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Abstract
Although oil-based commodities play a crucial role in the world from an in-
dustrial perspective, their prices are often heavily influenced by the occurrence
of various events covered in the news. These events often trigger a sudden
increase in volatility, that spills across all oil-based commodities. As a result,
it becomes riskier to invest in this group of commodities. Furthermore, the
increase in oil price volatility introduces friction in oil trade due to pricing
uncertainty. In this thesis, we processed over 900 events related to oil from
1978 to 2022 and grouped them based on a set of repeating characteristics.
Utilizing a novel bootstrap-after-bootstrap econometric framework developed
by Greenwood-Nimmo et al. (2021), we identified over 20 historical events that
triggered a sudden and persistent rise in volatility connectedness. We discover
that geopolitical events are twice as likely to cause an increase in volatility
spillovers than economic events. We did not find evidence for natural events
influencing oil volatility spillover levels. Furthermore, a majority of the events
after which the spillover levels increased share three common characteristics:
they are negative, unexpected, and introduce fear of oil supply shortage. In-
vestors and policymakers can use our findings to assess the potential effect of
newly appearing news articles on the volatility of oil-based commodities. Our
paper can also serve as a reference source of important events with proven
impact on the energy markets.
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Abstrakt
Přestože komodity na bázi ropy hrají ve světě klíčovou roli z hlediska průmyslu,
jejich ceny jsou často silně ovlivňovány výskytem různých událostí pokrytých
ve zprávách. Tyto události často vyvolávají náhlý nárůst volatility, který
se přelévá do všech ropných komodit. V důsledku toho se investice do této
skupiny komodit stává rizikovější. Zvýšení volatility cen ropy navíc komplikuje
obchodování s ropou v důsledku nejistoty cen. V této práci jsme zpracov-
ali více než 900 událostí souvisejících s ropou od roku 1978 do roku 2022 a
seskupili je na základě opakujících se charakteristik. S využitím nové ekono-
metrické metodologie na bázi bootstrapu od Greenwood-Nimmo et al. (2021)
jsme identifikovali více než 20 historických událostí, které vyvolaly náhlý a tr-
valý nárůst přelivů volatility. Zjistili jsme, že geopolitické události jsou dvakrát
pravděpodobnější příčinou nárůstu přelivů volatility než ekonomické události.
Nenašli jsme důkazy o vlivu přírodních událostí na úroveň přelévání volatility
ropných komodit. Většina identifikovaných událostí má tři společné charak-
teristiky: jsou negativní, neočekávané a vyvolávají obavy z nedostatku ropy.
Investoři mohou naše výsledky využít k posouzení potenciálního vlivu nově se
objevujících zpráv na volatilitu ropných komodit. Náš článek může také sloužit
jako referenční zdroj důležitých událostí s prokázaným dopadem na energetické
trhy.
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Chapter 1

Introduction

The price of most assets on the markets is closely influenced by the current
development globally important events. It has been proven empirically that
the market usually prices in information arising from newly appearing events
rather quickly and efficiently (Fama et al. 1969; Malkiel 2003). Compared to
other assets, oil commodities are more sensitive to macroeconomic events such
as supply chain shocks, political concerns, or natural disasters (Baruník et al.
2015; Karali et al. 2019). Nevertheless, the demand reaction for oil is often
disproportionate to the actual shock caused by these events, and the timing of
the price change differs from the true supply shortage due to the expectations
of future shortages (Kilian 2009) Furthermore, the volatility increase in one
market is often followed by a similar volatility increase in seemingly unrelated
markets or assets. Thus, two important questions arise: How can we assess,
whether a sudden change in volatility spillover levels is associated with a par-
ticular event? And what are the characteristics of the events that influence
volatility spillovers?

Asset volatility reflects the arrival of new information into the market, and
volatility spillovers depict the information flow between markets (Reboredo
2014). Spillovers can be attributed to supply and demand imbalances, trans-
action costs, or information asymmetries (Kilian 2009; Magkonis & Tsouknidis
2017). These causes reveal arbitrage opportunities for informed traders, who
can take advantage of these opportunities with cross-market transactions until
the arbitrage disappears (Roll & Ross 1980). Conversely, uninformed investors
are likely to follow the herd with their investments because they expect a major
change in economic fundamentals (Bohl et al. 2017; Liu & Gong 2020).

Volatility can be viewed as a proxy for risk. Thus, proper identification and
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measurement of volatility spillovers can be a valuable input for portfolio diver-
sification strategies for investors and financial institutions. It helps investors
with risk management and portfolio diversification by identifying hedging op-
portunities (Baruník et al. 2017). The stability of financial systems can be
easily disrupted by idiosyncratic shocks to one asset. Thus, causes of volatility
spillovers between markets are also important for policymakers, as they can
identify early warning signs of an upcoming crisis (Diebold & Yilmaz 2012).

The topic of volatility spillovers among oil-based commodities in particular
is as important as it is complex. Crude oil and the products refined from it play
a crucial role in the global economy as they are a necessity in the industrial,
agricultural, and transportation sectors. Due to the disproportionate geological
endowments of oil formations, it is one of the most traded items in the world.
Thus, increased volatility of oil prices does not only affect investors but also
the economies of entire countries. Oil supply disruptions cause a decrease in
GDP, currency depreciation, and inflationary pressure (Kilian 2009; Ding &
Vo 2012; Mohaddes & Pesaran 2017). For all these reasons, it is necessary to
understand the causes of volatility spillovers among oil-based commodities.

In this thesis, we gathered prices of 5 energy-based commodities: crude
oil, heating oil, gasoline, diesel, and natural gas between the years 1978 and
2022. Using daily realized volatility estimates of these commodities, we com-
pute the rolling spillover index introduced by Diebold & Yilmaz (2009); Diebold
& Yılmaz (2014), which represents the degree of volatility connectedness of the
network on each day of the studied period. Furthermore, we collected 900
news articles related to oil and categorized them based on a repeating set of
characteristics into geopolitical, economic, and natural events. Next, we uti-
lize the bootstrap-based test introduced by Greenwood-Nimmo et al. (2021),
which enables us to statistically assess the probability that the spillover index
persistently increased on any given day.

This analysis provides two key insights into the topic of volatility spillovers
among oil-based commodities. Out of the 900 events included in our dataset,
we identified over 20 historic events, after which the spillover index of oil-based
commodities spiked, and remained above the pre-event levels for at least one
trading week following the event. After any of these events, it was much riskier
for investors and hedge funds to hold their position in any oil commodity. The
price movements of all oil-based commodities were too volatile and correlated,
so investors are better of by temporarily exiting the oil market. Our coverage
of these events and dynamics of the oil-based commodity market is complex
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and this type of analysis was not performed before on energy commodities.
Therefore, our paper can also serve as a reference source of important events
with proven impact on the energy markets.

We detected several characteristics that were prevalent among the signif-
icant events. Firstly geopolitical events are twice as much likely to cause a
sudden and persistent increase in volatility spillovers than economic events.
Furthermore, most economic events identified by the test are based on some
geopolitical reasoning. A majority of the events were unexpected, negative,
and caused a decrease in oil exports. These findings are in line with results
of (Greenwood-Nimmo et al. 2021) who show that unanticipated and negative
events are most likely to cause a sudden increase in the spillover levels reported
in the seminal study of Diebold & Yilmaz (2009).

We further divided the three main categories into 18 distinct groups based
on the features of the event in question. Using this division we were able to fur-
ther generalize our results into more useful suggestions. Our analysis confirms
some predictable outcomes such as acts of terrorism being highly influential
on the spillover index, while acts of peace and other good news never increase
the connectedness of oil-based commodities. Another impactful conclusion ob-
tained by our analysis concerns decisions on production changes. We arrive at
results that are contrary to the rational notion that production cuts are more
likely to increase volatility spillovers among oil-based commodities.

The thesis is structured as follows: Chapter 2 describes previous work done
in the field of volatility spillovers both in general and of oil-based commodities
specifically. The relationship of crude oil with the global economy, and previous
studies analyzing the effect of the news on oil returns and volatility are also
presented. Chapter 3 outlines the data cleaning procedure leading to a set
of realized volatility for selected commodities and describes the news dataset.
Chapter 4 introduces the relevant methodology of volatility spillovers and the
novel bootstrap-after-bootstrap test. Chapter 5 presents the results of the oil-
based commodities network connectedness and analyzes events identified by
the bootstrap test. Chapter 6 summarizes our findings.



Chapter 2

Literature Review

2.1 Position in Global Economy
Oil is one of the most traded commodities in the world, and its price volatil-
ity represents a risk to investors, but also to industrial producers. Crude oil
categorizes as a fossil fuel, that needs to be refined for further use. The Inter-
national Energy Agency states that in 2021, 67% of crude oil was used to make
transportation fuels: gasoline, distillate fuels, jet fuel, and biofuel (Energy In-
formation Administration 2022). Distillate fuels comprise diesel, utilized as fuel
for construction equipment and heavy vehicles, and heating oil, used in boil-
ers, furnaces, and industrial heating. Furthermore, 27% was used for industrial
purposes, and the remaining 6% for residential, commercial, and electric power.
Natural gas also classifies as a fossil fuel, but it is used mainly for electricity
generation and heating. In summary, oil-based commodities and natural gas
are crucial for industrial, transportation, and agricultural sectors. Higher oil
prices can induce a rise in the cost of goods and services, and subsequently
higher inflation (Nandha & Faff 2008). The steady rise in global aggregate de-
mand for crude oil tends to raise levels of CPI in the long-term (Kilian 2009).

Apart from the industrial perspective, oil price volatility affects the global
economy through a number of other channels. Rising oil prices increase the
cost of basic production, which decreases economic output (Brown & Yücel
2002). Under the assumption that the price increase is temporary, firms and
households will borrow more, which puts upward pressure on inflation (Mohad-
des & Pesaran 2017). Central banks will then need to increase interest rates in
order to handle inflation (Gogolin et al. 2018). During periods of high oil price
volatility, firms tend to postpone investment decisions due to uncertainty. For
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some sectors, the marginal cost increases, which results in lesser wage growth
and higher unemployment (Brown & Yücel 2002; Gogolin et al. 2018). Kilian
(2009) argues that increases in demand and oil-supply disruptions significantly
decrease real GDP. Oil prices can influence currency depreciation as well. When
the price of oil increases, oil importers are more likely to deplete the US dollar
reserves, which depreciates the currency (Salisu & Mobolaji 2013). Conversely,
if the dollar depreciates, oil exporters might be prone to increasing oil prices
in order to stabilize the monetary value of exports.

Significant oil price changes are typically indicators of a shift in a global
economic environment (Kilian 2009; Husain et al. 2019). In general, oil price
volatility is associated with negative stock market returns (Reboredo 2014; Mo-
haddes & Pesaran 2017). Higher oil prices usually foreshadow periods of lower
economic growth (Nandha & Faff 2008), although this relationship has been
unstable since the early 2000s (Mohaddes & Pesaran 2017). During the Great
Financial Crisis and the Covid Crisis, there was a positive correlation between
oil and equity markets. The period from 2014 to 2016 was specific in the sense
that the oil price decrease was not accompanied by a global economic shock.
Thus, the equity markets remained stable. According to Mohaddes & Pesaran
(2017), the discrepancy was caused by equity markets ignoring economic fun-
damentals. The negative relationship holds in the case of oil markets and real
dividends, which is considered a better proxy for economic activity by the au-
thors. In conclusion, there is a definite link between oil and the global economy,
although the sign of this link is not always stable.

2.2 Volatility spillovers studies
The volatility spillover measure has been used to study most markets, from
commodities to cryptocurrency. Apart from the traditional markets, the method-
ology is well applicable to macroeconomic variables. Authors of the spillover
index used it to measure the connectedness of 6 developed countries’ industrial
production (Diebold & Yilmaz 2013). The findings show that countries with
trade deficits, such as the U.S. and Japan in the 2000s, tend to be net transmit-
ters of volatility. Greenwood-Nimmo et al. (2015) also apply the methodology
to study the links of the global economy, but expand the list of countries,
and use more macroeconomic variables such as real exchange rate, imports,
and exports, equity prices, GDP, or oil price. The results suggest that the
more developed world economies are net volatility transmitters. Crude oil was
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also identified as a net transmitter. Foglia et al. (2022) identify high inter-
connectedness of the Eurozone banking sector, with spillover peaks detected
during crises, including the recent Covid-19 era.

Cross-market volatility spillovers are a useful topic of interest in the litera-
ture as well. A study of forex and oil market interaction shows that crude oil
reduces volatility spillover of the overall network (Baruník & Kočenda 2019).
Similarly, adding commodity futures to a portfolio of index futures provides
diversification benefits due to reduced volatility spillovers (Kang & Lee 2019).
In a study of spillovers between metal commodities and cryptocurrency, Bitcoin
was found to be a net volatility receiver, while also being a heavy transmitter
of positive spillovers (Mensi et al. 2019). The connectedness was not strong,
implying that Bitcoin is a good hedge for the metal commodity market. Not
all studies determine a safe asset with little volatility transmission withing
their studied network. For example, a study of South African financial mar-
kets identified commodities and equity markets as volatility transmitters, while
bond and currency markets are volatility receivers (Duncan & Kabundi 2013).

2.3 Oil spillover studies
The volatility of solely petroleum-based commodities was shown to be highly
inter-connected, with the strongest dependence between heating oil, gasoline,
and crude oil (Baruník & Vácha 2012). Ji et al. (2018) report that crude oil re-
turns are among the main factors explaining natural gas price volatility. Wang
& Guo (2018) suggest that crude oil is a net volatility transmitter, and the
Brent Oil index is a volatility receiver. Moreover, the authors conclude that
25% of the volatility in the oil markets is due to spillovers. Similar results
hold for oil futures, where approximately 25% of heating oil and gasoline fu-
tures volatility is transmitted from crude oil futures (Magkonis & Tsouknidis
2017). Lastly, futures act as volatility transmitters for spot prices for oil-based
commodities (Magkonis & Tsouknidis 2017).

Crude oil is traded in various markets around the world, which advocates for
analyzing volatility spillovers between these markets. Zhang & Wang (2014)
argue that volatility spillovers between the oil markets of China, the U.S.,
and the U.K. are bi-directional and asymmetric. The authors also report that
there is an upward trend in the spillover index throughout the studied pe-
riod, which is attributed to the increasing influence of the Chinese oil market.
Chang et al. (2010) used an asymmetric generalized autoregressive conditional
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heteroskedasticity (GARCH) model to study volatility spillovers between four
major crude oil markets, namely West Texas Intermediate (USA), Brent (North
Sea), Dubai/Oman (Middle East), and Tapis (Asia-Pacific). The results show
that Brent and West Texas Intermediate (WTI) markets are net volatility trans-
mitters. Similar results were obtained by Liu & Gong (2020), where WTI pro-
duces the most net volatility (18,59 %) to the remaining three markets, and
Brent seconds its position. A likely explanation behind these results is that
WTI and Brent are viewed as global benchmarks for oil prices. Ouyang et al.
(2021) expand former studies by calculating the volatility spillovers of 31 global
crude oil markets. The authors find significant spillovers for both returns and
volatility. Using the spillover frequency decomposition by Baruník & Křehlík
(2018), it was shown that spillover returns propagate mainly in a short-term
horizon, meaning that price discrepancies between regional oil markets are re-
moved within a week. On the other hand, long-term horizons dominate in
the context of volatility spillovers, which is likely due to economic cycles and
oil supply-demand fundamentals. The source of medium-term volatility spillo-
vers was the Middle East, while Asia-Pacific markets were responsible for the
long-term volatility spillovers. By using the frequency decomposition, and in-
cluding more regional markets, the authors obtained results different from the
previously mentioned studies.

