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Abstract: The impact of film thickness on optical and magneto-optical properties
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Introduction

In this thesis, we thoroughly analyse the development of optical and magneto-
optical properties in La2/3Sr1/3MnO3 thin films grown on silicon with the use of
a 2D nanosheet buffer layer.

Hole-doped manganites La1−xMxMnO3, where M stands for either Ca, Sr, or
Ba, garner attention from the wide scientific community due to their extraor-
dinary set of physical properties. The most notable pair of properties shared
throughout the whole family of hole-doped manganites is colossal magnetoresis-
tance (CMR) [1] combined with a high degree of spin polarisation. The particular
case of La2/3Sr1/3MnO3 (LSMO) has been studied extensively due to its very
high Curie temperature (TC ∼ 370 K [2]) and nearly 100% spin polarisation [3].
These physical properties make LSMO suitable for application not only in the
field of spintronics but also sensor [4] and fuel cell development [5].

The origin of ferromagnetic ordering in LSMO lies in the presence of mixed
valence manganese ions Mn3+ and Mn4+. These manganese ions can exchange
an eg electron via the O2− 2p state while preserving its spin. This was dubbed
the double-exchange (DE) interaction and was first explained by C. Zener in [6].
The probability of the DE interaction is heavily dependent on the geometry of
Mn3+–O–Mn4+. Hence the rotation and distortion of the MnO6 octahedra inside
the crystalline structure of LSMO play an essential role in forming its magnetic
properties. The geometry of the MnO6 octahedra is influenced by epitaxial strain
caused by lattice mismatch and by coupling of the octahedral rotations at the
sample-substrate interface [7].

LSMO is conventionally grown epitaxially on single-crystal oxide substrates
such as SrTiO3 (STO) due to the large dependence of LSMO’s properties on the
quality of its crystalline structure. Being able to grow thin LSMO films of similar
crystalline quality on low-cost substrates such as Si would prove beneficial for
future wide-scale industrial adaptation. However, growing LSMO directly on Si
results in polycrystalline films suffering from a major degradation of LSMO’s
sought-after properties [8].

This study explores the use of Ca2Nb3O10 (CNO) nanosheets (NS) as a buffer
layer between Si and LSMO to facilitate locally epitaxial growth of the LSMO
film. The two-dimensional CNO nanosheet lattice has a square a-b plane with
a lattice parameter of aNS = 0.386 nm giving a lattice mismatch with LSMO
of -0.18 %. Growing LSMO on a NS/Si substrate results in a (001)-textured
film [9] with properties similar to films grown on conventional substrates while
also benefiting from properties found in polycrystalline films, such as low-field
magnetoresistance [8].
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This thesis begins by introducing the electromagnetic plane wave as a solution
to the wave equation. In the second chapter, the polarisation of light is discussed
as an innate property of electromagnetic plane waves. An overview of Jones
calculus is also encompassed in the second chapter as a way to describe the
polarisation state of fully polarised light. The permittivity tensor characterising
anisotropic media is presented in the third chapter. It is subsequently used in
the derivation of the magneto-optical response of investigated samples by means
of Yeh formalism. The fourth chapter makes use of the theory introduced thus
far to acquaint the reader with the experimental methods used in this work.
Chapters five and six shift focus to analysed samples. Chapter five begins by
showcasing the properties of bulk LSMO and gradually progresses into chapter
six, which serves as the introduction of thin film LSMO, CNO nanosheets and
deposited LSMO/NS/Si samples. The final chapter, chapter seven, encapsulates
the results of the carried-out research.
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Chapter 1

Electromagnetic waves

Experimental methods used in this thesis depend on studying the interaction
of visible light with the investigated samples. Visible light consists of electro-
magnetic waves in a specific frequency range. This chapter will derive the wave
equation from the fundamental principles of electromagnetism – the Maxwell
Equations and demonstrate the plane wave as a solution to a special case of an
electromagnetic wave propagating through a vacuum.

