
BACHELOR THESIS

Samuel Jankovych

Quark/Gluon Jet Tagging

Institute of Particle and Nuclear Physics

Supervisor of the bachelor thesis: Mgr. Vojtěch Pleskot, Ph.D.

Study programme: Physics

Study branch: Physics

Prague 2023

I declare that I carried out this bachelor thesis independently, and only with the

cited sources, literature and other professional sources. It has not been used to

obtain another or the same degree.

I understand that my work relates to the rights and obligations under the Act

No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the

Charles University has the right to conclude a license agreement on the use of this

work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .

Author’s signature

i

ii

First and foremost, I want to thank my supervisor, Mgr. Vojtěch Pleskot, Ph.D.,

for his everlasting support. No matter the idea, he always helped and furbished it

so that it made sense and we could implement it. I could not wish for a kinder and

more dedicated supervisor. I thank the MFF for allowing me to use the GPULab

with all the necessary computational infrastructure.

iii

iv

Title: Quark/Gluon Jet Tagging

Author: Samuel Jankovych

Institute: Institute of Particle and Nuclear Physics

Supervisor: Mgr. Vojtěch Pleskot, Ph.D., Institute of Particle and Nuclear Physics

Abstract: Distinguishing between jets initiated by quarks and gluons is a chal-

lenging problem, yet very important for detailed studies of elementary particles

and their interactions. This thesis will present a novel Deep Learning approach

to this problem using a neural network architecture based on the Transformer

model trained on the jet constituents. We improve the existing architectures used

in different tagging tasks and show their ability to accurately distinguish between

quark and gluon jets. By combining techniques from different fields of Deep

Learning, we propose a Dynamically Enhanced Particle Transformer (DeParT)

that can surpass the state-of-the-art results in the quark/gluon jet tagging task.

Keywords: ATLAS Jet Neural Networks Transformer Deep Learning

v

vi

Contents

Introduction 5

1 Physics of Quarks and Gluons 9
1.1 The Standard Model . 9

1.2 Quantum Field Theory . 11

1.2.1 Free Particles . 12

1.2.2 Interacting Particles . 13

1.2.3 Cross Section . 15

1.2.4 Feynman Diagrams . 16

1.3 Quantum Chromodynamics . 18

1.3.1 Feynamn Diagrams of QCD 19

1.4 Infrared and Collinear Divergences 21

1.5 Hadronization . 22

1.6 Jets . 24

1.6.1 Infrared and Collinear Safety 25

2 Detector ATLAS 27
2.1 Overview . 27

2.1.1 ATLAS Coordinate System 28

2.2 Large Hadron Collider . 30

2.3 Inner Detector . 31

2.3.1 Pixel Detector . 31

2.3.2 Semiconductor Tracker 32

2.3.3 Transition Radiation Tracker 32

2.4 Calorimeters . 33

2.4.1 Electromagnetic Calorimeter 34

2.4.2 Hadronic Calorimeter 34

2.5 Muon Spectrometer . 34

2.6 Magnet systems . 34

2.7 Trigger . 36

1

3 Data 37
3.1 Monte Carlo Simulations . 37

3.2 Event Production . 37

3.2.1 Truth Label . 38

3.3 Constituent Identification . 38

3.4 Pile-up . 40

3.5 Jet Reconstruction . 42

4 Deep Learning Architectures 45
4.1 Basic Concepts . 45

4.1.1 Forward and Backward Passes 46

4.1.2 Traning process . 46

4.1.3 Output layer . 47

4.1.4 Loss Functions . 47

4.1.5 Optimizers . 49

4.1.6 Activation Functions . 52

4.1.7 Regularization . 54

4.1.8 Metrics . 55

4.2 Fully Connected Network . 57

4.3 Highway Network . 58

4.4 Particle Flow and Energy Flow Network 60

4.5 Transformer . 62

4.5.1 Multihead Self-Attention 63

4.5.2 Feedforward Network 64

4.5.3 Self-Attention Block . 64

4.5.4 Class Extraction . 65

4.6 Particle Transformer . 66

4.6.1 Class Attention Block 68

4.7 Dynamically Enhanced Particle Transformer 68

4.7.1 Talking Self-Attention Block 69

4.7.2 Stochastic Depth . 70

4.7.3 Layer Scale . 70

4.7.4 Gated Feed-Forward Network 70

5 Training Jet Taggers 71
5.1 Main Goal . 71

5.2 Dataset . 72

5.2.1 Offline Preprocessing . 72

5.2.2 Online Preprocessing . 72

5.2.3 JZ Cuts . 74

5.3 Input Variables . 76

2

5.3.1 PFO Variables . 77

5.3.2 PFO Interaction Variables 77

5.3.3 BDT Variables . 78

5.3.4 High-level Jet Variables 78

5.3.5 Normalization . 80

5.4 Training Configuration . 80

5.4.1 BDT Configuration . 81

5.4.2 Transformer, ParT, and DeParT Configuration 82

5.4.3 Fully Connected and Highway Network Configuration . 83

5.4.4 PFN and EFN Configuration 83

5.5 Results . 83

5.5.1 Transverse Momentum Dependence 86

5.5.2 Pseudo-rapidity Dependence 89

5.5.3 Pileup Dependence . 90

Conclusion 93

Bibliography 95

A Description of High-level Jet Variables 101

B Input Variable Distributions 103
B.1 PFO Variables . 103

B.2 PFO Interaction Variables . 104

B.3 BDT Variables . 105

B.4 High-level Jet Variables . 106

C Additional Evaluation Plots 113
C.1 Confusion Matrix . 113

C.2 Score Histograms . 115

C.3 Transverse Momentum Dependence 117

C.4 Pseudo-rapidity Dependence . 122

C.5 Pileup Dependence . 127

3

4

Introduction

Particle physics is a branch of physics that studies the fundamental constituents

of matter and their interactions. To understand the fundamental processes that

govern physical reality, we must identify all the participants in experiments that

probe them.

In this thesis, we focus on tagging jets initiated by quarks or gluons. To do

the identification, theory, experimental devices, and measured data must be

understood in the context of particle identification.

Two fundamental particles that we are mainly interested in are quarks and

gluons [1], together called partons. The physical theory that describes them is

Quantum Chromodynamics (QCD) , which is inherently extremely complicated,

far more than the theory of Electromagnetism. The less energetic partons are,

the stronger the interactions between them are. This creates a problem in their

description as they tend to radiate and split into more partons, which makes it

hard to trace them back to their origin. The developed spray of particles is called

jets. We discuss the physics of partons in more detail in chapter 1.

To produce these jets (and many other particles), the European Organiza-
tion for Nuclear Research (CERN) [2] built the Large Hadron Collider (LHC) [3],

which is the biggest particle accelerator in the world. On the LHC is the ATLAS [4]

detector, a giant experiment testing our knowledge of elementary interactions.

The LHC accelerates two proton beams in different directions, so they can collide

at the interaction points and create a variety of particles. The ATLAS detector,

located at one of these interaction points, then detects these particles. The two

main components of ATLAS crucial to our study are the tracker and the calorime-
ters. They provide enough data to reconstruct the jets and their constituents. A

more detailed description of the ATLAS detector is in chapter 2.

The definition of a jet is very complicated. It depends on many aspects: the de-

tector, collisions, jet algorithm, background events, secondary collisions (pileup),

and many more. Our study uses the anti-kt algorithm [5] that clusters several

constituents into a jet. The constituent is an energy deposit in the calorimeter or,

if it is charged, a track in the tracker. The algorithm that clusters energy deposits

and tracks into constituents we use is the Particle Flow algorithm (PF algorithm)

5

[6]. It provides essential input to the jet algorithms and our taggers.

However, to train the neural network we also need the truth information,

which cannot be measured but is rather simulated with the Monte Carlo (MC)

simulations. The MC includes both the physical simulation of the collision and

the detector response. In chapter 3, we provide more detail.

Quark-gluon taggers could be used in a variety of applications, such as the

search for new physics and precise measurements of the Standard Model. To

give a concrete example, the detector responses to quarks and gluons differ, so

a quark/gluon tagger could be used to do separate calibrations for the two. In

Vector Boson Fusion or Vector Boson Scattering analyses a well-performing quark

tagger would allow for a better event selection. The SUSY gluino multijet search

[7] could benefit from a quark-gluon tagger. Moreover, the techniques developed

in this thesis can be used in other tagging problems, such as the tagging of jets

into different classes [8].

Our goal, telling apart quark/gluon jets, is non-trivial as traces left by these

particles in the detector are very similar. In the past, hand-crafted variables (such

as a number of hadron tracks detected in the jet) describing the jets were used [9].

Nowadays, modern Machine Learning techniques allow the utilization of more

variables. The most adopted and successful is the Boosted Decision Trees (BDT)

algorithm [10], which is still being developed [11]. It uses multiple high-level jet
variables (variables that describe the jet as a whole) as input.

In this thesis, we approach the problem using modern Deep Learning tech-

niques. Deep Learning has exploded in the last decade. From the Natural Lan-
guage Processing (NLP) [12] to image recognition [13], Deep Learning has been

used to solve many problems. Most notably, the GPT models [14, 15] shook the

whole world with their capabilities of text generation, as they can solve complex

problems and even supersede humans in exams. Or the image-generating models

such as Stable Diffusion [16], or Dall-E [17] that can generate any image from a

text prompt. We utilize the Deep Learning , used in these world-changing models,

to solve the problem of quark/gluon tagging. An in-depth explanation of different

Deep Learning techniques and models is in chapter 4.

Different architectures are explored. Firstly the Fully Connected Network (FC)

and Highway Network architectures [18, 19] are developed, which use high-level

jet variables, but considerably more than BDT . Afterward, we turn to a more

granular jet description, using jet constituents. The Energy Flow Network (EFN)

and Particle Flow Network (PFN) [20] are simple architectures that use the jet

constituents as an input developed by the High Energy Physics (HEP) community.

’Attention is all you need’ [21] paper introduces a highly successful and

influential architecture, called Transformer , used in all kinds of applications,

most notably NLP [12, 14, 15, 13, 22]. It can learn long-range dependencies

and generalize its knowledge to new tasks. In HEP community, its use is just

6

starting. For example, in [23], it is used to teach the model a jet structure as

a NLP task. Or recently, it was explored in a classification task, where they

were tagging jets into various classes [8]. We improve on their work and apply

it specifically to the problem of quark/gluon tagging. The models are trained,

studied comprehensively, and their performance is compared in chapter 5.

7

8

Chapter 1

Physics of Quarks and Gluons

1.1 The Standard Model
The best widely adopted and tested description of the fundamental particles

and their interactions is the Standard Model (SM) [24]. Fermions are particles

Figure 1.1 The Standard Model of particle physics. 1

that makeup all the matter and bosons are force-mediating particles. All known

elementary particles are displayed in figure 1.1.

1https://en.wikipedia.org/wiki/File:Standard_Model_of_Elementary(P)arti
cles.svg

9

https://en.wikipedia.org/wiki/File:Standard_Model_of_Elementary(P)articles.svg
https://en.wikipedia.org/wiki/File:Standard_Model_of_Elementary(P)articles.svg

Fermions are divided into two categories, leptons and quarks. Leptons are

further divided into two groups:

1. • electron, a particle that is present in all matter around us,

• muon, a heavier cousin of electron naturally produced in the atmo-

sphere,

• tau lepton, the heaviest lepton.

These three leptons can interact via the Electromagnetic force (they have a

charge), mediated by photons, or via the Weak force, mediated by W and Z
boson.

2. Neutrinos, each belonging to either electron, muon, or tau lepton. Neutrinos

can interact only weakly by exchanging W and Z bosons.

Quarks are also divided into two groups:

1. With electric charge
2
3

2
,

• up, u quark,

• charm, c quark,

• top, t quark.

2. With electric charge −1
3 .

• down, d quark,

• strange, s quark,

• bottom, b quark.

All quarks can interact not only weakly and electromagnetically, but also via

the Strong force, mediated by gluons. In nature, practically only the u-quark and

d-quark occur. Concretely, they are the building blocks of protons and neutrons.

Fermions can be also split another way, into three families (generations). The

mass of corresponding particles gives the order of families. The lightest is built

up by a u-quark, a d-quark, an electron, and an electron neutrino. Practically

all matter around us is made up of particles from this family. It should be noted

that neutrino masses are not precisely known. Due to a measured process [25]

called neutrino oscillations [24], they cannot be massless. Since the first discovery,

estimates on the upper bound of their masses were made [24].

The bosonic particles are a photon, gluon, W, and Z boson, and Higgs boson.

Vector bosons (’vector’ comes from their mathematical description) are force

carriers:

• Electromagnetic force - photon,

• Strong force - gluon,

2
Measured in units of elementary charge e = 1.60217663 · 10−19

C.

10

• Weak force - Z and W boson.

Higgs boson is a scalar boson, giving mass to other particles. It is an artifact of

the Higgs mechanism that introduces masses to particles while preserving the

local gauge invariance. The properties of the corresponding force-carrying boson

give the nature of each force. The corresponding charge of interacting particles

gives the interaction strength of each force.

Particles that have electric charge can exchange photons and interact elec-

tromagnetically. The infinite range of the Electromagnetic force is due to the

massless photons. On top of that, the photon has no charge, which makes them

unable to scatter on other photons.
3

Quarks are the only fermion carriers of the strong charge (also called color
charge). In contrast to electromagnetism, gluons have two strong charges. They

can interact with other gluons and exchange color charges when interacting with

quarks or gluons. This differs from Electromagnetic interaction, where particles’

charge does not change. Even though the Strong interaction is theoretically

infinite, we do not see free gluons or quarks due to a process called hadronization
(see section 1.5). They only occur in a bound state in nature, effectively making

the color charge invisible at a larger scale (it becomes visible at the scale of

approximately 1 fm).

All fermions can interact weakly, but since W and Z bosons have mass (which

is significant compared to fermions), the range of interaction is short. Weak

processes occur, for example, in the β-decay.

Last but not least is the Higgs boson, a scalar boson. The strength of the

interaction with the Higgs boson (more precisely: with the scalar field, Higgs

field) is given by the mass of the interacting particle. In other words, particles’

interaction with the Higgs field gives them mass. Gluons and photons are the

only particles from SM non-interacting with the Higgs boson.

1.2 Quantum Field Theory
Quantum Field Theory (QFT) is a fundamental framework in modern theoretical

physics that describes the behavior of particles as fields at the quantum level. Paul

Dirac did the first development by studying the electromagnetic interaction of

particles and photons [26]. Massive progress in Quantum Electrodynamics (QED)

did Richard Feynman [27], who also introduced the Feynman diagrams, a graphical

representation of interactions. We will discuss Feynman diagrams in more detail

in section 1.2.4.

3
This has some caveats at higher energies. Classically it is forbidden due to the linearity of

Maxwell’s equations, but at higher orders of perturbation QFT, photons can scatter on another

photon. However, the probability of such an event is very low.

11

The starting point of QFT is that particles are not fundamental objects but

excitations of underlying quantum fields that permeate all of space and time.

This field must satisfy the equations of motion of the corresponding field theory

derived from the Lagrangian.

1.2.1 Free Particles
The Lagrangian of non-interacting spin-

1
2 particle (fermion) of massm, also called

the Dirac Lagrangian, is given by

LDirac = ψ̄(i/∂ −m)ψ, (1.1)

where we abbreviate γµ∂µ ≡ /∂; γµ
are the Dirac matrices, and ∂µ is the covariant

derivative. ψ(x) is a bispinor fermionic field of a spin-
1
2 particle. It has four

components, which can be split into two spinors, each corresponding to a different

chirality

ψ(x) =
(︄
ψL(x)
ψR(x)

)︄
. (1.2)

Going further we will always abbreviate γµVµ ≡ /V , where Vµ is a 1-form, or

a vector with lowered indices Vµ = ηµνV
ν

with the Minkowski metric ηµν =
diag(1,−1,−1,−1). We also automatically sum over repeated indices, utilizing

the Einstein summation convention.

The Dirac equation is an equation of motion derived from the Lagrangian

equation (1.1):

(iγµ∂µ −m)ψ(x) = 0. (1.3)

It can be solved analytically. The solutions to this equation describe how fermion

particles propagate in space and time without interaction.

Conversely, bosons are spin-1 particles, described by the vector field Aµ(x).
The Lagrangian of a non-interacting spin-1 particle of mass m is given by a Proca
Lagrangian

LProca = −1
4FµνF

µν + 1
2m

2AµA
µ, (1.4)

where Fµν = ∂µAν − ∂νAµ is the field strength tensor. Note that this Lagrangian

also describes massive bosons. In the case of massless bosons, the second term is

omitted.

The equation of motion for the vector field, the Klein-Gordon equation, follows

from the Lagrangian equation (1.4)(︂
□ +m2

)︂
Aµ(x) = 0. (1.5)

12

The solutions to this equation can also be found analytically. In the case of

massless bosons, the equation reduces to

□Aµ(x) = 0, (1.6)

which is a simple wave equation. We can rewrite it using the field strength tensor

as
4

□Aµ(x) = ∂ν∂
νAµ(x) = ∂ν∂νAµ(x)− ∂ν∂µAµ(x) = ∂νFνµ(x) = 0, (1.7)

which are the Maxwell’s equations. This means that massless non-interacting

bosons propagate the same way as electromagnetic waves.

1.2.2 Interacting Particles
We introduce the interaction between fields by invoking the local gauge invariance
of the Lagrangian. Each type of interaction (strong, electromagnetic, weak)

corresponds to a different SU(N) Lie group [28].

Elements of SU(N) are special unitary NxN matrices
5
. When operating on

N -dimensional space of fields, their representations are unitary operators in the

form

U = eig
∑︁

a
αaT a

, (1.8)

where T a
are generators of the group, and αa

and g are the parameters of the

transformation. For example, in the case of a rotating spinor in classical quantum

mechanics, the group is the rotation group SU(2), and the generators are the

Pauli matrices T a ≡ 1
2 σ̂a (a = x, y, z). g would be the angle of rotation, and

αa ≡ n⃗ is the axis of rotation. More generally, T a
can be represented as NxN

matrices, where N is the field space dimension. Going further, we will suppress

writing the summation over a (or any other index) explicitly unless it is necessary

for clarity.

The generators satisfy the commutation relations

[T a, T b] = ifabcT c, (1.9)

where fabc
are the structure constants of the Lie group.

We can now connect the Lie group with physics; a Lagrangian describes an

interacting physical system if it is invariant under the local gauge transformation

ψ′
j(x) = Uij(x)ψ(x)j = eigαa(x)T a

ijψ(x)j, (1.10)

4
We have utilized the Lorentz gauge ∂µAµ(x) = 0.

5
Matrix U is special if detU = 1 and unitary if UU† = U†U = 1

13

of the spinor quantum fields ψi(x), and under the infinitesimal transformation of

the vector fields Aa
µ(x)

Aa
µ(x)′ → Aa

µ(x) + 1
g
∂µα

a(x)− fabcαb(x)Ac
µ(x) +O((fabc)2), (1.11)

where U(x) is an element of the corresponding Lie group for every spacetime

point x. g is the coupling constant of the interaction, and αa(x) are the parameters

of the transformation.

For example, the electromagnetic interaction corresponds to the U(1) group

(Lie group isomorphic to complex numbers), which means that the Lagrangian

must be invariant under the transformations

ψ′(x) = e−ieα(x)ψ(x) , A′
µ(x) = Aµ(x) + 1

e
∂µα(x). (1.12)

where the a generator of the U(1) group is just a constant T a = 1, and the

structure constants are zero fabc = 0.

