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Department: Astronomical Institute of Charles University
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able to reproduce the results of high resolution simulations at lower resolutions.
Our results are in agreement with the semi-analytical solution by Weaver et al.
[1977]. Unlike Weaver et al. [1977] solution, Hector is much more general and
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Introduction
The goal of this work is to improve handling of heat conduction and cooling in
Flash simulations, especially at contact discontinuities. This is particularly im-
portant for calculating properties of interstellar bubbles, because heat conduction
and cooling are the main drivers of the evaporation of the shell gas into the bub-
ble interior thus changing density and temperature of the accumulated gas. This
for instance affects how quickly the interstellar bubbles grow and that, in turn,
how efficient is the stellar feedback in regulating the collapse of molecular clouds.

The correct handling of interstellar bubbles is vital for complex simulations
of the interstellar medium in galaxies, specifically in project SILCC (Simulating
the Life-Cycle of molecular Clouds)–a large international collaboration aiming to
improve our understanding of the star-gas cycle in galaxies (Walch et al. [2015])
which studies molecular clouds in regions of disc galaxies including the effects
of self-gravity, magnetic fields, heating and cooling at different gas metallici-
ties, molecule formation and dissociation, and stellar feedback. Figure 1.4 shows
a SILCC run including supernovae, stellar winds, ionising radiation and cosmic
rays.

In section 1 we go over the structure and evolution of interstellar bubbles. In
section 2 we describe the numerical code used to simulate interstellar bubbles. In
section 3 we introduce the Hector sub grid model we have developed to improve
unresolved contact discontinuities in Flash simulations. In section 4 we present
two tests: we use the Hector code to simulate interstellar bubbles driven by
stellar winds. We compare our results to the solution obtained by Weaver et al.
[1977]; additionally, we discuss differences between 1D and 3D simulations at
various resolutions. Finally, we summarize our work in Summary.
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1. Interstellar bubbles
Massive stars with stellar winds reaching terminal velocities of thousands of kilo-
meters per second can create cavities filled with hot gas in the surrounding inter-
stellar medium. These structures are known as interstellar bubbles. An example
is the Bubble Nebula shown in figure 1.1. There have been many observational
studies interested in interstellar bubbles, including Deharveng et al. [2010] and
Churchwell et al. [2006]. The structure and dynamical evolution of interstellar
bubbles have been studied in theoretical works, including Castor et al. [1975],
Weaver et al. [1977], Toalá and Arthur [2011], and Geen et al. [2015].

1.1 Structure
The structure of an interstellar bubble is shown in figure 1.2. The innermost
region (a) is called the free wind region because it consists of the freely expanding,
high-velocity stellar wind with temperatures in the thousands of kelvins. The
wind then reaches the reverse shock (R1) where most of its kinetic energy is
converted to thermal energy. The wind forms region (b) of the bubble with high
pressure and temperatures reaching 107 K. Due to the high pressure, the shocked
wind expands and forms a high-density shell of swept-up interstellar medium,
denoted by (c) in the sketch. The interface between regions (b) and (c) is called
the contact discontinuity (Rc) and is characterized by a sudden rise in density,
a drop in temperature, and a constant pressure across. The bubble is surrounded
by region (d) of the ambient interstellar gas. The outer discontinuity between
regions (c) and (d) is called the shock front (R2).

1.2 Weaver solution
In a plasma with a temperature gradient, heat is conducted from the hotter to the
colder parts. This process is mostly dominated by electrons because its efficiency
is inversely proportional to particle mass.

Avedisova [1972] and Weaver et al. [1977] developed a similarity solution for
the structure and the evolution of regions (b) and (c) of interstellar bubbles driven
by a stellar wind source with a constant mechanical luminosity. The solution for
the shocked stellar wind region (b) can be written using functions of a single
dimensionless parameter

ξ = r

R2(t)
, (1.1)

where r is the distance from the star and t is the time since the wind expansion
began. The dimensionless functions U(ξ), G(ξ), and P (ξ) of the self-similar
flow are defined as v(r) ∝ U(ξ), ρ(r) ∝ G(ξ), and p(r) ∝ P (ξ), where v is
the wind velocity, ρ is the density, and p is the pressure. At early times, when
radiative cooling of the hot gas is not significant, an adiabatic approximation can
be used. At later times, radiative losses and heat conduction should be included,
Weaver et al. [1977] give the similarity solution that includes the above processes.
This solution is derived from the result by Cowie and McKee [1977] that the flux
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Figure 1.1: Bubble Nebula (NGC 7635) captured in visible light by the Hubble
Space Telescope. The colors correspond to blue for oxygen, green for hydrogen,
and red for nitrogen. The bubble is about 2 pc across and forms around a Wolf-
Rayet star 2200 pc from the Sun. Source: NASA Goddard Space Flight Center.