1.1 Wave equation
The aforementioned Maxwell equations are a set of universally applicable differ-
ential relations linking together the electric field E, magnetic induction B, the
displacement field D, magnetic field H, free current density jf and free charge
density ρf [10]

∇× E+
∂B

∂t
= 0 , (1.1)

∇ ·B = 0 , (1.2)

∇×H− ∂D

∂t
= jf , (1.3)

∇ ·D = ρf . (1.4)

The following derivation will assume a material abiding by the constitutive
relations and Ohm’s law. The constitutive relations are used to model the
behaviour of materials subjected to electromagnetic fields. Constitutive relation
1.5 sets linear relationships between elements of D and E using the relative
permittivity tensor ε and the permittivity of vacuum ε0. An analogous relation
1.6 between B and H is set with the permeability tensor µ and the permeability
of vacuum µ0. Ohm’s law 1.7 sets a similar relation between free current density
jf and E utilising the conductivity tensor σ

D = ε0εE , (1.5)

B = µ0µH , (1.6)

jf = σE . (1.7)
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Any other non-linear effects are not accounted for as they are negligible in
weak fields. Furthermore a static medium is assumed, therefore ε, µ, σ are
assumed to be time-independent. Finally, we assumeµ to be approximately 1 due
to light’s negligible magnetic interaction with materials at optical frequencies
[11], which can be derived from light’s small effect on the spin of electrons [12]
as well as light’s weak influence on orbiting electrons due to the Lorenz force.

Substituting the constitutive relation 1.6 into the second Maxwell equation
1.2 and the constitutive relations 1.5,1.7 into the third Maxwell equation 1.3
yields

1

µ0

∇× E+
∂H

∂t
= 0 , (1.8)

∇×H− ε0ε
∂E

∂t
− σE = 0 . (1.9)

Taking the curl of 1.8 and the partial time derivative of 1.9 we get

∇×
(︃

1

µ0

∇× E

)︃
+

∂

∂t
∇×H = 0 , (1.10)

∂

∂t
∇×H− ε0ε

∂2E

∂t2
− σ

∂E

∂t
= 0 . (1.11)

Lastly, substituting 1.11 into 1.10 and applying the curl of a curl of a vector
field identity, we reach the final electromagnetic wave equation

∆E− ε0µ0ε
∂2E

∂t2
− µ0σ

∂E

∂t
−∇(∇ · E) = 0 . (1.12)

1.2 Plane wave
The plane wave arises as a solution to 1.12 in the case of an electromagnetic
wave propagating through an isotropic, homogeneous, non-conductive medium
without any free currents or free charges. Under these additional assumptions
1.12 in a vacuum reduces to

∆E− ε0µ0ε
∂2E

∂t2
= 0 . (1.13)

The speed of light in vacuum c = 1/
√
µ0ε0 is then derived by comparison

with the general wave equation.
Suppose a plane wave travelling in the direction of a unit vector s. Its

wavefront is then defined as a locus of points placed at r satisfying r · s = constant.
Such a wave naturally abides by E(r, t) = E(r · s, t). The monochromatic time-
harmonic plane wave

E(r, t) = E0 cos(ωt− k · r+ δ) = Re
{︂
E0e

i(ωt−k·r+δ)
}︂
, (1.14)

where E0, ω, k, δ stands for the amplitude of the wave, angular frequency,
wavevector and phase shift, respectively, is a solution to the vacuum wave equa-
tion 1.13. This specific solution shall be used to describe the propagation of light
in further chapters of this work.
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Chapter 2

Polarisation of light

The previous chapter established the plane wave as a solution to the vacuum
wave equation 1.13. This chapter will define polarisation of light resulting from
the transversal nature of plane waves. This chapter will also cover mathematical
formalisms commonly used to describe the polarisation state of monochromatic
time-harmonic plane waves and its changes caused by such waves interacting
with different optical elements.

2.1 Polarisation
Polarisation is a property of transversal waves stemming from the geometrical
orientation of the oscillations of the electric field vector E. It can be shown that
a wave given by 1.14 can oscillate in any direction perpendicular to the direction
of propagation.

