
CHARLES UNIVERSITY
FACULTY OF SOCIAL SCIENCES

Institute of Economic Studies

Machine Learning Methods in Payment
Card Fraud Detection

Master’s thesis

Author: Bc. Jan Sinčák
Study program: Economics and Finance
Supervisor: doc. PhDr. Jozef Baruník, Ph.D.
Year of defense: 2023

http://www.cuni.cz/UKEN-1.html
https://fsv.cuni.cz/en
ies.fsv.cuni.cz
https://is.cuni.cz/studium/eng/dipl_st/index.php?KEY=Az1
https://is.cuni.cz/studium/eng/dipl_st/index.php?KEY=Az1


Declaration of Authorship
I hereby proclaim that I wrote my diploma thesis on my own under the leader-
ship of my supervisor and that the references include all resources and literature
I have used.

I grant permission to reproduce and to distribute copies of this thesis document
in whole or in part and agree with the thesis being used for study and scientific
purposes.

Prague, April 27, 2023

Jan Sincak



Abstract
Protection of clients from fraudulent transactions is a complicated task. Banks
tend to rely on rule-based systems which require manual creation of rules to
identify fraud. These rules have to be set up by employees of the bank who
need to look for any trends in fraudulent transactions themselves. This thesis
deals with the problem of detection of fraudulent card transactions as it com-
pares multiple machine learning models for fraud detection. These models can
find complex relationships in the data and potentially outperform standard
fraud detection systems, Logistic regression, neural network, random forest,
and extreme gradient boosting (XGBoost) models are trained on a simulated
dataset that closely follows properties of real card transactions. Performance
of the models is measured by sensitivity, specificity, precision, AUC, and time
to predict on the testing dataset. XGBoost shows the highest performance
among the tested models. It is then compared to a standard fraud detection
system used in a Czech bank. The bank system achieves higher specificity but
XGBoost still shows promising performance. It is possible that certain machine
learning models could outperform today’s fraud detection systems if they are
well-tuned.
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imbalanced data
Title Machine Learning Methods in Payment Card
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Abstrakt
Ochrana klientů před podvodnými transakcemi je náročný úkol. Banky se ob-
vykle spoléhají na systémy založené na pravidlech, které vyžadují ruční tvorbu
těchto pravidel pro identifikaci podvodu. Tato pravidla musí nastavit zaměst-
nanci banky, kteří musí sami vyhledávat trendy v podvodných transakcích.
Tato práce se zabývá problémem odhalování podvodných karetních transakcí
a porovnává několik modelů strojového učení pro detekci podvodů. Tyto mod-
ely mohou v datech najít složité vztahy a potenciálně překonat klasické sys-
témy detekce podvodů, Logistická regrese, neuronová síť, random forest a ex-
treme gradient boosting (XGBoost) jsou trénovány na simulovaném souboru
dat, který věrně kopíruje vlastnosti skutečných karetních transakcí. Výkon-
nost modelů se měří podle citlivosti, specificity, preciznosti, AUC a časové
náročnosti předpovědi na testovacím souboru dat. XGBoost vykazuje nejvyšší
výkonnost mezi testovanými modely. Poté je porovnáván se standardním sys-
témem detekce podvodů používaným v české bance. Bankovní systém dosahuje
vyšší specificity, ale XGBoost přesto vykazuje slibné výsledky. Je možné, že
některé modely strojového učení by mohly překonat současné systémy detekce
podvodů, pokud budou dobře vyladěny.

Klasifikace JEL G21, K42
Klíčová slova strojové učení, karetní podvody, detekce

podvodů, nevyvážená data
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Motivation Nowadays, payment cards are one of the most commonly used means
of making transactions. There are millions of card transactions made each month.
But this popularity is also connected with a risk of fraud. According to The Nilson
Report, a total of $28.65 billion was lost due to card fraud in 2019 across the world.
Losses from card fraud were increasing in the past years and are expected to follow
this trend in the future. The risk of fraud leads to the need for methods for card
fraud prevention and detection. Banks use various methods to detect suspicious
transactions to minimize losses borne by both their customers and themselves.

Traditionally used fraud detection systems are based on many rules which tend to
be set empirically by bank employees. This may lead to possible inefficiencies which
may be dealt with by using a certain machine learning approach (Abdallah et al.
2016). These methods can find more complex properties of fraudulent transactions
and can also potentially lead to a better quality of the detection system.

This thesis aims to choose machine learning methods that can be used in the
detection of fraudulent card transactions. Chosen machine learning methods will be
compared to each other in performance on a large dataset of credit card transactions.
The goal will be then to see whether these methods have sufficient performance and
if they are suitable for real-life payment card fraud detection.
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Hypotheses

Hypothesis #1: Machine learning methods are a viable alternative to conven-
tional methods in a real-world application.

Hypothesis #2: Ensemble methods perform better in fraud detection.

Hypothesis #3: In fraud detection, Gradient boosting is superior to a Random
Forest.

Methodology In fraud detection, financial institutions tend to use simple methods
based on many empirical rules, which are based on the observation of patterns in
transaction data. Machine learning methods may uncover the properties of payment
card frauds more efficiently and easily.

We will make use of several machine learning approaches to identify fraudulent
transactions among a sample of payment card transactions that come from an interval
of approximately three years. The analysis will make use of multiple approaches.
These would most likely be support vector machines, logistic regression, and a neural
network. The analysis will contain a method based on gradient boosting since it has
not been commonly used in this topic. We will also include another ensemble method
such as a random forest.

Fraud data, in general, are highly imbalanced, since the proportion of frauds
in a sample is very small. It is important to account for this imbalance as it may
affect the quality of the models. It will most likely be dealt with by undersampling
the data and thus manipulating the dataset in such a way, that frauds make up a
larger proportion of data than in reality. Another approach would be the use of the
Synthetic Minority Over-sampling Technique (SMOTE).

Individual models’ quality will be ranked according to multiple criteria. These
would most likely be sensitivity, precision, and Area under curve (AUC) or the F-
score. The amount of time it takes to run the models on test data will also play a
key role since there is a large number of transactions made each second in the real
world and the model has to be able to keep up with this inflow.

Expected Contribution The goal and contribution of this thesis are to find a
suitable machine learning method for payment card fraud detection. The advantages
and disadvantages of individual approaches will be discussed, and the chosen method
should provide the best performance in fraud detection and should be usable in a
real-world application. One of the discussed approaches will be gradient boosting
since it has not been used commonly in previous research. Its performance is not
completely clear in comparison to other more common methods. While Taha &
Malebary (2020) or Madkaikar et al. (2020) see it as the best method for card fraud
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detection, Gupta (2016) or Shakya (2018) claim that it is outperformed by a Random
Forest. This thesis aims to answer the question of whether Gradient Boosting is the
best method to use for this task.

Outline

1. Introduction

2. Literature Review

3. Overview of Suitable Machine Learning Methods

4. Data Description

5. Methodology

6. Results

7. Concluding remarks

Core bibliography

Abdallah, A., Maarof, M. A., & Zainal, A. (2016). Fraud detection system: A
survey. Journal of Network and Computer Applications, 68, 90–113.

Bentéjac, C., Csörgő, A., & Martínez-Muñoz, G. (2020). A comparative anal-
ysis of gradient boosting algorithms. Artificial Intelligence Review, 54(3),
1937–1967

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002).
SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial
Intelligence Research, 16, 321–357.

Correa Bahnsen, A., Aouada, D., Stojanovic, A., & Ottersten, B. (2016). Fea-
ture engineering strategies for credit card fraud detection. Expert Systems
with Applications, 51, 134–142.

Dal Pozzolo, A., Boracchi, G., Caelen, O., Alippi, C. & Bontempi, G. (2018).
Credit Card Fraud Detection: A Realistic Modeling and a Novel Learning
Strategy. IEEE Transactions on Neural Networks and Learning Systems, 29(8),
3784–3797.

Dal Pozzolo, A., Boracchi, G., Caelen, O., Alippi, C., & Bontempi, G. (2015).
Credit card fraud detection and concept-drift adaptation with delayed super-
vised information. 2015 International Joint Conference on Neural Networks
(IJCNN). Published.



Master’s Thesis Proposal xiv

Gupta, S. (2016). Deep Learning vs. traditional Machine Learning algorithms
used in Credit Card Fraud Detection.

Madkaikar, K., Nagvekar, M., Parab, P., Raika, R., & Patil, S. (2021). Credit
Card Fraud Detection System. International Journal of Recent Technology
and Engineering (IJRTE), 10(2), 158–162.

Nami, S., & Shajari, M. (2018). Cost-sensitive payment card fraud detection
based on dynamic random forest and k -nearest neighbors. Expert Systems
with Applications, 110, 381–392.

Shakya, R. (2018). "Application of Machine Learning Techniques in Credit
Card Fraud Detection, UNLV Theses, Dissertations, Professional Papers, and
Capstones, 3454.

Taha, A. A., & Malebary, S. J. (2020). An Intelligent Approach to Credit
Card Fraud Detection Using an Optimized Light Gradient Boosting Machine.
IEEE Access, 8, 25579–25587.

Card Fraud Losses Reach $28.65 Billion. (2020, December 1). Nilson Report,
1187. https://nilsonreport.com/mention/1313/1link/



Chapter 1

Introduction

In banking, there are many risks that banks have to manage, because high risks
may lead to increased costs. Like any other firm, banks are trying to minimize
their costs to increase profits. Besides credit, market, or liquidity risk, there is
also operational risk. Operational risk is the risk of losses due to failed internal
processes, people, or external events. One of the external sources of operational
risk is fraud.

Frauds are being committed with every product that banks offer and a large
proportion of them belongs to payment card frauds. Even though frauds only
make up a small share of all card transactions, there is still a very large number
of them due to the massive amount of transactions overall. Banks are trying to
minimize the number of frauds because they create costs as banks are legally
obliged to compensate certain losses to clients. Moreover, a high fraud risk is
connected to a high reputation risk, which leads to lower revenue. Therefore,
banks are trying to identify and cancel fraudulent transactions.

Traditionally, banks use rule-based fraud detection systems. These sys-
tems are manually maintained and rely on rules created by employees of the
bank. This process is time-consuming and may not be able to identify com-
plex relationships in the data. But with the increasing popularity of artificial
intelligence and statistical modeling, there is now a possibility to use various
machine learning models to detect fraudulent payments.

This thesis builds and compares four machine learning models and analyses
their ability to identify card frauds. The chosen models range from simple
logistic regression to more complex ensemble algorithms. Multiple performance
metrics are used to identify the best-performing model. This model is then
compared to a Czech bank’s rule-based fraud detection system. The main
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contribution of this thesis lies in this comparison. It tries to find out whether
machine learning models can outperform a time-proven solution and whether
these models are suitable for use in real-world fraud detection.