of the thermal energy due to the heat conduction and cooling is exactly balanced
by the flux of the mechanical energy due to the shell evaporation. The evolution
of an interstellar bubble calculated using the Weaver solution is shown in figure
1.3 where R1 is the radius of the reverse shock, R2 is the radius of the shock
front, V2 is the velocity of the shock front, Eb, Mb, and Lb are the energy, mass,
and luminosity of the shocked stellar wind in region (b). We can see that at later
times, V2 starts to decrease more rapidly as the pressure from the surrounding
interstellar medium dominates over the pressure inside the bubble.
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Figure 1.2: The left panel shows a sketch of the structure of the stellar bubble,
source: Weaver et al. [1977]. The right panel shows the radial profiles of the
hydrodynamic quantities in the interstellar bubble with the mechanical luminosity
of the stellar wind, Lw = 1.27×1036 erg, the terminal velocity, v∞ = 2000 km s−1,
and the density of the interstellar medium, n0 = 1 cm−3 with no cooling and no
heat conduction.
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Figure 1.3: Evolution of a bubble with Lw = 1.27 × 1036 erg and n0 = 1 cm−3

when the exterior is an HII region at T = 8000 K. Individual lines show the radius
of the reverse shock, R1 (magenta), the radius of the outer shock front, R2 (green),
the shock velocity, V2 (light blue), the thermal energy in region (b), Eb (orange),
the mass of the hot gas in region (b), Mb (yellow), and the luminosity of region
(b), Lb (dark blue).
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Figure 1.4: A SILCC run, including supernovae, stellar winds, UV radia-
tion, and cosmic rays at t = 65 Myr. The computational domain size is
0.5 kpc×0.5 kpc×4 kpc. Periodic boundary conditions are used in the x and y di-
rections, and outflow boundary conditions are used in the z direction. Edge-on
(top row) and face-on (bottom row) views show by color the following quantities
(from left to right): the total gas column density, slices through the center of
the simulation with the temperature, the ionized hydrogen column density, the
atomic hydrogen column density, the molecular hydrogen column density, the
density-weighted column of the magnetic field strength, and slices through the
center of the simulation with the cosmic ray energy density. The circles in the
first and third panels indicate star clusters. Source: Rathjen et al. [2021]
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2. Numerical model
Here we describe the numerical code used for the hydrodynamic simulations of
interstellar bubbles presented in this thesis. We will review the core equations
as well as the modules used to implement radiative cooling and heat conduction.
We will then perform simulations of simple problems to assess the validity of the
results obtained with the code.

2.1 Flash hydrodynamic code
Flash 4.6.2 (Fryxell et al. [2000]) is a three-dimensional hydrodynamic code
written in Fortran 90 and C. It is parallelized using the Message Passing Interface
library (Message Passing Interface Forum [2021]) and supports adaptive mesh
refinement using the Paramesh library (Olson et al. [1999]).

The hydrodynamic module solves the following equations for compressible gas
using the piecewise parabolic method (Colella and Woodward [1984]),

∂ρ

∂t
+ ∇ · ρv = qm , (2.1)

∂ρv
∂t

+ ∇ · ρvv = ρg − ∇P − qmv , (2.2)

∂ρE

∂t
+ ∇ · (ρE + P )v = ρv · g − Q + qe − ∇qc , (2.3)

where ρ, v, and P are the fluid density, velocity, and pressure, respectively, g is
the acceleration due to gravity, Q is the cooling term discussed in section 2.2,
qm is the mass deposition rate, qe is the energy deposition rate, qc is the heat
conduction flux, and E is the sum of internal and kinetic energy per unit mass

E = P

(γ − 1)ρ + v2

2 (2.4)

where γ is the ratio of specific heats. For the sake of simplicity, we neglected
the gravitational acceleration g. This is safe in the early phases of the bubble
evolution when other accelerations (e.g., due to the pressure force) dominate. In
addition to equations 2.1–2.3 we need the equation of state of the ideal gas

P = kBρT

µmH
, (2.5)

where µmH is the mean mass per particle with µ = 0.609 corresponding to the
ionized gas with the chemical composition of the Sun, T is the temperature, and
kB is the Boltzmann constant.

