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Abstract
This thesis aims to examine the e�ect of vaccination on the development of
the Covid-19 pandemic. The three key variables are used as dependent vari-
ables: the number of new cases, new deaths, and hospitalization. The dataset
containing numerous countries and capturing periods from 2020 to 2022 was
obtained, therefore a panel data estimator was employed. Moreover, the Czech
Republic and Israel were selected for deeper investigation, and their data were
filtered from the dataset. The data structure changed from panel data to time
series, so OLS regression was selected as an appropriate method. In all mod-
els, vaccination variables and also several others were included in lags because
a time gap is necessary to increase individuals’ immunity in the case of the
vaccine. Last but not least, the excess deaths analysis is created and focuses
on investigating excess deaths caused primarily or secondarily by the Covid-19
pandemic. Furthermore, it predicts the amount of money not paid in the form
of pensions till 2030 for the elderly who are included in the excess deaths. Fi-
nally, it compares this amount of money with the expenditures associated with
vaccine purchases.
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Abstrakt
Cílem této práce bylo zkoumat vliv vakcinace na v˝voj epidemie Covid-19.
Závisl˝mi prom�nn˝mi byly vybrány t�i klí�ové faktory. Jedná se o po�et
nov˝ch p�ípad�, úmrtí a mnoûství hospitalizací. Data byla získána pro velké
mnoûství stát� a zachycují období od roku 2020 do roku 2022, proto byl pouûit
estimátor pro panelová data. Následn� byly blíûe zkoumány vybrané zem�, a
to �eská republika a Izrael. Data pro tyto dva státy byla získána z celosv�-
tového datasetu, coû zm�nilo strukturu dat z panelového typu na �asové �ady.
OLS regrese byla vybrána jako vhodná metoda pro práci s daty jednotliv˝ch
stát�. Prom�nné zachycující vakcinace a n�kolik dalöích byly ve vöech mod-
elech zahrnuty se zpoûd�ními, protoûe je pot�eba ur�ité �asové období, aby
se v p�ípad� vakcinace vybudovala imunita jednotlivc�. V neposlední �ad�
je vytvo�ená anal˝za nadm�rn˝ch úmrtí, která zkoumá p�ebyte�nou smrtnost
zp�sobenou primárn� nebo sekundárn� pandemií Covid-19. Anal˝za predikuje
mnoûství pen�z, které nejsou vyplaceny formou penze d�chodc�m zahrnut˝m
v p�ebyte�n˝ch úmrtí do roku 2030. Na záv�r je srovnáváno mnoûství nevypla-
cen˝ch pen�z do roku 2030 s náklady, které byly pouûity na nákup vakcín proti
Covidu-19.

Klasifikace JEL C01, C23, I10, I31

Klí�ová slova Covid-19, vakcinace, panelová data, data �asov˝ch
�ad
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Motivation Covid-19 is a term which was not known three years ago. However,
now it is one of the most repeated words and everyone can hear about it on daily
basis. The Covid-19 pandemic has had an impact on everybody and we had to get
used to living with it. Consequently, there are ongoing attempts to o�set and put
an end to its negative repercussions. One possible way how to return to the life
everyone was used to living appears to be vaccination. The main goal of vaccine
is to reduce the number of hospitalizations and deaths by increasing individuals’
immunity. Moreover, it could also reduce the number of transmissions. The aim of
this thesis is to explore whether vaccines have the expected results.
To the best of our knowledge, there are a lot of medical papers related to the e�ect
of vaccination. However, there are not many data analyses focusing on similar topics
because data related to this issue were not available. There are many variables which
have been updated daily since the beginning of the pandemic, nevertheless it takes
some time to develop vaccines against this virus. Vaccinations have started in 2021
but their number has increased rapidly since the beginning of the second quarter of
2021.

Hypotheses

Hypothesis #1: The vaccine has significant and slowing e�ect on the develop-
ment of Covid-19 pandemic.

Hypothesis #2: There are other significant factors reducing the pandemic such
as weather, restrictions.

Hypothesis #3: There is potential reduction of mandatory social expenses on
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government’s budget which can partially compensate the extra costs related
to Covid-19 in the long run.

Methodology For the purpose of analysis, I will use several data sources. Firstly,
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variables for many countries all over the world. The data capturing the information
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daily updated observations. I will use the observations aggregated into greater units
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Since I will be working with panel data containing many countries, lagged dependent
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restrictions (levels of lockdowns). This section will be build based on the cross-
sectional type of data which needs OLS or other type of econometric regression. It
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Furthermore, I would like to create an excess deaths analysis of deaths related to
Covid-19. According to o�cial numbers, there are more than 40 000 people who have
died from this virus in the Czech Republic. Based on the mortality data from the
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pensioners who passed away during the Covid-19 pandemic and evaluate the e�ect
on the amount of money that government pays to the elderly. Based on this model,
I would like to predict whether government’s pension budget reduction caused by
Covid-19 deaths could partially compensate for the increased pandemic spending in
the long run.
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whether vaccination has a reducing e�ect on the pandemic and if there are additional
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in a particular country and its comparison with the existing results.
The focus on the Czech Republic is the main contribution of this thesis. It should
provide the answer whether nationwide restrictions had a slowing e�ect on Covid-19
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Chapter 1

Introduction

Covid-19 is a term which was not known three years ago. However, now it is
one of the most repeated words everyone hears about on a daily basis. SARS-
CoV-2 virus, also known as Covid-19, caused the most recent pandemic that
has had an impact on the population, and everybody had to get used to living
with it. Consequently, there were attempts to mitigate the development of the
Covid-19 pandemic and eliminate public restrictions. One of the most e�ective
ways to terminate the pandemic and to return to the life everybody was used
to living appears to be vaccination. The main goal of vaccines is to reduce
the number of new confirmed cases, hospitalizations, and deaths by improving
individuals’ immunity. The number of new cases is reduced because there is
an expectation to lessen transmissions (World Health Organization 2022). The
thesis provides a complex analysis using data from numerous countries all over
the globe. The main aim is to explore whether the introduction of vaccines cor-
related with the aforementioned e�ects on the macro level and estimate what
changes in the number of cases, hospitalizations and deaths may be attributed
to the vaccines. There were vaccination campaigns in the vast majority of coun-
tries worldwide, and thus vaccines should serve as a fundamental tool for the
pandemic elimination. Public restrictions were the additional instrument used
by governments to slow down the pandemic expansion. This factor is included
in the form of the stringency index. Furthermore, world analysis is extended
by a deeper inspection of two selected countries in order to provide additional
information about vaccination. Last but not least, an analysis investigating
excess deaths caused by the pandemic in the Czech Republic was created. The
main goal of this analysis is to evaluate the amount of money not paid in pen-
sion till 2030. The structure of the thesis is as follows. Chapter 2 is dedicated



1. Introduction 2

to the review of existing literature. Chapter 3 consists of data description and
utilization. Chapter 4 is devoted to the selection of methodology. Chapter 5
presents the empirical results. Chapters are further divided into world analysis
and individual country analysis. Chapter 6 provides an excess deaths analysis
focusing on numerous deaths caused by the pandemic. Finally, the conclusion
is presented in Chapter 7.



Chapter 2

Literature Review

Ever since its outbreak, the Covid-19 pandemic has been analysed by numer-
ous studies. This comes as no surprise since the pandemic has a�ected almost
all individuals in multiple aspects. Understandably, many papers focus on the
e�ects the virus itself has had on society. Nevertheless, the impact of vaccina-
tion has not yet been thoroughly analysed. Thus, it constitutes the primary
focus of this thesis, along with the data analysis of factors that could have
had a significant e�ect on the development of the pandemic. The fact that sev-
eral studies examine the determinants of Covid-19 without considering vaccines
might be attributed to a delay caused by a need to spend a certain amount
of time on the creation of vaccines and testing before the commencement of
o�cial public vaccination. The first part of the literature review is dedicated to
papers analysing the determinants of the Covid-19 pandemic before the formal
start of vaccination (i.e., December 2020). Subsequently, the second part of
this section is devoted to vaccination-related papers. Interestingly, several of
these studies predict how many lives have been saved but do not analyse the
e�ect of vaccination on the rate of hospitalization.

2.1 Studies not considering vaccination
Velasco et al. (2021) created a cross-country examination of factors that could
have a significant e�ect on the number of Covid-19 deaths and cases. The au-
thors collected data from 141 countries that have been hit by this disease. Data
capture the period from the beginning of the outbreak until the end of 2020
and for the methodology, an OLS regression was chosen. The authors use two
main models for their analysis. The first one is devoted to the total Covid-19
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cases, and the second one is dedicated to the total Covid-19 deaths. Indepen-
dent variables consist of total tests, the country’s median age, rural population,
population density, GDP per capita, average temperature, and average rain-
fall. The model identifies the number of tests and average temperature as
significant variables positively a�ecting the number of deaths and cases. The
vaccination data were unavailable at that time, and thus they cannot be taken
into consideration. Moreover, the study compares the model results based on
the population criterion, which divides countries into two categories, i.e., high-
population countries whose population exceeds the limit of 10 million people
and countries with a population lower than the stated limit. As a result of
the model using the number of cases of Covid-19 as the dependent variable,
there are some di�erences. For instance, the independent variable of the ru-
ral population bears significance only for the low-population areas, whereas
the temperature is essential merely for high-population areas. Results with
Covid-19 deaths as the dependent variable show the importance of the rural
population, and the median age population density only for low-population
areas. There is quite a perceptible distinction of the R-squared between the
models. The model containing low and high population areas di�er by 0.206
for the cases regression and 0.253 for the death regression. Unfortunately, no
table or list containing the countries included in the dataset is provided. Nev-
ertheless, it is essential to mention some issues identified in this study that
may weaken the trustworthiness of the results. The problem is related to the
data structure, which has been gathered from many di�erent countries, and
therefore it is a cross-sectional study. In that situation, it is necessary to pay
attention to the potential presence of unobserved heterogeneity that was not
taken into consideration. Each country has its specific factors, such as di�erent
policies in the form of restrictions that were enacted as direct and fast protec-
tion against the development of the pandemic. The study does not address this
problem and thus brings endogeneity into the model. Due to this issue, the
OLS model appears to be inconsistent. The analysis should be redone using
an appropriate panel data methodology.
Li et al. (2020) was examining the Covid-19 pandemic in U.S. counties. The
dataset covers the period from the pandemic’s beginning to the 14th of April
2020. They defined positive cases and deaths as dependent variables. Since
they were investigating the first several months of Covid-19 presence, they set
restrictions that omit counties with less than 50 cases per 100 000 people or
counties where the first case appeared in the last 3 weeks before the end of the



2. Literature Review 5

dataset period. These restrictions were used for the model considering positive
cases as the dependent variable. Within the observed period, the pandemic was
not present in most of the included counties - from a total of 3143 counties,
only 661 were left in the dataset. There were restrictions for the death analysis
that excluded counties with less than 10 deaths per 100 000 people or the first
death appearing in the last 2 weeks before the end of the examining period.
As a result, only 217 counties were included. In the paper, two models were
used. The authors created a sequential regression for examining the e�ect of
temperature and race on confirmed positive cases and deaths. Furthermore,
they used logistic regression to investigate di�erences between the lowest and
the highest quartiles for positive cases. This method cannot be applied to death
analysis because of an inadequate number of observations, and therefore they
used linear regression. The sequential model consists of 4 step models where
all variables from the previous model are added to the next step. Model 1
was created as univariate. Model 2 added population density, GDP per capita,
tests per 100 000 people, and several others. Model 3 continues with demo-
graphic variables such as the structure of the population, proportion of African
American community, and female/male percentage of the population. Model 4
finishes with comorbidities variables such as obesity, diabetes, etc. The authors
pointed out that African Americans were associated with higher mortality and
more positive cases. Nevertheless, it is not mentioned that the authors could
assign every positive case to a particular race. Thus, they can only say that
counties with a higher percentage of African Americans have the aforemen-
tioned e�ects. Moreover, the study suggests that the su�ciency of vitamin
D could reduce the e�ect of Covid-19. The claim is supported by evidence
from their models mentioned hereinabove which prove that higher temperature
is associated with fewer Covid-19 cases. However, it has been found that it
does not a�ect deaths. The variable capturing temperature was calculated as a
mean of temperatures between the last day of the dataset and the temperature
10 days prior to the confirmation of the first case in a particular county. Thus,
it does not reflect the variability of weather over the period.
�ahin (2020) investigates whether the weather a�ects the quantity of new
Covid-19 cases. The paper aims to determine the relationship between weather
variables and the Covid-19 pandemic. �ahin focuses on the situation in Turkey
from the first announced positive case till the 5th of April 2020. The dataset
captures nine Turkish cities with the highest concentration of confirmed cases
of Covid-19. There are more variables providing weather information included
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in his analysis, namely temperature, dew point, humidity, and wind speed. All
of them were provided in daily measures. Moreover, the population size was
taken into consideration. The study includes Spearman’s correlation test to
detect potential relations. Each variable was tested at the time of Covid-19
confirmation and then 3, 7, and 14 days before it. As a result, the highest pos-
itive correlation was identified for more populated areas, meaning that more
crowded areas are connected to greater Covid-19 concentration. The author
finds that temperature is negatively related to the number of new cases. In
order to investigate the seasonality e�ect, it would be beneficial to repeat the
study and analyse recent data, given that Covid-19 has been present for more
than 3 years.