The thesis is structured as follows. In Chapter 2, we first describe the vari-
ous fraud methods and recent trends in card fraud. This section also provides
an overview of the ways how banks identify and prevent fraudulent transac-
tions. Chapter 3 introduces the theoretical background of machine learning
models used in this thesis and a general description of unsupervised and su-
pervised learning. Chapter 4 deals with the dataset used in this analysis. It
describes the source of the data, the process of data preparation, and the var-
ious obstacles we need to address when working with a dataset of fraudulent
transactions. Further, distributions and descriptive statistics of all used vari-
ables are discussed. Besides this, Chapter 3 and Chapter 4 also go through
the existing research on card fraud detection. In Chapter 5, we train all of our
models and analyze their predictive abilities. We obtain various performance
metrics and choose the best-behaving model. In Chapter 6, this model’s per-
formance is compared to the one of a fraud detection system used in a Czech
bank. Finally, Chapter 7 summarizes our findings.



Chapter 2

Credit Card Fraud

2.1 Card Fraud Techniques
Credit and debit cards are some of the most common means of making trans-
actions in the world. The ease with which they can be obtained and used is
what makes them so popular. Global purchases of goods and services, cash
advances, and withdrawals made with credit, debit, and prepaid cards reached
more than 42 trillion USD in 2019 (The Nilson Report 2020), and are expected
to increase to 56 trillion USD by 2025. Such a massive volume of transactions
and the widespread use of payment cards encourage criminals to commit card
fraud. Despite the low proportion of frauds among card transactions, total
losses coming from fraudulent payments are still very high.

In 2019, gross fraud losses to issuers, merchants, and acquirers of transac-
tions reached 28.65 billion USD worldwide (The Nilson Report 2020). Every
year, these losses have been rising together with the total card transaction
amount and are expected to keep rising in the future. In 14 selected EU coun-
tries, according to a study of the European Banking Authority (EBA), approx-
imately 0.016% of card transactions were reported as fraudulent by issuers in
the second half of 2020 (EBA 2022). In the case of transaction value, fraudu-
lent payments make up 0.025% of the total value. Card fraud rates reported
by acquirers are even higher. About 0.035% of transactions were identified as
fraudulent, which translates to 0.046% of the total value. According to the
EBA, the total card fraud value reported by issuers and acquirers in H2 2020
was more than EUR 440 million.

Credit card frauds can be split into application and behavioral frauds (Bolton
& Hand 2001). Application fraud happens when individuals obtain credit cards



2. Credit Card Fraud 4

based on applications with false personal or financial information. Such fraud-
sters may try to spend as much as possible shortly after obtaining their card
and then refuse to repay the debt. This type of fraud is quite common, but it is
dominated by behavioral frauds. Behavioral frauds make up a large group that
can be divided into four main categories. These are Card-not-Present (CNP)
fraud, counterfeit card fraud, lost/stolen card fraud, and card-never-arrived
fraud.

The most common type of behavioral fraud is card-not-present fraud (The
Nilson Report 2020). A card-not-present transaction is a transaction where
the physical card is not used. These are usually online purchases. The card
is present when it is inserted into the merchant’s terminal or when its chip is
contactless scanned at the Point-of-Sale (POS). Fraudsters most often obtain
card details through a phishing attack. They can then misuse it in several ways.
In the most simple one, they use the card in online shopping and buy goods
for themselves. It is also possible to use the card to buy gift cards for online
services such as Google Play Store, Amazon, or Apple Appstore. Fraudsters
then offer these gift cards in grey markets and profit from sales. One of the
sophisticated methods makes use of fake online shops. Fraudsters set up a shop
and use the card to buy virtual goods with it. This way money from the card
is transferred directly to the fraudsters’ pockets.

CNP transactions are gaining popularity as customers are using their phys-
ical cards less and instead are shifting their shopping habits to the Internet.
Card-not-present purchase volume corresponds to 15.4% of all purchase vol-
ume in 2019, but in fraud losses, the share of CNP transactions is 65% (The
Nilson Report 2020). This makes CNP frauds the main priority when fighting
fraudulent transactions.

Credit card information can be stolen via malware attacks that traditionally
target computers, but nowadays malicious code can also be included in smart-
phone apps. Users, therefore, need to be cautious and carefully choose the
applications which they are installing. Social engineering is the other and pos-
sibly more dangerous method of obtaining card information. Fraudsters keep
making more and more complex methods by which they persuade card owners
to hand over all key information about their cards. The exact approaches differ
but fraudsters usually act as trustworthy and legit institutions and try to ma-
nipulate their targets. They can use fake e-mails, sms messages, or even phone
calls, in which fraudsters talk to their victims in order to receive credit card
information (The Nilson Report 2020). Such attacks are known as phishing,
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smishing, and vishing attacks. Their biggest danger lies in their credibility.
At first glance, e-mails and messages seem legit and attackers act kindly and
seem to be helping their targets during phone calls. It is too late when victims
of these attacks find out that somebody made unauthorized transactions with
their cards online and that their bank accounts are missing money. The popu-
larity of these attacks among fraudsters comes from their profitability. All that
is needed is a fake website that looks like its real counterpart. Then with the
help of a stolen database of e-mail addresses or phone numbers, this website
can be easily distributed to thousands of potential victims. Even though the
click rate may be low and most people recognize these attempts and delete
such messages, it only takes a couple of individuals who are not as careful. A
successful attack typically earns the fraudster hundreds or thousands of euros.
In the case of companies, the lost amounts can be much higher. This means
that the effort-to-profit ratio is usually very high. And those who cannot build
such fraudulent systems themselves have the opportunity to buy complete fraud
solutions on a darknet market.

Another significant amount of fraud losses comes from lost and stolen cards.
This type of fraud is self-explanatory. When a card owner loses their card or it
is stolen, there is a certain time period before the owner finds this out and asks
their bank to block the card. During this period, the lost card can be misused
if found by a fraudster. This can then lead to a substantial loss. A similar type
of fraud is card-never-arrived fraud. When a card owner orders a new card,
this card is typically sent to them via mail. But during this process, the card
can be stolen by a post office employee in transport or by somebody else when
it is delivered to a mailbox.

The final major card fraud type is skimming and counterfeit fraud. Those
occur when card details are illegally taken and used to create counterfeit cards.
Skimming is a technique used to scan card information from its magnetic stripe
with a device called a skimmer. Skimmers can be installed in payment terminals
but most often they are used in an Automated Teller Machine (ATM). They
tend to be installed in place of a legit card reader in an ATM and most of
the time they are nearly identical to real readers. Therefore for a common
consumer, it is very difficult to tell if a skimmer is used in an ATM. On the
other hand, since skimmers need to be this complex, they are also expensive
and hard to obtain. Banks are also monitoring their ATM with cameras and
thus it is difficult to install a skimmer without getting noticed. These factors
combined mean that skimming and counterfeit card frauds are disappearing.
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Instead, fraudsters are shifting their interest to the internet and are starting to
use various phishing methods. Banks often stay one step behind and are not
able to prevent such attacks.

Besides attempts to scam cardholders, there are also card frauds whose ob-
jective is to get money from a bank. Fake chargebacks are one of the methods
by which acquiring banks are being targeted. Such frauds can be made by indi-
viduals who pay for goods and services online with the intention to contradict
the transactions and demand compensation from the bank. A special type of
chargeback fraud is family fraud. Most often, the client disputes transactions
that have been made by their children. A child can make transactions in games
on mobile phones on which the parent has their card information stored. Once
the parent finds out, they may try to apply for a chargeback (The Nilson Re-
port 2020). In these cases, it can be quite challenging for the bank to prove
that the transaction has been made by the cardholder and therefore there is a
risk of losses, although usually not large. There are also organized groups that
are capable of creating complicated transaction schemes which are difficult to
detect and which can lead to large losses.

2.2 Card Fraud Detection
A large majority of losses from card fraud is borne by owners of the cards.
Banks are only liable for a small proportion of losses. They may need to
compensate a client when bank employees do not manage to block a lost card
properly or in some cases when the law tells them to do so. These losses
may not be a large enough incentive for banks to detect and prevent frauds.
But they face a risk of a damaged reputation if they do not prevent frauds
and clients start losing large amounts of money. This is why banks and card
associations are actively trying to detect and prevent fraudulent transactions.
These measures apply not only to card transactions but also to money transfers
from one account to another and other types of transactions. For this task
banks use various systems which monitor all transactions made by customers
and look for potentially fraudulent transactions. These systems can either be
rule-based or use some kind of machine learning method for fraud detection.

Traditional fraud detection systems are based on a predetermined set of
rules (Ghosh & Reilly 1994). These are set manually by employees and come
from rough observations of the data. Once a transaction turns out to be fraud-
ulent, its properties are analyzed. With a large sample of fraudulent trans-
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actions, it is possible to extract properties that they have in common. Bank
employees can then turn them into a set of rules against which all transactions
are checked. Such detection systems tend to be quite simple and are not able
to capture complex patterns in fraudulent transactions. Moreover, the set of
rules is not being recalculated continually. Fraudsters are innovative and their
methods are constantly evolving. A low frequency of rule recalculation means
that the detection system may miss new trends in both fraudulent and genuine
transactions and thus become unreliable (Pozzolo et al. 2015). This problem is
called concept drift and it may lead to larger losses of customers and a worse
reputation for the bank.

A modern substitute lies in detection models based on machine learning al-
gorithms. With increasing and more affordable computing power and with fast
development in machine learning, these methods are becoming more popular
among banks. They perform better at the disclosure of complex relationships
between a large number of variables. Systems based on machine learning al-
gorithms work by detecting behavioral patterns in transaction data and allow
for more complex analysis. Therefore these methods can be more successful
and can prevent more losses. They can also learn on the go and immediately
implement new fraud trends into their calculations. This makes machine learn-
ing systems more robust and helps them keep up with innovations in fraud
techniques. Nowadays, a wide range of different machine learning methods is
available, which gives banks a lot of freedom in their choice.

Overall, there is a very small proportion of frauds among all card trans-
actions. The task of a Fraud Detection System (FDS) is therefore to identify
a very small group of observations that differ from the majority of genuine
transactions. This is therefore an application of an anomaly detection prob-
lem. Anomaly detection in general is „the problem of finding patterns in data
that do not conform to expected behavior“ (Chandola et al. 2009). There are
various applications of this problem, such as intrusion detection in computer
systems and networks, analysis of health records of patients, sensor networks,
and also bank frauds. In the field of financial fraud, some of the most popular
machine learning techniques are neural networks, rule-based decision trees, or
clustering (Chandola et al. 2009). It is also possible to use systems, which
create a statistical representation of normal account usage and then look for
deviations in the behavior of a customer (Edge & Sampaio 2009).
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2.3 Fraud Prevention
Instead of trying to detect a fraudulent transaction, it may be more efficient to
completely prevent it from happening. This is what Fraud prevention systems
are trying to accomplish. These systems are in the first layer of protection
and their purpose is to stop frauds from occurring at all (Abdallah et al. 2016).
Among these mechanisms could be systems that encipher and decipher sensitive
data, or various firewalls and other forms of data security.

