed of terms involving partial time derivatives. The velocity
vector of a fluid element is denoted by −→v , and ←→σ is the rank-two viscous stress
tensor. We can write ←→σ as (Landau and Lifshitz [1959])

←→σ = η
(︂
∇−→v + (∇−→v )T

)︂
+
(︃
ξ − 2

3η
)︃−→
∇ · −→v

←→
I , (1.9)

where ξ is the bulk viscosity, η is the dynamic viscosity coefficient, the identity
tensor in 3D is denoted by ←→I and T denotes transpose of a matrix. For the
dynamic viscosity coefficient, we can write η = νρ, with ν being the kinematic
viscosity. We can now express the Navier-Stokes equations in cylindrical coor-
dinates. For a more detailed transformation of these equations see Kato et al.
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[2008]. We get the radial, azimuthal and vertical Navier-Stokes equations in
cylindrical coordinates, respectively (Kluźniak and Kita [2000])

vr
∂vr

∂r
+ vz

∂vr

∂z
− Ω2r = −∂ψ

∂r
− 1
ρ

∂P

∂r
+ 2
ρr

∂

∂r

(︄
ηr
∂vr

∂r

)︄

−2ηvr

ρr2 + 1
ρ

∂

∂z

[︄
η

(︄
∂vr

∂z
+ ∂vz

∂r

)︄]︄
+ 1
ρ

∂

∂r

[︃(︃
ξ − 2

3η
)︃ (︂
∇⃗ · v⃗

)︂]︃
,

(1.10)

ρ
vr

r2
∂

∂r

(︂
r2Ω

)︂
+ ρvz

∂Ω
∂z

= 1
r3

∂

∂r

(︄
ηr3∂Ω

∂r

)︄
+ ∂

∂z

(︄
η
∂Ω
∂z

)︄
, (1.11)

vr
∂vz

∂r
+ vz

∂vz

∂z
= −∂ψ

∂z
− 1
ρ

∂P

∂z
+ 2
ρ

∂

∂z

(︄
η
∂vz

∂z

)︄

+ 1
ρr

∂

∂r

[︄
ηr

(︄
∂vr

∂z
+ ∂vz

∂r

)︄]︄
+ 1
ρ

∂

∂z

[︃(︃
ξ − 2

3η
)︃ (︂
∇⃗ · v⃗

)︂]︃
,

(1.12)

where Ω is the angular frequency, which can be written as Ω = vφ/r. We also
chose to write the divergence terms of the viscous tensor in this compact form
because, as we will later show, these terms are negligible in the outer disk. We are
still missing the continuity equation, so let us examine that. For the continuity
equation in cylindrical coordinates, we obtain (Kluźniak and Kita [2000])

1
r

∂

∂r
(rρvr) + ∂

∂z
(ρvz) = 0. (1.13)

1.3 Constants of integration
Before we get to solving the equations, we first need to discuss constants of
integration as they are crucial in determining the cause of the singularity. Let us
vertically integrate continuity equation (1.13). We can write

∫︂ ∞

−∞

1
r

∂ (rρvr)
∂r

dz +
∫︂ ∞

−∞

∂ (ρvz)
∂z

dz = 0. (1.14)

The second term is equal to zero as we can write
∫︂ ∞

−∞

∂ (ρvz)
∂z

dz = [ρvz]z=∞
z=−∞ = 0, (1.15)

since ρ = 0 for |z| > H. We thus get the following
∫︂ ∞

−∞

1
r

∂ (rρvr)
∂r

dz = 1
r

∂

∂r

∫︂ ∞

−∞
rρvrdz = 0. (1.16)

Let us now integrate this equation over the azimuthal angle φ ∈ (0, 2π). In this
step we will also multiply the equation by r giving us

2π ∂
∂r

∫︂ ∞

−∞
rρvrdz = 0. (1.17)
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We now integrate with respect to r yielding the same result as Kluźniak and Kita
[2000]

2πr
∫︂ ∞

−∞
ρvrdz = −Ṁ, (1.18)

where −Ṁ is the integration constant. For accretion, it is conventional in lit-
erature such as Frank et al. [2002] to assume vr < 0, meaning Ṁ > 0. Let us
now discuss its physical meaning. In the definition of Ṁ , we can see that we are
multiplying the integral by the term 2πr, which is the circumference of a circle
with radius r. We can also deduce that the integration happens only in the region
(−H,H) since the integrand is non-zero in this region and zero everywhere else.
The integrand ρvr gives the radial mass flux. Combined, we get the total amount
of mass crossing a cylinder of radius r per unit time. We can see that the mass
flowing through a cylinder of any given radius is constant. It is a consequence
of the stationarity of the flow since if the amount crossing two cylinders were
different, the mass would be steadily accumulated or removed from the volume
in between the cylinders.

Let us now discuss another constant of integration. We will obtain this con-
stant by vertically integrating the azimuthal equation (1.11). We can write∫︂ ∞

−∞
ρ
vr

r2
∂

∂r

(︂
r2Ω

)︂
dz +

∫︂ ∞

−∞
ρvz

∂Ω
∂z

dz =
∫︂ ∞

−∞

1
r3

∂

∂r

(︄
ηr3∂Ω

∂r

)︄
dz

+
∫︂ ∞

−∞

∂

∂z

(︄
η
∂Ω
∂z

)︄
dz,

(1.19)

where the last term is zero since we are evaluating η (∂Ω/∂z) at ±∞, and, as we
have stated before, we can write η = νρ; therefore, we can use the same argument
we did when deriving the first constant of integration. Let us now multiply this
equation by r3 and write it in the following form∫︂ ∞

−∞
rρvr

∂

∂r

(︂
r2Ω

)︂
dz +

∫︂ ∞

−∞
ρvz

∂(r3Ω)
∂z

dz =
∫︂ ∞

−∞

∂

∂r

(︄
ηr3∂Ω

∂r

)︄
dz. (1.20)

We will now integrate by parts the second term on the left-hand side as follows∫︂ ∞

−∞
ρvz

∂(r3Ω)
∂z

dz =
[︂
ρvzr

3Ω
]︂∞

−∞
−
∫︂ ∞

−∞
r3Ω∂(ρvz)

∂z
dz. (1.21)

The first term on the right-hand side is zero as we are evaluating a term with ρ
outside of the disk. We can also rewrite the third term thanks to the continuity
equation (1.13) which yields∫︂ ∞

−∞
rρvr

∂

∂r

(︂
r2Ω

)︂
dz +

∫︂ ∞

−∞
r2Ω ∂

∂r
(rρvr) dz =

∫︂ ∞

−∞

∂

∂r

(︄
ηr3∂Ω

∂r

)︄
dz. (1.22)

We can see the product rule being applied on the left-hand side, so we rewrite
this equation as

∂

∂r

∫︂ ∞

−∞
r3ρvrΩdz = ∂

∂r

∫︂ ∞

−∞
ηr3∂Ω

∂r
dz. (1.23)

We now choose to integrate this equation over the azimuthal angle φ and integrate
with respect to r yielding

2πr3
∫︂ ∞

−∞
ρvrΩdz + C = 2πr3

∫︂ ∞

−∞
η
∂Ω
∂r

dz, (1.24)
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where C is an integration constant. We will denote the first term on the left-hand
side the same way KK do: −J̇ . It is important to note that −J̇ is a function of
r, and its physical meaning is, according to KK, the advection rate of angular
momentum through a cylinder of radius r. Let us rewrite the left-hand side as

−J̇ + C = −Ṁ(−⟨j⟩+ j+), (1.25)

where we chose j+ = C/Ṁ and ⟨j⟩ can be written as

⟨j⟩ = 2π
∫︁∞

−∞ r3ρvrΩdz
2π
∫︁∞

−∞ rρvrdz
=
∫︁∞

−∞ jρvrdz∫︁∞
−∞ ρvrdz

. (1.26)

We can see that ⟨j⟩ is equal to the angular momentum j = r2Ω unless j is a
function of z, or equally, Ω depends on z. In all other cases, ⟨j⟩ is the height-
averaged specific angular momentum. Let us rewrite the most important result
so far

Ṁ(⟨j⟩ − j+) = −2πr3
∫︂ ∞

−∞
η
∂Ω
∂r

dz. (1.27)

1.4 Scaled equations of motion
Our aim is to solve equations (1.10)-(1.13) using the perturbation method. For
this we need to write these equations in non-dimensional form and introduce a
small dimensionless expansion parameter. In this section, we follow closely KK,
and rescale all quantities by their typical values (e.g. values at a typical radius r∗
in the disk). We will assume all the dimensionless quantities (except the expansion
parameter) to be of the order of unity. We will denote all the typical values with
an asterisk as the subscript and all the new non-dimensional variables with a
tilde. This will lead to non-dimensional equations in which we can compare the
relative significance of every single term. We will use the following scalings:

• radius: r̃ = r/r∗,

• vertical coordinate: z̃ = z/H∗,

• azimuthal frequency: Ω̃ = Ω/Ω∗ = Ω/ΩK(r∗), where ΩK(r∗) is the Keplerian
azimuthal frequency at the characteristic radius r∗,

• speed of sound: c̃s = cs/cs∗,

• radial and vertical velocity: ṽr = vr/cs∗; ṽz = vz/cs∗, we are scaling all the
velocities by the characteristic speed of sound, the same way Regev [1983]
does,

• pressure and density: P̃ = P/(c2
s∗ρ∗); ρ̃ = ρ/ρ∗,

• viscosity: ξ̃ = ν̃ = ν/H∗cs∗; η̃ = η/(H∗cs∗ρ∗).

Let us remind ourselves what the Keplerian azimuthal frequency at the char-
acteristic radius is: ΩK(r∗) = (GM∗/r

3
∗)1/2. If we assume vertical hydrostatic

equilibrium, we can write

Ω2
K(r∗)H∗ ∼

c2
s∗
H∗
⇒ H∗ ∼

cs∗

ΩK(r∗)
, (1.28)
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where we are comparing the magnitudes of the vertical gravity term and the
pressure-gradient term. For thin disk we expect r∗ ≫ H∗ and therefore we can
introduce an expansion parameter

ϵ ≡ H∗

r∗
∼ cs∗

r∗Ω∗
≪ 1. (1.29)

We will assume that all the variables with a tilde are of order unity as ϵ→ 0. Note
that the typical values only express the orders of magnitude of their respective
quantities. We will also write the gradients of the gravitational potential as
follows

∂ψ

∂r
= rGM∗

(r2 + z2)3/2 = GM∗

r2
(︂
1 + ( z

r
)2
)︂3/2 , (1.30)

∂ψ

∂z
= zGM∗

(r2 + z2)3/2 = zGM∗

r3
(︂
1 + ( z

r
)2
)︂3/2 . (1.31)

Plugging these new non-dimensional variables into the governing equations
and doing a little bit of algebra results in the following non-dimensional equations
of motion (Kluźniak and Kita [2000])

ϵ2ṽr
∂ṽr

∂r̃
+ ϵṽz

∂ṽr

∂z̃
− Ω̃2

r̃ = − 1
r̃2

[︄
1 + ϵ2

(︃
z̃

r̃

)︃2]︄−3/2

− ϵ2n
∂c̃2

s
∂r̃
− ϵ3

(︄
2η̃ṽr

ρ̃r̃2

)︄

+ ϵ3

ρ̃r̃

∂

∂r̃

(︄
2η̃r̃ ∂ṽr

∂r̃

)︄
+ ϵ

ρ̃

∂

∂z̃

(︄
η̃
∂ṽr

∂z̃

)︄
+ ϵ2

ρ̃

∂

∂z̃

(︄
η̃
∂ṽz

∂r̃

)︄

+ϵ
3

ρ̃

∂

∂r̃

[︄(︃
ξ̃ − 2

3 η̃
)︃(︄1

r̃

∂

∂r̃
(r̃ṽr)

)︄]︄
+ ϵ2

ρ̃

∂

∂r̃

[︄(︃
ξ̃ − 2

3 η̃
)︃
∂ṽz

∂z̃

]︄
,

(1.32)