Since oil is the most traded commodity in the world, its price fluctuation
clearly influences global markets and macroeconomic indicators. While pre-
viously mentioned studies considered volatility spillovers solely within the oil
market, there is a growing body of literature that explores spillovers between
oil and other markets as well. Gold and silver serve as volatility transmit-
ters mainly during financial crises (Kang et al. 2017). In a study of volatility
spillovers between U.S. stocks, crude oil, and metal commodities, Husain et al.
(2019) show that crude oil is a net volatility receiver. The results are driven
by platinum, implying that crude oil is otherwise a good hedging option for
U.S. stocks and other metal commodities. Similar results were obtained by
Baruník & Kočenda (2019) in a study of volatility spillovers between the forex
market and crude oil. By adding crude oil, the volatility connectedness of the
network decreased, suggesting that crude oil functions as a hedge for the forex
market. The findings differ in the case of a commodity portfolio. Diebold et al.
(2017) concludes that crude oil has the highest net connectedness out of 19
commodities in its analysis, followed by heating oil, soybeans, and zinc.

Due to environmental concerns and the fear of oil sources depletion, there
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has been a shift toward more environmentally friendly energy sources. These
more ecological alternatives serve as substitutes for oil fuels, so we can expect
volatility spillovers across related assets. Contrary to these expectations, Umar
et al. (2022) finds strong volatility connectedness among natural gas, fuel oil,
and crude oil markets, but reports very little volatility spillovers for clean energy
stock prices. Similar results were obtained by Ferrer et al. (2021), adding
that most of the volatility connectedness propagates itself in a short-term time
frame, implying that crude oil and clean energy stocks are driven by their own
fundamentals in the long term. These findings imply that the profitability of
clean energy stocks is independent of the crude oil market’s development, but
also that the crude oil market is still resilient to events associated with clean
energy. Lastly, crude oil’s volatility is not connected to the price volatility of EU
emission allowances (Reboredo 2014), although there are significant volatility
spillovers from natural gas prices to the carbon emission market (Wang &
Guo 2018). During periods of high oil price volatility, prices of agricultural
commodities such as corn, soybean, or wheat, tend to receive this volatility,
possibly through the link of using biofuel as a substitute for oil (Yip et al.
2020). Diebold et al. (2017) argues that soybeans have high net connectedness
in a system of commodities, and their connectedness is comparable to crude
oil, precisely due to their use in biofuel production.

Volatility spillovers between oil-based commodities and natural gas are al-
ready covered in the literature by several studies. Baruník et al. (2015) were
the first to analyze spillovers between crude oil, heating oil, and gasoline. The
findings suggest that the magnitude of spillovers was stronger before the Great
Financial Crisis (45,5%), rather than after it (58,3 %), emphasizing the often-
mentioned switch in the oil market’s fundamentals after the crisis. Similar
results were found by (Kočenda & Moravcová 2023). All three commodities
alter between receiving and transmitting spillovers throughout the studied pe-
riod. Crude oil was often found as the main volatility transmitter, although
the findings are not homogeneous (Mensi et al. 2021; Gong et al. 2021). On
the other hand, Kočenda & Moravcová (2023) argue that spillovers from crude
oil are not as large as could be expected, which is in line with the findings of
(Baruník et al. 2016).

The literature argues that technological innovations in oil and gas extrac-
tion, which enabled effective drilling of shale gas and tight oil sources, changed
the way spillovers propagate through the system. Gong et al. (2021) observe
a 15% decrease of the spillover index as a result of the shale gas revolution in
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2006. Lovcha & Perez-Laborda (2020) mentioned that natural gas has become
a net volatility transmitter as a result of the shale gas revolution. Neverthe-
less, natural gas was generally reported to be the best hedge, as it is mainly
influenced by its own idiosyncratic volatility (Mensi et al. 2021). Kočenda
& Moravcová (2023) conclude that natural gas is responsible for 91,03% of its
volatility, while the rest of the commodities receive on average 50% of volatility
from the system. Diebold et al. (2017) also state that during periods of reces-
sion, natural gas has the weakest reaction to economic news out of all energy
commodities studied. Moreover, it has the smallest connectedness to and from
other commodities. In most of the studies mentioned, the static spillover index
is approximately 40%, which shows moderate connectedness of the system.

The literature advocates for using time-varying and asymmetric spillover
measures in case of oil volatility spillovers. Kilian (2009) shows that oil price
volatility spills to other markets with different sign and magnitude, depending
on time. Zhang & Wang (2014) argue that oil price volatility spillovers affecting
the Chinese oil market are asymmetric. The results hold for world oil indexes as
well (Baruník et al. 2015). Xu et al. (2019) studied volatility spillovers between
oil, U.S., and Chinese stock market. The authors report that spillovers are time-
varying and asymmetric, which highlights the effect that various events can
have on the spillover index. Furthermore, volatility spillovers for petroleum-
based commodities are clustered and persistent (Liu & Gong 2020). Thus,
it makes sense to pair periods of clustered volatility spillovers on significant
economic periods, such as the Great Financial Crisis, the Covid pandemic, or
the war in Ukraine.

2.4 News studies
The possibility that news can affect oil prices and volatility has already been
documented in the literature. Several studies researched the link between the
volume of searched articles about oil on Google Scholar (GSV) and oil price
volatility. For example, Campos et al. (2017) show that the search volume for
oil-related articles increases the predictive power in a heterogeneous autore-
gressive (HAR) model of oil price volatility. Similarly, Gong & Lin (2018) use
the oil volatility index (OVX), which is a measure of investor fear gauge in
the crude oil market, and find that adding OVX to HAR models significantly
improves out-of-sample forecasts of oil volatility. Mei et al. (2020) used the
Geopolitical Risk index (GPR), which is influenced mainly by wars, terrorism,
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and tensions among states, and measured its effect the volatility of oil futures.
Similarly to Campos et al. (2017), the authors state that the GPR index can
help in volatility prediction.

Although the aforementioned studies present good proxies, the design of
these studies does not differentiate between new and old oil-related articles.
Furthermore, the effect of volatility spillovers between oil-based commodities is
not accounted for. As far as we are aware, there is only one study that connects
oil volatility spillovers to the flow of news about oil-based commodities. The
results suggest that as the rate of news about crude oil rises, volatility spillovers
from equity to oil markets decrease (Aromi & Clements 2019). Thus, oil price
volatility is more idiosyncratic in nature when oil-related news is announced,
implying that news articles have some effect on oil price volatility.

Previous studies use methods to aggregate the volume of news in order to
measure oil price dependency, which does not allow us to measure the effect
of separate articles. Some studies have already proposed methodologies that
enable effect evaluation for individual events. Unfortunately, there is little
consensus regarding the results, or even what should the assumptions be. Kilian
(2009) defines news-induced oil price change as a precautionary reaction to a
possible shortage of future oil supply. Kilian & Vega (2011) find no evidence of
oil and gas price reaction to news at daily or even monthly horizons. Contrarily,
Elder et al. (2013) state that oil price responds rapidly to economic news. The
authors used high-frequency data to model shocks as statistically significant
jumps in the realized bi-power variation. Chan & Gray (2017) applied a similar
methodology for evaluating the effect of scheduled macroeconomic news on
price jumps of energy commodities. The results are contrary to Elder et al.
(2013), but in line with Kilian & Vega (2011): there is little evidence of a
linkage between news and price jumps. Greenwood-Nimmo et al. (2021) applied
their new methodology for mapping past events to changes in the volatility
spillover index. The authors used similar data to Diebold & Yilmaz (2009),
and found that only 6 out of 19 events analyzed in the original paper exhibit a
contemporaneous effect on the spillover index, suggesting that the shock indeed
propagates with a lagged effect.

Another important topic, that is often a source of controversy in the lit-
erature regarding oil-price shocks, is the categorization of oil shocks. There
is an important distinction to be made between demand and supply shocks
to the oil market. A supply shock is defined as a reduced availability of a
basic input to production (Brown & Yücel 2002). Literature that differenti-



2. Literature Review 11

ates between these types of events is not unanimous on which type influences
the oil market more. Kilian (2009) was the first to thoroughly analyze the
types of oil price shocks. The author used four predictors: oil supply shocks
due to exogenous political events in Organization of the Petroleum Exporting
Countries (OPEC) countries, real economic activity, the percentage change in
crude oil production, and the real price of oil, to model oil price shocks. Kilian
(2009) decomposed errors of a reduced vector autoregressive (VAR) model into
supply-side shocks driven by geopolitical events in the OPEC countries, supply-
side shocks caused by disruptions in production, aggregate demand shocks due
to long-term development in the world economy, and precautionary demand
shocks that materialize as a result of altered expectations for future oil supply
levels. The results indicate that precautionary demand shocks and shocks to
aggregate demand are much more important than physical oil supply disrup-
tions. These findings went against the typical view, that oil price shocks are
mainly caused by disruptions to the oil supply due to political unrest in the
Middle East. Furthermore, precautionary demand shocks tend to affect the
price instantly, while aggregate demand shocks propagate over a long horizon.
Kilian & Murphy (2014) add a change in global crude oil inventories as a proxy
for speculative demand into the specification, but group all supply-side shocks
into one variable. The inclusion of inventory levels modestly raises the impor-
tance of supply shocks, which is especially apparent for the Persian Gulf War in
1990, or the Venezuelan Crisis in combination with the Iraq War in 2002/2003.
One would expect inventory levels to decrease in case of a supply shock. While
supply shocks decrease inventories, the speculative demand shocks offset the
decrease. This justifies supply shocks as an explanation for the real oil price
increase during these events. Kilian & Murphy (2014) also reevaluated and put
forward the importance of aggregate demand shocks as the main mover of oil
prices. The methodology of quantifying oil shocks brings valuable insights into
which events should we expect to have a significant effect on oil price volatility.

Logically, precautionary and speculative demand shocks can be identified
more often than pure shocks to supply. Typical examples of supply shocks
are the decisions of OPEC, as they have a direct and rapid effect on oil supply.
Still, an immediate market reaction to an OPEC decision is due to precautionary
demand. Similarly to the aforementioned conclusions, Xu et al. (2019) argue
that demand-related shocks are much greater than OPEC-induced shocks to
oil supply. OPEC meetings are planned, and they can affect oil prices before
the meeting takes place. Schmidbauer & Rösch (2012) identify a positive pre-
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announcement effect on oil price volatility, which is the most pronounced for
decisions to cut oil supply. The authors also state that the decisions to cut or
maintain oil supply have a negative impact on the conditional volatility of oil
prices. Mensi et al. (2014a) confirm this result, but add that cut or maintain
decisions have a gradual long-term impact on volatility. Elder et al. (2013) on
the other hand do not observe oil price shocks caused by economic news to be
very persistent. By dividing OPEC decisions into periods of conflict and non-
conflict regimes, it appears that the reaction is efficient and not persistent only
for non-conflict regimes. During periods of conflict, the reaction is delayed
(Guidi et al. 2006). The decisions of OPEC also directly affect the volatility
of natural gas. Karali & Ramirez (2014) conclude that the decision to cut
production significantly increases the conditional volatility of natural gas.

Despite the inconsistencies in methodology, most studies find a significant
effect of oil-related news on oil prices and oil price volatility, which underpins
the benefit of studying volatility spillovers connected to news (Schmidbauer &
Rösch 2012; Elder et al. 2013; Mensi et al. 2014a).



Chapter 3

Data

3.1 Prices Data
We selected 5 energy commodities to study oil connectedness: crude oil (oil),
heating oil (ho), gasoline (rb), diesel (lgo), and natural gas (ng). These com-
modities are highly interconnected by nature. One reason is that 60% of global
crude oil stock is utilized in the production of heating oil, diesel, and gasoline
(Kočenda & Moravcová 2023). Heating oil can also be produced as a side-
product when processing crude oil into gasoline. Furthermore, heating oil and
natural gas are substitutes in many situations.

The data were retrieved through Refinitive Eikon Datastream1. We used the
next month’s future contracts from two exchanges: West Texas Intermediate
Crude Oil, RBOB gasoline, NY Harbor Ultra Low Sulphur Heating Oil, Henry
Hub Natural Gas from New York Mercantile Exchange in the US, and Low Sul-
phur Diesel from the Intercontinental Exchange in Europe. Eikon Datastream
provides daily open, close, high, and low prices for all 5 commodities. Having
obtained the set of daily measures, we computed range-based realized volatility
estimates using the method introduced by Garman & Klass (1980), described
in Chapter 4. The data was available from September 1st 1978 to December
16 2022 for crude oil, heating oil, and diesel. Gasoline was only available since
2005. Therefore, we substituted the missing data with high-frequency realized
volatility estimates computed using 5-minute gasoline prices from TickData2.

Kilian & Vega (2011) state that daily prices are enough for event-based
volatility analysis since any reaction will be reflected in the daily returns, and

1https://www.refinitiv.com/en/products/datastream-macroeconomic-analysis/
2https://www.tickdata.com/product/historical-futures-data/
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consequently in the realized volatility. Thus, the precise timing of the event is
not needed. Furthermore, the timing of events is not important for our pur-
poses, as we concern ourselves with the moment the general public is notified,
which is subject to uncontrollable factors.

Neither intraday nor daily natural gas prices are available before April 3rd,
1990 (Natural Gas Intelligence 2022). Therefore, we conducted two separate
analyses for two samples, one for solely petroleum-based commodities without
natural gas, and the other with all 5 commodities starting on April 3rd, 1990.
The importance is being placed on the longer sample with petroleum-based
commodities. Significant differences between the results of the samples are
noted in Chapter 5.

3.1.1 Data Cleaning

Data obtained both from Eikon and TickData contained several anomalies.
Firstly, there were some occasions of prices being reported on weekends. These
days were removed. Apart from weekends, we removed Christmas days: De-
cember 24 to December 26, and New Year’s days: December 31st, January
1st, and January 2nd. We also removed US Federal holidays, during which
the main exchange in our dataset is closed. Afterward, we identified 486 days
where the low (high) price was higher (lower) than the remaining range-based
prices, for at least one commodity. In these cases, we substitute the low (high)
with another range-based value.

Since commodities on the NY Mercantile Exchange trade for 5 hours and
30 minutes, we should have 66 5-minute ticks from TickData for each day.
Unfortunately, the data began to be this consistent only after 2006. The median
number of ticks per day in our data is 60. For 4 days, there was only one value
reported, which prevents us to calculate returns, and consequently realized
volatility. We omit these days. Since we observe that the range-based realized
volatility (RV) copies high-frequency RV well enough, we impute missing values
of gasoline range-based RV with the high-frequency RV even after the year
2005. As a result, more than half of the values for gasoline come from the
high-frequency RV.

In the end, there were 161 days where at least one commodity had missing
data. Since the dates were sparsely distributed, we imputed the values with
a 5-day rolling average of RV. In the end, we had 8785 days of RV values for
petroleum-based commodities and 8141 values for natural gas.
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Table 3.1: Summary statistics of returns

Returns Mean SD Median Min Max Skewness Kurtosis
oil -0.00010 0.02262 0.00080 -0.47 0.18 -1.94 34.34
ho -0.00008 0.02451 0.00077 -0.48 0.18 -1.99 28.81
lgo -0.00006 0.02352 0.00000 -0.54 0.13 -3.42 69.66
ng -0.00047 0.03615 0.00000 -0.46 0.32 -0.51 10.81
rb -0.00036 0.02832 0.00104 -0.47 0.25 -1.96 31.93

Notes: The table shows summary statistics of the daily returns for 5 selected commodities: crude oil
(oil), heating oil (ho), diesel (lgo), gasoline (rb), and natural gas (ng).

Table 3.2: Summary statistics or realized volatlities

RV Observations Mean SD Median Min Max
oil 8785 0.00036 0.00087 0.00020 0 0.03871
ho 8785 0.00042 0.00087 0.00024 0 0.04044
lgo 8785 0.00037 0.00150 0.00017 0 0.10330
rb 8785 0.00048 0.00132 0.00028 0 0.05679
ng 8141 0.00090 0.00173 0.00053 0 0.09658

Notes: The table shows summary statistics of the daily estimates of realized volatility for 5 selected
commodities: crude oil (oil), heating oil (ho), diesel (lgo), gasoline (rb), and natural gas (ng).

3.2 Brief history of the oil market
We devote this section to summarizing the historical development of global oil
market. To understand the dynamics and connections of individual events in
our dataset, it is necessary to acquire an overall picture of the oil market, and its
role throughout history. We prioritized oil-related news in our search. Using
the U.S. macroeconomic news, Kilian & Vega (2011) showed that news not
directly related to energy commodities explain only 0.69 and 1,6% of monthly
oil and gas price variation.