An efficient tool to combat fraudulent transactions has been brought by
the Payment Services Directive (PSD2). This EU Directive, amongst other
things, requires the use of Strong Customer Authentication (SCA) for a ma-
jority of electronic payments. The requirement has had the greatest effect on
standard transactions between two accounts but it has also targeted remote
card transactions. The need to authenticate every card-not-present transac-
tion by at least two elements has led to a great decline in fraud rates. When
SCA is not required for remote transactions, the fraud proportion is five times
higher in total volume as reported by both issuers and acquirers and three
to four times higher in total value compared to payments authenticated with
SCA (EBA 2022). This correlation is also noticeable with non-remote transac-
tions and with cross-border transactions. Payments with counterparts outside
of the European Economic Area (EEA) are not subject to the PSD2 regula-
tion and therefore the fraud rates are much higher compared to domestic and
within-EEA transactions. One of the most common implementations of strong
customer authentication is a 3D-Secure protocol.

If the fraudulent transaction remains unprevented and undetected by the
bank and the customer raises a complaint, there is still a chance to reverse
the transaction through a chargeback. Chargebacks can be costly since they
tend not to be regulated by law and to be successful, the target account still
has to have sufficient funds. Fraudsters are aware of this and thus they often
make use of straw men and create complex structures of multiple accounts
through which the money is transferred. A vast majority of fraudulent card
transaction volume comes from cross-border transactions, often from payments
with counterparts outside of the European Economic Area (EBA 2022). This
makes it harder for domestic banks to make a successful chargeback since the
target banks may have poor fraud prevention and anti-money laundering tools.



Chapter 3

Machine Learning in Card Fraud
Detection

We live in the era of big data. Human behavior and natural processes lead to
the creation of extremely large and complex datasets. Thanks to the progress in
information technology, we can store such data and because of human curiosity
and innovativeness, we are trying to analyze, understand and use this data
in order to create some value. With such massive and unorganized piles of
information, it is almost unthinkable to attempt a manual analysis of this
data. Programs written exactly for a given task would be very difficult to
create, which leads to the need for a different approach to data analysis. A
solution to this request lies in automated methods of data analysis known as
machine learning algorithms.

We can define machine learning as “A set of methods that can automatically
detect patterns in data, and then use the uncovered patterns to predict future
data, or to perform other kinds of decision making under uncertainty” (Murphy
2012). Machine learning methods give us generalized procedures which we can
employ to obtain a solution to our problem given a large dataset. Another,
more technical, definition of machine learning is provided by (Mitchell 1997):
“A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T,
as measured by P, improves with experience E”. In our case, the task T lies in
detection of fraudulent card transactions and E is the training data we provide
to the algorithm. This task is controlled by P, which makes sure that the
algorithm operates with high performance. In our case, we want the algorithm
to flag as many fraudulent transactions as possible, but we also do not want it
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to produce too many false alarms.
Machine learning approaches can be divided into two main categories. These

are supervised and unsupervised learning. Even though supervised and unsu-
pervised learning are not formally defined terms (Goodfellow et al. 2016), there
are certain features that distinguish these two approaches. Each approach has
its pros and cons and both of them have been used in the past in the identifi-
cation of fraudulent transactions (Ngai et al. 2011).

3.1 Unsupervised Learning
Unsupervised learning is a type of machine learning in which the algorithm
is trained on data that is not labeled or pre-classified. The machine learning
algorithm is trying to find patterns and relationships in the data on its own,
without being provided with any specific guidance or feedback (Goodfellow
et al. 2016).

The primary goal of unsupervised learning is to discover hidden structures,
groups, or clusters in the data. The algorithm seeks to identify natural patterns
and relationships in the data, and then use those patterns to make predictions
or gain insights.

There are different use cases for unsupervised learning algorithms. They
are widely used in image and speech recognition, recommendation systems,
and anomaly detection. Among some of the most commonly used unsuper-
vised learning algorithms are clustering algorithms, dimensionality reduction
algorithms, and anomaly detection algorithms (Hastie et al. 2009).

Clustering algorithms group similar data points together into clusters, which
can be used for customer segmentation, social network analysis, and many
other applications. Dimensionality reduction algorithms reduce the number
of features or variables in the data, which can be useful for visualization and
compression of data, as well as for identifying important features for further
analysis (Lee & Seung 1999). Anomaly detection algorithms identify unusual
data points that are significantly different from the rest of the data and can be
used in fraud detection, network intrusion detection, and other applications.

Another possible unsupervised method is Peer group analysis (Bolton &
Hand 2001). This approach notices when an object starts to behave differently
from objects which behaved similarly before. In the context of card fraud
detection, this method may analyze behavior of individual clients and group
them by their spending patterns. Once a client starts making transactions
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that diverge from the norm of the group, then the transactions are labeled as
potentially fraudulent.

Unsupervised learning algorithms have several advantages over supervised
learning algorithms. The data does not require any labeling, which means that
obtaining data is easier. They can also be used to discover new patterns and
relationships that may not have been apparent before, which can lead to new
insights and discoveries.

However, unsupervised learning also has some limitations. Since there is no
predefined output, the algorithms can sometimes produce meaningless or incor-
rect results. It can also be difficult to evaluate the performance of unsupervised
learning algorithms since there is no predefined correct output to compare the
results against. The required computations tend to be more demanding and
time-consuming. With an increasing number of features, the complexity of the
model rises substantially. Unsupervised algorithms tend to be used less in fi-
nance than supervised learning. This also applies to the topic of card fraud
detection, even though it can still be utilized (Rai & Dwivedi 2020).

Unsupervised learning is a powerful tool for discovering hidden patterns
and relationships in data. It is an essential component of many machine learn-
ing applications and has many practical applications in industry and research.
While unsupervised learning algorithms have some limitations, they are a valu-
able tool for gaining insights and making discoveries in large and complex data
sets in which supervised algorithms may struggle.

3.2 Supervised Learning
A more suitable approach to this topic is supervised learning. Unlike unsuper-
vised methods, these algorithms require a label that assigns each observation
the desired output. Supervised learning is used in two main tasks, called clas-
sification and regression (Murphy 2012).

In a classification problem, we want to map inputs x to an output y, where
y is a discrete variable that represents several classes. Based on this number,
we can distinguish a binary classification with only two possible classes, and a
multiclass classification, where the number of classes is larger than two. Since
we are deciding between two classes (fraudulent and legit transaction), we are
dealing with a binary classification problem. We are trying to find a function
f which gives us the probability distribution of possible classes, given x. In the
case of only two classes, we only need to return a single number p(y = 1|x, D),
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where D is the training set (Murphy 2012). The estimation of the true label
y is then computed as ŷ = f̂(x) = p(y = 1|x, D). There is a wide selection of
methods used for classification, such as decision trees, random forests, support
vector machines, or neural networks.

In the case when y is a continuous variable, we are facing a regression
problem. This is used when we need to predict a numerical value given input
data. We are looking for a function f : Rn → R. Regression analysis is
one of the most used tools in financial modeling. There are many regression
models, and this thesis will utilize one of them, a logistic regression model.
Even though this model is based on the regression framework, it is used in
classification problems.

Advantages of supervised learning lie in the possibility of manually choosing
the boundaries of classes. This allows us to be specific about the classes we want
to have in our data. Supervised learning also tends to be less computationally
demanding and therefore requires less processing time. On the other hand,
it may underperform in very complex tasks when compared to unsupervised
learning. It is also unable to identify labels in test data that are not present in
the training data.

3.2.1 Logistic Regression

Despite being a regression model, logistic regression is used to estimate a dis-
crete dependent variable. It does so by modeling a probability of a given class.
This class tends to be binary, but the model can be extended to account for
multiple classes. Logistic regression is based on linear regression, which is one
of the most widely used regression models.

Linear regression is a method for modeling the relationship between a vector
of explanatory variables and one explained variable. It is one of the simplest
and most commonly used models. As the name suggests, this relationship
is estimated using a certain linear function. This can be written as follows:
y(x) = wT + ϵ = ∑︁D

j=1 wjxj + ϵ where wT x marks a scalar product between an
input vector x and a weight vector w, which adjusts the influence of individual
objects from x on y. ϵ then presents a residual error between the true value of an
independent variable and our estimation (Murphy 2012). The residual error is
assumed to follow a normal distribution. This is denoted by ϵ ∼ N(µ, σ2). The
probability distribution can then be written as p(y|x, θ) = N(y|µ(x), σ2(x))
where θ is the parameter vector we are looking for. Linear regressions are often
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estimated using the method of ordinary least squares (OLS), which is a special
case of maximum likelihood estimation (MLE).

Logistic regression can be derived from a generalized linear regression into
a binary classification model. Therefore, the dependent variable will only take
on two levels. This property comes from several factors. Since y will be a
binary variable (y ∈ {0, 1}), we assume that it follows a Bernoulli distribution.
Moreover, the inputs have to be transferred by a special function that will make
sure that the output stays within the range from 0 to 1. This function is called
a sigmoid function. Other names for this function are logistic or logit and these
give a name to the whole regression algorithm. The sigmoid function is defined
as sigm(x) = 1

1+exp(−x) = exp(x)
exp(x)+1 . This gives us the model for estimating

probability of y = 1 given a vector x as Prob(y = 1|x) = exp(x′w)
1+exp(x′w) . This can

be estimated using a maximum likelihood estimator.
Logistic regression is used for detection of card frauds as a simple model

together with more complex models by Bahnsen et al. (2016). Their paper uses
a normal logistic regression as well as its cost-sensitive variant. When using
savings as a performance measure, the standard logistic regression falls behind,
but the cost-sensitive version achieves some of the highest savings. This model
manages to beat cost-sensitive decision trees, a Bayes minimum risk model,
and a random forest.

3.2.2 Random Forest

Another option for a classification model is random forests, which are an exten-
sion of a decision trees method. Decision trees can be used for both regression
and classification tasks and as the name suggests, they revolve around the
construction of a tree with multiple decision points. Their goal is to predict
the value of a dependent variable by learning simple decision rules for some
of the independent variables. This makes them very simple to interpret and
understand. They can also be nicely visualized. Unlike some other common
learning methods, decision trees are “white box” models. This means that their
behavior and decision-making can be easily explained. On the other hand, the
model can grow into a very complex decision tree, which is prone to overfitting
the data. The model then performs poorly on test data. Decision trees can
also suffer from instability, where a small change in input data can lead to a
completely different model (Murphy 2012). These drawbacks can be mitigated
by creating a random forest of multiple decision trees.
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Random forests build on the framework of decision trees and improve it
by relying on the performance of a large number of individual decision trees
(Ho 1995). They can be defined as a “combination of tree predictors such that
each tree depends on the values of a random vector sampled independently and
with the same distribution for all trees in the forest” (Breiman 2001). Random
forests implement a technique called bootstrap aggregating, or bagging. This
means that the model draws a random subsample with replacement from the
training dataset. This dataset has the same size as the original one. Further,
the bagging process is expanded and the algorithm chooses a random sample
of independent variables and constructs a decision tree using the subsample of
training data and chosen variables. Multiple such trees are built and then they
are used to form a combined model.

