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Supervisor: doc. Mgr. Tomáš Mančal, Ph.D., Institute of Physics of Charles
University

Abstract: The aim of this thesis is to offer a brief overview of energetic transfer
taking place in photosynthetic antenna systems by studying an example antenna
and trying to simulate its behavior. Utilising modern literature, we describe the
structure of photosynthetic antenna systems, their properties and the methods
used to study them. We follow this by proposing a model of the kinetics of ener-
getic states in the studied system. The theoretical section is followed by analysis
of measured absorption and fluorescence excitation spectra of the actual chloro-
phyll + carotenoid dimers with use of OriginPro2020 and Python3. With this
knowledge, we have developed a simulation to fit our model to the experimental
values. We utilize the Quantarhei Python3 package to calculate the absorption
spectra and the FES spectrum is constructed by solving a system of differential
equations proposed from the kinetics model and fitting the measured data. From
there, we extract the efficiency of energy transfer in the dimer.
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Introduction
Photosynthesis (phōs - ”light” and synthesis - ”putting together”[1]) is a com-
plicated biochemical process which plants and other organisms use for capturing
solar energy to form energy rich molecules from simpler abundant ingredients
by creating chemical bonds. Before being stored, the energy has to be absorbed
and transferred to the specialised organs that are able to manage and execute the
necessary chemical processes. Photosynthetic organisms have developed a system
designed specifically for this part of the procedure called the photosynthetic an-
tenna system. The aim of this work is to offer a brief overview of the mechanisms
of energetic transfer taking place in the these systems by studying an example
antenna and trying to simulate its properties.

Understanding the structure of the environment where these phenomena take
place and the way these systems function and interact with the outside is key,
and many methods have been developed to study them. One popular method is
fluorescence excitation spectroscopy. It uses the absorption and the fluorescence
response of the system to allow us to study how it interacts with the incoming
light. We use it to obtain the fluorescence excitation spectra of a chlorophyll-
carotenoid dimer, from which we can extract information on how the dimer is
excited by photons of different frequencies and how this excitation travels between
the chlorophyll and the carotenoid. This information can be translated into a
phenomenological model, taking the populations of the different excited states
and describing how and how efficiently energy is transferred between them after all
is done. The execution of the measurements themselves was originally planned to
be a part of the thesis, however, after running into trouble regarding the stock of
available molecular samples, the data was obtained from previous measurements
taken by Jakub Pšenč́ık and Tomáš Malina. For that reason, the only part that
is discussed in the experimental section is the analysis of the given spectra.

A large part of this thesis lies in the simulation of the aforementioned spec-
tra. We use the extracted experimental data and the theoretical model to create
a program to simulate these spectra in Python3. We utilize a special package de-
signed by Tomáš Mančal called Quantarhei [2] to calculate the absorption spectra
and we use the equations from the theoretical part to calculate the fluorescence
excitation spectra. The accuracy of this simulation is then checked by comparing
the simulation to the obtained experimental spectra. This allows us to determine
to what extent our model is valid.
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Theoretical section
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1. Photosynthetic antenna
systems
Photosynthesis uses solar energy to form energy-rich molecules from simpler in-
gredients by creating chemical bonds - the products typically being sugars syn-
thesized from CO2 and water.

According to [3], we may divide Photosynthesis into 4 phases - three ”light-
dependent” and one ”light-independent”. These are (1) Photon absorption and
energy delivery by the antenna system, (2) primary electron transfer in reaction
centers, (3) energy stabilization by secondary processes, and (4) synthesis and
export of stable products. The only processes that truly concern us in this thesis
are the initial photon absorption and the following transfer of energy to the
reaction centers via the antenna system.

1.1 Primary photon absorption
Although photosynthesis is performed by many different forms of life, be it vas-
cular plants or tiny bacteria, a substantial amount of them use some form of
chlorophyll and carotenoid molecules. These molecules are further organized into
more complicated structures, for example, the Photosystem I and II in plants.
These structures are composed of two different actors: (1) the reaction centers,
where the actual separation of electrons happens, and their further transport
begins, and (2) the antenna pigment-protein [4] complexes .

This group of molecules harvests incoming photons and then transfers the
received energy in the form of excitation to the reaction centers [5]. Antenna
pigments collect energy and concentrate it in a receiver - allowing for a larger
photon collection area by specialized molecules. No photochemistry happens in
these pigments. They are simply a medium for the transfer process involving
the migration of electronic excitation between molecules utilizing the energetic
coupling between them.

Carotenoids also take part in this process. They function as accessory sen-
sors of light and protect the system from the dangerous effects of oxidation.
They rapidly quench triplet states of connected chlorophylls before they are able
to react with surrounding oxygen to form their highly reactive singlet state.
Carotenoids have also been shown to take part in the regulation of energy transfer
in antennas [6].

1.2 Funnel concept
In the following sections, we shall discuss the physical mechanisms of the energy
transfer from one antenna to another. First, let us discuss the funnel con-
cept[3], the basic principle which is illustrated in figure 1.1. This principle gives
the traveling excitation a vector . Having the parts of the antenna system, which
are further away from the reaction center, maximally absorb photons in a higher
energy domain than the parts closer to the reaction center creates an energy gra-
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Figure 1.1: Basic principle of the funnel concept in antenna systems. Excita-
tion travels from higher-energy pigments absorbing in the blue area to the red-
absorbing lower-energy pigments, which are closer to the reaction center [3]

dient, which drives the collected energy to the reaction center. Such transfer is
a dissipative process - every time excitation jumps from one antenna to another,
a small amount of energy is lost as heat, making the process thermodynamically
irreversible.

This basic principle is applicable in many systems. Photosynthetic antenna
systems utilize carotenoids as short wavelength absorbers, which with the use of
the aforementioned funneling, gives the system a much broader coverage of the
solar spectrum than if it only used chlorophylls.

What allows for the energy to travel as it does?

1.3 Förster theory of resonance energy transfer
The Förster resonance energy transfer is a non-radiative energy transfer between
a weakly coupled donor and an acceptor molecule. It has first been described by
Theodor Förster in 1948 [7]. The derivation can be approached from a classical
and a quantum mechanical approach, both leading to the same conclusion. We
shall be following the latter from [8].