After World War II, the economic growth in newly industrialized countries
led to a significant increase in demand for oil (Hamilton 2013). The oil market
became increasingly important, and the price of oil became a major factor in
the global economy. To confront this increase in demand, the Organization
of the Petroleum Exporting Countries (OPEC) was founded in 1960. In 1973,
OPEC countries had the ability to influence the supply and price of oil as they
accounted for about half of the global oil supply. The United States ceased to
be the main exporter of oil, and the center of oil production transitioned from
the Gulf of Mexico to the Persian Gulf (Kilian 2014). Then came a series of
conflicts in the Middle East, which was the main factor behind oil price changes
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for the following decades.
The price of oil increased in October 1973 due to the Arab-Israeli War,

also known as the Yom Kippur War. The war was triggered by the tensions
between Israel and its neighbors, and the increasing influence of the Soviet
Union in the region. Several Arab countries, including Saudi Arabia, imposed
an embargo on oil exports to the United States and other countries supporting
Israel, which affected the oil market significantly. Baumeister & Kilian (2016)
argue that the price shock was primarily driven by an increase in demand,
rather than a supply reduction. The global output decreased by 7.5 % in
November 1973 (Hamilton 2013). Combined with the depletion of US oil fields
during this period, the United States experienced a critical shortage of gasoline
from 1974 to 1980, which led to long lines at gas stations, rationing of gasoline,
massive inflationary pressure, and industrial disruptions. The price of oil more
than doubled during this period, leading to a substantial decline in petroleum
consumption in the early 1980s.

Oil production dropped drastically in 1978 due to the Iranian Revolution.
The revolution resulted in an establishment of the Islamic republic, the nation-
alization of Iran’s oil industry, and the disruption of oil exports. The world
production of oil dropped by 7% (Hamilton 2013). The revolution had also
impacted oil prices due to fears of oil fields being attacked, which induced pre-
cautionary demand Hamilton (2013). The production increased a year after,
but only to half of pre-revolution levels. Kilian (2009) concludes that the rise
in oil prices during the years 1975 to 1978 is best explainable by positive shocks
to oil supply, rather than demand shocks. On the other hand, the period from
1978 to 1980 is characterized by a negative shock to other oil supplies, but also
large oil-market-specific demand shocks, partially offsetting the effect of the
disruption in exports.

In addition to the Iranian Revolution, the former Soviet Union invaded
Afghanistan in 1979 as part of a broader effort by the Soviet Union to support
the communist government of Afghanistan, which was facing a rebellion by
anti-government forces. After the drastic rise in oil prices in 1979, the wealth
of the Soviet Union increased enormously since it provided approximately 18%
of the global production. Brown (2013) argues that the invasion was partially
oil-fueled, as the Soviets had an interest in Afghan gas and oil resources in the
Persian Gulf. The invasion was met with widespread international condemna-
tion, mainly from the United States, which supported local Afghan rebels. The
Soviet invasion of Afghanistan was one of the key events of the Cold War and
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contributed to the deteriorating relationship between the Soviet Union and the
United States.

The Iraq-Iran war was led in a similar period, from 1980 to 1988. Thanks to
the oil boom in 1979, Iraq was in a similar situation to the Soviets, which might
have triggered the invasion. Iraq’s primary rationale for the attack against Iran
was to prevent the spread of Iran’s Islamic Revolution to Iraq and to prevent
Iran from exploiting sectarian tensions in Iraq (Karsh 2003). Iraq also wished
to replace Iran as the power player in the Persian Gulf. The proceedings from
oil exports powered the war. Thus, both countries targeted oil facilities to
reduce oil exports of the opposing party (Karsh 2003).

In 1984, Iraq began the "tanker war", in which both countries attacked
oil tankers and merchant ships in an effort to deprive the opponent of trade
options. Iran responded by attacking tankers carrying Iraqi oil from Kuwait
and any tanker of the Persian Gulf states supporting Iraq. The number of
attacks on ships reached a peak of over 30 per month at one point (Kilian
2009). The attacks on ships of noncombatant nations in the Persian Gulf led
to cargo being escorted by the US and Soviet navies (Karsh 2003). The war
resulted in the deaths of around 500,000 people, combined financial losses of
over $1 trillion, and a loss in oil production of 6% (Hamilton 2013).

The price change from 1980 to 1985 is mainly explainable by a large negative
aggregate demand shock (Kilian 2009). Supply shock was not causal here,
because any attempt by OPEC to cut production was nullified by a production
boost in some other country. OPEC opted for a supply reduction to fight the
decline in prices due to over-production and lowered demand. Saudi Arabia
shut down 3/4 of its production, but other OPEC members did not act in
accordance with the decision. In 1985, OPEC collapsed, and Saudi Arabia
resumed its earlier production. Consequently, the price per barrel collapsed
from $27/barrel in 1985 to $12/barrel at one point in 1986 (Hamilton 2013).
The real price of oil was mainly driven by a positive supply shock (Kilian
& Murphy 2014). The drop in speculative demand also played a role in the
decrease in real oil prices.

In 1988, oil prices began to be mostly market-driven. One significant fac-
tor was the collapse of OPEC in 1985, which weakened the cartel’s ability to
control prices and led to increased competition among oil-producing countries.
Additionally, there were more suppliers outside of OPEC, as the nationalization
of the oil industry in many countries had led to the emergence of new players
in the market. The oil market had also become more complex and interlinked,



3. Data 18

with a wider range of products and an increased ability to trade oil on global
markets. These factors contributed to a shift towards a more market-driven
pricing system for oil (Fattouh 2011).

In 1990, Iraq started yet another war by invading Kuwait. One of the
main reasons was that Iraq was heavily indebted to Kuwait, having borrowed
more than $14 billion from the country to finance its military efforts during
the Iran-Iraq War. Kuwait, however, was not willing to forgive the debt and
instead demanded repayment, which put further strain on Iraq’s already weak-
ened economy (Encyclopedia Britannica 2014). In addition, Kuwait ramped
up its oil production levels, which kept revenues down for Iraq and further
weakened its economic prospects. Iraq interpreted Kuwait’s refusal to decrease
oil production as an act of aggression towards the Iraqi economy, leading to
hostilities and later to invasion of Kuwait. Kuwait was supported by a coalition
of the United States, the United Kingdom, France, Saudi Arabia, and Egypt.
They sought to remove the Iraqi forces from Kuwait and restore its sovereignty.
The conflict was fought in two key phases: Operation Desert Shield, which in-
volved a military buildup from August 1990 to January 1991, and Operation
Desert Storm, which began with an aerial bombing campaign against Iraq on
January 17, 1991 (Wright et al. 1995). The coalition forces were successful in
liberating Kuwait, and the conflict came to an end on February 28, 1991. The
price of crude oil doubled in a short time span. The cumulative global produc-
tion loss due to the conflict was estimated at 9% (Hamilton 2013). The price
change was mainly driven by a speculative demand shock during this period
(Kilian & Murphy 2014), although oil prices started to be more influenced by
macroeconomic indicators during this time (Gogolin et al. 2018)

In 1995, the United States imposed comprehensive sanctions on Iranian
crude oil. Although the embargo temporarily caused some losses for Iran in
terms of oil transport, the country was able to find new buyers quickly. In the
long run, the oil import embargo was ineffective due to the competition from
other oil exporters and did not significantly affect either Iran’s oil exports or
US oil imports (Torbat 2005a).

In the mid-1990s, many emerging economies started to develop rapidly, es-
pecially in Asia. The so-called Asian tigers were a group of newly industrialized
economies that emerged in the 1980s and 1990s. These countries, which include
South Korea, Taiwan, Hong Kong, and Singapore, were responsible for much
of the rise in global oil consumption during this time. Although they used only
17% of the world’s oil production, they were responsible for 69% of the increase
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in consumption during this time (Hamilton 2013). Should the rate of consump-
tion growth persist, China would have surpassed the USA in oil consumption
by the year 2022.

The rapid growth was followed by the Asian financial crisis of 1997, which
started in Thailand with the collapse of the Thai baht after the local gov-
ernment was forced to float the baht due to a lack of foreign currency. The
economic downturn of the Asian tigers led to a decrease in demand for oil
(Hamilton 2013). In response to the crisis, OPEC shifted its policy in order to
raise the price of crude oil, which had fallen to $10 per barrel by late 1998. The
organization sought to restore higher oil prices and protect the interests of its
member countries (Karali & Ramirez 2014). Kilian (2009) confirms that the
price change was entirely due to a negative oil market-specific demand shock.
Precautionary demand did not play a role, as the price of oil was too low.

The increased demand in Asian states, tensions in the Middle East, a general
strike in Venezuela, and weak US dollar caused a second energy crisis, which
lasted from 2003 to 2008. Despite the repeated attack on Iraq by the United
States, and missiles launched by Iraq on Kuwait, the key factor for the steady
price increase until 2005 was the growth in demand (Kilian 2009; Hamilton
2013; Karali & Ramirez 2014). The reason behind the lack of supply shock is
that production shortfalls in Venezuela and Iraq were offset by production in
other countries. Oil consumption grew by 3% per year in 2004 and 2005. The
production growth stopped after 2005 due to oil field depletion in the North
Sea, Mexico, and Indonesia, which pushed oil prices even higher. Saudi Arabia
saw the biggest decline in output, as their daily production fell by 850000
barrels from 2005 to 2007 (Hamilton 2013). The price of a barrel fluctuated
under $25 before the energy crisis and rose over $140 in July 2008.

The 2000s brought significant technological advancement in terms of oil and
gas extraction. Shakya et al. (2022) argue that the investment was motivated by
the steep rise in oil and gas prices due to the energy crisis. It became possible
to extract gas and oil from shale deposits found in close proximity to lakes
and rivers using a combination of horizontal drilling and fracking (hydraulic
fracturing) (Wang et al. 2014). The United States was motivated to expand
on gas extraction technology as they lacked conventional fossil fuel sources.
The North American shale gas revolution took off in 2006 and accounted for
nearly 40% natural gas production in the United States by 2012, which is a
12-fold increase since 2000 (Wang et al. 2014). Although the US gas production
increased rapidly in 2007 and the market was oversupplied, gas prices increased
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until late 2008. This can be attributed to the financialization of commodities,
and the high connectedness of gas prices to crude oil prices (Wiggins & Etienne
2017).

There has been ongoing financialization of commodities since the early 2000s
(Tang & Xiong 2012). Oil became tradable through spot transactions, futures,
and forward contracts, which opens a possibility to invest in oil for specula-
tive purposes (Hamilton 2009). The prices of petroleum-based commodities
are now more integrated into the global flow of the economy. Moreover, due
to globalization and advancements in information technology, the transaction
transmission for various financial assets is effortless and rapid, which pushes
the integration of commodities into global financial markets (Tang & Xiong
2012). In conclusion, oil prices are now more sensitive to seemingly unrelated
macroeconomic news, and their volatility is more connected to overall market
volatility (Gogolin et al. 2018; Wang & Guo 2018).

The Great Financial Crisis induced a sharp drop in energy commodities
from the peak of $140 to $40 due to lowered demand. Volatility spillovers
between financial assets and commodities spiked significantly (Bubák et al.
2011; Zhang & Wang 2014; Xu et al. 2019; Kang & Lee 2019). During this
period, the connectedness between different types of markets became more
pronounced. Metal commodities such as gold and silver acted as net sources
of volatility spillovers to oil-based commodities (Kang et al. 2017). The price
started to recover a year after, when it became clear that the crisis will come
to end (Baumeister & Kilian 2016). The strong linkage between the global
economy and oil prices started to weaken after the Global Financial Crisis
(Baruník et al. 2015).

The effective extraction of shale oil extraction developed only after 2011,
and it increased the US production of crude oil by 3.6 million barrels per
day (Ansari et al. 2019). The price of crude oil declined from $100 to $50 in
2014. Baumeister & Kilian (2016) state that $16 of that decline can be directly
attributed to the positive supply shock from shale oil exploration. Due to the
revolution, the influence of OPEC weakened as the private shale oil companies
did not regulate their production depending on the global needs, and the spare
capacity of OPEC became less effective (Almutairi et al. 2021). The shale oil
revolution is largely responsible for the divergence of the two major crude oil
benchmark prices - WTI and Brent (Kilian 2016).

The rest of the price decline can be explained by the effort of OPEC to
control the market. OPEC attempted to squeeze shale oil producers out of the
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market by lowering oil prices, which was partially successful until 2014. As a
result of the rapid innovation and increased productivity of oil rigs, OPEC was
no longer able to control the market (Diebold et al. 2017; Ansari et al. 2019;
Almutairi et al. 2021). During the 2010s, the production share of OPEC fell to
approximately a third of global oil output, while the United States increased
its oil output by 78% from 2008 to 2016 (Aguilera & Radetzki 2017). In 2017,
shale oil already made up 50% of the US oil production. After 2016, oil prices
increased steadily due to demand increases, and production constraints from
OPEC, but mainly the US-China Trade War. During this period, both countries
imposed tariffs on imports. The U.S. targeted approximately $350 billion of
Chinese imports (Fajgelbaum & Khandelwal 2022). China also raised the tariffs
on crude oil, which induced global demand adjustments and oil price increase.

In March 2020, OPEC decided on a production cut. Russia did not respect
the decision, and increased production and exports, to which Saudi Arabia
reacted in a similar manner. Russia - Saudi Arabia oil price war coincides with
the Covid-19 pandemic, which introduced quarantine measures and reduced
the need to commute in society. Due to these reasons, global consumption
of gasoline dropped by 46.40% in March, and the price per barrel fell from
$50 to $30 (Ma et al. 2021). There was a massive increase in spare capacity,
which caused the price of crude oil to fall to minus $37 on April 20, 2020. The
negative price of crude oil reflects the fact that it was too costly for firms to
store the surplus of supply, but investors were willing to pay for not having the
oil physically delivered (Ma et al. 2021; Kočenda & Moravcová 2023).

On February 24, 2022, Russia invaded Ukraine and started yet another
volatile period for the oil markets. The Brent Crude oil price spiked to $105
and gas prices rose by 40-50% on that day (Sun et al. 2022). In 2021, Russia
was the world’s largest natural gas exporter, and the second largest crude oil
exporter (Statista 2022). Further, Russia relied on the stability of its position
as a crucial source of oil and gas for Europe. Nonetheless, Europe managed to
cut most of the Russian oil imports by the end of 2022. The price of oil and gas
started to decline in the second half of 2022 due to the release of US reserves
and the OPEC production increase.
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3.3 Events Dataset
The dataset consists of 900 events related to oil prices spanning from January
1, 1987, to November 30, 2022. The events were divided into three general
types - economic, geopolitical, and natural. Economic events cover OPEC deci-
sions, news about oil reserves and inventory levels, news of market conditions
including speculations, mergers and developments in the oil industry, and sanc-
tions. Geopolitical news articles include all events of political nature and wars.
Lastly, natural news articles mostly refer to natural disasters, tanker spills, or
the spread of some disease. In total, we processed 395 economic, 130 natural,
and 375 geopolitical articles. Observing the temporal event distribution in ??,
we can see an increase in the event count as time progresses due to better news
coverage.

The events can be further divided into 18 distinct groups based on the re-
currence of specific characteristics. Following the group summary in Table 3.3,
we will briefly describe each of the 18 groups, starting with those that fall un-
der the ’geopolitical’ category. The first major group features purely political
events. Some typical news articles labeled as political events in our dataset are
governmental elections, civil wars, political statements featured in the news,
or meetings of political leaders. Altogether, there are 183 such events in our
dataset.

News about the beginning or development of some war conflict is also put
into one group. This group features major events such as the day of the Iraq
invasion of Kuwait and the subsequent US intervention in January 1991, the war
declaration by Osama bin Laden against the United States in August 1998, or
the first day of the Russian invasion of Ukraine in February 2022. Any terrorist
attacks, missile launches, or bombings were grouped into a separate group
’missile’. Together, these two groups encompass 70 and 41 events, respectively.

News announcing a peace agreement, treaty, ceasefire, or end of a war con-
flict, is marked as ’peace’. Such events are typically positive in nature, which
enables us to validate and draw inference about the effect difference between
good and bad news. Some examples of such events are the end of the Iran-Iraq
war in April 1988, the end of the Gulf War in February 1992, and the end of the
Russia-Saudi Arabia oil war in April 2020. We gathered 52 events classifiable
into the ’peace’ group.