ϵ
ρ̃ṽr

r̃2

[︄
∂

∂r̃

(︂
r̃2Ω̃

)︂]︄
+ ρ̃ṽz

∂Ω̃
∂z̃

= ϵ2
[︄

1
r̃3

∂

∂r̃

(︄
η̃r̃3∂Ω̃

∂r̃

)︄]︄
+ ∂

∂z̃

(︄
η̃
∂Ω̃
∂z̃

)︄
, (1.33)

ϵṽr
∂ṽz

∂r̃
+ ṽz

∂ṽz

∂z̃
= − z̃

r̃3

[︄
1 + ϵ2

(︃
z̃

r̃

)︃2]︄−3/2

− n∂c̃
2
s

∂z̃
+ 2
ρ̃

∂

∂z̃

(︄
η̃
∂ṽz

∂z̃

)︄

+ ϵ2

ρ̃r̃

∂

∂r̃

(︄
η̃r̃
∂ṽz

∂r̃

)︄
+ ϵ

ρ̃r̃

∂

∂r̃

(︄
η̃r̃
∂ṽr

∂z̃

)︄

+1
ρ̃

∂

∂z̃

[︄(︃
ξ̃ − 2

3 η̃
)︃
∂ṽz

∂z̃

]︄
+ ϵ

ρ̃

∂

∂z̃

[︄(︃
ξ̃ − 2

3 η̃
)︃(︄1

r̃

∂

∂r̃
(r̃ṽr)

)︄]︄
,

(1.34)

ϵ

r̃

∂

∂r̃
(r̃ρ̃ṽr) + ∂

∂z̃
(ρ̃ṽz) = 0. (1.35)

This is a system of four non-linear partial differential equations for four quan-
tities: ṽr, ṽz, Ω̃, c̃s. The values of other variables ρ̃, ν̃, P̃ , η̃, Ṁ follow from these
four. The first three quantities give us the velocity field, and the fourth one is
the speed of sound, from which all the thermodynamic quantities follow. We
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will solve these equations by expanding all the quantities into a power series of
ϵ and then solving the equations separately for each power of ϵ. We will use our
two constants of integration as a shortcut to solve for the disk semi-thickness
H̃(r̃). The constants of integration bring no new information to the equations -
we could solve for H̃ even if we did not know these constants, but it would be
more difficult.

Our assumption of equatorial plane symmetry implies that we assume the
functions Ω, vr, cs, ρ, η, P to be even functions of the z coordinate. This means
that all of these quantities with a tilde must also be even functions of z̃, since
the scaling does not break the symmetry. However, the vertical velocity vz has
to be an odd function of z̃. We will therefore assume all the terms in the power
expansion of given variables to be either odd for vz or even for the rest.
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2. Outer disk solution
In this chapter, we still follow KK very closely. We start with the outer disk
because it will give us information on how to rescale our quantities into the
boundary layer. We find the lowest order solution to the Navier-Stokes equation
and the second order correction of the azimuthal frequency. We will also be able
to calculate the disk semi-thickness with the information acquired. This will lead
us to a singularity at a specific radius r̃+, which will be defined later.

2.1 Zeroth-order solution
Let us now solve the equations with the strategy described above. We will denote
each order of the given quantity with the corresponding number of the order of
the expansion parameter ϵ. We start by writing out the equations in the lowest
order (ϵ0) as (Kluźniak and Kita [2000])

−Ω̃2
0r̃ = − 1

r̃2 , (2.1)

ρ̃0ṽz0
∂Ω̃0

∂z̃
= ∂

∂z̃

(︄
η̃0
∂Ω̃0

∂z̃

)︄
, (2.2)

ṽz0
∂ṽz0

∂z̃
= − z̃

r̃3 − n
∂c̃2

s0
∂z̃

+ 2
ρ̃0

∂

∂z̃

(︄
η̃0
∂ṽz0

∂z̃

)︄
+ 1
ρ̃0

∂

∂z̃

[︄(︃
ξ̃0 −

2
3 η̃0

)︃
∂ṽz0

∂z̃

]︄
, (2.3)

∂

∂z̃
(ρ̃0ṽz0) = 0. (2.4)

Looking at equation (2.1), we immediately get explicit formula for Ω̃0

Ω̃0 = 1
r̃3/2 , (2.5)

which is the dimensionless version of the Keplerian azimuthal frequency ΩK. Plug-
ging this result into equation (2.2) gives 0 = 0 since Ω̃0 is not a function of z̃. If we
continue examining the equations one by one, equation (2.3) might look daunt-
ing, so we will first examine the continuity equation (2.4). We will integrate this
equation with respect to z̃ giving us

ρ̃0ṽz0 = f(r̃), (2.6)

where f(r̃) is constant in z̃, which means it is an even function of z̃. We will now
compare both sides’ parity. Since ρ̃ is an even function of z̃ and ṽz0 has to be
an odd function of z̃, the left-hand side of this equation is an odd function of z̃.
This equation can only be satisfied if ṽz0 = 0 = f(r̃). Let us now use this result
in solving the remaining equation. Plugging in our results, the vertical equation
(2.3) simplifies into

0 = − z̃

r̃3 −
3
2
∂c̃2

s0
∂z̃

. (2.7)
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We can solve this equation by integration with respect to z̃ yielding

c̃2
s0 = − z2

3r3 + κ(r̃), (2.8)

where κ is a constant of integration. However, κ can be a function of r̃. It is
necessary for the speed of sound to be zero outside of the disk, since cs = 0 ⇔
ρ = 0. Thus, we choose κ such that

c̃2
s0 = Ω̃2

0
3
(︂
H̃

2
0 − z̃2

)︂
, (2.9)

where H0˜ is the zeroth order semi-thickness of the disk. Let us now consider
equation for the pressure gradient in the z̃ direction (1.5). Using equation (2.7)
we can write

− z̃

r̃3 = 3
2
∂c̃2

s0
∂z̃

= 1
ρ̃0

∂P̃ 0

∂z̃
. (2.10)

We will use the first term and the last term in calculating P0. Since we know the
relation between the speed of sound, pressure and density given by equation (1.4)
and we know the polytropic equation, we can calculate the pressure and density.
We calculate with polytropic index n = 3/2 as follows

c̃2
s0 =

(︃
n+ 1
n

)︃
P̃ 0

ρ̃0
=
(︃
n+ 1
n

)︃
ρ̃

1
n
0 ⇒ ρ̃0 =

⎛⎝Ω̃2
0

5
(︂
H̃

2
0 − z̃2

)︂⎞⎠3/2

, (2.11)

P̃ 0 = ρ̃
n+1

n =
⎛⎝Ω̃2

0
5
(︂
H̃

2
0 − z̃2

)︂⎞⎠5/2

. (2.12)

We should note that both P̃ 0 and ρ̃0 are functions of both z̃ and r̃, since H0˜
is a function of r̃. We obtained the same functional dependence as Hōshi [1977].
We will now use our assumption of ν to be height dependant, with a constant α,
similar to how KK do it in their paper.1 We will write the kinematic viscosity as
(Umurhan et al. [2006])

ν = 2
3
α

ΩK

c2
s

(1 + 1/n) = 2
5
αc2

s
ΩK

. (2.13)

We can then write the dynamic viscosity in the zeroth order as

η̃0 = ν̃0ρ̃0 = 2α
3Ω̃0

⎛⎝Ω̃2
0

5
(︂
H̃

2
0 − z̃2

)︂⎞⎠5/2

. (2.14)

2.2 First-order solution
We keep the previous results in mind, and we write the equations for the first
order terms. We get the following equations

ṽz0
∂ṽr0

∂z̃
− 2Ω̃0Ω̃1r̃ = 1

ρ̃0

∂

∂z̃

(︄
η̃0
∂ṽr0

∂z̃

)︄
, (2.15)

1Note: there is a typo in Kluźniak and Kita [2000] - missing factor 2/3 in their definition of
ν.
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ρ̃0ṽr0

r̃2

⎡⎣∂
(︂
r̃2Ω̃0

)︂
∂r̃

⎤⎦+ ρ̃0ṽz0
∂Ω̃1

∂z̃
+ ρ̃0ṽz1

∂Ω̃0

∂z̃
= ∂

∂z̃

(︄
η̃
∂Ω̃1

∂z̃

)︄
, (2.16)

ṽr0
∂ṽz0

∂r̃
+ ṽz1

∂ṽz0

∂z̃
+ ṽz0

∂ṽz1

∂z̃
= −3∂c̃s0c̃s1

∂z̃
+ 2
ρ̃0

∂

∂z̃

(︄
η̃0
∂ṽz1

∂z̃

)︄

+ 1
ρ̃0r̃

∂

∂r̃

(︄
η̃0r̃

∂ṽr0

∂z̃

)︄
+ 1
ρ̃0

∂

∂z̃

[︄(︃
ξ̃0 −

2
3 η̃0

)︃(︄1
r̃

∂(r̃ṽr0)
∂r̃

+ ∂ṽz1

∂z̃

)︄]︄
,

(2.17)

1
r̃

∂

∂r̃
(r̃ρ̃0ṽr0) + ∂

∂z̃
(ρ̃0ṽz1) = 0. (2.18)

These equations significantly simplify if we use the results from the zeroth order.
It is at this point where KK argue that the symmetry of Ω1 implies Ω1 = 0.
However, it is not obvious to us. If we were to write these equations explicitly,
we would find that symmetry does not seem play any role in them. Equations
(2.15) and (2.16) become linear differential equations for ṽr0 and Ω̃1. We can
plug for either of these quantities from one equation into the other and obtain a
single linear differential equation of fourth order, whose solution would likely be
a polynomial. However, the right-hand side of this equation would be zero; hence
we do not have any reason not to choose the trivial solution. Here we also assume
that there are no boundary conditions that the trivial solution would not meet.
We thus set ṽr0 = Ω̃1 = 0. Plugging ṽr0 = 0 into the continuity equation (2.18)
and using the same argument we did when calculating ṽz0, we get that ṽz1 = 0.
With these results, the only surviving term in the vertical equation (2.17) is the
first term on the right-hand side. From this, it follows that c̃s1 = 0. The speed
of sound being equal to zero in the first order implies P̃ 1 = 0 and ρ̃1 = 0. With
the first-order results, we can now compute the disk thickness.

2.3 Disk thickness
We have yet to rescale our constant of integration obtained in Section 1.3, so
let us do that now. Using our scalings discussed in Section 1.4, we can rewrite
equation (1.18) as

Ṁ = −2πr̃r∗

∫︂ ∞

−∞
ρ̃ρ∗cs∗ṽrH∗dz̃. (2.19)

Dividing both sides by the typical values on the right-hand side, one can write

Ṁ

2πr∗ρ∗cs∗H∗
= ϵ

Ṁ

2πρ∗cs∗H2
∗

= −r̃
∫︂ ∞

−∞
ρ̃ṽrdz̃. (2.20)

We will introduce a dimensionless constant ṁ as

ṁ = Ṁ

2πρ∗cs∗H2
∗
, (2.21)

whose order is at the moment unknown. We do know that ṁ is at lowest of order
unity as the right-hand side is at least O(ϵ) as ṽr0 is zero. We will later show
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that ṽr1 is not zero, hence ṁ is O(1). This allows us to rewrite equation (2.19)
in terms of ṁ

ϵṁ = −r̃
∫︂ ∞

−∞
ρ̃ṽrdz̃. (2.22)

If we use the expansion of ρ̃ and ṽr, we get in the lowest non-zero order

ṁ = −r̃
∫︂ H̃0

−H̃0
ρ̃0ṽr1dz̃ − r̃

∫︂ H̃0

−H̃0
ρ̃1ṽr0dz̃, (2.23)

where the second term is identically zero from the results we have obtained thus
far. However, we cannot calculate the first term at the moment since we have no
results for ṽr1 yet. Let us now rescale the second constant of integration defined
by equation (1.27). We will use the fact that Ω̃ is independent of z̃ in the lowest
order and hence we write

Ṁ (jK − j+) = −2πr̃3r3
∗

∫︂ ∞

−∞
cs∗H∗ρ∗η̃

∂Ω̃
∂r̃

Ω∗

r∗
H∗dz̃, (2.24)

where we denoted ⟨j⟩ as jK, since we know that the angular frequency Ω behaves
in a Keplerian manner in the outer region and is therefore independent of z̃. We
will now rescale the angular momenta as well since we know that j = Ωr2, and
we divide both sides by the constants on the right-hand side of equation (2.24).
We obtain

Ṁ

2πρ∗cs∗H2
∗

(︂
j̃K − j̃+

)︂
= −r̃3

∫︂ ∞

−∞
η̃
∂Ω̃
∂r̃

dz̃, (2.25)

where we denoted the rescaled angular momenta as j̃K and j̃+, which are again
O(1). We also assume that j̃+ is the Keplerian angular momentum at a certain
radius r̃+. Using our definition of ṁ, we can rewrite this equation as

ṁ
(︂
j̃K − j̃+

)︂
= −r̃3

∫︂ ∞

−∞
η̃
∂Ω̃
∂r̃

dz̃. (2.26)

The left-hand side is clearly of order unity, hence we plug into the right-hand side
our zeroth-order results giving us

ṁ
(︂
j̃K − j̃+

)︂
= −r̃3 dΩ̃0

dr̃

∫︂ H̃0

−H̃0
η̃0dz̃. (2.27)

We can write the derivate of Ω̃0 in front of the integral as it does not depend on
the vertical coordinate. We can now plug in our results and calculate the integral.
Let us first look at what function we are integrating. The only dependence of η̃0

on z̃ takes the form of
(︂
H̃

2
0 − z̃2

)︂5/2
, which is the only part we need to integrate.