2.2 Studies analysing vaccination
Toharudin et al. (2021) were investigating whether intensive public restrictions
had a reducing e�ect on the Covid-19 pandemic in Jakarta. Moreover, they
inspect the impact of vaccination on the development of the pandemic. The
study uses data from the 1st of March 2020 to the 18th of March 2021. However,
only less than 5 million Indonesians had received a dose of vaccine by the end
of the observed period, thus only a low percentage (0.7 %) of the Indonesian
population was vaccinated. The dataset includes a daily updated number of
new cases, recovered cases, and the number of deaths caused by Covid-19 in
the capital of Indonesia, Jakarta. The city was chosen because it represents the
area that was a�ected the most. Their analysis consists of two di�erent types
of models. The first one uses the Bayesian structural time series models with
previously mentioned variables. The result of restrictions is correlated with
an almost immediate and significant reduction in the number of new cases.
The authors presented the e�ect of vaccination as desired. Still, it is a vague
argument because although they first assign the downward trend of new Covid-
19 cases to the vaccination e�ect, they subsequently explain that the number
of new cases is decreasing because of the restrictions. Furthermore, it is highly
speculative to argue that 0.7 % of vaccinated people could reduce the pandemic,
and therefore they have a lack of vaccination data to conclude about the e�ect
of vaccines. The authors recommend further examination that will include
a more extended period of time. An artificial neural network model is used
in the second modelling section. The target of this section is to forecast the
development of the Covid-19 pandemic in the next 7 days. The nnetar: Neural
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Network Time Series Forecasts function in the R program was used, and as a
result, the confidence interval of expected numbers of particular variables was
presented. In conclusion, it is mentioned that the forecast was accurate only
for the next day due to the data fluctuation. The number of tests undertaken
is always higher during the working days and there is a perceptible drop at
weekends. Moreover, the number of tests is not the same every day because it
is mainly determined by the number of people that come to test themselves. It
would be beneficial to redo the analysis with the current data.
Chen et al. (2022) tried to measure the e�ect of vaccination on Covid-19 de-
velopment in the USA. They collected data from October 2020 to the 7th of
March 2021 and merged them into a weekly aggregation. Website “Our World
in Data” was selected as a source of data and is further described in Chapter 3:
Data Description because the thesis is working with this source. However, vac-
cination started in December 2021, thus there were not many people vaccinated
in the observed period. Vaccination rate which contains people vaccinated with
at least one dose and people fully vaccinated followed by the number of tests,
hospitalizations, and total cases of Covid-19 were collected. Dependent vari-
ables – Covid-19 cases and hospitalizations were transformed into a one-week
lag. This thesis transforms independent variables into lags because more lags
with di�erent delays are incorporated into models. They also added policies
restricting social contact, temperature, and snow depth. This section of the
analysis is modelled using the OLS regressions with the total cases and hos-
pitalizations as dependent variables. Vaccination reduced the growth of both
dependent variables. They do not comment on any other mentioned variables’
results. The authors ran the tests even with the daily observations and ended
up with similar results. Furthermore, logarithms were used for analysing vari-
ables and its result also led to a reduction in the pandemic. Investigation of the
variables’ distribution is provided in this thesis by histograms and logarithmic
transformation is used as a tool for skewness correction. Another part of the
study is dedicated to herd immunity with the Susceptible-Infected-Recovered
model which should predict when herd immunity will be achieved based on the
average vaccination level during a certain period. The model predicts that this
immunity should be reached during July 2021 at a level of 60.2 % vaccinated
population in the USA. They modified this model by the di�erent intensities of
vaccination, vaccine e�ectiveness, and vaccine hesitancy which refers to people
who for various reasons refuse vaccination. As a result, they found out that
vaccination has a significant e�ect whose marginal impact on the number of
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hospitalizations and total cases in the USA decrease as the vaccination rate
goes up. Herd immunity which can be achieved in the population is predicted
based on a specific model. However, the authors mentioned the distinction of
results as many factors are di�cult to forecast. There is a problem of missing
data that is commented on in the study. Missing data on recovery and mor-
tality were present in 22 states and they fixed it by filling in the median value
computed from the rest of the 29 states.
Kayano et al. (2022) examined the e�ect of vaccination against Covid-19 in
Japan. The dataset consists of total positive Covid-19 cases, deaths, and vac-
cination that included information about age (six age groups) and sex. They
collected data from the beginning of March to the end of November 2021. Al-
most 75 % of people were vaccinated in Japan at the end of November 2021.
The dataset also included information about the number of doses for indi-
viduals. Fortunately, Japanese public websites contain information about the
vaccination status of positively tested people, and thus it is easier to detect
whether an individual has at least one dose of vaccine. They aim to model
how many cases and deaths were spared as a result of the vaccination program.
They calculated daily incidence for unvaccinated people and people with at
least one dose further divided based on age group and sex. Moreover, 95 %
confidence intervals were computed using bootstrapping with 1000 repetitions.
As a result of their study, they claim a reduction of nearly 30 % of total cases
and almost 70 % of deaths. Unfortunately, restrictions are not included in the
modelling, although it is mentioned that this variable has a crucial e�ect on
the number of prevented cases and spared deaths. They also claim that the
highest number of averted cases and deaths are apparent for the age group
above 65 years. Although the most averted deaths are for the oldest, it is still
the most a�ected group of people. Surprisingly, even though they found out
that vaccination prevents more females from being positively tested, females
also seem to have a higher number of deaths.
Watson et al. (2022) created a study analysing the number of averted deaths
as a result of vaccination. Their dataset contains 185 countries and focuses
on the first year of vaccination campaigns, i.e., the year 2021. They used
the transmission model to predict how the Covid-19 pandemic would have de-
veloped without vaccination. They defined a population-based SEIRS model
with age-structured patterns and used not only the o�cial numbers of deaths
caused by Covid-19 but also examined the excess mortality in every country.
The authors discover that the o�cial number of deaths caused by Covid-19 is
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underestimating the actual extent of the pandemic. There might be many fac-
tors that caused death, although the individuals were not positively tested, and
thus they are not o�cially recorded in Covid-19 deaths. For instance, restric-
tions led to solitude and promoted fear in people with health issues that even
worsened their condition. The main part of their thesis aimed to predict the
number of averted deaths due to vaccination. They used Metropolis-Hastings
Markov Chain Monte Carlo-based sampling scheme and used the output for
reproductive number estimation (represented by letter R). Ethnicity was not
taken into consideration. They had a problem with excess deaths data avail-
ability, and thus they needed to use model-based estimates instead which can
represent a bias in their data and consequently in the number of averted deaths.
The most challenging part is associated with the prediction of deaths without
vaccination. The authors took 100 repetitions of estimated R distribution and
vaccine e�cacy for every country and created a situation of no vaccines in the
analysing period, therefore the development of the R trend is the same as be-
fore vaccination. Moreover, they calculated the total number of averted cases
as the o�cial quantity of deaths subtracted by the number of deaths based on
the R trend prediction in the situation when the vaccine is not existing. The
authors did not adjust the R trend without vaccines because it is complicated
to predict how governments and population would have behaved. Furthermore,
they predict the trend of the pandemic based on historical data that do not
precisely capture the exact future development. Moreover, based on the previ-
ous comments, there might be a bias in the total averted deaths. Their analysis
concludes that 14.4 million people were saved based on the o�cial reports of
deaths, and even 19.8 million in the case of excess deaths reports.
Rustagi et al. (2021) focus on analysing the e�ect of vaccination in Asian coun-
tries. They collected data for a total of 48 countries from the 24th of February
2020 to the 26th of September 2021. The data consist of variables as follows:
total cases, total deaths, and amount of vaccination doses on a daily updated
basis. The authors grouped daily observations into monthly units which are
usable, and the same aggregation will be used in this thesis. They decided to
use 3 di�erent methodologies in their study. They conducted linear regression,
polynomial regression, and support vector machine approach. Each of these
methodologies consists of 4 models, running total cases against the number of
people with 1 dose of vaccine and then total cases against people with 2 doses
of vaccine. Two additional models were constructed by replacing total cases
with total deaths and using the same independent variables. OLS models were
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defined as univariate resulting in quite a low R-squared (from 0.04 to almost
0.21). The OLS regression does not provide su�cient outputs, and therefore
as a next step, polynomial regression was defined using up to a quartic degree.
Polynomial regression should explain more profound interconnections of vari-
ables. As a result, they claim that there is a decrease in total deaths and cases
after the first dose of vaccine, however with one additional dose, the reduction
is even more significant, up to 75 %. The support vector machine algorithm
could be understood as an advanced method of OLS and polynomial regres-
sion. This method is used for making predictions and projecting the accuracy
of a model. For all models, a square root mean error was calculated and it is
used as a measure of the accuracy of predictions. The support vector machine
is considered the best model as it shows the smallest square root mean error,
thus guarantees the highest accuracy of results. Unfortunately, they did not
perform any model that would include both the first and the second dose of
vaccine into one model to show how much variability it could detect.
Jain et al. (2022) focused their study on analysing the e�ect of Covid-19 vac-
cination against the Omicron variant of the virus. They examined the impact
across 32 European countries from the 13th of October 2021 to the 1st of Jan-
uary 2022. The authors chose the longitudinal fixed e�ects Poisson regression
model. Fixed e�ects were selected in order to deal with unobserved e�ects
that are di�erent for each country but stable over time. Their dataset was
based on daily updated numbers of new Covid-19 cases per one million peo-
ple. Moreover, vaccine coverage was included, as well as the stringency index
which combines 9 indicators, such as home restrictions, school and workplace
closures, etc. Firstly, they investigated the impact of full vaccination on total
cases per million people. Furthermore, vaccination and the stringency index
were added in two lags, each representing one week. 14-day lag is incorpo-
rated into Country Level Analysis, while a one-month delay is tested in World
Analysis. They found a highly significant result that a percentage increase in
full vaccination implies a decrease in total cases by almost 17 %. Total cases
decrease by roughly 2 % with one-unit improvement in the stringency index.
One of the study’s limitations is the focus on European countries which cannot
describe the whole world e�ect of vaccination on the Omicron variant. There
might be a bias based on the o�cial numbers of detected Covid-19 cases which
may not capture all people who got infected by Covid-19 because they might
not have had symptoms, and thus did not test themselves. Another model
was defined to capture the e�ect of the so-called booster vaccination which is
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an additional dose of vaccine. This vaccination dose was mainly focused on
the elderly to provide them with extra protection against the harmful e�ects of
Covid-19. The authors argue that they did not find a significant relationship
between the booster vaccine and the reduction in total cases that were exam-
ined in the second model used in the study. However, a problem might arise
in a situation if the number of observations is insu�cient to provide reliable
results. This comes down to the fact that the authors did not mention whether
their infections data were split by a variant of the virus or they had access only
to the number of Omicron cases or whether they worked with the amount of
all positively tested people in the period when the variant Omicron was mainly
detected. Arguably, using total cases of Covid-19 for evaluation of the e�ect
of vaccination against the Omicron variant might not accurately describe the
desired e�ect which was intended to be investigated.



Chapter 3

Data Description

3.1 World Analysis
For the purpose of the analysis, a large dataset was downloaded from the
website “Our World in Data”. The dataset was created by Ritchie et al. (2020)
and includes various variables that capture Covid-19 information. It is based on
daily observations of more than 200 countries all over the globe, with the first
observations collected at the beginning of January 2020. The essential variables
consist of, inter alia, the number of new cases of Covid-19, the number of tests
used for detection of the virus’ presence, the number of people newly and
fully vaccinated, total population that will be used for rescaling the variables,
the number of deaths and hospitalizations. The number of hospitalizations as
well as the number of deaths are variables related to Covid-19 hospitalizations
and deaths that were diagnosed to positively tested people. Moreover, the
stringency index representing the level of restriction in society is also included
and will be described later.
The dataset contains a lot of missing values, therefore the daily observations
were aggregated into monthly intervals in order to reduce the measurement
error and to eliminate the multidimensionality of the dataset. Monthly obser-
vations also reduce the volatility of new tests variable, which is desirable given
the noise in daily data. Although the dataset contains many variables scaled
by a million people, i.e., new deaths or hospitalized patients per million, it was
decided to rather scale variables by total population and to transform them per
thousand people to ensure the same scales for all variables and avoid negligible
values of variables when per million people scaling is used.
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Weatherbase (2022) is an additional source of data that will be used in the
study. It contains information about average monthly temperatures in more
than 260 countries. As described in the literature review, several studies have
considered average temperature as an essential element influencing the number
of positively tested people and the total development of the Covid-19 pandemic.
However, the drawbacks in each study were pointed out, and thus a final state-
ment about the significance of this variable is desired. Consequently, average
temperature was incorporated into models as a control variable. The scrap-
ing method was chosen as an appropriate tool for obtaining the values. The
Weatherbase website contains historical average temperature values for several
cities in every country, and therefore monthly temperatures in every country
were calculated as the average of all cities within a country for each month.
Finally, the downloaded dataset was merged with the previously mentioned
data obtained from the website “Our World in Data”.
The main goal of the first part of the thesis is to examine the e�ect of vacci-
nation on the number of deaths, hospitalizations, and new cases of Covid-19
using data from numerous countries all over the globe. All three mentioned
variables are transformed into per thousand people format and will be used
as the dependent variables in models. Unfortunately, the data do not include
the number of new hospitalizations. The dataset provides only the number of
people in hospitals on a given day, and therefore the increase of 100 people in
hospitals does not mean that only a hundred new people were admitted thereto.
Many people could have been discharged from hospitals, therefore the actual
number of new inpatients might be higher. Thus, the variable incorporated into
the models was computed as an average of hospitalized people in a particular
month. The most important independent variables are the number of newly
vaccinated people per thousand in a specific month and the number of fully
vaccinated per thousand inhabitants. These two variables were created from
the total number of people vaccinated and people fully vaccinated. The goal
of vaccination is to reduce the quantity of all three aforementioned dependent
variables by increasing individuals’ immunity, and thus the expectation is to
find out negative and significant relation between vaccination and dependent
variables. Nevertheless, the analysis would clarify whether even the first dose of
vaccine reduces the dependent variables or if people need to be fully vaccinated
to observe a reduction in the development of Covid-19.
Three variables will be incorporated into the models as control variables to
ensure the results’ robustness. �ahin (2020) and Li et al. (2020) consider
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temperature as a significant element influencing the development of the Covid-19
pandemic. Therefore, average temperature was added to the model with the ex-
pectation of reducing the pandemic’s development in all models. Furthermore,
the number of new tests per thousand people was added as an additional control
variable and it is anticipated to be positively related because the confirmation
of Covid-19 is proved only by a positive test. Naturally, if no testing occurs,
the presence of the virus cannot be revealed. Last but not least, the stringency
index is considered an important factor a�ecting the spread of the Covid-19
pandemic. This index can be described as a measurement of the strictness of
government policies. It is a variable that contains nine di�erent measures that
influence the development of Covid-19, specifically school closures, cancellation
of public events, workplace closures, closure of public transport, restrictions on
public gatherings, stay-at-home requirements, public information campaigns,
international travel controls, and restrictions on internal movements, as men-
tioned by Roser (2021). A certain score is assigned to each of these elements and
then the mean score of all metrics is calculated. The value of the stringency
index varies within the range of 0 to 100, where 100 represents the strictest
restrictions.
Most of the variables were reported as a daily new quantity of tests or utilized
vaccines and its aggregation into monthly intervals was simple. The stringency
index was provided for every day and the transformation was done by comput-
ing an average of all days within a month for each country. Since the index
range has a limited interval, distortion by the aggregation is not expected.
However, the stringency index is adjusted based on the development of the
pandemic, mainly by the number of new cases and its trend which demon-
strates the pandemics’ expansion, and therefore it needs to be incorporated
into the model in a lag that should indicate the e�ect of public restrictions.
The main target is to analyse the e�ect of vaccination on the development of
the Covid-19 pandemic, however, the dataset used for the examination con-
tains missing observations for the vaccination data due to the unavailability of
the vaccines. One of the causes of the missing data is that the o�cial start of
vaccination took place in December 2020, as a result of which all earlier ob-
servations were disregarded. It is expected that the vaccine does not increase
immunity immediately after its implementation, and therefore lags in observa-
tions might provide a significant result. The data after this date also contained
some missing values, however, for the purpose of this part, it is assumed that
they are distributed randomly, and thus are left unchanged. If the assumption
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is incorrect and the data are unavailable due to a specific characteristic at a
country level, it will be resolved in the analysis. Unfortunately, the number of
new tests provided is not collected after the end of June 2022, and thus the
final dataset captures the period from October 2020 to June 2022.
Data pre-processing reveals many missing observations for the hospitalization
variable. The reason is that only 31 countries have meaningful hospitalization
data. As a result, there will be two di�erent datasets in the analysis. One will
capture all mentioned data and the second one will exclude the hospitalization
variable to encompass data from more countries. Table A.1 summarizes all
countries that will be used for the hospitalization model and the majority of
nations are located in Europe which is caused mainly by the quality of data.
On the other hand, Table A.2 contains a list of all countries in the dataset that
shows 124 countries that remain in the dataset after hospitalization exclusion.
There are countries from Europe, South America, Asia, and Africa that provide
enough diversity in data.
Table 3.1 placed below provides the descriptive statistics for the most essential
variables used in World Analysis. Based on the summary of the stringency
index, it is visible that in society overall, during the Covid-19 pandemic, the
restrictions were quite strict. Average temperature values lie between -20.8
degrees of Celsius and a maximum of 36.1 degrees, thus the range is extensive
and might provide a significant result. There were, on average, almost 7 new
cases per thousand people in each country every month. Nevertheless, the
median per thousand people is much lower. According to the di�erence between
the mean and median, the expectation is to observe a lot of outliers with
high numbers which is confirmed firstly by the histograms and further by the
maximum value. New deaths, tests, and vaccinations show the same relation
between mean and median, and thus they all need to be corrected.
Regarding hospitalizations, all other statistics apart from the maximum are
below 1, thus it is apparent that only a small portion of people who were
positively tested needed to visit a hospital. The lowest values of descriptive
statistics measures are connected to new deaths. Figure B.1, Figure B.2, and
Figure B.3 located in Appendix B show histograms that present distributions of
relevant variables that will be included in modelling. All the histograms except
the stringency index and average temperature are highly skewed to the right,
and therefore a logarithmic transformation is implemented as an appropriate
and essential tool because it can be used to adjust the skewed distribution
in order to provide distribution closer to the Gaussian normal distribution.
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Logarithms reduce the weight given to extreme values. Furthermore, it was
necessary to add a small constant to all observations with a minimum equal
to zero which were highly skewed and transformation into a logarithm was
undertaken. The constant had to be added to avoid unfeasible outcomes due
to computation logarithms of zero.

