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Introduction

The Lipkin model is a very appealing and, to this day, very popular model for
quantum many-body systems. Thanks to its simplicity, exact solutions to the
model exist first proposed in [1–3], or they can be easily found numerically. In
contemporary physics, the model is commonly a subject of study in areas such as
condensed matter physics [4], the quantum optics [5] or the quantum computing
[6]. In this context, the model is often treated as an open quantum system [7].

However, the model was originally proposed in [1–3] so that various many-
body methods could be tested in it, and the results directly compared with exact
solutions. The Lipkin model lived up to its original intention, and dozens of
many-body methods were applied and studied specifically on this model or some
of its extensions. Examples of these methods are the Hartree-Fock method [8–10],
the random phase approximation [11], the second random phase approximation
[12] or various beyond mean-field methods [13–16].

In the present thesis, in Chapter 1, we first introduce the Lipkin model. Aside
from exact solutions, we show some of the model’s physical features. Among
these are phase transitions and the odd-even effect analogy [8]. Next, we review
some of the usual many-body methods used in nuclear physics, namely the
Hartree-Fock method in Chapter 2 and the random phase approximation in
Chapter 3, and we apply these methods to the Lipkin model. A detailed discussion
regarding the properties of the Hartree-Fock and random phase approximation
solutions is given. We establish and discuss a connection between the phase
transitions and random phase approximation collapse points. Based on an idea
that springs from [8], we propose an iterative extension to the standard random
phase approximation method, which somewhat avoids a quasi-boson approximation.
Lastly, in Chapter 4, the Bardeen-Cooper-Schrieffer method, which allows one to
describe pairing interactions, is introduced and applied to the Lipkin model. We
comment on similar works that applied the BCS method to this model in [17, 18].

In summary, we apply five many-body methods to the Lipkin model. These
methods are the Hartree-Fock mean-field method, the random phase approxima-
tion, the Tamm-Dancoff approximation, the random phase iterative extension,
and the Bardeen-Cooper-Schrieffer method. These approximate methods are
used to find the best approximation for either the ground state energy or excited
state energies. Throughout the thesis, we give many numerical comparisons of
all these methods. As it was already done in [10, 11], we explore the energy
approximations as functions of interactions strengths. To that, we add their
relative errors with respect to exact solutions. On top of that, the performance of
these approximations as a function of particle number is studied.
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Chapter 1

Nuclear Lipkin Model

1.1 The model & Exact solutions

To begin with, we give a brief introduction to the Lipkin model, which was
originally intended as a testing ground for many-body methods [1–3]. In general,
the system consists of two levels occupied by a total of N fermion-like particles,
thus each level is N times degenerated. The two levels are separated by energy
gap ε. In addition to that, the system is enhanced by two types of two-body
interactions commonly denoted as V and W . The first interaction V takes a pair
of two particles at either of the two levels and scatters it to the other level, while
the interaction W simultaneously scatters a particle from the lower level to the
upper one, and vice versa. To conceptually approach the model, we think of the
system with both interactions disabled. This way, the ground state is realized by
all particles occupying the lower shell only. Once a single particle is scattered to
the upper level, we get the first excited state and so on, as depicted in Fig. 1.1.1.

Figure 1.1.1 Scheme of two-level Lipkin model found in the ground state and
in the first excited state with both interactions V and W disabled.

If one considers the non-interacting case, the model is trivial to solve. Once
either interaction V or W is included, the problem immediately becomes more
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involved. As we will see, it is especially interaction V that complicates it. Despite
that, the model can still be largely simplified using internal symmetries, and in
the case of pure interaction W , exact solutions can be obtained by hand. Suppose
both interactions V and W are included. In that case, exact solutions are known
only for a few special values of particle number N [19]. In Fig. 1.1.2, we give a
graphical interpretation for both V and W interaction processes.

Figure 1.1.2 Scheme displaying interactions V and W in the two-level Lipkin
model.

Let us introduce standard energy operator H [1] of the Lipkin model with
the sign convention according to [10]. This Hamiltonian H that includes both
interactions V and W reads

H =
ε

2

Ω∑︂
n, σ

σa†nσanσ −
V

2

Ω∑︂
n,m, σ

a†nσa
†
mσam−σan−σ −

W

2

Ω∑︂
n,m, σ

a†nσa
†
m−σamσan−σ,

(1.1.1)

where σ = ± represents the upper (+) and the lower (−) level of the system, V
and W stand for the interaction strengths, ε is the energy gap between the two
levels, Ω denotes the total capacity of each shell equal to the particle number N ,
which is just the total number of particles in the system, and a†k σ together with
al σ, stand for the usual creation and annihilation fermionic operators [20, 21]. At
this point, our goal is to solve for the stationary Schrödinger equation

H|ψ⟩ = E|ψ⟩, (1.1.2)

namely, we want to find stationary energies E and corresponding stationary states
|ψ⟩. For a system defined by energy operator H in Eq. (1.1.1), a total of 2N
possible states exist, making it very difficult to solve Eq. (1.1.2) directly.

However, it turns out one can exploit an internal symmetry within the system
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[1, 10] given by Eq. (1.1.1) and introduce the following operators

K0 =
1

2

Ω∑︂
n

(︂
a†n+an+ − a†n−an−

)︂
, (1.1.3)

K+ =
Ω∑︂
n

a†n+an−, (1.1.4)

K− =
Ω∑︂
n

a†n−an+, (1.1.5)

K2 =
1

2
{K+, K−}+K2

0 , (1.1.6)

with (K+)
† = K−. This way, Eq. (1.1.1) can thus be expressed as

H = εK0 −
V

2

(︁
K2

+ +K2
−
)︁
− W

2
(K+K− +K−K+) . (1.1.7)

Operators K0, K± and K2 satisfy the very same commutation relations as the
regular angular momentum operators [20, 21][︁

Jz, J
2
]︁
= 0,

[︁
K0, K

2
]︁
= 0, (1.1.8)

[Jz, J±] = ± J±, [K0, K±] = ±K±, (1.1.9)
[J+, J−] = 2 Jz, [K+, K−] = 2K0. (1.1.10)

The set of operators {K0, K±} thus produces what is often referred to as the
quasi-spin algebra. To prove this to be true, we set out to verify commutators in
Eq. (1.1.8) to Eq. (1.1.10).

We start by computing the commutator in Eq. (1.1.9)

[K0, K+] =

=
1

2

Ω∑︂
n,m

[︂(︂
a†n+an+ − a†n−an−

)︂
a†m+am− − a†m+am−

(︂
a†n+an+ − a†n−an−

)︂]︂
=

=
1

2

Ω∑︂
n,m

[︂
a†n+an+a

†
m+am− − a†n−an−a

†
m+am− − a†m+am−a

†
n+an++

+a†m+am−a
†
n−an−

]︂
=

1

2

Ω∑︂
n,m

[︂
a†n+am−δnmδ++ − a†n+a

†
m+an+am−−

−a†n−am−δnmδ−+ + a†n−a
†
m+an−am− − a†m+an+δnmδ−+ + a†m+a

†
n+am−an++

+a†m+an−δnmδ−− − a†m+a
†
n−am−an−

]︂
=

1

2

Ω∑︂
n,m

[︂
a†n+am−δnm+

+a†m+an−δnm

]︂
=

Ω∑︂
n

a†n+an− = K+.

(1.1.11)
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The other commutator [K0, K+] is straightforward due to (K+)
† = K− property

K− = (K+)
† = ([K0, K+])

† = (K0K+ −K+K0)
† = (K+)

†K0 −K0(K+)
† =

= − (K0K− −K−K0) = − [K0, K−] ,

(1.1.12)

with K0 = (K0)
† being just trivial.

Next, we check the commutation relation in Eq. (1.1.10)

[K+, K−] = K+K− −K−K+ =
Ω∑︂

n,m

(︂
a†n+an−a

†
m−am+ − a†m−am+a

†
n+an−

)︂
=

=
Ω∑︂

n,m

(︂
a†n+am+δnmδ−− − a†n+a

†
m−an−am+ − a†m−a

†
n+δnmδ+++

+a†m−a
†
n+am+an−

)︂
=

Ω∑︂
n

(︂
a†n+an+ − a†n−an−

)︂
= 2K0.

(1.1.13)

At last, we want to show Eq. (1.1.8) also holds true[︁
K2, K0

]︁
= K2K0 −K0K

2 =
1

2
{K+, K−}K0 +K3

0 −
1

2
K0 {K+, K−} −K3

0 =

=
1

2
(K+K−K0 +K−K+K0 −K0K+K− −K0K−K+) =

1

2
(K+K0K−+

+K+K− −K−K+ +K−K0K+ −K+K− −K+K0K− +K−K+ +K−K0K+) =

= 0,

(1.1.14)

where the result of Eq. (1.1.11) was used to arrive at the third equality.
We proved that the set of operators {K0, K±} follows the usual angular

momentum commutation relations. This way, we can fully employ the angular
momentum algebra machinery to solve the eigenvalue problem in Eq. (1.1.2)
prescribed by the Hamiltonian operator H in Eq. (1.1.1).

Next, we realize that K2 commutes with H[︁
H,K2

]︁
= 0. (1.1.15)

That is also easy to show that[︁
H, K2

]︁
= ε

[︁
K0, K

2
]︁
− V

2

[︁
K2

+, K
2
]︁
− V

2

[︁
K2

−, K
2
]︁
− W

2

[︁
K+K−, K

2
]︁
−

− W

2

[︁
K−K+, K

2
]︁
= −V

2

(︁
K2

+K
2 −K2K2

+ −K2
−K

2 +K2K2
−
)︁
−

− W

2

(︁
K+K−K

2 −K2K+K− +K−K+K
2 −K2K−K+

)︁
=

= −V
2

(︁
K2 −K2

0

)︁
K2 − V

2
K2

0

(︁
−K2 +K2

0

)︁
−

− W

2
(K+K− +K−K+)K

2 +
W

2
K2 (K−K+ +K+K−) =

= 0−W
(︁
K2 −K2

0

)︁
K2 +WK2(K2 −K2

0) = 0.

(1.1.16)
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So far, we defined operatorsK0 andK±, which satisfy the usual angular momentum
algebra. In Eq. (1.1.7), we then expressed energy operator H from Eq. (1.1.1) in
terms of these operators. This makes the original problem from Eq. (1.1.2) nearly
trivial. If we let |k, m⟩ be a basis for the quasi-spin operators, we get the usual
action of K2, K0, and K± operators

K0|k, m⟩ = m |k, m⟩, (1.1.17)
K2|k, m⟩ = k(k + 1) |k, m⟩, (1.1.18)

K±|k, m⟩ =
√︁
k(k ± 1)−m(m± 1)|k, m± 1⟩. (1.1.19)

Eq. (1.1.17) to Eq. (1.1.19) follow from the angular momentum algebra.
In particular, the quantum numbers k and m take the values

k =
N

2
, (1.1.20)

m = −N
2
, −N

2
+ 1, . . . ,

N

2
, (1.1.21)

quantum number k is thus fixed by the particle number N , which just gives the
total number of particles in the system. In contrast, the other quantum number m
just follows from Eq. (1.1.3) and corresponds to the difference of particle numbers
N− and N+ each giving the number of particles occupying either the lower or the
upper shell.

To appreciate what was achieved to this point, one just compares the dimension
of the matrix representing H in Eq. (1.1.1) whose dimension was 2N × 2N to that
in Eq. (1.1.7) with the size of (N + 1)× (N + 1). This is an incredible reduction
of work, especially for large values of N , not to mention it is easier to work with
K0 and K± operators in the first place.

Solving the original problem in Eq. (1.1.2) thus reduces to writing down
H matrix in |k, m⟩ basis and computing its eigenvalues and eigenvectors. In
principle, this is always possible, either by numerical means or by applying various
many-body approximate methods.

To get an idea of how spectra of the operator H in Eq. (1.1.1) look like, in
Fig. 1.1.3 we plot the whole spectrum of the Lipkin model for several systems
with different values of particle number N and different interactions strengths
V and W . Right now we postpone the discussion of the spectra and somewhat
intriguing phenomena within them to the next Section 1.1.

Before we proceed any further, we also introduce reduced interaction strengths1

v and w parameters for interactions V and W respectively

v = V
(N − 1)

ε
, (1.1.22)

w = W
(N − 1)

ε
. (1.1.23)

As of right now, the definition in Eq. (1.1.22) and Eq. (1.1.23) may seem odd, and
in fact, it is, but as we will see, it makes the problem somewhat easier to deal
with once approximate methods are employed. At the same time, the definition
in Eq. (1.1.22) and Eq. (1.1.23) makes the interaction strengths independent of
particle number N , which turns out to be quite handsome.

1For the sake of brevity, we also refer to both v and w as just interaction strengths.
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Figure 1.1.3 Relative eigenenergies En/ε for the Lipkin model given by H
in Eq. (1.1.1) for different values of particle number N and different v and w
interaction strengths as functions of either v or w. To distinguish between two
subsequent spectral lines, we keep switching between solid lines and dashed lines.
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1.2 Physical content of the solutions
Previous Section 1.1 introduced the Lipkin model. We then exploited an internal
symmetry of the model, which made it possible to either directly solve the
eigenvalue problem in Eq. (1.1.2) or largely simplify it if interaction V was present.
Nonetheless, little was said of any actual physical content of the solutions. In
what follows in Chapter 2 to Chapter 4, we will directly encounter some of the
physical features. Because of that, we show what some of these features are and
how they appear in the exact solutions.