In the general case of the non-Abelian SU(N) group having N different

fermions with the free Lagrangian

LDirac =
N∑︂

i=1
ψ̄i(i/∂ −m)ψi, (1.13)

the local gauge invariant Lagrangian is given by [29]

L = −1
4G

a
µνG

a
µν + 1

2m
2Aa

µA
a
µ,+

N∑︂
i,j=1

ψ̄i(iδij /∂ + g /A
a
T a

ij −mδij)ψj. (1.14)

where the field strength tensor is modified, as a result of the non-commutativity

of the generators, to

Ga
µν = F a

µν + gfabcAb
µA

c
ν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν , (1.15)

such that it preserves the local gauge invariance. This additional term significantly

impacts the system’s dynamics because the last term of 1.15 corresponds to boson-

boson interaction. We shall see in section 1.3 the consequences of this interaction.

If we go back to the example of U(1), the corresponding Lagrangian has the

form
6

L = −1
4FµνFµν + ψ̄(i/∂ −m)ψ − eψ̄γµ∂µψAµ. (1.16)

The equations of motion of the Lagrangian (1.16) ultimately determine the sys-

tem’s dynamics.

6Ga
µν ≡ F a

µν , because fabc = 0

14

1.2.3 Cross Section
In particle physics, we are not interested in calculating the actual state ψ(x)
as a solution to the equations of motion of the Lagrangian (1.16), but rather in

the probability of particles interacting. The physical quantity describing this

probability is the cross section σ. With the probabilistic nature of quantum

mechanics, we need to define this quantity based on multiple interactions. Suppose

we have a flux of incoming particles scattered off target particles. Then the

probability that a given particle will scatter off of a target particle is given as

σ = number of scattered particles

incoming flux of particles

, (1.17)

where the flux has units m
−2

so the cross section has units m
2
.

If we want to specify the infinitesimal probability of particles scattering to a

space angle dΩ, we can define it as

dσ = number of scattered particles to an space angle dΩ
incoming flux of particles

. (1.18)

Or, if we want the cross section in terms of the momentum of the scattered

particles dp, we can define it as

dσ = number of scattered particles with outgoing momentum dp

incoming flux of particles

. (1.19)

Quantum mechanically, we expect the cross section to be given by the proba-

bility of the system being in a final state |f⟩ given that it evolved from the initial

state |i⟩. We can express this as

σ ∼ |⟨f |e−iĤ(tout−tin)|i⟩|2, (1.20)

where Ĥ is the Hamiltonian of the system, and tin and tout are the initial and final

times of the process.

To be more precise, for two interacting particles with energies E1,in, E2,in

and velocities v⃗1,in, v⃗2,in, and N particles in the final state with energies Ej,out

(j = 1, 2, ..., N), we can write [29]

dσ = |M|2

4E1,inE2,in|v⃗1,in − v⃗2,in|
(2π)4δ4(pµ

in
− pµ

out
)

N∏︂
j=1

d3pj

(2π)32Ej,out

, (1.21)

where pµ
in

is the total 4-momentum of the incoming particles and pµ
out

is the

total 4-momentum of the outgoing particles, the δ4(pµ
in
− pµ

out
) function is the

4-dimensional Dirac delta function enforcing 4-momentum conservation, and the

15

|M|2 is the squared matrix element of the scattering amplitudeM. The matrix

element ⟨f |M|i⟩ (where |M|2 ≡ |⟨f |M|i⟩|2) is given by (assuming |f⟩ ≠ |i⟩)

⟨f |S|i⟩ = i(2π)4δ4(pµ
in
− pµ

out
)⟨f |M|i⟩, (1.22)

where S is the S-matrix of the scattering process. We can calculate the S-matrix

utilizing the Dyson series expansion [29]

⟨f |S|i⟩ =
⟨︄
f

⃓⃓⃓⃓
⃓

∞∑︂
n=0

(−i)n

n!

∫︂
dx4

1 · · ·
∫︂
dx4

nT [H (t1) · · ·H (tn)]
⃓⃓⃓⃓
⃓ i
⟩︄
, (1.23)

where T [H (t1) · · ·H (tn)] is the time-ordered product of the HamiltonianH of

the system at times t1, t2, ..., tn. Equation (1.20) is a particular case of equation

(1.23) where the Hamiltonian is time-independent.

1.2.4 Feynman Diagrams
Calculating the expansion (1.23) is practically impossible analytically, so R. Feyn-

man developed a graphical method to calculate individual terms [27]. The dia-

grams consist of the following:

• External lines represent the incoming and outgoing particles, which are

real particles,

• Internal lines represent the intermediate particles, which are virtual par-

ticles,

• Vertices are the points of interaction.

Virtual particles are not real particles but a mathematical construct that allows us

to visualize the scattering process. Each part contributes a multiplicative factor

to the amplitude −iM. The order of the diagram, the order of the corresponding

term in the Dyson series expansion 1.23, is given by the number of interaction

vertices.

To give an example, we consider electron-muon scattering. The second-order

Feynman diagram for this process, shown in figure 1.2, is the lowest-order diagram

that can contribute to the cross section.

The time flows from left to right, so we have an incoming electron and muon.

They exchange a virtual photon, momentum, and scatter. The incoming parti-

cles, with momenta p1, p2, contribute factors u(p1), u(p2), which are solutions to

the free Dirac equation (1.3) in momentum space. The outgoing particles, with

momenta p3, p4, contribute factors ū(p3), ū(p4), which are complex conjugates

16

µ−, p1 µ−, p3

e−, p2 e−, p4

pγ γ

Figure 1.2 Second-order Feynman diagram of electron-muon scattering.

of the free Dirac equation solutions. The vertex is where the interaction hap-

pens, and the corresponding term ieγµ
is given by the interaction Lagrangian

Lint = −eψ̄γµ∂µψAµ. Virtual photon, with momentum pγ , is an internal line, its

contribution is
−iηµν

p2
γ

. We can now write the amplitude as

−iM = ū(p3)(ieγµ)u(p1)
−iηµν

p2
γ

ū(p4)(ieγν)u(p2) (1.24)

Utilizing the conservation of momentum, we can write pγ = p1 − p3 and rewrite

M = −e2ū(p3)γµu(p1)
1

(p1 − p3)2 ū(p4)γµu(p2). (1.25)

After multiplying by the complex conjugate, summing over all the possible spins,

and neglecting masses of electron and muon (we assume relativistic scattering),

we can write the matrix element as

|M|2 = 2e4 (p1 + p2)2 + (p1 − p4)2

(p1 − p3)2 . (1.26)

We can now evaluate the cross section (1.21) in the centre of mass frame as

dσ

dΩ = α2

4(p1 + p2)2 (1 + cos2 θ), (1.27)

where θ is the scattering angle. Integrating over the solid angle, we get the total

cross section

σ = 4πα2

3(p1 + p2)2 . (1.28)

This calculation was an example of the lowest-order Feynman diagram. In

general, many more diagrams contribute to the amplitude, for example in figure 1.2

17

µ− µ−

e− e−

(a)

µ− µ−

e− e−

(b)

Figure 1.3 Fourth order Feynman diagrams for electron-muon scattering.

is a fourth-order diagram. All of these contributions are added together to get the

full amplitudeM.

The Feynman rules for the general QED Feynman diagram can be found in

[30]. Other interactions have slightly different Feynman rules, but the general

idea is the same.

1.3 Quantum Chromodynamics
So far, we have introduced QED interactions as examples. In this section, we will

introduce QCD , the theory of Strong interactions. The underlying Lie group of

QCD is SU(3). We can derive the following from the general theory introduced in

section 1.2.2. N = 3, which means the underlying field space is three-dimensional.

Physically, we have 3 quark fields for each quark in the SM . They correspond

to 3 color states ψi(x), i = 1, 2, 3. SU(3) has 8 generators T a
, which means we

have 8 gluon fields Aa
µ(x), a = 1, . . . , 8. The full Lagrangian of QCD is [31] (we

also suppress the summation over quark fields i, j)

LQCD = −1
4G

a
µνG

a
µν + ψ̄i(i/∂ −m)ψi + gψ̄i /A

a
T a

ijψj

= −1
4F

a
µνF

a
µν + ψ̄i(i/∂ −m)ψi + gψ̄i /A

a
T a

ijψj+

+ gfabc
[︂(︂
∂µA

a
ν − ∂νA

a
µ

)︂
Aµ

bA
ν
c + (∂µA

aν − ∂νA
aµ)AbµAcν

]︂
+

+ g2fabcfadeAµ
bA

ν
cAdµAeν ,

(1.29)

where we have expanded Ga
µν as in (1.15). We can now see that the two last terms

correspond to three and four-gluon coupling, as they contain the product of three

or four, vector fields A, respectively.

18

1.3.1 Feynamn Diagrams of QCD
The complete list of Feynman rules for QCD can be found in [31]. However, we

will introduce some of the essential Feynman diagrams here.

Quark-quark scattering

Lowest order diagrams for quark-quark scattering are shown in figure 1.4. Quarks

have the same type of ’fermionic’ line as leptons discussed in section 1.2. Gluons

are represented with ’curly’ lines to distinguish the Strong interaction from

the Electromagnetic. The possibility of the initial quarks having different color

charges adds magnitude to the overall amplitude because we need to sum over

all possibilities. To illustrate this, we take a look at a fraction of cross section of

e+e− → hadrons and e+e− → µ+µ−

R = σ(e+e− → hadrons)
σ(e+e− → µ+µ−) , (1.30)

if we do not sum over the color charges, the fraction is 2/3, but if we do sum over

the color charges, the fraction is 2

Rno color = 2
3 , Rcolor = 2. (1.31)

q1 q1

q2 q2

(a)

q1 q2

q2 q1

(b)

Figure 1.4 Lowest-order Feynman diagrams of quark-quark scattering.

Quark-gluon scattering

The lowest order diagrams for quark-gluon scattering are shown in figure 1.5.

Due to the gluon self-interaction, there are more diagrams than in QED .

19

g

q

g

q

(a)

q g

g q

(b)

q q

g q

(c)

Figure 1.5 Lowest-order Feynman diagrams of quark-gluon scattering.

Gluon-gluon scattering

The lowest order diagrams for gluon-gluon scattering are shown in figure 1.6. In

QCD , gluons can interact directly with each other. These interactions are non-

trivial. A theory called gluodynamics is developed to describe just gluon-gluon

interactions. In figure 1.6a and figure 1.6b, we can see the 3-gluon vertex, and in

figure 1.6c, we can see the 4-gluon vertex.

g

g

g

g

(a)

g g

g g

(b)

g g

g g

(c)

Figure 1.6 Lowest-order Feynman diagrams of gluon-gluon scattering.

Gluon Emission

Let’s consider a e+e−
annihilation process producing two quarks, and one of the

quarks emits a real gluon. We will only look at the right part of the diagram after

20

q1

g

q2

Figure 1.7 Lowest-order Feynman diagram of quark emitting a gluon.

the annihilation, as seen in figure 1.7. The scattering amplitude is given by [31]

Mµ
qq̄g = ū (p1) (−igT a/ε)

i
(︂
/p1 + /k

)︂
(p1 + k)2 (−ieγµ) v (p2) , (1.32)

where p1, p2 are the momenta of the quarks q1, q2, k is the momentum of the

gluon, and ε is the solution of a free gluon. The gluon vertex contributes the

factor −igT a/ε, corresponding to the term gψ̄i /A
a
T a

ijψj in the Lagrangian. The

construction ofM is similar to QED .

1.4 Infrared and Collinear Divergences
The perturbation expansion (1.23) is done in the constant of interaction g. How-

ever, the assumption of g being a constant is not valid. It changes with the energy

of the particles, hence the distance between them. In QED , the coupling grows

when we force particles to be closer to each other by smashing them together with

high enough energy. In QCD , the coupling goes to zero at very high energies and

it grows with the distance between the quarks. The difference arises because, QED

is Abelian (the generators commute), while QCD is non-Abelian. The structure

given by the Lie group SU(3) dramatically changes the behavior of the coupling

constant. Another way to formulate this is that the probability of a quark emitting

a gluon, as it losses energy, goes to infinity.

We can see this directly from the scattering amplitude (1.32), wherein the

dominator we have

(p1 + k)2 = 2Eω(1− cos θ), (1.33)

where we consider p1 = (E, 0, 0, E), a hard quark (energetic quark, whose mass

can be neglected), and k = ω(1, 0, sin θ, cos θ), θ being the angle between the

quark and the gluon. If this term goes to zero, the scattering amplitude goes to

infinity. There are two ways this can happen:

21

• Infrared singularity: gluon becomes low-energetic ω → 0

• Collinear singularity: gluon is emitted in the direction of the quark θ → 0

These infinities are not physical, but a consequence of not considering all the

possible Feynman diagrams. The KLN theorem [32, 33] states: When all the possible
interactions are considered, the scattering amplitude is finite, i.e., is infrared and
collinear (IRC) safe.

The exact process happens for gluons. They can emit another gluon, and

the scattering amplitude goes to infinity. Moreover, since gluons have two color

charges, the coupling is approximately 2.25 times stronger than for quarks [34].

This is called gluon radiation and is why the coupling constant grows with the

distance between the quarks.

The physical variable that describes the multiplication of quarks and gluon

is multiplicity Ng for gluons and Nq for quarks. From the discussion above, we

conclude that the multiplicity of gluons is higher than the multiplicity of quarks.

1.5 Hadronization
Hadronization is a process where free quarks and gluons become bound. The

bound states of quarks are called hadrons. In this context, it is good to introduce the

word parton, a generic term for a quark or a gluon. As we have seen in section 1.4,

the less energetic the parton is, the more likely it will emit gluons. This means that

when partons reach some energy scale, they become bound, effectively making

them almost immediately bound after hard scattering processes. This inevitable

binding is called confinement.
A phenomenological description of this process is given by the Lund model

[35]. The soft gluonic interaction is modeled as a string connecting the hard

partons with a linear binding potential. We are going to illustrate this on a

hard scattered quark-antiquark pair:

• Quark and antiquark are emitted from a hard scattering process, each

going in a different direction.

• A string is created between the quark and the antiquark.

• As they are moving away from each other, the string is stretched.

• Once the tension has enough energy, the string splits and creates a new
quark-antiquark pair.

• This process is repeated until the initial energy of the quark-antiquark pair

is exhausted.

22

• As a result, the created quarks and antiquarks rearrange to color-neutral
mesons or baryons.

Mesons are hadrons of one quark and one antiquark, whereas baryons are three

quarks. The lightest mesons are the pions, which are made up of a quark and

an antiquark from the first generation (see section 1.1) of quarks. The lightest

baryons are the protons and neutrons, which are made up of three quarks from

the first generation (see section 1.1).

Another phenomenological model is called cluster fragmentation [36]. Here

the gluons are split into quarks and antiquarks, then rearranged to clusters with

zero net color charge. Both approaches are illustrated in figure 1.8.

Figure 1.8 Illustration of the hadronization models. The left is the Lund model, and
the right is the cluster fragmentation. 7

The scattering of partons bound in a hadron cannot be described as hard

interaction as it can be for an electron bound in an atom. As we described earlier

the parton has a much higher probability to emit gluons at low energies. In a

hadron, they create the so-called sea of partons on top of the three or two valence

quarks. This parton mess is described by the parton distribution function (PDF)

fi(x) [37], which is a probability distribution of the parton i carrying momentum

fraction x of the hadron. An example is shown in figure 1.9, where the PDF

f(x,Q2) for proton constituents is also a function of the squared energy scale

Q2
. We can see that the dominant partons contributing to the proton momentum

7https://arxiv.org/abs/1011.5131

23

https://arxiv.org/abs/1011.5131

are u-quarks and d-quarks, the valence quarks, but the contribution from other

partons is not negligible.

Figure 1.9 Example of the parton distribution function of a proton. The PDF f(x, Q2)
is a function of the momentum fraction x and the squared energy scale Q2. Different
colors represent a different parton type. On the y-axis is the PDF f(x, Q2) multiplied by
the fraction x. 8

1.6 Jets
As seen in section 1.4, partons emit soft and collinear gluons. The initial momen-

tum of the primary parton is split into more partons, creating a shower called jet.
The main processes in proton-proton collisions that produce a jet are shown in

figures 1.4 to 1.6.

Experimentally it is not straightforward to define a jet from the measured

decays. For example, a quark initially radiates one collinear gluon, having ap-

proximately the same momentum as the quark. How do you decide whether the

gluon is part of the initial jet or creates a new one? Or, if two jets exchange a soft

gluon that emits another one, how do you decide where the new gluon belongs?

This is important because if the jets are not defined correctly, the infinities in the

scattering amplitude will not be canceled out, as is stated in the KLN theorem

[32, 33]. This makes comparing the data with theory very difficult.

There are complex algorithms that use unique physical variables to enable the

reconstruction of the jets [5]. In the first approximation, we can say that the jet

8https://arxiv.org/pdf/0901.0002.pdf

24

https://arxiv.org/pdf/0901.0002.pdf

is a cone, where the apex corresponds to the initial parton and all other partons

created are inside the cone. We will discuss this in more detail in section 3.5. The

illustration of a jet definition is shown in figure 1.10.

Figure 1.10 Jet definitions on various levels. Good reconstructed jet should be the
same at all levels.

Another aspect of jets is the definition of their energy. The most common

approach to defining the jet 4-momentum is by summing the 4-momenta of all

the partons inside the jet [5]. The problem is that it introduces a mass to the jet,

but the initial parton migth be massless.

1.6.1 Infrared and Collinear Safety
One way of making sure that the jet algorithm is reflecting the physics of partons

is to make sure that it is infrared and collinear safe:

• Collinear safety means that if the initial parton (or any other in the

shower) radiates a collinear gluon, it is always part of the same jet.

25

• Infrared safety means that the jet is unchanged if the initial parton (or

any other in the shower) radiates a soft gluon.

We can now define Infrared and Collinear safe (IRC) observable O as:

Definition 1 (Infrared and Collinear Safe Observable). LetO = O(pµ
1 , p

µ
2 , . . . , p

µ
N)

be observable on the momentum space of N partons with 4-momentum pµ
i matched

to a jet by a jet algorithm. Then O is :

• Infrared safe wrt. the jet algorithm if

O(pµ
1 , p

µ
2 , . . . , p

µ
N) = O(pµ

1 , p
µ
2 , . . . , p

µ
N , p

µ
N+1)

where pµ
N+1 ≈ 0 is 4-momentum of a soft parton.

• Collinear safe wrt. the jet algorithm if

O(pµ
1 , p

µ
2 , . . . , p

µ
N) = O(pµ

1 , p
µ
2 , . . . , p

µ
N−1, p

µ
N1 , p

µ
N2)

where pµ
N1 ∥ p

µ
N2 are 4-momenta of collinear partons and pµ

N1 + pµ
N2 = pµ

N .

In figure 1.11, we can see that an IRC unsafe jet algorithm initially finds two

jets, but when one jet radiates a soft gluon, they are put together or when a jet

radiates a collinear gluon, the jet is split.

Figure 1.11 IRC unsafe jet algorithm. Initially, there are two jets (top), but they are
put together if one jet radiates a soft gluon (bottom left), or one jet is split if it radiates a
collinear gluon (bottom right).

26

Chapter 2

Detector ATLAS

2.1 Overview

Figure 2.1 The ATLAS detector

LHC is a circular accelerator with a circumference of around 27.6km located

on the Swiss-French border near Geneva, at CERN [2]. It accelerates particles,

mainly protons and occasionally heavy ions (dominantly lead), to almost the speed

of light, reaching a center-of-mass energy

√
s = 14 TeV. On the accelerating ring

are four interaction points, where the particles collide and are detected by the

27

ATLAS, Compact Muon Solenoid (CMS) , ALICE, and LHCb detectors. ATLAS and

CMS are multi-purpose detectors, while ALICE is designed to study heavy-ion

collisions, and LHCb is designed to study the physics of b-quarks.