The protests against the government or strikes of oil workers are separated
into their own group ’strike’. News articles that are not effective, such as
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the threats of cutting ties, imposed deadlines, threats of attacks, and general
warnings, are separated from the rest of the geopolitical event groups into their
own group ’threat’. We identified 24 articles that can be grouped under ’threat’.

We move onto the event groups that fall into the economic category. News
articles that are tied to the the global markets, but are not necessarily con-
nected to a political party, were labeled as ’market’. Macroeconomic news re-
leases, monetary policies or Federal Reserve Board reports fall into this group.
News related to financial crises or recessions is also included. Furthermore,
countries frequently create organizations and agreements with the purpose to
trade goods more effectively, such as the Arab Cooperation Council or NAFTA.
News about these organizations is also comprised in the ’market’ group. Lastly,
any humanitarian initiative, such as the Paris Agreement, the Clean Air ini-
tiative, or the Oil for Food program, is represented in the ’market’ group as
well. This group contains 151 news. Some examples of events belonging to this
group are the beginning of the Asian financial crisis in 1997, the stock market
crash in 2008, and the beginning of the Russia-Saudi oil war in March 2020.

The next important economic group of events comprises all the decisions
related to crude oil production. A majority of such news is directly connected
to OPEC, and has some economic reasoning behind it. Still, there are decisions
not related to OPEC, which usually occur as a result of some geopolitical con-
flict. One such example would be the Russia-Saudi oil price war. According to
OPEC, the organization’s mission is to stabilize oil markets and provide a reg-
ular supply of petroleum to consumers. The usual methods to achieve oil price
stability are to cut, maintain, or boost oil supply. The organization meets sev-
eral times per year, which gives us enough data to draw conclusions on the effect
of OPEC meetings on volatility spillovers. There have been 145 OPEC meetings
that resulted in either of these decisions since 1987. Specifically, there were 45,
65, and 35 decisions to cut, maintain, and boost production, respectively. No
obvious pattern seems to exist in the decisions across the years, apart from the
streak of the decisions to maintain production from March 2009 to June 2016.
If the meeting resulted in a decision to cut or boost production, we encode the
event as having a direct effect on the supply of crude oil. After the decision is
announced to the public, oil price volatility usually spikes significantly, which
has been documented by a few studies already (Schmidbauer & Rösch 2012;
Mensi et al. 2014a). Lastly, OPEC meetings represent a rare group of news
that is scheduled. In a study of forex markets, Mensi et al. (2014b) argue that
scheduled announcements have no impact on price volatility, as opposed to a
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significant impact of unscheduled news. Similar logic could hold for oil markets
as well.

We continue with 3 relatively sparsely represented groups of economic events.
Firstly, announcements of bids or mergers of oil companies are labeled as
’merge’. If there is news involving the discovery of oil fields or investments
into oil infrastructure such as oil platforms, tankers, or pipelines, we label
these events as ’develop’. Lastly, news related to the current state of oil storage
or the release of oil reserves by the Strategic Petroleum Reserve is grouped into
the ’inventory’ group. There are 46 events belonging to these 3 groups. Major
events included in this group are the release of oil from the Strategic Petroleum
Reserve during Operation Desert Storm in 1991, and during the worst period
of Hurricane Katrina in May 2005.

The next group contains news about embargoes, sanctions, and tariffs im-
posed between the countries. There are 35 news articles of this type. An
important condition for this group is that the sanction has to be valid and
effective.

Any articles involving threats of sanctions or speculation about the eco-
nomic development have their own group ’speculation’. News of market expec-
tations, doubts, intentions, or signals without a resolute action promised, also
falls here. We identified 18 events of this type.

Natural events such as earthquakes, tornadoes, volcanic eruptions, storms,
heat waves, and cold waves, are grouped into the ’natural’ group. Further, we
identified 53 articles informing about oil terminal leaks, pipeline leaks, tanker
explosions, or oil rig crashes. These events are marked as ’spill’, and all of
them intrinsically affect the oil supply. These events do not necessarily have to
be caused by nature although it is the most prevalent cause. The final group
of natural events, called ’pandemic’, captures all news revolving around the
recent COVID-19 outbreak with a possible connection to the oil market. We
only collected 10 events related to the pandemic. As an example, it is January
31, 2020, when WHO issued Global Health Emergency, and also March 11,
2020, which is the date on which WHO declared COVID-19 a pandemic.

Since we can not compute spillover values for weekends, any event happen-
ing on Saturday or Sunday was moved to the upcoming Monday. In doing so,
we pair the event with the first date during which the market can react to it.
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Figure 3.1: Event distribution

Notes: The figure shows the count of events grouped into economic, geopolitical, and natural categories
per each year of the studied period.

Table 3.3: News dataset summary

Category Group Count
geopolitical political 183
geopolitical war 70
geopolitical missile 41
geopolitical peace 52
geopolitical threat 24
geopolitical strike 5
economic market 151
economic maintain 65
economic boost 35
economic cut 45
economic merge 13
economic develop 12
economic inventory 21
economic sanctions 35
economic speculation 18
natural natural 67
natural spill 53
natural pandemic 10

Notes: This table provides summary of the news dataset. The events were divided into three main
categories: economic, geopolitical, and natural, and into 18 smaller groups.



Chapter 4

Methodology

Our analysis employs two methodological frameworks. Firstly, we will compute
the rolling spillover index introduced in the work of Diebold & Yilmaz (2009);
Diebold & Yılmaz (2014), which represents the degree of volatility connected-
ness of the assets put in the network at each point of time. Next, we utilize
the bootstrap-based test introduced by Greenwood-Nimmo et al. (2021), which
enables us to statistically assess the chance that the spillover index persistently
increased after some event occurred.

4.1 Volatility estimation
In order to compute the volatility spillover index created by Diebold & Yilmaz
(2009), it is necessary to estimate daily volatility. We combine the results of two
estimators: high-frequency realized variance and range-based realized variance.

4.1.1 Range-based volatility estimate

The range-based realized variance was first introduced by Garman & Klass
(1980). It is a great improvement over the most basic volatility estimator using
only two closing prices P : σ̂2 = (Pt − Pt−1)2.

For Oit, Cit, Hit, Lit being the natural logarithms of daily open, close, high,
and close prices for commodity i on day t, the range-based realized variance is
computed as:
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σi,tˆ 2 = 0.511(Hit − Lit)2 − 0.019[(Cit − Oit)(Hit + Lit − 2Oit)
− 2(Hit − Oit)(Lit − Oit)] − 0.383(Cit − Oit)2

RealV oli,t =
√︂

σi,tˆ 2

(4.1)

The range-based volatility is easy to compute, requires only four inputs
per day, and is almost as efficient as high-frequency estimators (Demirer et al.
2018). Moreover, this estimate is robust to certain microstructure noise and has
been frequently used as a volatility estimate for network connectedness analysis
(Diebold & Yilmaz 2009; Diebold et al. 2017; Demirer et al. 2018; Wang & Guo
2018; Kočenda & Moravcová 2019).

4.1.2 High-frequency volatility estimate

Realized variance (RV) by Andersen & Bollerslev (1998) provides an improved
method to estimate volatility. The measure is defined as the sum of squared
intra-day returns, based on the frequency of underlying data:

RVi,t =
m∑︂

j=1
r2

i,t−1+jn

RealV oli,t =
√︂

RVi,t

(4.2)

Assuming that the underlying asset’s price follows a jump diffusion model
introduced by Andersen et al. (2003):

yt = pt + ϵt

ϵt ∼ N(0, σ2)
dpt = µtdt + σtdWt + ctdJt

(4.3)

The quadratic variation (QV) of this process can be decomposed into inte-
grated variance and the variation of jumps:

QVt =
∫︂ t

0
σ2

sds +
t∑︂

s=1
J2

s (4.4)

As data frequency gets smaller, and the number of intra-day returns larger,
it can be shown that the realized volatility measure is an unbiased and con-
sistent estimator of integrated variance (Andersen et al. 2003). Therefore, it
appears to be an optimal input for the volatility index calculation (Bubák
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et al. 2011). Baruník et al. (2015) argue that spillovers from high-frequency
data show a larger magnitude as opposed to using daily data.

Barndorff-Nielsen et al. (2008) proposes, that RV can be decomposed into
realized semivariances (RS) by computing realized volatility from positive and
negative intra-day returns separately:

RS−i,t =
m∑︂

j=1
r2

i,t−1+jn1{ri,t−1+jn<0}

RS+
i,t =

m∑︂
j=1

r2
i,t−1+jn1{ri,t−1+jn>0}

(4.5)

The sum of positive and negative realized semivariances converges to the
integrated variance under previously described assumptions (Barndorff-Nielsen
et al. 2008).

4.2 Static Spillover index
This spillover index measure introduced by Diebold & Yilmaz (2009) is based on
covariance-stationary vector autoregressions (AR). For a vector of m variables
xt = (x1t, x2t, ..., xmt), we can write VAR of lag p in its reduced matrix form as:

xt =
p∑︂

j=1
Ajxt−j + ut, (4.6)

where xt is an m × 1 vector of realized volatilities, Aj is a m × m matrix
of VAR parameters for lag j = 1, . . . , p, ut is an m × 1 of disturbances, so that
ut ∼ N(0, Σ). The matrix Σ is a positive-definitive covariance matrix of size
m × m, with unknown distribution. We also explicitly remove the static mean
from the equation, as it does not affect variance decomposition.

Since this VAR form is simply a finite horizon AR process, we can use the
Wold decomposition and convert VAR into a more convenient infinite-order
moving average process:

xt =
∞∑︂

ℓ=0
Gℓut−ℓ, (4.7)

where the ℓ-th m × m vector moving average (VMA) parameter matrix is
obtained recursively from the parameters of the VAR model as Gℓ = A1Gℓ−1 +
G2Gℓ−2 + . . . for ℓ = 1, 2, . . ., with G0 = Im and Gℓ = 0m for ℓ < 0, where Im

represents an m×m identity matrix, and 0m denotes an m×m zero matrix. The
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infinite number of lags in the moving average representation can be sufficiently
approximated with coefficients of a finite horizon H

The moving average representation is crucial for calculating the spillover
index, as it enables us to decompose the variance of the forecast errors into
parts. Nevertheless, the reduced VAR form is not identified, and the errors are
just linear combinations of the structural form. Thus, we can not attribute
a shock to xi to innovations in a single variable xj. It is necessary to deploy
some variance decomposition scheme in order to orthogonalize the errors and
remove the correlation between them. Diebold & Yilmaz (2009) use the h-
steps-ahead orthogonalised forecast error variance decomposition (OVD) for
the i-th variable can be obtained the moving average representations as:

θ
(H)
i←j =

∑︁H
ℓ=0 (e′iGℓP ej)2∑︁H
ℓ=0 e′iGℓΣG′ℓei

, (4.8)

where i, j = 1, . . . , m represent the interaction between variable i and j.
Vector ei is an m × 1 selection vector, such that there are zeros on every
position, except for element i, which is equal to 1. P is the m × m lower-
triangular Cholesky factor of the residual covariance matrix Σ.

The value of θ
(h)
i←j can be viewed as the h-steps ahead forecast error vari-

ance of variable i due to orthogonal shock to variable j. This orthogonalized
variance decomposition measure is sensitive to the ordering of the variables in
the system. More importantly, it does not enable the measurement of directed
volatility spillovers. Therefore, Diebold & Yılmaz (2014) propose a generalized
forecast error variance decomposition (GVD), which is order-invariant, and al-
lows the measurement of directed spillovers. Now we are going to derive the
generalized version since it is going to be used to compute the spillover index.

Since the errors of Equation 4.7 are assumed to be serially uncorrelated,
and the VAR model is covariance-stationary, the total covariance matrix of
Equation 4.7 of horizon H can be calculated as:

ΩH = E(xtx
′
t) = E(

H∑︂
ℓ=0

Gℓut−ℓ ∗ (Gℓut−ℓ)′) =
H∑︂

ℓ=0
GℓΣG′ℓ (4.9)

In order to compute the generalized variance decomposition, we must first
define the forecasting error conditional on today’s innovation in variable j.

γj
t =

H∑︂
ℓ=0

Gℓ[ut−ℓ − E(ut−ℓ|uj,t−ℓ)] (4.10)
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Assuming normal distribution of the shocks, we can use the Bayes theorem
to rewrite the conditional shock as:

γj
t =

H∑︂
ℓ=0

Gℓ[ut−ℓ − σ−1
jj uj,t−ℓ(Σ).,j] (4.11)

where σjj is the jth diagonal element of the residual covariance matrix Σ.
The covariance matrix conditional on the innovations to variable j is then:

Ωj
H =

H∑︂
ℓ=0

GℓΣG′ℓ −
H∑︂

ℓ=0
GℓΣ.,jΣ.,j

′G′ℓ (4.12)

The forecast error variance of the i-th component of the VAR system stem-
ming from innovations to variable j is computed as:

∆(i)jH = (ΩH − Ωj
H)i,i = σ−1

jj

H∑︂
ℓ=0

((GℓΣ)i,j)2 = σ−1
jj

h∑︂
ℓ=0

(e′iGℓΣej)2 (4.13)

Finally, we can obtain the generalized variance decomposition through scal-
ing Equation 4.13 by the unconditional forecast error variance of the i-th com-
ponent:

ϑ̌
(H)
i←j =

σ−1
jj

∑︁H
ℓ=0 (e′iGℓΣej)2∑︁H

ℓ=0 e′iGℓΣG′ℓei

(4.14)

The notation of Equation 4.14 is consistent with the OVD specification. In
the case of orthogonalized variance, it holds that:

m∑︂
j=1

θ
(h)
i←j = 1,

m∑︂
i=1

m∑︂
j=1

θ
(h)
i←j = m (4.15)

whereas the sum of all proportions of forecast error variance to variable i will
generally be greater than 1 because the shocks do not necessarily need to be
orthogonal (∑︁m

j=1 ϑ̌
(h)
i←j > 1). Thus, Diebold & Yılmaz (2014) apply a row-sum

normalization of GVD:

θ̃
(H)
i←j = θ̌

(H)
i←j

/︄
m∑︂

j=1
θ̌

(H)
i←j. (4.16)

The matrix of θ̃
(h)
i←j, i, j = 1, . . . , m can be viewed as a weighted directed net-

work. For i ̸= j, the bilateral interactions represent the ’spillovers’ - how much
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of the forecast error variance of a variable i can be attributed to innovations of
a variable j.

4.2.1 Total Spillover

Denoting the m × m h-step ahead matrix of the generalized forecast error
variances as θ = {θi←j}h

i,j. Diebold & Yilmaz (2009) and Diebold & Yılmaz
(2014) measure the total spillover index in the following way:

SH = 100 ×

∑︁M
i,j=1
i ̸=j

θ̃
(H)
i←j∑︁M

i,j=1 θ̃
(H)
i←j

= 100 × ι′θι − trace(θ)
ι′θι

%, (4.17)

where ι is an m × 1 vector of ones.

4.2.2 Directional Spillover

Although total spillovers provide a useful measurement of the overall connect-
edness in the system, the main advantage of the spillover framework is the
potential to uncover the shock transmission mechanism from or to a specific
asset. Diebold & Yilmaz (2012) define two variations of the spillover index.
’From’ spillovers are defined as a mean of spillovers received by commodity i

from other commodities:

SH
i←• = 100 × 1

M

M∑︂
i=1
i ̸=j

θ̃
(H)
i←j (4.18)

Whereas ’to’ spillovers represent the mean spillover value transmitted by com-
modity i to all other commodities:

SH
i→• = 100 × 1

M

M∑︂
j=1
i ̸=j

θ̃
(H)
j←i (4.19)

Finally, the net directional volatility spillover for commodity i is the differ-
ence between how much spillovers does a commodity receive, and how much it
transmits:

SH
i = SH

i←• − SH
i→• (4.20)
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4.3 Dynamic Spillover index
A static representation of volatility spillovers provides a good overview of the
network connectedness. It is, however, merely an average throughout the whole
studied period. A prolonged period of weak connectedness during stable eco-
nomic period followed by a financial crisis would display only a mild average
connectedness, while the economic interpretation is entirely different, when the
two periods are evaluated separately. For petroleum-based commodities in par-
ticular, the strength of volatility spillovers varies throughout different historic
periods (Kilian 2009).