The simulations in this thesis were performed on the Karolina supercomputer
operated by IT4Innovations and on the Virgo cluster operated by the Astronomi-
cal Institute of the Czech Academy of Sciences. We used about 50000 core hours.
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2.2 Radiative cooling
Hot gas in regions (b) and (c) cools by emitting electromagnetic radiation, and
the resulting energy losses significantly modify the bubble evolution. Therefore,
we take this effect into account. We assume that the number densities of electrons
and ions ni and ne, respectively, are equal and given by

ni = ne = ρ

µimH
, (2.6)

where µimH is the mean mass per ion with µi = 1.273 and ρ is the density. The
cooling rate is given by the equation

Q = nineΛ(T ) , (2.7)

where Λ(T ) is a cooling function calculated by Schure et al. [2009] and shown in
figure 2.1.
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Figure 2.1: Contributions of different elements to the Schure et al. [2009] cooling
function. The solid black line shows the total cooling function. The plot is shown
for the solar chemical composition used throughout this work; however, it can be
easily modified for any other composition by scaling the species composition.

In interstellar bubbles, radiative cooling affects regions (b) and (c). The latter
one (shell of the accreted ISM) cools rapidly at a given time and collapses into
a thin shell. The calculation of this process is relatively straightforward within
the framework of the adopted assumptions, and we therefore focus here on the
calculation of the energy losses from region (b). The highest radiative losses occur
at the contact discontinuities, where the cooling function peaks. This reduces the
thermal energy flux, which is canceled by the mechanical energy flux (Cowie and
McKee [1977]). As a result, less gas flows into the bubble. This reduces the mass
of the wind accumulated in a bubble.
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2.3 Heat conduction
Heat conduction falls into the category of diffusion problems. Flash includes
several diffusion solvers that can be divided into two groups: explicit and implicit.
Flux-based solvers are explicit diffusion solvers, and they work by calculating the
heat fluxes at the cell faces. Unfortunately, these solvers are not fast enough
for our applications because they have to limit the time step of the simulation
to ensure the stability, and this would lead to time steps by several orders of
magnitude smaller than those required by the hydrodynamic solver. On the
other hand, the implicit solvers are much faster, because they do not constrain
the time step, but they can be inaccurate if the heat fluxes are too large.

To evaluate whether the diffuse and conduction units in Flash are working
correctly, we calculated the evolution of the 1D delta distribution in temperature.
The solution of equation

k∆T (x, t) = ∂T (x, t)
∂t

, (2.8)

where k = 1000 cm2/s is the heat conductivity and x ∈ R, t/s ∈ [0, ∞) are space
and time coordinates, respectively, for the initial conditions

T (x, t = 0 s) = Nδ(x) , (2.9)

is the Gaussian heat kernel multiplied by a normalization constant N > 0 K cm

T (x, t) = N√
4πkt

exp
(︄

− x2

4kt

)︄
. (2.10)

Figure 2.2 shows a Flash simulation with initial conditions set to the solution
2.10 with t = 5 × 10−3 s and hydrodynamics disabled. In the right panel we can
see this simulation at a later time compared to the analytical solution 2.10. We
conclude that Flash solutions for simple problems are consistent with analytical
solutions.
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Figure 2.2: Heat conduction test in Flash with hydrodynamics disabled com-
pared to the analytical solution 2.10. Initial conditions were set to the funda-
mental solution of the heat equation 2.10 at t = 5 × 10−3 s.
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The heat conduction coefficient for hydrogen plasma is given by (Spitzer
[1962])

κ ≈ 4.6 × 1013
(︃

T

108 K

)︃ 5
2
(︄

ln Λ
40

)︄−1

erg s−1cm−1K−1 = KT
5
2 , (2.11)

where the Coulomb logarithm quantifies the effect of small-angle collisions dom-
inating over large-angle collisions and can be written as

ln Λ =
∫︂ dχ

χ
, (2.12)

where χ is the angle of deflection. The Coulomb logarithm is a weak function
of number density and electron temperature but can be treated as a constant
(Cowie and McKee [1977]). We will use ln Λ ≈ 40, so the constant K = 4.6 ×
10−7 erg s−1cm−1K−7/2. Weaver et al. [1977] used an older formula giving K =
1.2 × 10−6 erg s−1 cm−1 K−7/2, El-Badry et al. [2019] used ln Λ = 30 giving K

.=
6.1 × 10−7 erg s−1 cm−1 K−7/2.