Table 3.1: Descriptive statistics - world data

Mean St. Dev. Min Median Max
Stringency Index 45.979 19.601 0.000 45.644 94.800
Average Temperature 19.262 9.255 ≠20.801 22.997 36.143
New Cases 6.936 18.684 0.000 1.000 397.264
New Vaccinated 36.011 51.986 0.000 16.012 784.484
New Vaccinated Fully 35.959 51.266 0.000 15.434 572.746
New Tests 102.071 250.450 0.002 30.626 3,731.906
New Deaths 0.051 0.099 0.000 0.010 2.142
Hospitalizations 0.192 0.195 0.0005 0.124 1.369
Note: All variables apart from Stringency Index and Average Temperature are in per
thousand people terms

Moreover, a correlation matrix was created in Table A.3 located in Appendix A
in order to investigate the bivariate relationships among variables. All variables
were included in one table, although some variables will be used as dependent
variables, and thus their correlation is not a problem. This is the case for hospi-
talization and new deaths. Unsurprisingly, the correlation between the number
of new cases and the number of new tests is relatively high which is caused by
the nature of the variables. One cannot be considered a person with Covid-19
until they receive a positive test result. Similar relation can be seen between
new cases and new deaths compared to hospitalization, which is caused by the
nature of the variables. People who are captured in new deaths are those who
had to be considered as Covid-19 positive, therefore it is a portion of new cases
variable. Similarly, hospitalization captures the amount of hospitalized people
who are also included in new cases variable. Variables capturing the vaccination
are correlated, which is nevertheless caused by the fact that one cannot be fully
vaccinated unless they have the first dose of the vaccine. Moreover, vaccination
variables are not significantly correlated with any dependent variable, which
is not surprising because vaccination is not expected to have an immediate
e�ect but it will increase individuals’ immunity in a short time period. Accord-
ing to the o�cial information (WHO Collaborating Centre for Vaccine Safety
2021), it is expected that it takes at least 2 weeks to build immunity after the
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vaccination. The relation between average temperature and dependent vari-
ables is negative, as expected. There is not a high pairwise correlation among
independent variables and thus multicollinearity should not be an issue in the
analysis.

3.2 Country Level Analysis
The second part of the thesis is dedicated to a specific country investigation
and its comparison to World Analysis examined in the first part. Two countries
will be discussed. The selection of the first particular country was based on the
subjective choice and with continuity to an excess deaths analysis that will be
studied in the third section discussed later in the thesis, and thus the Czech
Republic was chosen. Moreover, a country with a fast vaccination campaign,
i.e., Israel, will be selected because such an investigation could provide di�erent
results to which extent vaccination reduced the development of the Covid-19
pandemic. The situation in the country with quickly vaccinated people is ex-
pected to be much more favourable compared to World Analysis. Evidence of
the fast vaccination campaign in Israel is presented in Figure B.4 located in
Appendix B. It captures the comparison of vaccination progress between the
Czech Republic and Israel. The graph indicates the evolution of people vac-
cinated by at least one dose of vaccine (black line) as well as fully vaccinated
people (red line). The datasets for the separated analyses of the Czech Repub-
lic and Israel will be filtered from World Analysis to ensure the comparability
of the results. Using the aggregated monthly intervals for the specific country
investigation would not be e�cient because in that case only 18 observations
would be examined, therefore daily observations will be more beneficial.
The restriction for the data period is done in a similar way as already mentioned
in World Analysis. Furthermore, since average temperature data were collected
on a monthly basis, it was necessary to find a di�erent source of data. Website
National Oceanic and Atmospheric Administration (2023) includes weather in-
formation. Based on the country selection, observations were downloaded for
the Czech Republic and Israel. More specifically, Klementinum weather mea-
surements were selected for the Czech Republic and Jerusalem center for Israel.
The dataset includes many weather variables, however only temperature was
filtered. There are multiple observations for every day, therefore daily averages
were created. Datasets contain several unclear measurements that distort the
values, and thus these observations were omitted. Finally, average temperature
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datasets were merged with daily observations’ datasets based on the date spec-
ification. Investigation of vaccination’s e�ect has to be based on lags because
vaccination needs some time to enhance individuals’ immunity fully, thus lags
of 14, and 30 days were created for new and fully vaccinated variables. Two
weeks and one-month delay were chosen according to WHO Collaborating Cen-
tre for Vaccine Safety (2021) which set two weeks as the minimum time that
a vaccine needs to build immunity. A month and two months of delays for
vaccination variables were created in World Analysis. Furthermore, lags for
the stringency index with delays of 14 and 30 days are also made because an
increase in the index needs some time to exhibit its e�ect.
Table 3.2 and Table 3.3 below provide descriptive statistics for both investigated
countries. The stringency index does not di�er among tables, only the median
value is slightly higher in Israel. New cases statistics do not show di�erent
values except the maximum, which is almost five times larger in Israel’s case,
however it might be caused by more tests provided which is confirmed by the
median of new tests. Both variables considering vaccination show similar values
in the tables with an exception in maximum that is two times smaller in the
Czechia table. The mortality rate presented by new deaths variable is greater in
the Czech Republic. Based on the mean value, there are five times more deaths
in Czechia. The maximum value di�ers by 0.024 per thousand people. Based
on the statistics from the Worldometer (2023) website, the o�cial number of
deaths caused by Covid-19 in the Czech Republic was 42 149 till the end of
2022. According to the dataset value, Czechia’s population equals 10 493 990,
whereas the population of Israel is approximately 9 449 000. However, Israel
reported 12 037 deaths caused by Covid-19 till the end of 2022. Hospitalizations
per thousand people are at least two times smaller in Israel which comes hand in
hand with evidence of deaths. People that need to be hospitalized are expected
to have more severe conditions and the percentage of deaths is increasing. Last
but not least, average temperature shows more stable temperature conditions
in Israel, whereas Czechia temperature has a wider range with negative values
during winter, therefore average temperature might be a more important factor
for the analysis of the Czech Republic.
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Table 3.2: Descriptive statistics - Czechia

Statistic Mean St. Dev. Min Median Max
Stringency Index 46.106 20.081 14.810 42.260 81.480
New Cases 0.575 0.787 0.000 0.251 5.468
New Vaccinated 1.222 1.703 0.0001 0.513 8.008
New Fully Vaccinated 1.212 1.847 0.000 0.495 8.677
New Tests 8.741 7.542 0.115 6.822 40.702
New Deaths 0.005 0.006 0.000 0.003 0.038
Hospitalizations 0.268 0.260 0.002 0.196 0.910
Average Temperature 9.580 7.602 ≠9.210 8.019 29.129
Note: All variables apart from Stringency Index and Average Temperature are in per
thousand people terms

Table 3.3: Descriptive statistics - Israel

Statistic Mean St. Dev. Min Median Max
Stringency Index 45.424 19.134 14.810 48.965 87.040
New Cases 0.716 1.858 0.000 0.260 25.748
New Vaccinated 1.290 2.650 0.000 0.302 16.783
New Fully Vaccinated 1.181 2.574 0.000 0.239 17.405
New Tests 8.466 7.379 0.572 7.116 47.369
New Deaths 0.001 0.002 0.000 0.001 0.014
Hospitalizations 0.101 0.084 0.007 0.078 0.393
Average Temperature 16.928 6.803 1.619 17.343 30.934
Note: All variables apart from Stringency Index and Average Temperature are in per
thousand people terms

There are several figures containing histograms of variables using Czechia and
Israeli data (see Figure B.5, Figure B.6, Figure B.7, Figure B.8, Figure B.9,
and Figure B.10). Like in World Analysis, the distribution of variables is
investigated in order to eliminate skewness which is corrected by logarithmic
transformation. The stringency index and average temperature do not need
to be transformed into logarithms in either country. All other variables were
highly skewed and thus transformation was necessary with one exception, i.e.,
the number of tests per thousand in Israel that was left without correction.
Separated data of Israel and Czechia contain only several unavailable observa-
tions in the dataset and thus it is expected that they are randomly distributed,
therefore no adjustments are required to correct the missing data.
Figure B.11 and Figure B.12 in Appendix B were created for comparison of
hospitalizations and new cases with average temperature in time. It is visi-
ble that in the case of Czechia a decreasing trend of the dependent variable
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is associated with increasing values of average temperature and vice versa. It
responds to the changes of seasons which are evident in the geographic location
of Czechia. The mentioned trend is also noticeable in Israel’s graphs, however
an exception is present in the second half of 2021. There is an increase in
the number of cases as well as hospitalizations, although average temperature
is reaching the maximum of its values. Figure B.13 and Figure B.14 in Ap-
pendix B provide a comparison of population vaccination percentage against
new cases and hospitalizations. It is more di�cult to distinguish the e�ect of
vaccination because its primary purpose is to lessen the development of the
variables, however the peak in 2022 is apparent in both countries regardless of
the percentage of vaccinated people. It could be caused by a new variant of
Covid-19 and the number of new cases in a situation without the vaccination
campaign cannot be predicted.



Chapter 4

Methodology

4.1 World Analysis
The main aim of the thesis is to investigate the impact of the number of newly
and fully vaccinated people on dependent variables (number of new cases, quan-
tity of deaths, and hospitalization). The analysis deals with a cross-country
dataset consisting of several time periods, and therefore is working with panel
data. Consequently, including many di�erent countries’ observations leads to
heterogeneity. It is necessary to consider unobserved heterogeneity caused by
culture, education, geographical position, and there might be a lot of other
factors that could influence the dependent variables and possibly be corre-
lated with independent variables. It is essential to use a methodology that
can deal with unobserved heterogeneity and is suitable for panel data. Ran-
dom e�ects and fixed e�ects are estimators that are usable in this situation.
The Hausman test is created to distinguish which of these estimators is better.
The null hypothesis definition is that both methods are consistent, and the
rejection means that only the within estimator is consistent. Table A.4, Ta-
ble A.5, and Table A.6 contain several tests that are decisive for the selection
of appropriate methodology. Each table is related to one of the three models
according to the dependent variables. Hausman test results rejected the null
hypothesis in all these tables and showed that only the fixed e�ects are con-
sistent, therefore the results also reveal evidence for unobserved heterogeneity
in a static model. The static model refers to a model where the lag of the
dependent variable is not included.
Moreover, it is essential to define tests for the presence of serial correlation in
the static models. Wooldridge test for AR(1) errors in FE panel models and
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Wooldridge first-di�erence-based test for AR(1) errors in first di�erenced panel
models were used as tests. The latter should be considered as superior in the
case of serially correlated errors, although the serial correlation is not always
di�erenced away. Table A.4 and Table A.5 show that both tests rejected the null
hypotheses of no serial correlation, and therefore the first-di�erence estimator
is considered as a baseline. Moreover, the first-di�erence regression is also
preferred for the hospitalization model because the null hypothesis cannot be
rejected for the Wooldridge first di�erence test.
Breusch-Pagan tests are provided in the tables to verify the assumption of ho-
moskedasticity. Although the tests result in the rejection of the null hypothesis
of homoskedasticity and serial correlation is present, there is a tool that en-
ables their restoration called heteroskedasticity and autocorrelation consistent
(further as HAC) robust standard errors.
It is necessary to consider that the dependent variables might depend on past
values. For instance, new cases refer to transmission problems and thus it is
expected that past values are essential for the present value of the variable.
Hospitalizations and the number of new deaths are not that simple to distin-
guish. Hospitalization refers to severe conditions of Covid-19 which are based
on the quality of individuals’ immunity and might not influence others. A
similar relation is intuitively expected for the number of deaths. Nevertheless,
performing tests answers the intuition. If the dependence on earlier observation
is present, then the static model may have an issue with omitted variable bias
which is problematic.
The incorporation of lagged dependent variables leads to movement from static
models to the area of dynamic panel data estimators. Implementing these lags
results in the inconsistency of classical panel data models, such as the first
di�erence or within estimator due to the Nickell bias (Nickell 1981). Instru-
mentation could be used as a tool to retrieve consistency, nevertheless finding
external instruments that satisfy conditions of exogeneity and validity is nearly
impossible.
Arellano & Bond (1991) find a solution to this problem in the form of the Dif-
ference Generalized Method of Moments estimator (further used as Di�erence
GMM). The model works as follows. Firstly, data transformation using the
first di�erencing is done to remove the unobserved heterogeneity. In the next
step, internal instruments are utilized and the adjusted equation is estimated
using GMM. Instruments are included in the model in the form of lagged levels
of variables. Under the no serial correlation assumption these instruments are
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exogenous and the level of moment conditions are then derived based on the
instrument exogeneity assumption. After all, the endogeneity caused by the
lagged dependent variable and any other endogenous variables is solved. Dif-
ference GMM estimator is suitable for “short” panel data and in the presence
of fixed e�ects according to Roodman (2009a) which is satisfied in this analysis.
Furthermore, the two-step GMM corrects the heteroskedasticity and ensures ro-
bustness. In case that the dependent variable is highly persistent, there might
be a problem with the Di�erence GMM estimator which su�ers from weak
instruments. However, Arellano & Bover (1995) and Blundell & Bond (1998)
developed an additional method called the System Generalized Method of Mo-
ments estimator (further as System GMM). This model is built on the Di�er-
ence GMM and brings more moment conditions. It introduces an estimation of
the equation instrumented by lagged first di�erences. These moment conditions
should solve the issue of weak instruments.
In order to validate internal instruments, the Arrelano-Bond test and the
Hansen-Sargan test are defined for models. The first one mentioned measures
the serial correlation in the di�erenced errors, whereas the latter is used to test
overidentifying restrictions. The Arellano-Bond test has a specification that the
level of the serial correlation test depends on the number of lags created. The
third order of the serial correlation is tested when two lags of the dependent
variable are included. The number of lags is increasing till (p-1) order when the
null hypothesis of no serial correlation testing p-th order cannot be rejected.
Moreover, instrumental proliferation mentioned by Roodman (2009b) needs to
be considered and the number of instruments has to be supervised because in-
creasing the number of instruments raises the p-value of the Hansen-Sargan test
which should not be high. Finally, the Hausman test is provided to determine
whether variables are influenced by measurement error.
The Di�erence GMM estimator is therefore formulated for each model and is
considered superior to the first di�erence model if the lagged dependent vari-
able is significant. The last test (Arrelano-Bond) in Table A.4 refers to the
dynamic model with one lag of new cases dependent variable and tests for
the second-order serial correlation. This test results in the rejection of no se-
rial correlation in the new cases model, and therefore the dependent variable
needs to be included in the second lag. The results of this particular model
are presented in Table 5.1. The Di�erence GMM estimator was formulated
using various specifications. At the beginning, it is necessary to verify the ex-
ogeneity of instruments using the p-value of the Hansen-Sargan test which is
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equal to 0.29. As a result, it is not possible to reject the null hypothesis of
instrument exogeneity and at the same time, the p-value is not high enough to
have instrument proliferation. The null hypothesis of no serial correlation in
errors cannot be rejected using the Arellano-Bond test, thus it also confirms
the exogeneity of instruments and the appropriate number of lags. The Sys-
tem GMM estimator was also defined when the Di�erence GMM satisfies the
required conditions. However, after the System GMM formulation, the first
lag of the dependent variable was not persistent. Therefore, the System GMM
was not the best method for the situation. Persistency is expected when the
coe�cient of the lagged dependent variable is close to one, therefore the Di�er-
ence GMM is considered to be the best method for new cases as the dependent
variable.
Moving to the dynamic model and using the Di�erence GMM estimator does
not provide the expected results for the model of the new death. The estimation
results in Table 5.2 show that the Hansen-Sargan test has a p-value equal to 0.15
which is enough not to reject instrument exogeneity. Instrument proliferation
is una�ected since the p-value is not close to 1. The Di�erence GMM estimator
included in the third column of the table uses only the dependent variable as an
instrument. Moreover, the Arellano-Bond test cannot reject the null hypothesis
of no serial correlation in the Di�erence GMM estimator. The problem appears
after including the first lag of the dependent variable because the lag is not
considered a significant variable which could bring speculation about whether
the Di�erence GMM is preferred. In this case, the first di�erence estimator is
considered the best.
The Di�erence GMM estimator for the hospitalization model was formulated
with the first lag of the dependent variable as an instrument, however the
Arellano-Bond test rejects the null hypothesis of no serial correlation in the
Di�erence GMM model. Furthermore, Table 5.3 - Estimation results of hos-
pitalization model using world data provides the estimates of the Di�erence
GMM estimator in column number (3). There is a problem with perfect prolif-
eration because the p-value of the Hansen-Sargan test is equal to 1, therefore
the Di�erence GMM does not seem to be an adequate estimator for this type of
model. Thus, similarly to the new deaths model, the first di�erence estimator
is preferred.
Formulation of models is mainly driven by the target of the thesis, therefore
two lags of newly and fully vaccinated are incorporated. The stringency index
is included in a one-month lag. The additional lag of the stringency index was
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insignificant, thus it was not included in models because it is not the primary
examined variable (comments in Subsection 5.1.2). New cases variable was
included in two lags because it was necessary for the new cases model creation.
Moreover, average temperature and new tests were included without lags.
Models for new deaths and hospitalization are identical because it is expected
that these two variables will be influenced by the same factors. The only
di�erence compared to the first model mentioned is the inclusion of new cases
variable in the present time which replaces new tests variable.
As a result, the following models were formulated:
Model for new cases variable:

log(New_casesit) =—1 log(New_casesi(t≠1)) + —2 log(New_casesi(t≠2))+

+ —3 log(New_vaccinatedi(t≠1))+

+ —4 log(New_vaccinatedi(t≠2))+

+ —5 log(New_fully_vaccinatedi(t≠1))+

+ —6 log(New_fully_vaccinatedi(t≠2))+

+ —7 log(Stringency_indexi(t≠1)) + —8 log(New_testsit)+

+ —9Average_temperatureit + Montht + ai + ‘it

where ‘it is the idiosyncratic error, ai is the time-invariant unobserved hetero-
geneity, and Montht represents a vector of dummy variables for every month
reflecting the time e�ects. As mentioned, it is expected that vaccinations a�ect
the dependent variable with a delay because the vaccine needs some time to
become e�ective, whereas the contemporaneous e�ect is assumed for average
temperature and the number of tests provided. Description of variables in the
two additional models is the same as in the first model mentioned.
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Model for the number of new deaths is as follows:

log(New_deathsit) =—1 log(New_casesit) + —2 log(New_casesi(t≠1))+

+ —3 log(New_casesi(t≠2))+

+ —4 log(New_vaccinatedi(t≠1))+

+ —5 log(New_vaccinatedi(t≠2))+

+ —6 log(New_fully_vaccinatedi(t≠1))+

+ —7 log(New_fully_vaccinatedi(t≠2))+

+ —8 log(Stringency_indexi(t≠1))+

+ —9Average_temperatureit + Montht + ai + ‘it

Last but not least, model for the number of hospitalizations is as follows:

log(Hospitalizationit) =—1 log(New_casesit) + —2 log(New_casesi(t≠1))+

+ —3 log(New_casesi(t≠2))+

+ —4 log(New_vaccinatedi(t≠1))+

+ —5 log(New_vaccinatedi(t≠2))+

+ —6 log(New_fully_vaccinatedi(t≠1))+

+ —7 log(New_fully_vaccinatedi(t≠2))+

+ —8 log(Stringency_indexi(t≠1))+

+ —9Average_temperatureit + Montht + ai + ‘it

4.2 Country Level Analysis
The aforementioned methodology is appropriate for the first part of the the-
sis, which works with panel data. However, in the second part, only data
for a particular country are selected and therefore panel data estimators are
no longer applicable. In this section, a time series data structure is present
because observations are collected at daily intervals for only one country and
therefore less complex method could be chosen for examination. The Ordi-
nary Least Squared (further as OLS) estimator is an appropriate model for
the research question. OLS is feasible because linearity in parameters and ran-
dom sampling is expected. OLS has more assumptions whose satisfaction is
required to become the unbiased estimator. One of the assumptions is ho-
moskedasticity which refers to the constant variance of errors and its violation
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called heteroskedasticity could be tested by the Breusch-Pagan test. The serial
correlation was also tested using the Durbin-Watson test which has the null
hypothesis that the correlation of disturbances is equal to 0.
Table A.7 and Table A.8 contain results of Breusch-Pagan tests for both coun-
tries that will be investigated. All models rejected the null hypotheses, and
thus the assumption of homoskedasticity is violated. The Durbin-Watson test
rejected the null hypothesis of no serial correlation in all models. Although
the tests resulted in the rejection of the null hypotheses of homoskedasticity
and serial correlation, there are HAC robust standard errors that ensure the
assumption of homoskedasticity and no serial correlation. Furthermore, a test
for no perfect collinearity assumption is required as well. It states that no
independent variable is a constant or perfect linear combination of the others.
Variance Inflation Factor (further as VIF) is an appropriate tool for examining
the presence of collinearity with a cut-o� set to 10 (Wooldridge 2016), therefore
variables exceeding the limit violate the assumption of no perfect collinearity.
Table A.9, Table A.10, Table A.11, Table A.12, Table A.13, and Table A.14
contain results of VIF test in all models for both countries. A higher value
(slightly above 8 at the maximum) is associated with the new vaccinated vari-
able in the lag of 30 days which is caused by the nature of the connection
between the lags of the same variable. The only variable exceeding the limit
of 10 is the stringency index, however its value is not greater than 13 in any
of the models. It also corresponds to the nature of the variable that the lag of
14 days and the lag of 30 days are closely connected, therefore no adjustments
are required.
Similarly to World Analysis, three models were formulated. Since the data are
collected on a daily basis, it was necessary to transform lags for di�erent time
periods. Delays were created for seven days, two weeks, and a month. New
cases used 7-day and 14-day lags because it is expected to influence depen-
dent variables in a shorter period that cannot be captured in World Analysis.
WHO Collaborating Centre for Vaccine Safety (2021) mentions that 14 days
are necessary for the organism to build immunity against the virus, therefore
14-day and also 30-day delay are used for vaccination variables. The stringency
index is included in the same lags as vaccination because it needs at least the
same time to show the expected result of this variable. Many variants of models
were constructed and the final versions are provided on the next page.
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log(New_casest) =—1 log(New_testst) + —2 log(New_vaccinated(t≠14))+

+ —3 log(New_vaccinated(t≠30))+

+ —4 log(New_fully_vaccinated(t≠14))+

+ —5 log(New_fully_vaccinated(t≠30))+

+ —6 log(Stringency_index(t≠14))+

+ —7 log(Stringency_index(t≠30))+

+ —8Average_temperaturet + ‘t

log(New_deathst) =—1 log(New_casest) + —2 log(New_casest≠7)+

+ —3 log(New_casest≠14)+

+ —4 log(New_vaccinated(t≠14))+

+ —5 log(New_vaccinated(t≠30))+

+ —6 log(New_fully_vaccinated(t≠14))+

+ —7 log(New_fully_vaccinated(t≠30))+

+ —8 log(Stringency_index(t≠14))+

+ —9 log(Stringency_index(t≠30))+

+ —10Average_temperaturet + ‘t

log(Hospitalizationt) =—1 log(New_casest) + —2 log(New_casest≠7)+

+ —3 log(New_casest≠14)+

+ —4 log(New_vaccinated(t≠14))+

+ —5 log(New_vaccinated(t≠30))+

+ —6 log(New_fully_vaccinated(t≠14))+

+ —7 log(New_fully_vaccinated(t≠30))+

+ —8 log(Stringency_index(t≠14))+

+ —9 log(Stringency_index(t≠30))+

+ —10Average_temperaturet + ‘t

where ‘t represents the error term.



Chapter 5

Empirical Results

This chapter consists of three sections. The first one is dedicated to World
Analysis that is further divided into subsections of individual models. Detailed
description in each subsection is followed by a summary and comparison of
models. The second section is devoted to individual countries and each country
is divided according to the models and their summaries are also provided.
Finally, all models are compared in Section 5.3.

5.1 World Analysis
According to the models formulated in Section 4.1 World Analysis, the hos-
pitalization model independent variables are the same as in the model of new
deaths. This similarity is based on the expectation that these two models deal
mainly with severe cases that mostly concern people with certain comorbidities.
Serious progress of Covid-19 often resulted in hospitalization. Unfortunately,
the chance of death rises when a person is hospitalized which confirms the hy-
pothesis that these two models are closely connected. On the other hand, the
new cases model does not distinguish between the severity of Covid-19 progress
because it focuses on the identification of Covid-19 presence.

5.1.1 New Cases Model

Several tests were formulated in Table A.4: Specification of tests in order to
decide which method will be the best. The Di�erence GMM estimator was
selected for the new cases model because the lag of the dependent variable
included in the model is considered significant. Moreover, two-step GMM was
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formulated because it corrects the heteroskedasticity and ensures the robustness
of results.
The results of this particular model are presented in Table 5.1 below. The table
with results contains two columns, (1) and (2) both using the Di�erence GMM
estimator. In the first column, two lags of the dependent variable were used
and only new cases variable was used as an instrument assuming that other
variables are exogenous. However, in the second column instrumentation using
new cases, new tests and both vaccination variables were implemented because
these variables might be subjected to measurement error. The columns were
compared using the Hausman test with the null hypothesis that both models
are consistent. Having both models consistent would show that instrumenting
only reduced e�ciency, nevertheless, the p-value of the test is negligible and
the null hypothesis is therefore rejected. As a result, endogeneity appears to
be present and instrumentation is necessary. To conclude, the second column
is considered the most trustworthy.
Table 5.1 provides the estimation of results. The interpretation of results will be
based on the second column containing instrumentation. Only the dependent
variable’s first lag is considered significant with a positive coe�cient as was
expected. It refers to the transmission problem that more positively tested
people a month ago increases the current numbers.
The results reveal that a one-percentage increase in the number of newly vacci-
nated people per thousand in the previous month should decrease the number
of new cases per thousand in the current month by 0.277 %. Any other vac-
cination variable was not considered significant. From the author’s point of
view, having at least one dose of vaccine seems to be enough to decrease the
transmission of the virus, and thus reduce the number of new cases. Further-
more, vaccination appears to be a fast defence against the development of new
positive cases. On the other hand, being fully vaccinated is expected to have
a greater e�ect on the number of deaths. The second lag of full vaccination
variable is significant and has a reducing e�ect only in the model with the
dependent variable instrumentation.
Unsurprisingly, new tests variable has high significance and a one-percentage
increase in tests results in 1.727 % more positively detected cases. New tests
substitute the e�ect of new cases in the present time that is used in other
models, therefore its positive significance was expected. Average temperature
is insignificant and has the coe�cient value close to zero. The possible expla-
nation of average temperature insignificance could be the inclusion of lags of
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the dependent variable and its variation. Moreover, there are countries with
stable average temperatures during the whole year, which were however also
a�ected by the Covid-19 pandemic.
In the case of the stringency index, a log-level relation needs to be taken into
account. The stringency index reflects its purpose and increasing the public
restriction by one point in the previous month decreases the number of new
cases by 1.1 % in the current month. To conclude, the estimated results confirm
expectations.
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Table 5.1: Estimation results - new cases model using world data

Dependent variable:
log(New_casesit)

D-GMM D-GMM
(1) (2)

log(New_casesi(t≠1)) 0.579úúú 0.368úúú

(0.089) (0.120)

log(New_casesi(t≠2)) ≠0.250úúú ≠0.013
(0.076) (0.090)

log(New_vaccinatedi(t≠1)) ≠0.126úúú ≠0.277úú

(0.037) (0.113)

log(New_vaccinatedi(t≠2)) 0.049 0.007
(0.036) (0.057)

log(New_fully_vaccinatedi(t≠1)) ≠0.043 0.073
(0.048) (0.130)

log(New_fully_vaccinatedi(t≠2)) ≠0.087úú ≠0.040
(0.036) (0.082)

log(New_testsit) 0.898úúú 1.727úúú

(0.133) (0.544)

Average_temperatureit ≠0.020 0.0003
(0.012) (0.019)

Stringency_indexi(t≠1) ≠0.007 ≠0.011úú

(0.005) (0.005)

No. of countries 124 124
No. of instruments 97 77
Hansen-Sargan test (p-value) 0.35 0.29
Arellano-Bond test (p-value) 0.54 0.48
Hausman test (p-value) - 0

Note: úp<0.1; úúp<0.05; úúúp<0.01
Standard errors in parentheses
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5.1.2 New Deaths Model

This model-creating process is similar to the previous Subsection 5.1.1. Ta-
ble A.5 called Specification of tests was already commented in Chapter 4. Al-
most all test results are the same as for the new cases model, however moving to
the dynamic model and using the Di�erence GMM estimator does not provide
the expected results because the lag of the dependent variable is not significant.
Therefore, the first di�erence estimator is considered to be the best one. The es-
timation results in Table 5.2 contain three columns, (1), (2), and (3). The third
column containing the Di�erence GMM estimator has already been commented
on. The first column provides results using the first di�erence estimator, nev-
ertheless it was presented that the model su�ers from heteroskedasticity and
autocorrelation, and therefore the robust standard errors were defined to en-
sure homoskedasticity and correct autocorrelation. The result of the correction
is presented in the second column which is considered the most plausible. The
R-squared of the new deaths model is close to 0.41 which shows that the model
fits the data well. Furthermore, the Adjusted R-squared value does not di�er
from the R-squared which is additional evidence of the trustworthiness of the
formulated model.
The coe�cients provided in Table 5.2 below show that the number of current
new cases as well as the number of cases in the previous month have a significant
e�ect on the number of deaths in the current month. A one-percentage increase
in the number of new cases per thousand people raises the number of deaths
per thousand people by 0.743 %. One-month lag of new cases per thousand
people has a smaller e�ect on deaths but is still positive and equal to 0.407 %.
Fortunately, the number of new cases and the number of new deaths are not
proportional.
Full vaccination is not considered significant for a one-month lag nor a two-
month lag, however the first lag has a negative coe�cient. According to the
results, full vaccination does not provide additional protection for individuals
against death. Being vaccinated is considered significant only in the second lag.
30 days do not seem to be enough to increase individuals’ immunity and have
a reducing e�ect on the number of deaths. Two-month lag of new vaccination
is significant at a 10% level and a one-percentage increase in new vaccinated
decreases the number of deaths per thousand by 0.093 %.
Similarly to the new cases model in Subsection 5.1.1, average temperature is
not considered a significant variable, nevertheless, it has a negative coe�cient.
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The explanation could be the same as for the previous model. Last but not
least, the stringency index does not show a significant estimate, however it has
at least the negative sign of coe�cient. There was an attempt to include the
second lag of the stringency index, however it was not considered a significant
variable. Furthermore, the second lag of the index decreases the Adjusted
R-squared and therefore it was not included in the model.
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Table 5.2: Estimation results - new deaths model using world data

Dependent variable:
log(New_deathsit)

FD Robust SE D-GMM
(1) (2) (3)

log(New_deathsi(t≠1)) 0.028
(0.103)

log(New_casesit) 0.743úúú 0.743úúú 0.496úúú

(0.024) (0.031) (0.039)

log(New_casesi(t≠1)) 0.407úúú 0.407úúú 0.543úúú

(0.035) (0.042) (0.081)

log(New_casesi(t≠2)) 0.057 0.057 ≠0.028
(0.035) (0.044) (0.059)

log(New_vaccinatedi(t≠1)) 0.057 0.057 ≠0.070úú

(0.044) (0.052) (0.032)

log(New_vaccinatedi(t≠2)) ≠0.093úú ≠0.093ú 0.006
(0.044) (0.053) (0.029)

log(New_fully_vaccinatedi(t≠1)) ≠0.037 ≠0.037 0.043
(0.046) (0.056) (0.039)

log(New_fully_vaccinatedi(t≠2)) 0.016 0.016 ≠0.031
(0.044) (0.045) (0.033)

Average_temperatureit ≠0.020 ≠0.020 ≠0.002
(0.017) (0.014) (0.010)

Stringency_indexi(t≠1) ≠0.002 ≠0.002 ≠0.008úú

(0.006) (0.007) (0.004)

Constant ≠0.236úúú ≠0.236úúú

(0.053) (0.039)

Observations 1,736 124
R2 0.414
Adjusted R2 0.411
F Statistic 135.606úúú (df = 9; 1726)
Hansen-Sargan test (p-value) 0.15
Arellano-Bond test (p-value) 0.82

Note: úp<0.1; úúp<0.05; úúúp<0.01
Standard errors in parentheses
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5.1.3 Hospitalization Model