Since our goal is to analyze the spillover levels before and after a certain
event, it is necessary to observe temporal changes of the spillover index. The
impact of economic events on volatility can not be sufficiently quantified using
non-overlapping or arbitrary intervals (Kang & Lee 2019). By using a rolling
spillover measure, we can observe trends and sudden jumps in the spillover
index. Trends in volatility spillovers can be attributed to the gradual advance-
ment in technology, progressing globalization, rise of hedge funds, or prolonged
state of global economy (Liu & Gong 2020). Furthermore, we are able to asses
the state of spillover network on each day. Thus, for sudden bursts in volatil-
ity spillovers, daily volatility spillover measure enables us to explore possibly
causal effects of the events in our dataset.

The calculation of rolling spillover index is identical to the static one. Given
observations at time t = 1, ..., T , we simply choose a rolling window of size
w, and compute the forecast error variance matrix θ̃

(h) using only the last w

observations. In the end, we obtain θ̃
(h)
t , t = w...T matrices, from which we can

calculate the total and directed spillover indices,

4.4 Frequency decomposition
We can expect the events in our dataset to have a different impact for in-
vestors depending on the time horizon of their investments. Different hori-
zons represent varying perception of economic stability for investors (Baruník
& Kočenda 2019). Short-term investment horizons are likely associated with
trading strategies involving technical analysis, while long-term investment is
primarily focused on fundamentals (Kočenda & Moravcová 2023). Thus, neg-
ative news can nudge short-term investors to buy the underlying asset due
to market overreaction, while long-term investors might be prompt to selling
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under the belief that news will negatively impact the price gradually. In con-
text of oil volatility spillovers, while some negative geopolitical event involving
crude oil could create arbitrage opportunities on the energy market, and conse-
quently cause short-term volatility spillovers to other oil-related commodities.
On the other hand, long-term investors might anticipate the effect of such event
to temporarily affect the volatility of crude oil only, while other commodities
would remain stable due to the solid state of current oil inventory levels.

Baruník & Křehlík (2018) propose a methodology to measure the impact
of shocks at various frequencies. The methodology builds upon spectral repre-
sentations of time series. Using the inverse Fourier transform, we can express
any time series as a sum of sines and cosines at any frequency ω. We can write
the Fourier transform of Gℓ as: G(e−iω) = ∑︁

ℓ e−iωℓGℓ. Furthermore, the total
variance-covariance matrix of the VMA VAR representation can be expressed
through a Fourier transform, which is called the spectral density:

Sx(ω) =
∞∑︂

ℓ=−∞
E(xtx

′
t−ℓ)e−iωℓ = G(e−iω)ΣG(e+iω) (4.21)

where we again make use of the fact, that the errors in the VMA definition
are uncorrelated, and the cross-spectral densities are equal to 0. The spectrum
in Equation 4.21 describes the distribution of xt over all the frequency compo-
nents ω. Using this, Baruník & Křehlík (2018) define the generalized causation
spectrum over frequency ω as:

f(ω)j←k =
σ−1

kk

⃓⃓⃓
ejG(e−iω)Σek

⃓⃓⃓2
ejG(e−iω)ΣG(e+iω)ej

(4.22)

Similarly to Equation 4.14, f(ω)(H)
j←k represents the portion of the density

spectrum for variable j stemming from shocks to variable k at a given frequency
ω. In order to compare the variance share of a given frequency proportional to
all frequencies, it is necessary to weight f(ω)(H)

j←k with the frequency share of
the total variance for variable j, which is defined as:

Γj(ω) = ejG(e−iω)ΣG(e+iω)ej
1

2π

∫︁ π
−π(ejG(e−iλ)ΣG(e+iλ)ej)dλ

(4.23)

Finally, under the assumption that θ̃
(H)
i←j can be viewed as the weighted

average of f(ω)j←k as H → ∞, we can reconstruct the normalized GVD using
the inverse Fourier transform of the variance decomposition:



4. Methodology 34

θ̃j←k = 1
2π

∫︂ π

−π
ejΓj(ω)(f(ω)j←k)ekdω (4.24)

Since our analysis is concerned with observing the variance decomposition
over short-, medium-, and long-term frequency ranges, rather than a single
frequency, it makes sense to split Equation 4.24 into frequency bands. Baruník
& Křehlík (2018) define the share of variance on a given frequency band d =
(a, b) as:

(θd̃)j←k = 1
2π

∫︂
d

ejΓj(ω)(f(ω)j←k)ekdω (4.25)

It must hold, that the intervals ds are disjoint, and their union returns
the full range: (−π, π). It is necessary to apply a row-sum normalization,
similarly to Equation 4.16. Contrary to the previous normalization, here we
scale the generalized variance decomposition at given frequency d by rows of
Equation 4.24, so that ∑︁

k

∑︁
d(θd̃)j←k = 1.

4.4.1 Parameter estimation

As was the case with the classical connectedness estimation, frequency decom-
position relies on an infinite process. Thus, it also needs to be approximated
with a finite horizon H. In frequency decomposition, the finite horizon is only
applied for parameter approximation, as it does not play a role in the compu-
tation of the power spectrum (Baruník & Křehlík 2018).

The cross-spectral density on a given frequency interval d = (a, b) : a, b ∈
(−π, π) is approximated as:

∫︂
d

G(e−iω)ΣG(e+iω)dω ≈
∑︂
w

ˆ︂G(ω) ˆ︁Σˆ︂G′(ω),

ˆ︂G(ω) =
H−1∑︂
ℓ=0

ˆ︂Gℓe
−2iπω/H

(4.26)

for w ∈ {⌊aH
2π

, ..., bH
2π

⌋}. The estimate of Σ is corrected for a loss of degrees of
freedom depending on the number of parameters in the VAR specification. By
summing the coefficients ˆ︂Gℓ(ω) for all the frequencies ω, we obtain an estimate
of the impulse response function on a given frequency band d. This relationship
allows us to plug in previously formulated estimates to compute the estimates of
the generalized causation spectrum and the corresponding weighting function:
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ˆ︁f(ω)j←k =
ˆ︁σ−1

kk

⃓⃓⃓
ej

ˆ︂G(ω) ˆ︁Σek

⃓⃓⃓2
ej

ˆ︂G(ω) ˆ︁Σˆ︂G(ω)ej

(4.27)

ˆ︁Γj(ω) = ej
ˆ︂G(ω) ˆ︁Σˆ︂G(ω)ej∑︁

ω ej
ˆ︂G(ω) ˆ︁Σˆ︂G(ω)ej

(4.28)

Finally, the estimated share of variance on a given frequency band can be
derived by summing the weighted values of generalized causation spectrum for
each frequency:

(ˆ︁θd)j←k =
∑︂
ω

ej
ˆ︁Γj(ω)( ˆ︁f(ω)j←k)ek (4.29)

Using ˆ︁θj←k ,and its frequency band decomposition: (ˆ︁θd)j←k, we can define
the total and directed spillover indices across varying horizons. The connect-
edness within a given frequency band ω is defined as:

Sd = 100 ×

∑︁M
j,k=1
j ̸=k

(ˆ︁θd)j←k∑︁M
i,j=1

ˆ︃(θ)dj←k

, (4.30)

while the frequency connectedness of the network is defined as the share of
the overall connectedness for a given frequency band d:

S = 100 ×

∑︁M
j,k=1
j ̸=k

(ˆ︁θd)j←k∑︁M
i,j=1

ˆ︁θj←k

= Sd ∗

∑︁M
j,k=1
j ̸=k

(ˆ︁θd)j←k∑︁M
i,j=1

ˆ︁θj←k

. (4.31)

’From’ and ’to’ frequency spillovers can be defined in a similar fashion.
Summing the values of frequency connectedness for all frequency bands

returns the total connectedness, or the total spillover index defined by Diebold
& Yilmaz (2009). It is important to note that frequency connectedness is not
equal to within connectedness. Frequency connectedness is the connectedness
within a specific frequency band, weighted by the power spectrum share of
that given frequency band. The main implication of this definition is that high
connectedness within a specific frequency band does not necessarily translate
to high-frequency connectedness. If the within connectedness is high on a given
frequency band, but that frequency band accounts for only a small percentage
of the overall spectral density, the total connectedness will not be as influenced
by high within connectedness of this frequency band.
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4.5 GARCH Comparison
In the past, variations of the multivariate GARCH model have been used to
study volatility spillovers, even though there are several limitations to the
GARCH family. The variance-covariance matrix from GARCH does not provide
information about the direction of spillovers (Kang et al. 2017). Moreover,
the significance of GARCH parameters can not measure the extent, or even the
direction of volatility spillovers (Xu et al. 2019). Lastly, as the number of
variables in the system gets larger, they can not quantify the spillovers in suffi-
cient detail. In conclusion, GARCH models are more suited to explore volatility
correlations between pair-wise markets, while the spillover index can capture
directional and time-varying dependencies between multiple assets or markets.

4.6 Bootstrap-after-bootstrap test
As mentioned previously, the spillover index computed on rolling windows is
crucial for our analysis as it captures the time-variation attributable to histor-
ical events. Until recently, this analysis relied on a simple visual inspection,
where the time of an event is matched with a sudden change in the spillover
index magnitude (Diebold & Yilmaz 2009; Baruník et al. 2016; Diebold et al.
2017). Visual inspection is often only feasible for long-lasting spillover index
changes. Nonetheless, we expect many events in our dataset to have an abrupt
and short-term effect. Therefore, Greenwood-Nimmo et al. (2021) develop a
methodological framework allowing to draw inference about these events with
statistical power. The authors test the methodology on events used by the
authors of the spillover index (Diebold & Yilmaz 2009). The test identified a
90% probability of a volatility spillover index increasing within one month after
the event for 15 out of 19 events analyzed by Diebold & Yilmaz (2009). The
findings are in line with the original results, implying that the spillover index
is indeed a sound method to study the connectedness of various time series.
Consequently, we can expect the index to provide valuable insights into which
events coincide with a shift in network connectedness between petroleum-based
commodities.

An important feature of the methodology is that the test does not rely on
asymptotic properties. This would pose problems in the case of the rolling win-
dows estimation since the window is often set relatively small. This issue can be
treated using residual bootstrapping to construct some empirical interval of the



4. Methodology 37

spillover index. Nevertheless, Kilian (1998) shows that the traditional meth-
ods of producing confidence intervals for impulse responses have biased results,
which is especially true when estimating impulse responses on small samples
for long horizons. The reason for the low interval accuracy lies in the bias of
the coefficients of the VAR model. Even a small bias in the slope coefficient can
result in the confidence band, not including the initial estimate. Thus, we first
need to correct the coefficients Aj in Equation 4.6 for bias, which can be done
yet again by bootstrapping. Following Kilian (1998), Greenwood-Nimmo et al.
(2021) propose a non-parametric bootstrap-after-bootstrap procedure. For the
sake of accuracy and consistency with the notation in a seminal work, we use
the formal notation of Greenwood-Nimmo et al. (2021) in the subsequent ac-
count of the bootstrap test methodology employed in our analysis.

1. Begin with the first rolling sample. Estimate the VAR model and save the
resulting parameter matrices ˆ︂Aj, residuals ut, and value of the spillover
index SH .

2. Use the initial parameter space ˆ︂Aj along with u
(b)
t residuals obtained ei-

ther from an assumed multivariate distribution or sampled from residuals
of the initial VAR model. Obtain B samples x

(b)
t with:

x
(b)
t =

p∑︂
j=1

ˆ︂Ajx
(b)
t−j + u

(b)
t , (4.32)

3. Using the same rolling sample, re-estimate the VAR model B times for each
set x

(b)
t , and B sets of parameters ˆ︂Aj, j = 1, ..., p. For each parameter set,

calculate the corresponding value of the spillover index ˆ︁S(b), b = 1, . . . , B.

4. Calculate the bias in given rolling window as ˆ︁Υ = B−1 ∑︁B
b=1

ˆ︁S(b) − ˆ︁S.

5. Repeat steps 2 to 4 B times, but subtract the bias ˆ︁Υ from each estimateˆ︁S(b). The resulting spillover values represent a bias-corrected distribution
for a given rolling window.

6. Repeat step 1 to 5 for each rolling window, each time saving the final
distribution.

Having obtained the empirical spillover distribution for each rolling window,
we can proceed with the methodology of statistical inference for the effect of
events. Suppose some exogenous event happens in the final observation of
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the rolling sample re. Then the probability that the event has increased the
spillover index in the following periods re + j is evaluated as the probability
that the distribution of spillover index S(b)

re+j exceeds the mean spillover index
from the window preceding the time of event Sre−1 = B−1 ∑︁B

b=1. This can be
formalized as:

Pr
(︂
Sre+j > Sre−1

)︂
= B−1

B∑︂
b=1

I
{︂(︂ ˆ︁S(b)

re+j − Sre−1
)︂

> 0
}︂

, (4.33)

where I {·} is a Heaviside function equal to 1 if the condition in brackets
is met and 0 otherwise. By setting j equal to 1 − 5, we can draw statistical
inference of the event 1 − 5 days after the event takes place, respectively. A
natural limitation for values of j is that some events are densely distributed
in time. Therefore, it is not possible to differentiate between the effect of two
subsequent events for longer horizons.



Chapter 5

Results and robustness checks

We optimized the lag order of the vector autoregressive model according to the
akaike information criterion (AIC). Since the AIC values were very similar for all
lag orders, we parsimoniously decided to choose lag 1 for the VAR model. When
dealing with daily time series, it is conventional to use a 100- or 200-day rolling
window (w) to compute the spillover index. Similar logic is applied for the
horizon (H) on which the forecast error variance decomposition is calculated.
Since our task is to capture the effect of events, it is favorable to have a more
volatile rolling spillover index. Therefore, we chose a value of 100 for both the
rolling window and the horizon.

5.1 Spillovers

5.1.1 Static Spillover

The overall spillover for the oil spillover network is 45.67%. Comparable results
were obtained by Baruník et al. (2015), who arrived at an overall spillover
index of 50.6% for a network made of crude oil, heating oil, and gasoline. The
idiosyncratic volatility spillover is the strongest for all commodities, implying
that the volatility of each commodity is mostly influenced by its own past
shocks. Crude oil appears to be a net spillover transmitter, while diesel and
gasoline are mostly net receivers. Baruník et al. (2015) and Gong et al. (2021)
find that crude oil transmits most of the spillovers as well. Heating oil is neither
transmitter nor a receiver. The strongest pairwise connectedness can be found
between gasoline and crude oil. Crude oil is responsible for 26.42% of spillovers
to gasoline. The weakest link is between gasoline and diesel, where shocks to
gasoline are explainable by shocks to diesel from only 8%.
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Table 5.1: Average connectedness for oil-based commodities

oil ho lgo rb FROM

oil 53.83 17.95 10.58 17.65 11.54
ho 19.90 51.76 16.83 11.51 12.06
lgo 13.67 18.73 56.82 10.78 10.79
rb 26.42 10.68 8.00 54.91 11.27

TO 15.00 11.84 8.85 9.98 45.67
Notes: This table shows the average connectedness of the oil-based commodities network from 1979 to
2022. The commodities included are crude oil (oil), heating oil (ho), diesel (lgo), and gasoline (rb). The
11.54 ’FROM’ connectedness for crude oil means that 11.54% of spillovers are transmitted FROM other
commodities to crude oil. Similarly, 9.98% TO spillovers for gasoline means that all other commodities
on average 9.98% spillovers are transmitted from gasoline TO other commodities. In order to read
the pairwise connectedness, we determine FROM which commodity we want to measure the spillovers
(columns) and TO which commodity should the spillovers be transmitted (rows). Thus, 26.42% of
spillovers TO gasoline are transmitted FROM crude oil.