Let us now calculate the integral∫︂ H̃0

−H̃0

(︂
H̃

2
0 − z̃2

)︂5/2
dz̃ = 5π

16 H̃
6
0. (2.28)

We will now plug this result into equation (2.27) and calculate for H̃0, yielding
the disk semi-thickness in the lowest order (Kluźniak and Kita [2000])

H̃0 =
⎡⎣16r̃ 11

2 5 3
2 ṁ

πα

(︃
r̃

1
2 − r̃

1
2
+

)︃⎤⎦ 1
6

. (2.29)
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We see that H̃0 goes to zero at r̃+. Although we do not have an exact formula
for ṁ yet, it does not matter as it is a constant in both r̃ and z̃, so our functional
dependence of r̃ is independent of whatever ṁ may be. This prescription for
H̃ leads to singular behaviour of the lowest non-zero orders of the vertical and
radial velocities as well as the second order correction to the Keplerian azimuthal
frequency. This is caused by the assumption that Ω̃ ∼ Ω̃K in the neighbourhood
of r̃+, which is not true.

In real flow, the corrections to the Keplerian angular frequency Ω̃K and their
radial gradients become important in the vicinity of the zero-torque radius r̃+.
This makes the radial gradient of the angular frequency ∂Ω̃/∂r̃ in equation (2.26)
to vanish at r̃+. This equation is then satisfied without the need for the disk semi-
thickness to go to zero. The pattern of the flow around r+ changes much faster in
the radial direction than in the outer disk and a boundary layer is created. In the
case of neutron-star accretion disks, the boundary layers appear as a consequence
of the inner boundary condition at the surface of the star. When the rotation
of the star is slower than the Keplerian angular frequency at the stellar radius,
the rotation of the flow has to decelerate to match the rotation of the star.
The zeroth-order approximation found in Section 2.1 describes the accretion flow
with Keplerian azimuthal frequency. This stops being a good approximation of
the solution in a narrow region, where the solution rapidly changes its nature
in order to satisfy the boundary condition on the stellar surface. Some ideas
how to describe the boundary layers using singular perturbation methods will be
provided in Chapter 3.

2.4 Second-order solution
In this section, we look at the second order disk equations as they are the ones
which describe the backflows in the disk, and also the divergent terms are found
from the second order equations. We solve them using an ansatz since these
equations will not have as simple solutions as the zeroth and first orders. In this
section, our approach will slightly differ from KK. Nevertheless, we obtain the
same results. The governing equations in the second order are (Kluźniak and
Kita [2000])

−2Ω̃0Ω̃2r = 3
2r̃2

(︃
z̃

r̃

)︃2
− 3

2
∂c̃2

s0
∂r̃

+ 1
ρ̃0

∂

∂z̃

(︄
η̃0
∂ṽr1

∂z̃

)︄
, (2.30)

ρ̃0ṽr1

r̃2

[︄
d
dr̃
(︂
r̃2Ω̃0

)︂]︄
= 1
r̃3

∂

∂r̃

(︄
η̃0r̃

3 dΩ̃0

dr̃

)︄
+ ∂

∂z̃

(︄
η̃0
∂Ω̃2

∂z̃

)︄
, (2.31)

0 = 3
2
z̃3

r̃5 − 3∂(c̃s0c̃s2)
∂z̃

+ 2
ρ̃0

∂

∂z̃

(︄
η̃0
∂ṽz2

∂z̃

)︄
+ 1
ρ̃0

∂

∂z̃

[︄(︃
ξ̃0 −

2
3 η̃0

)︃
∂ṽz2

∂z̃

]︄

+ 1
ρ̃0

∂

∂z̃

[︄(︃
ξ̃0 −

2
3 η̃0

)︃(︄1
r̃

∂

∂r̃
(r̃ṽr1)

)︄]︄
,

(2.32)

1
r̃

∂

∂r̃
(r̃ρ̃0ṽr1) + ∂

∂z̃
(ρ̃0ṽz2) = 0. (2.33)
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Now it is assumed in KK’s paper that the following ansatz can be made:
ṽr1 = f0(r̃)(H̃

2
0 − z̃2) + f2(r̃), where we need to find f0 and f2. Analogically for

Ω̃2 and ṽz2. We will, however, try a different approach. We assume, with respect
to given symmetries of the quantities, the following: ṽr1 = A0(r̃) + z̃2A2(r̃); Ω̃2 =
W0(r̃)+z̃2W2(r̃); ṽz2 = z̃ [B0(r̃) + z̃2B2(r̃)]. Before we start solving the equations,
let us write a list of some useful equalities:

ν̃ = η̃

ρ̃
= 2

15αΩ̃0
(︂
H̃

2
0 − z̃2

)︂
,

η̃ = ν̃ρ̃ = 2αP̃
3Ω̃0

,

∂c̃2
s0

∂r̃
= −H̃

2
0 − z̃2

r̃4 + 2H̃0H̃
′
0

3r̃3 ,

∂c̃2
s0

∂z̃
= −2Ω̃2

0z̃

3 ,

1
ρ̃

∂η̃

∂r̃
= α

Ω̃0

⎛⎝−H̃2
0 − z̃2

r̃4 + 2H̃0H̃
′
0

3r̃3

⎞⎠+ αΩ̃0

5r̃
(︂
H̃

2
0 − z̃2

)︂
,

1
ρ̃

∂η̃

∂z̃
= −2

3αΩ̃0z̃,

∂ρ̃0
∂r̃

= 3Ω̃2
0Ω̃

′
0

53/2

(︂
H̃

2
0 − z̃2

)︂3/2
+ 3 Ω̃3

0
53/2 H̃0H̃

′
0

(︂
H̃

2
0 − z̃2

)︂1/2
,

∂ρ̃0
∂z̃

= −3z̃ Ω̃3
0

53/2

(︂
H̃

2
0 − z̃2

)︂1/2
.

We will start with the radial equation (2.30). We plug in our ansatz into the
equation, and we write

−2Ω̃0(W0 + z̃2W2)r̃ = 3z̃2

2r̃4 −
3
2

⎛⎝−H̃2
0 − z̃2

r4 + 2H̃0H̃
′
0

3r̃3

⎞⎠+ 4z̃A2

3ρ̃0

∂η̃0
∂z̃

+ 4A2η̃0
3ρ̃0

.

(2.34)
Using our list of identities, this equation simplifies into

−2Ω̃0(W0 + z̃2W2)r̃ = 3
2r̃2

z̃2

r̃2 −
3
2

⎛⎝−H̃2
0 − z̃2

r4 + 2H̃0H̃
′
0

3r̃3

⎞⎠
−4z̃2

3 A2Ω̃0α + 4
15A2αΩ̃0(H̃

2
0 − z̃2).

(2.35)

We can now separate for each order of z̃ and obtain two equations. For z̃0 we
write:

−2Ω̃0W0r̃ = 3H̃2
0

2r4 −
H̃0H̃

′
0

r̃3 + 4
15A2αΩ̃0H̃

2
0. (2.36)

And for z̃2 we get

−2Ω̃0W2r̃ = 3
2r̃4 −

3
2r̃4 −

4
3A2Ω̃0α−

4A2αΩ0

15 , (2.37)
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which yields
W2 = 4A2α

5r̃ . (2.38)

Let us now have a look at the azimuthal equation (2.31). We first divide the
equation by the density ρ̃. We can write

r̃
(︂
A0 + z̃2A2

)︂ dr̃1/2

dr̃ = r̃3Ω̃′
0

ρ̃0

∂η̃0
∂r̃

+ η̃0
ρ̃0

d
dr̃
(︂
r̃3Ω̃′

0

)︂
+ 2z̃W2r̃

3

ρ̃0

∂η̃0
∂z̃

+2W2r̃
3 η̃0
ρ̃0
, (2.39)

which after plugging in our equalities becomes:

r̃
(︂
A0 + z̃2A2

)︂ dr̃1/2

dr̃ = r̃3Ω̃′
0

⎡⎣ α
Ω̃0

⎛⎝−H̃2
0 − z̃2

r̃4 + 2H̃0H̃
′
0

3r̃3

⎞⎠+ αΩ̃0

5r̃
(︂
H̃

2
0 − z̃2

)︂⎤⎦
+ 2

15αΩ̃0
(︂
H̃

2
0 − z̃2

)︂ d
dr̃
(︂
r̃3Ω̃′

0

)︂
− 4

3 z̃
2W2r̃

3Ω̃0α + 4
15W2r̃

3αΩ̃0
(︂
H̃

2
0 − z̃2

)︂
.

(2.40)

We have not yet simplified this equation, so that it is a bit clearer as to how we
got this equation. We will simplify the equation now, when we separate for each
order of z̃. For z̃0 we get

√
r̃

2 A0 = −3
2 r̃

2Ω̃0

⎡⎣ α
Ω̃0

⎛⎝−H̃2
0

r̃4 + 2H̃0H̃
′
0

3r̃3

⎞⎠+ αΩ̃0

5r̃ H̃
2
0

⎤⎦
− αΩ̃0

10
√
r̃
H̃

2
0 + 4

15 r̃
3W2αΩ̃0H̃

2
0.

(2.41)

And for z̃2 we write
√
r̃

2 A2 = −3
2 r̃

2Ω̃0

[︄
α

Ω̃0r̃
4 −

αΩ̃0

5r̃

]︄
+ αΩ̃0

10
√
r̃
− 4

3 r̃
3W2αΩ̃0 −

4
15 r̃

3W2αΩ̃0. (2.42)

We will now use equation (2.38) to plug in for A2 into equation (2.42). Simplify-
ing, we can write

5r̃3/2

8α W2 = − 11α
10r̃2 −

24
15αΩ̃0r̃

3W2. (2.43)

Solving for W2 we get

W2 = − α2

r̃7/2
44

25 + 64α2 . (2.44)

Let us now introduce constant factor Λ, which may come in handy when
comparing our results to the results of KK,

Λ = 11
5

1
1 + 64

25α
2 . (2.45)

We can rewrite W2 using Λ as follows

W2 = −4
5

Λα2

r̃7/2 . (2.46)
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With the knowledge of W2, we can calculate A2. We will now use equation (2.36)
to get W0. We write

−2Ω̃0W0r̃ = H̃
2
0

r̃4

⎛⎝3
2 −

H̃
′
0

H̃0
r̃ + 4

15A2αΩ̃0r̃
4

⎞⎠ , (2.47)

which after plugging in for A2 and further simplifying yields

W0 = H̃
2
0

r̃7/2

(︄
−3

4 + 1
2

d ln H̃0

d ln r̃ + 2
15α

2Λ
)︄
. (2.48)

We have thus obtained a second-order correction for Ω, which is in agreement
with KK. For completeness, we write out the result:

Ω2 = H̃
2
0

r̃7/2

⎡⎣−3
4 + 1

2
d ln H̃0

d ln r̃ + 2
15α

2Λ
⎛⎝1− 6 z̃

2

H̃
2
0

⎞⎠⎤⎦ . (2.49)