In a regression task, the mean of their predictions of the value of output is
used. When used for classification, the class selected by a majority of trees is
chosen. Since the individual trees are trained on different data and use different
variables, they are uncorrelated with each other, and therefore the final random
forest does not suffer from instability like a decision tree. Besides that, random
forests do not suffer from overfitting since the number of used trees greatly
reduces this risk. They are a good choice of model for classification tasks
because they offer good performance. But because of the random selection
of observations and variables, random forests are no longer white box models.
Hence, they are not as easily interpretable as decision trees.

In their paper, Nami & Shajari (2018) use a novel approach in which they
combine a k-nearest neighbors model with a variant of the random forest
model, called dynamic random forest. These random forests require fewer trees
and time to predict. This paper shows that the combination of these models
achieves a high sensitivity while controlling very well for specificity when used
on a dataset of 54 thousand card transactions.

In a paper by Madkaikar et al. (2021), multiple machine learning mod-
els are used to identify fraudulent transactions on a dataset of 50 thousand
observations. Besides random forest, authors also use gradient boosting, sup-
port vector machines, or logistic regression. Using accuracy as a performance
measure, gradient boosting and random forest show the highest performance,
closely followed by support vector machines.
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3.2.3 Artificial Neural Networks

Artificial neural networks, or simply neural networks, are a group of algorithms
inspired by animal and human brains. Neural networks are nowadays a widely
used algorithm and their basic idea has been first introduced by McCulloch &
Pitts (1943). There are multiple models of this type but the most successful
one in pattern recognition is the feed-forward neural network, also called a
multilayer perceptron (Bishop 2006). Neural networks are based on multiple
connected units, called artificial neurons. These are supposed to work similarly
to neurons in a real brain. A neuron can receive a signal, process it, and send
it to another neuron for further calculations. The output of a neuron is a
nonlinear function of its inputs. Several layers of neurons are connected by
nodes. Each node and neuron have a certain weight, which manipulates the
influence of one neuron on the next one.

In a neural network, input variables x1, . . . , xD are first transformed using
M linear combinations into activations

aj =
D∑︂

i=1
w

(1)
ji xi + w

(1)
j0

where (1) marks the first layer of the neural network and j = 1, . . . , M .
Parameters w

(1)
ji represent individual weights and parameter w

(1)
j0 marks bias.

The combinations aj are then transformed using a linear or nonlinear activation
function h(.) into zj = h(aj).

These elements are called hidden units. There can be several hidden layers
in a neural network. Finally, using another linear combination of the hidden
units, we receive the output unit activations

ak =
M∑︂

i=1
w

(2)
kj zj + w

(2)
k0

In the case of classification, these are transformed into final outputs yk using
a logistic sigmoid function. In the topic of card fraud detection, there is only
one output variable that states whether a transaction is fraudulent or not.

Neural networks vary in complexity based on the number of hidden layers
they use. In the simplest case, there is only one hidden layer. Networks with
a large number of hidden layers are one of the many types of deep learning
algorithms. Neural networks have a broad specter of use from face identifica-
tion, through text recognition to algorithms that recommend content on social
networks. Their popularity lies in their ability to reliably learn complex re-
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lationships and predict on test data. There are also no restrictions on the
structure of input data. On the other hand, neural networks work as a black
box due to the computations which are made in multiple layers, and thus they
are very complex algorithms. This is also connected with a high demand for
computational power.

There are multiple variants of neural networks, that can be used in fraud
detection (Zakaryazad & Duman 2016). Their paper builds several neural
networks and looks at their accuracy in fraud detection on two datasets of
credit card transactions obtained from two Turkish banks. These neural net-
works are also compared with a decision tree and naïve Bayes. Moreover, the
authors focus on the total savings provided by the neural network as a perfor-
mance metric. The results of this paper show that an ordinary neural network
achieves the highest accuracy and true positive rate on both datasets. The extra
complexity of other neural networks did not bring any significant performance
improvement.

3.2.4 Gradient Boosting

Boosting is one of the most frequently used machine learning approaches. It
provides high performance, and the process is understandable despite being a
black-box model. Boosting relies on a so-called weak learning algorithm, which
uses training data to create a weak classifier (Schapire & Freund 2012). These
weak classifiers by themselves can be quite simple and provide low accuracy,
as long as they perform better than pure guessing. The algorithm creates
several such weak classifiers, where each one is based on a different subsample
of the training dataset. Further steps of the procedure differ across individual
boosting algorithms.

AdaBoost is one example of a boosting algorithm. It works in rounds when
creating weak classifiers and uses an exponential loss function. In each round,
it draws a subsample from the training set based on a distribution it creates
over the examples. Each example is given a weight that gradually increases for
the examples which are classified incorrectly. This makes the algorithm work
harder on examples that have previously been classified incorrectly. After a
given number of rounds, the algorithm combines the obtained classifiers into
a single final one based on weights given to the classifiers (Schapire & Freund
2012). A large benefit of AdaBoost is that it takes it long to start overfitting
(Murphy 2012).



3. Machine Learning in Card Fraud Detection 17

Adaboost has been used in comparison to a real-world fraud detection sys-
tem. Chan et al. (1999) use algorithm AdaCost, a variant of AdaBoost, and
compare its performance to a fraud detection system of Chase Bank applied on
real transactional data of Chase Bank and First Union. The AdaCost algorithm
looks at the cost of misclassification of a fraudulent transaction and implements
it into the optimization process. Moreover, the authors are trying to maximize
savings produced by the predictions of the algorithm. Their analysis shows that
the machine learning classifier achieved higher savings than the system used
by the bank. Further, they also create so-called AdaCost metaclassifiers which
combine multiple classifiers when deciding whether a transaction is fraudulent
or not. This metaclassifier achieves even better results than the base classifier.

Gradient Boosting presents a rather new boosting algorithm, which offers
high performance. Unlike other boosting methods, gradient boosting is unique
because it provides a generic framework that can be used for different loss func-
tions (Friedman 2001), (Mason et al. 2000). The name comes from the gradient
descent process that this algorithm employs to minimize the loss function. This
process minimizes the loss function in subsequent steps where the following es-
timation is based on a modified version of the previous dataset. After the first
estimation on the original dataset, the algorithm finds out which errors between
the true target value and prediction were highest and the model then focuses
on those further. Once the errors are sufficiently low, the model takes all of
the obtained predictions and combines them into the final result.

An extension of this approach are gradient boosted decision trees Friedman
(2001). In this method, each weak learner takes on the form of a decision
tree and is used in combination with gradient boosting. In each boosting step,
the algorithm fits a decision tree and then combines the obtained trees in its
final evaluation. Gradient boosted decision trees are a very popular gradient
boosting method in both regression and classification tasks thanks to their
accuracy and efficiency.

Another interesting implementation of gradient boosting is the so-called
Extreme Gradient Boosting (XGBoost). Even though it is a very new algorithm
(Chen & Guestrin 2016), it is quickly becoming very popular thanks to its
many advantages over other gradient boosting models. XGBoost is a tree-based
method just like the majority of other gradient boosting algorithms. Unlike
other models, XGBoost makes use of a regularization term when it is training.
This term limits the complexity of the algorithm which helps it to avoid over-
fitting (Chen & Guestrin 2016). It is added to a standard loss function and
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the algorithm tries to minimize both of them together. Furthermore, XGBoost

provides the ability of parallel tree learning, which makes it more powerful and
also speeds up the learning process. This algorithm also offers great flexibility
in the type of data it can use. XGBoost is capable of handling many different
types of data, including missing data and it supports a wide range of objective
functions, evaluation metrics, and optimization objectives (Chen & Guestrin
2016). Finally, it provides a score of importance of each variable, which helps
it identify the most important variables to make accurate predictions. Overall,
it is a very powerful and flexible algorithm that is usable in both classification
and regression tasks and offers great performance in many different applications
(Bentéjac et al. 2021).

Gradient boosting is also a powerful algorithm for fraud detection. Rand-
hawa et al. (2018) compare multiple machine learning models in their ability
to identify frauds in two real transaction datasets from Europe and Malaysia.
They create 12 different machine learning models and look at accuracy, sen-
sitivity, specificity, and the Matthews correlation coefficient on both of the
used datasets. Gradient boosting achieves some of the highest scores in each
of these performance metrics. Further, the authors set up a majority voting
system, where pairs of different models vote to produce the final verdict. In
this scenario, a combination of a gradient boosting model with decision trees
beats all other algorithms. Moreover, the dataset is then filled with up to 30%
of noise data. Even on this data, the combination of gradient boosting and
decision trees manages to lose very little performance.

A different implementation of gradient boosting, Light gradient boosting
can also serve as a good algorithm for card fraud detection. In their paper,
Taha & Malebary (2020) build an Optimized light gradient boosting model
(OLGBM) and use it on two datasets of fraudulent transactions. They then
compare it to models used by different authors on the same datasets. Some of
those models are random forest, support vector machine, or logistic regression.
The OLGBM algorithm manages to outperform all the other models in terms
of the F1 score, precision, and accuracy on both datasets. Its sensitivity is
somewhat lower, but still competitive with the rest of the models.



Chapter 4

Data

4.1 Data Source
Obtaining a sufficient dataset of fraudulent credit card transactions is a de-
manding task. Machine learning algorithms require a large number of obser-
vations. This is connected with the need for independent variables which can
provide a good explanation of changes in the dependent variable. Even though
banks and credit card associations own huge datasets on card payments and
frauds, they tend not to provide them to the public. Such data contain a lot
of private information which cannot be legally shared without considerable ad-
justments. Financial institutions cannot risk damaging the public opinion of
themselves and therefore keep their data confidential.

Even if there is an opportunity to obtain real-life data from a bank or other
financial institution, these data may often be incomplete. Companies are either
unable to keep their data sufficiently clean and simple or they do not gather
some important data at all. Data incompleteness is one of the biggest problems
of real datasets. If the dataset is large enough and there is not much missing
data, this problem can be mitigated quite easily. But in the case of too many
missing data points, the dataset can be interesting because it consists of real-life
data, yet unusable for analysis.