The ATLAS detector [4] is a general-purpose particle detector located in a

cavern 100m underground. The detector is a multi-layered cylindrical structure

with a diameter of 46m and a height of 25m. The main detecting components are

the silicon pixel and strip trackers, the electromagnetic calorimeter, the hadronic
calorimeter, and the muon spectrometer. In figure 2.1, we show a schematic of the

ATLAS detector, in figure 2.2 the cross section of the detector and its interactions

with the particles in individual components, and figures 2.5 to 2.8 the individual

components of the detector.

Figure 2.2 The ATLAS detector cross section and its interactions with the particles.

In the following section 2.2, we will discuss the LHC and in sections 2.3 to 2.7

the individual components of the detector. Before doing so, we will introduce the

ATLAS coordinate system and space-orienting notation in section 2.1.1.

2.1.1 ATLAS Coordinate System
The ATLAS coordinate system is defined as follows:

28

1. The origin of the coordinate system is the nominal interaction point.

2. the x-y plane is perpendicular to the beam direction.

3. The positive x axis is pointing towards the centre of LHC .

4. The positive y axis is pointing upwards.

5. The z axis is along the beam direction, such that it forms a right-handed

coordinate system with the x and y axes.

6. The azimuthal angle ϕ is measured around the z axis, being zero on the

positive x axis.

7. The polar angle θ is measured from the z axis, where it is zero.

Figure 2.3 The ATLAS coordinate system.

We also define the pseudorapidity η as

η = − ln(tan(θ/2)), (2.1)

and the transverse momentum pT as momentum in the x-y plane. For massive

objects, we also define the rapidity as

y = 1
2 ln

(︄
E + pz

E − pz

)︄
, (2.2)

29

where E is the energy and pz is the momentum along the z axis of the particle.

The forward region is defined as |η| > 2.5, and the central region as |η| < 2.5.

Simple sketch of the ATLAS coordinate system is shown in figure 2.3.

2.2 Large Hadron Collider
LHC is the biggest particle accelerator in the world, operated by CERN. It is built

underground, up to 175m below the surface
1
. To keep the particles in a circular

motion, it uses superconducting NbTi magnets, reaching up to 8.33 T, submerged in

a liquid Helium of temperature 1.9 K. Particles are pre-accelerated in a sequence

of linear and circular accelerators. The system of all accelerators is shown in the

figure 2.4.

Figure 2.4 The Large Hadron Collider, with its pre-accelerators.

At a given time, two beams of protons are circulating in opposite directions in

the accelerator. Beams are separated into bunches, each containing approximately

1.3 · 1011
protons. At maximum, 2800 bunches are present in each beam, with a

typical size of 200-300 µm and a spacing of 25 ns (about 7.5m). The beams collide

at four specific points where the detectors are. Before the collision, the beams are

focused to a size of 16 µm.

1
Due to the high prices of land in Geneva.

30

The most important physical variable of the accelerator is the luminosity L,

defined as

L = N1N2nbfrev

A
, (2.3)

where N1, N2 are the number of particles in each beam, nb is the number of

bunches, frev is the revolution frequency, and A is the effective beam overlap

cross section of the collision. If we assume the Gaussian distribution of the beams

in the transverse plane, the overlap cross section is given by

A = 4πσxσy, (2.4)

where σx and σy are the standard deviations of the Gaussian distribution. LHC

has a luminosity of L = 1034
cm

−2
s

−1
translating to billion collisions per second.

Another related variable is the integrated luminosity L, expressing the amount

of data collected in a given time period T

L =
∫︂

T
Ldt, (2.5)

expressed in the units of inverse femtobarns (fb
−1

). For example, the ATLAS

detector collected 140 fb
−1

of data.

2.3 Inner Detector
The inner detector consists of three parts: Pixel Detector, Semiconductor Tracker,
and Transition Radiation Tracker, figure 2.5. They are the first detection points

that are hit after the collision. The primary purpose of the inner detector is to

reconstruct the tracks of the charged particles. As we can see in figure 2.2, only

charged particles are visible by the inner tracking system.

Most interesting collisions are produced particles within |η| < 2.5, so the

tracker is only in this region. Even more, the inner detector is much denser and

has a higher granularity in the central region, as seen in figure 2.5.

2.3.1 Pixel Detector
The pixel detector, the first detection point, has the highest resolution and must

withstand the highest radiation dose. It consists of four layers of silicon pixels of

size 50 x (250-400) µm
2
. With an accuracy of about 10 µm, it can locate a charged

particle’s origin and measures its momentum.

The primary physical detection process is ionization. As charged particles

pass through the semiconducting silicon, they create electron-hole pairs, which

are collected by the readout electronics.

31

Figure 2.5 Tracker system of the ATLAS detector.

2.3.2 Semiconductor Tracker
Semiconductor Tracker (SCT) is similar to the pixel detector but with a different

type of position measuring. Instead of pixels, it uses strips to determine the

particle’s position. It covers way more volume than the pixel detector, with

a precision of up to 25 µm. Determination of coordinates is done by precise

alignment of the strips.

The physical process behind the detection is the same as in the pixel detector.

2.3.3 Transition Radiation Tracker
Transition Radiation Tracker (TRT) is the last part of the inner detector, being

the least precise. Instead of silicon, it uses a gas mixture of Xe, CO2, and O2 to

provide the ionizable material. The gas is put into straws with a diameter of 4 mm

and a length of up to 144 cm. Along the straw, in the middle, is a gold-plated

tungsten wire acting as an anode, while the cathode is the tube wall.

When a charged particle passes through the gas, it produces ion pairs. The

anode is at ground potential attracting negative ions, while the cathode wall is at

-1530V attracting positive ions. The straws are interleaved with polypropylene

fibers or foils to provide a material with different index of refraction. Relativistic

32

particles, with speeds above the speed of light in polypropylene (mainly electrons),

generate transition radiation when moving from and into the polypropylene.

Additional information about the particle is inferred from this transition radiation,

which is used to reconstruct the track and identify the particle.

2.4 Calorimeters

Figure 2.6 Calorimeter system of the ATLAS detector.

The primary purpose of calorimeters is to stop particles. More precisely, they

are designed such that particles deposit most of the energy in them. That is why

they are much larger than the tracking system, as seen in figure 2.2. They are

built up by alternating absorbing layers and energy-measuring layers.

In figure 2.2, we can see two types of calorimeters:

• Electromagnetic calorimeter is designed to stop electrons, positrons, and

photons.

• Hadronic calorimeter is designed to stop hadrons, i.e., composites of

quarks and gluons.

The hadronic calorimeter is the most important for our study because it

provides data for the jet reconstruction.

33

2.4.1 Electromagnetic Calorimeter
Another name for the electromagnetic calorimeter is liquid argon (LAr) calorimeter

because it uses liquid argon as a detecting material. The LAr is kept at -186
◦
C to

maintain the liquid state. As an absorber, the electromagnetic calorimeter uses

lead. Particles ionize the LAr when passing the layers, creating a measurable

current, which is then detected by accordion-shaped electrodes.

2.4.2 Hadronic Calorimeter
The hadronic calorimeter uses mainly Tile Calorimeter (TileCal) , an envelope

of the electromagnetic calorimeter, and LAr at the endcaps and forwards part.

The LAr part is similar to the electromagnetic calorimeter described above, but

instead of lead, it uses copper and tungsten as an absorber.

The TileCal uses steel as an absorber and scintillating tiles as a detector. As

particles pass through the plastic scintillators, they excite the molecules inside,

which emit light as they return to their ground state. This visible light is then

collected by optical fibers and converted into an electrical signal with photomul-

tiplier tubes. The intensity of the light is proportional to the energy deposited in

the scintillator.

2.5 Muon Spectrometer
The Muon Spectrometer is the furthest measuring system of the ATLAS detector,

as seen in figure 2.7. Muons have bigger mass than electrons and do not interact

with the strong interaction as hadrons, so they are not stopped in the calorimeters

(see figure 2.2)

Since stopping the muons is not feasible, we measure their momentum and

flight direction, utilizing the muon track’s bending in a magnetic field, which

we will explain in the next section 2.6. Muon spectrometers surround the entire

ATLAS detector to ensure that all muons are measured. The tracker provides one

measurement point, while the spectrometer offers the other to reconstruct the

muon track with the precision of 10% at 1 TeV.

2.6 Magnet systems
In the whole ATLAS detector, there are two main systems of magnets, toroidal

(blue field lines in figure 2.8) and solenoidal (green field lines in figure 2.8). All mag-

nets are superconducting, operated at -268
◦
C, to reach necessary field strengths.

34

Figure 2.7 Muon spectrometer system of the ATLAS detector.

The main purpose of magnets is to bend the trajectories of charged particles to

measure their transverse momentum pT according to
2

pT[GeV] = 0.3 · q ·B[T] ·R[m], (2.6)

where q is the particle’s charge (expressed in units of the elementary charge), B
is the magnetic field strength, and R is the radius of the trajectory.

The inner NbTi magnets are solenoidal and provide coverage for the tracking

system. They produce a 2T magnetic field in the axial direction. To give a

perspective, if we assume an electron with a momentum of 10 GeV, the bending

radius is 17 m. This number is enormous compared to the radius of the solenoid

magnet, which is just 1.2m. From this example, we can see how precise the

tracking system is.

On the other hand, particles with momentum less than circa 360 MeV wind

inside the solenoid magnet and do not reach the colorimeters. One such example is

low energetic pions, particularly important in our study because they are trapped

inside the solenoid magnet, not reaching the calorimeters, and are not used in

the jet reconstruction.

The toroidal magnets are composed of two parts: barrel and endcap. The

barrel magnets consist of eight 25.3m long, rectangular-shaped coils, the biggest

toroidal magnets in the world. They are supported by the endcap magnets, which

2
We assume that the magnetic field is constant and the particle’s mass is zero.

35

Figure 2.8 Magnet system of the ATLAS detector.

cover particles going in the forward direction, as seen in figure 2.8. Together they

provide a field of approximately 0.5-1T for bending the trajectories of muons,

measured by the muon spectrometer.

2.7 Trigger
The high luminosity that LHC provides results in an interaction rate of 40 MHz,

equivalent to 60 TB/s of data throughput [38]. This is a massive amount of data,

impossible to store and process. Most of the data contains no interesting physics,

so it is filtered by the trigger system.

The trigger system consists of two levels, L1 and High Level Trigger (HLT)

[38]. L1 uses data from calorimeters and muon spectrometers defining a Region-
of-Interest (RoI) , where it decides whether to keep the event or not, reducing the

interaction rate to 100 kHz. Fast custom electronic hardware with a latency of

2.5µs is used.

The HLT trigger uses a CPU farm of 40k CPU cores to reduce the event rate

to 1 kHz. After it, the data is prepared for long-time storage and analysis.

36

Chapter 3

Data

3.1 Monte Carlo Simulations
As training data for various neural network models, we do not use measured data

by the ATLAS detector, but rather simulated events. Simulations are based on

physical models, detector models, and stochastic processes involved in both the

physics and the detector. Hence the name, Monte Carlo simulations.

Simulation can be split into two parts: the physics simulation and the detector

simulation. The physical part uses the Pythia 8.2 package [39], a state-of-the-

art event generator. The detector response is made using the Geant4 package

[40] tailored to the ATLAS detector [41].

After the simulations, the MC data comes in the same format as the actual

data from the detector. For the simulation to make physical sense and still allow

an effective production of rare events, they assign weight to each event based

on the cross section of the simulated process. MC differs from data in the truth
information it contains from the physical simulation, which is used to train the

neural networks. However, object reconstruction is still done the same way as for

the actual data. Jet reconstruction is done in two steps: first, the jet constituents

are identified, and then the jet is reconstructed from the constituents. Constituent

identification will be discussed in section 3.3 and jet reconstruction in section 3.5.

3.2 Event Production
Pythia is capable of simulating hard interactions at LO (leading order in pertur-

bative QCD) accuracy and clustering partons into hadrons using the Lund string

model (described in section 1.5). We utilize the ATLAS A14 tuned parameters [42]

using the NNPDF23LO [43] parton density functions (see section 1.5). The decays

of heavy flavor hadrons are simulated using the EvtGen package [44].

37

Cross sections of events depend highly on the pT of scattered partons. To

be able to describe well the high pT (low probability, i.e., cross section) events,

the MC Pythia production is split into JZ slices. Each slice has a different pT

range of leading (with the highest pT) jet. In the original dataset are 13 slices,

JZ0-JZ12, but we will only utilize JZ1-JZ5, which are the most interesting for

physical analyses. A summary of the used JZ samples is shown in table 3.1. To

make the physical sense of the JZ slices, each slice is assigned a cross section on

top of the event weight, also summarized in table 3.1.

Table 3.1 Summary of the used JZ samples. Each slice corresponds to a different pT

range of the leading jet. The higher the pT the lower the probability, i.e. cross section σ.

Slice pT range [GeV] σ [nb] Filter Efficiency Size [GB]

JZ1 20-60 7.8 · 1010 2.44 · 10−2
78

JZ2 60-160 2.4 · 109 9.86 · 10−3
29

JZ3 160-400 2.6 · 107 1.16 · 10−2
70

JZ4 400-800 2.5 · 105 1.34 · 10−2
39

JZ5 800-1300 4.6 · 103 1.45 · 10−2
22

3.2.1 Truth Label
We use the PartonTruthLabelID as the target during the training. This label is

the flavor of the ghost parton with the highest energy in the jet. Ghost partons

are created from the partons in the jet by rescaling their energy with a small

number (10−15
), adding them to the jet, and then rerunning the jet clustering

algorithm. Rescaled partons matched with the original partons to a jet are called

ghost partons. The truth label defined this way is not collinear safe.

3.3 Constituent Identification
Our study identifies the jet constituents using the PF algorithm [6].

The PF algorithm is based on the Topocluster algorithm [45], which uses

only calorimeter (electromagnetic and hadron) information to identify energy

clusters. The seed of the cluster is a signal of strength at least 4σ, where σ is the

noise of the calorimeter. When such a seed is found, the algorithm searches for

neighboring cells with signal strength above 2σ. The neighboring cells are added

to the cluster, and the algorithm repeats the search for other neighboring cells.

When no more neighboring cells with signal > 2σ are found, all cells that form a

boundary are added to the cluster. After the algorithm looks for local maxima in

38

the cluster and splits it into two or more, if necessary. If a cell is neighboring two

or more clusters, the cell is assigned to two clusters with the highest energy. An

example of clusters is shown in figure 3.1.

Figure 3.1 Example of clusters found by the Topocluster algorithm [45]. Black lines
separate clusters.

Apart from topo-clusters, the PF algorithm also uses track information from

the inner detector. The main improvement of the PF algorithm is the removal of

double counting of energy in multiple clusters and putting them together as an

energy shower. A flow chart of the PF algorithm is shown in figure 3.2.

Figure 3.2 Flow chart of the Particle Flow algorithm [6].

The object construction procedure is as follows:

1. The PF algorithm starts with the topo-clusters and tracks.

2. Single track is matched to a single topo-cluster.

3. Energy of the track and the topo-cluster is calculated.

39

4. If the track’s energy is larger than the energy of the topo-cluster, a new
topo-cluster is added to the list of topo-clusters.

5. The energy of the list of topo-cluster is updated.

6. This is repeated until the track energy matches the energy of the list of

topo-clusters.

7. When energy matches, the energy from the list of topo-clusters is sub-
tracted from the whole calorimeter energy, and remnants are removed.

8. The output of the PF algorithm is a list of topo-clusters and tracks.

Energy showers used for jet reconstruction are an ensemble of matched topo-

clusters and tracks assigned to hard-scattered objects from the primary vertex.

Note that tracks are assigned only to charged particles with |η| < 2.5 (tracker

position), the rest are only assigned topo-clusters. We will refer to elements of

topo-cluster and track ensemble as Particle Flow Objects (PFOs) .

3.4 Pile-up
Pile-up refers to particles created in interactions, not from the primary, hard

interaction. As particles come in bunches, scattering can happen between whole

bunches, creating other particles. The important scatter tagged by the trigger is

clouded by pile-up particles, creating another background on top of the electronics.

The Topocluster algorithm searches for clusters on top of the pile-up, meaning

that the noise σ also contains pile-up particles.

In this context, it is good to introduce variables modeling the pile-up effect

on the jet [46]. Specifically, jet-vertex-fraction JVF, corrected JVT corrJVT, mo-

mentum fraction originated from primary vertex RpT
, jet-vertex-tagger JVT, and

forward jet-vertex-tagger fJVT. The primary vertex has the largest sum of squares

of transverse momenta of associated tracks.

The jet-vertex-fraction JVF is a fraction of the jet transverse momentum orig-

inating from the primary vertex (1st vertex is a shortcut for primary vertex,

and 2nd vertices is a shortcut for all other vertices)

JVF =
∑︁

track∈1st vertex
ptrack

T∑︁
track∈1st vertex

ptrack

T
+∑︁

track∈2nd verticies
ptrack

T

, (3.1)

where ptrack

T
is the transverse momentum of the track.

40

The corrected JVT corrJVT is a variable that corrects the JVF for the linear

increase of pile-up pT in jet wrt. the total pile-up in an event

corrJVF =
∑︁

track∈1st vertex
ptrack

T∑︁
track∈1st vertex

ptrack

T
+
∑︁

track∈2nd verticies

ptrack

T

k·N track

pile-up

, (3.2)

where k is a constant (usually k = 0.01), and N track

pile-up
is the total number of

pile-up tracks in the event.

The variable RpT is a fraction of the transverse jet momentum originating from

the primary vertex

RpT
=
∑︁

track∈1st vertex
ptrack

T

pjet

T

, (3.3)

where pjet

T
is the transverse momentum of the whole jet (including topo-

clusters).

The jet-vertex-tagger JVT is a discriminant calculated from corrJVF and RpT

using k-Nearest Neighbors (kNN) algorithm in two-dimensional corrJVT-RpT

plane. It assigns a number between 0 and 1, where 0 is a pile-up, and 1 is a

primary vertex scatter.

The forward jet-vertex-tagger fJVT [47] is a variable assigned to forward jets

that do not have any track assigned to them given as a normalized projection

fJVT = max
2nd verticies

pmiss

T, 2nd vertex
· pforward jet

T

|pforward jet

T
|2

, (3.4)

where pforward jet

T
is the two-dimensional transverse momentum vector of a

forward jet (no tracks assigned), and pmiss

T, 2nd vertex
is given by

pmiss

T, 2nd vertex
= −1

2

⎛⎝ ∑︂
track∈2nd vertex

kptrack

T
+

∑︂
jet∈2nd vertex

pjet

T

⎞⎠ , (3.5)

where k is a constant (usually k = 2.5), and ptrack

T
and pjet

T
are the two-

dimensional transverse momentum vectors of tracks and jets assigned to a

2nd vertex, respectively.

It is necessary to emphasize that the momenta ptrack

T
are calculated from the

tracks, not the PFOs because the Topocluster algorithm cannot assign a vertex.

If a jet has no track assigned, JVF, corrJVF, and JVT are all set to -1. Jets with

41

JVT< 0.5 are considered as pile-up (passJVT=0), and similarly for fJVT< 0.5
(passfJVT=0)

1
.

Another vital variable describing pile-up is the average expected number
of interactions per bunch crossing denoted by µ.

3.5 Jet Reconstruction
There are two commonly used types of jet reconstruction algorithms: fixed cone
and sequential recombination [48].

Fixed cone algorithms are based on the idea of a cone of fixed size, where

all objects inside the cone make up the jet. Examples are SISCone [49], or CellJet

[39]. The simple principle goes as follows:

1. Start with a given direction, usually the momentum direction of the hardest

objects.

2. Construct a cone of fixed size around the direction.

3. Add all objects inside the cone to the jet and exclude them from further

consideration.

4. Repeat the procedure for the remaining objects.

In case of cones overlapping, they are merged if the overlapping energy is more

than a given threshold (usually 0.5 of total energy). Jet is split into two if the

energy of the overlapping cone is less than a given threshold (usually 0.5 of total

energy).