We have yet to solve for A0. For this we will use equation (2.41) as follows

A0 = −3α
Ω̃0

⎛⎝−H̃2
0

r̃4 + 2H̃0H̃
′
0

3r̃3

⎞⎠− 4αΩ̃0

5r̃ H̃
2
0 + 8

15 r̃αW2H̃
2
0. (2.50)

Simplifying leads to

A0 = αH̃
2
0

r̃5/2

(︄
11
5 − 2d ln H̃0

d ln r̃ −
32
75α

2Λ
)︄
. (2.51)

Therefore, we got the same result as KK. One can check for themselves, that for
ṽr1 we can write

ṽr1 = α
H̃

2
0

r̃5/2

⎡⎣Λ
⎛⎝1− z̃2

H̃
2
0

⎞⎠+ 32
15Λα2 − 2d ln H̃0

d ln r̃

⎤⎦ . (2.52)

We will now inspect the continuity equation (2.33). We plug in our ansatz while
also taking the derivatives. We write

(︂
A0 + z̃2A2

)︂ ∂ρ̃0
∂r̃

+ ρ̃0

(︂
A′

0 + z̃2A′
2

)︂
+ ρ̃0

r̃

(︂
A0 + z̃2A2

)︂
+
(︂
z̃B0 + z̃3B2

)︂ ∂ρ̃0
∂z̃

+ ρ̃0

(︂
B0 + 3z̃2B2

)︂
= 0,

(2.53)

which after plugging in for ρ̃0 yields

(︂
A0 + z̃2A2

)︂ ⎡⎣−7
2

Ω̃3
0

53/2r̃

(︂
H̃

2
0 − z̃2

)︂3/2
+ 3H̃ ′

0H̃0Ω̃
3
0

53/2

(︂
H̃

2
0 − z̃2

)︂1/2
⎤⎦

+
(︂
A′

0 + z̃2A′
2

)︂ Ω̃3
0

53/2

(︂
H̃

2
0 − z̃2

)︂3/2
−
(︂
z̃2B0 + z̃4B2

)︂ 3Ω̃3
0

53/2

(︂
H̃

2
0 − z̃2

)︂1/2

+ Ω̃3
0

53/2

(︂
H̃

2
0 − z̃2

)︂3/2 (︂
B0 + 3z̃2B2

)︂
= 0.

(2.54)
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We divide this equation by
(︂
Ω3

0/53/2
)︂ (︂
H̃

2
0 − z̃2

)︂1/2
to get

(︂
A0 + z̃2A2

)︂ [︃
− 7

2r̃
(︂
H̃

2
0 − z̃2

)︂
+ 3H̃ ′

0H̃0

]︃
+
(︂
A′

0 + z̃2A′
2

)︂ (︂
H̃

2
0 − z̃2

)︂
−3

(︂
z̃2B0 + z̃4B2

)︂
+
(︂
H̃

2
0 − z̃2

)︂ (︂
B0 + 3z̃2B2

)︂
= 0.

(2.55)

We again separate this equation into by orders of z̃. This time, we obtain 3
separate equations. For z̃0 we get

A0

(︃
− 7

2r̃ H̃
2
0 + 3H̃ ′

0H̃0

)︃
+ H̃

2
0A

′
0 +B0H̃

2
0 = 0. (2.56)

For z̃2 we write

− 7
2r̃A2H̃

2
0 + 7

2r̃A0 + 3A2H̃
′
0H̃0 − A′

0 + A′
2H̃

2
0 − 3B0 + 3B2H̃

2
0 −B0 = 0. (2.57)

And finally, the equation for z̃4 looks as follows
7
2r̃A2 − A′

2 − 6B2 = 0, (2.58)

which we will use to solve for B2, but first let us calculate A′
2

A′
2 = −

(︂
Λαr̃−5/2

)︂′
= 5

2Λαr̃−7/2, (2.59)

where the first equality stems from (2.46) and (2.38). Plugging this relation back
into the equation (2.58), we calculate

B2 = 7
12
A2

r̃
− 5

12
Λα
r̃7/2 = − Λα

r̃7/2 . (2.60)

From equation (2.56) it stems that

−A0

⎛⎝ 7
2r̃ − 3H̃

′
0

H̃0

⎞⎠+ A′
0 +B0 = 0. (2.61)

We now add equations (2.61) and (2.56) in order to eliminate A′
0. These two

equations determine H̃0 and B0. We are only interested in B0, as we have already
calculated H̃0. After the addition we are left with

− 7
2r̃A2H̃

2
0 + 3A2H̃

′
0H̃0 + 3A0

H̃
′
0

H̃0
+ A′

2H̃
2
0 − 3B0 + 3B2H̃

2
0 = 0. (2.62)

Rearranging and plugging in known results we can write B0 as follows

B0 = αH̃
2
0

r̃7/2

⎡⎣Λ + 32
15α

2Λd ln H̃0

d ln r̃ − 2
(︄

d ln H̃0

d ln r̃

)︄2⎤⎦ . (2.63)

This leads us to the vertical velocity ṽz2 of the following form (Kluźniak and Kita
[2000])

ṽz2 = αz̃
H̃

2
0

r̃7/2

⎡⎣Λ
⎛⎝1− z̃2

H̃
2
0

⎞⎠+ 32
15α

2Λd ln H̃0

d ln r̃ − 2
(︄

d ln H̃0

d ln r̃

)︄2⎤⎦ . (2.64)
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We have not yet used the vertical equation (2.32) and we will not do so now
either. Solving this equation would lead to c̃s2, which is a second order correction
to the speed of sound, and we are not interested in that at the moment. Let us
now recap what we have achieved in this section:

Ω̃2 = H̃
2
0

r̃7/2

⎡⎣−3
4 + 1

2
d ln H̃0

d ln r̃ + 2
15α

2Λ
⎛⎝1− 6 z̃

2

H̃
2
0

⎞⎠⎤⎦ ,

ṽr1 = α
H̃

2
0

r̃5/2

⎡⎣Λ
⎛⎝1− z̃2

H̃
2
0

⎞⎠+ 32
15α

2Λ− 2d ln H̃0

d ln r̃

⎤⎦ ,
ṽz2 = αz̃

H̃
2
0

r̃7/2

⎡⎣Λ
⎛⎝1− z̃2

H̃
2
0

⎞⎠+ 32
15α

2Λd ln H̃0

d ln r̃ − 2
(︄

d ln H̃0

d ln r̃

)︄2⎤⎦ .
The vertical structure describes the formation of backflows nicely, see Figure

2.1 for reference. We plotted for three different values of the vertical coordinate
z̃ = 0, z̃ = H̃0 and z̃ = H̃0/

√
6, which corresponds the height averaged value of

the velocity. We averaged the radial velocity in the following manner

⟨ṽr1⟩ = 1
Σ0

∫︂ H̃0

−H̃0
ρ̃0ṽr1dz̃, (2.65)

where Σ0 is the surface density given by

Σ0 =
∫︂ H̃0

−H̃0
ρ̃0dz̃. (2.66)

Calculating this yields

⟨ṽr1⟩ = ṽr1

(︄
r̃, z̃ = H̃0√

6

)︄
. (2.67)

The vertically averaged value is very close to the value at the mid-plane. However,
it cannot go into the positive values since it would mean that the matter is flowing
outwards, which would not make sense as the matter would then have to be
created somewhere. At the edge of the disk, the vertical velocity comes nowhere
near the 0 mark, meaning there are absolutely no backflows at the edge. The
relations between α, z̃ and r̃stag, which is the radius where the backflows start
forming, can be further studied (see Kluźniak and Kita [2000]).
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Figure 2.1: Plot showing the radial velocity in the outer disk at the midplane,
surface and the vertically integrated value. We set α = 0.01 and for the sake of
simplicity we also set r̃+ = 1 = ṁ. The divergent behaviour is clearly visible at
the zero-torque radius. We see that the radial velocity diverges for all three dif-
ferent heights. In fact, a closer look at equation (2.52) reveals that the divergence
is caused by height-independent terms. This gives us a reason to believe that in
the boundary layer the quantities should be independent of z in the lowest order.
The importance of proper vertical structure can also be seen in this plot since
the vertically integrated radial velocity cannot describe the backflows near the
midplane of the disk.
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3. Boundary layer solutions

3.1 Perturbation theory

Perturbation theory is a powerful tool that helps us solve complex problems for
which we are not able to find an exact solution. Perturbation theory offers an
approximative solution whose functional dependence should be very similar to the
actual solution. Even though we have not explicitly said so before, we had already
used perturbation theory when we expanded all variables into a perturbation
series of the following form: y(x) = ∑︁N

i=0 ϵ
iyi(x), where yi are the functions, we

obtain by solving the given problem for each order of a small parameter ϵ. This
is why we introduced the ϵ parameter the way we did and why our assumption
of thin disk was important.

Perturbation problems can be divided into two subcategories – singular and
regular (Bender and Orszag [1999]). Regular perturbation theory is suitable for
problems, where already leading-order solution obtained by setting ϵ = 0 provides
a reasonable approximation. The higher order terms are just small corrections of
the zeroth-order solution. An example of regular perturbation problem would be
the equation y′(x)+ϵy(x) = f(x) with a boundary condition y(x0) = A, where x0
and A are real numbers. In this case, the leading-order approximation is a solution
of y′

0(x) = f(x), which we obtained by setting ϵ = 0. The boundary condition is
then given by y0(x0) = A. The first order is determined by y′

1(x) = −y0(x) with
y1(x0) = 0 as the boundary condition, and only serves as a correction. This is
the approach KK use, and it is valid sufficiently far away from the inner edge of
the disk.

On the other hand, a singular perturbation problem is described by equations
that give either a trivial solution, or they cannot fulfil all the constraints imposed.
A typical example of the sort is a differential equation, where the highest-order
derivative term is multiplied by the expansion parameter. This is the approach
that we will have to take in order to find global properties of the disk as our gov-
erning equations are singular. A simple example of this would be the differential
equation ϵy′(x) + y(x) = f(x) with the same boundary condition as in the case
above. The nature of the equation changes when setting ϵ = 0: originally first-
order ODE is reduced to an algebraic equation. This change of nature can mean
that the expansion is valid only for a certain range of x. The narrow region where
the expansion is not valid is called a boundary layer, in which the term with the
highest order of ϵ is not negligible anymore. Thus, we cannot expand and solve
for each order separately in the boundary layer to get a reasonable approxima-
tion. This could be caused by the inability to meet the boundary conditions with
the function obtained by the solution from the outer region. This is the case with
the outer disk solution, which we just reviewed. Although, all the dimensionless
equations (1.32)-(1.35) describing the accretion flow contain derivatives with re-
spect to the radial coordinate, none of them appear in the zeroth-order equations
(2.1)-(2.4), because they are always multiplied by higher-order quantities (∼ ϵ2

in the radial equation, or ∼ ϵ in the rest). The radial dependence of the solution
is therefore essentially described by algebraic equations, which do not provide
enough freedom to satisfy the boundary condition at the interface between the
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star and the disk. The silent assumption behind the regular perturbation method
is that the solution described by an unknown function behaves ”regularly”, its
derivatives are of the same order as the function itself. This is not the case in
the boundary layer.

To get rid of this problem, we have to rescale both radial and vertical coordi-
nates as well as the quantities in order to allow the solution to change fast in the
radial direction. This essentially means that we zoom in the boundary layer. The
proper scaling is acquired by requiring dominant balance when the term with the
highest-order radial derivative appears in the leading-order equations. Dominant
balance means that the most important terms for a given boundary condition are
balanced i.e., they are of the same order of magnitude, and they are the most
dominant. If we manage to obtain dominant balance, we can start to solve the
rescaled equations. The new equations will yield a function fi which is a solution
valid in the boundary layer. Once we have the inner solution fi and the outer
solution fo we will have to match them. Matching means that we require the limit
of the inner solution as X →∞ to be equal to the limit of the outer solution as
x→ a, where X is the variable of the inner region, x of the outer region and a is
the point in whose neighbourhood is the boundary layer. We will construct the
composite solution f on the entire region as follows f = fi + fo− common limit.
For further reference, see Bender and Orszag [1999].