An alternative to getting a dataset directly from a bank is the use of data
obtained and shared for the purposes of research. When it comes to credit card
fraud, there are not many publicly available datasets, and the public ones are
quite limited in the number of observations. This thesis, therefore, builds its
analysis on a dataset that has been artificially generated for research purposes.
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4.2 Dataset
This thesis uses a publicly available dataset that has been synthesized by re-
searchers from the IBM T.J. Watson Research Center. Properties of this data
correspond to those of human-made transactions (Altman 2019). Authors cre-
ate models of thousands of individuals whose characteristics are representative
of the United States. This synthetic sample of individuals matches closely the
means and standard deviations of various characteristics of the real US popu-
lation. Examples of these are age, income, geographical distribution, or credit
card spending. Correlations between these variables are also taken into account
and simulated.

Next, credit card transactions are synthesized. In the same way as con-
sumers, merchants are also modeled so that their properties match their real
counterparts. They are spread around the world since US citizens may use for-
eign shops. Sales amounts differ across merchant categories and transactions
also follow trends over the course of a day. Overall this card usage data makes
for a good representation of real consumer behavior.

Finally, fraudulent transactions are simulated. Fraudsters are generated
while keeping some of their special features in mind. In the same way, as in
reality, they only commit frauds for a limited time period. Moreover, a person
can become a fraudster and they can also decide to stop their illegal activities.
Fraudulent transactions are randomized across time for each consumer. This
feature of synthetic data can be very beneficial since it simulates the worst-
case scenario when fraudsters find a way to make their transactions completely
random, not following any patterns. If a fraud detection algorithm can identify
random frauds well, then it will likely do even better in a real-world situation
where certain transaction patterns are present.

The dataset consists of transactions made over a long period and transac-
tions reflect changes in technology and consumer behavior. The proportion of
online payments is gradually increasing and so is the share of online frauds.
Consumers also get older and thus some retire and stop spending as much as
they used to. Others are becoming adults and start using their cards more and
more. Overall, the dataset provides a very good simulation of general popu-
lation characteristics, transaction behavior, technological changes, and fraud-
sters’ activity across a long time period. Therefore it is a valid alternative to
real data. Much less data manipulation is needed and the randomness of frauds
provides a bigger challenge for the fraud detecting algorithms.
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4.3 Data Preparation
The full dataset comprises three files with a total of 48 variables. The files are
divided into information on individual consumers, their cards, and their trans-
actions. These files are linked together and thus all variables can potentially
be used in the analysis. The dataset is massive, as it consists of more than
20 million transactions made between 1991 and 2020. There are 2000 unique
consumers and more than 6000 cards used. Due to the large number of obser-
vations, a sufficiently sized subsample will be drawn from the data. Moreover,
only data on transactions made in recent years are used since card technology,
transaction trends, and methods of fraud are evolving in time. Data on older
transactions would thus carry much less information.

We choose a sample of original data where we only choose transactions
made between the years 2018 and 2020. The amount of data from 2020 is
limited as the latest transactions come from February of 2020 and there are
no fraudulent transactions recorded in this year. There were approximately
3.6 million transactions made during this period but only 4450 of them were
fraudulent.

Since the variable which distinguishes fraudulent and genuine transactions
is highly imbalanced, we need to manipulate the data to make it more bal-
anced. The proportion of frauds only makes up approximately 0.1% of all
transactions. Such a small proportion of frauds would make it very difficult
for the algorithms to correctly distinguish fraudulent transactions and there-
fore lead to worse performance (Gupta 2016). Therefore first, the dataset is
undersampled. This procedure randomly removes legitimate transactions and
only leaves us with 120 thousand of them. After that, we oversample using
SMOTE in order to increase the proportion of fraudulent transactions in our
sample. This combination of undersampling and SMOTE is an ideal solution
to a large imbalanced dataset (Haixiang et al. 2017).

Synthetic Minority Over-sampling Technique (SMOTE) is a method used
in machine learning to address the problem of imbalanced datasets. It works
by creating new synthetic data points for the minority class by interpolating
between existing minority class data points (Chawla et al. 2002). Specifically,
for each minority class data point, SMOTE selects one or more of its nearest
neighbors (other minority class data points) and creates new synthetic data
points along the line segments between the original data point and its selected
neighbors. The algorithm allows users to control the degree of oversampling by
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specifying the number of synthetic samples to create. SMOTE can be used with a
variety of machine learning algorithms, and it is particularly useful for training
classifiers that need to achieve good performance on both the minority and
majority classes. SMOTE can have many applications in fields, where highly
imbalanced data are present. It is very useful in the classification of DNA
proteins, computer vision, text classification, and also fraud detection (Kaur
et al. 2020), (Mqadi et al. 2021).

We oversample frauds and partially legitimate transactions as well and end
up with 164 650 transactions. 31 150 of those are fraudulent, which translates
to a proportion of 18.9% of frauds in our dataset. This will allow the machine
learning algorithms to perform much better.

There is a large number of variables in our dataset and only a part of them is
used by our algorithms. We choose 10 variables that we will use in our models.
5 of those are categorical variables, 2 are numeric and the remaining three are
binary variables. Since some of the models we are using cannot easily work
with categorical variables, we need to modify these variables into numerics.
There are three possible approaches to how we can do this. We can use learned
embedding of categorical variables, integer encoding of variables, or one hot
encoding.

Learned embedding transforms categorical variables into one or more vec-
tors of continuous numerical variables. It can transform complex relationships
between categories and turn them into low-dimensional variables. They can
then be used in machine learning models as standard explanatory variables.
Learned embedding is very often used to represent words and their relative
meanings in text analyses. But it is a very flexible method of transformation
of categorical variables and therefore it is widely used in other fields as well.

An alternative to learned embedding is called integer or ordinal encoding.
This method assigns an integer to each category of the original variable. The
variable can then be used to train a machine learning model. This is not as
complex as learned embedding since the numerical values are not calculated.
But it requires the original data to be ordinal. We can only use this method if
we can order the single categories of a given variable. This is not the case with
our data and therefore we cannot use this approach.

Finally, there is one hot encoding. This method checks the number of
categories in a variable and then creates a single new column of data for each
category. Each column is binary and contains a 0 or 1 depending on the
category in the original variable. One hot encoding is very easy to implement as
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it only splits categorical data into multiple binary columns. Machine learning
models are also able to process binary variables easily. But if there are variables
with many categories, they will be transformed into a large number of columns.
It can be difficult to understand such a wide dataset. Moreover, machine
learning models may become slow with a large number of columns. We use
this method on categorical variables which have only a few different categories.

4.4 Data Description
The variable we are most interested in is fraud. This is a binary variable that
denotes whether a transaction was fraudulent or genuine and it is our dependent
variable. In our original dataset, frauds only make up 0.12% of all transactions,
as shown in Table 4.1.

Table 4.1: Proportion of Frauds in Original Dataset

Fraud Proportion
No 99.88%
Yes 0.12%

Therefore we undersample and oversample using SMOTE in order to in-
crease the proportion of fraudulent transactions in our dataset. This way we
increase the proportion of frauds to 18.92% as shown in Table 4.2.

Table 4.2: Proportion of Frauds in Resampled Dataset

Fraud Proportion
No 81.08%
Yes 18.92%

Probably the most important numeric variable in our dataset is amount.
This variable describes the amount in US dollars of each transaction. In our
analysis, we use a logarithmic transformation of this variable since the distri-
bution of the original variable would be very skewed. Descriptive statistics of
the variable are presented in Table 4.3.

We can look at the difference in transaction amounts between fraudulent
and genuine transactions. This comparison is presented in Figure 4.1. We
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Table 4.3: Properties of log(amount)

Descriptive Statistics
Statistic N Mean St. Dev. Min Max
amount 164 650 52.19 75.56 0.01 1 710.02

can see that amounts of both fraudulent and genuine transactions follow a
normal distribution. We can also see that fraudulent transactions have a higher
average amount than legitimate transactions. This can be caused by the fact
that fraudsters can try to make as high transactions as possible once they are
in control of a card. On the other hand, the median amount is similar in both
groups. This means that the higher average amount is likely caused by higher
transaction amounts in the upper tail of the distribution.

Figure 4.1: Distribution of log(amount)

Gender shows the share of males and females in our data. It is summarized
in Table 4.4. 55.54% of payments were made by women and 44.46% by men.

Table 4.4: Proportion of Genders

Gender Proportion
Female 55.54%
Male 44.46%

Variable age contains age of the cardholder at the time of the transaction.
Figure 4.2 shows the distribution of cardholders’ age in our dataset. This
variable can be interesting because some age groups may be more likely to
become victims of card fraud. For example, older people may fall for phishing
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attacks more often because they are not able to tell a scam e-mail from a
genuine one as easily as younger generations.

Figure 4.2: Distribution of Age

Card Type describes the distribution of different types of payment cards
used. There are three main card types: credit cards, debit cards, and prepaid
debit cards. The majority of transactions in our dataset were made by debit
cards (64.04%). They are followed by credit cards with 29.36% of all transac-
tions. The remaining 6.6% were made by prepaid cards. It is summarized in
Figure 4.3

Figure 4.3: Distribution of Card Type

Use Chip shows the means of authorization of the card. Transactions were
either made using the chip on the card at a POS, using the magnetic stripe and
swiping the card, or using the card to pay online. This variable is important
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because it can be used to tell apart different fraud types which were explained in
Chapter 2. Fraudulent online transactions can come from phishing attacks and
POS transactions most often come from lost and stolen cards or less frequently
from skimming attacks. The distribution of authorization methods is presented
in Figure 4.4. Most transactions were authorized using a chip with 74.4%. The
rest is split between swipe (14.63%) and online transactions which made up
10.97% of all payments.

Figure 4.4: Distribution of Chip Use

Variable same_state is a binary variable with value 1 when a transaction
is made in a state that is different from the cardholder’s state of permanent
residence. This variable can be especially useful for the detection of online
frauds such as CNP frauds. Distribution of same_state is presented in Table 4.5.
Approximately one third of transactions in our sample were made in a state
that is different from cardholders‘ permanent residence. Not every transaction
from a different state should automatically be flagged as fraudulent but we
believe that this will be an important variable in fraud detection. Especially
given the popularity of phishing attacks in recent years.

Table 4.5: Proportion of same_state

Same state Proportion
Yes 63.83%
No 36.17%
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MCC is an interesting and possibly also an important variable in our anal-
ysis. Merchant Category Code (MCC) is a four-digit number that is used by
card issuers to classify a business. They are most often assigned according to
the main business activity of a merchant (e.g. VISA assigns 5944 to “Jewelry
Stores, Watches, Clocks, and Silverware Stores”, or 4111 to “Suburban and
Local Commuter Passenger Transportation, Including Ferries”). Some are also
assigned to a single merchant, such as 3217 to Czech Airlines. These codes are
mostly shared by all payment card issuers, although some may vary. There are
various purposes for this categorization of businesses. MCCs can be used to de-
termine the interchange fee a merchant pays to their bank when their customer
pays with a card. Businesses and financial institutions use MCCs to track
spending patterns and consumer behavior or to calculate credit card rewards
to customers for spending on certain goods and services. We can use them
to label businesses that may be connected with higher card fraud rates. One
such high-risk MCC is 6051 which is assigned to “Non-Financial Institutions –
Foreign Currency, Non-Fiat Currency (for example: Cryptocurrency), Money
Orders (Not Money Transfer), Account Funding (not Stored Value Load), Trav-
elers Cheques, and Debt Repayment”. Using this MCC, banks can limit or
completely block purchases of cryptocurrencies since these transactions have a
high risk of being fraudulent.