In deriving Förster’s FRET mechanism, we use the Fermi’s Golden Rule to
describe the rate of transition from donor D to acceptor A. The transfer itself
arises from the dipole-dipole coupling of the two molecules, no photon exchange
is needed. The two molecules can be in their ground states |D⟩, |A⟩ or their
excited states |D∗⟩, |A∗⟩. If the potential of our system is that of weak coupling
through the dipole-dipole interaction, the Hamiltonian can be written as:

H = H0 + V, (1.1)

where H0 is given as:

H0 = |D∗A⟩HD⟨D∗A| + |A∗D⟩HA⟨A∗D|. (1.2)

The first Hamiltonian HD is that of the system with the donor excited and the
second HA is the Hamiltonian of the system with the acceptor excited. The states
represent the electronic and nuclear states of the two molecules.
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The potential V is of the dipole-dipole interaction which is well known to
correspond to:

V = 3(µA⃗ · r̂)(µD⃗ · r̂) − µA⃗ · µD⃗

r3⃗
, (1.3)

where r is the distance between the two molecules and the µ⃗ members are tran-
sition dipole moments, coupling the ground and excited electronic states of the
donor and the acceptor. We can rewrite them as

µi⃗ = ûiµi (1.4)

with µi being the dipole operator and µ̂A being the unit vector in the direction
of the orientation of the dipole. We can for ease of manipulation rewrite the
potential member as

V = µAµB
K

r3 [|D∗A⟩⟨A∗D| + ⟨A∗D||D∗A⟩], (1.5)

where K has all the orientational factors:

K = 3(ûA · r̂)(ûD · r̂) − ûA · ûD (1.6)

.
The general formula for Fermi’s Golden Rule is:

wkl = 2π

ℏ2 |Vkl|2δ(ωk − ωl). (1.7)

In our case, the initial state is l = |D∗A⟩ and the final state is k = |A∗D⟩. The
rule can also be expressed as a correlation function in the interaction Hamiltonian.

wkl = 2π

ℏ2

∑︂
l

pl|Vkl|2δ(ωk − ωl) = 1
ℏ2

∫︂ +∞

−∞
dt < VI(t)VI(0) >, (1.8)

where pl = e
−βEl

Z , β = (KBT )−1 and Z is the partition function. Here we can
plug in the formula for V from eq.(1.5) to obtain:

wET = 1
ℏ2

∫︂ +∞

−∞
dt

K2

r6 ⟨D∗A|µD(t)µA(t)µD(0)µA(0)|D∗A⟩. (1.9)

The time dependant dipole operators are µi(t) = e
+iHit

ℏ µie
−iHit

ℏ . Since each of the
them acts only either on |D⟩ or |A⟩, we may rewrite the experession as:

wET = 1
ℏ2

∫︂ +∞

−∞
dt

K2

r6 ⟨D∗|µD(t)µD(0)|D∗⟩⟨A|µA(t)µA(0)|A⟩. (1.10)

The two matrix elements correspond respectively to the donor fluorescence corre-
lation function CD∗D∗(t) and the acceptor absorption correlation function CAA(t).
The expression for wET is a time integral over a product of correlation functions
and since we can express time-correlation functions as inverse Fourier transforms
over lineshapes, we can express wET as an overlap integral between the donor
fluorescence and the acceptor absorption spectra:

wET = 1
ℏ2

K2

r6 |µDD∗ |2|µAA∗|2
∫︂ +∞

−∞
dωσA

abs(ω)σD
fluor(ω), (1.11)
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where σA
abs(ω) is the absorption lineshape of the acceptor molecule and σD

fluor(ω) is
the fluorescence lineshape of the donor molecule. The lineshapes are normalized
to |µ|2.

To put it into words, the energy transfer rate scales with r−6, it depends on
the strengths of the electronic transitions for the molecules and requires reso-
nance between the fluorescence of the donor and absorption of the acceptor. For
brevity’s sake, the formula is often written with the use of effective distance R0
and the τfluor lifetime of the donor fluorescence:

wET = 1
τfluor

(︃
R0

r

)︃6
. (1.12)

1.4 Spectroscopic properties of chlorophylls
Chlorophylls exhibit two major absorption bands, first in the blue/UV region of
the spectrum and the second in the red/IR region - hence the green coloring of
most plants. Both of these absorption bands are π → π∗ transitions. As an exam-
ple, let us use Fig 1.2, which we borrowed from [3]. In the illustration we can see
the typical shapes of the absorption and the fluorescence spectra of bacteriochloro-
phyll c. One can also see the third minor absorption band in the green area of the
spectrum. The standard model with which we describe these spectra is called the
”four orbital” model, originally proposed by Martin Gouterman in 1961[9] when
describing the spectra of porphyrins. The central structure of chlorophylls is an
aromatic porphyrin or chlorin ring system with a magnesium atom in the middle.

Figure 1.2: Absorption (left) and fluorescence (right) spectra of bacteriochloro-
phyll c in diethyl ether taken from [3].

In Figure 1.3, we can see the orbital model of a simple porphyrin, chlorin and
bacteriochlorin. Two of the four π orbitals are the Highest Occupied Molecu-
lar Orbitals (HOMOs) and the other two are the Lowest Unoccupied Molecular
Orbitals (LUMOs). We also see the electronic transitions, the lowest of the two
called the Q bands and the remaining ones are the Soret bands.

The diagram is a gross oversimplification of the actual situation, ignoring
the complex web of possible configurations, the contribution from higher energy
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Figure 1.3: A very simplified molecular orbital energy level diagram of porphyrin,
chlorin and bacteriochlorin taken from [3].

states, and exciton interaction. It does, however, serve as a sufficient model for
explaining the spectra we see when we look at the absorption line shape.

The lower indexes of the Q bands signify the direction of their transitional
dipole moments - Qy being polarized along the y-axis of the molecule while Qx

being polarized along the x-axis. This means that absorption at the specific
wavelengths of the transitions will be strongest if the light coming into contact
with the molecule is polarized parallel to that specific axis of the chlorophyll.
Soret bands (often noted as B) have a mixed polarization.

Vibrational state transitions are another thing to keep in mind, being espe-
cially notable on the Qy band. Combined with the electronic excitation, the
product is an excited vibrational state of the excited electronic state.

1.5 Spectroscopic properties of carotenoids
There are a considerable number of different carotenoids in nature, displaying
a multitude of different functions in a large number of organisms, usually while
being bound to a protein. In photosynthesis, they often play the double role of a
secondary light harvester and of a photoprotective molecule.