3.2 Rescaled equations of motion
In this section, we use the knowledge of the outer solution and find a dominant
balance so that we can achieve a non-singular solution in the neighbourhood of
the zero-torque radius. We will denote all the scaled quantities with a hat and
employ the following rescaling:

• r̃ = r̃+ + ϵµr̂

• z̃ = ϵν ẑ

• ṽr = ϵav̂r

• ṽz = ϵbv̂z

• ϵ2Ω̃2 = ϵcω̂

• c̃s = ϵdĉs

Notice how we did not scale the function Ω̃, but only its second-order correc-
tion, as it is the first non-zero correction to the Keplerian angular frequency. We
made this choice because the Keplerian angular frequency is a known function of
r̃, and we know what the function looks like in the boundary layer. We thus de-
fined a new function ω̂ which tells us how much the real value of angular frequency
differs from the Keplerian value. Mathematically we can write ω̂ = Ω̃− Ω̃K. See
Figure 3.1 for reference. We first discuss how the scaling would look like in the
outer region. Now that we know the solution, it is pretty simple. One might check
for themselves that if we plug the following values µ = ν = d = 0, a = 1, c = d = 2
into the initial non-scaled equations from the Section 1.2, we obtain the scaled
equations of motions as per discussed in Section 1.4. There are six unknown
constants that we will have to find. Hence, we will need to find six equations to
solve for µ, ν, a, b, c, d. Before we begin our calculations, we first need to discuss
the orders of ρ̂, η̂ and ξ̂ in terms of the six constants. From the equation for the
polytropic speed of sound (1.4), we know that c2

s ∼ P/ρ. From the polytropic
equation (1.2), it follows that P ∼ ρ(n+1)/n. This gives the following relation:
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Figure 3.1: Schematic plot of the angular frequency. The blue line shows the
expected angular frequency in the inner layer for a star rotating at a frequency
Ω∗, which is below its Keplerian value at the stellar radius R∗. In the outer disk,
the angular frequency is given by ΩK up to second-order correction. In the further
regions, the Keplerian frequency dominates and ω is negligible, however in the
boundary layer in the neighbourhood of r̃+, the correction ω becomes dominant.
The red part represents the boundary layer.

ρ ∼ c2n
s , which holds everywhere, hence we write ρ̃ = ϵ2ndρ̂. From the definition

of kinematic viscosity, we assumed we know that η ∼ c2
sρ, therefore we know that

η̃ = ϵ(2n+2)dη̂. For ξ̂ we assume that it is of the same order as η̂. For the rescaled
derivatives, we can write

∂

∂r̃
= ∂

∂r̂

dr̂
dr̃ = ϵ−µ ∂

∂r̂
. (3.1)

Analogically for the z̃ derivative

∂

∂z̃
= ∂

∂ẑ

dẑ
dz̃ = ϵ−ν ∂

∂ẑ
. (3.2)

This will be useful since we assume all the rescaled functions to be functions of
their respective rescaled coordinates.

Let us now plug the rescaled variables into our equations from Section 1.4.
For the continuity equation (1.35) we get:

ϵ1+2nd−µ+a

r̃+ + ϵµr̂

∂

∂r̂
((r̃+ + ϵµr̂) ρ̂v̂r) + ϵ2nd−ν+b ∂

∂ẑ
(ρ̂v̂z) = 0, (3.3)

where we will ignore the terms ϵµr̂ since we assume that r̃+ ≫ ϵµr̂ and here we
are interested in the leading-order solution only. Thus, we can either use Taylor
expansion if it is in the denominator or it is of order µ lower than the term with
r̃+, which has to be greater than zero. If µ was equal to zero, there would be no
scaling, and if it were less than zero, this would imply that r̂ ≫ r̃ and we would
be further than the outer region. We also know that r̃+ is a constant, which
simplifies the equation (3.3) to

ϵ1+2nd−µ+a ∂

∂r̂
(ρ̂v̂r) + ϵ2nd−ν+b ∂

∂ẑ
(ρ̂v̂z) = 0. (3.4)
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Now, we want the terms in this equation to be of the same order to achieve
dominant balance in this equation. Hence, we get our first equation for the
constants

1 + a− µ = b− ν. (3.5)
Interestingly enough, one can come to this conclusion just from geometry consid-
erations. On the surface of the flow, we can write (Kluźniak and Kita [2000])

vz

vr

=
dz
dt
dr
dt

= ±dH
dr . (3.6)

Comparing both sides of this equation and using our scalings, we get

b− a = 1 + ν − µ, (3.7)

where we assumed that Ĥ is a characteristic value of ẑ in the inner region. It is
clear that equations (3.5) and (3.7) are equivalent.

Our next equation will be obtained from the vertical equation. As we have
seen, the vertical momentum equation is in the outer disk dominated by the
balance between the vertical gravity and the pressure gradient. In the following,
we will assume that these terms are also present in the leading-order equations
describing the flow in the vicinity of the zero-torque radius. Nevertheless, there
may also appear other terms in the leading-order. Balancing these terms in the
inner region, we have

ϵν ẑ

r̃3
+
∼ 3

2ϵ
2d−ν ∂ĉ

2
s

∂ẑ
. (3.8)

Comparing these terms, we end up with a simple equation

ν = 2d− ν. (3.9)

In the outer disk, the radial equation is dominanted by the radial component
of gravity and the centrifugal force. Consequently, the angular velocity is given
by Ω̃K at large distances. As discussed before, it is this assumption that leads
to singular behaviour of the outer-disk solution. In order to obtain a regular
solution, we have to include another term in the leading-order equation. The
most natural choice is the radial pressure gradient that is increasingly important
as r̃ → r̃+. We therefore have in the inner region

−2ϵcω̂Ω̃0r̃+ − ϵ2cω̂2r̃+ = 3
2ϵ

2+2ν

(︄
ẑ

r̃2
+

)︄2

− 3
2ϵ

2+2d−µ∂ĉ
2
s

∂r̂
. (3.10)

We can ignore the term involving ω̂2 because it is of a lower order than the term
involving ω̂. Hence, we are left with three terms: the term involving ω̂, the
gravitational term and the pressure term. It seems reasonable to us to balance
the pressure term with the first term on the left-hand side because we want to
express that ω̂ becomes more important in the inner region and the gravity term
is just a correction, which gets smaller as the disk gets thinner. We thus balance
the said terms yielding another constraint

c = 2 + 2d− µ. (3.11)
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Three done, three to go. Let us now examine a constant of integration from
equation (2.22). Rescaling the equation, one gets

ϵṁ = −ϵ2nd+a+ν r̃+

∫︂ ∞

−∞
ρ̂v̂rdẑ. (3.12)

Balancing both sides of this equation yields our fourth constraint

1 = 2nd+ a+ ν, (3.13)

where we chose to work with general polytropic index n.
For the last two equations we will have to study the azimuthal equation.

Rescaled version takes the following form

ϵ1+2nd+a ρ̂v̂r

r̃2
+

[︄
d(r̃2

+Ω̃0)
dr̃ + ϵc−µ∂(r̃2

+ω̂)
∂r̂

]︄
+ ϵ2nd+b+c−ν ρ̂v̂z

∂ω̂

∂ẑ
=

ϵ2+(2n+2)d−µ 1
r̃3

+

[︄
∂

∂r̂

(︄
η̂r̃3

+
dΩ̃0

dr̃

)︄]︄

+ϵ2+(2n+2)d−2µ+c 1
r̃3

+

[︄
∂

∂r̂

(︄
η̂r̃3

+
∂ω̂

∂r̂

)︄]︄
+ ϵ(2n+2)d−2ν+c ∂

∂ẑ

(︄
η̂
∂ω̂

∂ẑ

)︄
,

(3.14)

where we chose to write the terms involving Ω̃0 as derivatives with respect to r̃
since we know how this function behaves and scaling makes it a constant in the
inner layer. We want to balance the terms in the first square bracket, since the
second term becomes more dominant in the boundary layer, as one can conclude
from the second constant of integration. We thus get a fifth constrain, which is
that

0 = c− µ. (3.15)
The last constraint will be obtained by balancing the entire first bracket on

the left-hand side with the first two terms on the right-hand side. As was demon-
strated before, the divergent terms depend only weakly on the vertical coordinate
close to r̃+. Our choice compares all the terms with radial derivatives, which
should be more important in the boundary layer. The last equation therefore is

1 + 2nd+ a = 2 + (2n+ 2)d− µ. (3.16)

Let us briefly recap the equations before we solve them:

• 1 + a− µ = b− ν,

• ν = d,

• c = 2 + 2d− µ,

• 1 = 2nd+ a+ ν,

• c = µ,

• 1 + 2nd+ a = 2 + (2n+ 2)d− µ.

Solving this system of equations yields

a = b = d = ν = 1
2n+ 2 , (3.17)

c = µ = 1 + 1
2n+ 2 = 1 + a. (3.18)
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Let us now plug in these constants back into our equations. For the leading order
we can write

v̂r
∂v̂r

∂r̂
+ v̂z

∂v̂r

∂ẑ
− 2Ω̃0ω̂r̃+ = −3

2
∂ĉ2

s
∂r̂

+2
ρ̂

∂

∂r̂

(︄
η̂
∂v̂r

∂r̂

)︄
+ 1
ρ̂

∂

∂ẑ

(︄
η̂
∂v̂r

∂ẑ

)︄
+ 1
ρ̂

∂

∂ẑ

(︄
η̂
∂v̂z

∂r̂

)︄

+1
ρ̂

∂

∂r̂

[︄(︃
ξ̂ − 2

3 η̂
)︃(︄

∂v̂r

∂r̂

)︄]︄
+ 1
ρ̂

∂

∂r̂

[︄(︃
ξ̂ − 2

3 η̂
)︃
∂v̂z

∂ẑ

]︄
,

(3.19)

ρ̂v̂r

(︄
dΩ̃0

dr̃ + ∂ω̂

∂r̂

)︄
+ ρ̂v̂z

∂ω̂

∂ẑ
= ∂

∂r̂

(︄
η̂

dΩ̃0

dr̃

)︄
+ ∂

∂r̂

(︄
η̂
∂ω̂

∂r̂

)︄
+ ∂

∂ẑ

(︄
η̂
∂ω̂

∂ẑ

)︄
, (3.20)

v̂r
∂v̂z

∂r̂
+ v̂z

∂v̂z

∂ẑ
= − ẑ

r̃3
+
− 3

2
∂ĉ2

s
∂ẑ

+ 2
ρ̂

∂

∂ẑ

(︄
η̂
∂v̂z

∂ẑ

)︄
+ 1
ρ̂

∂

∂r̂

(︄
η̂
∂v̂z

∂r̂

)︄
+

1
ρ̂

∂

∂r̂

(︄
η̂
∂v̂r

∂ẑ

)︄
+ 1
ρ̂

∂

∂ẑ

[︄(︃
ξ̂ − 2

3 η̂
)︃
∂v̂z

∂ẑ

]︄

+1
ρ̂

∂

∂ẑ

[︄(︃
ξ̂ − 2

3 η̂
)︃
∂v̂r

∂r̂

]︄
,

(3.21)

∂

∂r̂
(ρ̂v̂r) + ∂

∂ẑ
(ρ̂v̂z) = 0. (3.22)

We used the fact that r̃+ is a constant; hence, we could get rid of terms which
had the pre-factor 1/r̃k and r̃k inside a derivative in the r̃ direction. In the same
manner as in Section 2.4 we shall write out some important relations:

η̂

ρ̂
= 2

5α
ĉ2

s

Ω̃0
,

1
ρ̂

∂η̂

∂r̂
= α

Ω̃0

∂ĉ2
s

∂r̂
,

1
ρ̂

∂η̂

∂ẑ
= α

Ω̃0

∂ĉ2
s

∂ẑ
.

The equations (3.19)-(3.22) are non-linear partial differential equations in r̂
and ẑ. Motivated by KK outer disk second-order solution, we attempt to solve
these equations in a similar fashion. Namely, we will employ the following ansatz
v̂r = A(r̂), ĉ2

s = C(r̂) + ẑ2D(r̂), v̂z = ẑE(r̂), ω̂ = W (r̂), where A, C, D, E and
W are functions to be determined from the equations by comparing the terms
with the same order of z̃. This ansatz takes into account the behaviour of the
outer disk solution as r̃ → r̃+. We know that the quantities ṽr, ṽz/z and Ω̃2
depend on the vertical coordinate weakly in the neighbourhood of r̃+ since all
the divergent terms are height-independent. The terms that do depend on z̃ serve
as small corrections as was demonstrated on Figure 2.1 for the radial velocity.
After plugging in the ansatz into our rescaled equations, we arrive at equations
with polynomial dependence on the vertical coordinate. Comparing terms of the
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same power of ẑ, we obtain a system of ODEs governing the functions A, C, D,
E and W .