Since MCC is a categorical variable with many different categories, we
need to modify it in order to use it in our models. It is possible to use one hot
encoding the same way as we use it for the rest of our categorical variables. But
the large number of different MCCs means that we would end up with tens or
hundreds of binary variables. This would make our dataset more complicated
and our models might suffer from training on an excessively large number of
explanatory variables. Therefore we use learned embedding to transfer each
category into a numerical variable. This way we can interpret all MCCs while
using only a single variable that retains the original information. This will
increase the training speed of our models and likely not harm their predictive
performance. One downside is that we cannot easily tell which MCC is which
since their values are scrambled into numerics.

Variable has_chip denotes whether the card has an embedded chip or if
it only uses a magnetic stripe. Cards with no chip are potentially less secure
because credit card credentials stored on a magnetic stripe can be accessed
quite easily by fraudsters. Skimming devices are accessible and therefore cards
that only use magnetic stripes can be more prone to skimming fraud. Table 4.6
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shows the proportion of cards with and without chips. A vast majority of cards
nowadays use a chip and cards with only a magnetic stripe are becoming rare.
Cards without a chip are most likely among the oldest ones in our dataset.

Table 4.6: Proportion of Cards with Chip

Has Chip Proportion
Yes 91.06%
No 8.94%

Finally, we look at the distribution of transactions in time and the differ-
ences between genuine and fraudulent transactions. We present the comparison
in Figure 4.5. Since clients in our dataset are located in one time zone, we can
see that there are large differences in the number of genuine transactions dur-
ing the day. There is a noticeable cluster of a high number of transactions
approximately between 8 AM and 6 PM. This is the time of day when most
economic activity happens and during this period people make most of their
daily transactions. There is another cluster in the evening until 11 PM. This
group is smaller both in number of transactions and in length. The last cluster
is set during nighttime and contains the smallest number of transactions.

The comparison of distributions of fraudulent and genuine transactions is
interesting. We can see that fraudulent transactions are grouped in one large
cluster between 10 AM and 10 PM. The distribution of frauds during this time
period seems uniform with a few outliers. On the other hand, between 10 PM
and 10 AM, there were very few fraudulent transactions in our sample. Looking
at both distributions, we can see that they do not look alike. Therefore, there
is a certain pattern among fraudulent transactions that our models might rec-
ognize and use in their training. Since the majority of fraudulent transactions
are made between 10 AM and 10 PM, we set up a variable daytime that labels
transactions from this period. There is a higher probability that a transaction
is fraudulent if it was made in this time period.

There is also an alternative approach to the way how time is used as a
variable in the models. Bahnsen et al. (2016) propose to model the time of
the transaction as a period variable using the von Mises distribution. This is
especially useful for the computation of the mean time at which a transaction
is made. This can then be used to create time confidence intervals for gen-
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uine transactions. A deviation from the confidence interval is then labeled as
suspicious and potentially fraudulent.

Figure 4.5: Distribution in Time

To check correlation coefficients across variables, we make a correlation plot.
Information on correlation can give us important insights into our dataset. We
present the correlation matrix of our dataset in Figure 4.6.

Figure 4.6: Correlation Matrix of All Variables

We can see that fraud is negatively correlated with same_state. This means
that transactions made in a different state are systematically more likely to be
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fraudulent. This is a feature that we are expecting to hold. There is also a
negative correlation between transactions authorized using a magnetic stripe
and transactions made with cards that have a chip. This makes sense since
we can guess that people who have a card with a chip will not use the out-
dated magnetic stripe. Finally, we can see a negative correlation between online
transactions and transactions made in the same state. This is also a valid rela-
tionship because there is a huge number of international online shops, and they
are becoming more and more popular every year. Other correlation coefficients
are not too large in magnitude.

Finally, we split our dataset into a training and testing sample. We ran-
domly sample 70% of our dataset into a training set and we make the remaining
30% our testing set. On top of that, we sample another training set of 50 000
observations from our original imbalanced dataset. We do so because we are
interested in the performance of our models on data with a real-life structure.
If we only tested our models on the oversampled and balanced testing data, we
might end up with models that only work well on balanced data but their per-
formance drops when applied to imbalanced data. Therefore, we end up with a
balanced training sample, a balanced testing sample, and an imbalanced testing
sample. We summarize our data in Table 4.7.

Table 4.7: Properties of Used Subsamples

Name Number of Observations Proportion of Frauds
Training Sample 115 255 18.92%

Imbalanced Testing Sample 49 395 18.92%
Balanced Testing Sample 50 000 0.14%



Chapter 5

Estimation and Evaluation

In this section, we describe the process of building each of our models and
identifying the importance of variables. We also describe the tuning of the
parameters of each model so that they perform as best as possible. We train
all of our models on the training sample which we have described in Chapter 4.
Each model is provided with all of the available variables. After that, we extract
variable importances and tune the model parameters.

There are two approaches to tuning the models. In this thesis, we want
our models to maximize the number of transactions that are correctly classi-
fied. There is also a cost-sensitive approach (Sahin et al. 2013) which aims
to minimize costs coming from the wrong classification. In this analysis, we
are using the count-sensitive models because the bank system which we will
use for comparison uses this approach as well. We want our models to be as
comparable to the benchmark system as possible.

Models are tuned so that their performance on the imbalanced testing sam-
ple is maximized. In the case of fraud detection, the choice of a performance
metric that we want to optimize is not as straightforward as it might seem. On
the one hand, we want our algorithm to find as many fraudulent transactions
as possible. On the other hand, the model must not produce too many false
positive outcomes. In a real application of fraud detection, each transaction
that is flagged as fraudulent is transferred to a new process. Such a transaction
is either immediately blocked by the bank or has to be manually checked by an
employee. In this case, the employee most often calls the card owner and asks
them whether they were trying to make the suspicious transaction. This pro-
cess is time-consuming and costly. The bank bears the cost of the employee’s
salary and the card owner has to spend time talking to the bank and waiting
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for their transaction to be approved. Therefore, we cannot simply aim for the
highest number of uncovered fraudulent transactions without looking at the
number of false positives.

In our analysis, we try to balance two performance metrics: sensitivity and
specificity. Sensitivity refers to the ability of a model to correctly identify
fraudulent transactions. It measures the proportion of frauds that were labeled
as fraudulent. A model that has high sensitivity will therefore have a low
false negative rate. Specificity, on the other hand, refers to the ability of an
algorithm to correctly identify genuine transactions. Specificity measures the
proportion of valid transactions that the model labeled as valid. A model with
high specificity will give us only a few false positive cases. We are aiming to
reach as high sensitivity as possible while keeping specificity at high enough
levels.

We can also use precision as a complementary measure of performance.
Precision describes the proportion of true positives among all transactions that
were labeled as fraudulent. Higher precision is connected with a low false
positive rate.

Further, we look at Area Under ROC Curve (AUC). In our case, high AUC
only serves as a necessary but not sufficient condition to say that our model
performs well. This is caused by the large imbalance between the number of
fraudulent and genuine transactions in our dataset. When the majority class
makes up a large proportion of the dataset, AUC can be misleading because it
only measures the model’s ability to rank examples, but it does not take into
account the prevalence of the classes. In our case, we could receive a high AUC
if our model simply labeled all transactions as legitimate even though this would
make our model completely useless. On the other hand, we cannot completely
ignore AUC because there is still a possibility that a model would wrongly label
both fraudulent and legitimate transactions. Therefore, we should check that
the models we train are able to reach high AUC but after that, we need to
check other performance measures as well.

Precision and AUC are recommended as performance measures for machine
learning models in fraud detection by Pozzolo et al. (2018) in their paper on
fraud detection strategies. They also propose a cost-based measure. Since we
want to compare our models to a fraud detection system used in a bank and
we do not have a cost-based measure for this system, we are not going to use
it in this analysis. Instead, we choose sensitivity and specificity.
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5.1 Logistic Regression
We use logistic regression as our first model for the detection of fraudulent
transactions. Compared to other algorithms that we use in this analysis, logit
is the simplest one. First, we set up a logistic regression of all available in-
dependent variables and check the performance of the model. Results of the
model are presented in Table 5.1. We can see that all independent variables
are highly significant. The only exception is same_state which has a very high
p-value.

Table 5.1: Summary of Logistic Regression

Dependent variable:
fraud

amount −0.002∗∗∗ (0.0002)
has_chip −1.925∗∗∗ (0.105)
same_state −22.513 (90.875)
age 0.019∗∗∗ (0.001)
daytime 4.664∗∗∗ (0.094)
mcc_embed_1 −5.154∗∗∗ (0.118)
gender_male −1.017∗∗∗ (0.041)
card_type_debit 0.682∗∗∗ (0.045)
card_type_debit_prepaid 0.508∗∗∗ (0.091)
use_chip_online_transaction −5.712∗∗∗ (0.079)
use_chip_swipe_transaction −3.017∗∗∗ (0.106)
Constant −1.821∗∗∗ (0.161)
Observations 115,255
Log Likelihood −10,837.000
Akaike Inf. Crit. 21,698.010

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

This behavior is somewhat puzzling since we were expecting same_state
to be an important predictor of fraudulent transactions. An analysis of the
importance of each dependent variable further confirms this claim. Figure 5.1
shows that same_state is by far the least important variable from our selection.
Since this is a logistic regression, we cannot use the standard R2 metric to see
the proportion of variance of our dependent variable that is explained by the
independent variables. Instead, it is necessary to use a pseudo-R2. In this
analysis, we use McFadden’s R2. Its value is 0.80, which indicates a very good
fit (Domencich & McFadden 1975).
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Figure 5.1: Variable Importance of Logistic Regression

We use the imbalanced testing sample to obtain predictions from the logistic
regression. The model shows a very good performance. Figure 5.2 presents a
confusion matrix of the actual and predicted values, and also shows sensitivity
and specificity. These results are very good given that it is a simple logistic
regression. Out of the 71 fraudulent transactions present in the testing sample,
the model managed to find 63, reaching a sensitivity of 88.73%. Further, it
produced 2491 false positive predictions which means that it operated with a
specificity of 95.01%. There are also levels of accuracy, F1-score, and kappa as
secondary performance metrics in Figure 5.2.