Carotenoids are tetraterpenoid derivatives that are initially formed of eight
isoprene molecules. [12] They split into two main categories, carotenes and xan-
thophylls. We shall only interest ourselves in the carotenes, which are pure hy-
drocarbons. The two most noticeable excited states that carotenoids exhibit are
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Figure 1.4: The skeletal formula of an astaxanthin molecule, taken from [10].
There are three possible stereoisomers of astaxanthin as seen in the figure, all
present in nature in various distributions depending on specific organisms that
possess them [11].

the singlet S1 and S2 states. The S1 state is the lowest-lying excited state. The
S0 → S1 transition is forbidden. The only way the carotenoid by itself can get
to this state is by first absorbing S0 → S2 and then relaxing to the S1 state by
internal conversion, which in turn relaxes to the ground state almost completely
by internal conversion, too (fluorescence occurs with extremely low yield [12]).
The transition from the ground state to S2 is strong and when viewed in the
absorption spectrum, exhibits three noticeable peaks corresponding to the three
lowest vibrational states of the excited molecule.
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2. Fluorescence excitation
spectra
Fluorescence is a phenomenon that is very commonly taken advantage of in study-
ing biophysical systems. Through the optical properties of different molecules we
may build ourselves a better idea of the structure of their orbitals and the en-
ergy transfer mechanisms. Fluorescence takes place during a transition from the
lowest excited electronic state to one of the ground electronic states with the
emission of a photon. Fluorescence also requires that the excited state has the
same multiplicity as the ground state (usually a singlet). If the initial state has a
different multiplicity than the final state and occurs on a much longer timescale,
the effect is called phosphorescence.

Since we may excite the measured object to multiple possible states, we can
then study how much of that absorbed energy is converted to emitted photons
through internal conversion followed by fluorescence. The spectrum we use to
study this is called the fluorescence excitation spectrum.

2.1 Road to the Fluorescence excitation spec-
trum

When constructing the fluorescence excitation spectrum, we have to take several
steps. The first is getting an emission spectrum.

To form it, we choose an arbitrary excitation wavelength with which we illu-
minate the studied system. Then we measure the intensity of light emitted by
fluorescence with respect to the emitted wavelength. The spectrum we obtain by
this is commonly in the shape of a broadened peak (as seen in figure 1.2. on the
right). Taking that peak as a reference of the fluorescence emission wavelength,
we can then build an excitation spectrum by exciting the system with a spectrum
of wavelengths and then monitoring the intensity of emission. In this way the
excitation spectrum effectively reflects the amount of energy that is converted
into fluorescence at different wavelengths of excitation.

Further more, we can combine the absorption spectrum with the emission
spectrum. Normalising at the fluorescence maximum (the place in the graph
where fluorescence is the most intense), we get a combined graph of two curves.
First - the original absorption spectrum, the second with the exact same intensity
at the fluorescence maximum but different relative magnitudes to absorption -
thus we get how much of the light shined at the object that is absorbed actually
goes into fluorescence - the ”efficiency spectrum”.
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Figure 2.1: Taken from [3]: Measurement of energy transfer efficiency in whole
cells of the green bacterium Chloroflexus aurantiacus. Solid line: absorption spec-
trum; dotted line: fluorescence excitation spectrum, monitored at 900 nm; dashed
line: fluorescence emission spectrum. The energy transfer efficiency of transfer
from the bacteriochlorophyll c absorbing at 740 nm to the bacteriochlorophyll a
emitting at 900 nm is 70%, while the transfer efficiency for bacteriochlorophyll a
absorbing at 808 nm is 100%. The curves were normalized at 870 nm. Adapted
from [3].

To better understand the energy transfer between the levels, let us now look
at the diagram in figure 2.2 (taken from [3]) and describe what processes we can
observe. There are multiple events that take place between the initial absorption
of a photon and the return of the molecule to the ground state.

In (a), we see that the system originally starts at the least energetic state of
the ground electronic state - the baseline. When the incoming photon is absorbed,
dependent on its energy, it is possible for the electron to jump to multiple differ-
ent vibrational states of the excited electronic state. What follows is the internal
conversion or vibrational relaxation (loss of energy in absence of light emission).
This excess energy is converted into heat, which is absorbed by the surround-
ing molecules, leaving us with an electronic excited state with the least energetic
vibrational state. The excited molecule exists in this state for a period of nanosec-
onds before relaxing to a lower state. If this relaxation process is accompanied by
the emission of a photon, it is called fluorescence. Because higher excited states
are usually very short-lived, according to Kasha’s rule photon emission occurs
most prominently from the lowest excited state, since only then, there is enough
time for fluorescence to take place.

As we can see in (b), the emission is possible to a whole spectrum of dif-
ferent vibrational states of the ground electronic state, many being very closely
distributed, more so the closer we get to the ground state. For this and other
reasons (the Doppler shift is a major one), the observed emission spectra take the
appearance of a broadened peak.
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Figure 2.2: Potential energy diagrams and spectra for fluorescent transitions
taken from [3]. (a) Absorption transitions from the least energetic ground elec-
tronic state to different possible vibrational states of the electronic excited state.
(b) Emission transitions from the lowest energy vibronic state of the excited elec-
tronic state to different possible vibronic states of the electronic ground state. (c)
Absorption and fluorescence spectra that result from these transitions and their
overlap

As we can see from (c), when we put the absorption and emission spectra
in one graph, they are typically mirror images of one another. The difference
between positions of the absorption and emission maxima is called the Stokes
Shift. It is for this reason that if we were to look at the absorption and emission
spectra of most chlorophylls and we were to excite the Soret band in the blue
spectral region, the emission would be observed in the red region.

In general, the relationship between the excitation and emission was first
described by Einstein and for that reason, the quantity that quantizes it is called
the Einstein coefficients. Fluorescence is a phenomenon that takes place in
interaction between the ground state and the lowest excited state and for that
reason, a simple two-state model suffices. The probability that the absorption of
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a photon will cause a transition from a lower state to an upper state is given by
the population of the lower level (Nl) and the intensity of light at the frequency
at which it is possible to cause the jump I(ν). The relevant constants times the
square of the transition dipole moment B then give us the final piece with which
we may formulate the following:

Pl→u = NlI(ν)B (2.1)

The intrinsic probability for the photon-induced downward emission transition is
given by the same relationship and the same Einstein coefficient B.
This stimulated emission is a process in which a photon interacts with the
excited state and causes the emission of a second photon at the same frequency.

If that were all there was to it, eventually an equilibrium would establish
with half of the molecules being in the upper state, half in the lower state. We
know that is not the case, and the reason for that is spontaneous emission, the
probability of which is given by another Einstein coefficient A. It is the source of
most of the fluorescence usually measured in biochemistry, it is independent of
outside light and when added together with stimulated emission we get

Pu→l = Nu [I(ν)B + A] (2.2)

The relationship between these two coefficients is given by

A = (const)ν3B (2.3)

Einstein coefficient A can also be understood as the intrinsic rate constant for flu-
orescence kf , which, similarly to the energy transfer rate constant, is dependant
on the radiative lifetime τ0 of the excited state if fluorescence were the only path-
way out of excitation possible. This constant competes with the energy transfer
rate constant for where the energy shall flow and it shall flow only when the speed
of the excitation traveling is faster than that of a fluorescent decay.

2.2 Fluorescence excitation spectrum
A typical FES of a two-molecular structure can take the following form (see Figure
2.3.). The first molecule A absorbs a photon, energy is transferred to the second
molecule B from where it is emitted as fluorescence.