However, the system is overdetermined. We obtain more constraints than
the number of variables we are solving for. The continuity, azimuthal and radial
equations contain terms proportional to ẑ2 as well as height-independent terms.
The vertical equation yields terms proportional to ẑ and ẑ3. This is in total
8 constraints for just 5 variables. Such systems of equations usually have only
trivial solutions, unless all the constraints are compatible with each other.

In our case, the system is consistent when three of the equations are dependent
on the rest. Unfortunatelly, as the system is highly non-linear, we were not able
to demonstrate its inconsistency, nor have we been able to prove that the system
is overdetermined. Nevertheless, we would like to note that the system still likely
leads to only a trivial solution if one introduces a more complicated vertical
structure than the one introduced by our ansatz.

Finally, during our attempt at solving this system, we have found that the
radial and vertical Euler equations simplify significantly if we rescale the α pa-
rameter. This makes further analysis easier as we can work with less complicated
systems of equations. This finding server us as motivation for the next chapter,
where we explore in more details flows with a small values of the viscosity pa-
rameter. For this type of flows, we will first demonstrate the inconsistency of our
ansatz. Next, we will suggest how to correct the ansatz to obtain a self-consistent
system of equations.

3.3 Low-viscosity accretion flows
In this section, we restrict ourselves to flow with a low value of the viscosity
parameter α. As mentioned in the introduction, α has to be less than one in order
for the turbulence to be subsonic. We consider flows where the α parameter is
scaled by some power of the thickness parameter ϵ. Therefore, we rescale the α
parameter as α = ϵqα̂, where α̂ is of order unity and q > 0. We were motivated
to do this by the fact, that for subsonic turbulence, it has to hold that α < 1.
It also seems reasonable to use this scaling as it gets rid of the problematic term
in the lowest order. The additional scaling gives us another unknown q. We will
leave q to be a free parameter. With this new scaling we obtain the following
equations:

• 1 + a− µ = b− ν,

• ν = d,

• c = 2 + 2d− µ,

• 1 + q = 2nd+ a+ ν,

• c = µ,

• 1+2nd+a = 2+(2n+2)d−µ+q.

We needed to look back at equation (3.12) and realise that ṁ is no longer
O(1), but O(ϵq), since ṽr1 depends linearly on α which is being scaled. Solving
this system yields

ν = d = 1
2n+ 2 , (3.23)

c = µ = d+ 1, (3.24)
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a = b = d+ q. (3.25)
As stated before, q is a free parameter; however, we do have one constraint.

We need the velocities to be subsonic, which leads us to the following observation:

ṽ2
r ≤ c̃2

s ⇔ ϵav̂r ≤ ϵdĉs, (3.26)

which is satisfied for q ≥ 0. Similarly for the vertical velocity. This knowledge
greatly simplifies the equations since we know that any term with ϵq is of a lower
order for any q greater than zero. We have already discussed the case of q = 0 as
it was the scaling we used at first. With the assumption of q > 0 we can write
the equations in the lowest order as:

2Ω̃0ω̂r̃+ = 3
2
∂ĉ2

s
∂r̂

, (3.27)

ρ̂v̂r

(︄
dΩ̃0

dr̃ + ∂ω̂

∂r̂

)︄
+ ρ̂v̂z

∂ω̂

∂ẑ
= ∂

∂r̂

(︄
η̂

dΩ̃0

dr̃

)︄
+ ∂

∂r̂

(︄
η̂
∂ω̂

∂r̂

)︄
+ ∂

∂ẑ

(︄
η̂
∂ω̂

∂ẑ

)︄
, (3.28)

0 = − ẑ

r̃3
+
− 3

2
∂ĉ2

s
∂ẑ

, (3.29)

∂

∂r̂
(ρ̂v̂r) + ∂

∂ẑ
(ρ̂v̂z) = 0. (3.30)

As we can see, the continuity and azimuthal equations are still the same, but
the vertical and radial equations change significantly. The rest of the terms in
equations (3.19) and (3.21) are of order q higher than the lowest terms.

3.4 Various assumptions about the vertical pro-
file of the disk

In this section, we first demonstrate that our assumptions about the vertical
structure introduced at the end of Section 3.2 do not lead to a self-consistent
solution in the case of low-viscosity accretion flows. Next, we demonstrate that
we can fix this situation by introducing a non-trivial vertical structure of the
velocity field.

3.4.1 Trivial profile of the velocity field
In this subsection, we will employ the ansatz introduced in Section 3.2: v̂r = A(r̂),
ĉ2

s = C(r̂) + ẑ2D(r̂), v̂z = ẑE(r̂), ω̂ = W (r̂). We will again separate by orders of
ẑ. In this case, we obtain 7 constraints for 5 unknowns. In comparison with the
case discussed in Section 3.2, the vertical equation (3.29) gives just terms that
depend linearly on ẑ and one height-independent term.

The radial equation in ẑ2 yields

0 = D′, (3.31)

hence D is a constant in r̂. For ẑ0 we can write

C ′ = 4
3Ω̃0Wr̃+. (3.32)
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Similarly for the vertical equation we write

D = − 1
3r̃3

+
, (3.33)

which is consistent with equation (3.31). Let us now divide the azimuthal equa-
tion (3.28) by the density ρ̂ and simplify as

v̂r

(︄
dΩ̃0

dr̃ + ∂ω̂

∂r̂

)︄
= 1
ρ̂

∂

∂r̂

(︄
η̂

dΩ̃0

dr̃

)︄
+ 1
ρ̂

∂

∂r̂

(︄
η̂
∂ω̂

∂r̂

)︄
. (3.34)

Differentiating and employing the list of equalities we can write

A
(︂
Ω̃′

0 +W ′
)︂

= 2
5
α̂

Ω̃0

(︂
C + ẑ2D

)︂
W ′′ + α̂

Ω̃0

(︂
Ω̃′

0 +W ′
)︂
C ′, (3.35)

where we used our ansatz and also the fact that D′ = 0. Note that the sign ”′”
means the respective derivative - for terms with a tilde, it is a derivative with
respect to r̃, and for the rest of the terms, it means the derivative with respect
to r̂. Terms with ẑ2 give

W ′′ = 0⇒ W = κr̂ + β, (3.36)

where κ and β are yet unknown constants. For ẑ0 we can write

A
(︂
Ω̃′

0 +W ′
)︂

= α̂

Ω̃0

(︂
Ω̃′

0 +W ′
)︂
C ′. (3.37)

Before we get to the continuity equation, we remind ourselves that for n = 3/2
we have ρ̂ = ĉ3

s = (C + ẑ2D)3/2. We can now write

A′
(︂
C + ẑ2D

)︂
+ 3

2AC
′ + E

(︂
C + ẑ2D

)︂
+ 3ẑ2ED = 0, (3.38)

where the height-independent part is

A′C + 3
2AC

′ + EC = 0, (3.39)

which gives a relation between A, E and C. We already know what W is, so we
can then use the relation (3.32) to calculate for C and then the relation (3.37) to
obtain a result for A. Hence, we could now calculate E. We have yet to examine
the last equation stemming from the continuity equation for the terms with ẑ2.
We can write this equation as

A′ = −4E, (3.40)

which unfortunately leads to all constants being zero. Therefore, all the quantities
vanish and we arrive at a trivial solution. This demonstrates that our original
ansatz does not provide a non-trivial solution in the case of low-viscosity flow.
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3.4.2 Parabolic profile of the radial velocity
The previous result shows that our ansatz is too simple, and that we need to
consider a non-trivial vertical structure of the velocity field. The origin of the
inconsistency of the previous assumptions can be traced to W being linear in r̂,
which causes the radial dependence of the rest of the terms to be of polynomial
nature. We can obtain a more general dependence on r̂ for W if the left-hand size
of the azimuthal equation (3.35) has some vertical structure. Therefore, we will
now try to add vertical structure for the radial velocity v̂r. In this subsection, we
will thus assume v̂r = A(r̂)+ ẑ2B(r̂), ĉ2

s = C(r̂)+ ẑ2D(r̂), v̂z = ẑE(r̂), ω̂ = W (r̂).
As one can see, this does not change the results from the radial and vertical
equations (3.31)-(3.33). We only need to correct the azimuthal and continuity
equations. The azimuthal equation now becomes

(︂
A+ ẑ2B

)︂ (︂
Ω̃′

0 +W ′
)︂

= 2
5
α̂

Ω̃0

(︂
C + ẑ2D

)︂
W ′′ + α̂

Ω̃0

(︂
Ω̃′

0 +W ′
)︂
C ′, (3.41)

which seemingly changes only the equation for ẑ2-component, but since W ′′ is
no longer zero, both components are affected by this change. The continuity
equation becomes
(︂
A′ + ẑ2B′

)︂ (︂
C + ẑ2D

)︂
+ 3

2
(︂
A+ ẑ2B

)︂
C ′ +E

(︂
C + ẑ2D

)︂
+ 3ẑ2ED = 0, (3.42)

which changes in the order of ẑ2 and also yields a new relation in ẑ4. The new
equation implies that B is a constant in r̂, which helps us solve the azimuthal
equation in the order of ẑ2. The said equation is of the following form

B
(︂
Ω̃′

0 +W ′
)︂

= 2
5
α̂

Ω̃0
DW ′′, (3.43)

which we can use to solve for W . The solution is a linear combination of a linear
term in r̂, an exponential term in r̂ and a constant. We can try to solve the rest
of the equation, but we will again be left with one more equation than is the
number of variables. The last equation may be used to calculate the constants,
which yet again leads to all quantities being zero. Therefore, this attempt does
not lead to a non-trivial solution either.

3.4.3 Cubic profile of the vertical velocity
We traced the fact that the second ansatz does not provide a non-trivial solution
to be caused by B being a constant. We now try to fix this issue by allowing
a more general dependence of the vertical velocity on height. We assume: v̂r =
A(r̂) + ẑ2B(r̂), ĉ2

s = C(r̂) + ẑ2D(r̂), v̂z = ẑE(r̂) + ẑ3F , ω̂ = W (r̂). Let us recap
the equations with this latest ansatz so that one does not get lost in the amount
of equations presented:

0 = − ẑ

r̃3
+
− 3

2
∂ĉ2

s
∂ẑ

,

2Ω̃0Wr̃+ = 3
2
∂ĉ2

s
∂r̂

,
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(︂
A′ + ẑ2B′

)︂ (︂
C + ẑ2D

)︂
+ 3

2
(︂
A+ ẑ2B

)︂
C ′ +

(︂
E + 3ẑ2F

)︂ (︂
C + ẑ2D

)︂
+3ẑ2

(︂
E + ẑ2F

)︂
D = 0

,

(︂
A+ ẑ2B

)︂ (︂
Ω̃′

0 +W ′
)︂

= 2
5
α̂

Ω̃0

(︂
C + ẑ2D

)︂
W ′′ + α̂

Ω̃0

(︂
Ω̃′

0 +W ′
)︂
C ′.