In a real-life application of a fraud detection system, it is also important
to look at the speed of such a system. Since there can be thousands of card
transactions made each minute in a bank, the model has to be able to label
transactions as fraudulent or genuine in real-time. Therefore, we also look at
the average time it takes our model to predict on the testing sample. We do not
look at the training time because the model would not need to be retrained too
often and because it is possible to train the model separately from live data.
This logistic regression predicted all of the 50 000 transactions from the testing
sample in 0.0055 seconds on average from 100 runs.

Good performance is confirmed by the Receiver Operating Characteristic
(ROC) curve, which is presented in Figure 5.3. The magnitude of AUC reaches
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0.967, which is a good result. Overall, this model seems to be able to predict
fraudulent transactions well. It was able to find a large proportion of frauds in
the testing sample while keeping the number of false positives reasonably high.

Figure 5.2: Confusion Matrix of Logistic Regression

Figure 5.3: ROC Curve of Logistic Regression
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To address the issue of insignificant same_state, we make some changes to
our regression and run it again. First, we start removing explanatory variables
and we check the drop in McFadden’s R2 with each removed variable. This way
we identify variables that contain little information that is useful for explain-
ing fraud and we remove these variables. Table 5.2 shows the second logistic
regression after the removal of unnecessary variables. McFadden’s R2 drops
from 0.80 to 0.78.

Table 5.2: Summary of Logistic Regression 2

Dependent variable:
fraud

same_state −22.544 (93.364)
daytime 4.675∗∗∗ (0.092)
use_chip_online_transaction −5.208∗∗∗ (0.070)
age 0.022∗∗∗ (0.001)
amount −0.002∗∗∗ (0.0002)
mcc_embed_1 −5.052∗∗∗ (0.112)
Constant −3.914∗∗∗ (0.118)
Observations 115,255
Log Likelihood −11,849.120
Akaike Inf. Crit. 23,712.240

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Predictive performance of the second logistic regression is summarized in
Figure 5.4. Overall, this regression reports a larger number of fraudulent trans-
actions. This means that it found more frauds at the cost of producing a higher
number of false positives. Sensitivity increases from 88.73% to 91.55% while
Specificity drops from 95.01% to 94.27%. Within these two regressions, there
is a clear trade-off between sensitivity and specificity in their performance.

In terms of AUC, the second model performs slightly worse. Figure 5.5
shows that the model achieves an AUC of 0.964 while the first regression
reached 0.967. The time to label all transactions from the testing sample drops
by 32.7% to 0.0037 seconds. This is a major improvement over the original
logistic regression. We can attribute this to the simplification of the model
because it relies on a smaller number of variables.

In this regression, same_state is still highly insignificant. Estimates of ex-
planatory variables have not changed too much and all variables keep their
significance. Thus, we run a bootstrap with 1000 resamples on the first model.
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Figure 5.4: Confusion Matrix of Logistic Regression 2

Figure 5.5: ROC Curve of Logistic Regression 2
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By bootstrapping, we obtain much more precise standard errors for each predic-
tor. This is possible because bootstrapping draws a large number of resampled
datasets from the original sample. The logistic regression is then run on each
of these datasets and standard errors are calculated for every regression. Af-
ter that, the algorithm examines the distribution of these standard errors and
provides us with a more precise estimate.

Table 5.3 shows that after bootstrapping, the standard error of same_state
drops massively, which means that it is a statistically significant variable. Stan-
dard errors of all other variables are very similar to estimates from the logistic
regression. Therefore, the original regression behaves as expected.

Table 5.3: Bootstrap Standard Errors of First Logistic Regression

original bootBias bootSE bootMed
(Intercept) -1.8205 0.0083 0.1473 -1.8065
amount -0.0016 0.0000 0.0001 -0.0016
has_chip -1.9247 -0.0050 0.0856 -1.9327
same_state -22.5127 -0.0021 0.0339 -22.5153
age 0.0186228 -0.0000 0.0016 0.0185
daytime 4.6643 0.0007 0.0973 4.6672
mcc_embed_1 -5.1541 -0.0026 0.1219 -5.1574
gender_male -1.0167 -0.0018 0.0448 -1.0177
card_type_debit 0.6815 -0.0003 0.0466 0.6801
card_type_debit_prepaid 0.5076 0.0059 0.1087 0.5128
use_chip_online_transaction -5.7120 0.0016 0.0868 -5.7083
use_chip_swipe_transaction -3.0167 -0.0038 0.0855 -3.0233

Table 5.4 compares our two logistic regression models. The first regression
produces a smaller number of false positives and has higher precision and AUC,
whereas the second model correctly identifies a higher number of frauds and
also takes significantly less time to predict on the testing sample.

Table 5.4: Comparison of Logistic Regressions

Model Sensitivity Specificity Precision AUC Training Time (s)
Logit All Variables 0.8873 0.9501 0.0247 0.9670 0.0055

Logit Selected Variables 0.9155 0.9427 0.0222 0.9643 0.0037
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5.2 Neural Network
We continue our analysis with a neural network. Unlike logistic regression, a
neural network is a “black-box” algorithm. This means that we cannot see how
the learning process works and we do not know why exactly the neural network
decided to label a transaction as genuine or fraudulent. While logistic regression
uses a linear combination of explanatory variables, neural networks use one or
more hidden compute layers, which in sequence transform explanatory variables
into the explained variable.

The neural network is built using the R package nnet. This package only
allows for neural networks with one hidden layer. It is possible to tune the
network by setting the number of neurons in the hidden layer (size) and a
parameter decay. This parameter is a form of regularization, that is used to
limit overfitting (Venables & Ripley 2002).

In order to find optimal values of the two parameters, we set up vectors
with four different values of size and eight values of decay. We then perform
a grid search, which uses all 32 combinations of these parameters to find a
model with as high performance as possible. This method uses brute force in
order to find the optimal combination of parameters. We also perform a 2-fold
cross-validation which is repeated two times with a different set of folds. This
will further improve the accuracy and robustness of the found parameters.

Grid search finds optimal parameters for the neural network. Its perfor-
mance on the test set is summarized in Figure 5.6. The algorithm managed
to correctly identify 62 fraudulent transactions out of 71, which translates to a
sensitivity of 87.3%. It also made 2353 false positive predictions. Specificity is
therefore 95.3%. In comparison to both logistic regressions, the neural identi-
fied a slightly smaller number of frauds while producing fewer false positives.
The model took 0.04 seconds on average to predict on 50 thousand transac-
tions, which is approximately 8-10 times as long in comparison to the logistic
regressions. This is a very large difference, even though the neural network
should still be able to predict comfortably in a real-world application.

The model performs well given the AUC level of 0.943, as shown in Fig-
ure 5.7. This is a high value of AUC, but lower than the AUC of both logistic
regressions. This is caused by a lower number of identified frauds despite the
higher specificity.

Finally, we check the importance of each variable in the training of the
neural network. This is presented in Figure 5.8. Compared to logistic regres-
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Figure 5.6: Confusion Matrix of Neural Network

Figure 5.7: ROC Curve of Neural Network



5. Estimation and Evaluation 41

sions, the dispersion in variable importance is much smaller in the case of the
neural network. The most important variable is approximately three times
as important as the least important variable. Therefore, the removal of any
variable would likely harm the predictive performance of the model. Variable
importance for the neural network is based on combinations of absolute values
of weights for each variable (Gevrey et al. 2003).

Figure 5.8: Variable Importance of Neural Network

5.3 Random Forest
The next model that we use for fraud identification is a random forest. There
are multiple different implementations of random forests available in R and
we are using one made by company h2o.ai in their package H2O. This pack-
age provides an open-source platform for building of a broad range of machine
learning models, including deep learning, gradient boosting, or generalized lin-
ear models.

Random forests trained using the h2o package can be tuned using a large
number of parameters. We chose to optimize the model by tuning parameters
mtries, max_depth, min_rows and sample_rate. Mtries defines the number
of variables randomly sampled as candidates at each split. Max_depth is the
maximum depth of a single tree. Min_rows sets the fewest allowed observations
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in a leaf and sample_rate defines the proportion of the number of rows that
are sampled for each tree from the training dataset. Same as in the case of
a neural network, the decision process of a random forest cannot be simply
observed because it is an ensemble of a large number of smaller tree models.
In this case, the random forest consists of 1000 decision trees.

We run a grid search across 225 combinations of selected parameters to find
a model with as good predictive performance as possible. Further, the random
forest also uses 5-fold cross-validation to ensure that the best parameter values
are chosen.

The predictive performance of the final model is presented in Figure 5.9.
Interestingly, the random forest finds a much smaller number of fraudulent
transactions. It managed to correctly identify 48 frauds and reached a sensi-
tivity of 67.6%. This is a much lower number of true positives compared to the
logistic regressions and the neural network. On the other hand, the random for-
est also produces much fewer false positives than the prior models and operates
with a specificity of 97.1%. This is another example of the trade-off between
true positives and false positives that many real fraud detection systems have
to face. While the random forest certainly outperforms other models in the
number of false alarms it produces, its ability to find a high number of actual
frauds is limited.

Figure 5.9: Confusion Matrix of Random Forest 1
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Figure 5.10 shows ROC curve of the random forest model. Area under the
curve equals 0.9728 which is higher compared to both logistic regression and
neural network models. This is however carried only by the lower false positive
rate and not the true positive rate. The average time required for a prediction
on the testing sample rose to 10.4 seconds. This is a massive increase from the
sub-0.1 second prediction time of logistic regressions and the neural network.
This may hint that the random forest model grew very complex even though
its performance is lacking.

Figure 5.10: ROC Curve of Random Forest 1

Further, we inspect a plot of variable importance presented in Figure 5.11.
Unlike the neural network, our random forest treats individual variables differ-
ently. There is a large spread in variable importance. The information whether
a card has a chip, or if it is a prepaid card has very little overall value for
the model. These variables may therefore only make the model too complex
despite having little influence on its outcome. We will therefore run the model
once more while removing the three least important variables. The remaining
variables have comparable importance, except for same_state.

We run the random forest again on a smaller number of explanatory vari-
ables. Results are shown in Figure 5.12. We can see that the predictive perfor-
mance of the algorithm has slightly dropped. Both sensitivity and specificity
are lower in comparison to the original random forest. On the other hand, the
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Figure 5.11: Variable Importance of Random Forest 1

mean time to predict on the testing sample decreased to 8.7 seconds. This is
16% lower but compared to the other models it is still very high. Neither the
second random forest is therefore a good candidate for a card fraud detection
system.

5.4 Gradient Boosting
The final algorithm of this analysis is gradient boosting. We use Extreme
Gradient Boosting and its implementation through R package xgboost. This is
a specialized package for XGBoost and it offers a high level of customization for
this task. It offers both a linear and a tree-based booster, both with a large
selection of tuning parameters. For our task, we use a tree-based model. The
model is tuned using parameters max_depth, eta, nrounds, max_delta_step
and lambda. Max_depth sets the largest depth a tree can grow. Eta is used to
control the learning rate. It scales the contribution of each tree and it is used
to prevent overfitting by making the boosting process more conservative with
the lower value of eta. Nrounds specifies the maximum number of boosting
iterations. Max_delta_step is used to improve performance on imbalanced
datasets. Lambda is a weight regularization term that helps prevent overfitting
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Figure 5.12: Confusion Matrix of Random Forest 2

and makes the model more conservative. The algorithm is set up so that it
predicts the probability of the transaction being fraudulent.