Through analysis of the specific FES for our studied system, we can extract
information about how much of the energy absorbed into the carotenoid travels
into the chlorophyll. We know from previous studies [13] that the efficiency of the
internal conversion from the Soret band to Qy is nearly 100% so we can safely say
that all energy absorbed into the Soret band eventually ends up in the Qy. One
may use the fluorescence excitation spectrum to extract the information about
the evolution of the energy absorbed into the S2 state of the carotenoid, thus
getting an approximation of how much energy ends up in the carotenoid and
how much of it ends up in the chlorophyll. We shall further discuss the state
kinematics in the following section.
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Figure 2.3: Energy transfer efficiency given by a fluorescence excitation spectrum
normalized at λmaxB maximum of emission. The whole line represents the ab-
sorption based on excitation wavelength, every dotted line is a possible shape of
normalized fluorescence excitation. Taken from [3].
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3. Phenomenological description
of transport phenomena
In this part, we shall focus on the phenomenological description of the state
kinetics we have discussed in the previous chapters. One of the goals of this
thesis is to obtain energy transfer efficiency, which is related to the coefficients of
the kinetic equations for state transitions in our system.

3.1 Kinetic equation
The kinetic equation for the transition from state 1 to state 2 is

d

dt
P2 = K21P1. (3.1)

The coefficient K21 stands for the rate of transition and P1 and P2 represent the
probability we find the system in the respective states.
For a system of multiple possible states, we can generalize the description as
follows

d

dt
Pn =

∑︂
n

KmnPn (3.2)

Equation (3.2) is also sometimes called the master equation [14]. We can simplify
the equation and separate the diagonal members. Since the change in population
is given as the sum of the influx and outflux, the influx being given by the sum∑︁

n KmnPn, outflux by ∑︁
n KnmPm. This gives us:

d

dt
Pm =

∑︂
n

(Kmn)Pn =
∑︂

n̸=m

(KmnPn) + KmmPm =
∑︂

n̸=m

(KmnPn − KnmPm) (3.3)

The last equality is valid since the sum of probabilities must be 1, the derivative
of that gives us zero:

0 = d

dt

∑︂
n

Pn =
∑︂

n

(
∑︂
m

(KnmPm)), (3.4)

This gives us ∑︁
n Knm = 0, if the equation (3.4) is to hold for all Pm [14].

For the nondiagonal members representing the contribution of the element m to
the probability of getting to n, we also get

dPn(t) = KnmPm(t)dt, (3.5)

the probability of jumping m −→ n in the interval < t, t+dt >. Probability of this
jump must be positive, giving us another condition Knm ≥ 0 for n ̸= m, which
when combined with the condition of probability conservation gives us

Knn = −
∑︂

m ̸=n

Kmn. (3.6)

Solving such a system of linear differential equations is best done by diagonaliza-
tion of the rate constants matrix. By finding the ki eigenvalues and the eigenvec-
tors vi⃗ of the K matrix with elements Knm we also get the transformation matrix
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given by the eigenvectors S = (v1, v2...). With the inverse, we can transform
the probability vector Pn(t) −→ P̃ n(t) = S−1Pn(t). The kinetic equation then
transforms into

d

dt
P̃ n(t) = knPn(t) (3.7)

The solution of this simple equation is

P̂ n(t) = ekntP̂ n(O) (3.8)

We then transform the result into the original basis by inverse transformation

P (t) = SP̂ (t) (3.9)

and the solution takes the form of

P (t) = UK(t)P (0) (3.10)

where UK(t) = exp (Kt) is sort of a stand-in for the quantum evolution operator.
Since it follows the rule UK(t)UK(t′) = UK(t + t′), it suffices to get UK(∆t)
for some chosen step ∆t and with that we can get the probability vector in
times t = n∆t by recurrently utilizing this ”evolution” operator UK(∆t) on the
probability vector.

We shall use the conditions we can pose on our system through this derivation,
there is however another way to obtain the Kmn matrix for out specific problem.
One that uses the phenomenological knowledge that we know about our specific
system with no need to find the appropriate basis.

3.2 Application of said description on photosyn-
thetic aggregates

In our specific case, we are dealing with the transport of excitation in a system
comprised of bacteriochlorophyll + carotenoid dimers. The molecular orbital
energy diagram of the bacteriochlorophyll has 4 levels corresponding with the
ground state and the 3 notable transitions. Put in order from the most energetic
to the least, those are the Soret band, Qx and Qy. The carotenoid has 3 notable
energy levels - the ground state, S1 and S2 with S0 −→ S1 being a forbidden
transition. In general, taking all the different energetic states of the aggregate into
account, we could model the system using the equation (3.2) with the dimension
of P being 8:

P⃗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

PS2

PS1

PS0

PB

PQx

PQy

Pg0

Pg1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.11)
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From the top, we have the three possible energy levels of the carotenoid, followed
by the Soret band, the Qx band, the Qy band, and then the two possible ground
states, that may arise with the excitation traveling from the higher energy levels
- the ground state that comes to be through a nonradiative transition g0 and the
ground state we get to by a radiative transition g1, relaxing from the Qy band,
which is the only place we can obtain fluorescence from because of Kasha’s rule.
The matrix K(t) from the equation (3.2) would then be a square 8 by 8 matrix.
The possible channels that one would have to account for are illustrated in Figure
3.1:

Figure 3.1: The state kinematics of the chlorophyll-carotenoid aggregate. The
red arrows represent the possible excitation pathways, the black arrows represent
transitions to lower energy states and the undulating line represents the emission
of a photon during fluorescence.

Figure 3.1 does not take into account the vibrational states of the electroni-
cally excited states as shown for example in Figure 2.2. Modeling such a system
would prove strenuous to say the least and is well beyond the scope of this thesis.
Working with the obtained fluorescence-excitation spectrum of the bacteriochloro-
phyll c and astaxanthin aggregate, we will limit ourselves to working only with
the situation shown in figure 3.2.
This is because the given spectra are normalized at the Qy band, meaning that

our fluorescent excitation spectrum is to be interpreted not as ”how much energy
at λ is then transferred into fluorescent radiation” but rather ”how much of the
energy at λ is transferred into the Qy band”. The absorption into the Qx is min-
imal by comparison to the Soret band. There is almost no absorption into the
carotenoid in that region so the spectra are superimposed in a way, that does
not exactly provide any new information. There is an existing channel of energy
travel from the chlorophyll to the carotenoid but it is also ignored because the
method of the experiment does not allow us to monitor it. Taking all of this into
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Figure 3.2: The state kinematics of the chlorophyll-carotenoid aggregate that we
are modeling. The red arrows represent the possible excitation pathways, the
black arrows represent transitions to lower energy states and the undulating line
represents the emission of a photon during fluorescence. The arrow pointing from
S2 to the chlorophyll represents the transition from S2 to any of the chlorophyll
levels.