Spectrum properties & Phase transitions

To begin with, we return to a discussion regarding the spectra in Fig. 1.1.3. We
see that the spectrum tends to be symmetric by setting w = 0 and letting En(v)
be a function of v. Also, in the limit v → +∞, the spectral lines tend to further
degenerate, which is well seen in the case of N = 7 particles. To understand this,
we realize that interaction V scatters a pair of particles from one level to the other.
This way, if V is large, the total effective number of particles reduces by half due
to the action of the interaction, hence the spectrum tends to degenerate.

In contrast, the interaction W does precisely the opposite; in some sense, it
removes the symmetry, and on top of that, it also causes the spectral lines to
intersect. This is best seen in the case when v = 0. If we were to track down the
ground state spectral lines, at the point of intersection we learn that the derivatives
of E0 are ill-defined. In fact, at points such as these, a phase transition (PT) takes
place. In the context of the Lipkin model, the PTs are well-known phenomena
[5, 7] and a lot of literature is explicitly dedicated to the study of PTs within
this particular model. To put this in a different perspective, in Fig. 1.2.1, we plot
the probability amplitudes of measuring the first three stationary energies E0, E1

and E2 for a system initially prepared in state |ψ⟩ = |k, −k⟩, where k = N/2,
which gives the ground state when v = w = 0. At the point w = 1, we see that
for both systems with N = 2 and N = 7, a non-continuous change in probability
amplitude occurs, thus also implying the system undergoes a PT at this point.

For a system with pure interaction W , the existence of a PT can be shown by
analytic means. Setting V = 0 Eq. (1.1.7) reads

H = εK0 −
W

2
(K+K− +K−K+) . (1.2.1)

In particular, H is a diagonal matrix with the diagonal elements being given by

Hmm = ⟨k, m|H|k, m⟩ = mε−W
[︁
k(k + 1)−m2

]︁
, (1.2.2)

which is due to the anti-commutator {K+, K−} action on |k, m⟩ (for details see
Appendix A).

To show the existence of the first PT in the ground state energy E0, we take
the two elements of H, which belong to the two lowest values of m

E(m = −N
2
) = −ε

(︃
N

2
+

N

2(N − 1)
w

)︃
, (1.2.3)

E(m = −N
2

+ 1) = −ε
(︃
N − 1

2
+

3N − 2

2(N − 1)
w

)︃
. (1.2.4)
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For w < 1, we see that E(m = −N
2
) gives the lowest energy and thus corresponds to

the ground state. However, if w > 1, this is no longer true, and it is E(m = −N
2
+1)

which gives lower energy than E(m = −N
2
), and hence gives the ground-state

energy. At the points of intersection with w = 1 the two energies E(m = −N
2
)

and E(m = −N
2
+ 1) are equal.

On top of that, first derivatives with respect to reduced interaction strength w
are not equal for w = 1, that is

dE(m = −N
2
)

dw
̸=

dE(m = −N
2
+ 1)

dw
. (1.2.5)

We see that at a point where w = 1, the system will always undergo a PT in its
ground state. In principle, the same analysis could be done for all the other PTs
in the model.
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Figure 1.2.1 Probability amplitudes pn = |⟨En|ψ⟩|2 of finding the system
prepared in the initial state |ψ⟩ = |k,−k⟩, k = N/2 with energy En as a function
of interaction strength w.

Odd-even effect analogy

So-called odd-even effect [8] is a fascinating phenomenon observed in nuclei.
Suppose one were to track the binding energies of nuclei. In that case, it turns out
that the binding energy of an odd-even nucleus is smaller than the arithmetic mean
of binding energies of two even-even nuclei, the first with one more nucleon and the
second with one nucleon less. This effect is caused by a pairing interaction between
nucleons in the nuclei as explained in [8]. Simply put, a many-body system with
all its particles paired will have higher binding energy than an equivalent system
without this type of interaction.

An analogy to this particular effect can be observed in the Lipkin model. This
is due to interaction W , which is an example of a pairing interaction. Essentially,
the interaction W pairs two particles, each sitting at a different level. To show
this, we limit ourselves to a system with interaction W only. Eigenenergies of
such system follow from Eq. (1.2.2).

12



To begin with, we let 0 < w < 1. Under these circumstances, the odd-even-like
effect is given by the following inequality

E0(N) ≥ 1

2
[E0(N + 1) + E0(N − 1)] . (1.2.6)

To show inequality in Eq. (1.2.6) to be true, we just substitute E0(N) =

−ε
(︂

N
2
+ N

2(N−1)
w
)︂
, which comes from Eq. (1.2.3). This brings us to

−εN
2

(︃
1

2
+

w

N − 1

)︃
≥ −εN

4

(︃
1 +

w

N
+

w

N − 2

)︃
, (1.2.7)

which is trivially true. In fact, the odd-even effect analogy will always appear
in the Lipkin model when 0 < w < 1 and v = 0. However, if one let w > 1, the
odd-even effect may be broken because Eq. (1.2.6) will not be true in general.
This is caused by phase transitions which lead to a change in the ground state
energy.

To better visualise this, in Fig. 1.2.2 we plot relative binding energy difference
∆B(N)/ε, with binding energy difference ∆B(N) defined as

∆B(N) =
1

2
[E0(N + 1) + E0(N − 1)]− E0(N), (1.2.8)

for odd values of N . When w = 0.8, we see an odd-even effect analogy in the
system, the effect disappears for w = 5 when v ̸= 0. In Fig. 1.2.2, we also notice
that interaction v does not break the odd-even effect and even causes it to restore
for large values of w. Unfortunately, making a general analysis with v included is
hard for an arbitrary value of N .

3 5 7 9 11 13 15 17 19 21 23 25

N

-0.03

-0.02

-0.01

0

"
B

(N
)=

"

w = 0:8

v = 0
v = 0:8

3 5 7 9 11 13 15 17 19 21 23 25

N

-0.3

-0.2

-0.1

0

"
B

(N
)=

"

w = 5

v = 0
v = 5

Figure 1.2.2 Plot of relative binding energy difference ∆B(N)/ε as a function
of particle number N starting at N0 = 3 for odd values of N , for given values of
interaction strengths v and w.
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Chapter 2

Hartree-Fock Method

2.1 Why mean-field?
Before we get straight into the Hartree-Fock mean-field theory and its application
to the Lipkin model, we list a few reasons to justify mean-field as a reasonable
way to solve a many-body problem in quantum mechanics.

To get things going, let us suppose we had an arbitrary quantum system
composed of N indistinguishable particles. This system may be an atom or a
nucleus. Just as in [8], we assume the following two conditions to be true.

• Velocity of each individual particle in the system is small 1 ≫ v2/c2 so that
non-relativistic quantum mechanics provides a suitable description for the
system.

• There are only two-body interactions between the particles in the system,
and if not, we assume any multi-body interactions of higher order to be
negligible with respect to the two-body interactions.

In the coordinate representation, we may write a corresponding time-independent
Schrödinger equation for a given system as

HΨ =

[︄∑︂
n

(︃
− ℏ2

2mn

∇2
n

)︃
+

1

2

∑︂
n̸=m

V (n,m)

]︄
Ψ = EΨ, (2.1.1)

with H being the appropriate energy operator of the system, V (n,m) being a
two-body interaction potential operator, mn being mass of nth particle and Ψ is
denoting a wave function.

In general, solving Eq. (2.1.1) can be extremely difficult. In order to do that,
one often has to seek out a way to approximate the problem in Eq. (2.1.1). One
particular way to achieve this as proposed in [8, 17] is to replace H energy operator
with a new Hamiltonian H0 that gives a one-body approximation of H

H0Ψ =
∑︂
n

[︃
− ℏ2

2mn

∇2
n + ˜︁V (n)

]︃
Ψ = εΨ. (2.1.2)

Here ˜︁V (n) stands for a new effective one-body interaction potential that optimally
approximates the original two-body potential V (n,m).
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The eigenstates corresponding to ˜︁V then provide a one-particle state basis
for a variational space that is used to approximately solve the original eigenvalue
problem in Eq. (2.1.1).

The procedure sketched above is in fact the core idea behind the Hartree-Fock
mean-field method [8]. In a nutshell, one takes an arbitrary multi-body interaction
potential V and replaces it with an effective one-body interaction potential ˜︁V . As
soon as an appropriate ˜︁V is found, one then derives Hartree-Fock equations [8],
and tries to solve them. The Hartree-Fock equations represent a significantly easier
eigenvalue problem for the one-body Hamiltonian H0. If one aspires to look for the
ground state energy only, it is sufficient to minimize the usual energy functional as
in detail discussed in [8, 20, 21], with the test-function space spanned by elements
of the Hartree-Fock mean-field basis. This of course is just an approximation.
However, it turns out to work very well if the residual interaction VRes ≡ (V − ˜︁V )
is small. In Section 2.2 we give a more formal treatment of the Hartree-Fock
mean-field method and in Section 2.3 we apply it to the Lipkin model.

2.2 Hartree-Fock method & Variational principles
Before we turn our attention to the Hartre-Fock (HF) mean-field method, we first
recall some of the most important results concerning the variational principles in
quantum mechanics.

Starting with the Ritz Principle as in [8, 20, 21]

H|ϕ⟩ = E|ϕ⟩ ⇐⇒ δE [|ϕ⟩] = 0, (2.2.1)

with the energy functional E [|ψ⟩] given as

E [|ϕ⟩] = ⟨ϕ|H|ϕ⟩
⟨ϕ|ϕ⟩

, (2.2.2)

and an arbitrary state |ϕ⟩ ∈ H from an appropriate Hilbert space H. Let E0 be
the exact ground state energy of the problem in Eq. (2.2.1). For E [|ϕ⟩] it then
holds that

E [|ϕ⟩] =

∑︁
n,m

cnc
∗
mEnδnm∑︁

n

|cn|2
≥

∑︁
n

|cn|2E0∑︁
n

|cn|2
= E0, (2.2.3)

where |ϕ⟩ ∈ H is expanded in a basis {|ψn⟩}n of H as

|ϕ⟩ =
∑︂
n

cn|ψn⟩. (2.2.4)

Now we finally get to the HF method. Let us assume it is possible to approximate
the energy operator H of the original problem with a one-body Hamiltonian H0

H ≈ H0 =
∑︂
n

hn. (2.2.5)

In many cases, approximation from Eq. (2.2.5) is feasible. A procedure to reduce
an arbitrary two-body Hamiltonian H to a corresponding one-body Hamiltonian
H0 is shown in [17].
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Next, we construct the HF ground state |HF⟩. We assume the ground state to
be of a general one-particle product form

|HF⟩ = |Φ⟩ =
∏︂
n

a†n|0⟩, (2.2.6)

with |0⟩ being the vacuum state and a†n being corresponding fermion particle
creation operators. Wave function |Φ⟩ in Eq. (2.2.6) is a Slater determinant [8],
made out of one-particle wave functions ϕn which satisfy the one-body problem

hnϕn = Enϕn. (2.2.7)

We return to the original problem given by Hamiltonian H. An arbitrary energy
operator H can be expressed in terms of creation and annihilation operators c†k
and cl, it can be expanded as [8]

H =
∑︂
k,l

Tklc
†
kcl +

1

4

∑︂
k,l,m,n

V klmnc
†
kc

†
l cncm, (2.2.8)

where Tkl and V klmn are matrix elements of a one-body kinetic energy operator T
and an antisymmetric two-body potential energy operator V .

Figure 2.2.1 Variational
ground state energy approxima-
tion E(u0) gives an upper bound
to the exact E0 energy.

The point now is to find some appropriate
unitary transform U

U †U = UU † = I, (2.2.9)

so that the set of c†n and cn operators of the
exact many-body problem is transformed to the
set of a†m and am operators which correspond
to the reduced one-body interaction problem
given in Eq. (2.2.5)

a†m =
∑︂
n

Umnc
†
n. (2.2.10)

Simultaneously, wave functions ϕn are also
transformed by U as

ϕm =
∑︂
n

Umnφn, (2.2.11)

with {φn}n ⊂ H being a subset of H Hilbert
space of exact problem given by H. Note that if {ϕm}m is an orthonormal set of
functions, due to the unitarity of U , {φn}n is also an orthonormal set of functions.

Finally, we deploy the variational principles [8] and define the HF ground state
energy approximation as

EHF
0 (u) = ⟨HF(u)|H|HF(u)⟩. (2.2.12)

Eq. (2.2.12) is just the energy functional of H evaluated at |HF⟩. The point of
the HF method now is to find such |HF⟩ mean-field ground state that minimizes
EHF

0 (u) with respect to the variational parameter u, which comes from the U
transform. For u = u0 that makes EHF

0 (u) the lowest, corresponding |HF(u0)⟩
defines the HF mean-field ground state and gives the corresponding HF mean-field
ground state energy EHF

0 (u0).
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2.3 Mean field solution of the Lipkin model

We apply now the HF method to the Lipkin model. First, we seek to find a
unitary transformation U , which transforms the original many-body problem to a
one-body counterpart, such that the total ground state mean energy is minimal.
In the context of the Lipkin model, HF approximation was already studied earlier
in [8, 10, 11]. The main goal of this section is to verify results from [10, 11], which
will be subsequently further elaborated upon in Chapter 3 and to some extent in
Chapter 4.

To start off, we introduce an arbitrary unitary transformation of creation and
annihilation operators for both levels as(︃˜︁a†n+˜︁a†n−

)︃
=

(︃
cos(β) − sin(β)
sin(β) cos(β)

)︃(︃
a†n+

a†n−

)︃
, (2.3.1)

which produces a transformation from the original |k, m⟩ basis to a new mean-
field basis |˜︁k, ˜︁m⟩, with β ∈ [0, 2π]. Also note that, the transformed creation and
annihilation operators ˜︁a†n± and ˜︁an± still do satisfy the anti-commutation relations
for fermions.