As mentioned at the beginning of Section 5.1, it is expected that the hospitaliza-
tion and new deaths models are closely related. It is necessary to keep in mind
that the hospitalization model works with a di�erent dataset that contains 31
countries and the list of them is provided in Table A.1. The reduction is caused
by the unavailability of Covid-19 hospitalizations data in many countries.
Table 5.3 - Estimation results of hospitalization model using world data located
below provides the estimates of the Di�erence GMM estimator in column num-
ber (3). The Di�erence GMM estimator was formulated with the first lag of
the dependent variable as an instrument, however there is a problem with per-
fect proliferation because the p-value of the Hansen-Sargan test is equal to 1.
Thus, similarly to Subsection 5.1.2 New Deaths Model, the first di�erence esti-
mator is the best method for this model because it deals with the unobserved
heterogeneity and does not reject the assumption of no serial correlation.
Table 5.3 of results contains two more columns, (1) and (2), where the first
column provides the estimates using the first di�erence estimator. There is
again the problem with heteroskedasticity. The results after correction are
considered the most plausible and are presented in the second column. The
R-squared is above 0.65 which is only 1 % more compared to the Adjusted
R-squared, therefore the model is well-fitted.
The model’s results are presented in the already mentioned Table 5.3. The
main focus is on the description of the estimates located in the second column.
Starting with new cases variable which was considered significant in the cur-
rent month, in one-month delay and also with a two-month lag. As expected,
the current number of new cases does not have such a high coe�cient as the
number of new cases with a one-month lag. It is understandable because se-
vere conditions that lead people to hospitals could be revealed after some time.
One-percentage increase in the number of current new cases per thousand raises
the hospitalizations by 0.053 %, compared to the boost equal to 0.45 % caused
by a one-percentage increase of new cases in the previous month. Moreover,
a one-percentage increase in new cases two months ago decreases the number
of hospitalizations in the present month by 0.259 %. Intuitively, it makes sense
because most people would stay in the hospital for several weeks and then
recover or pass away within that time.
Full vaccination is considered significant in both lags with negative coe�cients.
One-percentage increase in full vaccination reduces the number of people in
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hospitals by 0.098 % in case of a month-lag and 0.064 % in case of a two-month
lag. It supports the hypothesis that an additional dose of vaccine is essential for
further protection against the severe conditions of the virus. Being vaccinated
is also considered significant in both lags, however only the first lag has a
negative sign and a one-percentage increase in the vaccination per thousand
in the previous month decreases the hospitalization in the current month by
0.087 %.
Average temperature is significant at a 1% significance level and has a reduc-
ing e�ect. One-degree increase in average temperature reduces the number of
hospitalizations by 5.7 % because it is included in a log-level relation. Average
temperature is significant for the first time and it is probably caused by the
reduction in the number of countries in the dataset which now mostly consists
of countries from Europe where the fluctuation of temperatures is apparent.
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Table 5.3: Estimation results - hospitalization model using world data

Dependent variable:
log(Hospitalizationit)

FD Robust SE D-GMM
(1) (2) (3)

log(Hospitalizationi(t≠1)) ≠1.234úúú

(0.378)

log(New_casesit) 0.053úúú 0.053ú 0.433úúú

(0.013) (0.030) (0.042)

log(New_casesi(t≠1)) 0.450úúú 0.450úúú 0.911úúú

(0.027) (0.036) (0.179)

log(New_casesi(t≠2)) ≠0.259úúú ≠0.259úúú 0.313úúú

(0.026) (0.028) (0.113)

log(New_vaccinatedi(t≠1)) ≠0.087úú ≠0.087úú 0.058
(0.037) (0.036) (0.045)

log(New_vaccinatedi(t≠2)) 0.101úú 0.101ú ≠0.062
(0.045) (0.055) (0.053)

log(New_fully_vaccinatedi(t≠1)) ≠0.098úú ≠0.098úú ≠0.025
(0.044) (0.038) (0.029)

log(New_fully_vaccinatedi(t≠2)) ≠0.064úú ≠0.064ú ≠0.007
(0.031) (0.034) (0.026)

Average_temperatureit ≠0.057úúú ≠0.057úúú 0.022ú

(0.008) (0.010) (0.013)

Stringency_indexi(t≠1) 0.007ú 0.007ú 0.008ú

(0.004) (0.004) (0.005)

Constant ≠0.045 ≠0.045ú

(0.028) (0.027)

Observations 364 31
R2 0.656
Adjusted R2 0.647
F Statistic 74.907úúú (df = 9; 354)
Hansen-Sargan test (p-value) 1
Arellano-Bond test (p-value) 0.005

Note: úp<0.1; úúp<0.05; úúúp<0.01
Standard errors in parentheses



5. Empirical Results 39

5.1.4 Summary of World Models

Table 5.4 was created to show the comparison of all models that were com-
mented above. The most trustworthy model for each dependent variable was
included. The table’s main purpose is to distinguish the e�ects of individual
variables among the models. There is new tests variable in the new cases model
that substitutes the e�ect of new cases in the present time because it cannot
be included, since it is the dependent variable in the model. It is apparent
that new cases variable is important in the present and also in the first lag for
all dependent variables. It is obvious because this variable mainly determines
the three key statistics. Fortunately, new cases variable is not proportional to
new deaths nor hospitalizations. Furthermore, the second lag of the new cases
variable is significant for the hospitalization model with a negative coe�cient.
Understandably, most people would stay in the hospital for several weeks and
then recover or pass away within that time.
Full vaccination is significant only for the hospitalization model in both lags
with negative coe�cients. The reason might be the number of countries in the
dataset. The hospitalization dataset was reduced to only 31 mainly European
countries with usable data. New vaccinated variable has negative coe�cients
for all models in World Analysis. The only di�erence is the significance of the
lag. The first lag is important among all models, however the model of new
death has the second lag significance with a negative value. According to the
various countries in the dataset, the two-month lag of new vaccinated is more
correlated with new deaths than full vaccination.
Average temperature has a negative value for the new deaths and the hospital-
ization model, however only the latter is found significant. It may be again due
to the number of countries in the hospitalization dataset. The stringency index
is found significant for new cases and hospitalization models, nevertheless it
di�ers in the coe�cient sign. A higher level of the stringency index restricts
social contacts, and thus should reduce the number of transmissions which is
supported by the negative coe�cient in the new cases model.
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Table 5.4: Comparison of world analysis models

Dependent variable:
log(New_casesit) log(New_deathsit) log(Hospitalizationit)

(1) (2) (3)
log(New_testsit) 1.727úúú

(0.544)

log(New_casesit) 0.743úúú 0.053ú

(0.031) (0.030)

log(New_casesi(t≠1)) 0.368úúú 0.407úúú 0.450úúú

(0.120) (0.042) (0.036)

log(New_casesi(t≠2)) ≠0.013 0.057 ≠0.259úúú

(0.090) (0.044) (0.028)

log(New_vaccinatedi(t≠1)) ≠0.277úú 0.057 ≠0.087úú

(0.113) (0.052) (0.036)

log(New_vaccinatedi(t≠2)) 0.007 ≠0.093ú 0.101ú

(0.057) (0.053) (0.055)

log(New_fully_vaccinatedi(t≠1)) 0.073 ≠0.037 ≠0.098úú

(0.130) (0.056) (0.038)

log(New_fully_vaccinatedi(t≠2)) ≠0.040 0.016 ≠0.064ú

(0.082) (0.045) (0.034)

Average_temperatureit 0.0003 ≠0.020 ≠0.057úúú

(0.019) (0.014) (0.010)

Stringency_indexi(t≠1) ≠0.011úú ≠0.002 0.007ú

(0.005) (0.007) (0.004)

Constant ≠0.236úúú ≠0.045ú

(0.039) (0.027)

Note: úp<0.1; úúp<0.05; úúúp<0.01
Standard errors in parentheses



5. Empirical Results 41

5.2 Country Level Analysis
This section is divided into Czechia and Israel analysis. Both countries have
the models formulated evenly to be comparable. According to equations for-
mulated in Section 4.2, new deaths and hospitalization models have the same
independent variables in the equation.

5.2.1 Czechia Analysis

5.2.1.1 New Cases Model

Table A.15: Estimation results of new cases model – Czechia contains the
results of OLS in the first column and the model adjusted by HAC robust
standard errors in the second column that is considered the most plausible.
New tests are included with an expectation of high positive significance. Ac-
cording to the model, a one-percentage increase in the new tests per thousand
people raises the number of new cases per thousand people by 0.473 %. Full
vaccination does not a�ect the number of new cases in the 7-day lag nor 14-day
lag significantly. The reason is that the main decrease follows the first dose of
vaccine. Compared to the similar model in Table 5.1 in World Analysis, new
vaccinated variable in 30-day lag is also considered significant at a 5% signif-
icance level with a negative relation to the dependent variable. Although the
14-day version has a reducing e�ect under OLS, it is not significant after HAC
correction. One-percentage increase in new vaccinated per thousand people 30
days ago decreases the number of new cases by 0.163 %.
Average temperature has a strong reducing e�ect on the dependent variable
and a one-point increase in the variable decreases the dependent variable by
13.4 % because it is included in a log-level relation. Figure B.11 supports this
evidence because higher average temperature in Czechia is associated with fewer
new cases. The stringency index has significant results only in the 14-day lag,
however this time interval can still include the period before the manifestation
of symptoms, and thus its results are unsurprisingly positive.

5.2.1.2 New Deaths Model

Table A.16: Estimation results of deaths model – Czechia provides two columns
of results – OLS and after robust SE. New cases are significant in all vari-
ants. The number of new cases per thousand people is positively related to the
number of deaths. One-percentage increase in the new cases increases deaths
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by 0.713 %. On the other hand, the same increment 7 and 14 days ago decreases
deaths by 0.081 % and 0.097 %, respectively.
Vaccination of at least one dose does not provide adequate protection against
the worst consequence of Covid-19. Both lags of 14 and 30 days show positive
coe�cients in the OLS regression, nevertheless, only firstly mentioned lag is
significant and positive after HAC adjustment. Full vaccination changed the
sign of the coe�cient and decreases the number of deaths. One-percentage
increase in full vaccination per thousand people 14 days ago reduces the number
of deaths by 0.072 % and a 30-day delay reduces the dependent variable by
0.089 % but the latter lag is no longer significant after HAC correction. Thus,
further protection in the form of an additional dose of vaccine is supported in
this model.
Average temperature is also considered as a variable minimizing the number
of deaths. It is included using a log-level relation, and thus increment of one
degree of Celsius in average temperature reduced deaths by 4.8 %. Similarly to
subsubsection 5.2.1.1 New Cases Model, 14-day delay in the stringency index
is not enough to have a reducing e�ect on the number of deaths, however with
30-day delay the stringency index changes the relation and reduces the number
of deaths by 1.5 %. The stringency index is also included in a log-level relation.
This evidence supports the goal of higher public restrictions.

5.2.1.3 Hospitalization Model

Table A.17: Estimation results of hospitalization model – Czechia provides the
results of the last model. New cases and a 7-day delay of the same variable are
considered significant with a positive e�ect on the number of hospitalizations.
A one-percentage rise in new cases at the current time per thousand people
increases hospitalizations by 0.25 %. The 7-day lag of the same variable has
a lower coe�cient equal to 0.078 %. 30-day lag is not considered significant,
however it changes the sign of the coe�cient to be negative.
New vaccinated variable shows to be significant with a positive coe�cient equal
to 0.122 % for the first lag and insignificant for the second lag. On the other
hand, being fully vaccinated has a reducing e�ect on the dependent variable.
A one-percentage increase in full vaccination per thousand people decreases
hospitalization by 0.078 % for a 14-day lag and 0.172 % for a 30-day delay,
however only the second lag of 30 days is significant at a 10% significance level
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after HAC correction. The importance of the second dose of vaccine is therefore
supported.
Average temperature and the stringency index are included in a log-level rela-
tion, therefore a one-point increase in average temperature reduces the hospital-
ization number by 10.6 %. Figure B.12 provides further evidence that average
temperature highly influences the number of hospitalizations. The stringency
index with 14-day delay has a positive e�ect on the dependent variable which
estimates that a one-point increase in the stringency index raises hospitaliza-
tion by 3.4 %, however the delay of 30 days changes the sign and has a negative
e�ect on hospitalization that is equal to 2.8 % with a one-point increment.

5.2.1.4 Summary of Czechia Models

This section is devoted to a summary of variables in Czechia models. Table 5.5
below compares all three already discussed models. Models are included in
the version after HAC correction. The R-squared of Czechia models is slightly
above 0.57 in the new cases model and slightly above 0.8 in the two other
models. Moreover, di�erences in R-squares between the individual models are
highest (equal to 0.006) when using new cases as the dependent variable. There-
fore, it is confirmed that the models are formulated properly and all models
are trustworthy.
New tests variable in the new cases model substitutes the e�ect of new cases
variable in the other two models. These variables have a straight e�ect on the
dependent variable and positive significance is apparent as expected.
New vaccinated variable is significant among all models, yet the delay in the
e�ect di�ers. So does, surprisingly, the e�ect’s direction. Only the first lag
is positive and significant for deaths and hospitalisations, whereas a slowing
e�ect is visible for the 30-day lag in the new cases model. Full vaccination has
negative signs in both lags for all models, however it is considered significant
only in the 14-day lag for the model of new deaths and in the 30-day lag
for hospitalization as the dependent variable. The first goal of vaccination is
to reduce the number of transmissions that is satisfied with the first dose of
vaccine. The second goal of vaccination is to create protection against severe
progress and according to (2) and (3) it is provided by an additional dose of
vaccine.
Average temperature is an important factor across all models. It has a strong
reducing e�ect on dependent variables. Average temperature has the least
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prominent e�ect on the number of deaths which is almost three times smaller
compared to the new cases model. Figure B.11 and Figure B.12 supported
importance of average temperature. The 14-day delay in the stringency index
does not provide enough time to show the expected e�ect of the variable, how-
ever 30-day lag has a negative coe�cient for new deaths and hospitalizations
models, while an estimate near 0 for the new cases model. To sum it up, new
deaths and hospitalization models are closely related, which is confirmed by
the signs and significant levels of variables, whereas variables influencing the
development of new cases are slightly di�erent.
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Table 5.5: Comparison of models - Czechia

Dependent variable:
log(New_casest) log(New_deathst) log(Hospitalizationst)

(1) (2) (3)
log(New_testst) 0.473úúú

(0.084)

log(New_casest) 0.713úúú 0.250úúú

(0.037) (0.061)

log(New_cases(t≠7)) ≠0.081úúú 0.078úú

(0.031) (0.037)

log(New_cases(t≠14)) ≠0.097úúú ≠0.005
(0.035) (0.042)

log(New_vaccinated(t≠14)) ≠0.112 0.129úúú 0.122úú

(0.071) (0.046) (0.061)

log(New_vaccinated(t≠30)) ≠0.163úú 0.101 0.134
(0.077) (0.076) (0.109)

log(New_fully_vaccinated(t≠14)) ≠0.044 ≠0.072úú ≠0.078
(0.035) (0.036) (0.057)

log(New_fully_vaccinated(t≠30)) ≠0.061 ≠0.089 ≠0.172ú

(0.079) (0.064) (0.097)

Average_temperaturet ≠0.134úúú ≠0.048úúú ≠0.106úúú

(0.019) (0.011) (0.016)

Stringency_index(t≠14) 0.024ú 0.032úúú 0.034úúú

(0.013) (0.007) (0.012)

Stringency_index(t≠30) 0.002 ≠0.015úú ≠0.028úú

(0.011) (0.007) (0.013)

Constant ≠2.971úúú ≠5.621úúú ≠0.908ú

(0.704) (0.369) (0.507)

Note: úp<0.1; úúp<0.05; úúúp<0.01
Standard errors in parentheses
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5.2.2 Israel Analysis

5.2.2.1 New Cases Model

Table A.18: Estimation results of new cases model – Israel summarises the
model with new cases as the dependent variable. The table has two columns,
(1) with OLS results and (2) after HAC robust standard errors correction which
is considered the most trustworthy. One-percentage increase in new tests raises
the number of new cases by 6.3 % because it is included in a log-level relation,
however, it is not considered significant after HAC correction.
New vaccination has negative signs in both lags and coe�cients equal to 0.334 %
in the case of the 14-day lag and 0.577 % is the e�ect of the 30-day delay. Full
vaccination is an insignificant factor in this model which is similar to the same
model formulated for the Czech Republic. The main goal of vaccination on the
number of new cases is to reduce transmissions. According to all three models
having the number of new cases as the dependent variable, the first dose of
vaccine seems to have the desired e�ect.
Average temperature is another significant variable with a reducing e�ect. One
additional degree of Celsius decreases the number of new cases by 5.3 % be-
cause it is included in a log-level relation. This e�ect is further supported by
Figure B.11. The stringency index was found to be significant only for the
30-day delay, however it has a positive coe�cient.