account, we are left with a much simpler system:

P⃗ =

⎛⎜⎜⎜⎝
PS2

PB

PQy

PS0

⎞⎟⎟⎟⎠ . (3.12)

We can extract the information of the relative values of populations at t = 0
directly from the absorption spectrum. Setting the value of t −→ ∞, we are left
with a system, where all the energy has relaxed into either the ground state of the
carotenoid or has gone to the Qy band and then either relaxed by fluorescence or
by nonradiative means. The actual rate of fluorescence for the Qy relaxation is
very low [15] but we cannot tell just by working with the given FES. The relative
values of the final populations of the S0 state and Qy state can be extracted from
the excitation spectrum with the knowledge that from the Soret band, essentially
100% has relaxed into the Qy, so we can simply add the data from the absorption
and when it comes to the carotenoid, the efficiency of transfer is what gives us
the relative number to be added to the Qy population, the rest goes into S0.
The evolution equation 3.2 for our problem takes the shape of

d

dt

⎛⎜⎜⎜⎝
PS2(t)
PB(t)
PQy(t)
PS0(t)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
K11 K12 K13 K14
K21 K22 K23 K24
K31 K32 K33 K34
K41 K42 K43 K44

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

PS2(t)
PB(t)
PQy(t)
PS0(t)

⎞⎟⎟⎟⎠ . (3.13)
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With all that has been stated above, we may simplify the expression into

d

dt

⎛⎜⎜⎜⎝
PS2(t)
PB(t)
PQy(t)
PS0(t)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
−(K31 + K41) 0 0 0

0 −K32 0 0
K31 K32 0 0
K41 0 0 0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

PS2(t)
PB(t)
PQy(t)
PS0(t)

⎞⎟⎟⎟⎠ . (3.14)

The matrix equation is simplified into a system of 4 differential equations, the
first one being:

dPS2(t)
dt

= −(K31 + K41)PS2(t) (3.15)

The solution to this equation is well known to be achievable by the separation of
variables and can be written as:

PS2(t) = e−(K31+K41)tC1 (3.16)

We choose C1 = PS2(0) to obtain the exact solution

PS2(t) = e−(K31+K41)tPS2(0) (3.17)

The same solution holds for the equation for PB:

PB(t) = e−K32tPB(0). (3.18)

In the case of PS0 , we must plug in the solution for PS2 and integrate from 0 to
time t that we are going to be sending to infinity:

d

dt
PS0(t) = K41PS2(t) = K41e

−(K31+K41)tPS2(0) (3.19)

By direct integration, we get:∫︂ t

0

d

dt′ PS0(t′)dt′ = PS0(t) − PS0(0) = K41

K31 + K41
PS2(0)(1 − e−(K13+K41)t) (3.20)

Setting the value of PS0(0) = 0 thus gives us the final formula for PS0(t):

PS0(0) = K41

K31 + K41
PS2(0)(1 − e−(K13+K41)t) (3.21)

This makes sense because the ratio of energy that gets into S0 from S2 is depen-
dent on the original population of the S2 band, the rate at which the population
increases in the time given by the 1 − e... exponential member and the ratio of
the kinetic constants for the depletion of S2 into this channel and the depletion
of the state into both of the open channels.

The last equation and the one we are most interested in is solved in a similar
manner. It takes the shape:

PQy(t) = K31

K31 + K41
PS2(0)(1−e−(K13+K41)t)+PB(0)(1−e−K32t)+PQy(0). (3.22)

To determine the values of the constants Knm we have to fit the model with the
data in the following experimental section of the thesis. Then we can decide
whether our model is an accurate one or not.
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Experimental section
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4. Bacteriochlorophyll and
carotenoid aggregates
The specific chlorophyll-carotenoid aggregates that were used to obtain the ex-
perimental values provided by Jakub Pšenč́ık and Tomáš Malina were made off
bacteriochlorophyll c and astaxanthin connected with a covalent bound .

Bacteriochlorophyll c is one of the many types of photosynthetic pigments
used by bacteria. They are found in green photosynthetic bacteria containing the
chlorosome antenna complex [3]. Its structure plays very well into aggregation and

Figure 4.1: The skeletal formula of an bacteriochlorophyll c molecule from [16].

in chlorosomes, they indeed form large oligomeric complexes with little protein
[3].

Astaxanthin is a keto-carotenoid with red coloring properties. In nature, it
is produced in certain algae and fungi. Larger animals like salmon, crustaceans,
and even flamingos feed on them, obtaining the reddish pigmentation that we are
familiar with as a result.

Figure 4.2: The skeletal formula of an 3S, 3S’ astaxanthin molecule. One may
find the other stereoisomers in Figure 1.5., taken from [17]
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4.1 Results
We obtained a data set of the 1-T absorption spectrum of a bacteriochorophyll
c + astaxanthin aggregate, the absorption spectrum of the bacteriochlorophyll
by itself, of the carotenoid by itself and the fluorescence excitation spectrum
normalized at the Qy band of the chlorophyll. A graphical representation is
displayed in Figure 4.3.

Figure 4.3: The fluorescence excitation spectrum of a bacteriochlorophyll c +
astaxanthin aggregate. The black curve is the 1 − T spectrum of the aggregate,
the green curve is 1 − T of just the chlorophyll, the orange is the 1 − T of the
carotenoid and the dashed magenta line is the excitation curve normalized at
the Qy band of the chlorophyll. The data was provided by Jakub Pšenč́ık from
previous measurements [18]
.

The use of the experimental data in this thesis is to (1) extract the initial values
of the populations for the calculation of the exact values of the P⃗ from Eq. (3.14)
for different wavelengths and (2) to see whether the theoretical model, used to
simulate the behavior of our dimer in the simulation section of the thesis, is valid.