Sequential recombination algorithms are based on clustering jets by some

metric, ’distance’. The general form of the common metric dij between two object,

and reference (beam) distance diB are given by [5]

dij = min (p2p
T,i, p

2p
T,j)

∆2
ij

R2 , diB = p2p
T,i, (3.6)

where pT,i and pT,j are the transverse momenta of the objects i and j, ∆2
ij =

(yi − yj)2 + (ϕi − ϕj)2
is the squared radial distance between the constituents

(coordinates are as defined in section 2.1.1), R is the radius parameter, and p is a

parameter determining the type of algorithm:

• p = −1 is the anti-kt
2
algorithm [5],

1
Jets are also required to have Timing< 10 ns to pass the fJVT (passfJVT=1). See appendix A

for the description of Timing.

42

• p = 1 is the kt algorithm [50],

• p = 0 is the Cambridge/Aachen algorithm [51].

Figure 3.3 Example of clustered jets with various algorithms. The top left is the
kt algorithm, the top right is the Cambridge/Aachen algorithm, the bottom left is the
SISCone algorithm, and the bottom right is the anti-kt algorithm.

The algorithm is as follows [5]:

1. Start with the hardest object and call it an entity.

2. Calculate dij between entity i and object j.

3. If dij < diB, add object j to the entity i (add their 4-momenta) and continue

with the next object, going back to step 2.

4. Else call the entity i a jet and exclude it from further consideration.

5. Continue until all objects are clustered into jets.

2
In the original paper, authors refer to the transverse momentum pT as kt. Anti-kt is the

reciprocal transverse momentum.

43

An example of clustered jets with various algorithms is shown in figure 3.3.

In our study, the object referred to in the algorithm descriptions are PFOs .

The anti-kt algorithm (p = −1) is widely used in the ATLAS community due to

its IRC safety (as defined in definition 1) and symmetrical jet shapes. We shall

use the anti-kt algorithm with R = 0.4 for all jet reconstructions.

44

Chapter 4

Deep Learning Architectures

4.1 Basic Concepts
Machine Learning is a field of computer science that uses statistical techniques

to allow computers to learn without being explicitly programmed. Deep Learning
is a subfield of Machine Learning focusing on the use of neural networks

1
. The

conceptual difference between Machine Learning and Deep Learning is:

Machine Learning is about learning general features.
Deep Learning is about learning abstract concepts.

To emphasize the difference even more, consider BDT (see for example [10]),

which is an old-fashioned Machine Learning model, and Transformer (see sec-

tion 4.5), a modern Deep Learning model. In the context of particle physics, BDT

is trained to provide learned cuts on the input data to separate the signal from

the background. On the other hand, Transformer is learned to form an abstract
representation of the input data, from which one can extract information about the

signal/background (this is even more apparent in the Particle Transformer (ParT)

and the Dynamicaly Enhanced Particle Transformer (DeParT) , see sections 4.6

and 4.7). It can learn not only the differences between signal and background but

also general physical concepts [23].

Deep Learning builds from the Multilayer Perceptron (MLP) [19], a multi-

layered neural network able to learn a any non-linear function from input data.

In detail, we will discuss more enhanced MLP in section 4.2.

The general idea of Deep Learning is to have some model, which is a set of

parameters and functions, taking a set of inputs and producing a set of outputs.

1
In some papers, they emphasize the difference between neural networks and artificial neural

networks since we are not interested in studying human neural networks, we will only be using

the term neural networks.

45

The model is trained by adjusting the parameters to fit the desired outputs. In

this context, we are interested in the supervised learning [52], where the desired

outputs are known (from MC simulations, for example). Some new use cases exist

for self-supervised learning [53], where the desired outputs are unknown, but we

will only briefly touch on them as a prospect.

4.1.1 Forward and Backward Passes
Let xxx be the input (generally a multi-dimensional tensor

2
) of a model f(•;www)

with trainable parameters www. We will call the forward pass of the model an

application of the model on the input data ooo = f(xxx;www), where ooo is the output of

the model (inference on input data xxx). The backward pass or backpropagation3
is

the process of adjusting the parameterswww to fit the desired output yyy. This is done

by calculating the loss L(ooo,yyy) between the output ooo = f(xxx;www) and the desired

output yyy (target), and then adjusting the parameterswww to minimize the loss. Loss

is a measure of how far the model is from the target.

There are several ways of adjusting the parameters, but the widely used

approaches are based on computing the gradient of the loss wrt. the parameters

www and then updating the parameters in the direction of the gradient [52]. This

can be sketched as follows

www ← www − α · O [∇wwwL(f(xxx;www), yyy)] , (4.1)

where α is the learning rate andO is the optimization algorithm (function), shortly

optimizer. The loss is usually calculated on a batch of data, making the process

more efficient and parallelizable, which is then averaged to get the final loss

www ← www − α · O
[︄
∇www

1
B

B∑︂
i=1

L(f(xxx(i);www), yyy(i))
]︄
, (4.2)

where B is the batch size and xxx(i)
and yyy(i)

are the i-th elements of the batch.

4.1.2 Traning process
Before discussing the individual models, we will briefly touch on the training

process as a whole.

2
This is NOT the same tensor as a physical tensor, which has a prescribed way of transforming,

but rather a multi-dimensional array of numbers.

3
Term backpropagation comes from the application of the chain rule. Imagine the model as a

composite of many functions, as the derivatives of the loss wrt. some parameters are computed,

the chain rule is used to get back to that parameter.

46

The dataset is split into a training set, a validation set, and in our case, also

a test set. The training set is used to train the model, the validation set is used

to monitor the training process, and the test set is used to evaluate the model’s

performance. The training process is split into several epochs, each consisting of

several iterations. An epoch is a complete pass through the training data, while an

iteration through a single batch of data. The total number of steps is the product

of the number of epochs and iterations.

After each epoch, we evaluate the model on the training set and the validation

set. Validation is done to have a statistically independent measure of the model’s

performance during the training process.

4.1.3 Output layer
Based on the type of the target output, we can distinguish between regression and

classification problems.

Classification is the task of predicting a discrete variable. The target variable

is a vector of numbers ttt, where the length of the vector is the number of classes.

It is a one-hot encoded vector, meaning that all the inputs are zero except for the

one corresponding to the correct class, which is one. To perform a classification

task, we must convert the vector vvv into a probability distribution over the classes.

This is done by applying the softmax function to the vector vvv, which is defined as

ppp = softmax(vvv) = exp(vvv)∑︁N
i=1 exp(vi)

= exp(vvv)
|| exp(vvv)|| , (4.3)

where N is the number of classes. In a case of binary classification (only two

classes), the vector is a single number v, and the softmax function reduces to a

sigmoid function

p = σ(v) = 1
1 + exp(−v) . (4.4)

Ideally, we would like the vector ppp to have a single non-zero element correspond-

ing to the correct class. In the case of binary classification, we would like the

number p to be either zero or one.

Regression is the task of predicting a continuous variable. The model’s

output is a vector of numbers vvv, where the length of the vector is the number of

variables to be predicted. Usually there is no output layer function for regression.

4.1.4 Loss Functions
The loss function measures how far the model is from the target. In the old days

of Machine Learning , the most common loss function was the mean square er-

47

ror (MSE) , defined as

L(ooo,yyy) = 1
N

N∑︂
i=1

(oi − yi)2, (4.5)

where N is the number of variables to be predicted (number of classes, in case of

classification task).

In modern Deep Learning frameworks, the cross-entropy loss is the most

common loss function, rooting from the information theory. Before talking about

the cross-entropy loss, we will introduce some basic concepts from information

theory [54]. We will denote the probability of a random variable x ∈ X by p(x),
where X is the set of all possible values of the random variable.

Self-information of a random variable x is defined as

Ip(x) = log 1
p(x) = − log p(x). (4.6)

The self-information measures the surprise of obtaining random variable x
when sampled from p.

Entropy of distribution p is defined as a mean self-information of the distribution

H(p) = ⟨Ip(x)⟩p = −
∑︂
x∈X

p(x) log p(x). (4.7)

The entropy measures the average surprise of obtaining a random variable

from the distribution p. The entropy is zero if the random variables are

deterministic and maximal if the random variables are uniformly distributed.

Cross-entropy is defined as a mean value of the self-information of the distri-

bution q when sampled from the distribution p

H(p, q) = ⟨Iq(x)⟩p = −
∑︂
x∈X

p(x) log q(x). (4.8)

The cross-entropy measures the average surprise of distribution q when

the actual distribution is p. Because of the Gibbs inequality H(p, q) ≥
H(p), [55], the cross-entropy is minimal if the distribution q is equal to the

distribution p.

Kullback-Leibler (KL) divergence is a difference between the cross-entropy

of the distribution p and q and the entropy of the distribution p.

DKL(p|q) = H(p, q)−H(p) = −
∑︂
x∈X

p(x) log p(x)
q(x) . (4.9)

The KL divergence measures the excess of the average surprise of distribution
p when the actual distribution is p.

48

We can now define the cross-entropy loss function

L(ooo,yyy) = −
N∑︂

i=1
yi log oi. (4.10)

It is important to note that cross-entropy is defined for probability distributions

so that the cross-entropy loss can be used only for classification tasks.

This is an excellent place to discuss the similarities to physical entropy. In

modern statistical physics, the definition of classical entropy roots exactly from

Shannon [54] as in the information theory. It is the measure of ignorance, in the

sense of missing information. In this context, we can say that the cross-entropy

is the measure of ignorance of the model. In quantum mechanics, entropy was

developed by John von Neumann [56], where the definition is slightly different,

but it is the same regarding probability distributions (wave functions). The KL

divergence is precisely the measure of the distinguishability of two quantum states.

4.1.5 Optimizers
Optimizers are algorithms that adjust the model weights to minimize the loss

function. The most common optimizers are based on the gradient descent and its

variants [57]. All of them have a common hyperparameter, the learning rate α,

which controls the size of the steps taken by the optimizer. We introduce three

common optimizers:

SGD (Stochastic Gradient Descent) [52] is an old-school Machine Learning algo-

rithm.

Algorithm 1 SGD

Input: model with weights f(•;www), outputs of a model f(xxx(i);www) in batches,

target values yyy(i)
in batches

Input: learning rate α
for n = 1 to number of iterations do

ggg ← ∇www
1
B

∑︁B
i=1 L(f(xxx(i);www), yyy(i))

www ← www − αggg
end for

Output: model f(•;www) with optimized weightswww

Adam (Adaptive Moment Estimation) [58] is a popular Deep Learning algorithm

used in almost every Deep Learning framework. As hyperparameters, apart

from the learning rate α, it has the decay rate of the first moment β1, the

49

decay rate of the second moment β2, a small constant ε to avoid division

by zero, and weight decay λ (which we will explain in section 4.1.7 as a

regularization technique that forces the weights to be smaller). There are

Algorithm 2 Adam

Input: model with weights f(•;www), outputs of a model f(xxx(i);www) in batches,

target values yyy(i)
in batches

Input: learning rate α, decay rate of the first moment β1, decay rate of the second

moment β2, small constant ε, weight decay λ
1: for n = 1 to number of iterations do
2: ggg ← ∇www

1
B

∑︁B
i=1 L(f(xxx(i);www), yyy(i))

3: sss← β1sss+ (1− β1)ggg
4: rrr ← β2rrr + (1− β2)ggg2

5: sss← sss
1−βn

1
6: rrr ← rrr

1−βn
2

7: www ← www − α
(︂

sss√
rrr+ε

+ λwww
)︂

8: end for
Output: model f(•;www) with optimized weightswww

several notable differences between Adam and SGD.

First, Adam uses the momentum (remembering the size of the previous step)

to accelerate the convergence. Intermediate variable sss is introduced as the

sum of the previous sss and the current gradient ggg in line 3 of algorithm 2.

The momentum is the previous step’s sss. β1 is the kept fraction of the last

step, usually set close to 1.

Second, Adam uses the adaptive learning rate to avoid the problem of

the learning rate being too small or too large. Intermediate variable rrr is

introduced as the sum of the previous rrr and the square of the current

gradient ggg in line 4 of algorithm 2. The learning rate is scaled by the inverse

of the square root of rrr (the operation of square root and inverse is done

element-wise on the vector rrr), adapting the learning rate to the size of the

gradient ggg2
in line 7 of algorithm 2 (the square of the gradient is used to

assert positive values). On top of that, rrr also has momentum as seen in

line 4 of algorithm 2, where β2 (usually set close to 1) is the fraction of the

previous rrr that is kept.

The operations in lines 5 and 6 of algorithm 2, called bias correction, are

used to avoid the initial bias of sss and rrr. At the beginning of the training,

the values of sss and rrr are zero, so the first step would be close to zero since

50

1− β1 and 1− β2 are close to zero. To correct this, sss and rrr are divided by

1− βn
i which makes the first steps larger.

LAMB (Layer-wise Adaptive Moments optimizer for Batch training) [59] is a state-

of-the-art optimizer algorithm built upon Adam, which helps train large

models. It has the same hyperparameters as Adam. LAMB introduces the

Algorithm 3 LAMB

Input: model with weights f(•;www), outputs of a model f(xxx(i);www) in batches,

target values yyy(i)
in batches

Input: learning rate α, decay rate of the first moment β1, decay rate of the second

moment β2, small constant ε, weight decay λ
1: for n = 1 to number of iterations do
2: ggg ← ∇www

1
B

∑︁B
i=1 L(f(xxx(i);www), yyy(i))

3: sss← β1sss+ (1− β1)ggg
4: rrr ← β2rrr + (1− β2)ggg2

5: sss← sss
1−βn

1
6: rrr ← rrr

1−βn
2

7: mmm← sss√
rrr+ε

+ λwww

8: www ← www − α ∥www∥ m
∥m∥

9: end for
Output: model f(•;www) with optimized weightswww

normalization of the step, which can be seen in line 8 of algorithm 3. This

normalization is done layer-wise to ensure that the weights will not diverge.

The second improvement is the scaling based on the size of the weights,

which can be seen in line 8 of algorithm 3 as ∥www∥. Both normalizations are

l2-norms [59].

Learning Rate Scheduling

Learning Rate Scheduling is a process of changing the learning rate during the

training process. Usually, it is done as a decay of the learning rate to allow the

model to converge into the absolute minimum of the loss function. Let us denote

the learning rate at the n-th iteration as αn and N as the total number of steps.

There are three common methods of learning rate decay:

• Linear αn = α0
(︂
1− n

N

)︂
,

• Exponential αn = α0 · dn
, where d ∈ (0, 1) is a number,

• Cosine αn = α0 · 1
2

(︂
1 + cos

(︂
πn
N

)︂)︂
.

51

Exploding Gradient

Huge models tend to diverge as they have a lot of parameters adjusted at the same

time, in a process called exploding gradient. There are two common methods to

prevent this [52]:

• Gradient Clipping allows a maximum value c of the norm of the gradient

∥ggg∥, if it is larger than c, it is scaled down to c ggg
∥ggg∥ .

• Warmup is a method that increases the learning rate from zero to the

desired value (usually linear) at the beginning of the training in some

number of warmup steps.

4.1.6 Activation Functions
Deep Learning neural networks are composed of two types of operations: lin-
ear and non-linear. Linear (more precisely, affine) operations are basic matrix

multiplications. Non-linear operations are the activation functions, which are

applied element-wise to the output of the linear operations. Alternating between

linear and non-linear operations is the key to the power of Deep Learning neural

networks, which can approximate any function with enough layers and learned

parameters. A Universal Approximation Theorem [60] states that a simple FC

Network (see section 4.2) with one hidden layer containing a finite number of

neurons can approximate any continuous function on a compact subset of Rn
to

any desired accuracy.

In this section, we will briefly discuss the most common activation functions:

• tanh - old-fashioned Machine Learning activation
4

tanh(x) = ex − e−x

ex + e−x
(4.11)

• ReLU (Rectified Linear Unit) - most common, ’goto’ Deep Learning activa-

tion

ReLU(x) = max(0, x), (4.12)

• GELU (Gaussian Error Linear Unit) [62] - smooth version of ReLU,

GELU(x) = xΦ(x) = x
1
2

(︄
1 + erf

(︄
x√
2

)︄)︄
, (4.13)

where Φ(x) is the cumulative distribution function of the standard normal

distribution and erf(x) is the error function,

4
However it is still being used in Deep Learning , for example in the RNN[61].

52

• Swish or SiLU (Sigmoid Linear Unit) [63] - another smooth version of

ReLU,

Swish(x) = xσ(x) = x

1 + e−x
, (4.14)

• Sigmoid - used after the last layer to convert a number to the probability

σ(x) = 1
1 + e−x

, (4.15)

• Softmax - used after the last layer to convert a vector to a probability

distribution

softmax(xxx) = exxx∑︁n
j=1 e

xj
. (4.16)

Sigmoid and Softmax were discussed in section 4.1.3. Graph with the activation

functions can be seen in figure 4.1 (softmax is excluded since in one dimension it

reduces to sigmoid),

Figure 4.1 Activation functions

53

4.1.7 Regularization
Overfitting happens when the model memorizes the training data instead of

learning the underlying pattern, which is why we need the validation dataset to

estimate the generalization error. Underfitting is the opposite when the model is

not trained enough to capture the underlying pattern. These terms are generally

used across all Machine Learning algorithms.

Remarkably, deep networks performance increases with the number of pa-

rameters without overfitting. There is a study [64] showing that if you pass the

classical regime of ’Bias-Variance Tradeoff’ (a more complex model has a lower

bias but higher variance) with the number of parameters, the modern regime of

’Larger Model is Better’ goes forever. This is another proof of the statements in

section 4.1 saying that Deep Learning models can learn abstract concepts.

However, to be able not to overfit the model, we need to use regulariza-
tion. Regularization is a technique that prevents the model from overfitting by

obstructing or penalizing the learning process. We will list the most common

regularization techniques:

Weight decay or L2 regularization is a penalty added to the loss function that

is a l2-norm of the weights.

L← L+ λ ∥www∥2 , (4.17)

where λ is the regularization strength. This regularization is usually imple-

mented into the optimizer because the gradient can be explicitly calculated.

See section 4.1.5.

Dropout is a technique that randomly sets some of the weights to zero during
training. The probability of a weight being set to zero is the only hyperpa-

rameter. Dropout forces the network to learn different data representations

and not rely on individual neurons.

Label smoothing is a technique that replaces the one-hot encoded labels with

a distribution of probabilities. For example, if the target is yyy = (0, 1, 0)
(second class), and we set the hyperparameter of label smoothing to 0.1, the

new label is yyỹ = (0.1, 0.8, 0.1).

Augmentation is a technique that applies random transformations to the input

data. For example, if we have an image as an input, we can randomly rotate

it, crop it, and change its brightness.

Ensambling is a technique that combines multiple models into one by averaging

their predictions.

54

4.1.8 Metrics
A metric measures how well the model performs. It evaluates the model. We will

only discuss the metrics for binary classification since we will use those. The

output of a binary classification model is a single number between zero and one

o ∈ [0, 1], where zero corresponds to the first class, and one corresponds to the

second class. We make a threshold τ ∈ (0, 1), where we assign the output to the

first class if o < τ and to the second class if o ≥ τ . Usually, the threshold is set

to 0.5, but it can be adjusted to optimize the desired output of the model. Going

further, we will assume that the threshold is set to 0.5 unless stated otherwise.

Let us denote the number of inputs that are correctly classified as the first class

T0, the number of inputs that are correctly classified as the second class T1, the

number of inputs that are incorrectly classified as the first class F0, the number

of inputs that are incorrectly classified as the second class F1. Usually, these

quantities are denoted as true negatives (TN), true positives (TP), false negatives
(FN), and false positives (FP), respectively. However, they are confusing and refer

to one class as positive and the other as negative, which is not the case in our

binary classification, where both classes are equally important. We try to simplify

the notation by using the notation true T and false F to denote the correct and

incorrect classification, respectively, and the numbers 0 and 1 to indicate the

output class.