5.2.2.2 New Deaths Model

Results of the model with new deaths variable as the dependent variable are
provided in Table A.19 which contains two columns: one for OLS and the
second after HAC robust SE. The only significant variant of new cases variable
is the present time whose coe�cient is equal to 0.367 % for a one-percentage
increase in the independent variable. Although it is insignificant, new cases
variable with a 14-day delay has a negative coe�cient.
New vaccinated variable is significant only for the 30-day delay before HAC
correction. The second column of results shows the insignificance of new vac-
cination. Furthermore, full vaccination is also insignificant, nevertheless it has
negative relation for a 30-day delay equal to 0.068 % for a one-percentage
increment.
Average temperature is insignificant, however it has a negative sign of the
estimate. The stringency index is significant at a 1% significance level for
both included variants. The one with a 14-day delay has a positive coe�cient,
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whereas the variable with a 30-day lag is negatively related to the dependent
variable. 14 days seem insu�cient to show the proper e�ect of the index,
however the interval of one month is su�cient. A one-point increase in the
stringency index 30 days ago decreases the number of deaths by 3.7 %.

5.2.2.3 Hospitalization Model

Results are provided in Table A.20 with the identical structure as in the afore-
mentioned models. All delays of new cases variable are considered significant
and have a positive sign except the 14-day lag. The current new cases variable
increases hospitalization by 0.147 %, whereas a one-percentage increment in
the new case’s 7-day lag raises the hospitalizations by 0.079 %.
New vaccination has a reducing e�ect for the first lag at the 1% significance
level. One-percentage increase in the new vaccination variable per thousand
people 14 days ago decreases the number of hospitalizations per thousand by
0.114 % and ceteris paribus only with 30 days lag resulted in a decrease of
0.048 % but not significant. Full vaccination is insignificant for a 14-day lag
as well as for a 30-day lag, nevertheless the latter has a negative sign of the
estimate. This might be caused by the fast vaccination campaign supported
by Figure B.4.
Average temperature is an important reducing factor shortening the number
of hospitalizations by 2 % for each degree of Celsius increment (see also Fig-
ure B.12). The stringency index with a 14-day delay positively a�ects the
number of hospitalizations. On the other hand, a one-point increase in the
stringency index 30 days ago decreases hospitalizations by 1 %, nevertheless
this variable is insignificant after HAC application.

5.2.2.4 Summary of Israel Models

Table 5.6 below compares all three formulated models to determine whether
there are di�erences. Only models after HAC correction are included. The
R-squared of the new cases model of Israel is 0.37 which is smaller compared to
the new cases model of Czechia, however it does not cause any problem because
its Adjusted R-squared is equal to 0.36 which is close to the R-squared. The
deaths model has the R-squared close to 0.5 and the last model has a value near
0.8. Both have the Adjusted R-squared values close to the R-squared, therefore
all models are considered well-fitted. New tests and new cases independent
variables capture the information about the detection of Covid-19, thus the
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expectation of positive coe�cients is confirmed. Moreover, the 7-day lag of new
cases still significantly a�ects the number of people in hospitals. Vaccination
of at least one dose is considered significant and negatively related to both
lags in the new cases model and in the first lag for the hospitalization model.
Full vaccination is not significant in any of the models. Average temperature
is substantial only in the new cases and hospitalization models where it shows
a reducing e�ect (supported by Figure B.11 and Figure B.12). The stringency
index with a 14-day delay does not provide a reducing e�ect, however 30-day
lag ensures a reduction in the new deaths and hospitalization models which
supports that public restriction influences the dependent variables.
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Table 5.6: Comparison of models - Israel

Dependent variable:
log(New_casest) log(New_deathst) log(Hospitalizationt)

(1) (2) (3)
New_testst 0.063

(0.050)

log(New_casest) 0.367úúú 0.147úúú

(0.038) (0.041)

log(New_cases(t≠7)) 0.035 0.079úúú

(0.034) (0.016)

log(New_cases(t≠14)) ≠0.045 0.032
(0.038) (0.029)

log(New_vaccinated(t≠14)) ≠0.334úú 0.068 ≠0.114úúú

(0.148) (0.047) (0.043)

log(New_vaccinated(t≠30)) ≠0.577úúú 0.100 ≠0.048
(0.175) (0.070) (0.046)

log(New_fully_vaccinated(t≠14)) 0.035 0.026 0.033
(0.052) (0.023) (0.022)

log(New_fully_vaccinated(t≠30)) 0.194 ≠0.068 ≠0.006
(0.130) (0.051) (0.034)

Average_temperaturet ≠0.053ú ≠0.003 ≠0.020ú

(0.030) (0.011) (0.010)

Stringency_index(t≠14) 0.019 0.048úúú 0.034úúú

(0.034) (0.010) (0.009)

Stringency_index(t≠30) 0.064ú ≠0.037úúú ≠0.010
(0.036) (0.010) (0.007)

Constant ≠6.350úúú ≠6.833úúú ≠3.081úúú

(1.585) (0.604) (0.535)

Note: úp<0.1; úúp<0.05; úúúp<0.01
Standard errors in parentheses
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5.3 Comparison of Models
Although the e�ects of variables within individual countries were commented,
it would be more transparent to see whether there are di�erences between all
models that were included in the analyses. Table 5.7 below contains the sum-
mary of all models. It is divided into nine columns and always three columns
are related to the same dependent variable. The first triplet shows the number
of new cases as the dependent variable. The second triplet deals with the num-
ber of deaths and the last one is related to hospitalizations. Columns (1), (4),
and (7) are the results of World Analysis. (2), (5), and (8) refer to the Czechia
models. The last three are connected to Israel Analysis.
New tests results support the hypothesis of a positive and significant e�ect.
The same relation is apparent for the number of new cases in the current time
with the exception of new tests in Israel’s new cases model that is insignificant.
Naturally, there would not be any pandemic without testing and detection of
positive cases.
World Analysis shows positive e�ects of the first lag of new cases variable
in all models. Followed by a negative coe�cient in the second lag for the
hospitalization model. The first lags are also important for individual countries
with negative coe�cients only in the new deaths model. Therefore new cases
lags are also crucial factors.
Vaccination with one dose has negative estimates in all models with new cases
as the dependent variable. Full vaccination is not considered significant in all
lags when referring to new cases models. It supports the hypothesis that the
first dose of vaccine reduces the number of transmissions.
Concerning death models, new vaccination has a negative coe�cient only in the
lag of 60 days in World Analysis. It might be the reason why full vaccination is
not significant for this world model. On the other hand, the individual analyses
show di�erent results. Full vaccination significantly and negatively a�ects the
number of deaths only in Czechia.
There are di�erences in signs of vaccination estimates when talking about hos-
pitalization models. The first vaccine has a significant and diminishing estimate
only for Israel in the first lag and in the 30-day lag concerning World Anal-
ysis. Full vaccination is insignificant for Israel. On the other hand, Czechia
and World Analysis saw the opposite e�ect and full vaccination seems to be
associated with a reduction in the dependent variable. This might be caused
by the fast vaccination campaign in Israel at the beginning.
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Average temperature is an important reduction factor in all models concerning
individual countries. The problem with the insignificance of the variable in
the case of the world new cases and the new deaths model is the variety of
countries included in the dataset. There could be many countries with stable
temperatures during the whole year, however Covid-19 was not eliminated by
this condition. This assumption might be confirmed by the significance of the
variable in the world hospitalization model, where the number of countries is
reduced due to the unavailability of data and mainly European countries with
fluctuating average temperatures are left. Individual countries analyses have
a great reduction relation between average temperature and the dependent
variables (see Figure B.11 and Figure B.12). To conclude, average temperature
has a strong power in influencing the development of the Covid-19 pandemic.
Last but not least, the stringency index was included in the models capturing
the level of public restrictions. Lags of 14 days do not reduce the dependent
variables because there might not be enough time to show the expected e�ect.
Therefore, the stringency index was also included in the one-month delay and
it reveals a reducing impact on hospitalization and deaths in both countries.
World Analysis shows a negative coe�cient only in the new cases model. To
sum it up, the stringency index seems to have the desired e�ect on the devel-
opment of the pandemic.
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Table 5.7: Comparison of all models

Dependent variable:
log(New_casest) log(New_deathst) log(Hospitalizationt)

World Czechia Israel World Czechia Israel World Czechia Israel
(1) (2) (3) (4) (5) (6) (7) (8) (9)

log(New_testst) 1.727úúú 0.473úúú

(0.544) (0.084)

New_testst 0.063
(0.050)

log(New_casest) 0.743úúú 0.713úúú 0.367úúú 0.053ú 0.250úúú 0.147úúú

(0.031) (0.037) (0.038) (0.030) (0.061) (0.041)

log(New_cases(t≠7)) ≠0.081úúú 0.035 0.078úú 0.079úúú

(0.031) (0.034) (0.037) (0.016)

log(New_cases(t≠14)) ≠0.097úúú ≠0.045 ≠0.005 0.032
(0.035) (0.038) (0.042) (0.029)

log(New_casest≠30) 0.368úúú 0.407úúú 0.450úúú

(0.120) (0.042) (0.036)

log(New_casest≠60) ≠0.013 0.057 ≠0.259úúú

(0.090) (0.044) (0.028)

log(New_vaccinated(t≠14)) ≠0.112 ≠0.334úú 0.129úúú 0.068 0.122úú ≠0.114úúú

(0.071) (0.148) (0.046) (0.047) (0.061) (0.043)

log(New_vaccinated(t≠30)) ≠0.277úú ≠0.163úú ≠0.577úúú 0.057 0.101 0.100 ≠0.087úú 0.134 ≠0.048
(0.113) (0.077) (0.175) (0.052) (0.076) (0.070) (0.036) (0.109) (0.046)

log(New_vaccinated(t≠60)) 0.007 ≠0.093ú 0.101ú

(0.057) (0.053) (0.055)

log(New_fully_vaccinated(t≠14)) ≠0.044 0.035 ≠0.072úú 0.026 ≠0.078 0.033
(0.035) (0.052) (0.036) (0.023) (0.057) (0.022)

log(New_fully_vaccinated(t≠30)) 0.073 ≠0.061 0.194 ≠0.037 ≠0.089 ≠0.068 ≠0.098úú ≠0.172ú ≠0.006
(0.130) (0.079) (0.130) (0.056) (0.064) (0.051) (0.038) (0.097) (0.034)

log(New_fully_vaccinated(t≠60)) ≠0.040 0.016 ≠0.064ú

(0.082) (0.045) (0.034)

Average_temperaturet 0.0003 ≠0.134úúú ≠0.053ú ≠0.020 ≠0.048úúú ≠0.003 ≠0.057úúú ≠0.106úúú ≠0.020ú

(0.019) (0.019) (0.030) (0.014) (0.011) (0.011) (0.010) (0.016) (0.010)

Stringency_index(t≠14) 0.024ú 0.019 0.032úúú 0.048úúú 0.034úúú 0.034úúú

(0.013) (0.034) (0.007) (0.010) (0.012) (0.009)

Stringency_index(t≠30) ≠0.011úú 0.002 0.064ú ≠0.002 ≠0.015úú ≠0.037úúú 0.007ú ≠0.028úú ≠0.010
(0.005) (0.011) (0.036) (0.007) (0.007) (0.010) (0.004) (0.013) (0.007)

Constant ≠2.971úúú ≠6.350úúú ≠5.621úúú ≠6.833úúú ≠0.045ú ≠0.908ú ≠3.081úúú

(0.704) (1.585) (0.369) (0.604) (0.027) (0.507) (0.535)

Note: úp<0.1; úúp<0.05; úúúp<0.01
Standard errors in parentheses



Chapter 6

Excess Deaths Analysis

Excess deaths analysis is the third part of the thesis and its main goal is to focus
on the most severe impact of the Covid-19 pandemic, i.e., numerous deaths. In
this section, only the Czech Republic will be examined. The main aim of this
section is to predict the amount of money not paid in pensions till the end of
2030 as a consequence of excess deaths caused by the pandemic.
The structure of this section is as follows. Firstly, identify the excess mortality
caused by the pandemic with a focus on older people who are not working
full time, however the government provides them monthly payments in the
form of pensions. Secondly, life expectations for the specific age groups will
be investigated. Then, the average pension will be presented. After that, the
calculation will be formulated to estimate the amount of money that will remain
in the government’s pension budget until the end of 2030. Moreover, the cost
of vaccines will be investigated and will be used as an expenditure that could
be compensated by the amount of money that will not be paid to pensioners.

6.1 Death Statistics
The Czech Statistical O�ce (2022) (further as CZSO) measures the number
of deaths in the Czech Republic and provides statistics for every week from
the year 2012. Furthermore, the dataset is divided into subsections based on
the age groups of the population. There are six groups starting with children
of 0-14 years of age. The following two groups consisting of 15-44 years old
people and 45-64-year-old individuals could be seen as the main productive
years of life. Nevertheless, the most important age groups for the purpose of
the analysis are remaining, i.e., 65-74, 75-84, and the last group of 85+ years of
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age. The last three mentioned groups are supposed to be the most vulnerable
to the negative symptoms of Covid-19. The hypothesis is to find out that
the elderly represent the greatest portion of total deaths, and therefore these
groups will be used for the exploration of excess mortality caused primarily or
secondarily by Covid-19.
The Ministry of Health of the Czech Republic (2022) reported 42 149 o�cial
deaths caused by Covid-19 as of the 30th of December 2022. However, the excess
deaths analysis will be based on the total number of deaths reported by CZSO
because many people might not pass away primarily from Covid-19 but due to
other factors connected with the pandemic. Fear caused by the mass media and
solitude as a result of public restrictions could a�ect mortality, however these
deaths cannot be included in the o�cial deaths caused by Covid-19. Moreover,
the Ministry of Health does not divide the statistics about Covid-19 deaths into
age groups. Their data consist of daily reported deaths at the time the virus
was detected in the organism and therefore it is not suitable for the analysis.
Based on the downloaded data from CZSO, Figure B.15 was created. The graph
shows the number of deaths in each age group from 2012 to 2022. Table A.21
contains the values used for the figure creation. The first two groups depicting
people under 45 years old do not present visible di�erences. Moreover, the
values are close to 0 for the youngest group and near 3 000 for the group 15
to 44 years old. Green colour representing group 45-64 shows a decreasing
trend in the graph with an increment in 2021 and almost the same value in
2022, however everyone in this group cannot be considered as a pensioner and
therefore this group will not be used in the analysis. The rest of the groups
show an apparent increase in the number of deaths and these groups will be
further examined. Deaths in the next group 65-74 were rising during the years
with a peak in 2021 followed by a slight reduction in the last observed year.
75-84 years old people observed the most visible increase out of all groups. The
rise was not that noticeable in 2020, although it was equal to 2 000 more deaths
compared to the previous year. However, the number of deaths grew rapidly
in the next two years. The last age group 85+ represented by the purple line
also rose with a boost in the last year.
The problem is with determining the excess deaths because it is not known what
the number of deaths in the years from 2020 to 2022 in a situation without the
Covid-19 pandemic would be. The estimate of deaths in the mentioned year
could be forecasted based on the values from the previous years. For this
purpose, the Excel function forecast is used to estimate mortality in the last
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3 years based on the statistics presented in Table A.21. The function creates
linear regression using 3 inputs. It takes the column containing the number of
deaths as the y-value and the x-value reflects the time dimension. The third
input is the year that should be forecasted. It is necessary to predict the years
2020 to 2022, and therefore the observations used in the forecast capture years
2012 to 2019. The same period is used for all 3 years of prediction.
The following Table A.22 compares the forecasted values and real values during
the Covid-19 pandemic. The last two rows compare the sum of values forecasted
and real. The total di�erence is equal to 46 452 deaths which are about 10 %
higher than the o�cial number of deaths caused by Covid-19, i.e. 42 149 by
the end of 2022. The di�erence in the values will be used in the computation.
The excess of deaths is depicted in Table A.23 and it was calculated from
Table A.22 by subtracting the real number of deaths from the forecasted value.
Surprisingly, there are more predicted deaths in 2020 than the real number for
the two groups which is the reason why there are negative values. However,
the values are increasing in the following years.