In the interstellar bubbles, the heat is conducted from the shocked stellar
wind (region b) to the warm or cold shell (region c) where the energy is radiated
away by the electromagnetic waves (cooling). In this way, the thermal energy and
pressure in region (b) are reduced, resulting in a slower expansion of the bubble.
In addition, the outward flux of the thermal energy is balanced by the inward
flux of the mechanical energy, resulting in the evaporation of the shell into the
hot shocked wind region. This increases the mass of region (b).

2.4 Cooling–conduction interaction
Figure 2.3 shows the mass of the accumulated shocked stellar wind in region
(b). As we have discussed above, we can see that heat conduction increases while
cooling decreases the evaporation of gas from the shell. The two runs that include
the heat conduction show significantly more hot gas in the bubble interior than
the two runs that do not. The run that includes both heat conduction and cooling
has slightly less hot gas in the bubble interior than the run that includes only the
heat conduction. We can also see that after an initial increase at the beginning of
the simulation there is a brief period when the mass of the bubble decreases. This
happens because the structure is not yet fully developed and the identification of
region (b) does not work correctly. We are therefore interested in the later stages
when mass is being accumulated.

Figure 2.4 shows the mass of hot gas accumulated inside a bubble for differ-
ent resolutions of 1D spherically symmetric Flash simulations with and without
cooling and heat conduction. We can see that simulations with lower resolution
have less mass accumulated inside the bubble. Although the accumulated mass
converges for the resolution with 16384 cells or higher, more complex or 3D simu-
lations cannot be performed at such resolutions. The cause of this problem is an
unresolved contact discontinuity represented by a single cell with a temperature
between 104 and 107 K. The cooling function peaks around 105 K and changes
very rapidly around this temperature. Experiments show that on average the
lower resolution leads to an overestimation of the cooling; consequently, less mass
flows into the bubble interior.
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3. HECTOR – HEat Conduction
correcTOR
We learned that resolving contact discontinuities in hydrodynamic simulations
requires unrealistically high resolutions; consequently, numerical simulations of
the interstellar bubbles are not accurate at lower resolutions. To correct this, we
developed the Hector sub grid model which calculates the correct 1D station-
ary solution around a contact discontinuity and implemented it in the Flash
hydrodynamic code. We detect problematic areas and use a precalculated table
of temperature profiles to correct the solution.

3.1 Semi-analytical model
The model consists of two media–cold and hot1–separated by a contact disconti-
nuity at x=0. The cold medium is defined by its temperature T (x = 0), density
ρ(x = 0), and a hot medium is defined by its temperature T (x = xt) at a dis-
tance xt from the contact discontinuity. Both media are treated as infinite thermal
reservoirs. We seek a time independent solution given by the energy conservation
equation.

We need to solve equations 2.1–2.3, which can be expressed in 1D Cartesian
coordinates without mass and energy deposition as the system

∂

∂x
(ρv) = 0 , (3.1)

ρv
dv

dx
= −dp

dx
, (3.2)

∂

∂x

(︃
ρv
(︃1

2v2 + 5
2c2

s

)︃)︃
+ ∂qc

∂x
+ n2

i Λ(T ) = 0 , (3.3)

where ρ is the density, p is the pressure, T is the temperature, and v is the velocity
of the gas. The pressure is calculated from the ideal gas equation of state

p = kBρT

µmH
, (3.4)

where γ = 5/3. The speed of sound is defined as

c2
s = dp

dρ
= γkBT

µmH
. (3.5)

The heat flux
qc = −KT

5/2 dT

dx
, (3.6)

where KT 5/2 ≡ κ is the heat conduction coefficient given by equation 2.11. To-
gether with the equation of state we can rewrite the conservation laws 3.1–3.3

1By hot we will refer to gas with temperature equal to or less than 104 K.
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using a second order differential equation for temperature

ρv

(︄
v

kBv

kBT − v2µmH
+ 5γkB

2µmH

)︄
dT

dx
− KT

5/2 d2T

dx2 − 5
2KT

3/2

(︄
dT

dx

)︄2

+ n2Λ(T ) = 0

(3.7)
and an equation for the velocity of the gas

dv

dx
= kBv

kBT − v2µmH

dT

dx
. (3.8)