The matrix Knm from Eq.(3.2) should contain the same values, no matter the
excitation wavelength, meaning that we can use any point in the spectrum to
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determine the values of our constants and then we can use the equation (3.21) to
model the evolution of the Qy population in t → ∞. If our model is an accurate
one, the values of the Qy population for different wavelengths at t → ∞ should
mimic the fluorescence excitation spectrum.
The limit gives us

lim
t→∞

PQy(t) = K31

K31 + K41
PS2(0) + PB(0) + PQy(0). (4.1)

This means that from fitting, we will be able to extract the value for the ratio
between K31 and K41. The obtained value is:

K31

K41
= 0.831 (4.2)

That means the efficiency of transition from the S2 band of the carotenoid to the
chlorophyll is

K31
K31+K41

PS2(0)
PS2(0) = K31

K31 + K41
= (45 ± 7)% (4.3)

The fitting and the error calculation were done in Python 3.10.10 with the use of
the curve fit method from the scipy.optimize v1.10.0 package. The initial values
of constants were guessed to be Kguess

31 = 2 and Kguess
41 = 3. Through this method

we obtained the value in eq.(4.2). With this ratio determined, we can now plug
the value into the equation (4.1).
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Simulation section
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5. Quantarhei package
In parallel with the analysis of the experimental data, our goal is to simulate the
absorption and excitation spectra of the photosynthetic antenna system. To get
lineshapes of the absorption and excitation, a modified version of the Quantarhei
package available on GitHub [2] was used. The original package has a variety
of uses however we make use only of the demo 006 Absorption 1.py file used to
simulate the absorption of a molecule. It establishes a class called Molecule. We
can specify its parameters to fit the situation we are trying to model; like the
energies of the different transitions and dipole moments. We can then get the
correlation function using a built-in method. The correlation function is the
key object here. Describing the method itself in detail is beyond the scope of this
thesis but in general, it follows the theory in [19].

We utilize the semi-classical Liouville-Maxwell description. Within this frame-
work, we obtain the correlation function of the electronic energy gap of the
molecule (in the package modeled as a two-level system). This function contains
all the necessary microscopic information we need to calculate the linear response
of a two-level system. With a combination of a number of such ”molecules”, we
can try to simulate the absorption lineshape of our dimer. The absorption line-
shape describes the intensity of absorption corresponding to an energy change in
the observed object, usually given as a graph of absorption as a function of either
wavelength λ or the wavenumber ω.

In our program, we define the environment the molecule is interacting with
as a multimode overdamped Brownian oscillator. We set up the appropriate
parameters: the correlation time, the reorganization energy, temperature, and the
number of Matsubara frequencies. Now, we may extract the simulated absorption
curves for such molecules.

5.1 Absorption spectra
We construct the absorption spectrum of the molecule to emulate the absorption
curve of a bacteriochlorophyll c and astaxanthin aggregate as shown in figure (4.3).
Our program can give us a simulation of the absorption of a single molecule
in a two-level system. Thus, to obtain a complex spectrum such as the one
measured, we treat each peak as representative of its separate two-level system
with its own set of parameters. We simulate the absorption for a molecule object
representing the system with the S2 transition in the carotenoid and the Soret and
the Qy band for the chlorophyll. This is a very large simplification of the actual
physical absorption of our dimer. That is not a problem for us since the simulated
absorption curve is not necessary for any of our calculations. We describe the
process of the simulation in order to demonstrate how one would approach such
a problem with the use of the Quantarhei package.

A generic absorption spectrum given by our program can take the following
shape:
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Figure 5.1: The shape of an absorption peak as produced by the Quantarhei
package. On the x-axis, we have the wavenumbers in cm−1, on the y-axis, we
have an arbitrary absorption scale

We can add multiple absorption lines as such:

Figure 5.2: The shape of an absorption curve created by adding two peaks of the
absorption spectra of two molecules in Quantarhei together. On the x-axis we
have wavenumbers in cm−1, on the y axis an arbitrary absorption intesity

This way we can simulate more complicated spectra, such as the one in Figure
5.3.

The figure encompasses only a reduced area of the spectrum because, in higher
energies, the simulation cannot take into account the processes taking place, such
as higher energy state kinetics or different higher vibrational state transitions.
Two other inadequacies of the model are visible in the 16000 to 21000 cm−1

range. The way our spectrum is constructed does not allow us to fill in the area
between two peaks in an adequate way. There is always the option to add more
”molecule” objects but that would not reflect the physical reality of what we are
attempting to study. Another issue is with the general limitation of the shapes
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Figure 5.3: Simulated absorption curve of the bacteriochlorophyll a + astaxanthin
dimer in the range of 13500 cm−1 to 25000 cm−1. The green and red lines are
created by our program, and the blue and orange lines are experimental data.

the Quantarhei package allows us to create. The slope of the experimentally
measured peak would have us adjust the energy of the molecule object to either
(a) have too thin of a shoulder but hit the general area of the absorption or (b)
be appropriately wide in the shoulder but encompass too large of a spectral area.
We also do not take into consideration many phenomena that are observed in the
experimental data, such as dispersion.
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5.2 Fluorescence excitation spectra
Now we finally arrive to the simulation of the fluorescence excitation spectrum
itself. By fitting the experimental data we obtained the coefficients in the table
at the end of chapter 4. We used them and the Pn(0) values from the absorption
curves to enumerate the equation (3.22) along the whole studied spectrum from
13000cm−1 to 40000cm−1. The results can be seen in the following figure:

Figure 5.4: Simulated fluorescence excitation spectra with the use of 3.22 at
t → ∞ in the range of 13000cm−1 to 40000cm−1. The absorption data comes
from the experiment while both the experimental and the simulated curves are
visible to compare.

From studying the figure, we see that our model seems to follow the experiment
rather well in the areas of the Qy and the S2 peaks and the higher energies but not
as much at the Soret band. There are a number of factors that might contribute
to this. The internal conversion in this particular subject might be slightly less
than 100%, the transition from the carotenoid to the chlorophyll is sure to be too
complicated for our simple model to reflect all of its nuances. However, it does
work rather well around the main area of S2, where the kinetic coefficients in our
equation come into play the most.
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Conclusion
We started by looking at the structure of photosynthetic antenna systems, which
are central to the first light phase of photosynthesis. Afterward, we described
the mechanism of energy transfer between them and what molecules they are
composed of. Then we studied these light-harvesting molecules composed of
different types of chlorophylls and carotenoids by introducing a specific dimer of
bacteriochlorophyll c + astaxanthin connected by a covalent bond. We studied
the absorption spectra of these dimers, mainly in the most noticeable Qy and
Soret bands of the chlorophyll and the S2 band of the carotenoids. We also
described the method of constructing the fluorescence excitation spectrum which
is used to map the efficiency of energy transfer to the lowest excited state of the
chlorophyll. We proposed a phenomenological model of energy transfer between
these states in the dimer and constructed equations (3.16), (3.18), (3.21), and
(3.22) to describe the kinematics of this model.

Through the analysis of the experimental data provided by Jakub Pšenč́ık,
we determined the value of the ratio between the kinetic coefficients K31/K41 =
0.831. This ratio was necessary to construct a functioning simulation of the
fluorescence excitation spectrum in our model by using eq. (3.22) in t → ∞.
This makes sense because the only energy that is transferred into fluorescence by
Kasha’s rule is the energy that travels into the Qy state. We also determined the
efficiency of energy transfer from the carotenoid to the bacteriochlorophyll to be,
with a rather large error, (45 ± 7)%.