6.2 Life Expectancy
CZSO (2022) has an additional table that is usable and important for the
analysis. It measures the life expectancy of people in a form that is appropriate
for the investigation. The file reports the life expectancy for every year at the
time of birth and then for age groups 5, 10, . . . till 105. Moreover, it is separated
for men and women. The file contains life expectancies from 1912 to 2021, from
which only the last three rows (2019, 2020, 2021) were selected. Unfortunately,
values for the year 2022 are not available at the time of writing this thesis.
The values between 2020 and 2021 do not di�er extensively, therefore it is
expected that the same will follow in 2022. Thus, it was decided to use the
values from 2021 also for the following year. Data about life expectancy are
usually reported at the time of birth and represent the quality-of-life measure,
however it would not make sense that all people would die at a certain age at
the latest.
Table A.24 provides life expectancies based on the data from CZSO. A detailed
description of the methodology that is used for the determination of the val-
ues is not provided, however CZSO is considered a trustworthy source of data
and information about the Czech Republic. The age groups were filtered to
contain values only for people older than 65 years old. The first step in the



6. Excess Deaths Analysis 56

data transformation was to merge certain columns and to create an average
of life expectancies. Group 65-74 consists of averages of ages 65, 70, and 75.
The next group 75-84 was calculated based on values from 75, 80, and 85 years
old people. The last group was calculated based on the rest of the provided
values. These calculations were provided separately for men and women and
the result is presented in Table A.25. Moreover, the table contains one more
section called Average which is computed as an average of men’s and women’s
life expectancies and this value will be further used in the calculations. The
average of men and women is constructed because it is impossible to distin-
guish the sex of individuals in the excess deaths statistics. Unsurprisingly, the
life expectancy for women is higher than for men. Using averages may un-
dervalue the real condition, however the author’s approach is to have a rather
undervalued estimate than having the highest value with a very low percentage
of possibility. Since the investigation is extending until 2030, life expectancy
above 10 years is out of scope of the analysis.

6.3 Pensions
Czech Social Security Administration (2022) describes the conditions required
to get a pension in the Czech Republic. For men, only the age matters, while
women’s retirement age is also adjusted by the number of children raised. Based
on e�ective law, the retirement age is gradually changing and will soon reach
65 years for all cohorts. For example, people born in 1947 had a pension age
equal to 62. According to the age groups included in the dataset, everyone in
the groups is above 65 years old and therefore considered a person receiving a
pension.
The Ministry of Labour and Social A�airs (2023) created a report about the
increase in pensions in the year 2023 and included a graph showing the develop-
ment of average pensions in the Czech Republic from the year 2010. Table A.26
depicts the average pensions in CZK. It is apparent that pensions have been
rising rapidly in recent years. The increase is 17 % in 2022 compared to 2021
and an additional 12 % in 2023. Since the beginning of the pandemic, the
average pension has risen by 39.4 % due to high inflation which is expected to
subside in the following years. For the estimation of unpaid pensions in the
future, it is necessary to forecast the average pensions till 2030 which is the
last year of investigation.
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Increase in pensions is influenced by inflation. Czech National Bank (2023)
created a prognosis about the future inflation rate in the Czech Republic. Al-
though inflation is at a level of 14.8 % at the time the excess deaths analysis is
created, it is predicted to almost reach the 2 % inflation target at the beginning
of 2024. However, the 70 % confidence interval indicates the inflation rate to
be slightly below 5 %. The estimated inflation is used for forecasting pensions.
The increase in average pensions is therefore predicted to be 4 % in 2024, then
3 % in the next two years, and the next four years are set to be equal to 2 %.
Predictions are also included in Table A.26.

6.4 Vaccines’ Expenses
Many types of expenses are associated with the Covid-19 pandemic, such as
increased budgets for healthcare operating at or above capacity, or subsidies
for entrepreneurs. These costs should be di�cult to measure at a detailed
level. Therefore, expenditure that could be measured at a precise amount is
sought. Vaccines should serve as a direct protection against the development of
Covid-19 and also should provide protection against the severe process of the
virus that could result in death. The cost of vaccines’ purchases could serve as
a good measure, therefore money not paid in pensions in the long run could be
compared to the vaccines’ investments.
The Ministry of Health of the Czech Republic (2023) provides a list of its
invoices publicly. There are files for every month in years of interest (2021,
2022). These two years were selected because the vaccination in the Czech
Republic started in December 2020, however there is no invoice for a vaccine
in December 2020 which means that the first invoice was probably paid at the
beginning of the year 2021.
Lists of invoices were downloaded (12 for each year) and merged based on the
year to separate files. The identification of vaccines’ expenses was made by
looking for the producers of vaccines. Five leading suppliers were detected
and expenditures for these companies will be computed, namely Pfizer, spol
s r.o.; Moderna Biotech Spain S.L.; Janssen Pharmaceutica NV; AstraZeneca
AB; and NOVAVAX CZ a.s. Supplier Janssen Pharmaceutica NV is a com-
pany in the Johnson & Johnson group, therefore it was publicly marked as
Johnson & Johnson vaccine.
A summary of expenses is presented in Table A.27. It is apparent that the
majority of expenses are connected with Pfizer company (83.4 %), followed by
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Moderna (13.3 %) and the rest is equal to 3.3 %. The total amount of money
spent on vaccines equals 14 838.5 million CZK. This is the cost of the vaccines
and does not include the costs related to the operation of vaccination centres
or other personnel costs.

6.5 Results
The model was constructed for each age group separately, however the pro-
ceeding is identical. Each group was divided into 3 sections according to the
deaths in a particular year because it is impossible to determine the exact date
of death in the excess statistics. The first excess deaths are provided for 2020
and therefore these statistics are used starting in 2021. Deaths recorded in
2021 are used in the calculation since 2022. Similarly for data from 2022. Life
expectancies are used to demonstrate how many years a person in a particular
age group is expected to live. According to Table A.25, 3 years were used for
group 85+, 7.5 years are expected for age group 75-84, and 13 years for the
youngest investigated group. Since the excess deaths analysis examines the pe-
riod till 2030, the youngest group must be restricted. According to the excess
deaths in 2020, only the group 75-84 was used for this year’s calculations.
The last variable needed for the calculation is the average pension that was
forecasted in Section 6.3. The amount of money not paid was calculated as
the number of excess deaths times the average pension in the appropriate year.
Table A.28, Table A.29, and Table A.30 show the distribution of unpaid money
in the years of investigation. Each table is related to one of the age groups
and also contains the sum of every year’s excess deaths. The next Table A.31
summarizes the amount of money for the three age groups and their aggregates.
Last but not least, it provides the total amount of money not paid due to
increased mortality during the Covid-19 pandemic till 2030 which is equal to 5
761.9 million CZK.
Finally, the value of pensions that are not paid can compensate for the expenses
that were spent on vaccines’ purchases which should reduce the development
of the Covid-19 pandemic. It serves as a protection against the more severe
condition of the virus which could be associated with death. The purchase
expenses have been described and their total value equals 14 838.5 million
CZK till the end of 2022. The value is presented in Table A.27. Therefore, the
money not paid in pensions could cover 39 % of costs associated with purchases
of vaccines.



Chapter 7

Conclusion

This thesis aimed to investigate the e�ect of vaccination on the number of
key statistics related to the Covid-19 pandemic - the number of new cases,
new deaths, and hospitalization. A large dataset containing countries around
the world was utilized with observations transformed into monthly intervals.
Several methods were used in this section because of the panel data structure
of the dataset. The inclusion of lags of the dependent variable in the world
new cases model was accompanied by the adoption of the Di�erence GMM
estimator. The other two world models were estimated using first-di�erence
OLS regression because the dependent variable lags were insignificant. New
cases and new deaths models appear to have a reducing e�ect of the first dose
of vaccination and the hospitalization model showed evidence that also the
second dose of vaccine reduces the number of people in hospitals.
Furthermore, analyses examining the Czech Republic and Israel separately with
data filtered from World Analysis dataset based on daily observations were
created because each country could have di�erent outputs. Time series data
are investigated and therefore di�erent methodology has to be selected. OLS
is considered appropriate and is used in all models. According to the new
cases models, both countries show the negative estimate of new vaccinations
with greater coe�cients in Israel. Moreover, the insignificance of the further
dose is apparent in both countries. New deaths and hospitalization models
appear to have a reducing e�ect of full vaccination in the Czech Republic. Any
lag of vaccination variables is not considered significant in the model of the
new deaths in Israel, however the first vaccination has a decreasing e�ect on
the number of hospitalizations. Average temperature strongly influences the
number of dependent variables in all models.
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In response to the investigation of the Czech Republic, an excess deaths anal-
ysis was carried out. It focuses on the estimation of excess deaths that were
primarily or secondarily caused by the Covid-19 pandemic. Moreover, it eval-
uates the amount of money that will not be paid in pensions until 2030 due to
the excess deaths. Finally, the excess deaths analysis compares the calculated
amount of money to the expenses associated with vaccine’s purchases, con-
cluding that almost 40 % of these expenditures could be financed by unpaid
pensions.
The author is aware that analyses created in this thesis are not without limita-
tions. World Analysis was analysed after the aggregation of data into monthly
intervals which obviously shortened the time dimension of the data. However,
a future investigation could consider the time dimension and work with time
series approaches. Unfortunately, it is not possible to take any variants of the
SARS-CoV-2 virus into account because information about variants that were
present in the confirmation of Covid-19 is not provided. Similarly, there are
many types of vaccines, however it cannot be assigned precisely which one was
used for a particular person. The excess deaths analysis has only limited in-
sight into excess deaths consequences of the Covid-19 pandemic. Limitations
could be associated with the forecasting accuracy because it cannot be cer-
tainly estimated what the average future pension will be or what the number
of deaths would be without the Covid-19 pandemic. Further analysis investiga-
tion additional costs related to the Covid-19 pandemic in the Czech Republic
would be beneficial. Despite the limitations, the results of the analyses sup-
port the importance of vaccination that creates protection against the Covid-19
pandemic.
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Appendix A

Tables

Table A.1: List of countries in hospitalization dataset

Austria Belgium Bolivia Bulgaria Croatia
Cyprus Czechia Denmark Estonia Finland
France Hungary Iceland Ireland Israel
Italy Latvia Lithuania Luxembourg Malaysia
Malta Netherlands Norway Portugal Serbia
Slovakia Slovenia South Africa Spain Sweden
Switzerland

Table A.2: List of countries in dataset

Albania Angola Argentina Aruba Austria
Azerbaijan Bahamas Bahrain Bangladesh Barbados
Belarus Belgium Belize Bermuda Bhutan
Bolivia Bosnia and Herzegovina Bulgaria Burkina Faso Burundi
Cambodia Cape Verde Chile Colombia Costa Rica
Cote d’Ivoire Croatia Cuba Cyprus Czechia
Denmark Djibouti Dominica Dominican Republic Ecuador
El Salvador Estonia Eswatini Ethiopia Faeroe Islands
Fiji Finland France Gabon Georgia
Ghana Greece Guatemala Haiti Hungary
Iceland India Indonesia Iran Iraq
Ireland Israel Italy Jamaica Japan
Jordan Kazakhstan Kenya Kosovo Kuwait
Laos Latvia Lebanon Libya Liechtenstein
Lithuania Luxembourg Malawi Malaysia Mali
Malta Mauritania Moldova Mongolia Morocco
Mozambique Myanmar Namibia Nepal Netherlands
New Zealand Niger Norway Pakistan Panama
Paraguay Philippines Portugal Qatar Russia
Rwanda Saudi Arabia Senegal Serbia Singapore
Slovakia Slovenia South Africa South Korea South Sudan
Spain Sri Lanka Suriname Sweden Switzerland
Taiwan Thailand Timor Togo Trinidad and Tobago
Tunisia Turkey Uganda Ukraine United Arab Emirates
Uruguay Vietnam Zambia Zimbabwe



A. Tables II

Table A.3: Correlation matrix - world data

Stri. Index Average Temp. N. Cases N. tests N. vaccinated N. Deaths N. vaccinated fully Hospital.
Stringency Index 1
Average Temperature ≠0.053 1
New Cases 0.32 ≠0.33 1
New tests 0.088 ≠0.38 0.65ú 1
New vaccinated 0.48ú ≠0.013 0.13 0.2 1
New Deaths 0.4ú ≠0.31 0.73ú 0.4ú 0.24 1
New vaccinated fully 0.43ú ≠0.028 0.14 0.23 0.76ú 0.22 1
Hospitalization 0.21 ≠0.46ú 0.57ú 0.14 ≠0.029 0.71ú ≠0.12 1
Note: All variables apart from Stringency Index and Average temperature are in logs per thousand people
* significant at %

Table A.4: Specification of tests - new cases model

Wooldridge test (FE)ú 0.00
Wooldridge test (FD)ú 0.00
Breusch-Pagan testú 0.00
LM testú 0.00
F testú 0.00
Hausman testú 0.03
Arellano-Bond test (D-GMM)úú 0.0

ú All the tests were performed on the static model
úú Tests the second order serial correlation in the dynamic model with only one lag of the dependent

variable included

Table A.5: Specification of tests - new deaths model

Wooldridge test (FE)ú 0.00
Wooldridge test (FD)ú 0.00
Breusch-Pagan testú 0.00
LM testú 0.00
F testú 0.00
Hausman testú 0.003
Arellano-Bond test (D-GMM)úú 0.81

ú All the tests were performed on the static model
úú Tests the second order serial correlation in the dynamic model with only one lag of the dependent

variable included

Table A.6: Specification of tests - hospitalization model

Wooldridge test (FE)ú 0.00
Wooldridge test (FD)ú 0.37
Breusch-Pagan testú 0.01
LM testú 0.00
F testú 0.00
Hausman testú 0.00
Arellano-Bond test (D-GMM)úú 0.005

ú All the tests were performed on the static model
úú Tests the second order serial correlation in the dynamic model with only one lag of the dependent

variable included



A. Tables III

Table A.7: Breusch-Pagan tests - Czechia

Breusch-Pagan test - New casesú 0.00
Breusch-Pagan test - New deathsú 0.00
Breusch-Pagan test - Hospitalizationú 0.00

Table A.8: Breusch-Pagan tests - Israel

Breusch-Pagan test - New casesú 0.00
Breusch-Pagan test - New deathsú 0.00
Breusch-Pagan test - Hospitalizationú 0.00

Table A.9: Variance inflation factors - new cases model - Czechia

log(New_testst) 2.035
log(New_vaccinated(t≠14)) 5.557
log(New_vaccinated(t≠30)) 8.193
log(New_fully_vaccinated(t≠14)) 3.597
log(New_fully_vaccinated(t≠30)) 6.733
Average_temperaturet 1.716
Stringency_index(t≠14) 11.963
Stringency_index(t≠30) 11.519

Table A.10: Variance inflation factors - deaths model - Czechia

log(New_casest) 2.737
log(New_cases(t≠7)) 3.008
log(New_cases(t≠14)) 2.672
log(New_vaccinated(t≠14)) 5.427
log(New_vaccinated(t≠30)) 8.375
log(New_fully_vaccinated(t≠14)) 3.372
log(New_fully_vaccinated(t≠30)) 6.716
Average_temperaturet 2.988
Stringency_index(t≠14) 12.296
Stringency_index(t≠30) 11.892



A. Tables IV

Table A.11: Variance inflation factors - hospitalization model -
Czechia

log(New_casest) 2.777
log(New_cases(t≠7)) 3.041
log(New_cases(t≠14)) 2.701
log(New_vaccinated(t≠14)) 5.414
log(New_vaccinated(t≠30)) 8.370
log(New_fully_vaccinated(t≠14)) 3.374
log(New_fully_vaccinated(t≠30)) 6.721
Average_temperaturet 3.029
Stringency_index(t≠14) 12.203
Stringency_index(t≠30) 11.706