Furthermore, equation 3.1 can be used to express the derivative of the density

dρ

dx
= −ρ

v

dv

dx
= −ρ

v

kBv

kBT − v2µmH

dT

dx
. (3.9)

Finally, equation 3.7 can be expressed using two first order differential equations,
which are more suitable for the numerical solution than the second order equation

dT

dx
= U , (3.10)

dU

dx
= ρv

KT 5/2

(︄
kBv2

kT − v2µmH
+ 5γkB

2µmH

)︄
U − 5

2T
U2 + n2

i Λ(T )
KT 5/2

. (3.11)

We seek a solution of equations 3.8–3.11 with boundary conditions T (x = 0),
ρ(x = 0), and

TC2 =
∫︁ xt

xt/2 T (x)ρ(x)dx∫︁ xt
xt/2 ρ(x)dx

which is the average temperature in the second half of the solution (xt/2 < x < xt)
corresponding to a single cell in a Flash simulation. Additionally, the velocity
v(x = 0) on the cold side of a contact discontinuity can be obtained from equation
3.3. We neglect cooling at x = 0 because the cooling function is small at low
temperatures. The heat flux must be equal to the mechanical energy flux (Cowie
and McKee [1977])

ρv
(︃1

2v2 + 5
2c2

s

)︃
= −qc for x = 0 . (3.12)

There is only one real solution for v(x = 0). We can discard the other two
solutions with imaginary components as non-physical.

We solve equations 3.8–3.11 numerically. We start on the cold side where
x = 0. We guess an initial value of dT

dx
(x = 0). Then we integrate numerically

using the fourth-order Runge–Kutta method until we reach xt. Then we calculate
TC2 and compare it to the temperature Tt in the cell2 on the hot side of the contact
discontinuity. If the values are different, we use the bisection method and repeat
the process with different values of dT

dx
(x = 0) until we get TC2 ≈ Tt.

Figure 3.1 shows a comparison between a semi-analytical solution and a high
resolution (256 cells for a single contact discontinuity) Flash simulation. The
boundary conditions are implemented in Flash by changing the values of the

2Cell in a Flash simulation using the results from Hector to improve its solution on the
contact discontinuity.
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Figure 3.1: Comparison of a semi-analytical solution with a Flash solution.
Boundary conditions are set to ρ(x = 0) .= 3.3 × 10−21 gcm−3, T (x = 0) =
9.7 × 103 K, and Tt = 1.24 × 107 K.

first and last few cells in each step. We can see that the agreement between the
two solutions is particularly good3. The small differences are due to the fact that
the Flash solution is not completely stationary and shows oscillations in time
due to imperfections in the implementation of the boundary conditions.

3.2 Correcting FLASH solution
A contact discontinuity is characterized by a significant rise in temperature and
a drop in density. To detect contact discontinuities in Flash, we calculate the
product of the normalized gradients of temperature and density in each cell and
direction. Any cell with a negative value below a certain threshold is considered
as a candidate for a contact discontinuity. We can set this value low enough
to detect only unresolved contact discontinuities, since their gradients are even
steeper. Empirically, we have found that a value between −0.0001 and −0.1 works
well for this threshold when simulating bubbles driven by stars and star clusters.
A higher value would give us false positives while a lower value would not detect
all contact discontinuities. We will use −0.1 for the threshold to minimize the
risk of false positives. If two adjacent cells with the same gradient direction are
candidates for a contact discontinuity, only the cell with the lower value (steeper
product of the gradients) is used as the contact discontinuity.

Figure 3.2 shows three cells around a contact discontinuity. Temperatures
from a Flash simulation are shown as points. Cell number 2 is marked as the
contact discontinuity. We assume that cell number 3 is far enough away from
the discontinuity to not be affected by it. We can then use the temperature and
density in cell 1 as T (x = 0) and ρ(x = 0), respectively, and the temperature in
cell 3 as Tt, and find a more detailed solution using the semi-analytical model,
shown in the figure as a dashed line. Finally, we set the temperature in cell two to
the value obtained from the semi-analytical solution. It would not be possible to
calculate a semi-analytical solution every time a contact discontinuity is detected