This way, one can also transform K0 and K± operators to the new basis. The
transformation is given by some 3× 3 transformation matrix O⎛⎝K+

K0

K−

⎞⎠ = O

⎛⎜⎝ ˜︁K+˜︁K0˜︁K−

⎞⎟⎠ . (2.3.2)

The idea now is to find this particular transformation O from Eq. (2.3.2) and
rewrite the original Hamiltonian H in Eq. (1.1.7) using the transformed operators˜︁K0 and ˜︁K±. To make things clear, in the new basis |˜︁k, ˜︁m⟩ we shall refer to the
transformed Hamiltonian H as ˜︁H.

Using the transformation definition in Eq. (2.3.1), for K0 one gets

K0 = cos(2β) ˜︁K0 +
1

2
sin(2β)

[︂ ˜︁K+ + ˜︁K−

]︂
. (2.3.3)

Similarly for K± we obtain

K+ = cos2(β) ˜︁K+ − sin2(β) ˜︁K− + sin(2β) ˜︁K0, (2.3.4)

K− = cos2(β) ˜︁K− − sin2(β) ˜︁K+ + sin(2β) ˜︁K0. (2.3.5)

Details concerning the derivation of Eq. (2.3.3) to Eq. (2.3.5) are to be found in
Appendix A.

Therefore we express Eq. (2.3.2) as

⎛⎝K+

K0

K−

⎞⎠ =
1

2

⎛⎝ 2 cos2(β) 2 sin(2β) −2 sin2(β)
sin(2β) 2 cos(2β) sin(2β)

−2 sin2(β) 2 sin(2β) 2 cos2(β)

⎞⎠
⎛⎜⎝ ˜︁K+˜︁K0˜︁K−

⎞⎟⎠ . (2.3.6)
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If we define α ≡ 2β, using standard trigonometric identities, Eq. (2.3.6) can be
recast into the following form⎛⎝K+

K0

K−

⎞⎠ =
1

2

⎛⎝cos(α) + 1 2 sin(α) cos(α)− 1
sin(α) 2 cos(α) sin(α)

cos(α)− 1 2 sin(α) cos(α) + 1

⎞⎠
⎛⎜⎝ ˜︁K+˜︁K0˜︁K−

⎞⎟⎠ , (2.3.7)

which is a result that checks with that in [10, 11].
Now we find the form of ˜︁H expressed in |˜︁k, ˜︁m⟩ basis. To this end, we have to

substitute into K0, K2
±, and K±K∓ terms in Eq. (1.1.7). This turns out to be a

particularly tedious algebra exercise. In what follows, we give the results of each
intermediate step (details covering the calculations are given in Appendix A).

In the case of interaction W sum term K+K− +K−K+ the result is

K+K− +K−K+ =
1

2

(︁
cos2(α)− 1

)︁ (︂ ˜︁K2
+ + ˜︁K2

−

)︂
+ 2 sin2(α) ˜︁K2

0+

+
1

2

(︁
cos2(α) + 1

)︁{︂ ˜︁K+, ˜︁K−

}︂
+ sin(α) cos(α)

[︂{︂ ˜︁K+, ˜︁K0

}︂
+
{︂ ˜︁K−, ˜︁K0

}︂]︂
.

(2.3.8)

The other interaction V sum term K2
+ +K2

− turns out to be

K2
+ +K2

− =
1

2

(︁
cos2(α) + 1

)︁ (︂ ˜︁K2
+ + ˜︁K2

−

)︂
+ 2 sin2(α) ˜︁K2

0+

+
1

2

(︁
cos2(α)− 1

)︁{︂ ˜︁K+, ˜︁K−

}︂
+ 4 sin(α) cos(α)

[︂{︂ ˜︁K−, ˜︁K0

}︂
+
{︂ ˜︁K+, ˜︁K0

}︂]︂
.

(2.3.9)

Finally, substituting all preceding terms to Eq. (1.1.7) we write ˜︁H
˜︁H =

ε

2

[︂
sin(α)

(︂ ˜︁K+ + ˜︁K−

)︂
+ 2 cos(α) ˜︁K0

]︂
− W + V

4

[︁(︁
1 + cos2(α)

)︁
·

·
(︂ ˜︁K2

+ + ˜︁K2
−

)︂
− sin(2α)

(︂{︂ ˜︁K+, ˜︁K0

}︂
+
{︂ ˜︁K−, ˜︁K0

}︂)︂
+

+sin2(α)
(︂
4 ˜︁K2

0 −
{︂ ˜︁K+, ˜︁K−

}︂)︂]︂
+
W

2

[︂ ˜︁K2
+ + ˜︁K2

− −
{︂ ˜︁K+, ˜︁K−

}︂]︂
.

(2.3.10)

As before, Eq. (2.3.10) is in agreement with both [10, 11].
At this point, we are nearly done. The task now is to use the variational

principles, namely the one regarding the energy functional, and to minimize the
total mean ground state energy with respect to the HF ground state.

To do this, we realize the action of ˜︁K0 and ˜︁K± operators in |˜︁k, ˜︁m⟩ basis to be
same to that of K0 and K± in the original |k, m⟩ basis

˜︁K0|˜︁k, ˜︁m⟩ = ˜︁m|˜︁k, ˜︁m⟩, (2.3.11)˜︁K±|˜︁k, ˜︁m⟩ =
√︂

(˜︁k ∓ ˜︁m)(˜︁k ± ˜︁m+ 1)|˜︁k, ˜︁m± 1⟩. (2.3.12)

From the angular momentum algebra it then follows that˜︁Kn
±|˜︁k, ˜︁m⟩ ∼ |˜︁k, ˜︁m± n⟩,

{ ˜︁K±, ˜︁K0}|˜︁k, ˜︁m⟩ ∼ |˜︁k, ˜︁m± 1⟩.
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At this point, we also remind ourselves that |˜︁k, ˜︁m⟩ is an orthonormal basis

⟨˜︁k, ˜︁m|˜︁k′, ˜︁m′⟩ = δ˜︁k˜︁k′ δ˜︁m˜︁m′ .

For simplicity, we denote the HF ground state as |˜︁k,−˜︁k⟩ ≡ |HF⟩. From Eq. (2.3.10)
we see that non-trivial contributions to ⟨HF| ˜︁H|HF⟩ matrix element stem from

⟨HF| ˜︁K0|HF⟩ = −N
2
, (2.3.13)

⟨HF|
{︂ ˜︁K+, ˜︁K−

}︂
|HF⟩ = N. (2.3.14)

Eq. (2.3.13) is trivial and follows from Eq. (2.3.11), and Eq. (2.3.14) is also trivial
due to the very same anti-commutator being already evaluated in Section 1.1
(details are given in Appendix A).

If we substitute the result from Eq. (2.3.13) and Eq. (2.3.14) back in Eq. (2.3.10)
and make use of the energy functional in Eq. (2.2.12), all the non-zero |HF⟩ ground
state contributions just reduce down to

EHF
0 (α) = −εN

2

[︃
cos(α) +

W

ε
+

(W + V )

2ε
(N − 1) sin2(α)

]︃
, (2.3.15)

with α ∈ [−π, π] being the variational parameter. To give an idea of what the
variational space of α parameter looks like, in Fig. 2.3.1 we plot EHF

0 (α) as a
function of α for fixed particle number N = 20 and different values of v and w.
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Figure 2.3.1 The HF ground state energy EHF
0 (α)/ε plot as a function of α

parameter according to Eq. (2.3.16), with fixed particle number N = 20 and fixed
interaction strengths v and w. Global minima points αI are αII are visualised by
the dotted lines.

Going onwards, we minimise EHF
0 (α) with respect to α, more precisely we

solve equation

dEHF
0

dα
(α) =

εN

2
sin(α)

[︃
1− (W + V )(N − 1)

ε
cos(α)

]︃
= 0. (2.3.16)

Eq. (2.3.16) yields two possible extrema αI and αII

αI = 0, αII = arccos

(︃
ε

(N − 1)(W + V )

)︃
. (2.3.17)

20



Their corresponding ground state energies EHF
0 (αI) and EHF

0 (αII) are given by

EHF
0 (αI) = −N(ε+W )

2
, (2.3.18)

EHF
0 (αII) = −N

4

[︃
2W +

ε2 + (N − 1)2(V +W )2

(N − 1)(V +W )

]︃
. (2.3.19)

Since −1 ≤ cos(x) ≤ 1 with x ∈ R, we immediately see the solution in Eq. (2.3.19)
exists if and only if

1 ≤ | ε

(N − 1)(W + V )
| = | 1

v + w
|, (2.3.20)

with v and w being the reduced interaction strengths defined in Eq. (1.1.22) and
Eq. (1.1.23). Let us decide which one of the two EHF

0 (αI) and EHF
0 (αII) solutions

is the correct one for v + w ≥ 1.
If we substitute v and w back to Eq. (2.3.18) and Eq. (2.3.19) and manipulate

the terms a bit, it is easy to see the following inequality holds true

− ε
N

2

(︃
1 +

w

N − 1

)︃
= EHF

0 (αI) ≥ −εN
4

[︃
2w

N − 1
+

1 + (v + w)2

v + w

]︃
=

= EHF
0 (αI)− ε

N [1 + (v + w)2]

4(v + w)
= EHF

0 (αII).

(2.3.21)

Eq. (2.3.21) implies that if v + w < 1, the proper HF mean-field ground state
energy solution is EHF

0 (αI), while for v + w ≥ 1 the solution is EHF
0 (αII). On top

of that, if v + w = 1 the solutions EHF
0 (αI) and EHF

0 (αII) are equal.
In conclusion, for the ground state energy given by the HF mean-field approxi-

mation we write

EHF
0 =

{︄
−εN

2

(︁
1 + w

N−1

)︁
, v + w < 1,

−εN
4

[︂
2w
N−1

+ 1+(v+w)2

v+w

]︂
, v + w ≥ 1.

(2.3.22)

The final result in Eq. (2.3.22) agrees with that in [10, 11]. At this point, we leave
the discussion concerning the HF solution to Chapter 3, where we introduce a
more sophisticated beyond mean-field many-body method.
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Chapter 3

Random Phase Approximation

3.1 Collective vibrations & Excitations

The goal of present Section 3.1 is to give a phenomenological overview of collective
vibrations and correlations of states in many-body quantum systems. Subsequently,
we want to set up a theoretical framework, that would allow one to treat beyond-
mean field effects and the construction of the excited states.

Figure 3.1.1 Schematic show-
ing the idea of HF mean-field and
1p-1h excitations.

In the case of the Hartree-Fock mean-field
approach, studied in Chapter 2, the idea was
to approximate the exact eigenvalue problem
by the construction of an effective mean-field˜︁V , thus reducing a multi-body interaction prob-
lem to a one-body interaction only. This way,
we sought to find the ground state |Φ⟩. We
then minimized the total mean energy given
as E[|Φ⟩] = ⟨H⟩, which corresponded to |Φ⟩.
To achieve this, the variational principles were
employed, and the minimal HF energy EHF

0

provided an upper bound on the exact ground
state energy E0. One can of course seek to do
better, and try to fill this upper bound gap by
introducing interaction perturbations to the HF
mean-field. Moreover, with further elaboration,
one could also attempt to construct the excited
states.

Let us examine some of the microscopic
properties that are common to many-body
quantum systems. Several examples mentioned
in [8] are collective vibrations or mutual correla-
tions between the many-particle states. These
often provide non-negligible energy contribu-
tions to the spectra and need to be accounted
for. To track these effects, one can, for instance,
take the shell-model predictions and compare
them with the actual experimental data and
look for discrepancies. In the case of low-lying
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excited states, these missing energy effects are often due to collective vibrations
or correlations between the states. Phenomena causing similar energy differences
exist for higher-excited states as well [8]. This way, we justify a need for the
so-called beyond mean-field methods, whose aim is to tackle further non-trivial
contributions.

The most simple way to introduce a perturbation to a mean-field is to assume
the existence of a new ground state |0⟩ which in some sense captures the essence
of a more detailed microscopic interaction

|0⟩ = X0
0 |HF⟩+

∑︂
k,l

X0
kl a

†
kal|HF⟩+

1

4

∑︂
k,l,m,n

X0
klmn a

†
ka

†
laman|HF⟩+ . . . . (3.1.1)

Similar expansion to that in Eq. (3.1.1) can be, in principle, written for an arbitrary
excited state |n⟩

|n⟩ = Xn
0 |HF⟩+

∑︂
k,l

Xn
kl a

†
kal|HF⟩+

1

4

∑︂
k,l,m,n

Xn
klmn a

†
ka

†
laman|HF⟩+ . . . . (3.1.2)

Additional terms to the zero-order HF term in Eq. (3.1.1) and Eq. (3.1.2) are
usually called 1p-1h excitations for the first-order term, and 2p-2h excitations
for the second-order term and so on. Expansion in Eq. (3.1.1) and Eq. (3.1.2)
provide a systematic way to introduce higher-order contributions to the established
mean-field approximation. With these higher-order terms, it then may be possible
to construct the excited states or give an explanation for some of the more complex
physical phenomena.

3.2 Random Phase & Tamm-Dancoff Approxima-
tion

Two commonly used many-body methods that allow the construction of excited
states stemming from the 1p-1h excitations are the Tamm-Dancoff approximation
(TDA) and the random phase approximation (RPA). We start with the latter and
show the TDA to be a special case of the RPA method. The latter is in fact more
general and also provides a ground state correction [8].

We start by introducing excitation operator Q† in the following way

Q†|0⟩ = |1⟩, (3.2.1)
Q |1⟩ = |0⟩, (3.2.2)
Q |0⟩ = 0, (3.2.3)

where it is convenient to abbreviate |0⟩ ≡ |RPA⟩, the new ground state which is
a correction to the non-correlated mean-field ground state |HF⟩ in the spirit of
Eq. (3.1.1), and |1⟩ denotes the first excited state.