A diagram of the following quantities is shown in figure 4.2. We can now

define the following metrics with a fixed threshold:

Accuracy is the fraction of correctly classified events

Accuracy = T0 + T1

T0 + T1 + F0 + F1
. (4.18)

Or generally a probability of correct classification.

Efficiency εi of class i is the fraction of correctly identifying the class i

εi = Ti

Ti + Fi

. (4.19)

This metric is referred to by various terms if i = 1: true positive rate (TPR)

sensitivity, recall, hit rate, probability of detection...

Rejection ε−1
i of class i is the inverse of the fraction of correctly identifying the

class i

ε−1
i = 1

εi

= Ti + Fi

Ti

. (4.20)

55

Figure 4.2 Visualization of the metrics. Red dots correspond to class 0, and blue dots
to class 1. The model is represented by a green line that separates the two classes. Red
highlighted dots were tagged by the model as class 0, and blue highlighted dots as class
1. In formulas at the bottom, the highlighted dots represent the number of total dots
with attributes given by the color and highlight.

False Rate φi of class i is the fraction of incorrectly identifying the class i

φi = Fi

Ti + Fi

(4.21)

This metric is referred to by various terms if i = 1: false positive rate (FPR),

fall-out, probability of false alarm...

Confusion Matrix (CM) is a plot where on the x-axis are the predicted classes,

and on the y-axis are the true classes. The CM is a good way to visualize

the performance of the model. The diagonal represents the efficiencies of a

given class and the off-diagonal represents the false rates of the given class.

Following metrics are defined with a variable threshold:

ROC (Receiver Operating Characteristic) curve is the plot of the efficiency ε1
against the false rate φ1 for different thresholds. It is good to note that there

is no point in evaluating it for the second class since the ROC curve would

reflect wrt—the diagonal.

AUC is the Area Under the ROC Curve, a simple integration of the ROC curve.

56

Rejection at Efficiency ε−1
i @xεj is the rejection of the one class i at a given

efficiency x of the second class j with an adjusted threshold.

4.2 Fully Connected Network

Figure 4.3 Diagram of the Fully Connected Network.

Fully Connected Network (FC) [19] is the most straightforward neural network,

where all the neurons in one layer are connected to all the neurons in the previous

and next layers. It is the same as MLP [19], but instead of tanh activation, we use

newer activation functions described in section 4.1.6.

The input is a vector xxx(0) ∈ Rn0
(input layer) and the output is a vector

ooo ≡ xxx(L+1) ∈ RnL+1
(output layer), where nL+1 is the number of classes. Between

input and output layers there are L hidden layers xxx(l) ∈ Rnl
, where nl is the

number of neurons in the l-th layer, i.e. layer size. The output of the l-th layer is

calculated as

xxx(l+1) = f(WWW (l)xxx(l) + bbb(l)), (4.22)

where f is the activation function,WWW (l) ∈ Rnl×nl−1
is the weight matrix (trainable

parameters), and bbb(l) ∈ Rnl
is the bias vector (trainable parameters). On the last

layer, the softmax or sigmoid activation function is used. After each layer, we

apply the dropout. The activation f : R → R is applied element-wise to the

57

vector xxx(l)
(the only exception is the softmax activation, which is applied on the

whole vector to normalize it). Going further we always assume that the activation

function is applied element-wise. A diagram of the FC Network is shown in

figure 4.3. Linear corresponds to the matrix multiplication and bias addition,

and Hidden to the sequential application of the Linear layer Activation and

Dropout. At the output, there is no dropout.

A more artistic diagram of the FC Network is shown in figure 4.4.

Figure 4.4 Artistic diagram of the Fully Connected Network5. Each node is a neuron
corresponding to a number in a vector xxx(l), and each edge is a weight corresponding to a
number in matrix WWW (l).

In our case, the input vector xxx(0)
are high-level jet variables and the output

vector is just one number o, which is the probability of the jet being a quark (1) or

gluon (0). This type of network allows us to utilize the reconstructed jet, whose

properties are given by the PFOs . However, it cannot utilize the information

about the PFOs themselves.

4.3 Highway Network
Highway Network [18] is an extension of the FC Network network, that introduces

a gate to the network. The gate is a bypass that allows the output of one layer

to pass through the next layer without any modification. Another term for the

5https://github.com/ashishpatel26/Tools-to-Design-or-Visualize-Archite
cture-of-Neural-Network.

58

https://github.com/ashishpatel26/Tools-to-Design-or-Visualize-Architecture-of-Neural-Network
https://github.com/ashishpatel26/Tools-to-Design-or-Visualize-Architecture-of-Neural-Network

Figure 4.5 Diagram of the Highway Network.

bypass is a residual connection. The gate is a learnable function controlling the

amount of data bypassing the layer. It multiplies the output of the hidden layer

by a probability p and adds the input of the layer multiplied by 1− p

xxx(l+1) = pf(WWW (l)xxx(l) + bbb(l)) + (1− p)xxx(l). (4.23)

The trick is estimating the probability p of using the newly calculated output

rather than the input. It is calculated from the input vectorxxx(l)
and another weight

matrixWWW (l)
g

(and bias bbb(l)
g

) followed by a sigmoid activation function, whose output

is a probability.

ppp(l) = σ(WWW (l)
g
xxx(l) + bbb(l)

g
), (4.24)

where the probabilities are calculated for each element of the vectorxxx(l)
separately

and are different for each layer. The output of the Highway Network layer is then

calculated as

xxx(l+1) = ppp(l) ⊙ f(WWW (l)xxx(l) + bbb(l)) + (1− ppp(l))⊙ xxx(l), (4.25)

where ⊙ is the element-wise multiplication. If we put it all together, one layer of

Highway Network can be written as

xxx(l+1) = σ(WWW (l)
g
xxx(l)+bbb(l)

g
)⊙f(WWW (l)xxx(l)+bbb(l))+(1−σ(WWW (l)

g
xxx(l)+bbb(l)

g
))⊙xxx(l). (4.26)

59

Everything else (output, dropout, activation function) is the same as in the FC

Network . The diagram of the Highway Network is shown in figure 4.5.

Highway Network uses the same input as the FC Network network, i.e. the

high-level jet variables. The only advantage of the Highway Network network is

that it is more stable when training the network with many layers.

4.4 Particle Flow and Energy Flow Network

Figure 4.6 Diagram of PFN (a) and EFN (b). The Einsum
layer corresponds to tf.einsum function and Point-wise CNN to
tf.keras.layers.Conv1D(filters=layer_size, kernel_size=1).

Particle Flow Network (PFN) and Energy Flow Network (EFN) [20] are two

networks that are designed to utilize the information about the PFOs . They are

developed specifically for HEP , using the theory of Deep Sets [65].

The general idea has three steps:

60

1. Per PFO Mapping

2. Summing over PFOs

3. Constructing Observable

In the case of PFN , this can be expressed in the form

OPFN = F

(︄
N∑︂

i=1
Φ(zzzi,φφφi)

)︄
, (4.27)

where the function F constructs the observable O, Φ is the per Particle Flow Ob-

ject (PFO) mapping, zzzi is a vector of PFO energy properties (pT, E) and φφφi is a

vector of PFO angular properties (η, ϕ).

EFN is similar to PFN but is specifically designed to be IRC safe (see defini-

tion 1)

OEFN = F

(︄
N∑︂

i=1
zzziΦ(φφφi)

)︄
. (4.28)

The mapping Φ is the same as in PFN , but the PFO energy properties are not used.

The linearity in zzzi satisfies the IRC conditions.

To construct the mapping Φ and the function F , the authors [20] use the

Universal Approximation Theorem [60] discussed in section 4.1.6 to make the

argument that FC Network is sufficient to approximate any function. For the F
function, we use the architecture of the FC Network network with F_layers a

number of hidden layers, but for the Φ function, we use the point-wise Convolu-
tional Neural Network (point-wise CNN) [66], which is a slight improvement over

the FC Network network still agreeing with (4.27) or (4.28). The point-wise CNN

is followed by batch normalization and activation to form a block that is repeated

Φ_layer times.

In the case of EFN , the summation over the PFOs is a matrix multiplication

over the PFO index. The output is a matrix (because both zzzi and φφφi are matrices)

which is then flattened to a vector.
6

This is not the case in the original paper, but

this modification’s performance is much better, still satisfying the IRC conditions

and the form of (4.28). The accompanying diagram of both PFN and EFN is shown

in figure 4.6.

The main advantage of PFN and EFN is that they are designed to use the

information about the PFOs , which is not the case for the FC Network or High-

way Network . On top of that, EFN is IRC-safe, which is crucial in the case of HEP

. Another advantage of IRC safe models is the stability of performance between

6
This is done using the tf.einsum function, hence the name in figure 4.6, followed by a

tf.reshape.

61

data from different physics simulation frameworks [67]. However, the biggest

downside of PFN and EFN is that they do not allow the PFOs to communicate
and share information.

4.5 Transformer

Figure 4.7 Diagram of the Transformer. The Class Token is represented as a blue row
of boxes. Operations concerning the Class Token are traced with a blue arrow.

Figure 4.8 Diagram of the Transformer layers. (b) is the Self-Attention Block, with the
main components being the Multihead Self-Attention (a) and the Feed Forward Network
(c). The Class Token is represented as a blue row of boxes.

Transformer [21] is a network designed to learn from set data with fixed

embedding dimension. It is based on the Attention mechanism, which is a core

component of Transformer network, allowing the input elements to communi-
cate with each other. The overall structure of the original Transformer consists

of Encoder and Decoder blocks, but in our use case, we only use the Encoder part,

62

which is shown in figure 4.7. The Encoder part is supposed to form a represen-
tation of the input data based on the task. On the other hand, the Decoder part

reconstructs some output data from the internal representation of the Encoder

part. To give a more concrete example, imagine a translation between languages

such as Czech and Slovak. The Encoder represents what the input Czech sentence

is trying to say, i.e., the abstract information, and the Decoder reconstructs the

Slovak sentence from the internal representation of the Encoder. As stated, we

are only interested in forming the internal representation of the input data, so

we only use the Encoder part of the Transformer , accompanied by information

extraction from the internal representation.

The whole Transformer starts with an embedding of the input set, expand-

ing the dimension of the input data to the embed_dim, allowing the model to

learn more complex representations. The embedding layer is just a FC Network

layer with embed_dim neurons and multiple hidden layers, as shown in figure 4.9

(a). After which come the Self-Attention (SA) Blocks (section 4.5.3), whose core

components are the Multihead Self-Attention (MHSA) (section 4.5.1) and Feed For-
ward Network (FFN) (section 4.5.2). The class extraction is done using the Class
Token (section 4.5.4).

The Transformer architecture provides a way for PFOs to communicate
and exchange valuable information, creating a complete representation of the

jet (input data). Despite its complexity, the Transformer provides an immense

advantage over the PFN and EFN , which is the ability to learn long-range
dependencies in the input data.

4.5.1 Multihead Self-Attention
The input of the Multihead Self-Attention layer is a set ofN vectors with dimension

embed_dim, denoted as C , with overall batched shape B ×N × C , where B is

the batch size. Every input vector creates 3 ’signs’:

1. Queries Q representing questions of vectors asking other vectors in the

set (for example: ’What is the highest pT? in the set’)

2. Keys K representing if the given vector has the answer to the questions of

other vectors (for example: ’I have the highest pT.’)

3. Values V representing the answer to the questions of other vectors (for

example: ’My pT is 100 GeV.’)

These three components are constructed from the input data. In the case of general

Attention for Q, K , and V can be different (some other input asks the question,

some additional input has the keys, and some other the values). Self-Attention is

63

a particular case of Attention whereQ, K , and V are created from the same input,

i.e., the input data is asking itself the questions. Going further in this section, we

will only focus on SA .

The MHSA layer is shown in figure 4.8 (a) for visual aid. Q, K , and V are

constructed from the same input data by the three Linear layers. After, the Q
and V are matrix-multiplied across the embedding index (C), resulting in a matrix

of shape B ×N ×N . This matrix is then scaled, and the softmax activation is

applied to form a probability distribution for each vector over the set, stating how

much Attention should be paid to each vector in the set to get the answer to the

asked question. This can be expressed as

Attention = softmax

(︄
QKT

√
d

)︄
(4.29)

resulting in a matrix of shape B ×N ×N . Multiplying the Attention by the V
matrix extracts the answer, resulting in a matrix of shape B ×N × C , the same

shape as the input data.

Instead of doing the Attention mechanism across the whole embedding di-

mension, the Transformer uses multiple heads. Each head is a separate Attention

mechanism with the head dimension d = C/H , where H is the number of heads.

Each head’s input and output shape is B ×N × C/H , constructed by reshaping

the input data to B ×H ×N × C/H (the calculations across the heads are done

in parallel, hence the extra dimension). The heads are concatenated, resulting

in an output of shape B ×N × C . As a result, the argument of Attention must

be scaled by

√
d, as stated in equation (4.29). At the end, a linear projection

across the embedding dimension C is done, to allow the heads to exchange some

information.

4.5.2 Feedforward Network
The Feed Forward Network (FFN) is a simple network with two Linear layers

with Activation between them. Its primary purpose is to allow the individual

vectors to learn from the data obtained in the MHSA layer. The size of the first

layer is embed_dim · expansion, where expansion is a hyperparameter. The

second layer is the embed_dim size to retain the original dimension of the input

data. The dropout is applied to the output of the second layer.

4.5.3 Self-Attention Block
The Self-Attention Block (SA Block) has a MHSA part and a FFN part as seen in

figure 4.8 (b). Before the MHSA and FFN part, the input data is normalized using

64

the Layer Normalization (LN) . LN computes the mean and standard deviation of

the input data and normalizes it across the embedding dimension such that the

mean is 0 and the standard deviation is 1. The mean and standard deviation are

learned parameters, so the LN is a trainable layer.

The dropout layer is put after the MHSA preventing overfitting.

Across the MHSA and FFN part is the residual connection, which is a simple

addition of the input data and the output of the MHSA and FFN part. This forces

the model to learn new information on top of what is already in the input data.

The SA Block are stacked on each other, constructing L layers, which are the

heart of the Transformer .

4.5.4 Class Extraction
The Transformer is a general-purpose model capable of learning any representa-

tion. To extract the class information of the whole input, we use the Class Token
[12]. The Class Token is a vector of trainable parameters (of the same embed_dim
shape as input vectors) concatenated at the beginning of the input data. It passes

through the Transformer layers with the input vectors extracting and storing the

class information. At the end of SA Blocks, the output is sliced (taking only the

first vector, the Class Token) and passed through a Linear layer to get the final

output followed by sigmoid or softmax Activation.

Figure 4.9 Embedding layers. (a) is a per-input vector embedding, and (b) is the
embedding of interaction variables.

65

4.6 Particle Transformer

Figure 4.10 Particle Transformer architecture.

Figure 4.11 Self-Attention layers of Particle Transformer.

Particle Transformer [8] is a Transformer variant with particle physics in

mind. It is based on the CaiT [22] architecture (see figure 4.10) with one crucial

extension: the interaction variables. Interaction variables are given for each pair

of input vectors, producing an overall second input of shape B ×N ×N × Cint,

where Cint is the number of interaction variables. These variables are manually

engineered
7

and embedded using the CNN embedding, consisting of multiple

blocks of point-wise CNN , batch normalization and Activation, as shown in

7
The explicit form depends on the input type. In the case of PFOs, the variables are shown in

section 5.3.2

66

Figure 4.12 Class Attention layers of Particle Transformer.

figure 4.9 (b). Since the variables are symmetric, we only need to embed the upper

triangle of the matrix, and the lower triangle is filled with the transposed upper

triangle. The diagonal is filled with zeros.

Afterward, they are used as the second input to every SA Block, which is

shown in figures 4.10 and 4.11, to modify the Attention as

Attention = softmax

(︄
QKT

√
d

+ U

)︄
, (4.30)

where U is embedded interaction variables. The point-wise CNN embedding of

interaction variables is done into H (number of heads) dimensions, resulting in a

matrix of shape B ×N ×N ×H providing each head with its own interaction

variables matrix U of shape B ×N ×N .

The only difference between SA Blocks in Transformer and ParT is the addition

of two LN , right after the MHSA and right before the second Linear layer of the

FFN . However, ParT utilizes the Class-Attention (CA) layers (section 4.6.1) for

feature extraction, which is shown in figure 4.10 and more detailed in figure 4.12.

It introduces the Class Token later in the architecture, allowing the MHSA to

67

focus purely on the input data. The output class is calculated from the Class

Token as in Transformer .

Utilizing the interaction variables helps the model focus on the input data’s

essential parts. Each head of the MHSA focuses on a different part of the input

data. The improvement of the ParT with the interaction variables compared

to one without them is significant [8] (see section 5.5). On top of that, the CA

blocks allow a more complex representation of PFOs and the jet information by

separating the attention mechanisms.

4.6.1 Class Attention Block

Class Attention Block (CA Block) is a Multihead Attention (MHA) layer with the

Class Token as the query. The input of the CA Block is a set of vectors of shape

B×N×C and the Class Token of shapeB×C . The Class Token is concatenated

to this set of vectors, resulting in a tensor of shape B× (N + 1)×C , additionally

it is used as a query for the MHA , as seen in figure 4.12. This allows the model

to focus on the class information. The Class Token asks for it and stores it.

Carrying out the matrix multiplications of the MHA yields a tensor of the

same shape as the Class Token, i.e., a vector of shape B × C . This vector is then

pushed through the FFN , outputting a vector of ’attended’ Class Token. The

residual connections use only the Class Token. The traces of the Class Token are

displayed as blue arrows in figure 4.12.

Two CA Blocks are put after the SA Blocks, both having the same input of

the set of vectors, and the output of the first CA Block is used as the Class Token

input for the second CA Block. The second CA Block output is a vector of shape

B × C , with the extracted information about the class of the entire input, which

is then passed through a Linear layer to get the final output followed by sigmoid

or softmax Activation.

4.7 Dynamically Enhanced Particle Transformer
The Dynamically Enhanced Particle Transformer (DeParT) is an enhancement

of the ParT architecture, utilizing the Talking Multi-Head Attention [13] mech-

anism (section 4.7.1). Other improvements include the use of Stochastic Depth
(section 4.7.2), Layer Scale (section 4.7.3), and gated FFN (section 4.7.4), all visu-

alized together in figure 4.13. The overall structure of the model is the same as

in figure 4.10, but the SA Blocks are replaced with Talking Self-Attention Blocks
(see section 4.7.1). The only modifications of CA Blocks are the replacements of

classical FFN with gated FFN .

68

Figure 4.13 Talking Self-Attention layers of Dynamically Enhanced Particle Trans-
former.

The Talking Multihead Self-Attention utilizes the interaction variables even

more by allowing the heads to exchange information about a given feature each

head possesses. On top of that, the Layer Scale and Stochastic Depth allow us to

train bigger models.

4.7.1 Talking Self-Attention Block

The Talking Self-Attention Block [13] is an extension of the MHA , allowing

individual heads to talk to each other. This is done by doing a linear projection

across the heads, in other words, applying a Linear layer across the heads

dimension H . We do this twice in the MHA , right after the matrix multiplication

of the query and key and right before the matrix multiplication of the value and

the attention weights, as shown in figure 4.13.

69

4.7.2 Stochastic Depth
Stochastic Depth [68] is a type of dropout, whose probability is dependent on the

layer number and drops the entire layer rather than individual elements of the

output. The deeper the layer, the bigger the probability of dropping it, linearly

dependent as

pl = pL

2 ·
(︄

1 + l

L

)︄
, (4.31)

pL is the probability of dropping the last layer, L is the total number of layers,

and l is the current layer number. The first layer is indexed as l = 0.

In each Talking Self-Attention Block is the Stochastic Depth applied twice,

after the MHSA and after the FFN .