3Note that the pressure is almost constant in both solutions resulting in a fine scale in the
figure. Both solutions differ by less than 4 %.
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Figure 3.2: Points represent temperatures in 3 cells surrounding a contact discon-
tinuity in a Flash simulation. Dashed line shows semi-analytical solution with
a much higher resolution.

in Flash. Instead, we interpolate in precalculated values from table 3.1 and set
the results as temperatures in cells with detected contact discontinuities. The
table has four parameters: the distance from the contact discontinuity xt given
by the cell size, the density of the cold gas at the contact discontinuity ρ(x = 0),
the temperature of the cold gas at the contact discontinuity T (x = 0); and the
temperature of the hot gas averaged over a cell at distance 0.75xt from the contact
discontinuity. It covers the relevant part of the parametric space for interstellar
bubbles where solutions exist. In addition, we turn off cooling in cells with
modified temperature, since its effects are already included in the semi-analytical
solution.
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Table 3.1: Precalculated solutions used to correct temperature at contact discon-
tinuities in Flash simulations.

xt

cm
ρ(x = 0)
g cm−3

T (x = 0)
K

TC2

K
TC1

TC2

dT
dx

(x = 0)
K cm−1

2.00 × 1017 1.00 × 10−21 1000 1000000 0.53 7.65 × 10−8

2.00 × 1017 1.00 × 10−21 2000 1000000 0.55 1.96 × 10−8

2.00 × 1017 2.50 × 10−21 1000 1000000 0.57 3.68 × 10−8

2.00 × 1017 7.50 × 10−22 600 1000000 0.51 1.81 × 10−7

4.00 × 1017 1.00 × 10−21 1000 1000000 0.55 2.80 × 10−8

4.00 × 1017 1.00 × 10−21 8000 2500000 0.54 1.67 × 10−8

4.00 × 1017 2.50 × 10−21 2000 2500000 0.52 1.44 × 10−7

4.00 × 1017 2.50 × 10−21 4000 2500000 0.55 4.47 × 10−8

4.00 × 1017 5.00 × 10−21 8000 5000000 0.53 1.01 × 10−7

... ... ... ... ... ...
1.28 × 1020 7.50 × 10−24 4000 2500000 0.54 1.41 × 10−10

1.28 × 1020 7.50 × 10−24 4000 2500000 0.55 1.38 × 10−10

1.28 × 1020 7.50 × 10−24 6000 2500000 0.56 6.41 × 10−11

1.28 × 1020 7.50 × 10−24 600 1000000 0.58 8.91 × 10−11

1.28 × 1020 7.50 × 10−24 8000 2500000 0.57 3.40 × 10−11

1.28 × 1020 7.50 × 10−24 8000 2500000 0.57 3.34 × 10−11
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4. Results
We have performed several Flash simulations to determine how temperature
correction at the contact discontinuity affects the structure and the evolution of
the interstellar bubbles. All 3D simulations use the Cartesian coordinate system
while 1D spherically symmetric simulations use spherical geometry. We use the
results of the Hector code, which uses the Cartesian coordinates, for simulations
with spherical geometry because the contact discontinuities are small compared
to the scales at which their shape changes, and far enough from the center that
the geometry is close to Cartesian.

4.1 Setup
All simulations start with a domain filled with uniform gas characterized by
a particle number density nISM and temperature TISM. Both radiative cooling
and heat conduction are enabled. A source of the stellar wind with mechanical
luminosity Lw and terminal velocity v∞ is placed in the center. The source is
implemented as a sphere with a cut-off radius Rcut into which the mass and the
thermal energy are inserted following the generalized Schuster profile (Ninkovic
[1998])

ρS(r) = N
(︃

1 + r

Rc

)︃−β

for r < Rcut , (4.1)

where r is the radius measured from the center, Rc is the core radius, the slope
β = 1.5, and N is a normalization constant such that

∫︁ Rc
0 4πr2ρS(r)dr = 1. The

mass deposition rate is
qm(r) = ρS(r)ṁw , (4.2)

where ṁw is the total mass of the wind inserted per a unit of time and the energy
deposition rate is

qe(r) = ρS(r)Lw . (4.3)

For all 3D simulations, we set the boundary conditions to outflow, which
means that gas is allowed to move freely out of the computational domain, but
no gas enters the domain from outside. In the case of the 1D simulations, we also
set the outer boundary condition to outflow, but the inner boundary condition
(at r = 0) is set to reflect, which ensures that no gas passes this boundary. All
of our simulations use a uniform grid.