The definition of excitation operator Q† in terms of creation and annihilation
operator reads [8]

Q† =
∑︂
k,l

(︂
Xkla

†
kal − Ykla

†
lak

)︂
, (3.2.4)
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with Xkl and Ykl being some arbitrary coefficient giving a proper weight of the
1p-1h excitations. Quantities |Xkl|2 and |Ykl|2 then provide probability amplitudes
of the 1p-1h excitations.

Next, we inspect the commutator of H and Q†, which all in all turns out to
yield the excitation energy ε when going from the ground state |RPA⟩ to the first
excited state |1⟩[︁

H, Q†]︁ |RPA⟩ = (︁HQ† −Q†H
)︁
|RPA⟩ =

= (ERPA
1 − ERPA

0 )Q†|RPA⟩ = εQ†|RPA⟩,
(3.2.5)

where ERPA
0 is the RPA ground state energy and ERPA

1 gives the first excited state
energy.

One can also take a variation of the excitation operator δ(Q†). Making use of
this variation δ(Q†) together with Eq. (3.2.5), as discussed in [8], this way one
gets all possible 1p-1h states present in the Hilbert space H of the given problem.
This directly leads to the following set of equations

⟨RPA|
[︂
a†kal,

[︁
H, Q†]︁]︂ |RPA⟩ = ε⟨RPA|

[︂
a†kal, Q

†
]︂
|RPA⟩, (3.2.6)

⟨RPA|
[︂
a†lak,

[︁
H, Q†]︁]︂ |RPA⟩ = ε⟨RPA|

[︂
a†lak, Q

†
]︂
|RPA⟩, (3.2.7)

which can be verified through a direct evaluation of the commutators. Eq. (3.2.6)
together with Eq. (3.2.7) define an eigenvalue problem whose solution gives an
approximation to the excitation energy ε. However, no specific information
regarding the new ground state |RPA⟩ aside from its definition in Eq. (3.2.1)
is available. To make things even worse, we have no knowledge of Xkl and
Ykl coefficients either. Nonetheless, there exists a way to solve Eq. (3.2.6) and
Eq. (3.2.7).

We first seek to evaluate Xkl and Ykl coefficients. This can be done in the
following tricky way. We realize that fermionic creation and annihilation operator
pairs a†kal can be replaced by bosonic creation and annihilation operators. Just
as in [8], let us assume it is possible to evaluate the mean value of a fermionic
state |RPA⟩ using bosonic operators. In addition to that, let the matrix elements
of
[︂
a†kal, a

†
man

]︂
appropriate to the new ground state |RPA⟩ not differ too much

from that of |HF⟩.
Under these circumstances, we write the following [8]

⟨RPA|
[︂
a†kal, a

†
man

]︂
|RPA⟩ ≈ ⟨HF|

[︂
a†kal, a

†
man

]︂
|HF⟩ ≈ δknδlm. (3.2.8)

The approximation made in Eq. (3.2.8) is called a quasi-boson approximation
(QBA). This, of course, defies the Pauli exclusion principle, in turn, however, it
makes it possible to evaluate Eq. (3.2.8) and thus allowing one to find Xkl and
Ykl coefficients.

As such, the approximation in Eq. (3.2.8) turns out to be acceptable if it holds
that |Xkl| ≫ |Ykl|1. If this is true, the weight of backward 1p-1h excitations is
small, and violation of the Pauli exclusion principle is usually acceptable.

1This is obviously due to |Xkl|2 and |Ykl|2 coefficients having the meaning of occupation
probability amplitudes [8].
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Armed with Eq. (3.2.8) we obtain Xkl and Ykl coefficients simply as

Xkl = ⟨HF|
[︂
a†lak, Q

†
]︂
|HF⟩, (3.2.9)

Ykl = ⟨HF|
[︂
a†kal, Q

†
]︂
|HF⟩. (3.2.10)

Usually one also defines Aklmn and Bklmn coefficients

Aklmn = ⟨RPA|
[︂
a†lak,

[︁
H, a†man

]︁]︂
|RPA⟩, (3.2.11)

Bklmn = −⟨RPA|
[︂
a†lak,

[︁
H, a†nam

]︁]︂
|RPA⟩. (3.2.12)

Assuming QBA to be valid, we can also apply it to Eq. (3.2.11) and Eq. (3.2.12). In
return, Eq. (3.2.9) and Eq. (3.2.10) can be recast into the following very compact
matrix equation (︃

A B
B∗ A∗

)︃(︃
X
Y

)︃
= ε

(︃
1 0
0 −1

)︃(︃
X
Y

)︃
. (3.2.13)

In literature [8, 17, 22] the previous matrix Eq. (3.2.13) is commonly referred to
as RPA equations.

Solving Eq. (3.2.13) yields the coefficients Xkl and Ykl and excitation energy
ε. This way, one can evaluate new the ground state energy ERPA

0 and the first
excited state energy ERPA

1 simply as

ERPA
0 = ⟨RPA|H|RPA⟩, (3.2.14)

ERPA
1 = ⟨RPA|QHQ†|RPA⟩. (3.2.15)

More details concerning the RPA equations, their solutions, or numerical imple-
mentation are given in [8].

At last, we return to the TDA method briefly mentioned at the beginning of
Section 3.2. In some sense, the idea behind the TDA is similar to that of the
RPA method. The main difference is that the TDA method is built on the HF
mean-field |HF⟩ ground state, and thus limits itself to the excited states only. One
assumes excitation operator Q† to bring the system from the ground state to the
first excited state

Q†|HF⟩ = |1⟩, (3.2.16)

with |1⟩ denoting the first excited state.
In the TDA method, a general form of Q† is assumed to be

Q† =
∑︂
k,l

Xkla
†
kal. (3.2.17)

Following that, one sets out to derive TDA equations as done in [8]. The procedure
is similar to that we showed for RPA equations. In the end, one obtains the
following set of equations∑︂

kl

Xkl⟨HF|
[︂
a†kal,

[︂
H, a†iaj

]︂]︂
|HF⟩ = εXij. (3.2.18)

Notice that setting Ykl = 0 in Eq. (3.2.13) reduces to TDA equations in Eq. (3.2.18).
Overall, the TDA method is a special case of the RPA method. The main difference
between the two methods is the ground state treatment and the addition of
correlations to the ground state which comes with the RPA method.
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3.3 RPA solution of the Lipkin model

In present Section 3.3 we apply the RPA method to the Lipkin model. Once we
are done with the RPA method, we briefly discuss the TDA solution. Then we
inspect the properties of the RPA solution and we give a comparison for both
the RPA and the HF solutions, which were discussed in Section 2.2, to the exact
solutions of the model.

First, we note the whole of the RPA approach is formulated in the HF mean-
field basis. In particular, we operate in mean-field basis |˜︁k, ˜︁m⟩. Just as in [10],
we realize internal symmetry and set Xkl ≡ X together with Ykl ≡ Y ∀k, l, and
therefore we define excitation operator Q† as

Q† =
1√
N

Ω∑︂
k,l

(︂
Xkl ˜︁a†k+ ˜︁al− − Ykl ˜︁a†l− ˜︁ak+

)︂
=
X ˜︁K+ − Y ˜︁K−√

N
, (3.3.1)

with ˜︁K± being same operators in the HF mean-field |˜︁k, ˜︁m⟩ basis as in Eq. (2.3.12)
and X, Y ∈ C. A phase for both X and Y can be chosen in such a way that both
quantities end up becoming real numbers.

Assuming |RPA⟩ to be the new ground state, and |1⟩ being the first excited
state, for Q† we demand

Q†|RPA⟩ = |1⟩, (3.3.2)
Q |1⟩ = |RPA⟩, (3.3.3)

Q |RPA⟩ = 0. (3.3.4)

Following that, we rewrite Eq. (3.2.6) and Eq. (3.2.7) as

⟨RPA|
[︂ ˜︁K−,

[︂ ˜︁H, Q†
]︂]︂

|RPA⟩ = ω⟨RPA|
[︂ ˜︁K−, Q

†
]︂
|RPA⟩, (3.3.5)

⟨RPA|
[︂ ˜︁K+,

[︂ ˜︁H, Q†
]︂]︂

|RPA⟩ = ω⟨RPA|
[︂ ˜︁K−, Q

†
]︂
|RPA⟩, (3.3.6)

where ˜︁H is the HF mean-field Hamiltonian from Eq. (2.3.10) and ω denotes
excitation energy.

Let us define A and B coefficients as

A =
1

N
⟨HF|

[︂ ˜︁K−,
[︂ ˜︁H, ˜︁K+

]︂]︂
|HF⟩, (3.3.7)

B = − 1

N
⟨HF|

[︂ ˜︁K−,
[︂ ˜︁H, ˜︁K−

]︂]︂
|HF⟩. (3.3.8)

Let the matrix elements corresponding to |RPA⟩ only slightly differ from those
appropriate to |HF⟩, and if we assume QBA to be valid, we write RPA equations
for the Lipkin model (︃

A+ ω B
B∗ A− ω

)︃(︃
X
Y

)︃
= 0. (3.3.9)

Previous Eq. (3.3.9) is a system of two equations for a total of three unknowns X,
Y , and ω. Thus in order to solve Eq. (3.3.9) one more equation is needed. This
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independent equation can be obtained from a normalization condition for excited
state |1⟩

⟨1|1⟩ = 1. (3.3.10)

If we expand Eq. (3.3.11) and assume a QBA, and the ground state approximation
for matrix elements, we get

1 = ⟨RPA|QQ†|RPA⟩ = ⟨RPA|[Q,Q†]|RPA⟩ ≈ ⟨HF|[Q,Q†]|HF⟩ ≈ 1, (3.3.11)

which brings us to the third required equation

X2 − Y 2 = 1. (3.3.12)

RPA equations in Eq. (3.3.9) provide the following system of equations

(A− ω)X +BY = 0, (3.3.13)
B∗X + (A+ ω)Y = 0. (3.3.14)

Solving Eq. (3.3.12), Eq. (3.3.13) and Eq. (3.3.14) yields

ω =
√︁
A2 − |B|2, (3.3.15)

X2 =
A+ ω

2ω
, (3.3.16)

Y 2 =
A− ω

2ω
, (3.3.17)

with coefficients A and B being given by their definition in Eq. (3.3.7) and
Eq. (3.3.8). We evaluate Eq. (3.3.7) and Eq. (3.3.8) in Appendix A. The resulting
form of A and B is

A = ε

{︄
1− w, v + w < 1,
3(v+w)2−1
2(v+w)

− w, v + w ≥ 1,
(3.3.18)

B = ε

{︄
−v, v + w < 1,

w − (v+w)2+1
2(v+w)

, v + w ≥ 1.
(3.3.19)

Eq. (3.3.18) and Eq. (3.3.19) are in agreement with those in [10].
At last, we set out to find the ground state energy ERPA

0 corresponding to
|RPA⟩ state. To get ERPA

0 , we could either directly evaluate the mean ground
state energy, or assume and verify it to be the sum of the HF mean-field energy
EHF

0 and an additional contribution which is due to correction term h

ERPA
0 = ⟨RPA| ˜︁H|RPA⟩ = EHF

0 + ⟨RPA|h|RPA⟩. (3.3.20)

The correction h is given by

h =
A

N
˜︁K+
˜︁K− +

B

2N

(︂ ˜︁K2
+ + ˜︁K2

−

)︂
. (3.3.21)

To obtain the form of h from Eq. (3.3.21) one has to substitute for ˜︁H in Eq. (3.3.20),
and carry out the cumbersome calculation with ˜︁H given in Eq. (2.3.9). No
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discussion concerning the form of h in Eq. (3.3.21) is given in either [10, 11].
However, a clever way around how to derive Eq. (3.3.21) is to substitute h from
Eq. (3.3.21) to both Eq. (3.3.7) and Eq. (3.3.8) and to show these to hold (for
details see Appendix A).

We return to Eq. (3.3.20) and the calculation of ERPA
0 . To evaluate Eq. (3.3.20),

namely the h term, we need to find the following matrix elements ⟨0| ˜︁K± ˜︁K∓|0⟩
and ⟨0| ˜︁K2

±|0⟩, where we denote |0⟩ ≡ |RPA⟩.
One way to do this is simply to exploit properties of Q†. From definition in

Eq. (3.3.1) it follows that

⟨1| ˜︁K+|0⟩ =
√
NX, ⟨1| ˜︁K−|0⟩ =

√
NY. (3.3.22)

If we add two more matrix elements ⟨0|Q†Q|0⟩ = 0 and ⟨0|QQ†|0⟩ = 1 and expand
Eq. (3.3.22)2, we end up with the following system of four equations

N = ⟨0|Y 2 ˜︁K+
˜︁K− +X2 ˜︁K− ˜︁K+ −XY ˜︁K2

+ −XY ˜︁K2
−|0⟩, (3.3.23)

0 = ⟨0|X2 ˜︁K+
˜︁K− + Y 2 ˜︁K− ˜︁K+ −XY ˜︁K2

+ −XY ˜︁K2
−|0⟩, (3.3.24)

√
NX =

1√
N
⟨0|X ˜︁K− ˜︁K+ − Y ˜︁K2

+|0⟩, (3.3.25)

√
NY =

1√
N
⟨0|X ˜︁K2

− − Y ˜︁K+
˜︁K−|0⟩. (3.3.26)

With the aid of Eq. (3.3.12), the preceding system from Eq. (3.3.23) to Eq. (3.3.26)
can be solved for each of the matrix elements. The solution is

⟨0| ˜︁K+
˜︁K−|0⟩ = NY 2, ⟨0| ˜︁K− ˜︁K+|0⟩ = NX2,

⟨0| ˜︁K2
+|0⟩ = NXY, ⟨0| ˜︁K2

−|0⟩ = NXY.
(3.3.27)

As of now, we have everything we need to evaluate ground state energy ERPA
0 in

Eq. (3.3.20). The calculation in Eq. (3.3.20) follows as

ERPA
0 = EHF

0 + ⟨0|h|0⟩ = EHF
0 +

A

N
⟨0| ˜︁K+

˜︁K−|0⟩+
B

2N
⟨0| ˜︁K2

+|0⟩+
B

2N
⟨0| ˜︁K2

−|0⟩ =

= EHF
0 + AY 2 +

B

2N
XY +

B

2N
XY = EHF

0 − ωY 2,

(3.3.28)

where we have employed Eq. (3.3.12). The formula in Eq. (3.3.28) for the ground
state energy ERPA

0 is equivalent to that provided in [10, 11].
If we further substitute back ω and Y 2 quantities from Eq. (3.3.15) and

Eq. (3.3.17), by using results from Eq. (3.3.18) and Eq. (3.3.19), we obtain an
explicit form of ERPA

0

ERPA
0 =

⎧⎨⎩E
HF
0 (αI) +

ε
2

(︂
w − 1 +

√︁
(1− w)2 − v2

)︂
, v + w < 1,

EHF
0 (αII) + ε

(︂
1−3v2−4vw−w2

4(v+w)
+
√︂

v(v2+2vw+w2−1)
2(v+w)

)︂
, v + w ≥ 1,

(3.3.29)

2Which also explains why Eq. (3.3.22) holds true.