We chose to write the vertical and radial equations in their unseparated form
because of the following reason. The vertical equation is actually identical to the
vertical equation in the inner region, so we know the solution for ĉ2

s. We chose to
leave the ansatz form in the equations before, as it might be easier to work with
C and D and just at the end of our calculations plug in for them. We write the
speed of sound in the inner region as

ĉ2
s = Ω̃2

0
3

(︃
Ĥ

2
− ẑ2

)︃
. (3.44)

From this we can determine that

C = Ω̃2
0

3 Ĥ
2
, D = −Ω̃2

0
3 . (3.45)

The result for D was already known from equation (3.33). However, we did not
know what C should be. This is also the point we remind ourselves that Ω̃0 is
a constant in the inner layer. The radial equation gives a relation between the
disk semi-thickness Ĥ and the angular velocity ω̂. If we manage to find the radial
dependence of the disk semi-thickness, we will then be able to solve for W . This
will lead us to the vertical velocity given by A and B from the azimuthal equation.
We will then be able to calculate E and F yielding the vertical velocity. However,
we will have one redundant equation yet again since we will try to solve for Ĥ
from the same equation we used while deriving the disk thickness in Section 2.3.
The redundant equation may serve as a consistency check. We will now express
all the quantities as functions of Ĥ. Beginning with W , the vertical equation
yields

W = Ω̃0

4r̃+

dĤ2

dr̂ . (3.46)

We are now able to express A as well as B from the azimuthal equation as follows

B = −
α̂Ω̃0

d3Ĥ
2

dr̂3

30
(︃
−3

2 + 1
4

d2Ĥ
2

dr̂2

)︃ , (3.47)

and

A =
α̂Ω̃0Ĥ

2 d3Ĥ
2

dr̂3

30
(︃
−3

2 + 1
4

d2Ĥ
2

dr̂2

)︃ + α̂Ω̃0

3
dĤ2

dr̂ . (3.48)

We thus are able write the radial velocity v̂r in the following form

v̂r = α̂Ω̃0Ĥ
2

⎡⎢⎢⎣ d3Ĥ
2

dr̂3

30
(︃
−3

2 + 1
4

d2Ĥ
2

dr̂2

)︃ (︄1− ẑ2

Ĥ
2

)︄
+ 1

3
d ln Ĥ2

dr̂

⎤⎥⎥⎦ . (3.49)
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We could also express the vertical velocity in terms of Ĥ and its derivatives.
However, we will just express it in terms of A and B as we are not currently
interested in the vertical velocity. From the continuity equation in ẑ4, we can get

F = −B
′

6 . (3.50)

From ẑ0 in continuity equation, it stems that

E = −A′ − 3
2
C ′

C
A, (3.51)

which after plugging in for C and some adjustments can be written as

E = − 1
Ĥ

3
d
dr̂

(︃
AĤ

3
)︃
. (3.52)

Now that we have expressed all the variables in terms of Ĥ and its derivatives,
all we have to do is actually calculate Ĥ. We will try to find an expression for Ĥ
the same way as in the outer solution; hence we take a look at equation (2.27),
which changes in the inner layer. We can write the difference of angular momenta
in the neighbourhood of r̃+ as follows:

j̃K − j̃+ =
√︂
r̃+ + ϵcr̂ −

√︂
r̃+

.=
√︂
r̃+ + ϵcr̂

2
√
r̃+
−
√︂
r̃+. (3.53)

Thus, we can rewrite equation (2.27) as

ṁ

(︄
r̂

2
√
r̃+

+Wr̃2
+

)︄
= −r̃3

+

(︂
Ω̃′

0 +W ′
)︂ ∫︂ Ĥ

−Ĥ
η̂dẐ, (3.54)

which stems from us balancing the terms on the left-hand side with the right-hand
side in our scaling. We can plug in for W from equation (3.46) giving us

ṁ

⎛⎝ r̂

2
√
r̃+

+ r̃+Ω̃0

4
dĤ2

dr̂

⎞⎠ = −r̃3
+

⎛⎝−3Ω̃0

2r̃+
+ Ω̃0

4r̃+

d2Ĥ
2

dr̂2

⎞⎠∫︂ Ĥ

−Ĥ
η̂dẐ. (3.55)

We now have to integrate η̂, which we can write as

η̂ = 2α̂
3Ω̃0

⎛⎝Ω̃2
0

5

(︃
Ĥ

2
− Ẑ

2
)︃⎞⎠5/2

. (3.56)

The integration is given by equation (2.28). We finally obtain

ṁ

⎛⎝ r̂

2
√
r̃+

+ r̃+Ω̃0

4
dĤ2

dr̂

⎞⎠ = r̃2
+α̂

Ω̃5
0πĤ

6

16 · 53/2 − r̃
2
+α̂

Ω̃5
0πĤ

6

16 · 6 · 53/2
d2Ĥ

2

dr̂2 . (3.57)

In order to simplify notation we introduce a new variable: y(r̂) = Ĥ
2(r̂).

With this, we have obtained a second-order non-linear differential equation of the
following form

τ r̂ + βy′(r̂) = γy3(r̂)− λy3(r̂)y′′(r̂), (3.58)
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τ , β, γ and λ are constants equal to

τ = ṁ

2
√
r̃+
, (3.59)

β = ṁr̃+Ω̃0

4 , (3.60)

γ = r̃2
+α̂

Ω̃5
0π

16 · 53/2 , (3.61)

λ = r̃2
+α̂

Ω̃5
0π

16 · 6 · 53/2 . (3.62)

Let us now divide equation (3.58) by λ and introduce new constants τ̂ = τ/λ,
β̂ = β/λ and γ̂ = γ/λ. We will also rescale this equation by rescaling y and r̂ as

y = y0ỹ, r̂ = R0R̃, (3.63)

where y0 and R0 are constants and ỹ and R̃ are the new variables. We will now
rewrite equation (3.58) in terms of these new variables. We can write

τ̂R0R̃ + β̂
y0

R0
ỹ′(R̃) = γ̂y3

0 ỹ
3(R̃)− y4

0
R2

0
ỹ3(R̃)ỹ′′(R̃). (3.64)

Let us now divide this equation by y4
0/R

2
0 and then set the constants in front of

the second term on the left-hand side and the first term on the right equal to 1.
We have some freedom here as y0 and R0 are yet undetermined. The equation
now becomes

τ̂
R3

0
y4

0
R̃ + ỹ′(R̃) = ỹ3(R̃)− ỹ3(R̃)ỹ′′(R̃). (3.65)

By setting the terms equal to one we get two equations for the constants. The
equations read

β̂
R0

y3
0

= 1, (3.66)

and
γ̂
R2

0
y0

= 1. (3.67)

Solving this system yields

R0 =
⎛⎝ β̂

γ̂3

⎞⎠1/5

; y0 =
⎛⎝ β̂2

γ̂

⎞⎠1/5

. (3.68)

Now we are left with the following equation

1
3R̃ + ỹ′(R̃) = ỹ3(R̃)− ỹ3(R̃)ỹ′′(R̃), (3.69)

because
τ̂
R3

0
y4

0
= τ̂

β̂γ̂
= τλ

βγ
= 1

3 . (3.70)
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With our ansatz and separation of the equations, we have managed to trans-
form the system of 4 partial differential equations into a single ordinary non-linear
differential equation, which has to be numerically integrated. We have also man-
aged to express this equation independently of detailed flow properties since we
managed to rescale it so that it does not depend on any flow parameters. This
equation, therefore, is general and should work for any flow in the neighbourhood
of r̃+.

3.5 Asymptotic behaviour
The most important quantity in the inner solution seems to be the disk semi-
thickness. Hence, we will now inspect its asymptotic behaviour. We will want
to match the asymptote of the inner solution as r̂ →∞ to the asymptote of the
outer solution as r̃ → r̃+. Thanks to our knowledge of H̃0 in the outer solution,
we will be able to check if our equations for the flow around the zero-torque radius
provide correct asymptotic behaviour at large distances. We know that for the
disk semi-thickness in the outer disk we can write

H̃0 ∼ r̃11/12
(︂
r̃1/2 − r̃1/2

+

)︂1/6
, (3.71)

which in the limit r̃ → r̃+ behaves as r̂1/6, since the first term is a constant in
the limit and the term in the parentheses is a linear function of r̂ = r̃− r̃+ in the
neighbourhood of r̃+. Let us now examine equation (3.69) in the limit R̃ → ∞.
We will assume that we can write ỹ ∼ R̃

δ in this limit and attempt to find the
exponent δ. The equation becomes

−1
3R̃ + δR̃

δ−1 = R̃
3δ + δ(δ − 1)R̃3δ

R̃
δ−2

. (3.72)

We can now attempt to find δ such that we compare the significance of any
two terms. There are six possibilities, from which only two lead to a reasonable
balancing of terms. The two possibilities are δ = 1/3 and δ = 2. The former
leads to ỹ ∼ r̂1/3, which gives Ĥ ∼ r̂1/6 since our scaling of the equation does not
change the asymptotic behaviour. This is the solution we are looking for, as it
gives the correct behaviour of Ĥ. The other possibility leads to Ĥ being linear
in the limit; hence we will ignore it for now. The first possibility seems to make
perfect sense as it makes the first and third term of the equation to be dominant,
which is exactly what happens in the outer solution. Now with the assumption
that Ĥ ∼ r̂1/6 in the limit as r̂ →∞, we can inspect the behaviour of the rest of
the inner quantities. Starting with W , we get

W ∼ dĤ2

dr̂ ∼
dr̂1/3

dr̂ ∼ r̂−2/3. (3.73)

We now inspect how Ω̃2 behaves in the outer layer limit. The dominant term is
the one with the derivative, so we only need to look at that term. We write

Ω̃2 ∼ H̃
2
0
d ln H̃0

d ln r̃ ∼ H̃0
dH̃0

dr̃ ∼ r̂−2/3, (3.74)
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which is in agreement with the inner quantity.
Moving on to the radial velocity. For the coefficient of the quadratic term in

the vertical velocity B, we can write

B ∼ d3Ĥ
2

dr̂3 ∼ r̂−8/3, (3.75)

where we used the fact that the denominator goes to a constant. We see that the
vertical structure goes to zero rather quickly in the limit, which makes sense, as
in the outer region the vertical structure plays no role in the outer limit. The
dominant term independent of ẑ is the one with the derivative, for which we write

Ĥ
2 d ln Ĥ2

dr̂ ∼ dĤ2

dr̂ ∼ r̂−2/3, (3.76)

hence v̂r ∼ r̂−2/3. In the outer solution we can write for the dominant term of ṽr1

ṽr1 ∼ −H̃
2
0
d ln H̃0

d ln r̃ ∼ −r̂
−2/3. (3.77)

This is the only quantity that cannot be fully matched to the outer solution due to
the different sign. For E we can immediately write that it is E ∼ −A/r̂ ∼ −r̂−5/3

thanks to the relation (3.52). And for F we can use equation (3.50), which gives
F ∼ r̂−11/3. Behaviour of the dominant term of ṽz2 in the outer layer can be
written as

ṽz2 ∼ −H̃
2
0

(︄
d ln H̃0

d ln r̃

)︄2

∼ −
(︄

dH̃0

dr̃

)︄2

∼ −r̂−5/3, (3.78)

which is again in agreement with the inner solution. We see that almost all the
quantities behave in the way we would expect, if we choose the solution that
behaves asymptotically as R̃1/3 for R̃ → ∞. The only problem is the sign in
front of the dominant term of the radial velocity. It is interesting that even if
we artificially add the minus in front of this term to compensate for a possible
but unlikely error in calculations, the vertical velocity would then not be able to
be matched to the outer one. We leave the full solution of this problem for the
future work.

3.6 Analysis of the disk semi-thickness equation
As stated before, it is crucial to solve the equation (3.69) in order to obtain the
structure of the disk in the boundary layer. In Section 3.5 we somewhat skipped
the discussion of the two asymptotes and how we got them. Let us discuss this
matter now as well as provide a numerical solution to the said equation. We begin
by assuming that we can write the solution as ỹ = κR̃

δ, where κ is a constant.
We plug this into the equation (3.69) yielding

1
3R̃ + κδR̃

δ−1 = κ3R̃
3δ − δ(δ − 1)κ4R̃

4δ−2
. (3.79)

We may now attempt to make any pair of the terms balanced, and we will find
that the only two possibilities are δ = 1/3 and δ = 2. In other cases, the terms
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that we are not trying to balance become dominant and we do not get dominant
balance, thus we ignore these cases. The case of δ = 2 gives

1
3R̃ + 2κR̃ = κ3R̃

6 − 2κ4R̃
6
. (3.80)

We see that in the limit of R̃→∞, the right-hand side of this equation dominates
and is balanced. We can therefore write

0 = κ3R̃
6 − 2κ4R̃

6 ⇒ κ = 1
2 . (3.81)

Analogically we can write for the case of δ = 1/3

1
3R̃ + κδR̃

−2/3 = κ3R̃ + 2
9κ

4R̃
−2/3

. (3.82)

In this case the first term on each side dominates and thus we write

1
3R̃ = κ3R̃⇒ κ =

(︃1
3

)︃1/3
. (3.83)

3.7 Numerical solution
In the previous section we have found two possible asymptotes of the solution,
but we prefer the one that behaves as R̃1/3 as it can be likely matched to the outer
disk solution. We now know how the solution should behave at large positive R̂.
We can use this knowledge to integrate this equation numerically. To do this,
we have implemented the problem in Python and used numerical routines from
SciPy package. In order to analyse the general properties of the equation, we have
explored the solution with the other asymptotic behaviour as well. As we deal
with a second-order equation, we will need two conditions for each of the solutions.
For the case of δ = 1/3 we use ỹ = (R̃/3)1/3 and its derivative is ỹ′ = R̃

−2/3
/34/3.