4.2 Single star
First, we simulated a bubble driven by a star with Lw = 1.27 × 1036 erg, v∞ =
2000 km s−1, Rc = 0.13 pc1, and Rcut = 0.39 pc. We used the same values as
Weaver et al. [1977] so that we can easily compare the results. The surrounding
interstellar medium has nISM = 1 cm−3 and TISM = 104 K. For 1D simulations we

1The core radius is much larger than the size of the star because we need to insert the wind
into multiple cells even at lower resolutions.
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use a computational domain with a radius of 10 pc while for 3D simulations we
use a domain of 20 pc across in all 3 directions.

Here we show how the Hector code improves the convergence with the reso-
lution of the mass Mb of the hot (T > 3×105 K) shocked stellar wind accumulated
in region (b). Figure 4.1 shows Mb as a function of time. The low resolution (64
cells) 1D simulation without Hector underestimates Mb by a factor of ∼ 2 − 3
compared to the high resolution (32768 cells) simulation. This is consistent with
our results presented in figure 2.4, where we show that Mb depends on the res-
olution of the simulation. With Hector, both low and high resolution 1D and
3D simulations give consistent results that agree with the results of the high
resolution simulation without Hector.

We ran two 3D simulations with the Hector code at resolutions of 1283

(low) and 5123 (high). The low resolution 3D simulation differs from the higher
resolution simulations in the early stages. This is due to the small forming struc-
ture not being properly resolved2. Figure 4.3 shows a comparison between the
3D simulations of the two high-resolution runs with (bottom) and without (top)
Hector. A single time frame showing the gas density in a plane of cells at
z = 0 is displayed. Figure 4.4 shows a comparison of the high and low resolution
3D simulations with Hector. In summary, we can see that the Hector code
significantly improves the convergence of Mb with the resolution.

Figure 4.2 shows a comparison of the 1D spherically symmetric solution with
2048 cells and Hector with the semi-analytical Weaver et al. [1977] solution cal-
culated with Schure et al. [2009] cooling. The computational domain has a radius
of 80 pc to cover a significant fraction of the bubble evolution, i.e., it is 8 times
larger than for the simulations shown in figure 4.1. As a result, the effective
resolution of this simulation, i.e., the grid cell size, is similar to that of the 256
cell simulation in figure 4.1. We can see an excellent agreement in the bubble
expansion between the two models: the radius R2 is practically identical in both
solutions. The mass Mb and the thermal energy in region (b), Eb, grow slightly
faster in the Flash simulations. This may be due to a different value of the
constant K in the heat conduction coefficient used by Weaver et al. [1977]. In
addition, Weaver et al. [1977] introduce several simplifying assumptions to make
the derivation possible, which may lead to minor differences in the results. How-
ever, we can see that the Hector code significantly improves the agreement
between the low resolution Flash simulation and the semi-analytic Weaver solu-
tion. The figure also includes a Flash simulation without Hector. We see that
not only the mass Mb and luminosity Lb are lower without Hector, but also
the radius of the outer shock front R2 is smaller. At 3.8 Myr, the simulation with
the unresolved contact discontinuity has a 25 % smaller radius of the bubble.

4.3 Star cluster
As a further test, we run simulations of a bubble created by a star cluster em-
bedded in a molecular cloud, to cover also this astrophysically interesting part

23D simulations require twice the resolution compared to 1D simulations because the source
is in the center of the computational domain compared to the 1D spherically symmetric simu-
lation where we place the source at r = 0 and calculate the solution only for r ≥ 0.
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Figure 4.1: Mass Mb of the hot gas in the region (b) of the bubble driven by
a single star (Lw = 1.27 × 1036 erg). Different curves show simulations in 1D or
3D, at low or high resolution, and with or without Hector, as indicated by the
inset labels.

of the parameter space. We treat the cluster as the source of the stellar wind,
with Lw = 3 × 1038 erg, v∞ = 2000 km s−1, Rc = 1.0 pc, and Rcut = 3.0 pc. The
above Lw corresponds to about 100 massive stars, i.e., the star cluster of mass
∼ 104 MSun, assuming the standard stellar initial mass function. The uniform am-
bient medium has a density of 103 cm−3 and a temperature of 100 K, which are
typical conditions inside molecular clouds. For 1D simulations we use a compu-
tational domain with a radius of 50 pc, while for 3D simulations we use a domain
of 67 pc across in all 3 directions.