29



with EHF
0 (αI) given by Eq. (2.3.18) and EHF

0 (αII) given in Eq. (2.3.19).
Since quantity ω is just the excitation energy, adding it to ERPA

0 produces the
first excited state energy. Moreover, since we are dealing with QBA [8], the RPA
method is in fact a harmonic approximation, with the spectrum having the same
structure as that of a linear harmonic oscillator. Simply put, the energy of an
arbitrary excited state |n⟩ is just

ERPA
n = EHF

0 + ω(n− Y 2) = ERPA
0 + ωn. (3.3.30)

Now, the very same could be done for the TDA method, however, in Section 3.2
we showed it to be a special case of the RPA. Setting Y = 0 in Eq. (3.3.30) and
taking only the first excited state, we get the TDA approximation for the energy
of the first excited state |1⟩.

Next, we turn our attention to the features of the RPA solution of the Lipkin
model. Namely, we focus on the approximation performance, and its validity with
respect to the QBA, and we examine what exactly happens at the point, where
the exact solutions exhibit a phase transition in the case of a pure interaction W .

0 0.5 1 1.5 2

v

0

0.5

1

jY
j2 =

jX
j2

N = 4

w = 0
w = 1v
w = 2v

Figure 3.3.1 Plot of occupation am-
plitudes Y 2/X2 quotient as a function of
v for fixed particle number N = 4 and
given interaction strength w.

To begin with, we verify the QBA.
In Fig. 3.3.1 we plot Y 2/X2 quotient
as a function of v for a few values of
w and fixed value of particle number
N = 4. Near points where v+w = 1, we
see the QBA breaks, with Y 2/X2 → 1.
Thus, the RPA solution has to be taken
with care near these points. Otherwise,
we see that the QBA is valid and the
RPA solution should provide a decent
approximation for energies. Also, note
that the QBA becomes even better once
interaction W is turned on and brought
up.

To compare approximation quality
for all the methods considered so far
(RPA, TDA, and HF), in Fig. 3.3.2 to
Fig. 3.3.5 we plot the solutions for exact
energy and energies obtained by various
many-body methods as functions of either v or w parameters for given values
of particle number N . In Fig. 3.3.2 and Fig. 3.3.3 we compare the ground state
energy and show the exact solution (solid lines), the HF solution (dashed lines),
and the RPA solution (dotted lines). In Fig. 3.3.4 we compare the first excited
state energy, and in Fig. 3.3.5 we compare the second excited state energy of the
exact solution (solid line) to the RPA solution (dotted lines), and for the first
excited state we also plot the TDA solution (circle markers). We remark that the
second excited state energy estimate is obtained from the harmonic extension of
the RPA solutions in Eq. (3.3.30).
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Figure 3.3.2 Relative ground state energy E0/ε plot as a function of interaction
strength v, for given values of interaction strength w and for given particle number
N . We compare the exact solution (solid lines) with the HF method (dashed lines)
and RPA method solutions (dotted lines).
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Figure 3.3.3 Relative ground state energy E0/ε plot as a function of interaction
strength w, for given values of interaction strength v and for given particle number
N . We compare the exact solution (solid lines) with the HF method (dashed lines)
and RPA method solutions (dotted lines).
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Figure 3.3.4 The first excited state relative energy E1/ε plot as function of
interaction strength v, for given interaction strength w and for given particle
number N . We compare the exact solution (solid lines) with the RPA method
(dotted lines) and TDA method solutions (circle markers).
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Figure 3.3.5 The second excited state relative energy E2/ε plot as function
of interaction strength v, for given interaction strength w and for given particle
number N . We compare the exact solution (solid lines) with the RPA method
solution (dotted lines). Where the second excited state energy is obtained in the
harmonic approximation from in Eq. (3.3.30).
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In Fig. 3.3.2 to Fig. 3.3.5 we observe that both the RPA and the TDA methods
provide a decent approximation for the ground state and excited states energies up
until the point where v + w = 1. As for the ground state energy only, essentially
the RPA method always provides a better approximation, which is especially
significant for a few-particle system with N being low. When v = 0 and w ≤ 1,
we see that both the HF and the RPA method produce the exact solution ground
state energy. This is very likely due to H being a diagonal matrix. The likely
reason why this breaks up for w ≥ 1 is the PT which occurs at w = 1 point. A
more detailed discussion of this particular problem is postponed to the end of
present Section 3.3. Also notice that as N increases, the spike at v+w = 1, where
the QBA is strictly violated is smoothed out. This point is sometimes referred to
as an RPA collapse point [10].

Although the RPA solution is continuous at the collapse point, its derivatives do
not exist. To show this, we take energy ERPA

0 in Eq. (3.3.29), and we differentiate
it with respect to either v or w. This, in general leads to the following

dERPA
0

dv
,
dERPA

0

dw
∼
√︃

1

v + w − 1
. (3.3.31)

Derivatives in Eq. (3.3.31) are eventually not defined at v + w = 1 point. Despite
that, the RPA solution is better at the collapse point than the corresponding HF
solution.

In some sense, we can think of this collapse as some sort of a PT which takes
place in the RPA solution. Consequently, when v = 0, this makes sense with
respect to the exact solution, because as we saw in Section 1.2, there is always
a PT in the ground state energy E0 at w = 1 point. Thus for a system with a
pure interaction W , the collapse point only reflects the existence of the PT in the
ground state energy, which in turn is the physical explanation for the collapse
point.
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Figure 3.3.6 Relative ground state energy E0/ε plot displaying the exact
solution (solid black line) and the corresponding RPA solution (blue dotted line)
as a function of w for fixed particle number N = 7 and for given v. Red dashed
lines highlight phase transition points (PTs), and the black dashed line, together
with the black circle, marks the RPA collapse point. For comparison, the plot
Fig. 1.1.1 shows the whole spectra for these plotted systems.
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However, this explanation does not work once interaction V is introduced. As
we demonstrate in Fig. 3.3.6, when v > 0, the PT point at w + v = 1, which
happens if v = 0, disappears due to interaction V . What is more, it is the
interaction V that causes the PT points to disappear. It is also true that no more
collapse points appear for higher values of w, despite more PTs taking place in
the exact spectra as shown in Fig. 1.1.1. Overall, it seems the RPA method tends
to treat the two interactions V and W in a similar and somewhat rather effective
way, causing special features of both interactions to mix or disappear. On the
other hand, as we saw in Chapter 1 if one includes both interactions V and W , the
two are going to couple which then produces some extra effects to appear. Hence,
it may be that coupling that comes with the RPA method might be inadequate.

Either way, a rather general physical explanation may be due to the QBA
failure, which in other words, means that the Pauli exclusion principle is strongly
violated at the point of collapse. This explanation may be unsatisfying to some
degree, as it does not provide a precise microscopic explanation of what happens
at the point of collapse.

The other way around is to closely inspect the HF mean-field solution. In
Section 2.3, we found two different solutions of EHF

0 , each being valid for different
values of v and w, with v + w = 1 being the transition point between them.

From a mathematical point of view, it is no coincidence that v+w = 1 is both
the transition point for EHF

0 solution and the collapse point for ERPA
0 solution.

From Section 2.3, we know that EHF
0 is a continuous function at the transition

point, the same is true for its first derivatives.
This can be easily checked from Eq. (2.3.22)

dEHF
0

dv
=

dEHF
0

dw
= − εN

N − 1
, when v + w = 1, (3.3.32)

which is true for both left and right limits (v + w) → 1±.
If we differentiate EHF

0 one more time, we get

d2EHF
0

dv2
=

d2EHF
0

dw2
=

{︄
0, v + w → 1−,

− εN
2
, v + w → 1+.

(3.3.33)

The second derivatives in Eq. (3.3.33) are not continuous at the transition point
v + w = 1. In other words, there is also a PT3 that occurs at the transition point,
but this time in the HF mean-field solution.

As such, that gives us a heuristic explanation for the collapse point. To see
this, we need to realize the following. If there is a second-order discontinuity in
EHF

0 one can therefore expect a first-order discontinuity to appear once a higher
order term is added to EHF

0 approximation. Recalling the overview in Section 3.1,
we have already discussed that the core idea that underlies the RPA method,
or any other similar many-body method is to include higher-order perturbation
terms on top of an already established mean-field approximation. In conclusion,
the foremost reason for the RPA collapse may eventually be due to the established
mean-field approximation.

3Considering the second derivatives of the potential to be ill-defined, we could call it this to
be a second-order phase transition.
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3.4 RPA - Iterative Extension method

Based on a note made in [8] when discussing properties of RPA equations, in
present Section 3.4, we build upon an idea of an iterative extension of the RPA
method. First, we go through the main idea of this approach as stated in [8]
and then adjust this method for numerical purposes. Namely, we reduce RPA
equations in Eq. (3.2.13) to a symmetric eigenvalue problem. We then apply
the proposed method to the Lipkin model from Section 1.1, and we compare its
approximation quality to all the methods considered in the thesis so far. Since
this method is an iterative extension of the standard RPA method, we call it the
random phase approximation - iterative extension method (RPAIE).

To start, we choose a system and some arbitrary values of parameters describing
the system for which we want to solve the RPA equations. From Eq. (3.2.11) and
Eq. (3.2.12), we find the initial values of A and B. Having those, we can evaluate
Xkl in Eq. (3.2.9) and Ykl in Eq. (3.2.10). The RPA ground state |RPA⟩ is then
given by

|RPA⟩ = exp

{︄
1

2

∑︂
k,l,m,n

Ymn (X
∗
kl)

−1 a†mana
†
kal

}︄
|HF⟩, (3.4.1)

which follows from Thouless’ theorem [8] when applied to Q† excitation operator
of form in Eq. (3.2.4), for details see [8]. Having found the ground state |RPA⟩,
one can return to the original RPA equations in Eq. (3.2.13) and solve them again.
This time however, it is possible to directly evaluate both A and B coefficients
in Eq. (3.2.11) and in Eq. (3.2.12). Then, we find new values of X, Y , and ω in
Eq. (3.2.13).

To make things simple, Eq. (3.2.13) can be rewritten in the following symmetric
form [8], which reduces the original generalized eigenvalue problem in Eq. (3.2.13)
to an ordinary eigenvalue problem

S1/2

(︃
1 0
0 −1

)︃
S1/2

(︄ ˜︁X˜︁Y
)︄

= ω

(︄ ˜︁X˜︁Y
)︄
, (3.4.2)

with S transformation matrix given as

S =

(︃
A B
B∗ A∗

)︃
, (3.4.3)

and eigenvector ( ˜︁X, ˜︁Y )T expressed in terms of (X, Y )T is(︃
X
Y

)︃
= S−1/2

(︄ ˜︁X˜︁Y
)︄
. (3.4.4)

Symmetric eigenvalue problem in Eq. (3.4.2) can be solved by numerical means.
This procedure can be then iterated. Having found new values of A, B, X, and Y ,
one can return back to Eq. (3.4.1) and find even better ground state approximation
|RPA⟩ and so on. Since this procedure avoids QBA in its post-initial iterations, it
should in theory provide a better approximation than the standard RPA method.
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We now apply this method to the Lipkin model introduced in Section 1.1.
Since the solution has to be found numerically, we summarize the numerical
procedure in the following scheme.

(1.) From Eq. (3.3.16) a Eq. (3.3.17) we compute
starting values of X and Y.

(2.) Substituting X and Y back to Eq. (3.4.1) we find the
new ground state given as

|RPA⟩ = exp

{︃
Y

2NX∗K
2
+

}︃
|HF⟩.

(3.) Next we refine A and B

A =
1

N
⟨RPA|

[︂ ˜︁K−,
[︂ ˜︁H, ˜︁K+

]︂]︂
|RPA⟩,

B = − 1

N
⟨RPA|

[︂ ˜︁K−,
[︂ ˜︁H, ˜︁K−

]︂]︂
|RPA⟩.

(4.) We solve symmetric eigenvalue problem in Eq. (3.4.2)

S1/2

(︃
1 0
0 −1

)︃
S1/2

(︄ ˜︁X˜︁Y
)︄

= ε

(︄ ˜︁X˜︁Y
)︄
,

and obtain new values of ω, X and Y .