4.7.3 Layer Scale
Layer Scale [22] is a type of normalization that helps the convergence of Trans-

formers with many layers. Residual connections cause a bottleneck in the flow

of gradients. This can be prevented by scaling the outputs of SA and FFN by an

diagonal matrix diag (λl,1, . . . , λl,d)
x′

l = xl + diag (λl,1, . . . , λl,d)× SA (LN (xl)) ,
xl+1 = x′

l + diag
(︂
λ′

l,1, . . . , λ
′
l,d

)︂
× FFN (LN (x′

l)) ,
(4.32)

where xl is the input of the layer, x′
l is the output of the SA layer, and xl+1 is

the output of the FFN layer. The parameters λl,i and λ′
l,i are learned during the

training, but at the beginning, are initialized with small values (e.g., 10−5
).

Layer Scale is applied after the SA and FFN layers in every SA Block.

4.7.4 Gated Feed-Forward Network
Gated Feed-Forward Network is a type of FFN , which uses a Gated Lin-
ear Units (GLU) [69]. Rather than being an improvement of the FFN , it is

an improvement of the Activation after a linear layer. We can express the GLU in

the form

ooo = f(WWWxxx) ·WWW gxxx, (4.33)

where ooo is the output, xxx is the input,WWW are the weights of the linear layer,WWW g are

the weights of the gate of the same shape asWWW , and f is the activation function.

We apply the ReLU activation in all gated FFN since it is the best performing [69].

There is also no bias in the GLU , which makes the model perform better.

By introducing the second weight matrix WWW g, the overall size of the FFN

would be bigger. To have the same size as the classical FFN , the layer expansion

is multiplied by the factor of 2/3.

70

Chapter 5

Training Jet Taggers

5.1 Main Goal

In our study, we teach a model to predict the probability of a jet being a quark

or a gluon. In other words, we want to tag the jet with a label saying whether it

came from a quark or a gluon. The dataset containing the jet information and

the targets is the MC simulations described in section 3.2. The target is a variable

constructed from jets_PartonTruthLabelID, which can have nine values: u-

quark (1), d-quark (2), s-quark (3), c-quark (4), b-quark (5), t-quark (6), gluon (21),

pileup (-1) or unknown (-999). The numbers in brackets are the PDG ID (PID) of

the parton [24].

Quarks (PID = 1, 2, 3, 4, 5, 6) are put into a single class corresponding

to the number 1, while gluons (PID = 21) are put into a single class corre-

sponding to the number 0. We refer to these targets as Truth Labels. Jets with

jets_PartonTruthLabelID equal to -1 or -999 are omitted from the dataset.

Before we can train a model, we need to make some assumptions about the

data. Primarily, the jet tag cannot depend on the underlying event. In other words,

we must be able to predict the jet tag using only the jet information, i.e., jet
variables. We will not use any physical weights coming from the MC simulation.

Previous ATLAS work primarily used only one variable to tag the jet [9]. Some

improvement has been made by utilizing more variables and training a BDT [11],

basic Machine Learning algorithm [10]. No other models have been successfully

deployed. We will train all models introduced in chapter 4 on the same dataset

and compare the results. Our baseline model is the BDT , which we will retrain

with the same dataset as the other models and the same hyperparameters as in

[11]. One variable tagger is not included in the comparison, as it is inferior to the

BDT [11].

71

5.2 Dataset
The dataset is constructed from the MC simulations described in section 3.2. We

use the Pythia dijet MC simulation with anti-kt jet clustering with R = 0.4 (see

section 3.5). The event reconstruction is done with Athena release 211
.

The preprocessing of the data is done in two stages: offline (section 5.2.1) and

online (section 5.2.2). The offline preprocessing is done once, while the online

preprocessing is done during training.

5.2.1 Offline Preprocessing

Figure 5.1 The offline preprocessing of the data.

The data comes in the form of a ROOT [70] file with a TTree containing the

variables of interest. We use the uproot [71] package to convert each file to

Tensorflow [72] native object tf.data.Dataset2
, which is afterward saved to

a file. We utilize the proprietary format of Tensorflow datasets to reduce the

time needed to load the data. The ROOT format is not optimized for fast sequential

access.

After the first conversion, the data is preprocessed again. In this second stage,

we remove pileup and unknown jets (those with PID = −1, −999), filter events

without any jet, and flatten events into individual jets. The tf.data.Dataset is

then efficiently saved to shards of equal size, enabling parallel loading of the data.

The whole process is illustrated in figure 5.1.

5.2.2 Online Preprocessing
The online preprocessing utilizing the tf.data.Dataset API allows a pipeline

construction of the dataset. Our preprocessing pipeline consists of the following

steps:

1. Load each JZ slice separately.

2. Filter data with the following cuts:

• jets_passFJVT == 1,

1https://atlassoftwaredocs.web.cern.ch/athena/athena-releases/
2https://www.tensorflow.org/api_docs/python/tf/data/Dataset

72

https://atlassoftwaredocs.web.cern.ch/athena/athena-releases/
https://www.tensorflow.org/api_docs/python/tf/data/Dataset

Figure 5.2 The online preprocessing of the data.

• jets_passJVT == 1,

• jets_Jvt > 0.8,

• jets_PFO_n > 5,

• jets_pt > (based on JZ slice, see section 5.2.3),

3. For each JZ slice, resample the quark and gluon datasets, each with equal

probability 0.5,

4. Combine JZ slices, each with the same probability (0.2 for each JZ slice

when JZ slices 1-5 are used),

5. Construct desired input variables,

6. Normalize the input variables,

In step 2, we apply cut on the jet variables estimating the amount of pileup.

ATLAS MC samples do not come with truth information about pileup jets to

reduce the amount of used disk space, so we filter them out as much as possible

using the abovementioned cuts.

We apply a cut on the jet pT based on the JZ slice to make the spectrum for

quarks and gluons more similar. This is extensively discussed in section 5.2.3.

Resampling the quark and gluon datasets is done to make the dataset balanced.

We can obtain the same result by reweighting each jet, but we have no prior knowl-

73

edge of the weights. The method tf.data.dataset.rejection_resample3

allows resampling on the go by computing the ratio dynamically as the data is

processed.

Combining JZ slices with equal probability ensures the model works on the

full spectrum of jets and does not use pT to make the decision. This is a non-trivial

step, as in actual physical data, the jet pT spectrum is highly dominated by low pT

jets, while the high pT jets are rare. However, some applications are specifically

interested in the high pT jets, so we want to ensure the model can also handle

them.

The construction of variables and their normalization is explained section 5.3.

The whole offline preprocessing is illustrated in figure 5.2.

5.2.3 JZ Cuts

(a) colored by their Truth Label (b) colored by their JZ slice

Figure 5.3 Normalized pT distributions of jets before the JZ cuts are applied.

As stated in section 3.2, data is split into JZ slices, each having a different pT

distribution. The distribution of the jet pT is shown in figure 5.3. The number of

quarks and gluons is the same.

From figure 5.3a, we can see that the pT distribution of the jets is different for

each Truth Label. Gluons dominate the low pT region
4
, while quarks dominate

the high pT region. All JZ slices contribute to these low pT regions, mainly with

soft gluon jets. This can be seen from figure 5.4, where all JZ slices are shown

separately. We do not want the tagger to use the variable pjet
T

to distinguish

3https://www.tensorflow.org/api_docs/python/tf/data/Dataset#rejection_r
esample

4
This might not be obvious, but pay attention to the log scale of the y-axis.

74

https://www.tensorflow.org/api_docs/python/tf/data/Dataset#rejection_resample
https://www.tensorflow.org/api_docs/python/tf/data/Dataset#rejection_resample

(a) JZ slice 1, 20 GeV cut (b) JZ slice 2, 60 GeV cut

(c) JZ slice 3, 160 GeV cut (d) JZ slice 4, 400 GeV cut

(e) JZ slice 5, 800 GeV cut

Figure 5.4 Normalized pT distributions of jets before the JZ cuts are applied.

75

(a) colored by their Truth Label (b) colored by their JZ slice

Figure 5.5 Normalized pT distributions of jets after the JZ cuts are applied. Lime lines
correspond to the pT cuts.

between quarks and gluons and avoid jets created from soft gluons. We separately

apply a cut on the jet pT for each JZ slice. These cuts are visualized in figure 5.4

with their respective values. Every jet with lower pT than the cut is removed from

the dataset.

The pT distributions of the jets after the cuts are applied are shown in figure 5.5.

Contributions from individual JZ slices are also visible in figure 5.5a, forming

a ’comb-like’ distribution shape. The respective cuts are shown with lime lines

to make it easier to see the cuts. The soft gluons are suppressed, and the pT

distribution of the jets is more similar for each Truth Label.

5.3 Input Variables
We will construct four types of variables:

• PFO variables - variables that are construsted from the 4-momenta of the

PFOs , they are calculated for each PFO in a given jet.

• PFO interaction variables - variables that are calculated from a pair of

4-momenta of two PFOs , they are calculated for each pair of PFOs in a given

jet.

• BDT variables - variables that are calculated from PFOs for a whole jet.

• High-level jet variables - variables that are pre-calculated for the jet in

the Athena framework.

The distributions of these variables are shown in appendix B.

76

5.3.1 PFO Variables

Table 5.1 PFO variables used as an input to constituent-based models. E is the
energy of the PFO, pT is the transverse momentum of the PFO, and η and ϕ are the
pseudorapidity and azimuthal angle of the PFO, respectively. [8]

PFO Variables

∆η = η − ηjet

∆ϕ = ϕ− ϕjet

∆R =
√

∆η2 + ∆ϕ2

log pT
logE
log pT

pjet
T

log E
Ejet

m

The complete list of PFO variables is shown in table 5.1 [8]. They are calculated

for each PFO in a given jet. An input is then a vector of PFO variables for each

PFO in a given jet, forming an input shape of N × 8, where N is the number of

PFOs in a jet.

We want the tagger to be rotationally invariant, so we only use angles in-

formation wrt. the jet axis. These are the first three variables in table 5.1. The

dynamical variables include the pT and E of the PFO . Long-tailed distributions

may cause problems for the neural network, so the logarithms of pT and E are

better suited. To emphasize the importance of a given PFO in a jet, the logarithm

of the ratios of pT (E) of a PFO to a jet pjet
T

(Ejet
) are used. Most of the PFOs are

neutral particles or cannot be associated with massive particles, so we assume

they are relativistic and neglect their masses. However, some leave tracks and are

reconstructed as charged pions with non-zero masses. We utilize this information

by adding the mass as a variable, which is not used in [8].

These variables are inputted to Transformer , ParT , and DeParT . PFN and

EFN also use these variables, apart from the mass m.

5.3.2 PFO Interaction Variables
The complete list of PFO interaction variables is shown in table 5.2 [8]. They

are calculated for each pair of PFOs in a given jet. An input is a matrix of PFO

interaction variables for each pair of PFOs in a given jet, forming a shape of

N ×N × 4, where N is the number of PFOs in a jet. The matrix is symmetric,

and the diagonal is manually filled with zeros.

77

Table 5.2 Interaction PFO variables used as an input to interacting constituent-based
models. Ea and Eb are the energies of the two PFOs, pµ,a and pµ,b are the 4-momenta
of the two PFOs, ηa and ηb are the pseudorapidities of the two PFOs, ϕa and ϕb are the
azimuthal angles of the two PFOs, and pa

T and pb
T are the transverse momenta of the

two PFOs. [8]

PFO Interaction Variables

log ∆ = log
√︂

(ηa − ηb)2 + (ϕa − ϕb)2

log kT = log (min (pa
T, p

b
T)∆)

z = min (pa
T, p

b
T)/(pa

T + pb
T)

logm2 = log (pµ,a + pµ,b)2

The kinematic variable is the angular distance ∆. The invariant mass m2
is

calculated from the 4-momenta of the two PFOs . We utilize the same variable

kT as used in the jet reconstruction section 3.5 (however, it is labeled differently,

according to [8]). The last variable, z, is also dynamic, the fraction of pT carried

by less energetic PFO . Again we take the logarithm of all these variables (ex-

cept z because it is bounded, see the distribution in appendix B.2) to squish the

distributions.

These variables are a secondary input to ParT and DeParT . We will train

these models both with and without interaction variables. Those trained with

interaction variables are denoted as Interacting ParT and Interacting DeParT.

5.3.3 BDT Variables
The complete list of BDT variables is shown in table 5.3 [11]

5
. They are calculated

for the whole jet from all PFOs , forming a 5-dimensional vector as an input.

NPFO is the number of PFOs in a jet, i.e. the multiplicity. Before BDT , taggers

used this single variable to tag jets. Variables WPFO and Cβ=0.2
1 are carefully

engineered to achieve the best performance. The pjet

T
and ηjet

were only added in

the last version of the tagger [11].

Only BDT uses these variables as input.

5.3.4 High-level Jet Variables
The complete list of high-level jet variables is shown in table 5.4, and their defini-

tions and commonly used symbols are given in appendix A. These variables are

precomputed by the Athena6
framework and are available for each jet. Together

5
In the original paper [11], they do not use PFOs , but only track (trk) information.

6https://atlassoftwaredocs.web.cern.ch/athena/athena-releases/

78

https://atlassoftwaredocs.web.cern.ch/athena/athena-releases/

Table 5.3 BDT variables used as an input to the Boosted Decision Tree. pT is the
transverse momentum of the PFO, η is the pseudorapidity of the PFO, ϕ is the azimuthal
angle of the PFO, ηjet is the pseudorapidity of the jet, and ϕjet is the azimuthal angle of
the jet, pjet

T is the transverse momentum of the jet. Summations are over PFOs in the jet.
[11]

BDT Variables

pjet
T
ηjet

NPFO = ∑︁
PFO ∈ jet

WPFO =
∑︁

a∈jet pa
T

√
(ηa−ηjet)2+(ϕa−ϕjet)2∑︁

a∈jet pa
T

Cβ=0.2
1 =

∑︁a̸=b

a,b∈jet pa
Tpb

T

(︂√
(ηa−ηb)2+(ϕa−ϕb)2

)︂β=0.2(︂∑︁
a∈jet pa

T

)︂2

Table 5.4 High-level jet variables commonly used in ATLAS analyses. They come
precomputed by Athena in the jet container. Index 0 refers to the first entry of that
variable in the jet container.

High-level Jet Variables

ActiveArea4vec_(m,pt,eta,phi) fJVT
JetConstitScaleMomentum_(m,pt,eta,phi) passFJVT
averageInteractionsPerCrossing[0] Jvt
FracSamplingMax JvtRpt
FracSamplingMaxIndex passJVT
GhostMuonSegmentCount JVFCorr
ChargedPFOWidthPt1000[0] Timing
TrackWidthPt1000[0] EMFrac
NumChargedPFOPt1000[0] Width
NumChargedPFOPt500[0] chf
SumPtChargedPFOPt500[0] PFO_n
(m,pt,eta,phi)

they form a 30-dimensional vector as an input.

FC Network and Highway Network use these variables as input.

79

5.3.5 Normalization
To make the learning process easier, we normalize the input variables. This helps

the neural network to converge faster and avoids numerical problems. Only

BDT variables are not normalized since BDT performance is not affected by the

normalization.

We can sketch the normalization procedure as follows:

ξ → ξ̃ = ξ − µ
σ

, (5.1)

where ξ is the input variable, µ is the mean of the variable, and σ is the standard

deviation of the variable. Each variable is normalized separately, shifting the

mean to zero and squishing the distribution to unit variance.

The mean and standard deviation are precomputed on a subset of the data be-

fore training. We utilize the tf.keras.layers.Normalization7
with axis=-1,

and the method adapt to compute the mean and standard deviation. Means and

standard deviations are fixed, untrainable parameters.

5.4 Training Configuration
The training is performed with TensorFlow 2.9.1 [72] and Keras 2.9.0 [73].

The general training configuration is the same for all models, with some exceptions

for BDT . The training dataset consists of 5M jets. The validation and test datasets

both consist of 0.5M jets. Each model is trained for 12 epochs (except BDT , which

has no epochs) with a batch size of 512 (resulting in 118K steps). Validation

is performed after each epoch, calculating the AUC and Accuracy. We employ

the LAMB optimizer (with β1 = 0.9, β2 = 0.999, ε = 10−6
) with an initial

learning rate of 0.001, cosine-decaying to zero over the 12 epochs. No clipnorm

nor weight decay is used, but a linear warmup is applied for the first 100 steps

of the training. We utilize the binary cross-entropy loss function without label

smoothing. We use 500 batches to calculate the mean and standard deviation for

the normalization layer. Hyperparameters are summarized in table 5.5. There

was no extensive hyperparameter tuning. They were chosen based on related

works [13, 8, 22, 12].

All models have approximately 2.6M parameters, except BDT . There were

trained on two NVIDIA TESLA V100 GPUs with 16GB or 32GB of memory (de-

pending on the model, interaction variables are more memory-hungry).

7https://www.tensorflow.org/api_docs/python/tf/keras/layers/Normalizati
on

80

https://www.tensorflow.org/api_docs/python/tf/keras/layers/Normalization
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Normalization

Table 5.5 Summary of common training configuration for all models.

Data

Training Dataset 5M jets

Validation Dataset 0.5M jets

Test Dataset 0.5M jets

Number of Epochs 12

Batch Size 512

Total Steps 118k

Normalization Layer adaptation on 500 batches

Optimizer

Optimizer LAMB

Learning Rate 0.001

β1 0.9

β2 0.999

ε 10−6

Learning Rate Scheduling Cosine Decay

Warmup Linear (100 steps)

Clip Norm None

Loss

Loss Binary Cross Entropy

Label Smoothing None

Weight Decay None

5.4.1 BDT Configuration

The training is performed with the TensorFlow Decision Forests 0.2.78

library using the tfdf.keras.GradientBoostedTreesModel model. We train

600 trees with a maximum depth of 5. The minimum number of samples in a

leaf is 5000. The shrinkage factor is 0.5, and L2 regularization is applied with

a weight of 0.1. The loss is the same as for the neural networks, the binary

cross-entropy. The BEST_FIRST_GLOBAL growing policy is used, and the split

axis policy is SPARSE_OBLIQUE. All additional parameters are set to their default

values
9
. Everything is summarized in table 5.6.

8https://www.tensorflow.org/decision_forests
9https://www.tensorflow.org/decision_forests/api_docs/python/tfdf/keras

/GradientBoostedTreesModel

81

https://www.tensorflow.org/decision_forests
https://www.tensorflow.org/decision_forests/api_docs/python/tfdf/keras/GradientBoostedTreesModel
https://www.tensorflow.org/decision_forests/api_docs/python/tfdf/keras/GradientBoostedTreesModel

Table 5.6 Configuration of BDT model.

Parameter BDT

Number of Trees 600

Growing Strategy BEST_FIRST_GLOBAL
Maximum Depth 5

Split Axis SPARSE_OBLIQUE
Shrinkage 0.5

Minimum Examples per Leaf 5k

L2 Regularization 0.1

5.4.2 Transformer, ParT, and DeParT Configuration

Table 5.7 Configuration of Transformer, ParT, and DeParT models.

Parameter Transformer ParT DeParT

Embedding Dimension 128 128 128

Self-Attention Block Layers 13 11 11

Class Attention Block Layers - 2 2

Heads 8 8 8

Expansion 4 4 4

Dropout - 0.1 -

Stochastic Depth Drop Rate - - 0.1

Layer Scale Initialization - - 10−5

Number of Embedding Layers 3 3 3

Number of Interaction Embedding Layers - 3 3

Size of Interaction Embedding Layers - 64 64

Activation GELU GELU GELU

Transformer, ParT , and DeParT embed the input variables into 128 dimensions,

with 3 embedding layers. The total number of layers of each model is 13, where

in the case of DeParT and ParT , the last 2 layers are CA Blocks. All three models

use 8 heads and FFN expansion factor of 4, which results in 512 dimensions in the

FFN layer and GELU Activation. In the case of the Transformer , no dropout is

applied, ParT uses dropout with a rate of 0.1, and DeParT uses Stochastic Depth

Drop with a rate of 0.1. DeParT also uses the Layer Scale with an initial value of

10−5
.