Similarly for δ = 2 we can write ỹ = R̃
2
/2 and its derivative ỹ′ = R̃. We now

have to choose R̃ sufficiently large and let the program calculate. See Figure 3.2
for the numerical solution given by boundary conditions of the asymptote R̃2

/2
and Figure 3.3 and 3.4 for the other solution.

We have used the backward differentiation formula and the Adams method
built-in to scipy.integrate to solve the equation numerically. Both these methods
yielded the same results. We can consider our error sufficiently small to show
that the solution behaves asymptotically as R̃2

/2. In the Figure 3.2 we have
integrated from ”inside”, but if we were to integrate from ”outside”, i.e. if we
set the boundary condition at, say, R̃ = 150 and integrated inwards, we would
find that the numerical solution diverges in the neighbourhood of R̃ = 1. This
behaviour is not that unexpected as we know that the solution should be valid
for R̃ → ∞. A more interesting behaviour is the one of the numerical solution
given by (R̃/3)1/3 as it seems to diverge for any boundary condition. If we were
to integrate further than in the figures provided, the numerical integration would
crash. This behaviour is really unexpected, and we cannot at the moment fully
explain why this happens. Strangely, this happens for both integrations, outwards
as well as inwards. Unsurprisingly, this solution diverges from the asymptote more
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Figure 3.2: The numerical solution of the square of the normalised disk semi-
thickness equation. Left panel shows the numerical solution of the equation cor-
responding to the asymptote R̃2

/2. The equation has been integrated from R̃ = 3
to larger R̃. Right panel shows the relative error of the integration as function
of R̃. We calculated the error as ỹ(R̃)/(R̃2

/2)− 1, where ỹ
(︂
R̃
)︂

is the numerical
solution.

slowly as R̃→∞, so it is reasonable to assume that in the limit, this solution is
asymptotically correct. It is interesting to see that the other solution behaves so
well, even when using the boundary condition at such a small R̃. If we were to
choose R̃ > 3 and integrate outwards, the relative error would shrink.

We have attempted to get rid of the divergence in the numerical calculations
by introducing a new parametrisation in the following form:

R̃ = R̃(t); ỹ = ỹ(R̃(t)), (3.84)

which essentially made the system of two ODEs we were integrating into a system
of 3 ODEs. However, this did not bear any better results.

Let us now take a step back and look back at Figure 3.1. It is possible
that R̃ is negative, but our results may not match the inner boundary condition
given by the azimuthal frequency of the star Ω∗, which would mean that there
are nested boundary layers (see Bender and Orszag [1999]). If we make the
same analysis we did when deriving asymptotes of the equation (3.69), we find
that the only feasible solution is the quadratic one, as the other one is negative.
Negative ỹ clearly does not make sense as it would imply that the square of
the disk semi-thickness is negative. We can now try to integrate the equation
numerically for negative values of R̃, see Figure 3.5. We can see that if we
integrate from the negative values of R̃, we can actually integrate to the positive
values; however, it is not possible to do this the other way around, which is
rather strange. The difference between the numerical solution and the asymptote
behaves in a completely opposite way than for the integration in the positive
values – the further away we get from the boundary condition, the more significant
the difference becomes. The difference is negligible for the integration towards
−∞, and if we integrate into the positive values, we do not really mind the error,
because we prefer the other asymptotic solution due to boundary conditions given
by the outer disk solution. The negative solution seems reasonable as it is not zero
at R̃ = 0, see Figure 3.5b, which corresponds to r̃+, where the disk semi-thickness
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Figure 3.3: Numerical integration outwards with the boundary condition given by the
asymptote of (R̃/3)1/3.

went to zero from the outer solution. Let us now look at what the quantities look
like with the assumption that R̃2

/2 is a good enough approximation for negative
values of R̃. First, we need to transform our variables back to y and r̂. We can
write

ỹ = y

y0
= R̃

2

2 ⇒ y = y0r̂
2

2R2
0

= 3r̂2, (3.85)

where we used the relation (3.68) to plug in for R0 and y0. We thus know that

Ĥ
2 = 3r̂2. (3.86)

We can now calculate for W from the equation (3.46) as

ω̂ = W = 3Ω̃0r̂

2r̃+
, (3.87)

which is negative for r̂ < 0. This makes perfect sense, because if we look at the
definition of ω̂ = Ω̂ − Ω̃K and realise that the stellar azimuthal frequency Ω∗ is
smaller than the Keplerian frequency ΩK(R∗) at the stellar radius R∗. We can
calculate the vertical velocity from equation (3.49) as

v̂r = 2α̂Ω̃0r̂, (3.88)

44



0.6 0.7 0.8 0.9 1.0

R̃

0.45

0.50

0.55

0.60

0.65

0.70

ỹ
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Figure 3.4: Numerical integration inwards with the boundary condition given by the
asymptote of (R̃/3)1/3.

which is also negative for r̂ < 0, implies no back-flows, and it does not depend
on ẑ. Finally, we calculate from equations (3.51) and (3.52) for vertical velocity,
which is a constant in r̂ given by

v̂z = −8α̂Ω̂0ẑ. (3.89)

The solution for ω̂ is exciting since if we know what Ω∗ is and the stellar radius
is close to r̃+, such that we do not have to do the limit r̂ → −∞, but instead say
that the stellar radius corresponds to a certain r̂∗ we can get a relation between r̃+
and the azimuthal frequency of the star, i.e. the zero-torque radius will be given
by Ω∗. If this is not the case, we would probably have to investigate yet another
boundary layer, with given outside boundary conditions by our solution and with
the inner boundary condition given by Ω∗. This may all seem very exciting, but
one has to keep in mind that this prescription for the disk semi-thickness is not an
analytic solution. This can be shown by plugging it into the continuity equation
in ẑ2, which cannot be satisfied with this Ĥ. This can be further investigated
in future works, as well as the problem of possible nested boundary layers. If
we calculate for the second boundary layer, we will need to match the solutions
again, and it is then when this solution comes in handy since we will want to
match the innermost solution to the one, we mentioned just now. One might
also attempt to come up with a smarter way of integrating the semi-thickness
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Figure 3.5: Numerical integration for negative values of R̃ with the boundary condition
given by the asymptote of R̃

2
/2.

equation (3.69), as the divergence might be caused by accumulating numerical
errors. It could also just be the nature of this equation.
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Conclusion
In this thesis, we have reviewed known results for an α–disk (Chapter 1 and 2).
These results are valid sufficiently far away from the inner edge of the disk. This
solution led to a singularity at the zero-torque radius r̃+. In order to describe the
boundary layer at the inner edge of the disk, we have discussed the origin of the
singularity, which guided us to a rescaling of our variables (Section 3.2). The first
attempt at rescaling was not successful as we only got a trivial solution. This
might have been caused by our ansatz being too simple as the dependence on the
vertical coordinate might be more complicated than we assumed. Considering
this, we came up with the idea to also rescale the α parameter (Section 3.3). We
were motivated to do this by the fact that the α parameter has to be less than one
and also this way we eliminated the problematic term in our equations. We left
the scaling factor of α as a free parameter with only one constraint – the vertical
and radial velocities had to be subsonic. This greatly simplified the equations,
making them analytically tractable. We have tried to employ an ansatz for the
inner variables, which was motivated by the outer disk behaviour of the quantities.
The first ansatz led to a trivial solution, so we needed to add vertical structure
for the vertical and the radial velocity (Section 3.4). We finally obtained the
same number of variables as equations, making the system solvable. Afterwards,
we took a shortcut, and instead of solving the full system, which would result in
a non-linear fourth-order ODE, we expressed all the variables as functions of the
disk semi-thickness. Additionally, we found a lower-order equation for the disk
semi-thickness from the constants of integration.

The equation for the disk semi-thickness is a single non-linear ordinary differ-
ential equation of second order. Next, we have managed to rescale the equation in
such a way, that it is independent of any parameters describing the flow, therefore
it is a general equation for any flow. Since we have managed to express all the
variables as functions of the disk semi-thickness, solving this equation is sufficient
to obtain the complete structure in the boundary layer around r̃+.

Unfortunately, we were not able to find an analytical solution. Nevertheless,
we were able to explore the asymptotes of this equation and find that one of the
two possible asymptotes leads to an asymptotic behaviour corresponding to the
outer solution, apart from the strangely behaving radial velocity (Section 3.5 and
3.6). Hence this solution can almost entirely be matched to the outer solution.

We then provided numerical solutions, which showed that the numerical so-
lution given by our preferred asymptote diverges for any choice of boundary
conditions we had tried (Section 3.7). The other solution, on the other hand,
is very precise as it almost perfectly matches its asymptote but cannot be inte-
grated backwards into negative values of the radial coordinate. However, it is
possible to integrate from the negative values into the positive and it is the only
feasible asymptote in the negative values. Thus, we assumed that we can take the
quadratic solution of the equation in the negative values, and we calculated all
the quantities for values of radial coordinate smaller than r̃+. In future works, it
might be necessary to use a different scaling in order to study the disk behaviour
very close to the star. Nevertheless, it is possible to use the results from this work
in order to match these solutions since there might be nested boundary layers.

47



We can summarise the achievements of this work in a few final remarks:

• We have found a scaling such that we got rid of the singularity and we
managed to keep the radial and the vertical velocities subsonic, which is
a common requirement imposed on self-consistent models of accretion-disk
boundary layers. This scaling holds even if α is almost of the order of unity,
as we have shown, that it holds for any q > 0. So, we might be able to
extend the solution for the case of q = 0, which would mean no scaling of
α.

• Our arguments led to scaling the radial and vertical coordinates to be of
the same order. This might not be very clear when looking at the rescaling
itself but one has to realize that we were rescaling the outer disk quantities,
where the vertical coordinate is of order higher than the radial coordinate.
This corresponds to the boundary layer thickness being of the same order
as the disk thickness in the boundary layer. The same result is obtained by
Shakura and Sunyaev [1988]. However, the literature seems to disagree a
bit in this topic as, for example, Bisnovatyi-Kogan [1994] assumes that the
boundary layer thickness is much smaller than the typical disk thickness.
The scaling also gave us a relation between the orders of the velocities in
the boundary layer. It says that the vertical velocity is of the same order
as the radial velocity in the boundary layer which is not true in the outer
disk.

• We managed to reduce the complicated system of 4 partial differential equa-
tions into a single non-linear ordinary differential equation. We have then
been able to rescale this equation, such that it is independent of any flow
parameters making it a universal equation for any flow in the boundary
layer of a standard α-disk.

• We have been able to inspect the asymptotes of this equation and found
that one matches the outer solution, except a sign in front of the radial
velocity. This gave us some hints that our scaling makes sense and is correct
but there also might be something we have missed as the sign in front of
the radial velocity is crucial for accretion. This way our solution suggests
only backflows in the boundary layer. We were able to show this only using
asymptotic analysis of the equation, as we could not find the solution to our
ODE due to its non-linearity. The rather strange behaviour of the numerical
solutions is a subject for another works. The other asymptotic solution is
not able to fulfil the equations, however, it matches the numerical solution
with excellent precision. The physical nature of this asymptote is also a
subject for future works as well as inspection of the possibility of nested
boundary layers. The nested boundary layer might be the cause of this
asymptote’s inability to solve the equations since if there is the secondary
boundary layer, the solution does not get far enough for the asymptote to
take place. This would mean, that there is another point r̂++ in whose
neighbourhood arises the nested boundary layer. This radius may be the
stellar radius. Regev and Bertout [1995] also discuss the nested boundary
layer, so it might be worthwhile investigating this possibility.
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