(5.) With ˜︁H from Eq. (2.3.10) we evaluate ERPA
0

ERPA
0 = ⟨RPA| ˜︁H|RPA⟩.

(6.) If the new ERPA
0 approximation is good enough, we stop,

otherwise we return to (2.), and the cycle is repeated with
last values of X and Y .

In Fig. 3.4.1 and Fig. 3.4.2, the left panels show a plot of relative ground state
energy as a function of v for given values of w and N . We plot E0/ε for the
exact solution (solid black lines), the RPA solution from Section 3.3 and for the
RPAIE solution with a number of iterations i = 1 (red dashed line), and i = 5
(blue dash-dotted line). The right panels display plots of relative approximation
error |∆E0|/E0 for all these methods. Where the relative approximation error is
defined as |∆E0|/E0 ≡ |Eexact

0 − EApprox
0 |/Eexact

0 .
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Figure 3.4.1 Left panels display a plot of the relative ground state energy E0/ε
as a function of interaction strength v for given values of N and given w. We
plot the exact solution (solid black lines), the RPA solution (black dotted lines),
and the RPAIE solutions with a number of iterations i = 1 (red dashed lines)
and i = 5 (blue dash-dotted lines). Right panels show the corresponding relative
approximation error |∆E0|/E0.
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Figure 3.4.2 Left panels display a plot of the relative ground state energy E0/ε
as a function of interaction strength v for given values of N and given w. We
plot the exact solution (solid black lines), the RPA solution (black dotted lines),
and the RPAIE solutions with a number of iterations i = 1 (red dashed lines)
and i = 5 (blue dash-dotted lines). Right panels show the corresponding relative
approximation error |∆E0|/E0.
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From previous Fig. 3.4.1 and Fig. 3.4.2, especially from all plots depicting
relative approximation error |∆E0|/E0, we see the RPAIE method with a number
of iterations i = 5 to be superior to the standard RPA method, for both small
and large values of interaction strength v. Usually, at the point of RPA collapse,
it happens that the standard RPA gives a similar approximation to ground state
energy E0, however, as discussed in Section 3.3, this appears to happen by chance,
as there is no objective justification for the RPA method to give a meaningful
approximation near the collapse point at all.

Aside from that, we also notice the RPAIE with a number of iterations i = 1
provides a better result than the standard RPA but not as good as the RPAIE
with a higher number of iterations. More iterations may be used to get an even
better approximation, however, a number of iterations i = 5 provides a result
good enough.

In Fig. 3.4.1 and Fig. 3.4.2, we observe the RPAIE approximation improves as
particle number N increases. To verify this, in Fig. 3.4.3, we give a relative error
|∆E0|/E0 comparison for the HF, the RPA, and the RPAIE methods for fixed
values of v and w as a function of N , with ∆N = 3 step, and the initial value of
N given as N0 = 2.
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Figure 3.4.3 Plot of |∆E0|/E0 relative energy error as a function of particle
number N , with ∆N = 3 step in N and initial value of particle number N0 = 2
for given values of interaction strengths v a w. We give a comparison to the HF
solution (red triangles), the standard RPA solution (black boxes), and the RPAIE
with i = 5 number of iterations (blue circles).
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Let us now discuss some of the properties of the RPAIE method, which we can
deduce from Fig. 3.4.1 to Fig. 3.4.3. First, we can see it to have largely smoothed
out the RPA collapse point at v + w = 1. This smoothing of the collapse point
is not so much surprising. As discussed in Section 3.3, the collapse point occurs
due to the QBA not being valid. As we saw earlier, the RPAIE method only
partly relies on the QBA when initial values of A, B, X, and Y are evaluated.
Nonetheless, the collapse point does not entirely disappear, and a non-trivial
change in derivatives is still present, despite nothing peculiar occurring in the
exact ground state solution. Thus, it will likely be a remnant of the original RPA
solution. From Fig. 3.4.3, it is also clear that the RPAIE method with a number
of iterations i = 5 leads, by far, to the best ground state energy approximation,
superior to both the RPA and the HF solutions. Furthermore, it performs even
better as particle number N increases. This is true for both small and large values
of interaction strengths v or w. To better emphasize this, we display the |∆E0|/E0

plot in Fig. 3.4.3 in a log scale.
Although the RPAIE method provides an excellent approximation to the

ground state energy, unlike the HF or the standard RPA method, it does not
provide any explicit formula for the ground state energy E0. This may not be an
issue at all since it is always possible to plot the numerical solution and study that
type of solution. On the other hand, any explicit formula usually provides a better
insight into the nature of the given problem. For instance, in the case of EHF

0 and
ERPA

0 we could in principle solve for N → +∞ or w, v → +∞ limits, or we could
do a closer analysis of the system’s behavior near the first phase transition point,
and all of that purely by analytic means.

We make one last remark here. Intentionally, we left the case of a system with
interaction W only to Chapter 4, where a special treatment of the interaction W
is done using the BCS method.
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Chapter 4

Bardeen-Cooper-Schrieffer Method

4.1 Pairing interaction

In many-particle systems such as nuclei or solids there often exists a system-specific
short-range interaction, that makes particles form sort of particle-like pairs. In
the case of the solids [23], its electrons whose mutual interaction combined with a
lattice interaction produces a superconducting current.

Figure 4.1.1 Two-level system
and j-shell pairing.

As for the nuclei, there exists a nucleon-
nucleon pairing interaction in the shell, which
causes nucleons to form zero total angular mo-
mentum pairs. This way, one can, for instance,
resolve the so-called even-odd effect [8], which
causes the nuclei with an odd number of nu-
cleons to have a lower binding energy than the
average binding energy of two neighboring odd-
odd nuclei, the first with one more nucleon,
the other with one nucleon less. This effect
is explained by a pairing interaction between
nucleons, which causes nucleons to pair. Other
phenomena such as level density, energy gap
in the spectra of deformed nuclei, or the total
angular momentum of even-even nuclei may be
explained this way [8].

A standard many-body method that aims
to treat the pairing interactions is the Bardeen-
Cooper-Schrieffer method (BCS). This approxi-
mate method originated in solid-state physics as
a way to describe the superconducting behavior
of materials as discussed in [23]. In the solids,
an electron and a time-reversed electron form
an interacting pair that traverses the crystal
lattice. This interaction then causes the super-
conducting behavior. In a nutshell, the idea
behind the BCS method is to describe these par-
ticle pairs as a new sort of fermion-like particles.
The transformation to these particle pairs is called the Bogoljubov transformation
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[8]. For a many-particle system transformed this way, one then seeks to find the
ground state energy, or excited states energies by using the variational principles
just as in the Hartree-Fock approach. This way, one gets an approximate solution
to the original many-body problem. In the following Section 4.2 we introduce
the BCS method, following that, in Section 4.3, we apply it to the Lipkin model
introduced in Chapter 1.

4.2 General BCS theory
The whole of the BCS method stems from the BCS ground state |BCS⟩ [8] defined
as

|BCS⟩ =
Ω/2∏︂
k>0

(︂
uk + vka

†
ka

†
k

)︂
|0⟩, (4.2.1)

where u2k and v2k are occupation probabilities for (k, k) pairs, |0⟩ is the vacuum
state and Ω/2 formally denotes the upper boundary of the configuration space
which is split in half due to the pairing. The indices k and k are conjugated (or
simply paired). Usually, we also assume u2k and v2k to be real and positive [8].

We demand the ground state |BCS⟩ to be normalized

⟨BCS|BCS⟩ = u2k + v2k = 1 ∀ (k, k). (4.2.2)

Let H be a general two-body interaction Hamiltonian

H =

Ω/2∑︂
k1, k2 ̸=0

Tk1k2a
†
k1
ak2 +

1

4

Ω/2∑︂
k1,k2,k3,k4 ̸=0

V k1k2k3k4a
†
k1
a†k2ak4ak3 , (4.2.3)

with Tk1k2 and V k1k2k3k4 being matrix elements of a one-body kinetic energy
operator T and a two-body antisymmyetric potential energy operator V with V
being an antisymmetric form of V , that is V k1k2k3k4 = Vk1k2k3k4 − Vk1k2k4k3 .

Following [8], it is also convenient to define average particle number N

N = ⟨BCS| ˆ︁N |BCS⟩ = 2

Ω/2∑︂
k>0

v2k, (4.2.4)

and particle mean squared error number ∆N as

∆N =

√︂
⟨BCS| ˆ︁N2 −N2|BCS⟩ = 2

⌜⃓⃓⎷Ω/2∑︂
k>0

u2kv
2
k. (4.2.5)

The reason for defining the average particle number N is simply because the BCS
method does not preserve the correct particle number. To tackle this issue, one
needs to solve BCS equations with an additional constraint that fixes the particle
number N at its proper mean value.

To set up BCS equations, we define [8] BCS Hamiltonian HBCS

HBCS ≡ H − λN, (4.2.6)
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with λ being a Lagrange multiplier for the particle number N .
The ground state mean energy [8] is

EBCS
0,λ ≡ ⟨BCS|HBCS|BCS⟩ =

=

Ω/2∑︂
k1 ̸=0

⎡⎣(Tk1k1 − λ)v2k1 +
1

2

Ω/2∑︂
k2 ̸=0

V k1k2k1k2v
2
k1
v2k2

⎤⎦+

Ω/2∑︂
k1,k2>0

V k1k1k2k2
uk1vk1uk2vk2 .

(4.2.7)

This particular computation of Eq. (4.2.7) is covered in [22] using a similar notation
to ours which originates in [8]. Alternatively, the computation is carried out in
[17], which also covers the whole theory of the BCS method and gives several
examples of it, however, the used notation is different.

Next we minimize E0 with respect to Lagrange multiplier λ, which is equivalent
to minimizing EBCS

0,λ with respect to N

dE0

dλ
(λ) = λ

dN

dλ
⇐⇒

dEBCS
0,λ

dN
= 0. (4.2.8)

From Eq. (4.2.8) we see the physical meaning of the Lagrange multiplier λ which
is just chemical potential, in other words, the energy needed or released upon the
addition of a particle to the system.

We also minimize energy EBCS
0,λ respect to uk and vk

δ ⟨BCS|HBCS|BCS⟩ = δEBCS
0,λ [uk, vk] = 0, (4.2.9)

which is to be rewritten as(︃
∂

∂vk
+
∂uk
∂vk

∂

∂vk

)︃
⟨BCS|HBCS|BCS⟩ = 0. (4.2.10)

Inserting EBCS
0,λ from Eq. (4.2.7) to Eq. (4.2.10) gives the following set of equations

2˜︁εkukvk +∆k(v
2
k − u2k) = 0, (4.2.11)

˜︁εk = 1

2

⎡⎣Tkk + Tkk +

Ω/2∑︂
k1>0

(︁
Vkk1kk1 + Vkk1kk1

)︁
vk21

⎤⎦− λ, (4.2.12)

∆k = −
Ω/2∑︂
k1>0

Vkkk1k1uk1vk1 , (4.2.13)

with ˜︁εk and ∆k just being auxiliary parameters. These equations can be further
recast to the form

u2k =
1

2

(︄
1± ˜︁εk√︁˜︁ε2k +∆2

k

)︄
, (4.2.14)

v2k =
1

2

(︄
1± ˜︁εk√︁˜︁ε2k +∆2

k

)︄
, (4.2.15)
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The set of Eq. (4.2.11) to Eq. (4.2.15) together with particle number Eq. (4.2.4)
produce the set of BCS equations as given in [8, 22]. In general, these are non-linear
equations, however, one can in principle always attempt to solve them.

So far, the advertised concept of mutually non-interacting quasi-particles
from Section 4.1 has not appeared, or at least not explicitly. Nonetheless, the
quasi-particles have been present in the entire theory ever since Eq. (4.2.1).

In fact, new fermion-like particle operators can be introduced by the following
[8] Bogoljubov transformation

c†k = uka
†
k − vkak, c†

k
= uka

†
k
− vkak, (4.2.16)

ck = ukak − vka
†
k
, ck = ukak − vka

†
k, (4.2.17)

which do satisfy fermion anti-commutation relations

{ck, c†l} = δkl, {ck, cl} = {c†k, c
†
l} = 0. (4.2.18)

In particular, the BCS ground state |BCS⟩ [8] turns out to be just a mean-field
ground state for these quasi-particles

|BCS⟩ ∼
Ω/2∏︂
k

c†k|0⟩, (4.2.19)

ck|BCS⟩ = 0, ∀k. (4.2.20)

Although we do not explicitly make any use of the concept of quasi-particles as
such in the present thesis, it may be good to have this concept in mind, as it
certainly gives an insight into the background of the BCS method1.

4.3 BCS method in the Lipkin model

We apply the BCS method presented in Section 4.2 to the specific case Lipkin
model introduced in Chapter 1 with the interaction V turned off. We start by
taking energy operator H from Eq. (1.1.7) and setting V = 0

H =
ε

2

Ω∑︂
n

(︂
a†n+an+ − a†n−an−

)︂
−

− W

2

Ω∑︂
n,m

(︂
a†n+a

†
m−am+an− + a†n−a

†
m+am−an+

)︂
.

(4.3.1)

We limit ourselves to a model with pure interactionW because it strongly resembles
some pairing interaction between the two levels of the system. To some extent,
we already saw this in Section 1.2 when discussing the odd-even effect analogy.

For brevity, we label the two pairing indices (k, k) as (k+, k−), in other words,
we want to describe a pairing between the lower and upper shells.