5.1.2 Rolling Spillover

Figure 5.3 shows that the rolling spillover index ranges from 5% to 75% through-
out the studied period. Similarly to Baruník et al. (2015), we observe a funda-
mental change around the years 2000 and 2008. The connectedness was much
more volatile pre-2008. Since energy commodities were not yet financialized
well, and they were not part of broader indices, they were not traded by spec-
ulators. Thus, the average spillover level was lower before the year 2000. On
the other hand, the geopolitical tensions in the middle east along with the fear
of sanctions caused sudden spikes in the index. After the invasion of Kuwait
and the Persian Gulf War in the 1990s, oil prices stabilized, which lowered the
average spillover index back to levels around 35%. Repeating war conflicts and
sanctions led to the depletion of oil inventories in the US from 1995 to 1996,
which also affected the production of gasoline (Baruník et al. 2015). During
this period, the spillover index rose from 30% to 50%, before returning to low
levels in February 1997.

Later in 1997, the spillover index increased again from 20 to 50%, which
is likely attributable to the Asian financial crisis followed by regional crises in
Russia and South America (Kilian 2014). The steadily increasing demand for
oil combined with some major oil production disruptions in Venezuela and Iraq
kept the spillover index volatile until 2003. After 2003, we see an indisputable
rise in overall connectedness but also a decrease in the volatility of the index.
The findings are consistent with those of Baruník et al. (2015). As argued in
Chapter 3, the stabilization of the index at higher levels is likely due to the pro-
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gressive financialization of petroleum commodities, further increase of global
aggregate demand, and technological development in oil extraction methods.
The Global Financial Crisis itself did not significantly influence the connected-
ness. Although the demand for oil commodities decreased substantially, and oil
price plummeted from $134 in June 2008 to $39 in February 2009, the spillover
index only decreased from 60% to 50%.

The index resided around 70% in the years 2010-2012, which is likely at-
tributable to the tight oil exploration. The next plausible explanation lies
within the events that occurred during the Arab Spring, mainly the Libyan
uprising in 2011, and political unrest in Iran during 2012 (Baumeister & Kilian
2016). After 2012, OPEC managed to hold a dominant position in the shale
oil industry by over-producing crude oil. Given the abundance of oil on the
market, the spillover index decreased to 20% at one point in 2014, for the first
time since 2001.

The China-US trade war led in years 2018 and 2019 decreased the demand
for oil in China - the biggest oil consumer in the world. This caused the spillover
index to fluctuate around 50% with moderate volatility. Multiple production
cuts by OPEC between 2016 and 2020 also pushed oil prices higher during
this period. The spillover index peaked in March 2020 due to the COVID-19
pandemic and the Russia-Saudi oil price war. In February 2022, Russia invaded
Ukraine, which prolonged the period of extreme spillovers until the end of April
2022. After the European Union leaders decided to ban most Russian oil and
gas export, and Ukraine has shown the first signs of successful resistance, the
spillover index decreased to 20% again.

5.1.3 Net Spillovers

All commodities were both net receivers and net transmitters at some point
during the studied period. Nevertheless, we can observe that crude oil and
heating oil were net transmitters for the majority of the time, while gasoline
functions as a net receiver. This result is contrary to that of Baruník et al.
(2015), who found heating oil to be a net spillover receiver for both high-
frequency and range-based estimation of realized volatility. Similarly to our
findings, Baruník et al. (2015); Gong et al. (2021); Mensi et al. (2021) also
identify crude oil to be the main source of volatility spillovers. Kočenda &
Moravcová (2023) find heating oil to be the main net volatility transmitter as
well. Still, most of the studies mentioned state that the spillovers from crude
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oil are not overwhelming, which is also in line with our findings. The mean
spillover value of crude oil is only 3.5%. Diesel switches between the two states
too often to be labeled as a net receiver or transmitter.

Although crude oil is a net transmitter, the status is not as apparent after
the year 2011, which is likely due to the abundance of crude oil on the market
resulting from the shale oil revolution. In the year 2020, crude oil briefly
resumed its status as a net transmitter with the Russia-Saudi oil price war.
Regarding gasoline, there were only two periods during which it was a net
transmitter: during the shortage of gasoline in the US in the years 1990 and
1991, and the energy crisis of 2001, also accompanied by a shortage of gasoline.
Both diesel and heating oil served as prominent net receivers of shocks during
the energy crisis of 2001. On the other hand, the reduced need for commuting
combined with the Russia-Saudi oil price war made gasoline a net receiver
during the start of the COVID-19 pandemic.

Figure 5.1: Net Spillovers

Notes: This figure shows the net evolution of the net spillovers for the network of oil-based commodities:
crude oil (oil), heating oil (ho), diesel (lgo), and gasoline (rb). Positive net spillovers means that given
commodity spills more volatility than it receives in a specific window.

5.1.4 Frequency decomposition

Regarding the spectral decomposition of the spillover index, we decided to
use the conventional bands corresponding to a short-term horizon of 1 trading
week, a medium-term horizon of 1 trading month, and a long-term horizon of
1 year. Although the within connectedness for the short-term frequency band
is only 40.92%, and both the medium and long-term horizon show within con-
nectedness of approximately 50%, the share of the whole power spectrum is the
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highest for the highest frequency band (the shortest horizon). In other words,
shocks to the system are most pronounced within a few trading days. This
finding is contrary to Lovcha & Perez-Laborda (2020); Kočenda & Moravcová
(2023), who conclude that short-term horizon rarely dominates in networks
of energy commodities. The results are not directly comparable. Lovcha &
Perez-Laborda (2020) use the range-based estimator as well but study only the
connectedness between crude oil and natural gas. Furthermore, the authors
only decompose the spillover index into two frequency bands corresponding
to horizons of 1 trading week, and longer than 1 trading week. Kočenda &
Moravcová (2023) work with the same set of commodities as used in this study,
but use a weekly rolling realized volatility estimation. This method makes
the spillover index more smooth, and likely results in more power share being
attributed to longer horizons. Although the overall power share among the
three frequencies is different, there are similar patterns to those of Kočenda &
Moravcová (2023) in most periods.

Commodities show uniformly distributed FROM and TO spillovers in the
short-term horizon. As for longer horizons, crude oil is clearly the dominant
volatility transmitter. While gasoline receives the least spillovers in the network
for the short-term horizon, it receives the most for the medium and long-term
horizons.

Observing the frequency decomposition plot in Figure 5.2, we can see a
rising divergence between the short and longer horizons. This finding underlines
an increasing effect of speculators entering the commodity market since they
are more likely to trade energy commodities in a short-term horizon. In the
1990s, the gap between short and long-term horizons was not that striking
as geopolitical tensions likely caused investors in the oil market to be more
forward-looking. After that, there were several occasions, where the frequency
band corresponding to the short-term horizon fell in its share of power. The
first period is again the US Energy Crisis of 2001, where the medium-term
horizon reached a similar share of the power spectrum as the short-term horizon.
Evidently, the lack of gasoline during this time pushed speculative trading back,
as the US government made effort to supply fuel to places where it was most
needed. Another period, where longer horizons increased in power, was the
years 2015 and 2016. Again, this occurrence hints at the increasing demand
for oil production combined with OPEC production cuts. Consequently, oil
commodities were likely traded to cover production needs. Finally, the start
of COVID-19 together with the Russia-Saudi oil price war exhibits a similar
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pattern. In conclusion, the shock to the system is mostly transmitted in 5
trading days throughout most of the studied period, while longer horizons gain
importance in periods of distress and actual lack of oil reserves.

Figure 5.2: Frequency decomposition

Notes: This figure shows the frequency decomposition of the rolling spillover measure. The bold black
line corresponds to the short-term horizon of 1-5 days. The black thin line represents shock reactions
to the system in a medium-term horizon of 5-20 trading days. Lastly, the gray bold line pictures the
connectedness created at low frequencies that correspon to the long-term horizon of 20 to 300 days.

5.2 Events
We ran the bootstrap-after-bootstrap test to obtain the spillover distributions
for each of the rolling windows. The number of bootstrap samples to gener-
ate was set to 1000 for both the bias correction and for generating the final
spillover distribution. During the computation of the bootstrap samples in
step 2 of the bootstrap test, we sampled the disturbances from a normal mul-
tivariate distribution with a mean equal to 0 and standard errors equal to
the deviation of the respective asset. Since we are iteratively generating one
hundred auto-correlated observations, the disturbance inflates the variance of
the results substantially. The spillover resulting from this iterative approach
is almost always lower than the initial spillover estimate ˆ︁S. Nevertheless, the
difference between the bias-corrected mean of spillovers and the initial spillover
has a normal distribution with a mean close to zero and a standard deviation
of 0.15. Thus, the correction is never too extreme.

When evaluating the probability of spillover increase after an event accord-
ing to Equation 4.33, we evaluated the effect primarily for j = 1. In other
words, we observe, how the spillover index changed a day after the event was
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first published in the news. Doing so, we can be sure that the event was covered
by major news channels. In order to consider a change in spillover levels sta-
tistically significant, we require at least 95% of values in the next day spillover
distribution to be above the mean of yesterday’s mean spillover. Under the
null hypothesis that the spillover index did not increase in some period after
the event, the probability of drawing more than 95% of values higher than the
previous mean is less than 5%. This mimics the conventional significance level
equal to 0.05 in a one-sided hypothesis testing. Since we gathered 900 news
with mostly distinct dates, and the test identified 125 dates, we can expect
some events to have a similar date as one of the test dates even though it is
not responsible for the increase. This spurious correlation is the reason why we
can not draw causal inference in all cases.

5.2.1 Results

The test returns 125 days above the set probability threshold. Nevertheless,
if the event triggered a market reaction a day after the event, both the day
of the event and the day after will likely be above the threshold. In fact, 35
out of the 125 days identified come right after the date of the test. This is not
a consequential observation, as we are fine with the event being identified on
any of the two days. From 900 events described in our dataset, only 31 were
featured in those days. We also require the events to influence the spillover
index persistently. We deem an event persistently influential if it exceeds the
threshold for j ∈ (1, 2, 3, 4). In other words, the spillover index needs to be
significantly above the pre-event value up to day 5 since the event. When an
event of this description appears, oil-based commodities should be viewed as a
risky investment as volatility will be increasingly shared between them. Only
5 out of the 31 events were not persistent, which leaves us with 26 events. The
event distribution in time is shown in Figure 5.3.

Although the ratio of geopolitical and economic news was balanced, we
identified 17 geopolitical and only 8 economic news. Thus, geopolitical news
has a higher probability of triggering a persistent increase in volatility connect-
edness, than economic news. While political and market news had the highest
representation among the categories, only 4 to 5 events were identified by the
test, which translates to approximately 2-3% of events in these groups. In ad-
dition, most of the significant economic events have a geopolitical origin, which
further strengthens the notion that geopolitical events are responsible for sud-
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den shifts in the oil commodities network. For example, it could be argued that
the Oil for Food program was put into effect for humanitarian purposes, while
the Iran Nuclear Agreement was purely economic. Nevertheless, both policies
canceled previously imposed sanctions on oil-exporting countries and were put
into effect by some political decision. Thus, the line between economic and
geopolitical labels is thin.

Figure 5.3: Overall Spillover

Notes: This figure shows the evolution of the overall spillover calculated on the rolling window of 100 days.
The vertical lines represent the events that passed the significance threshold.

Geopolitical events

As apparent from Table 5.2, geopolitical events were more influential on the
spillover index in comparison with the economic and natural event categories.
Two of the significant events appeared in the news on May 15, 1988. Firstly, the
Soviet Union publicly announced the removal of its troops from Afghanistan.
Although this act likely boosted the expectations for Soviet development, the
decision to withdraw was already brought to the public by February 1988, so
this event was likely not influential on the spillover index. On the same day
however, Iraq bombarded Iran’s offshore terminal and damaged the Seawise
Giant supertanker, which is the world’s largest ship ever built (Torbat 2005a).
Four other large tankers were damaged as well. The Seawise Gaint was not
reconstructed until 1991. The fear of losing that much transporting capacity
likely triggered an increase in oil-based commodities. Neither of the subsequent
events: the end of the Cold War and the peace talks between the US and Iraq,
triggered a significant increase in connectedness.
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Table 5.2: Test results: Geopolitical events

Date Event Description Window Event Count (%) Threshold
passed

Chance of
CausalityJ=0 J=1 J=2 J=3 J=4

15.05.1988 Soviet Union begins removal
of its troops from Afghanistan 100 98,9 100 99,6 99,4 99,4 Yes Low

15.05.1988 Iraq Bombs 5 Huge Tankers
at Iran Oil Site 100 98,9 100 99,6 99,4 99,4 Yes High

09.01.1991 Geneva Peace Conference 100 100 100 100 100 100 Yes High200 100 100 100 100 100 Yes

19.08.1991 1991 Soviet coup d’etat attempt 100 100 100 100 100 100 Yes High200 36,1 37,2 36,8 36,9 38,6 No

16.12.1998 Operation Desert Fox 100 63,4 96,9 97,8 95,9 95,5 Yes High200 58,9 100 100 100 100 Yes

08.09.2000 UK farmers and truckers
threaten more blockades

100 41,1 100 100 100 99,8 Yes Low200 63,9 99,5 99,6 99,4 99 Yes

12.10.2000 Blast kills sailors on US ship in Yemen 100 98,7 100 100 100 100 Yes Moderate200 75,9 87,5 81,2 76,6 80,2 No

08.02.2002 Iraq obstructs UN inspectors 100 50 100 100 100 100 Yes High200 51,1 42,7 40,1 36,7 31,2 No

03.12.2002 General strike in Venezuela begins 100 100 100 100 100 100 Yes High200 48,7 54,3 54,9 59,2 63 No

17.03.2003 British Cabinet Minister resigns over
plans for the war with Iraq

100 35,6 86 68,9 97,1 100 No Low200 90,5 100 100 100 100 Yes

17.03.2003 US: Bush gives Saddam Hussein
and his sons 48 hours to leave Iraq

100 35,6 86 68,9 97,1 100 No High200 90,5 100 100 100 100 Yes

20.03.2003 Start of ground invasion in Iraq
by US-led coalition

100 90,9 100 99,2 100 99,6 Yes High200 100 100 100 100 100 Yes

19.08.2003 Bomb attack on UN headquarters in Iraq 100 100 100 100 100 100 Yes Moderate200 49,6 50 45,6 37,8 33,5 No

07.07.2005 Terrorist attacks in London 100 100 100 100 100 100 Yes High200 100 100 100 100 100 Yes

14.08.2007 Iraq: biggest attack since
the beginning of the war

100 40,7 100 100 100 100 Yes Moderate200 42,5 41,4 46,2 48,6 46,8 No

23.02.2011 Arab Spring: Half of Libya oil
production shut down

100 81 100 99,9 99,7 99,3 Yes Moderate200 20,6 66,2 57 58,6 56,5 No

21.08.2013 Syrian Opposition Claims
1300 Killed in Chemical Attack

100 54,3 59,4 48,8 60,9 26,4 No Moderate200 51,5 100 100 100 100 Yes

20.06.2014 Troops Trapped in Iraq’s Key Refinery 100 61,6 100 100 100 100 Yes Moderate200 57,5 36,2 28,8 98,2 98,5 No

23.06.2014 Iraq confirms oil refinery loss 100 100 100 100 100 100 Yes Moderate200 26,8 20,1 95,4 95,3 97,6 No

Notes: This table features all geopolitical events that passed the significance threshold. Each event
shows evaluation for a window length of 100 and 200 days. The ’Event Count’ columns show the
percentage of the 1000 bootstrapped values that were higher than the previous mean value. In order
to deem the effect persistent, we require the event to pass the threshold for 1 to 4 days after the event
occurs, which corresponds to one trading week. We do not include the effect on the day that the event
occurred to control for the speed of information flow among news channels. The last column contains
our results credibility assessment based on the analysis in Chapter 5.
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The Geneva Peace Conference that took place on December 1st, 1991 trig-
gered a significant spike in connectedness. The spillover index increased from
31% to 75% and remained around 50% for the subsequent month. On that day
the representatives of Iraq and the US failed to negotiate a peaceful solution for
the Iraqi invasion of Kuwait. The conference was viewed as the last chance to
secure peace in the Middle East (Freedman & Karsh 1993). The Geneva Peace
Conference is a good example of an event with an unanticipated outcome and
effective market reaction. A week after the conference, Operation Desert Storm
started, and the US immediately released 17.3 million barrels of oil from the
Strategic Petroleum Reserve. Nevertheless, these events did not affect the con-
nectedness. Kilian & Zhou (2020) reach a similar conclusion regarding the SPR
release. According to the authors, there is no clear evidence of the oil reserves
preventing a larger increase in the oil price during that period.