Table A.12: Variance inflation factors - new cases model - Israel

New_testst 1.396
log(New_vaccinated(t≠14)) 5.595
log(New_vaccinated(t≠30)) 6.457
log(New_fully_vaccinated(t≠14)) 1.950
log(New_fully_vaccinated(t≠30)) 4.672
Average_temperaturet 1.291
Stringency_index(t≠14) 8.662
Stringency_index(t≠30) 10.180

Table A.13: Variance inflation factors - new deaths model - Israel

log(New_casest) 2.303
log(New_cases(t≠7)) 2.468
log(New_cases(t≠14)) 2.172
log(New_vaccinated(t≠14)) 5.776
log(New_vaccinated(t≠30)) 7.178
log(New_fully_vaccinated(t≠14)) 1.893
log(New_fully_vaccinated(t≠30)) 4.780
Average_temperaturet 1.399
Stringency_index(t≠14) 8.741
Stringency_index(t≠30) 10.839



A. Tables V

Table A.14: Variance inflation factors - hospitalization model - Israel

log(New_casest) 2.326
log(New_cases(t≠7)) 2.479
log(New_cases(t≠14)) 2.174
log(New_vaccinated(t≠14)) 5.735
log(New_vaccinated(t≠30)) 7.189
log(New_fully_vaccinated(t≠14)) 1.887
log(New_fully_vaccinated(t≠30)) 4.776
Average_temperaturet 1.399
Stringency_index(t≠14) 8.802
Stringency_index(t≠30) 10.885



A. Tables VI

Table A.15: Estimation results of new cases model - Czechia

Dependent variable:
log(New_casest)

OLS Robust SE
(1) (2)

log(New_testst) 0.473úúú 0.473úúú

(0.079) (0.084)

log(New_vaccinated(t≠14)) ≠0.112úú ≠0.112
(0.056) (0.071)

log(New_vaccinated(t≠30)) ≠0.163úú ≠0.163úú

(0.064) (0.077)

log(New_fully_vaccinated(t≠14)) ≠0.044 ≠0.044
(0.040) (0.035)

log(New_fully_vaccinated(t≠30)) ≠0.061 ≠0.061
(0.062) (0.079)

Average_temperaturet ≠0.134úúú ≠0.134úúú

(0.009) (0.019)

Stringency_index(t≠14) 0.024úú 0.024ú

(0.009) (0.013)

Stringency_index(t≠30) 0.002 0.002
(0.009) (0.011)

Constant ≠2.971úúú ≠2.971úúú

(0.381) (0.704)

Observations 520
R2 0.572
Adjusted R2 0.566
Residual Std. Error 1.200 (df = 511)
F Statistic 85.440úúú (df = 8; 511)

Note: úp<0.1; úúp<0.05; úúúp<0.01
Standard errors in parentheses



A. Tables VII

Table A.16: Estimation results of new deaths model - Czechia

Dependent variable:
log(New_deathst)

OLS Robust SE
(1) (2)

log(New_casest) 0.713úúú 0.713úúú

(0.027) (0.037)

log(New_cases(t≠7)) ≠0.081úúú ≠0.081úúú

(0.028) (0.031)

log(New_cases(t≠14)) ≠0.097úúú ≠0.097úúú

(0.026) (0.035)

log(New_vaccinated(t≠14)) 0.129úúú 0.129úúú

(0.031) (0.046)

log(New_vaccinated(t≠30)) 0.101úúú 0.101
(0.037) (0.076)

log(New_fully_vaccinated(t≠14)) ≠0.072úúú ≠0.072úú

(0.022) (0.036)

log(New_fully_vaccinated(t≠30)) ≠0.089úú ≠0.089
(0.035) (0.064)

Average_temperaturet ≠0.048úúú ≠0.048úúú

(0.007) (0.011)

Stringency_index(t≠14) 0.032úúú 0.032úúú

(0.005) (0.007)

Stringency_index(t≠30) ≠0.015úúú ≠0.015úú

(0.005) (0.007)

Constant ≠5.621úúú ≠5.621úúú

(0.196) (0.369)

Observations 511
R2 0.847
Adjusted R2 0.844
Residual Std. Error 0.677 (df = 500)
F Statistic 276.833úúú (df = 10; 500)

Note: úp<0.1; úúp<0.05; úúúp<0.01
Standard errors in parentheses



A. Tables VIII

Table A.17: Estimation results of hospitalization model - Czechia

Dependent variable:
log(Hospitalizationst)
OLS Robust SE
(1) (2)

log(New_casest) 0.250úúú 0.250úúú

(0.027) (0.061)

log(New_cases(t≠7)) 0.078úúú 0.078úú

(0.028) (0.037)

log(New_cases(t≠14)) ≠0.005 ≠0.005
(0.027) (0.042)

log(New_vaccinated(t≠14)) 0.122úúú 0.122úú

(0.031) (0.061)

log(New_vaccinated(t≠30)) 0.134úúú 0.134
(0.037) (0.109)

log(New_fully_vaccinated(t≠14)) ≠0.078úúú ≠0.078
(0.022) (0.057)

log(New_fully_vaccinated(t≠30)) ≠0.172úúú ≠0.172ú

(0.036) (0.097)

Average_temperaturet ≠0.106úúú ≠0.106úúú

(0.007) (0.016)

Stringency_index(t≠14) 0.034úúú 0.034úúú

(0.005) (0.012)

Stringency_index(t≠30) ≠0.028úúú ≠0.028úú

(0.005) (0.013)

Constant ≠0.908úúú ≠0.908ú

(0.198) (0.507)

Observations 516
R2 0.820
Adjusted R2 0.817
Residual Std. Error 0.684 (df = 505)
F Statistic 230.800úúú (df = 10; 505)

Note: úp<0.1; úúp<0.05; úúúp<0.01
Standard errors in parentheses



A. Tables IX

Table A.18: Estimation results of new cases model - Israel

Dependent variable:
log(New_casest)

OLS Robust SE
(1) (2)

New_testst 0.063úúú 0.063
(0.012) (0.050)

log(New_vaccinated(t≠14)) ≠0.334úúú ≠0.334úú

(0.077) (0.148)

log(New_vaccinated(t≠30)) ≠0.577úúú ≠0.577úúú

(0.083) (0.175)

log(New_fully_vaccinated(t≠14)) 0.035 0.035
(0.044) (0.052)

log(New_fully_vaccinated(t≠30)) 0.194úú 0.194
(0.076) (0.130)

Average_temperaturet ≠0.053úúú ≠0.053ú

(0.013) (0.030)

Stringency_index(t≠14) 0.019 0.019
(0.012) (0.034)

Stringency_index(t≠30) 0.064úúú 0.064ú

(0.014) (0.036)

Constant ≠6.350úúú ≠6.350úúú

(0.602) (1.585)

Observations 532
R2 0.371
Adjusted R2 0.361
Residual Std. Error 1.805 (df = 523)
F Statistic 38.505úúú (df = 8; 523)

Note: úp<0.1; úúp<0.05; úúúp<0.01
Standard errors in parentheses



A. Tables X

Table A.19: Estimation results of new deaths model - Israel

Dependent variable:
log(New_deathst)

OLS Robust SE
(1) (2)

log(New_casest) 0.367úúú 0.367úúú

(0.029) (0.038)

log(New_cases(t≠7)) 0.035 0.035
(0.030) (0.034)

log(New_cases(t≠14)) ≠0.045 ≠0.045
(0.028) (0.038)

log(New_vaccinated(t≠14)) 0.068 0.068
(0.044) (0.047)

log(New_vaccinated(t≠30)) 0.100úú 0.100
(0.048) (0.070)

log(New_fully_vaccinated(t≠14)) 0.026 0.026
(0.024) (0.023)

log(New_fully_vaccinated(t≠30)) ≠0.068 ≠0.068
(0.043) (0.051)

Average_temperaturet ≠0.003 ≠0.003
(0.008) (0.011)

Stringency_index(t≠14) 0.048úúú 0.048úúú

(0.007) (0.010)

Stringency_index(t≠30) ≠0.037úúú ≠0.037úúú

(0.008) (0.010)

Constant ≠6.833úúú ≠6.833úúú

(0.374) (0.604)

Observations 522
R2 0.494
Adjusted R2 0.484
Residual Std. Error 1.001 (df = 511)
F Statistic 49.929úúú (df = 10; 511)

Note: úp<0.1; úúp<0.05; úúúp<0.01
Standard errors in parentheses



A. Tables XI

Table A.20: Estimation results of hospitalization model - Israel

Dependent variable:
log(Hospitalizationt)

OLS Robust SE
(1) (2)

log(New_casest) 0.147úúú 0.147úúú

(0.013) (0.041)

log(New_cases(t≠7)) 0.079úúú 0.079úúú

(0.013) (0.016)

log(New_cases(t≠14)) 0.032úúú 0.032
(0.012) (0.029)

log(New_vaccinated(t≠14)) ≠0.114úúú ≠0.114úúú

(0.019) (0.043)

log(New_vaccinated(t≠30)) ≠0.048úú ≠0.048
(0.021) (0.046)

log(New_fully_vaccinated(t≠14)) 0.033úúú 0.033
(0.010) (0.022)

log(New_fully_vaccinated(t≠30)) ≠0.006 ≠0.006
(0.019) (0.034)

Average_temperaturet ≠0.020úúú ≠0.020ú

(0.003) (0.010)

Stringency_index(t≠14) 0.034úúú 0.034úúú

(0.003) (0.009)

Stringency_index(t≠30) ≠0.010úúú ≠0.010
(0.003) (0.007)

Constant ≠3.081úúú ≠3.081úúú

(0.161) (0.535)

Observations 528
R2 0.763
Adjusted R2 0.759
Residual Std. Error 0.435 (df = 517)
F Statistic 166.888úúú (df = 10; 517)
Note: úp<0.1; úúp<0.05; úúúp<0.01

Standard errors in parentheses



A. Tables XII

Table A.21: Number of deaths in Czechia

Age groups 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
0-14 379 340 354 365 399 382 376 387 339 323 396
15-44 2 914 2 868 2 672 2 725 2 665 2 593 2 711 2 644 2 567 2 751 3 139
45-64 16 168 15 678 14 444 14 418 13 460 13 540 13 278 12 944 12 914 15 434 15 369
65-74 18 763 20 017 19 609 21 236 20 797 21 756 22 506 21 908 22 758 27 899 26 975
75-84 27 193 27 218 25 210 26 859 24 727 25 776 26 214 26 526 28 504 34 453 38 288
85+ 23 474 24 672 23 945 27 297 25 422 28 014 28 320 28 120 29 325 30 838 35 721
Sum 88 891 90 793 86 234 92 900 87 470 92 061 93 405 92 529 96 407 111 698 119 888

Table A.22: Estimated deaths in Czechia

Age groups 2020 2021 2022
0-14: Forecasted 392 396 400
0-14: Real 339 323 396
15-44: Forecasted 2565 2529 2494
15-44: Real 2 567 2 751 3 139
45-64: Forecasted 12 193 11 738 11 282
45-64: Real 12 914 15 434 15 369
65-74: Forecasted 22 992 23 473 23 955
65-74: Real 22 758 27 899 26 975
75-84: Forecasted 25 673 25 553 25 432
75-84: Real 28 504 34 453 38 288
85+: Forecasted 29 431 30 158 30 886
85+: Real 29 325 30 838 35 721
Sum: Forecasted 93 245 93 847 94 449
Sum: Real 96 407 111 698 119 888

Table A.23: Excess of deaths in Czechia

Age groups 2020 2021 2022
65-74 -234 4 426 3 020
75-84 2 831 8 900 12 856
85+ -106 680 4 835

Table A.24: Life Expectancy in Czechia

Sex Year 65 70 75 80 85 90 95 100 105

Men
2019 16.3 13.0 10.0 7.4 5.2 3.6 2.5 1.8 1.5
2020 15.2 12.0 9.1 6.6 4.6 3.2 2.3 1.7 1.4
2021 14.5 11.4 8.7 6.5 4.6 3.3 2.3 1.8 1.5

Women
2019 19.9 15.9 12.2 8.8 6.1 4.0 2.6 1.8 1.5
2020 19.2 15.1 11.5 8.2 5.6 3.7 2.5 1.7 1.4
2021 18.6 14.8 11.3 8.2 5.6 3.8 2.5 1.8 1.4



A. Tables XIII

Table A.25: Life expectancy by age groups in Czechia

Men Women Average
Year 65-74 75-84 85+ 65-74 75-84 85+ 65-74 75-84 85+
2019 13.1 7.5 2.9 16.0 9.0 3.2 14.5 8.3 3.1
2020 12.1 6.8 2.7 15.3 8.4 3.0 13.7 7.6 2.8
2021 11.6 6.6 2.7 14.9 8.4 3.0 13.2 7.5 2.9
2022 11.6 6.6 2.7 14.9 8.4 3.0 13.2 7.5 2.9

Table A.26: Average pensions in Czechia

Year Average pension
2010 10 123
2011 10 552
2012 10 778
2013 10 970
2014 11 075
2015 11 348
2016 11 460
2017 11 850
2018 12 418
2019 13 468
2020 14 479
2021 15 425
2022 18 061
2023 20 188
Predictions

2024 20 996
2025 21 625
2026 22 274
2027 22 740
2028 23 174
2029 23 638
2030 24 110

Table A.27: Vaccines’ expenditures in Czechia

in mil. CZK Pfizer Moderna Johnson & Johnson AstraZeneca Novavax
2021 5 227 1 441.4 161.2 52.7 0
2022 7 147 532.8 68.3 82 126.1
Sum 12 374 1 974.2 229.5 134.7 126.1
Total sum 14 838.5



A. Tables XIV

Table A.28: Pension distribution excess deaths for group 65-74 -
Czechia

in mil. CZK 2022 2023 2024 2025 2026 2027 2028 2029 2030
Deaths from 2021 79.933 89.346 92.920 95.708 98.579 100.55 102.561 104.613 106.705
Sum 870.914
Deaths from 2022 - 60.968 63.407 65.309 67.268 68.614 69.986 71.386 72.813
Sum 539.75

Table A.29: Pension distribution excess deaths for group 75-84 -
Czechia

in mil. CZK 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
Deaths from 2020 43.667 51.129 57.151 59.437 61.22 63.057 64.318 32.802 - -
Sum 432.78
Deaths from 2021 - 160.751 179.682 186.869 192.476 198.25 202.215 206.259 105.192 -
Sum 1 431.693
Deaths from 2022 - - 259.536 269.917 278.015 286.355 292.083 297.924 303.883 154.98
Sum 2 142.693

Table A.30: Pension distribution excess deaths for group 85+ -
Czechia

in mil. CZK 2022 2023 2024 2025 2026
Deaths from 2021 12.278 13.724 14.273 - -
Sum 40.274
Deaths from 2022 - 97.619 101.524 104.569 -
Sum 303.712

Table A.31: Pension distribution - Czechia

in mil. CZK 65-74 75-84 85+
Deaths from 2020 - 432.780 -
Deaths from 2021 870.914 1 431.693 40.274
Deaths from 2022 539.75 2 142.693 303.712
Sum 1 410.7 4 007.2 344
Total sum 5 761.9



Appendix B

Figures

Figure B.1: Histograms world data - part 1
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B. Figures XVI

Figure B.2: Histograms world data - part 2
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Source: Authors’ computations based on the compiled data set

Figure B.3: Histograms world data - part 3
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B. Figures XVII

Figure B.4: Vaccination development
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Black line - first vaccination x Red line - fully vaccinated people

Figure B.5: Histograms Czechia data - part 1
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B. Figures XVIII

Figure B.6: Histograms Czechia data - part 2
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Figure B.7: Histograms Czechia data - part 3
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B. Figures XIX

Figure B.8: Histograms Israel data - part 1
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B. Figures XX

Figure B.9: Histograms Israel data - part 2
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Figure B.10: Histograms Israel data - part 3
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B. Figures XXI

Figure B.11: Comparison of new cases and average temperature in
time
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Source: Authors’ computations based on the compiled data set

Figure B.12: Comparison of hospitalization and average temperature
in time
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B. Figures XXII

Figure B.13: Comparison of hospitalization and vaccination percent-
age in time
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Source: Authors’ computations based on the compiled data set

Figure B.14: Comparison of new cases and vaccination percentage in
time
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Source: Authors’ computations based on the compiled data set



B. Figures XXIII

Figure B.15: Development of deaths - Czechia
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