1When evaluating EBCS
0,λ ground state energy from Eq. (4.2.8), using the quasi-particle

formalism [22] makes it significantly easier to carry out the calculation.
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Just as in Eq. (4.2.1), we assume the |BCS⟩ ground state to be

|BCS⟩ =
N∏︂
k=1

(uk+ + vk+a
†
k+a

†
k−)|0⟩, (4.3.2)

with u2k± and v2k± being the occupation probabilities of the upper and the lower
shell

u2k± + v2k± = 1, ∀k = 1, 2, . . . , N. (4.3.3)

Considering the both levels, from Eq. (4.2.4) we get the particle number N added
for both levels

2
N∑︂
k=1

(︁
v2k+ + v2k−

)︁
= 2N. (4.3.4)

In addition to that we also assume all the u2k± and v2k± to be k-independent, that
is

vk± = vl±, uk± = ul±, ∀ k, l. (4.3.5)

Eq. (4.3.5) together with Eq. (4.3.4) immediately imply the following symmetry
between the two levels

uk+ = vk−, uk− = vk+, (4.3.6)

which is very natural and only reflects an internal symmetry of the model.
Eq. (4.3.6) in some sense also justifies at first the odd choice of taking the
sum in Eq. (4.3.4).

Consequently, we have to find the ground state energy EBCS
0,λ from Eq. (4.2.7).

To find EBCS
0,λ we have to evaluate the mean energy for |BCS⟩, which can be done

using the quasi-particle formalism.
However, it is much easier to map Hamiltonian H in Eq. (4.3.1) onto the

general Hamiltonian H in Eq. (4.2.3). The mean ground state energy EBCS
0,λ is

then obtained by making a proper substitution in Eq. (4.2.7).
Following the mapping procedure, for EBCS

0,λ we get

EBCS
0,λ =

N∑︂
k=1

[︂(︂ε
2
− λ
)︂
v2+ +

(︂
−ε
2
− λ
)︂
v2−

]︂
− W

2

N∑︂
k=1

[︁
v4+ + v2+v

2
− + v4−

]︁
−

−W

N∑︂
k,l=1

u+v+u−v−.

(4.3.7)

Eq. (4.3.7) is then further simplified to the form of

EBCS
0,λ =

[︂(︂ε
2
− λ
)︂ (︁

1− v2−
)︁
+
(︂
−ε
2
− λ
)︂
v2−

]︂
− WN

2

[︂(︁
1− v2−

)︁2
+ v2−

(︁
1− v2−

)︁
+

+v4−
]︁
−−WN2v2−

(︁
1− v2−

)︁
.

(4.3.8)
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In the next step, just as in Section 4.2 we minimize EBCS
0,λ with respect to the

occupation amplitude v− and particle number N

dEBCS
0,λ

dv−
= 0, (4.3.9)

dEBCS
0,λ

dN
= 0. (4.3.10)

Doing the calculations involved in Eq. (4.3.9) and Eq. (4.3.10) yields the occupation
amplitudes to be

v2− = u2+ =
1

2

(︃
1 +

2ε

W (2N − 1)

)︃
, (4.3.11)

u2− = v2+ =
1

2

(︃
1− 2ε

W (2N − 1)

)︃
. (4.3.12)

The other part of the solution is chemical potential λ. Since we do not explicitly
need to make any use of λ, we do not discuss its properties in present Section 4.3
(for some details concerning λ see Appendix A).

It is instructive to substitute the result of Eq. (4.3.11) and Eq. (4.3.12) to
Eq. (4.3.8). To Eq. (4.3.8) we also add total chemical potential λN , and we get

EBCS
0 = EBCS

0,λ + λN = −N
[︃
4ε2 +W 2 (4N2 + 4N − 3)

8W (2N − 1)

]︃
. (4.3.13)

For discussion of the BCS solution, we also calculate gap parameter ∆ and particle
fluctuation number ∆N . From Eq. (4.2.13) we get ∆ which is same for both levels

∆ =
WN

2
v−

√︂
1− v2− =

WN

4

√︄
1− 4ε2

W 2(2N − 1)2
, (4.3.14)

and from Eq. (4.2.5) particle fluctuation number is

∆N =
√︂

4Nv2− (1− v2−) =

√︄
N − 4ε2

W 2(2N − 1)2
. (4.3.15)

For both quantities ∆ and ∆N , it turns out to be particularly useful to take the
following two limits [17]

lim
W→+∞

∆

W
(W ) =

N

4
, (4.3.16)

lim
W→+∞

∆N

N
(W ) =

1√
N
, (4.3.17)

which have a very distinctive meaning. Quantity ∆N/N can be viewed as a
relative particle number error, and as we will see, it very well correlates with
the actual error of the BCS approximation with respect to the exact solution.
The other quantity ∆/W gives a relative energy of the pairing interaction. Two
quantities from Eq. (4.3.16) and Eq. (4.3.17) are both plotted in Fig. 4.3.1 as
functions of w for different values of particle number N . Both of these quantities
have well-defined limits as w → +∞, which are visualized as red asymptotes.
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Figure 4.3.1 Left panel shows relative energy gap ∆/W with respect to W
for different values of particle number N as a function of interaction strength
w. Right panel displays relative particle fluctuation number ∆N/N for different
values of particle number N as a function of interaction strength w.

Lastly, we discuss the existence of BCS solutions and their connection to the
HF solution from Chapter 2. From Eq. (4.3.12) we notice v2+ and u2− amplitudes
to be well defined if and only if

W ≥ 2ε

2N − 1
, (4.3.18)

which in terms of w is equivalent to

w ≥ 2

(︃
N − 1

2N − 1

)︃
≡ w⋆. (4.3.19)

Thus from Eq. (4.3.19) we see there exists a BCS solution only if w ≥ w⋆. If
however w ≤ w⋆, with w⋆ being the critical value of interaction strength w, this
implies that the occupation amplitudes v2+ are trivially zero. This way, it can be
shown [8] that ansatz in Eq. (4.3.2) reduces just to the HF mean-field ground
state |HF⟩ in Eq. (2.2.6). The approximate solution to the ground state energy
is then given by EHF

0 in Eq. (2.3.22). In the left panel in Fig. 4.3.2, we plot the
properly extended occupation amplitudes v2± for both levels as functions of w for
three different particle numbers N .

Taking the limit N → +∞, we see w⋆ → 1−. Taking the same limit, from
Eq. (4.3.17) we also get ∆N/N → 0+. In conclusion, we see that the BCS
transition point (TP) at w = w⋆ is equivalent to the PT point which occurs in
the exact solution of the Lipkin model. This gives us a hint, that in the limit
N → +∞, the BCS solution tends to reproduce the exact solution including the
first PT point at w = 1. This, however, is true only for w ≤ 1, or w ≈ 1 values,
because clearly, the BCS solution does not properly reproduce other PTs taking
place in the Lipkin model ground state energy, displayed in Fig. 1.1.1 for particle
number N = 7. It is also worth noting that for w ≤ 1 the HF ground state energy
EHF

0 properly reproduces exact ground state energy E0.
In the right plot of Fig. 4.3.2 we compare relative energy error |∆E0|/E0 of

the ground state energy for all the methods used in the thesis as a function of
N for w = 5. In Fig. 4.3.3 we compare the BCS solutions to the exact and to
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Figure 4.3.2 Left panel displays BCS solution amplitudes v2± for the upper and
the lower level for different values of particle number N as functions of w, with v2±
being either 0 or 1 for w ≤ w⋆. Right panel shows relative energy error |∆E0|/E0

of the given approximate methods for w = 5 as a function of particle number N .

the RPA solution for different values of particle number N as a function of w, in
the right panel we compare relative energy error |∆E0|/E0 of the RPA, RPAIE,
and BCS methods for different values of particle number N for values w ≥ w⋆.
From all the plots in Fig. 4.3.3 we deduce the BCS approximation to give a better
solution to the ground state energy than the standard RPA method, moreover for
large values of w we see the RPAIE method to always give a better result. From
Fig. 4.3.2 we notice that for large values of N the RPAIE method also produces
a better solution than the BCS method. We can also see that both the HF and
RPA methods give the same result for large values of w. Thus the RPA method
can not properly describe the interaction W 2.

Another particularly interesting phenomenon apparent from the right panel
in Fig. 4.3.2, is the jumping pattern seen in the RPAIE and the BCS solutions3.
Something of similar nature appears in Fig. 4.3.3, namely in the plots showing
|∆E0|/E0 relative ground state energy error. In Fig. 4.3.3 a similar jumping effect
is caused by PTs. This could be the cause of the jumping effect which can be seen
in Fig. 4.3.2.

The BCS solution presented in current Section 4.3 seems to be the same as
that in [17] although no explicit formula for energy operator H is given there, thus
we can just speculate if the two systems are the same. Our results also appear to
be similar to that in [18] which provides only few details on the computation and
does not give an explicit formula for the ground state energy similar to Eq. (4.3.13)
or that in [17].

2This is true only for pure interaction W . If however interaction V is included, the approxi-
mation gets better overall. This most likely happens due to some sort of a coupling between the
two interactions which emerges, once both interactions are turned on.

3Unfortunately, neither the RPAIE nor BCS solutions manage to reproduce this intriguing
behavior, which leads to the jumping effect.
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Figure 4.3.3 Left panels show plots of the relative ground state energy E0/ε
for the exact energy (black solid line), the RPA ground state energy (black dotted
line), and the BCS ground state energy (red solid line). Right panels display
relative ground state energy error for the RPA approximation (black dotted line),
the BCS approximation (red solid line), and the RPAIE approximation with i = 5
iterations (blue dash-dotted line).
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Conclusion

In Chapter 1, we concisely introduced the standard Lipkin model [1]. Section 1.1
was dedicated to a review of the usual quasi-spin algebra solution [1, 10]. Then
in Section 1.2 we briefly discussed some of the physical properties of the model.
Namely, we pinpointed the existence of phase transitions in the system’s ground
state energy. An analytic proof for the existence of the first phase transition
point for a model with pure interaction W was given. Together with that, we also
showed the odd-even effect analogy to appear. We provided an exact explanation
of this effect for values of 0 < w < 1 and v = 0. From a numerical solution, we
discussed how the effect gets broken or restored as interaction strengths v and w
change.

As for Chapter 2, a HF solution within the Lipkin model was established. In
short, in Section 2.3 we verified the well-known HF solution [8, 10, 11]. Following
that, using the HF solution from Chapter 2 in Chapter 3, we introduced the
RPA method. We derived the RPA solution of the Lipkin model, thus validating
calculations done in [10, 11]. Having both the RPA and HF solutions in Section 3.3,
we compared the two solutions with numerical results of the exact eigenvalue
problem.

In the case of the RPA solutions, we further studied their properties. First,
we verified QBA and commented on its validity. Then a detailed analysis of the
RPA collapse point was made. In particular, for a system without interaction V ,
we matched the existence of the collapse point to the first phase transition point
that occurs in the ground state energy. For a general system, we hypothesize
its appearance to be a direct consequence of the HF approximation. As for this
hypothesis, the HF solution would have to be reconsidered. More precisely, for
values of v+w ≥ 1, the proper HF ground state may, in fact, be different from that
we found in Chapter 2 or in [10, 11]. Although QBA was not valid for all values of
v and w, we always found the RPA solution to provide a better approximation to
the ground state energy than the HF method. We also included an approximate
solution to the first excited state energy obtained by means of the TDA and RPA
methods. For low values of v, w < 1, we saw these to give a decent estimate of
the exact energies, results for both the TDA and RPA methods were similar.

Based on an idea hinted in [8], in Section 3.4, we developed an iterative
extension to the usual RPA method which we called the RPAIE method. We
gave a procedure to solve for the ground state energy of the Lipkin model using
the RPAIE method. We plotted several numerical solutions of the ground state
energy using the RPAIE method. Following that, a comprehensive comparison
of the ground state energy approximation quality for the RPAIE method with
respect to the RPA and HF methods was provided. We conclude the RPAIE
method with a sufficient number of iterations i = 5 to be superior to the RPA
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method for both small and large values of v and w parameters. Moreover, the
RPAIE solution converges faster than both the HF and RPA solutions as particle
number N increases.

Last Chapter 4 was only concerned with treating interaction W . Realizing
the interaction to be a kind of pairing interaction, we tackled the Lipkin model
with pure interaction W using the BCS method. In Section 4.3, we derived a
corresponding BCS solution. Next, we commented upon some of the properties of
the BCS solutions. First, we discussed the existence of the BCS solution and its
reduction to the HF solution when w < w⋆. We then explored the BCS solution
and compared it to that of the RPAIE, RPA, and HF methods. The BCS solution
yields a better estimate of the ground state energy than both the RPA and HF
methods, however, for large values of w or N , it becomes inferior to the RPAIE
method. From the plotted numerical solution, we deduced the BCS solution error
to directly correlate with relative particle number error ∆N/N , as expected.

Turning to the future, more attention could go to the mean-field approxima-
tion. Possibly more sophisticated mean-field methods such as the Hartree-Fock-
Bogoljubov method [8] that combines both the BCS and HF methods [17] may be
employed. On top of that, the classical HF solution could be re-evaluated. Aside
from that, the proposed RPAIE method appears to be a promising improvement
to the standard RPA method. In particular, it may be worth testing the RPAIE
method with other possibly more complicated models. In the case of the BCS
method, the quasi-particle formalism from Section 4.2 might be used to solve
for the energies of the excited states. One could also opt for similar BCS-like
methods or extensions such as the Lipkin-Nogami BCS method [17]. Going the
other way around, the original two-level model [1] may be extended in many
ways. For example, new types of interactions, such as those in [11], may be
included. Notably, adding a three-body interaction to the Lipkin model could be
an intriguing subject of future research. Alternatively, more levels may be added
to the system [13–15].
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Appendix A

Auxiliary formulae and calculations

Appendix A contains all the auxiliary formulae and calculations gathered from all
the chapters of the present thesis. These were mostly straightforward to carry out,

but we found it inappropriate to plague the main text with those due to their
length.