After the Soviet army withdrew from Afghanistan, Gorbachev became presi-
dent and introduced market reforms meant to modernize the Soviet Union. The
Soviet coup d’etat attempt that happened on August 19, 1991, was unantici-
pated as well and triggered a reaction of the spillover index almost identical to
that of the Geneva Peace Conference. This coup foreshadowed the economic
collapse during the 1990s. Oil production decreased from 550 million tons in
the year 1990 to 300 million tons in 1994 (Vatansever 2010). The index spiked
to levels of 50% and stayed there for more than a year. Two months after the
coup, the Soviets suspended the export of all petroleum products, though this
had minimal effect on the connectedness.

In the years 1991 to 1996, the index was mostly below 40%, and no event
in our dataset triggered a significant rise in connectedness. On December 16,
1998, Iraq failed to comply with United Nations (UN) inspectors in search of
weapons of mass destruction, which broke another resolution declared by the UN

(Conversino 2005). In response, the United States launched a four-day bombing
of selected Iraqi sites, known as Operation Desert Fox. The operation received
mixed reactions from some other big nations, such as the Russian Federation.
According to the general in charge of the operation, the bombing was perfectly
executed and achieved total surprise (Conversino 2005). This again supports
the claim that unexpected events are much more likely to trigger a change in
volatility connectedness.

Obstructing UN inspectors in Iraq holds a lot of information regarding oil
prices as a similar pattern occurred a few years later. The United States aimed
to resume the inspection in 1988. The US was inclined to continue with the
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inspections after the attacks on September 11, 2001, as the US expected a
connection of Iraq to Al Qaeda. On February 8, 2002, the United Nations
failed to make an agreement with the Iraqi officials regarding the return of
the inspectors (Squassoni 2003). This was followed by a mild but permanent
increase of the spillover index from 40 to 50%.

As argued in Chapter 3, oil prices in the years 2002 and 2003 were mostly
driven by oil supply disruptions in Venezuela and the war against Iraq. Both
these events were identified by the test. The state-owned Venezuelan oil com-
pany Petróleos de Venezuela was a key point during the protest. The company
was shut down for more than a month due to general protests over the country.
Consequently, oil supply and inventories declined, and oil prices increased by
20% in one month (Kilian & Murphy 2014). The spillover index increased by
15 points when the strike in Venezuela began on December 4, 2002. The inva-
sion of Iraq was based on the results gathered by UN inspectors. Although the
inspectors did not find weapons of mass destruction, they provided pictures of
proof that Iraq continued with its nuclear program. While this was not enough
evidence for the approval of Russia and China, the United States initiated mil-
itary action regardless on 20 March 2002 (Bassil 2012). Since there was a lot of
anticipation days before the invasion, the effect it had on the spillover market
was mild and short-lasting.

The UN headquarters in Iraq have been bombed on August 19, 2003. The
head of the UN mission in Iraq was killed during the attack, which likely raised
concerns about the future course of the mission. In any case, given that the
index stabilized at levels between 50 to 60% for several years after the attack, it
is not feasible to attribute all the behavior to just this event. August 14, 2007,
brought the biggest attack since the beginning of the war in 2003. There were
580 deaths and 1600 injuries, making it the second deadliest act of terrorism
of all time (Bassil 2012). Once again, the event does not directly influence oil
supplies, but it likely caused fear over the development of the war conflict. The
connectedness increased significantly by 10 basis points.

The attack of September 11, 2001, did not trigger a direct and permanent
increase in the connectedness of oil commodities. As major US commodity
exchanges were closed for several days after the attacks, the index decreased
in value for the subsequent week due to the substitution of the missing data
as described in Chapter 3. After September 18, 2001, the spillover index in-
creased, while oil-based commodities decreased in price. In the context of the
events mentioned, the retaliatory US invasion of Afghanistan on October 7 did
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not affect the spillover index, despite its historical importance. Following the
incident, there was a massive surge in similar acts of terrorism in the western
world. According to Hoffman (2009), 78% of terrorist incidents between the
years 1968 and 2004 happened after the 9/11 incident. On July 7, 2005, the
terrorist attacks in London triggered yet another spike in connectedness. Al-
though the attack was initially perceived as unorganized and small in scope,
further investigation revealed a deeper link to Al Qaeda commanders (Hoffman
2009). The attacks in London are the only event without a clear connection
to the state of oil production or export. Thus, the rise in connectedness was
possibly triggered by other markets. The effect it had on the spillover index is
indisputable. The index jumped from 42% to 59% in just one day.

On February 23, 2011, a large Italian oil company operating in North Africa
was forced to shut down its 150,000 barrels per day production due to the
Libyan uprising (Baumeister & Kilian 2016). A shift in production of that
magnitude combined with the fear that the protests will quickly spread to
other countries in North Africa increased the connectedness by 15 percentage
points up to 75%. The Arab Spring was the first period during which the
spillover index for oil-based commodities stayed around 60% for a prolonged
period of time. As a result, the civil war in Egypt and Syria did not affect the
connectedness enough to cause another shift.

The last important event in Iraq, which caused an upward shift in the
connectedness of oil-based commodities, concerned the Iraqi largest oil refinery
in June 2014. On June 20, Iraqi troops fought with ISIS over the control
of the vital Baiji oil refinery. The refinery was mainly used to produce fuel
for internal consumption. Thus, its control was a key strategic point in the
conflict. The news speculated about Iraqi troops being trapped inside the
refinery, which increased the spillover index by 18 points. On Monday, June
23, Iraqi officials publicly confirmed that the Baiji refinery had been seized by
ISIS (CNN 2014). It is impossible to say, which of these events caused the
increase in connectedness, but the capture of the Baiji refinery as a whole was
most certainly influential.

Finally, there are two dates with oil-related news that triggered a significant
increase in the spillover index, both tied to the Shell company. Firstly, UK
farmers and truckers cut off the distribution of oil from a Shell refinery in the
UK, which caused substantial supply disruptions of fuel over Northern England
on September 8, 2000 (The Guardian 2000). Still, this event is too local to be
labeled as causal for the increase in the spillover index. Despite the extreme



5. Results and robustness checks 51

prices that triggered the protests, the index was at its all-time minimum before
the protests and increased from 6% to 17% in a few days. The other event was
on March 17, 2008, when hundreds of villagers protested against the return
of Shell trying to resume its oil production in Nigeria (BBC 2008). In 2008,
the area was still full of oil pipelines 15 since Shell ceased its operations there.
Interestingly, the CEO of Shell made a statement to Reuters on the day of the
protests saying that the high oil prices have no justification given that there is
no bottleneck in oil supply (Lawler 2008).

Almost all of the geopolitical events identified by the test are connected
to war conflicts in the Middle East, and Iraq specifically. There are only two
events that can not be labeled as attacks perpetuated by terrorist groups from
the Middle East, or events that took place directly in the Middle East. The
return of Soviet troops from Afghanistan on May 15, 1988, can be ruled out with
the bombing of tankers happening on the same day. The geopolitical events
listed above are either the first signs of new war conflict, acts of terrorism or
concern the functioning of important oil facilities. It is important to note that
after 2014, tensions in the Middle East are much less frequent. A common
trait among the events listed above is that they introduce concerns over the
scarcity of oil. Both damaged oil facilities and fear of entering a war with an oil-
producing country have a chance to cause supply disruptions, and consequently
increase the connectedness of oil-based commodities.

Unsurprisingly, none of the 52 news articles that fall into the ’peace’ group
increased spillover index significantly according to the test results. We observe
that the end of war conflicts or peace arrangements gradually decreases the
connectedness. Similarly, articles without an effectuate topic, such as threats
of attacks, deadlines, and warnings, also do not cause an increase in the con-
nectedness of oil commodities. Only 3% and 4.29% of articles that belong to
the ’political’ and ’war’ categories, respectively, have passed the threshold of
the test. On the other hand, nearly 10% of news flagged as ’missile’ reached the
threshold. In conclusion, sudden and unexpected war operations or terrorist
attacks are the most likely to cause an upward shift in the connectedness.

Economic events

Although the count of economic events in Table 5.3 is lower, we see that the
only causal events after year 2014 were of economic nature. The first economic
event that triggered a persistent increase in the spillover index is tied to Iraq,
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similarly to the majority of the geopolitical events. On May 20, 1996, the
United Nations released a memorandum of understanding with the Government
of Iraq regarding the Oil for Food Program. The program initially enabled Iraq
to sell crude oil worth 1 million US dollars. The proceedings of this sale could
only be used for ensuring the humanitarian needs of Iraqi citizens, although it
was later shown that the program was subject to corruption (United Nations
1996; Hsieh & Moretti 2006). The program was set in response to the sanctions
placed on Iraq after it invaded Kuwait in August 1990. The spillover index
increased from 28% to 35% following the announcement, and increased steadily
through the rest of the year 1996.

The first significant event of a strictly market nature was the divestiture of
Exxon/Mobil. The Federal Trade Commission stated on November 11, 1999,
that Exxon and Mobil are too large and their merger would disturb competition
in the gasoline market. By resolution of the Federal Trade Commission, the two
companies were required to sell 2431 US gas stations, refineries, terminals, and
pipelines, in order to protect customers from predatory pricing (Federal Trade
Commission 2013). The news raised the spillover index only by 4%, although
the increase was persistent. The announcement of the merger itself on Decem-
ber 1, 1998, did not trigger a reaction. There was only one other acquisition
with some effect on the spillover index. On September 26, 2001, the energy
supplier Reliant Resources announced an acquisition of Orion Power Holdings.
The spillover index spiked from 54% to 75% following the announcement but
decreased to lower levels than prior to the announcement just a day after. The
two companies are too local in scale to consider the effect on the spillover index
causal with certainty.

Official decisions to boost, maintain, or cut oil production had an insuffi-
cient amount of hits to draw conclusions about the difference in the effect of
these decisions. Among the 145 news articles that reported on a change in oil
production, only three passed the test threshold. Specifically, it is two decisions
to boost production, one decision to cut, and no decision to maintain. Although
the decision to maintain oil production is the most frequent, it never raised the
spillover index. On September 11, 2000, the first significant production boost
by OPEC members was announced. The increase was set to 800,000 barrels per
day. It is surprising that this boost specifically increased the spillover index, as
800 thousand barrels is not too drastic given that OPEC increased its produc-
tion by 3.7 million barrels in total throughout the year 2000 (Kohl 2002). It
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Table 5.3: Test results: Economic events

Date Event Description Window Event Count (%) Threshold
passed

Chance of
CausalityJ=0 J=1 J=2 J=3 J=4

20.05.1996 Oil-for-Food Programme 100 100 100 100 100 100 Yes High200 100 99,4 100 100 99,9 Yes

04.12.1997 Iraq will not allow oil flow during the
3rd 6-month phase of Oil for food program

100 46,9 86,8 87,4 92,5 94,4 No High200 76 99,9 100 100 100 Yes

30.11.1999 Exxon/Mobil FTC Divestiture 100 62,5 100 100 100 100 Yes Moderate200 42,5 71,3 93,8 95,4 96 No

11.09.2000 OPEC announces 800,000 bpd increase 100 98,7 100 100 100 100 Yes High200 96,9 98,6 96,5 96,6 95,2 Yes

11.02.2002 Russia increases production and oil exports 100 99,9 100 100 100 100 Yes High200 39,5 37 32,4 28,8 27,4 No

03.06.2004 OPEC agrees to raise output 100 92,1 92,4 83,9 82,3 76,4 No Moderate200 100 99,8 100 100 99,5 Yes

17.03.2008 Nigeria’s Ogoni accuse Shell of staging a return 100 99,8 100 99,7 99,9 99,8 Yes Low200 100 100 100 100 100 Yes

22.06.2009 World Bank Report 100 43,2 99,1 96,2 97,7 95,9 Yes Moderate200 46,7 50,6 48,3 53,2 49,4 No

17.07.2015 Last bid to kill Iran nuclear deal blocked in Senate 100 99 98,3 98 98,7 98,6 Yes High200 47,2 51,9 49,7 53,2 51,5 No

27.03.2017 OPEC, non-OPEC to look at extending
oil-output cut by six months

100 51,9 100 100 100 100 Yes High200 50,8 55,1 54,7 50,4 58,1 No

28.03.2017 Donald Trump signs Energy
Independence executive order

100 51,7 50,7 47,2 54,7 54,8 No High200 100 100 100 100 100 Yes

20.01.2021 Biden set to rejoin Paris climate accord 100 48,4 54,1 49,6 55,4 61,1 No High200 99,3 99,7 99,8 99,6 100 Yes

Notes: This table features all economic events that passed the significance threshold. Each event shows
evaluation for a window length of 100 and 200 days. The ’Event Count’ columns show the percentage
of the 1000 bootstrapped values that were higher than the previous mean value. In order to deem the
effect persistent, we require the event to pass the threshold for 1 to 4 days after the event occurs, which
corresponds to one trading week. We do not include the effect on the day that the event occurred to
control for the speed of information flow among news channels. The last column contains our results
credibility assessment based on the analysis in Chapter 5.

was likely the concerns over the spare capacity of OPEC members that pushed
the index higher. Due to the lack of oil stock, the real increase was estimated
at around 300,000 barrels (Kohl 2002). Thus, even though the decision to
boost production would normally lower oil prices and stabilize markets, it only
brought more uncertainty about the future oil stock. This explanation can be
backed by the findings of Almutairi et al. (2021), who state that the spare ca-
pacity of OPEC serves as a significant means of mitigating supply and demand
shocks.

On September 22, President Bush announced a 30 million barrels release
from the Strategic Petroleum Reserve, which did not trigger a reaction in the
spillover index. In both of these cases, the price reaction was mild and tempo-
rary, hinting at the insufficiency of the decisions. OPEC and Venezuela contin-
ued with their attempts to stabilize oil prices and boost production, but their
policies were ineffective due to the low stock of heating oil combined with an
upcoming winter in the US (Kohl 2002). During September and October, the
spillover index shows an extreme increase from 6% to levels above 40%.

The next production boost did not come from OPEC, but from Russia specif-
ically. Until 2001, Russia acted mostly in accord with OPEC decisions. By 2001,
they cut their petroleum exports along with OPEC. That was only a small step
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in the context of the 2000s, during which Russia increased their exports from
300 million tons in the year 2000 to 500 million tons in 2009 (Vatansever 2010).
While OPEC cut production in an attempt to keep petroleum prices high, Rus-
sia expanded into Europe (Hill & Fee 2002). By 2002, Russia exported over 7
million barrels daily. In an environment of extreme oil prices, and production
cuts, the decision to boost exports could have been influential on the spillover
index. Again, Russia’s decision to boost production while the rest of the oil
producers attempted to decrease their production presented itself as negative
and unexpected news that introduced uncertainty.

On March 26, 2017, major OPEC and non-OPEC oil exporters debated an
extension of production cuts from December 10, 2016. While the initial cut had
almost no effect on the spillover index, the possibility of an extension for an
additional 6 months raised the index from 52% to 64% despite the possibility
of the extension being communicated in the initial announcement. The cut
was slightly above average compared to other historical production changes.
Thus, the differentiating factor against other scheduled OPEC meetings was the
uncertainty. While it was expected that the cut would be extended in an earlier
draft of the statement, the final version pushed the decision to April (Soldatkin
& Gamal 2017). The crude oil price increased by 12.5% in the weeks following
the statement.

OPEC decisions are not the only economic events that influence the con-
nectedness of oil commodities. The World Bank released an analysis of global
trade and the economic outlook of developing countries on June 22, 2009. Ac-
cording to the report, the global output was supposed to fall by 2.9% and the
world trade by 10%. The capital flow needed to support developing countries
was expected to drop by nearly 50% in 2009 (World Bank 2012). The stock
market reacted negatively to the news, with commodity prices to follow. There
are multiple reasons why this economic outlook could affect the connected-
ness of oil-based commodities. Firstly, crude oil and its products constitute a
non-negligible part of global output and world trade. Secondly, a majority of
countries in the Middle East and South Africa are still labeled as developing.
Thus, the decrease in capital inflow to these countries could worsen the con-
dition for efficient oil extraction and transportation. The spillover index reach
a local minimum of 49% during that day and kept increasing until the end of
the year 2012.