ParT and DeParT are trained with and without the interaction variables. The

interaction variables are embedded with 3 layers, each of size 64, while the last

82

one is the same as the number of heads, 8. All hyperparameters are summarized

in table 5.7.

5.4.3 Fully Connected and Highway Network Configuration

Table 5.8 Configuration of FC and Highway models.

Parameter Fully Connected Highway

Layer Size 512 344

Number of Layers 11 11

Dropout 0.2 0.2

Activation Swish Swish

Both FC Network and Highway Network have 11 hidden layers with a 0.2

dropout rate and Swish Activation. FC Network has 512 neurons in each layer,

while Highway Network has 344 neurons to account for the skip connections.

5.4.4 PFN and EFN Configuration

Table 5.9 Configuration of PFN and EFN models.

Parameter PFN EFN

Φ layers 5 x 512 4 x 512 + 1 x 136

F layers 6 x 512 6 x 512

Φ CNN CNN

Activation ReLU ReLU

Dropout - -

Both PFN and EFN use point-wise CNN for the Φ mapping. PFN has 5 layers

of sizes 512, while EFN has 4 layers of sizes 512 and one of 136 to account for

the summation over the PFOs while still having roughly the same number of

parameters as PFN . For the F function, both models use 6 layers of sizes 512. All

Activation functions are ReLU, and no dropout is applied.

5.5 Results
The training results are shown in table 5.10. Our proposed DeParT model with

interaction variables outperforms all other models. It also outperforms all other

83

Table 5.10 Results of the different models. The best results are highlighted in bold.

Model Accuracy AUC εq εg

Interacting DeParT 0.7433 0.8227 0.7204 0.7680

Interacting ParT 0.7427 0.8223 0.7142 0.7730

DeParT 0.7414 0.8203 0.7163 0.7669

ParT 0.7404 0.8194 0.7092 0.7777
Transformer 0.7384 0.8170 0.7138 0.7634

PFN 0.7366 0.8150 0.7101 0.7661

EFN 0.7201 0.7966 0.6890 0.7555

Highway 0.7316 0.8089 0.7017 0.7617

Fully Connected 0.7306 0.8100 0.6998 0.7620

BDT 0.7073 0.7823 0.6721 0.7426

Table 5.11 Technical information about the models. The total number of parameters
is given in millions. The time and memory are measured on a single NVIDIA Tesla V100
GPU 32GB. The time corresponds to the inference time of one batch of size 512. Memory
is the maximum GPU memory usage during inference of batch with size 512.

Model Params [106
] Batch Time [ms] GPU Memory [MB]

Interacting DeParT 2.62 190.3 2578

Interacting ParT 2.62 169.7 1411

DeParT 2.61 118.0 574

ParT 2.61 95.8 536

Transformer 2.61 110.0 570

PFN 2.64 15.6 359

EFN 2.60 15.0 551

Highway 2.62 2.8 44

Fully Connected 2.64 1.6 34

BDT - 20.4 -

models without interaction variables. What is fascinating is that the previously

used model on jet tagging, BDT , gets obliterated by all other models. However,

the differences between the models are not as significant as expected. This is due

to the physical limit of the tagging task at low pT. We will discuss this in more

detail in section 5.5.1.

The technical information about the models is summarized in table 5.11. The

disk space of saved models is roughly the same for all of them, around 35 MB,

except for BDT , which is 1.4 MB. It is given by the number of total parameters,

84

which is roughly the same for all models. The tiny differences did not affect the

performance.

(a) Interacting DeParT (b) BDT

Figure 5.6 Confusion matrices for selected models.

Even though the interaction variables are computed from the PFO variables,

i.e., the model can learn how to calculate them without being explicitly told, they

still improve the performance. Because every head is given different input, it helps

them focus on various aspects of the jet, and when combined, they can learn more

complex patterns. Even more, allowing the heads to talk to each other (something

that ParT does not, but DeParT does) improves the performance. On the other

hand, interaction variables make the computation more expensive because they

are used as a second input, the memory usage is much higher, and the inference

time is longer, as seen in table 5.11.

Another exciting aspect is the inference time of the models, BDT especially.

Since BDT dost not run on the GPU, it is significantly slower than Highway Net-

work and FC Network , which are far more complex models. On top of that, even

EFN and PFN that use PFO variables are faster than BDT .

Confusion Matrices are shown in figure 5.6 for selected models (the rest is

in appendix C.1). They follow a similar pattern, where the quarks are more

challenging to distinguish from the gluons than the gluons from the quarks. This

can be seen from the lower left corner, where the quarks are misclassified as

gluons.

Score outputs colored by their Truth Label of the selected models are shown in

figure 5.7 (the rest is in appendix C.2). The middle lime line, at 0.5, is the threshold

for the classification, everything left is classified as a gluon, and everything right

85

(a) Interacting DeParT (b) BDT

Figure 5.7 Output scores for selected models colored by the Truth Label. The lime
line represents the classification threshold; everything left is tagged as a gluon, and
everything right is tagged as a quark.

is classified as a quark. The DeParT model on figure 5.7a has better separation

between the two classes than the BDT . However, all models have a small peak at

0.4, where they all suffer from misclassification. This peak comes from low pT

jets, where the tagging is limited, as discussed in section 5.5.1.

We have demonstrated the unsatisfactory performance of the previously used

model, BDT , and the superiority of our proposed model, DeParT . In the following

sections, we will look at the dependence of the performance on the pT, η, and

the pileup µ. We will omit the BDT model from the plots, as it is irrelevant and

makes the plots unreadable.

5.5.1 Transverse Momentum Dependence
In figure 5.8, we can see that the accuracy of the models is dependent on the pT of

the jets. The higher the pT, the better the performance. At low pT, there seems to

be an upper bound on the accuracy since none of the models can improve as much

as they do at higher pT. Different factors may cause this. The pure definition

of PartonTruthLabelID can be inconsistent at low pT, or the jet clustering

algorithm has problems such as distinguishing hard jets and pileup. Also, at

higher pT, above 200 GeV, the performance is more or less stable with pT.

The model’s ordering is more visible if we zoom in on the high pT range,

as seen in figure 5.9. The EFN is the worst-performing model, which indicates

that some kind of mapping of energy variables (like pT or E) is necessary for

the model to perform well and instead tackle the IRC safety differently. The

Highway Network is almost identical to the FC Network , which is unsurprising,

86

Figure 5.8 Accuracy of the models as a function of pT and relative to the Transformer
model.

as they are very similar models. The main advantage is that the Highway Network

diverges less than the FC Network , but using the LAMB optimizer makes the FC

Network converge to the same result
10

.

The averaged difference from Transformer is displayed in figure 5.10 to em-

phasize the relative model performances.

Additional metrics are plotted in appendix C.3.

10
When we trained them with Adam optimizer, the FC Network performed worse.

87

Figure 5.9 Zoom to the accuracy of the models as a function of pT and relative to the
Transformer model.

Figure 5.10 pT averaged difference from the Transformer model.

88

5.5.2 Pseudo-rapidity Dependence

Figure 5.11 Accuracy of the models as a function of |η| and relative to the Transformer
model.

In figure 5.11, we can see that the accuracy of the models is way less dependent

on the |η| than on the pT. The only slightly different part is at |η| ≈ 2.1, where

the tracker cannot measure the full jets. We also see that EFN is more dependent

on the |η| than the other models. This may be caused by the fact that EFN uses

per PFO mapping only on the angular variables causing the model to be more

sensitive to the |η|.
The relative performance of the models, shown in figure 5.12, is similar to the

pT dependence.

Additional metrics are plotted in appendix C.4.

89

Figure 5.12 |η| averaged difference from the Transformer model.

5.5.3 Pileup Dependence
Dependence on the pileup µ is shown in figure 5.13. It impacts the performance

of the models the least out of the three variables. The trend is slightly downward,

but it is not significant.

The relative performance of the models, shown in figure 5.14, is similar to the

pT and |η| dependence.

Additional metrics are plotted in appendix C.5.

90

Figure 5.13 Accuracy of the models as a function of µ and relative to the Transformer
model.

Figure 5.14 µ averaged difference from the Transformer model.

91

92

Conclusion

We have successfully developed a modern Transformer-like model that uses jet

constituents to determine the original parton initiating the jet. To achieve this,

we have reviewed the crucial physical aspects of QCD describing the behavior

of partons and jets and the detector response to jets. The training data was a

Monte Carlo simulation passed through the detector simulation with the ob-

ject reconstruction the same as in the real data, provided by the ATLAS Run 2

simulations.

We reviewed modern architectures and techniques of Deep Learning and

applied them to the problem of jet tagging. We touched on multiple problems

that may arise in particle physics applications of Deep Learning, such as the

truthfulness of labels, reconstruction of data, and the underlying physics.

Different models using various levels of jet information were trained and

compared. Our proposed DeParT model outperformed all of them, including

the previously used quark/gluon tagger and the state-of-the-art jet tagger ParT .

We have demonstrated the Transformer architecture’s advantage in extracting

information from the jet constituents. They provide a more complete and flexible

description of the jet than the previous models. On top of that, the Transformer

architectures have far more immense potential, where it could be used to tag

individual flavors of quarks separately on top of the quark/gluon tagging. The

only downside of the model is a large number of parameters, which makes it

computationally expensive.

The proposed model showed only little angular and pileup dependence on

the performance, which is a desirable property for a jet tagger. There is room for

improvement of the model in the energy dependence, which is a more challenging

problem since the physics changes drastically.

Future work
A possible improvement is to make the model Infrared and Collinear Safe, which

might be achieved by adding data augmentation steps. This would make the

model more robust to the effects of the jet reconstruction and allow for a more

93

physical description.

The dependence of the model on the simulation framework should be investi-

gated to make the model applicable. If the model performs similarly on different

simulators (without being explicitly trained on them), we could be confident that

the model learned physics and not the simulation’s specifics. From this point, we

would test the performance on real data and calibrate MC . Finally, the DeParT

could be used in real data analysis.

94

Bibliography

[1] Murray Gell-Mann. “A Schematic Model of Baryons and Mesons”. Phys.
Lett. 8 (1964), pp. 214–215. doi: 10.1016/S0031-9163(64)92001-3.

[2] CERN (The European Organization for Nuclear Research). http://www.cer
n.ch/, last accessed May 2, 2023.

[3] “LHC Machine”. JINST 3 (2008). Ed. by Lyndon Evans and Philip Bryant,

S08001. doi: 10.1088/1748-0221/3/08/S08001.

[4] G. Aad et al. “The ATLAS Experiment at the CERN Large Hadron Collider”.

JINST 3 (2008), S08003. doi: 10.1088/1748-0221/3/08/S08003.

[5] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. “The anti-kt jet clus-

tering algorithm”. JHEP 04 (2008), p. 063. doi: 10.1088/1126-6708/2008
/04/063. arXiv: 0802.1189 [hep-ph].

[6] Morad Aaboud et al. “Jet reconstruction and performance using particle

flow with the ATLAS Detector”. Eur. Phys. J. C 77.7 (2017), p. 466. doi:

10.1140/epjc/s10052-017-5031-2. arXiv: 1703.10485 [hep-ex].

[7] M. Aaboud et al. “Search for R-parity-violating supersymmetric particles

in multi-jet final states produced in p–p collisions at s=13 TeV using the

ATLAS detector at the LHC”. Physics Letters B 785 (2018), pp. 136–158. issn:

0370-2693. doi: https://doi.org/10.1016/j.physletb.2018.08.02
1. url: https://www.sciencedirect.com/science/article/pii/S0
370269318306270.

[8] Huilin Qu, Congqiao Li, and Sitian Qian. “Particle Transformer for Jet

Tagging” (Feb. 2022). arXiv: 2202.03772 [hep-ph].

[9] ATLAS. Quark versus Gluon Jet Tagging Using Charged Particle Multiplicity
with the ATLAS Detector. Tech. rep. Geneva: CERN, 2017. url: https://c
ds.cern.ch/record/2263679.

[10] Yann Coadou. “Boosted decision trees” (Mar. 2022). doi: 10.1142/978981
1234033_0002. arXiv: 2206.09645 [physics.data-an].

95

https://doi.org/10.1016/S0031-9163(64)92001-3
http://www.cern.ch/
http://www.cern.ch/
https://doi.org/10.1088/1748-0221/3/08/S08001
https://doi.org/10.1088/1748-0221/3/08/S08003
https://doi.org/10.1088/1126-6708/2008/04/063
https://doi.org/10.1088/1126-6708/2008/04/063
https://arxiv.org/abs/0802.1189
https://doi.org/10.1140/epjc/s10052-017-5031-2
https://arxiv.org/abs/1703.10485
https://doi.org/https://doi.org/10.1016/j.physletb.2018.08.021
https://doi.org/https://doi.org/10.1016/j.physletb.2018.08.021
https://www.sciencedirect.com/science/article/pii/S0370269318306270
https://www.sciencedirect.com/science/article/pii/S0370269318306270
https://arxiv.org/abs/2202.03772
https://cds.cern.ch/record/2263679
https://cds.cern.ch/record/2263679
https://doi.org/10.1142/9789811234033_0002
https://doi.org/10.1142/9789811234033_0002
https://arxiv.org/abs/2206.09645

[11] Wanyun Su et al. Calibration of the quark/gluon jet tagging variables using
matrix method with the ATLAS detector. Tech. rep. Geneva: CERN, 2022.

url: https://cds.cern.ch/record/2802919.

[12] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers

for Language Understanding”. CoRR abs/1810.04805 (2018). arXiv: 1810.0
4805. url: http://arxiv.org/abs/1810.04805.

[13] Hugo Touvron, Matthieu Cord, and Herv’e J’egou. “DeiT III: Revenge of

the ViT”. In: European Conference on Computer Vision. 2022.

[14] Tom B. Brown et al. “Language Models are Few-Shot Learners”. CoRR
abs/2005.14165 (2020). arXiv: 2005.14165. url: https://arxiv.org/ab
s/2005.14165.

[15] OpenAI. GPT-4 Technical Report. 2023. arXiv: 2303.08774 [cs.CL].

[16] Robin Rombach et al. “High-Resolution Image Synthesis With Latent Dif-

fusion Models”. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). 2022, pp. 10684–10695.

[17] Aditya Ramesh et al. “Zero-Shot Text-to-Image Generation”. CoRR (2021).

arXiv: 2102.12092.

[18] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. “Highway

Networks”. CoRR abs/1505.00387 (2015). arXiv: 1505.00387. url: http:
//arxiv.org/abs/1505.00387.

[19] C. Van Der Malsburg. “Frank Rosenblatt: Principles of Neurodynamics:

Perceptrons and the Theory of Brain Mechanisms”. In: Brain Theory. Ed.

by Günther Palm and Ad Aertsen. Berlin, Heidelberg: Springer Berlin

Heidelberg, 1986, pp. 245–248. isbn: 978-3-642-70911-1.

[20] Patrick T. Komiske, Eric M. Metodiev, and Jesse Thaler. “Energy Flow

Networks: Deep Sets for Particle Jets”. JHEP 01 (2019), p. 121. doi: 10.100
7/JHEP01(2019)121. arXiv: 1810.05165 [hep-ph].

[21] Ashish Vaswani et al. “Attention Is All You Need”. CoRR abs/1706.03762

(2017). arXiv: 1706.03762. url: http://arxiv.org/abs/1706.03762.

[22] Hugo Touvron et al. “Going deeper with Image Transformers”. CoRR
abs/2103.17239 (2021). arXiv: 2103.17239. url: https://arxiv.org
/abs/2103.17239.

[23] Thorben Finke et al. “Learning the language of QCD jets with transformers”

(Mar. 2023). arXiv: 2303.07364 [hep-ph].

[24] P. A. Zyla et al. “Review of Particle Physics”. PTEP 2020.8 (2020), p. 083C01.

doi: 10.1093/ptep/ptaa104.

96

https://cds.cern.ch/record/2802919
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2102.12092
https://arxiv.org/abs/1505.00387
http://arxiv.org/abs/1505.00387
http://arxiv.org/abs/1505.00387
https://doi.org/10.1007/JHEP01(2019)121
https://doi.org/10.1007/JHEP01(2019)121
https://arxiv.org/abs/1810.05165
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2103.17239
https://arxiv.org/abs/2103.17239
https://arxiv.org/abs/2103.17239
https://arxiv.org/abs/2303.07364
https://doi.org/10.1093/ptep/ptaa104

[25] S. M. Oser. “Neutrino oscillation results from the Sudbury Neutrino Obser-

vatory”. In: 31st International Conference on High Energy Physics. Dec. 2001,

pp. 8–17.

[26] P. A. M. Dirac. “The Quantum Theory of the Emission and Absorption of

Radiation”. Proceedings of the Royal Society of London Series A 114.767 (Mar.

1927), pp. 243–265. doi: 10.1098/rspa.1927.0039.

[27] R. P. Feynman. “Space-Time Approach to Quantum Electrodynamics”. Phys-
ical Review 76.6 (Sept. 1949), pp. 769–789. doi: 10.1103/PhysRev.76.769.

[28] Marián Fecko. Differential Geometry and Lie Groups for Physicists. Cam-

bridge University Press, 2006. doi: 10.1017/CBO9780511755590.

[29] Matthew D. Schwartz. Quantum Field Theory and the Standard Model. Cam-

bridge University Press, Mar. 2014. isbn: 978-1-107-03473-0, 978-1-107-

03473-0.

[30] F. Halzen and Alan D. Martin. QUARKS AND LEPTONS: AN INTRODUC-
TORY COURSE IN MODERN PARTICLE PHYSICS. 1984. isbn: 978-0-471-

88741-6.

[31] J. Chýla. Quartks, partons and Quantum Chromodynamics. 2009.

[32] Toichiro Kinoshita. “Mass Singularities of Feynman Amplitudes”. Journal
of Mathematical Physics 3.4 (July 1962), pp. 650–677. doi: 10.1063/1.172
4268.

[33] T. D. Lee and M. Nauenberg. “Degenerate Systems and Mass Singularities”.

Physical Review 133.6B (Mar. 1964), B1549–B1562. doi: 10.1103/PhysRev
.133.B1549.

[34] Gavin P. Salam. “Elements of QCD for hadron colliders”. In: 2009 European
School of High-Energy Physics. Nov. 2010. arXiv: 1011.5131 [hep-ph].

[35] Bo Andersson et al. “Parton Fragmentation and String Dynamics”. Phys.
Rept. 97 (1983), pp. 31–145. doi: 10.1016/0370-1573(83)90080-7.

[36] B. R. Webber. “A QCD Model for Jet Fragmentation Including Soft Gluon

Interference”. Nucl. Phys. B 238 (1984), pp. 492–528. doi: 10.1016/0550-3
213(84)90333-X.

[37] Richard P. Feynman. “Very High-Energy Collisions of Hadrons”. Phys. Rev.
Lett. 23 (24 1969), pp. 1415–1417. doi: 10.1103/PhysRevLett.23.1415.

url: https://link.aps.org/doi/10.1103/PhysRevLett.23.1415.

[38] Martin zur Nedden. The Run-2 ATLAS Trigger System: Design, Performance
and Plan. Tech. rep. Geneva: CERN, 2016. url: https://cds.cern.ch/r
ecord/2238679.