Chapter 1 - Exact solutions

Evaluation of anti-commutator in Section 1.2 is

(K+K− +K−K+) |k, m⟩ =
[︂√︁

(k +m)(k −m+ 1)(k −m+ 1)(k +m)+

+
√︁

(k −m)(k +m+ 1)(k +m+ 1)(k −m)
]︂
=

= [(k +m)(k −m+ 1) + (k −m)(k +m+ 1)] |k, m⟩ =
= 2

[︁
k(k + 1)−m2

]︁
|k, m⟩.

Chapter 2 - HF method

First, we give an explicit computation for the transformation of K0 and K±
operators. We start with K0

K0 =
1

2

Ω∑︂
n

(︂
a†n+an+ − a†n−an−

)︂
=

1

2

Ω∑︂
n

{︁[︁
cos2(β)− sin2(β)

]︁
·

·
(︂˜︁a†n+˜︁an+ − ˜︁a†n−˜︁an−

)︂
+ 2 sin(β) cos(β)

[︂˜︁a†n+˜︁an− + ˜︁a†n−˜︁an+

]︂}︂
=

= cos(2β) ˜︁K0 +
1

2
sin(2β)

[︂ ˜︁K+ + ˜︁K−

]︂
,
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K+ follows as

K+ =
Ω∑︂
n

a†n+an− =
Ω∑︂
n

[︂
cos(β)˜︁a†n+ + sin(β)˜︁a†n−

]︂
[− sin(β)˜︁an+ + cos(β)˜︁an−] =

=
Ω∑︂
n

{︂
cos2(β)˜︁a†n+˜︁an− − sin2(β)˜︁a†n−˜︁an+ + sin(β) cos(β)·

·
[︂˜︁a†n−˜︁an− − ˜︁a†n+˜︁an+

]︂}︂
= cos2(β) ˜︁K+ − sin2(β) ˜︁K− + sin(2β) ˜︁K0,

fortunately, K− is easy to get thanks to (K+)
† = K− property

K− = cos2(β) ˜︁K− − sin2(β) ˜︁K+ + sin(2β) ˜︁K0.

When searching for ˜︁H expressed in the HF mean-field basis, we need K±K∓ and
K2

± operators and their sums. K+K− is

K+K− =
1

4

[︂
(cos(α)− 1) ˜︁K2

+ +
(︁
cos2(α)− 1

)︁ ˜︁K2
− + 4 sin2(α) ˜︁K2

0+

+(cos(α) + 1)2 ˜︁K+
˜︁K− + (cos(α)− 1)2 ˜︁K− ˜︁K+ + 2 sin(α) (cos(α) + 1) ˜︁K+

˜︁K0+

+2 sin(α) (cos(α)− 1) ˜︁K0
˜︁K+ + 2 sin(α) (cos(α)− 1) ˜︁K− ˜︁K0+

+2 sin(α) (cos(α) + 1) ˜︁K0
˜︁K−

]︂
.

One obtains K−K+ just as easily

K−K+ =
1

4

[︂
(cos(α)− 1) ˜︁K2

+ +
(︁
cos2(α)− 1

)︁ ˜︁K2
− + 4 sin2(α) ˜︁K2

0+

+(cos(α)− 1)2 ˜︁K+
˜︁K− + (cos(α) + 1)2 ˜︁K− ˜︁K+ + 2 sin(α) (cos(α)− 1) ˜︁K+

˜︁K0+

+2 sin(α) (cos(α) + 1) ˜︁K0
˜︁K+ + 2 sin(α) (cos(α) + 1) ˜︁K− ˜︁K0+

+2 sin(α) (cos(α)− 1) ˜︁K0
˜︁K−

]︂
.

We now compute the sum K+K− +K−K+

K+K− +K−K+ =
1

2

(︁
cos2(α)− 1

)︁ (︂ ˜︁K2
+ + ˜︁K2

−

)︂
+ 2 sin2(α) ˜︁K2

0+

+
1

2

(︁
cos2(α) + 1

)︁{︂ ˜︁K+, ˜︁K−

}︂
+ sin(α) cos(α)

[︂{︂ ˜︁K+, ˜︁K0

}︂
+
{︂ ˜︁K−, ˜︁K0

}︂]︂
.

Next, we need the quadratic terms K2
±. The K2

+ term reads

K2
+ =

1

4

[︂
(cos(α) + 1) ˜︁K+ + 2 sin(α) ˜︁K0 + (cos(α)− 1) ˜︁K−

]︂2
=

=
1

4

[︂
(cos(α) + 1)2 ˜︁K2

+ + (cos(α)− 1)2 ˜︁K2
− + 4 sin2(α) ˜︁K2

0+

+
(︁
cos2(α)− 1

)︁{︂ ˜︁K+, ˜︁K−

}︂
+ 2 sin(α) (cos(α) + 1)

{︂ ˜︁K+, ˜︁K0

}︂
+

+2 sin(α) (cos(α)− 1)
{︂ ˜︁K−, ˜︁K0

}︂]︂
,
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and K2
− follows as

K2
− =

1

4

[︂
(cos(α) + 1) ˜︁K− + 2 sin(α) ˜︁K0 + (cos(α)− 1) ˜︁K+

]︂2
=

=
1

4

[︂
(cos(α) + 1)2 ˜︁K2

− + (cos(α)− 1)2 ˜︁K2
+ + 4 sin2(α) ˜︁K2

0+

+
(︁
cos2(α)− 1

)︁{︂ ˜︁K+, ˜︁K−

}︂
+ 2 sin(α) (cos(α) + 1)

{︂ ˜︁K−, ˜︁K0

}︂
+

+2 sin(α) (cos(α)− 1)
{︂ ˜︁K+, ˜︁K0

}︂]︂
.

The sum is

K2
+ +K2

− =
1

2

(︁
cos2(α) + 1

)︁ (︂ ˜︁K2
+ + ˜︁K2

−

)︂
+ 2 sin2(α) ˜︁K2

0+

+
1

2

(︁
cos2(α)− 1

)︁{︂ ˜︁K+, ˜︁K−

}︂
+ 4 sin(α) cos(α)

[︂{︂ ˜︁K−, ˜︁K0

}︂
+
{︂ ˜︁K+, ˜︁K0

}︂]︂
.

Having all the operators above, we write ˜︁H
˜︁H =

ε

2

[︂
sin(α) ˜︁K+ + 2 cos(α) ˜︁K0 + sin(α) ˜︁K−

]︂
−

− W

2

{︃
1

2
(cos(α)− 1)

(︂ ˜︁K2
+ + ˜︁K2

−

)︂
+ 2 sin2(α) ˜︁K2

0+

+
1

2
(cos(α) + 1)

{︂ ˜︁K+, ˜︁K−

}︂
+ sin(α) cos(α)

[︂{︂ ˜︁K+, ˜︁K0

}︂
+
{︂ ˜︁K−, ˜︁K0

}︂]︂}︃
−

− V

8

{︂
2
(︁
cos2(α) + 1

)︁ (︂ ˜︁K2
+ + ˜︁K2

−

)︂
+ 8 sin2(α) ˜︁K2

0+

+2
(︁
cos2(α)− 1

)︁{︂ ˜︁K+, ˜︁K−

}︂
+ 4 sin(α) cos(α)

[︂{︂ ˜︁K+, ˜︁K0

}︂
+
{︂ ˜︁K−, ˜︁K0

}︂]︂}︂
.

Which can be further simplified into a more convenient form of

˜︁H =
ε

2

[︂
sin(α)

(︂ ˜︁K+ + ˜︁K−

)︂
+ 2 cos(α) ˜︁K0

]︂
− W + V

4

[︂(︁
1 + cos2(α)

)︁ (︂ ˜︁K2
+ + ˜︁K2

−

)︂
− sin(2α)

(︂{︂ ˜︁K+, ˜︁K0

}︂
+
{︂ ˜︁K−, ˜︁K0

}︂)︂
+ sin2(α)

(︂
4 ˜︁K2

0 −
{︂ ˜︁K+, ˜︁K−

}︂)︂]︂
+

+
W

2

[︂ ˜︁K2
+ + ˜︁K2

− −
{︂ ˜︁K+, ˜︁K−

}︂]︂
.

Chapter 3 - RPA method

For clarity, the HF mean-field ground state was |HF⟩ = |˜︁k = N/2, ˜︁m = −N/2⟩.
To evaluate the RPA equations containing the transformed Hamiltonian ˜︁H we
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need the following commutators:

[︂ ˜︁K−,
[︂ ˜︁K0, ˜︁K+

]︂]︂
=
[︂ ˜︁K−, ˜︁K+

]︂
= −2 ˜︁K0,

[︂ ˜︁K−,
[︂ ˜︁K2

0 ,
˜︁K+

]︂]︂
=
[︂ ˜︁K−, ˜︁K0

[︂ ˜︁K0, ˜︁K+

]︂
+
[︂ ˜︁K0, ˜︁K+

]︂ ˜︁K0

]︂
=

=
[︂ ˜︁K−, ˜︁K0

˜︁K+ + ˜︁K+
˜︁K0

]︂
=

=
(︂ ˜︁K0

[︂ ˜︁K−, ˜︁K+

]︂
+
[︂ ˜︁K−, ˜︁K0

]︂ ˜︁K+ + ˜︁K+

[︂ ˜︁K−, ˜︁K0

]︂
+
[︂ ˜︁K−, ˜︁K+

]︂ ˜︁K0

)︂
=

= −4 ˜︁K2
0 + ˜︁K− ˜︁K+ + ˜︁K+

˜︁K− = −4 ˜︁K2
0 + { ˜︁K+, ˜︁K−},

[︂ ˜︁K−,
[︂
{ ˜︁K+, ˜︁K−}, ˜︁K+

]︂]︂
=
[︂ ˜︁K−,

[︂ ˜︁K+
˜︁K− + ˜︁K− ˜︁K+, ˜︁K+

]︂]︂
=

=
[︂ ˜︁K−, ˜︁K+

[︂ ˜︁K−, ˜︁K+

]︂
+
[︂ ˜︁K−, ˜︁K+

]︂ ˜︁K+

]︂
=

= −2
(︂ ˜︁K+

[︂ ˜︁K−, ˜︁K0

]︂
+
[︂ ˜︁K−, ˜︁K+

]︂ ˜︁K0 + ˜︁K0

[︂ ˜︁K−, ˜︁K+

]︂
+
[︂ ˜︁K−, ˜︁K0

]︂ ˜︁K+

)︂
=

= 8 ˜︁K2
0 − 2{ ˜︁K+, ˜︁K−},

[︂ ˜︁K−,
[︂ ˜︁K2

+,
˜︁K+

]︂]︂
=
[︂ ˜︁K−, ˜︁K+

[︂ ˜︁K+, ˜︁K−

]︂
+
[︂ ˜︁K+, ˜︁K−

]︂ ˜︁K+

]︂
=

= 2
[︂ ˜︁K−, ˜︁K+

˜︁K0 + ˜︁K0
˜︁K+

]︂
= −8 ˜︁K2

0 + 2{ ˜︁K+, ˜︁K−},

with their aid, it is straightforward to evaluate the following matrix elements

⟨HF|
[︂ ˜︁K−,

[︂ ˜︁K0, ˜︁K+

]︂]︂
|HF⟩ = N,

⟨HF|
[︂ ˜︁K−,

[︂ ˜︁K2
0 , ˜︁K+

]︂]︂
|HF⟩ = −N(N − 1),

⟨HF|
[︂ ˜︁K−,

[︂
{ ˜︁K+, ˜︁K−}, ˜︁K+

]︂]︂
|HF⟩ = 2N(N − 1),

⟨HF|
[︂ ˜︁K−,

[︂ ˜︁K2
+, ˜︁K+

]︂]︂
|HF⟩ = −2N(N − 1).

Having the matrix elements above, we can easily evaluate RPA equations.

The coefficients A and B from the RPA equations can be obtained from
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Hamiltonian ˜︁H simply as

A =
1

N
⟨HF|

[︂ ˜︁K−,
[︂ ˜︁H, ˜︁K+

]︂]︂
|HF⟩ = 1

N
[εN cos(α)−N(N − 1)W+

+N(N − 1)
(V +W )

2
sin2(α) +N(N − 1)(V +W ) sin2(α)

]︃
=

= ε cos(α)−W (N − 1) +
3

4
(N − 1)(V +W ) sin2(α),

B = − 1

N
⟨HF|

[︂ ˜︁K−,
[︂ ˜︁H, ˜︁K−

]︂]︂
|HF⟩ =

= − 1

N

[︃
−N(N − 1)W −N(N − 1)

(V +W )

2
cos(2α)

]︃
=

= (N − 1)W − (N − 1)
(W + V )

2

[︁
2 cos2(α)− 1

]︁
,

which allows one to substitute both αI and αII back to A and B.

Chapter 4 - BCS method
Chemical potential λ was obtained as a byproduct of the BCS solution to the
Lipkin model which follows from Eq. (4.3.9) and Eq. (4.3.10). An explicit form of
λ reads

λ =
4ε2 −W 2(16N3 − 4N2 − 8N + 3)

8W (2N − 1)2
.

The following figure displays λ as a function of either w or N . Chemical potential
λ has a distinctive physical meaning as a quantity that tells how much energy is
either required or obtained once a particle is added to the system. If one was to
consider an open quantum system that is allowed to exchange particles, λ quantity
would provide valuable knowledge.
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Left panel shows λ(w)/ε plot as a function of w interactions strength. for given
values of N . Right panel displays the plot of λ(N)/ε as a function of N particle
number for given values of w interaction strength.
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