Suppose a monochromatic time-harmonic plane wave propagating along
the z axis. The oscillations of the electric field E, perpendicular to the z axis,
can be without any loss of generality expressed as a linear combination of two
monochromatic time-harmonic plane waves with the same frequency. Let us
denote the components oscillating along the x and y axes Ex and Ey, respectively.
The components of E(z, t) can be then written as

Ex(z, t) = E0x cos(ωt− kz + δx) , (2.1)

Ey(z, t) = E0y cos(ωt− kz + δy) , (2.2)

Ez = 0 , (2.3)

where E0x, E0y are the positive amplitudes of the corresponding components
with δx and δy being their phase offsets. It can be shown that the vector E(z,t)
traces an ellipse as the wave propagates.
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Let us define φ := ωt− kz. Then 2.1 and 2.2 divided by their corresponding
amplitudes E0x, E0y become

Ex

E0x

= cos(φ+ δx) = cos(φ) cos(δx)− sin(φ) sin(δx) , (2.4)

Ey

E0y

= cos(φ+ δy) = cos(φ) cos(δy)− sin(φ) sin(δy) . (2.5)

Multiplying 2.4, 2.5 by sin(δy) and sin(δx), respectively gives

Ex

E0x

sin(δy) = cos(φ) cos(δx) sin(δy)− sin(φ) sin(δx) sin(δy) , (2.6)

Ey

E0y

sin(δx) = cos(φ) cos(δy) sin(δx)− sin(φ) sin(δy) sin(δx) . (2.7)

Taking the difference of 2.6 and 2.7 causes one of the terms on the right to
cancel out, leaving

Ex

E0x

sin(δy)−
Ey

E0y

sin(δx) = cos(φ)(cos(δx) sin(δy)− cos(δy) sin(δx))

= cos(φ) sin(δy − δx) .

(2.8)

Going through a similar procedure except multiplying 2.4, 2.5 by cos(δy) and
cos(δx), respectively, and taking their difference we arrive at

Ex

E0x

cos(δy)−
Ey

E0y

cos(δx) = sin(φ)(sin(δy) cos(δx)− sin(δx) cos(δy))

= sin(φ) sin(δy − δx) .

(2.9)

Let δ := δy − δx be the phase difference. Taking the sum of squares of 2.8 and
2.9 finally yields(︃

Ex

E0x

)︃2

− 2
Ex

E0x

Ey

E0y

cos(δ) +

(︃
Ey

E0y

)︃2

= sin2(δ) . (2.10)

The above formula 2.10 describes an ellipse in the plane perpendicular to
the z axis, hence in the general case, the vector E traces an ellipse in the plane
perpendicular to the direction of wave propagation. This ellipse is commonly
referred to as the ellipse of polarisation, which can be completely described by
the following four parameters:

• The azimuth θ - an oriented angle between the positive semi axis x and the
major axis of the ellipse. This angle describes the geometrical orientation
of the ellipse of polarisation and can take values from −π/2 to π/2.
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• The ellipticity angle ϵ - determines the degree to which the polarisation
ellipse deviates from being circular. Its sign is a matter of convention and is
used to indicate the handedness of the electric field vector’s rotation against
the direction of wave propagation. In this thesis, a positive ellipticity angle
represents right-handed polarisation, where the electric field vector E
rotates clockwise along the polarisation ellipse. A negative ellipticity angle
represents left-handed polarisation, with the electric field vector rotating
counterclockwise. The ellipticity angle can range between −π/4 and π/4.
Ellipticity e is often defined as the tangent of the ellipticity angle, given
by e = tan ϵ = ±b/a, where a is the major semi-axis and b is the minor
semi-axis.

• The amplitude E0 - a parameter related to the overall wave intensity as
I ≈ E2

0 = a2 + b2 = E2
0x + E2

0y.

• The absolute phase δ0 - an oriented angle between the vector of electric
intensity E and the positive semi axis x at t = 0. It only specifies the initial
state and can range between −π and π.

θ

δ0

E0x

E0y

x

y

z

Figure 2.1 The ellipse of polarisation of a wave travelling towards the reader.

Albeit all four parameters are required to fully determine the position of
E(z, t) for every pair of z and t, some parameters are more integral to describing
the polarisation state than others. Namely, the azimuth θ and ellipticity angle
ϵ hold information about the shape and orientation of the resulting ellipse,
whereas the amplitude E0 pertains to the overall light intensity and the absolute
phase describes only the initial state.

It is important to note that despite all monochromatic time-harmonic plane
waves being polarised, this does not hold true for polychromatic light. Light can
also be only partially polarised or completely unpolarised. Partially polarised
light changes its polarisation state after random intervals of time. The length of
this interval approaches zero for randomly polarised light, which is commonly
referred to as unpolarised light.
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2.2 Jones calculus
Jones calculus is a widely used mathematical formalism capable of describing
only fully polarised light. While there exist other more versatile formalisms
able to describe partially polarised light as well, Jones calculus will suffice in a
laboratory environment where the polarisation state of light is easily controlled.