Figure 5.13 shows the predictive performance of the model given optimal
parameter tuning. XGBoost managed to correctly identify 59 frauds out of 71
from the imbalanced testing sample, which translates into a sensitivity of 83.1%.
This is not the highest number of true positives compared to other models used
in this analysis. But together with a specificity of 96.6%, this means that the
model managed to limit the number of false positives it produced. 1713 false
positive fraudulent transactions are the second lowest number of all the tested
models. Only the random forest kept this number lower, but it struggled to
correctly predict true positives. XGBoost also shares the highest precision with
the random forest.

The area under the ROC curve of this algorithm reached a score of 0.9820,
as shown in Figure 5.14. This is the highest AUC of all the tested models and
it further hints that this model outperforms others. Both high sensitivity and
specificity contribute to the AUC score. Further, the average time to predict
on the test sample of 50 000 transactions was 0.0007 seconds. This is by far
the lowest prediction time, as it is approximately five times lower than the next
model. XGBoost is therefore very good at finding fraudulent transactions and
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Figure 5.13: Confusion Matrix of XGBoost

also manages to do so very fast.

Figure 5.14: ROC Curve of XGBoost

In Figure 5.15, we look at variable importance in the model. For ex-
treme gradient boosting, variable importance is calculated as an improvement
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in accuracy brought by the variable to the branches it is on. There is a
clear difference between the importance of different variables,same_state and
use_chip_online_transaction being the most important ones. Other variables
contribute significantly less to the model. Given the very high performance of
the model, it is not necessary to retrain the model with a smaller selection of
explanatory variables. Moreover, the prediction speed is already very high as
well, and therefore the complexity of the model is not an issue either.

While there are some differences, the order of variables by their importance
is comparable in gradient boosting, logistic regression, and random forest mod-
els. The algorithms mostly differ in the way they work with the variables and
in the way they use the information brought by them.

Figure 5.15: Variable Importance of XGBoost



Chapter 6

Comparison to a Real Fraud
Detection System

The models that we have tested seem to have performed well in the detection
of fraudulent transactions. The only exception is the random forest which
identified a low number of frauds even though it kept the number of false
positives low as well. But there was no clear benchmark in the analysis, to which
we could compare the performance of our models. There was no connection to
actual fraud detection systems used in banking.

Therefore, we use data from a card fraud detection system that is used
in a middle-sized Czech bank. This is a traditional rule-based fraud detection
system, as described in Chapter 2. This makes it a good example for comparison
between the traditional systems and modern solutions which make use of some
machine learning techniques. But the comparison is not perfect. While the
bank system uses actual transactional data, models from this analysis are built
on a synthetic dataset which was presented in Chapter 4. This means that we
cannot directly compare the performance between our models and the bank
detection system. But the comparison should still have some relevance and
give us more insight into the performance of our models.

Data on the performance of the bank detection system comes from the
year 2022. This year, the system analyzed approximately 204 million card
transactions. Its performance is summarized in Table 6.1. The first thing we
can immediately see is that this system achieved a very high specificity, meaning
that it produced a very low number of false positives. This is an important
feature of the model because a higher rate of false positives translates into
higher expenses on the salaries of employees who verify fraudulent transactions.



6. Comparison to a Real Fraud Detection System 49

Table 6.1: Performance of Benchmark FDS

Sensitivity 0.7845
Specificity 0.9996
Precision 0.0643

Further, we create a performance summary of all our models. This summary
is presented in Table 6.2. In terms of sensitivity only, our best-performing
model is the logistic regression trained on a selection of the most important
variables. This model operated with a sensitivity of 91.6% but it lacked in
terms of specificity, where it ended in the last place.

Not taking into account the bank detection system, the highest sensitivity
was reached by the random forest with a score of 96.6%. Though again this
model placed last in sensitivity. Moreover, the random forest took by far the
longest to predict on the testing sample. This shows that no “wonder” model
dominates others in all of the observed performance metrics. There will always
be a trade-off between the proportion of true positives and false positives, and
it is up to the model creator to decide which model suits their needs best.

It is, therefore, necessary to look at other performance metrics besides just
sensitivity and specificity to identify the best-performing model. We have also
looked at the AUC for each model in this analysis. But this is just a subsidiary
performance metric since all of the models achieve high AUC. This is caused
by the fact that we use an imbalanced dataset, and the majority class boosts
AUC significantly. But a high AUC serves as an indicator that all of the tested
models were able to adapt to the data and find information that could be used
to classify frauds.

There is still precision as the remaining performance metric of interest.
Random forest and gradient boosting models share the highest precision of
0.033. But the random forest suffers from a very low true positivity rate and
only makes up for the high precision with a low number of false positives. On
the other hand, XGBoost does not show such weaknesses. While it does not
have the highest sensitivity or specificity, they are both high enough, so that
the overall performance beats all the other tested models.

Moreover, its prediction speed is by far the highest and therefore it can
process a huge number of transactions in real time. Though it is safe to say that
all of the models should be able to predict in real-time if they were implemented



6. Comparison to a Real Fraud Detection System 50

in the bank whose data we use. Given that there were 204 million transactions
in a year, then there were approximately 6.5 transactions made every second on
average. Even if we take into account some seasonality and occurrence of time
periods with a much larger average number of transactions, then no models
should still have problems keeping up with the inflow of transactions. The by
far slowest random forest model managed to predict 4800 transactions a second
on average. Therefore, the speed of gradient boosting is only a bonus to its
predictive performance, but it does not have to be taken into account in model
selection.

Table 6.2: Comparison of All Models

Model Sensitivity Specificity Precision AUC Time (s)
Logit All Variables 0.887 0.950 0.025 0.967 0.0055

Logit Selected Variables 0.916 0.943 0.022 0.964 0.0037
Neural Network 0.873 0.953 0.026 0.943 0.04
Random Forest 0.676 0.972 0.033 0.973 10.4

Gradient Boostig 0.831 0.966 0.033 0.982 0.0007
Bank Detection System 0.784 0.999 0.064 X X

Gradient boosting is the best algorithm that we have tested for card fraud
detection. But it is necessary to compare it to the bank fraud detection system.
It could be possible that the XGBoost model is just the best of not very good
models. Table 6.2 shows that gradient boosting managed to find a larger pro-
portion of fraudulent transactions and therefore had a larger sensitivity. On the
other hand, the bank detection system operates with nearly perfect specificity
and produces very few false positives in its predictions. There is approximately
a 3.3 percentage points difference in specificity between our gradient boosting
model and the bank system. While it may not seem like a significant difference,
it can have a large impact on the number total number of false positive alerts.

If the XGBoost model were implemented on the 204 million yearly trans-
actions in the bank, it would produce around seven million false positives.
Meanwhile, the bank system operated with only 70 thousand false positive
predictions. This is a hundredfold difference, which would lead to a massive
increase in the number of employees who manually check suspicious transac-
tions or to the discontent of clients whose transactions were blocked. Either
way, this would likely lead to large expenses and losses for the bank. Therefore,
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it seems that the current detection system is a superior solution to a machine
learning model.

But the verdict cannot be so clear because the bank model operated on a
different dataset. It is possible that the gradient boosting model would perform
better if it was trained using data from the bank. The fraud risk specialist
could also decide to prioritize specificity over sensitivity so that the model
would produce fewer false positives while achieving a high enough level of fraud
detection. With sufficient tuning, a fraud detection system based on extreme
gradient boosting would likely perform as well as a standard rule-based system.



Chapter 7

Conclusion

The goal of this thesis was to train multiple machine learning models and use
them for the identification of fraudulent transactions made with payment cards
and to decide whether or not these models are suitable for this task. The tested
algorithms were logistic regression, neural network, random forest, and gradient
boosting in the form of XGBoost. Further, the thesis aims to find out whether
ensemble machine learning methods are superior to standard models in fraud
detection. Finally, we try to decide if machine learning models perform better
than traditional rule-based card fraud detection systems and if they could be
used in a real-world application.

The thesis first presented current trends in card fraud. The most common
types of fraud have been discussed. Then the various methods of card fraud
detection have been described. After that, the theoretical background for all of
the models was presented. Then the data and their properties were described.
The dataset used in this analysis has been simulated in a way that closely
resembles real transactional data. Since there is a very small proportion of
frauds among credit card transactions, the data had to be oversampled to
improve model training.

Some of the benefits of machine learning models are their flexibility and
simple implementation. On the other hand, they also have disadvantages.
Most of them are black-box models and therefore their operations cannot be
easily interpreted.

None of the tested models surpassed the benchmark fraud detection system.
But all of them achieved an acceptable predictive performance. There was
quite a significant variation in performance metrics across the models. Overall,
random forest and gradient boosting operated with higher precision than the
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neural network and logistic regression. Random Forest fell behind in sensitivity,
though. This partially confirmed our initial hypothesis, that ensemble models
are a better choice for card fraud detection.

We also measure the prediction speed of all our models. While there were
large differences in the time it took each algorithm to predict on a sample of
50 000 transactions, all of the models would be able to keep up with the inflow
of transactions in real-time.

The best algorithm from our analysis is extreme gradient boosting as it
outperforms the remaining models. But it lacks specificity when compared to
a rule-based system that is used for real-world fraud detection in a middle-
sized Czech bank. While XGBoost can find a larger proportion of fraudulent
transactions, it also produces a much larger number of false positives than
the bank system. Since our models and the bank model have been trained
on a different dataset, their performance cannot be directly compared. We
conclude that the gradient boosting algorithm could be tuned to outperform
the bank detection system if trained on the actual bank data. This confirms
our hypothesis that machine learning models are a viable alternative to existing
rule-based models that are mostly set up manually.

To sum up, machine learning models are an interesting substitute for tra-
ditional fraud detection systems. While these systems have proven themselves
over time, they can be difficult to set up and they need constant manual tweaks.
Machine learning models and especially gradient boosting offer a quick and re-
liable way to identify fraudulent transactions. With proper tuning, they could
outperform standard fraud detection systems while requiring much less main-
tenance.

The contribution of this thesis lies in the comparison of machine learning
models to the currently used methods in fraud detection. Moreover, it compares
multiple algorithms, from simple logistic regression to more complex models.
An extension of this thesis could analyze the performance of these models on
real data used by traditional fraud detection systems. This would shed more
light on the comparison of their performance. If the benchmark bank model
used a cost-sensitive performance measure, it would also be interesting to use
this measure for our models and compare them to the bank system once again.
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