We then used the Python3 package Quantarhei provided by Tomáš Mančal
to simulate the absorption spectrum of the Bchl + Astx dimer, determined along
what range this simulation is of use and the extent of its limitations. We also sim-
ulated the fluorescence excitation curve using Python3 3.9.13 and OriginPro2020.
We found that our model gives us a rather accurate estimate of the physical re-
ality around most of the studied spectrum except for the peak of the Soret band,
where it overtakes the experimental spectrum by a remarkable amount. The
graph can be seen in Figure 5.4.

The absorption spectra simulated by Quantarhei however give a rather crude
depiction of the reality of the experiment. The comparison with measured data
can be seen in Figure 5.3.
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A. Attachments

A.1 Transcript of the program used to model
the absorption and the fluorescence excita-
tion spectra

# −∗− coding : utf −8 −∗−
”””
Created on Wed Jan 4 11 : 20 : 41 2023

@author : f i l i p materna
”””

import numpy as np
import matp lo t l i b . pyplot as p l t
import quantarhe i as qr

”””

Se t t i ng up the va lue s o f the c o e f f i c i e n t s

”””
ta=qr . TimeAxis ( 0 . , 1 0 0 0 , 0 . 5 , atype=”upper−h a l f ” ,

f r e q u e n c y s t a r t =0.)
NormQy = 0.57
NormSoret = 0 .23
NormS2 = 0.63
NormQy2 = 0.28
NormQx = 0.27
NormSoret2=0.78
NormSoret3=0.6
l e f t = 11000
r i g h t = 50000
enQy = 14150
enQy2=14900
enQx = 15800
enSoret = 22500
enS2 = 19920
enSoret2 =24000
enSoret3 =26000
k31 =0.2219
k41 =0.2670

”””
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Se t t i ng up the parameters f o r the molecule o b j e c t s

”””

”””
Qy
”””
c fce params1 = d i c t ( f type=”OverdampedBrownian ” ,

r eo rg =500.0 ,
cort ime =60.0 ,
T=300 ,matsubara=30)

c fce params4 = d i c t ( f type=”OverdampedBrownian ” ,
r eo rg =900.0 ,
cort ime =60.0 ,
T=300 ,matsubara=30)

”””
Qx
”””
c fce params3 = d i c t ( f type=”OverdampedBrownian ” ,

r eo rg =180.0 ,
cort ime =60.0 ,
T=300 ,matsubara=30)

”””
S2
”””

c fce params5 = d i c t ( f type=”OverdampedBrownian ” ,
r eo rg =5500.0 ,
cort ime =60.0 ,
T=300 ,matsubara=30)

”””
Soret
”””
c fce params2 = d i c t ( f type=”OverdampedBrownian ” ,

r eo rg =600.0 ,
cort ime =60.0 ,
T=300 ,matsubara=30)

c fce params6 = d i c t ( f type=”OverdampedBrownian ” ,
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r eo rg =8000.0 ,
cort ime =60.0 ,
T=300 ,matsubara=30)

c fce params7 = d i c t ( f type=”OverdampedBrownian ” ,
r eo rg =10000.0 ,
cort ime =60.0 ,
T=300 ,matsubara=30)

”””
The func t i on used to model the f l u o r e s c e n c e e x c i t a t i o n
curve

”””
de f func (X, a , b ) :

x , y , z = X
return a /( a+b)∗x+y + z

”””
Function to make the data gathered from the Quantarhei
absorpt ion spec t ra compatible with one another

”””

de f c o m p a t i b i l i z e ( input ) :
div = input [ 1 , 0 ] − input [ 0 , 0 ]
l e f t b o r d e r = input [ 0 , 0 ]
i f l e f t b o r d e r − l e f t > 0 :

s i z e t o l e f t = i n t ( ( l e f t b o r d e r − l e f t )/ div −1)
l e f added = np . empty ( [ s i z e t o l e f t , 2 ] )
input = np . append ( le fadded , input , 0)

e l s e :
whi l e input [ 0 , 0 ] <= l e f t :

input = np . d e l e t e ( input , 0 , ax i s = 0)
s i z e t o r i g h t = i n t ( ( r i g h t − input [ l en ( input ) −1 ,0])/ div )
l a s t = input [ l en ( input ) −1 ,0]
r ighadded = np . empty ( [ s i z e t o r i g h t , 2 ] )
f o r i in range (0 , i n t ( l en ( r ighadded ) ) ) :

r ighadded [ i ]=[ l a s t +( i ∗ div ) , 0 ]
input = np . append ( input , righadded , 0)
re turn ( input )
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”””

MAIN BODY

”””

”””
Gett ing the absorpt ion spec t ra

”””

e u n i t s = qr . ene rgy un i t s (”1/cm”)
with e u n i t s :

mQy = qr . Molecule (name=”Molecule ” ,
e l e n e r g i e s =[0 .0 , enQy ] )

mSoret = qr . Molecule (name=”Molecule ” ,
e l e n e r g i e s =[0 .0 , enSoret ] )

mQy2 = qr . Molecule (name=”Molecule ” ,
e l e n e r g i e s =[0 .0 , enQy2 ] )

mQx = qr . Molecule (name=”Molecule ” ,
e l e n e r g i e s =[0 .0 , enQx ] )

mS2 = qr . Molecule (name=”Molecule ” ,
e l e n e r g i e s =[0 .0 , enS2 ] )

mSoret2 = qr . Molecule (name=”Molecule ” ,
e l e n e r g i e s =[0 .0 , enSoret2 ] )

mSoret3 = qr . Molecule (name=”Molecule ” ,
e l e n e r g i e s =[0 .0 , enSoret3 ] )

with qr . en e r gy un i t s (”1/cm” ) :
c f c e 1 = qr . Corre la t ionFunct ion ( ta , c fce params1 )
c f c e 2 = qr . Corre la t ionFunct ion ( ta , c fce params2 )
c f c e 3 = qr . Corre la t ionFunct ion ( ta , c fce params3 )
c f c e 4 = qr . Corre la t ionFunct ion ( ta , c fce params4 )
c f c e 5 = qr . Corre la t ionFunct ion ( ta , c fce params5 )
c f c e 6 = qr . Corre la t ionFunct ion ( ta , c fce params6 )
c f c e 7 = qr . Corre la t ionFunct ion ( ta , c fce params7 )