The next event that significantly influenced the spillover index is the Iran
Nuclear Agreement introduced under the presidency of Barack Obama. On



5. Results and robustness checks 55

May 17, 2015, the US senate blocked the legislation meant to disapprove the
accord for a third time, which officially secured its subsequent implementation
(Zengerle 2015). Even though the Nuclear Plan was publicly debated since
2013, only this decisive event had an effect on the connectedness. Iran agreed
to limit its nuclear development and allow external monitoring. In exchange,
Iran was able to recover approximately $100 billion worth of assets frozen in
banks overseas (Sterio 2016). Moreover, various economic sanctions would be
lifted, which include the sale of Iran’s crude oil. The Iran Nuclear Agreement is
sometimes considered the greatest foreign policy achievement during Obama’s
presidency. The spillover index increased by a modest 5 percentage points on
the day of the news.

Another important policy implemented was part of Obama’s Clean Power
Plan. It was not the implementation, but rather the order to undo these
measures given by Donald Trump on March 28, 2017. In an attempt to boost
the coal industry, Trump loosened the limit on methane and carbon emissions
released during coal and gas production (Bomberg 2017). The connectedness
increased from 52% to 64% in a single day. Interestingly, comparable news
such as the renegotiation of the Dakota Access Pipeline on January 24, 2017,
the withdrawal from Paris Climate Agreement announced on June 1st, 2017,
or quitting the Iran Nuclear Agreement on May 8, 2018, did not have any
immediate impact on the index.

By analyzing the list of news that are more economic in nature, there are
a few observations that we can draw. Firstly news involving the discovery of
new oil fields, development of oil facilities, or mergers of oil companies do not
affect the connectedness of oil-based commodities. The only event connected
to a merger that impacted the index was the divestiture resulting from the
Exxon and Mobil merger, although the reaction was mild. There are two pos-
sible explanations for the unrelatedness of mergers. First, news of mergers and
developments are too local in scale to cause a shift in the oil spillover index.
Second, mergers and acquisitions of oil companies are essentially good news
for the oil market, as investors can expect increased and stable production of
oil-based commodities. News reporting on the current state of oil stock, or
the release of reserves from the SPR, also never passed the threshold of the
bootstrap test. One possible explanation is that releases from the Strategic
Petroleum Reserve historically happened in reaction to some other significant
event. The most surprising finding is that implementation or extension of sanc-
tions against specific countries never caused a reaction in the spillover index.
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As was the case with releases from the SPR, sanctions typically follow after
a war conflict, which is more likely to be a source of increased connectedness.
More importantly, no sanctions have ever been implemented against Saudi
Arabia, which is the main producer and exporter of oil among OPEC members.
Sanctions imposed on smaller exporters are not substantial enough to cause
volatility spillovers among oil-based commodities. The ineffectiveness of trade
sanctions was further analyzed by Torbat (2005b). The author concludes that
total imports and exports of crude oil do not change when sanctions are im-
posed. Exporting countries are quickly able to find new buyers for their oil
reserves. On the other hand, financial sanctions are much more effective in
comparison to trade sanctions.

It is especially surprising that neither of the events connected to the Russia-
Saudi oil price war starting in March 2020 triggered a prompt increase in the
connectedness. After Saudi Arabia announced the oil price discount and initi-
ated the oil price war on March 8, 2020, the index spiked to its maximum value
of 75% value several times but then returned to values between 65 and 70. The
event passed the threshold of the test for two days following the price discount,
which is not enough to consider the event persistently influential. It is possible
that the news focusing on the oil price war or the COVID-19 pandemic was
not identified by the test simply due to the limitations of the spillover index.
Similar reasoning can be applied to the Suez Canal obstruction starting on
March 23, 2021, or the event following the Russian invasion of Ukraine after
February 24, 2022.

Although the events in this section that passed the significance threshold
are labeled as economic, the source for most of them can be generalized as
geopolitical. For example, it has been shown that the reasoning behind OPEC

production changes is too complex to be modeled with any behavioral model
(Kaufmann et al. 2008). Pierru et al. (2018); Almutairi et al. (2021) conclude
that oil price stability is indeed the main driver of OPEC production adjust-
ments, while making opportunistic sales and stabilizing own revenues from oil
exports are secondary. Still, assuming that the production changes are imposed
exclusively to control oil prices and production would not be correct, as geo-
logical endowments and political situations are also important determinants
of OPEC decisions. The implementation of the Iran Nuclear Agreement and
the cancellation of the Clean Power Plan are also economic events based on
political decisions.
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Natural events

Considering the natural events overview in Table 5.4, we see that only 1 out
of the 130 events labeled as ’natural’, passed the probability threshold for the
main window length of 100 days. The PTT Global Chemical oil spill occurred
on July 27, 2013. The amount of oil spilled was approximated at around 50
tonnes or one full tanker. A spill of this magnitude is too negligible compared
to, for example, the production changes of OPEC to be considered causal. Thus,
we rule the causality of the event out. The lack of explanatory power of natural
events is striking. Understandably, losing a tanker’s worth of oil in an accident
does not cause massive oil supply disruptions. Even the 3.19 million barrels lost
during the Deepwater Horizon spill is approximately just a third of US daily
production in the year 2010 (Energy Information Administration 2022). Even
though hurricanes, earthquakes, and extreme temperatures were historically
responsible for shutdowns of oil production, none of them caused a significant
shift in the connectedness. In conclusion, news of natural disasters does not
cause a sudden increase in the connectedness of oil-based commodities even if
they disrupt the oil supply.

Table 5.4: Test results: Natural events

Date Event Description Window Event Count (%) Threshold
passed

Chance of
CausalityJ=0 J=1 J=2 J=3 J=4

27.07.2013 PTT Global Chemical Pcl oil pipeline spill 100 52 97,6 99,3 99,6 99,2 Yes Low200 70,8 67,1 76,3 79,4 79,6 No

17.08.2017 Hurricane Harvey 100 37,7 38,8 38,9 34,1 36,8 No Low200 100 100 100 100 100 Yes

Notes: This table features all natural events that passed the significance threshold. Each event shows
evaluation for a window length of 100 and 200 days. The ’Event Count’ columns show the percentage
of the 1000 bootstrapped values that were higher than the previous mean value. In order to deem the
effect persistent, we require the event to pass the threshold for 1 to 4 days after the event occurs, which
corresponds to one trading week. We do not include the effect on the day that the event occurred to
control for the speed of information flow among news channels. The last column contains our results
credibility assessment based on the analysis in Chapter 5.

5.3 Robustness checks
The results of our study are conditional on the choice of multiple parameters.
The selection of assets to include in the network is a parameter as well. We
previously stated that the focus of this study was to analyze the connectedness
of petroleum-based commodities only, but adding natural gas into the net-
work is worth doing due to its interchangeability with oil-based energy sources
(Kočenda & Moravcová 2023).
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Adding natural gas to the network significantly decreases the overall spillover
index down to 37.60%. This is due to the fact that natural gas is the most
isolated commodity in the network. Natural gas is responsible for its own
volatility from 97.88%. This result is in line with the findings of Mensi et al.
(2021); Kočenda & Moravcová (2023), who also report natural gas to be the
best hedge among these commodities. Gasoline-crude oil pair remains to be
the most connected pair.

The rolling spillover index retains its evolution even after adding natural
gas to the network. Natural gas merely reduced the volatility and pushes
the average lower. On the other hand, more brief spikes appear, which are
usually tied to sudden correlated moves in all the assets. March 2020 is perhaps
the longest consecutive period of the energy commodities spillover index being
higher than the oil spillover index. Due to the reduced volatility, there were
no new events identified by the test that were not previously included in the
oil-only set of events.

As mentioned at the beginning of the chapter, the choice of lag order, win-
dow length, and horizon are set in such a way that the spillover index is more
volatile. We experimented with other choices of these parameters for the sake of
consistency. Selecting higher lag order and longer horizon had almost no impact
on the spillover index. On the other hand, the choice of window length mat-
ters substantially. A longer window results in more stable VAR coefficients and
less volatility in the rolling spillover index. The literature almost exclusively
considers window lengths of 100 and 200 days for daily time series. Moreover,
calculating the bootstrap samples for the test is computationally demanding.
Thus, we only performed the robustness check for a window length of 200.

Thee 200-day rolling window spillover plot in Figure 5.4 appears to be a
smoothed version of the 100-day version. Thus, the long-term development
stays the same. As could be expected, increasing the length of the window to
200 reduced the number of events identified from 26 to 17. Approximately half
of the 17 events are also present in the results of the 100-day rolling window,
while the other half has similar characteristics to those identified in the 100-day
rolling window. We will briefly discuss the events that were not included in the
main results. Firstly, the extension of the Oil for Food program announced on
December 4, 1997, triggered a statistically significant spike in connectedness
followed by a steady increase in the connectedness in the following years. The
extension once again ignited the controversy surrounding the program (Hsieh
& Moretti 2006).
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The first notable discrepancy between the two versions appears on May
1st, 2003. On that day, George Bush made his ’Mission Accomplished’ speech
regarding the victory in Iraq. The spillover index was not affected on that day
for the 100-day window version, while it e a sudden and persistent increase
in the 200-day version. Although the war conflict continued even after the
speech, the event is inherently positive, so the reasoning behind its effect on
the spillover index is not clear.

During the Syrian Civil War in the years 2012 and 2013, there was another
event that caused a short-lived spike in the 200-day rolling window spillover
index. On August 20, 2013, there was a massive chemical attack that killed
over 1300 people, making it the deadliest incident of the war. United nations
along with the United States representatives were shocked by the escalation,
and immediately took action by sending in UN chemical weapon investigators
(The Guardian 2013). The event is closely similar to the bombing in Iraq on
August 14, 2007, in the sense that there is no direct connection to the oil supply,
but the gravity of the events raised concerns over future development.

The last noteworthy event identified by the 200-day rolling window is the
announcement that the United States is going to rejoin Paris Climate Accord.
The White House announced the news on January 20, 2021, under the pres-
idency of Joe Biden. The decision featured curbing methane emissions of oil
companies and the revocation of the Keystone XL oil pipeline permit was also a
part of the announcement. Thus, it was perceived negatively by the oil market
and caused fears over the stability of oil production.

To summarize, the 200-day rolling window identified the same events as
the 100-day rolling window. Events that were not previously identified had
characteristics in line with those presented in the main part of our results.
Thus, we conclude that the choice of window length has some impact on the
results, but the general event characteristics stay the same.
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Figure 5.4: Overall Spillover

Notes: This figure shows the evolution of the overall spillover calculated on the rolling window of 200 days.
The vertical lines represent the events that passed the significance threshold.



Chapter 6

Conclusion

The objective of this study was to analyze volatility spillovers between oil-
based commodities, detect events that caused sudden and persistent increases
in volatility spillovers of the commodities, and identify their common charac-
teristics. Using the spillover index methodology proposed by Diebold & Yilmaz
(2009), we observe that the spillover index had much lower values but was more
volatile before the year 2008, while it became more stable and higher on av-
erage since 2008. The volatility before the year 2008 was mainly caused by
war conflicts and political tensions in the Middle East. The increase in over-
all connectedness can be attributed to the financialization of commodities and
tight oil exploration in the United States that oversupplied the oil market, as
argued by Baruník et al. (2015). After April 2022, the spillover index sharply
decreased and reached values last observed in 2014, which were caused by the
abundance of oil on the market. The decrease around April 2022 was caused by
the stabilization of market conditions after the war in Ukraine. Further con-
tributing factors were likely of macroeconomic nature, mainly recession fears
and interest rate hikes in the United States and European Union.

Although all the commodities in the network were mostly influenced by
their own past shocks, we found that crude oil and heating oil were net volatil-
ity transmitters for the majority of the studied period. Hence, shocks to these
commodities are responsible for the increased volatility of other oil-based com-
modities. Gasoline functions as a net volatility receiver and diesel is neither
a net receiver nor a net transmitter. Adding natural gas to the network only
decreased the overall connectedness, since natural gas is dependent on its own
volatility shocks from almost 100%. The findings are consistent with that of
Kočenda & Moravcová (2023).
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We calculated the spectral decomposition of the spillover index as proposed
by Baruník & Křehlík (2018). The shocks to the system propagate themselves
mainly in a short-term horizon of 5 trading days. The short-term horizon grows
in importance after 2008, which further confirms the notion that financialization
is responsible for the increasing connectedness. We identified several periods
during which the connectedness in the short-term horizon fell in power, all
of which correspond to periods of low oil stock and uncertainty. Two recent
examples include the start of the COVID-19 crisis around March 2020 and the
Russian invasion of Ukraine in February 2022.

We identified 26 statistically significant events after which the spillover in-
dex persistently increased. We analyzed the events thoroughly and grouped
them into several categories based on their characteristics. The findings sug-
gest that events of geopolitical nature are twice as likely to cause a shift in the
network connectedness of oil-based commodities. Furthermore, most economic
news that passed the significance threshold has some geopolitical reasoning
behind them. There was no natural event identified as significant.

There were three main characteristics that often appeared across all the
categories. The selected events were usually unexpected, negative, and asso-
ciated with a decrease in oil exports. The first two characteristics were also
found by Greenwood-Nimmo et al. (2021) in their event replication of Diebold
& Yilmaz (2009).

Acts of terrorism or political tensions that oil supply disruptions were the
most prevalent type of geopolitical events causing the spillover index to persis-
tently increase. On the other hand, positive events such as peace negotiations
or signing a peace treaty never caused a rise in volatility connectedness. Among
events of economic nature, we did not identify any effect of mergers and ac-
quisitions of oil companies on the spillover index. Trade sanctions imposed on
oil exporting countries never caused a sudden shift in the volatility spillovers
among oil commodities as well. As oil is a necessity good, exporting coun-
tries will simply change buyers when presented with sanctions (Torbat 2005b).
Threats and speculations of both geopolitical and economic type were also
ineffective.

Furthermore, our study sheds some light on the effect of OPEC production
changes on volatility spillovers. As OPEC decisions are announced in regu-
lar meetings, they should not bring too much surprise to the market. It has
also been shown that the decisions sometimes leak prior to the announcement
(Schmidbauer & Rösch 2012). A logical assumption would be that the decisions
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to cut production cause an increase in volatility spillovers, while decisions to
boost or maintain production do not have an effect. Out of the 140 announced
production changes of both OPEC and non-OPEC members, we do not find
completely concordant results. While there was no decision to maintain with
an effect on the spillover index, there were two decisions to boost production
identified as opposed to only one decision to cut. Both boost decisions were an-
nounced in situations when they only brought more uncertainty to the market,
and are described thoroughly in Chapter 5. Therefore, announcing production
boosts in periods of uncertainty can raise concerns over the spare capacity of
exporting countries. This finding is in line with that of Almutairi et al. (2021),
who conclude that the spare capacity of OPEC has significant influence over oil
price volatility.

Out of the 130 events with natural causes in our dataset, there was no
plausible event identified as significant. Thus, we believe that natural events
are not the primary causes of the shifting volatility connectedness of oil-based
commodities. Using these results, investors, hedge funds, and policymakers can
easily assess any new oil-related news, and react accordingly to the evidence
presented in this analysis.

Our findings contribute to overall knowledge regarding oil volatility con-
nectedness. Investors and policymakers can use these results to identify news
with potential impact on the oil markets and react accordingly. Furthermore,
the events identified by our test can function as a reliable source of reference for
future studies aiming to bring more insight into the connectedness of oil-based
commodities. Still, there are some potential caveats to our thesis. Firstly, it
was necessary to combine varying data sources due to the lack of data quality
available to use. Furthermore, we chose the ranged-based realized volatility
estimator as our primary method for computing the volatility of selected com-
modity prices. It has been shown that this method is almost as efficient as
the high-frequency estimator, but the difference between using the range-based
estimator to calculate volatility spillovers as opposed to the high-frequency
estimator has not been thoroughly analyzed.
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