97

https://doi.org/10.1098/rspa.1927.0039
https://doi.org/10.1103/PhysRev.76.769
https://doi.org/10.1017/CBO9780511755590
https://doi.org/10.1063/1.1724268
https://doi.org/10.1063/1.1724268
https://doi.org/10.1103/PhysRev.133.B1549
https://doi.org/10.1103/PhysRev.133.B1549
https://arxiv.org/abs/1011.5131
https://doi.org/10.1016/0370-1573(83)90080-7
https://doi.org/10.1016/0550-3213(84)90333-X
https://doi.org/10.1016/0550-3213(84)90333-X
https://doi.org/10.1103/PhysRevLett.23.1415
https://link.aps.org/doi/10.1103/PhysRevLett.23.1415
https://cds.cern.ch/record/2238679
https://cds.cern.ch/record/2238679

[39] Torbjörn Sjöstrand et al. “An introduction to PYTHIA 8.2”. Computer Physics
Communications 191 (2015), pp. 159–177. doi: 10.1016/j.cpc.2015.01
.024. url: https://doi.org/10.1016%2Fj.cpc.2015.01.024.

[40] M Asai. “Introduction to Geant4” (2000). doi: 10.5170/CERN-2000-013
.107. url: https://cds.cern.ch/record/491492.

[41] G. Aad et al. “The ATLAS Simulation Infrastructure”. Eur. Phys. J. C 70

(2010), pp. 823–874. doi: 10.1140/epjc/s10052-010-1429-9. arXiv:

1005.4568 [physics.ins-det].

[42] “ATLAS Pythia 8 tunes to 7 TeV data” (Nov. 2014).

[43] Stefano Carrazza, Stefano Forte, and Juan Rojo. “Parton Distributions and

Event Generators”. In: 43rd International Symposium on Multiparticle Dy-
namics. 2013, pp. 89–96. arXiv: 1311.5887 [hep-ph].

[44] John Back, Michal Kreps, and Thomas Latham. EvtGen. https://evtgen
.hepforge.org. 2020.

[45] Georges Aad et al. “Topological cell clustering in the ATLAS calorimeters

and its performance in LHC Run 1”. Eur. Phys. J. C 77 (2017), p. 490. doi:

10.1140/epjc/s10052-017-5004-5. arXiv: 1603.02934 [hep-ex].

[46] ATLAS. “Tagging and suppression of pileup jets” (May 2014).

[47] Morad Aaboud et al. “Identification and rejection of pile-up jets at high

pseudorapidity with the ATLAS detector”. Eur. Phys. J. C 77.9 (2017). [Erra-

tum: Eur.Phys.J.C 77, 712 (2017)], p. 580. doi: 10.1140/epjc/s10052-01
7-5081-5. arXiv: 1705.02211 [hep-ex].

[48] Ryan Atkin. “Review of jet reconstruction algorithms”. J. Phys. Conf. Ser.
645.1 (2015). Ed. by Alan S. Cornell and Bruce Mellado, p. 012008. doi:

10.1088/1742-6596/645/1/012008.

[49] Stefan Weinzierl. “The SISCone jet algorithm optimised for low particle

multiplicities”. Comput. Phys. Commun. 183 (2012), pp. 813–820. doi: 10.1
016/j.cpc.2011.12.007. arXiv: 1108.1934 [hep-ph].

[50] S. Catani et al. “Longitudinally invariant Kt clustering algorithms for

hadron hadron collisions”. Nucl. Phys. B 406 (1993), pp. 187–224. doi: 10.1
016/0550-3213(93)90166-M.

[51] Yuri L. Dokshitzer et al. “Better jet clustering algorithms”. JHEP 08 (1997),

p. 001. doi: 10.1088/1126-6708/1997/08/001. arXiv: hep-ph/9707323.

[52] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http
://www.deeplearningbook.org. MIT Press, 2016.

98

https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016%2Fj.cpc.2015.01.024
https://doi.org/10.5170/CERN-2000-013.107
https://doi.org/10.5170/CERN-2000-013.107
https://cds.cern.ch/record/491492
https://doi.org/10.1140/epjc/s10052-010-1429-9
https://arxiv.org/abs/1005.4568
https://arxiv.org/abs/1311.5887
https://evtgen.hepforge.org
https://evtgen.hepforge.org
https://doi.org/10.1140/epjc/s10052-017-5004-5
https://arxiv.org/abs/1603.02934
https://doi.org/10.1140/epjc/s10052-017-5081-5
https://doi.org/10.1140/epjc/s10052-017-5081-5
https://arxiv.org/abs/1705.02211
https://doi.org/10.1088/1742-6596/645/1/012008
https://doi.org/10.1016/j.cpc.2011.12.007
https://doi.org/10.1016/j.cpc.2011.12.007
https://arxiv.org/abs/1108.1934
https://doi.org/10.1016/0550-3213(93)90166-M
https://doi.org/10.1016/0550-3213(93)90166-M
https://doi.org/10.1088/1126-6708/1997/08/001
https://arxiv.org/abs/hep-ph/9707323
http://www.deeplearningbook.org
http://www.deeplearningbook.org

[53] Kaiming He et al. “Masked Autoencoders Are Scalable Vision Learners”.

CoRR abs/2111.06377 (2021). arXiv: 2111.06377. url: https://arxiv.o
rg/abs/2111.06377.

[54] Claude Elwood Shannon. “A mathematical theory of communication”. ACM
SIGMOBILE mobile computing and communications review 5.1 (2001), pp. 3–

55.

[55] David J. C. MacKay. Information Theory, Inference, and Learning Algorithms.
Copyright Cambridge University Press, 2003.

[56] John VonNeumann. Mathematische Grundlagen der Quantenmechanik. ger.

Berlin [u.a.]: Springer, 1932. url: http://eudml.org/doc/203794.

[57] E.K.P. Chong and S.H. Zak. An Introduction to Optimization. Wiley-

Interscience Series in Discrete Mathematics and Optimi. Wiley, 2004.

isbn: 9780471654001. url: https://books.google.sk/books?id=bKdi
baXVuUEC.

[58] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Opti-
mization. 2017. arXiv: 1412.6980 [cs.LG].

[59] Yang You et al. “Reducing BERT Pre-Training Time from 3 Days to 76

Minutes”. CoRR abs/1904.00962 (2019). arXiv: 1904.00962. url: http://a
rxiv.org/abs/1904.00962.

[60] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feed-

forward networks are universal approximators”. Neural networks 2.5 (1989),

pp. 359–366.

[61] Felix Gers, Jürgen Schmidhuber, and Fred Cummins. “Learning to For-

get: Continual Prediction with LSTM”. Neural computation 12 (Oct. 2000),

pp. 2451–71. doi: 10.1162/089976600300015015.

[62] Dan Hendrycks and Kevin Gimpel. “Bridging Nonlinearities and Stochastic

Regularizers with Gaussian Error Linear Units”. CoRR abs/1606.08415 (2016).

arXiv: 1606.08415. url: http://arxiv.org/abs/1606.08415.

[63] Prajit Ramachandran, Barret Zoph, and Quoc V. Le. “Searching for Acti-

vation Functions”. CoRR abs/1710.05941 (2017). arXiv: 1710.05941. url:

http://arxiv.org/abs/1710.05941.

[64] Preetum Nakkiran et al. “Deep Double Descent: Where Bigger Models and

More Data Hurt”. CoRR abs/1912.02292 (2019). arXiv: 1912.02292. url:

http://arxiv.org/abs/1912.02292.

[65] Manzil Zaheer et al. “Deep Sets”. CoRR abs/1703.06114 (2017). arXiv: 1703
.06114. url: http://arxiv.org/abs/1703.06114.

99

https://arxiv.org/abs/2111.06377
https://arxiv.org/abs/2111.06377
https://arxiv.org/abs/2111.06377
http://eudml.org/doc/203794
https://books.google.sk/books?id=bKdibaXVuUEC
https://books.google.sk/books?id=bKdibaXVuUEC
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1904.00962
http://arxiv.org/abs/1904.00962
http://arxiv.org/abs/1904.00962
https://doi.org/10.1162/089976600300015015
https://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1710.05941
http://arxiv.org/abs/1710.05941
https://arxiv.org/abs/1912.02292
http://arxiv.org/abs/1912.02292
https://arxiv.org/abs/1703.06114
https://arxiv.org/abs/1703.06114
http://arxiv.org/abs/1703.06114

[66] Binh-Son Hua, Minh-Khoi Tran, and Sai-Kit Yeung. “Point-wise Convolu-

tional Neural Network”. CoRR abs/1712.05245 (2017). arXiv: 1712.05245.

url: http://arxiv.org/abs/1712.05245.

[67] ATLAS. Constituent-Based Top-Quark Tagging with the ATLAS Detector.
Tech. rep. Geneva: CERN, 2022. url: https://cds.cern.ch/record/28
25328.

[68] Gao Huang et al. “Deep Networks with Stochastic Depth”. CoRR (2016).

arXiv: 1603.09382. url: http://arxiv.org/abs/1603.09382.

[69] Noam Shazeer. “GLU Variants Improve Transformer”. CoRR abs/2002.05202

(2020). arXiv: 2002.05202.

[70] Rene Brun et al. root-project/root: v6.18/02. Version v6-18-02. Aug. 2019. doi:

10.5281/zenodo.3895860. url: https://doi.org/10.5281/zenodo
.3895860.

[71] Jim Pivarski et al. scikit-hep/uproot: 3.12.0. Version 3.12.0. July 2020. doi:

10.5281/zenodo.3952728. url: https://doi.org/10.5281/zenodo
.3952728.

[72] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on Heteroge-
neous Systems. Software available from tensorflow.org. 2015. url: https:
//www.tensorflow.org/.

[73] François Chollet et al. Keras. https://keras.io. 2015.

100

https://arxiv.org/abs/1712.05245
http://arxiv.org/abs/1712.05245
https://cds.cern.ch/record/2825328
https://cds.cern.ch/record/2825328
https://arxiv.org/abs/1603.09382
http://arxiv.org/abs/1603.09382
https://arxiv.org/abs/2002.05202
https://doi.org/10.5281/zenodo.3895860
https://doi.org/10.5281/zenodo.3895860
https://doi.org/10.5281/zenodo.3895860
https://doi.org/10.5281/zenodo.3952728
https://doi.org/10.5281/zenodo.3952728
https://doi.org/10.5281/zenodo.3952728
https://www.tensorflow.org/
https://www.tensorflow.org/
https://keras.io

Appendix A

Description of High-level Jet
Variables

In this section, we provide a full list of high-level jet variables commonly used

in ATLAS analyses. They come precomputed by Athena and come in the jet

container. The list includes the name of the variable in the ROOT file, its description,

and the symbol if used.

ActiveArea4vec_(m,pt,eta,phi) - 4-momentum of the energy carried by

pileup in the cross section of a jet

FracSamplingMax - a fraction of energy deposited in the calorimeter cell with

the highest energy deposition

FracSamplingMaxIndex - index of the calorimeter cell with the highest energy

deposition

GhostMuonSegmentCount - number of muon segments (muon spectrometer) hit

by jet constituents

JetConstitScaleMomentum_(m,pt,eta,phi) - uncalibrated 4-momentum of

total constituent energy

fJVT (fJVT) - forward jet-vertex-tagger (see section 3.4)

passFJVT (passfJVT) - passed forward jet-vertex-tagger (see section 3.4)

Jvt (JVT) - jet-vertex-tagger (see section 3.4)

JvtRpt (RpT
) - a fraction of the jet momentum from primary vertex (see sec-

tion 3.4)

101

passJVT (passJVT) - passed jet-vertex-tagger (see section 3.4)

JVFCorr (corrJVT) - corrected jet-vertex-fraction (see section 3.4)

averageInteractionsPerCrossing (µ) - average pileup (see section 3.4)

Timing - time of jet detection wrt. time of collision

EMFrac (fEM) - a fraction of energy of a jet deposited in EM calorimeter

Width (W) - pT weighted average distance of constituents from the jet axis (see

table 5.3)

chf (fch) - charged fraction of a jet (pT sum of track divided by pjet

T
)

(m,pt,eta,phi) (mjet, pjet

T
, ηjet, ϕjet

) - 4-momentum of calibrated jet

PFO_n (NPFO) - number of PFOs

ChargedPFOWidthPt1000[0] (W pT>1GeV
chPFO) - width of jet computed

from charged PFOs with pT > 1 GeV from primary vertex

TrackWidthPt1000[0] (W pT>1GeV
chtrk) - width of jet computed from tracks with

pT > 1 GeV from primary vertex

NumChargedPFOPt1000[0] (NpT>1GeV
chPFO) - number of charged PFOs with pT > 1

GeV from primary vertex

NumChargedPFOPt500[0] (NpT>0.5GeV
chPFO) - number of charged PFOs with pT >

0.5 GeV from primary vertex

SumPtChargedPFOPt500[0] (

∑︁
chPFO∈jet p

chPFO
T) - sum of pT of charged PFOs

with pT > 0.5 GeV from primary vertex

102

Appendix B

Input Variable Distributions

In this section, we provide distributions of all input variables. The dataset used is

preprocessed as described in section 5.2.

B.1 PFO Variables

(a) PFO log pT/pjet
T (b) PFO log E/Ejet

Figure B.1 Distributions of PFO variables part 1.

103

(a) PFO ∆η (b) PFO ∆ϕ

(c) PFO ∆R (d) PFO m

(e) PFO log pT (f) PFO log E

Figure B.2 Distributions of PFO variables part 2.

B.2 PFO Interaction Variables

104

(a) PFO Interaction ∆ (b) PFO Interaction kT

(c) PFO Interaction m2 (d) PFO Interaction z

Figure B.3 Distributions of PFO interaction variables.

B.3 BDT Variables

105

(a) BDT C1 (b) BDT WPFO

(c) BDT pjet
T (d) BDT ηjet

(e) BDT NPFO

Figure B.4 Distributions of BDT variables.

B.4 High-level Jet Variables

106

(a) averageInteractionsPerCrossing[0] (b) jets_ActiveArea4vec_m

(c) jets_ActiveArea4vec_phi (d) jets_ActiveArea4vec_pt

(e) jets_ChargedPFOWidthPt1000[0] (f) jets_EMFrac

Figure B.5 High-level Jet Variables, part 1

107

(a) jets_FracSamplingMax (b) jets_FracSamplingMaxIndex

(c) jets_GhostMuonSegmentCount (d) jets_JVFCorr

(e) jets_JetConstitScaleMomentum_m (f) jets_JetConstitScaleMomentum_phi

Figure B.6 High-level Jet Variables, part 2

108

(a) jets_JetConstitScaleMomentum_pt (b) jets_Jvt

(c) jets_JvtRpt (d) jets_NumChargedPFOPt1000[0]

(e) jets_NumChargedPFOPt500[0] (f) jets_PFO_n

Figure B.7 High-level Jet Variables, part 3

109

(a) jets_SumPtChargedPFOPt500[0] (b) jets_Timing

(c) jets_TrackWidthPt1000[0] (d) jets_Width

(e) jets_chf (f) jets_eta

Figure B.8 High-level Jet Variables, part 4

110

(a) jets_fJVT (b) jets_m

(c) jets_passFJVT (d) jets_passJVT

(e) jets_phi (f) jets_pt

Figure B.9 High-level Jet Variables, part 5

111

112

Appendix C

Additional Evaluation Plots

C.1 Confusion Matrix

(a) DeParT (b) BDT

(c) Interacting ParT (d) Highway

Figure C.1 Confusion Matricies

113

(a) Fully Connected (b) Transformer

(c) PFN (d) Interacting DeParT

(e) ParT (f) EFN

Figure C.2 Confusion Matricies

114

C.2 Score Histograms

(a) DeParT (b) BDT

(c) Interacting ParT (d) Highway

Figure C.3 Confusion Matricies

115

(a) Fully Connected (b) Transformer

(c) PFN (d) Interacting DeParT

(e) ParT (f) EFN

Figure C.4 Confusion Matricies

116

C.3 Transverse Momentum Dependence

Figure C.5 AUC as a function of transverse momentum.

117

Figure C.6 Gluon efficiency as a function of transverse momentum.

Figure C.7 Quark efficiency as a function of transverse momentum.

118

Figure C.8 Gluon rejection as a function of transverse momentum.

Figure C.9 Quark rejection as a function of transverse momentum.

119

Figure C.10 Quark rejection at gluon efficiency of 0.9 as a function of transverse
momentum.

Figure C.11 Gluon rejection at quark efficiency of 0.9 as a function of transverse
momentum.

120

Figure C.12 Loss as a function of transverse momentum.

121

C.4 Pseudo-rapidity Dependence

Figure C.13 AUC as a function of pseudo-rapidity.

122

Figure C.14 Gluon efficiency as a function of pseudo-rapidity.

Figure C.15 Quark efficiency as a function of pseudo-rapidity.

123

Figure C.16 Gluon rejection as a function of pseudo-rapidity.

Figure C.17 Quark rejection as a function of pseudo-rapidity.

124

Figure C.18 Quark rejection at gluon efficiency of 0.9 as a function of pseudo-rapidity.

Figure C.19 Gluon rejection at quark efficiency of 0.9 as a function of pseudo-rapidity.

125

Figure C.20 Loss as a function of pseudo-rapidity.

126

C.5 Pileup Dependence

Figure C.21 AUC as a function of pileup.

127

Figure C.22 Gluon efficiency as a function of pileup.

Figure C.23 Quark efficiency as a function of pileup.

128

Figure C.24 Gluon rejection as a function of pileup.

Figure C.25 Quark rejection as a function of pileup.

129

Figure C.26 Quark rejection at gluon efficiency of 0.9 as a function of pileup.

Figure C.27 Gluon rejection at quark efficiency of 0.9 as a function of pileup.

130

Figure C.28 Loss as a function of pileup.

131

132

	Introduction
	Physics of Quarks and Gluons
	The Standard Model
	Quantum Field Theory
	Free Particles
	Interacting Particles
	Cross Section
	Feynman Diagrams

	Quantum Chromodynamics
	Feynamn Diagrams of QCD

	Infrared and Collinear Divergences
	Hadronization
	Jets
	Infrared and Collinear Safety

	Detector ATLAS
	Overview
	ATLAS Coordinate System

	Large Hadron Collider
	Inner Detector
	Pixel Detector
	Semiconductor Tracker
	Transition Radiation Tracker

	Calorimeters
	Electromagnetic Calorimeter
	Hadronic Calorimeter

	Muon Spectrometer
	Magnet systems
	Trigger

	Data
	Monte Carlo Simulations
	Event Production
	Truth Label

	Constituent Identification
	Pile-up
	Jet Reconstruction

	Deep Learning Architectures
	Basic Concepts
	Forward and Backward Passes
	Traning process
	Output layer
	Loss Functions
	Optimizers
	Activation Functions
	Regularization
	Metrics

	Fully Connected Network
	Highway Network
	Particle Flow and Energy Flow Network
	Transformer
	Multihead Self-Attention
	Feedforward Network
	Self-Attention Block
	Class Extraction

	Particle Transformer
	Class Attention Block

	Dynamically Enhanced Particle Transformer
	Talking Self-Attention Block
	Stochastic Depth
	Layer Scale
	Gated Feed-Forward Network

	Training Jet Taggers
	Main Goal
	Dataset
	Offline Preprocessing
	Online Preprocessing
	JZ Cuts

	Input Variables
	PFO Variables
	PFO Interaction Variables
	BDT Variables
	High-level Jet Variables
	Normalization

	Training Configuration
	BDT Configuration
	Transformer, ParT, and DeParT Configuration
	Fully Connected and Highway Network Configuration
	PFN and EFN Configuration

	Results
	Transverse Momentum Dependence
	Pseudo-rapidity Dependence
	Pileup Dependence

	Conclusion
	Bibliography
	Description of High-level Jet Variables
	Input Variable Distributions
	PFO Variables
	PFO Interaction Variables
	BDT Variables
	High-level Jet Variables

	Additional Evaluation Plots
	Confusion Matrix
	Score Histograms
	Transverse Momentum Dependence
	Pseudo-rapidity Dependence
	Pileup Dependence