mQy. s e t e g c f ( ( 0 , 1 ) , c f c e 1 )
mQy. s e t d i p o l e ( 0 , 1 , [ 1 . 0 , 0 . 0 , 0 . 0 ] )
mSoret . s e t e g c f ( ( 0 , 1 ) , c f c e 2 )
mSoret . s e t d i p o l e ( 0 , 1 , [ 1 . 0 , 0 . 0 , 0 . 0 ] )
mQy2. s e t e g c f ( ( 0 , 1 ) , c f c e 3 )
mQy2. s e t d i p o l e ( 0 , 1 , [ 1 . 0 , 0 . 0 , 0 . 0 ] )
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mQx. s e t e g c f ( ( 0 , 1 ) , c f c e 4 )
mQx. s e t d i p o l e ( 0 , 1 , [ 1 . 0 , 0 . 0 , 0 . 0 ] )
mS2 . s e t e g c f ( ( 0 , 1 ) , c f c e 5 )
mS2 . s e t d i p o l e ( 0 , 1 , [ 1 . 0 , 0 . 0 , 0 . 0 ] )
mSoret2 . s e t e g c f ( ( 0 , 1 ) , c f c e 6 )
mSoret2 . s e t d i p o l e ( 0 , 1 , [ 1 . 0 , 0 . 0 , 0 . 0 ] )

acQy = qr . AbsSpectrumCalculator ( ta ,mQy)
acSoret = qr . AbsSpectrumCalculator ( ta , mSoret )
acQy2 = qr . AbsSpectrumCalculator ( ta ,mQy2)
acQx = qr . AbsSpectrumCalculator ( ta ,mQx)
acS2 = qr . AbsSpectrumCalculator ( ta ,mS2)
acSoret2 = qr . AbsSpectrumCalculator ( ta , mSoret2 )

with qr . en e r gy un i t s (”1/cm” ) :
acQy . boots t rap ( rwa=enQy)
a1Qy = acQy . c a l c u l a t e ( )
a1Qy . normal ize2 ( [ NormQy ] )
darray = np . column stack ( ( a1Qy . ax i s . data ,

a1Qy . data ) )
darray = c o m p a t i b i l i z e ( darray )
xQy = darray [ : , 0 ]
yQy = darray [ : , 1 ]

acSoret . boots t rap ( rwa=enSoret )
a1Soret = acSoret . c a l c u l a t e ( )
a1Soret . normal ize2 ( [ NormSoret ] )
darray = np . column stack ( ( a1Soret . ax i s . data ,

a1Soret . data ) )
darray = c o m p a t i b i l i z e ( darray )
xSoret = darray [ : , 0 ]
ySoret = darray [ : , 1 ]

acQy2 . boots t rap ( rwa=enQy2)
a1Qy2 = acQy2 . c a l c u l a t e ( )
a1Qy2 . normal ize2 ( [ NormQy2 ] )
darray = np . column stack ( ( a1Qy2 . ax i s . data ,

a1Qy2 . data ) )
darray = c o m p a t i b i l i z e ( darray )
xQy2 = darray [ : , 0 ]
yQy2 = darray [ : , 1 ]

acQx . boots t rap ( rwa=enQx)
a1Qx = acQx . c a l c u l a t e ( )
a1Qx . normal ize2 ( [ NormQx ] )
darray = np . column stack ( ( a1Qx . ax i s . data ,

a1Qx . data ) )
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darray = c o m p a t i b i l i z e ( darray )
xQx = darray [ : , 0 ]
yQx = darray [ : , 1 ]

acS2 . boots t rap ( rwa=enS2 )
a1S2 = acS2 . c a l c u l a t e ( )
a1S2 . normal ize2 ( [ NormS2 ] )
darray = np . column stack ( ( a1S2 . ax i s . data ,

a1S2 . data ) )
darray = c o m p a t i b i l i z e ( darray )
xS2 = darray [ : , 0 ]
yS2 = darray [ : , 1 ]

acSoret2 . boots t rap ( rwa=enSoret2 )
a1Soret2 = acSoret2 . c a l c u l a t e ( )
a1Soret2 . normal ize2 ( [ NormSoret2 ] )
darray = np . column stack ( ( a1Soret2 . ax i s . data ,

a1Soret2 . data ) )
darray = c o m p a t i b i l i z e ( darray )
xSoret2 = darray [ : , 0 ]
ySoret2 = darray [ : , 1 ]

”””

Ca l cu l a t ing the f l u o r e s c e n c e e x c i t a t i o n spectrum

”””

wavenumExp = [ ]
QyExp = [ ]
SoretExp = [ ]
ExcSimul = [ ]
S2Exp = [ ]
ExcExp = [ ]
with open ( ’ data . txt ’ ) as f o b j :

f o r l i n e in f o b j :
row = l i n e . s p l i t ( )
wavenumExp . append ( f l o a t ( row [ 0 ] ) )
QyExp . append ( f l o a t ( row [ 1 ] ) )
SoretExp . append ( f l o a t ( row [ 2 ] ) )
S2Exp . append ( f l o a t ( row [ 3 ] ) )
ExcExp . append ( f l o a t ( row [ 4 ] ) )

wavenumExp=np . array (wavenumExp)
QyExp=np . array (QyExp)
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SoretExp=np . array ( SoretExp )
S2Exp=np . array (S2Exp)
ExcExp=np . array (ExcExp)
ChlExp = QyExp + SoretExp

PQy=[ ]
f o r i in range ( l en (QyExp ) ) :

PQy. append ( k31 /( k31+k41 )∗S2Exp [ i ]+SoretExp [ i ]
+ QyExp [ i ] )

PQy=np . array (PQy)
np . savetxt (” excSimul . csv ” , PQy, d e l i m i t e r =’\n ’ )
xCelk = xSoret
yCelk = ySoret+yQy+yQy2+yQx+ySoret2
yAggreg = yCelk + yS2

”””

Toggl ing what to p l o t

”””
p l t . p l o t (wavenumExp , S2Exp , l a b e l = ”Astax exp ”)
p l t . p l o t (wavenumExp , ExcExp , l a b e l=”Exc i ta t i on − exp ”)
p l t . p l o t (wavenumExp , ChlExp , l a b e l = ” Bchl c exp ”)
#p l t . p l o t (wavenumExp ,PQy, l a b e l=”Exc i ta t i on − s imul ”)
#p l t . p l o t (wavenumExp , ChlExp + S2Exp , l a b e l = ”Aggreg exp ”)
#p l t . p l o t ( xCelk , yS2 , l a b e l =”Astax s imul ”)
#p l t . p l o t ( xCelk , yCelk +0.01 , l a b e l = ” Bchl c s imul ”)
#p l t . p l o t ( xCelk , yAggreg , l a b e l = ”Aggreg ”)
p l t . xl im (13000 ,25000)
#p l t . xl im (12000 ,40000)
p l t . l egend ( l o c=”upper l e f t ” , prop={ ’ s i z e ’ : 9})
p l t . x l a b e l (” $\omega$ (1/cm)” )
p l t . y l a b e l (” I n t e n s i t y (A.U)” )
p l t . show
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