For the star cluster, we present only the convergence tests, since the Weaver
solution with these parameters is not available. Figure 4.5 shows Mb as a function
of time. First, we see that without Hector Mb depends on the resolution.
Simulations of the star cluster require shorter time steps and about ten times
longer simulation time compared to simulations with a single star; consequently,
we were unable to verify that the accumulated mass converges at high enough
resolution. With Hector, 1D simulations yield consistent results regardless of
resolution. Both low and high resolution 3D simulations with Hector yield
smaller Mb compared to 1D simulations, but significantly larger Mb compared to
simulations without Hector, making them much closer to the converged high
resolution 1D simulation. 3D simulations with Hector give consistent results for
different resolutions and the correction brings the results closer to 1D simulations
with Hector.
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Figure 4.2: Evolution of a bubble driven by a single star (Lw = 1.27 × 1036 erg).
Results from Weaver et al. [1977] compared to 1D Flash simulations with and
without Hector. The individual lines show the radius of the reverse shock,
R1 (magenta), the radius of the outer shock front, R2 (green), the shock velocity,
V2 (light blue), the thermal energy in region (b), Eb (orange), the mass of the hot
gas in region (b), Mb (yellow), and the luminosity of region (b), Lb (dark blue).

Figure 4.3: Bubble driven by a single star (Lw = 1.27 × 1036 erg). Individual
panels show by color the following quantities (from left to right) in the plane z = 0
at time 80 kyr: logarithm of the gas density, logarithm of the gas temperature,
logarithm of the gas pressure and the magnitude of the gas velocity. The top
row shows results without Hector, the bottom row shows a simulation with
Hector. Purple points in the temperature mark where a contact discontinuity
was detected, and the temperature was modified.
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Figure 4.4: Bubble driven by a single star (Lw = 1.27 × 1036 erg). The top row
shows results with 5123 cells and the bottom row with 1283 cells. Individual
panels show the logarithm of the gas density at plane z = 0 at times 4, 19, 38
and 76 kyr from the beginning of the expansion.
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Figure 4.5: Mass Mb of the hot gas in region (b) of the bubble driven by a star
cluster (Lw = 3 × 1038 erg). The surrounding interstellar medium has nISM =
1000 cm−3 and TISM = 100 K.
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Summary
We have studied interstellar bubbles by means of hydrodynamic simulations in-
cluding the effects of heat conduction and radiative cooling. When using either
radiative cooling or heat conduction everything works as expected but when we
enable both processes at the same time the solution is inaccurate at lower reso-
lution due to the unresolved high temperature gradients at the contact disconti-
nuity. This leads to a lower evaporation flux from the shell into the region of the
shocked stellar wind. As a result, less mass accumulates in the bubble interior,
and this affects the bubble dynamics (e.g., the expansion rate). To resolve the
contact discontinuity, we need 1D simulations with resolutions that cannot be
reproduced in 3D due to prohibitively high computational costs. With higher
mechanical luminosities of the stellar wind, such as in star clusters, we have not
been able to perform the 1D simulations at resolutions high enough to resolve
the contact discontinuity.

We have developed the Hector code to solve the above problem. It consists
of a semi-analytic model for finding detailed 1D stationary solutions of contact
discontinuities and a module for the hydrodynamic code Flash to correct simu-
lations on the fly. Within Flash we detect problematic regions using normalized
gradients of density and temperature. When an unresolved contact discontinuity
is detected, a precalculated table of temperature profiles from Hector is used
to correct the solutions.

With Hector, simulations of interstellar bubbles around single stars give the
same results at different resolutions and in both 1D and 3D. The solutions are
also consistent with results by Weaver et al. [1977].

Interstellar bubbles around star clusters give consistent results at different
resolutions with Hector. In 3D simulations less mass accumulates in the hot
region of the shocked stellar wind than in 1D simulations. We believe that Hec-
tor improves both 1D and 3D simulations, but more work needs to be done to
determine the correct solution for the evolution of bubbles driven by star clusters.

In the future, we hope to use Hector in complex simulations of the inter-
stellar medium in galaxies, in particular in the SILCC project (Simulating the
Life-Cycle of molecular Clouds)–a large international collaboration aiming to im-
prove our understanding of the star-gas cycle in galaxies (Walch et al. [2015]).
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