2.2.1 Jones vector
The Jones vector is the main building block of Jones calculus. The superposition
of two orthogonal monochromatic plane waves 2.1, 2.2 can be vectorised and
rewritten with the use of complex amplitude defined as Ai = E0ie

iδi like so

E(z, t) =

⎡⎣Re{︂E0xe
i(ωt−kz+δx)

}︂
Re
{︂
E0ye

i(ωt−kz+δy)
}︂⎤⎦ =

⎡⎣Re{︂Axe
i(ωt−kz)

}︂
Re
{︂
Aye

i(ωt−kz)
}︂⎤⎦ . (2.11)

As was demonstrated earlier, the polarisation state is fully described with
four real parameters, which can be elegantly compressed into two complex ones.
Thus the Jones vector J utilising two complex amplitudes Ax, Ay can entirely
describe the polarisation state of a monochromatic wave and is defined as

J =

[︃
E0xe

iδx

E0ye
iδy

]︃
=

[︃
Ax

Ay

]︃
(2.12)

The absolute value of intensity is typically unnecessary; therefore, Jones
vectors are often normalised to unitary intensity. Furthermore a parameter α is
defined by the following relation tanα = E0y/E0x. Since the initial phases are
not relevant for the resulting polarisation, we can then rewrite the Jones vector
utilising the phase difference δ = δy − δx in terms of α and δ as

J =

[︃
cosα

sinα eiδ

]︃
. (2.13)

The new parameters α and δ are related with the azimuth θ and the ellipticity
angle ϵ through the following relations [13].

tan 2θ = tan 2α cos δ , (2.14)

sin 2ϵ = sin 2α sin δ . (2.15)
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So far, we have been using a Cartesian basis of linear polarisations. Another
important basis is the basis of circular polarisations employing the left circular
polarisation (LCP) and right circular polarisation (RCP). The process of switching
bases is the same as with any other vector transformation and is dictated by
the rules of linear algebra along with all other possible operations with Jones
vectors. The basis vectors of the mentioned bases are as follows

• The Cartesian basis of linear polarisations:

Jx =

[︃
1
0

]︃
, Jy =

[︃
0
1

]︃
(2.16)

.

• The circular basis:

JLCP =
1√
2

[︃
1
−i

]︃
, JRCP =

1√
2

[︃
1
i

]︃
(2.17)

.

Before continuing further, let us introduce the rotation matrix R(φ)

R(φ) =

[︃
cosφ − sinφ
sinφ cosφ

]︃
. (2.18)

This work will utilise it to rotate vectors v and transform matrices Q into a
rotated basis as follows

v′ = R(φ)v , (2.19)

Q′ = RQR−1 , (2.20)

where v′,Q′ denote the rotated vector and transformed matrix, respectively.
We will use it to express the Jones vector from equation 2.13 in terms of the

polarisation ellipse parameters (θ, ϵ). Let us consider the case of a polarisation
ellipse with azimuth equal to zero and ellipticity angle ϵ. Then from 2.14 and
2.15 it follows that δ = π/2 and α = ϵ. Substituting these values into 2.13 and
then rotating the resulting Jones vector Jϵ by the azimuth θ yields

Jθ,ϵ = R(θ)Jϵ =

[︃
cos θ − sin θ
sin θ cos θ

]︃ [︃
cos ϵ
i sin ϵ

]︃
=

[︃
cos ϵ cos θ − i sin ϵ sin θ
cos ϵ sin θ + i sin ϵ cos θ

]︃
. (2.21)
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2.2.2 Jones matrix
Jones calculus also enables us to compute the change of polarisation state upon
reflection or transmission of fully polarised light through an optical element
with the use of Jones matrices.

Suppose an incoming light wave in the coordinate system S(I) propagates
towards an optical element. Upon incidence, part of the wave is reflected. The
coordinate system describing the reflected wave shall be denoted S(R). Another
part of the incident wave transmits through the optical element in the coordinate
system S(T ). Every coordinate system is aligned so the respective z axes coincide
with their respective wavevector as is depicted in 2.2. It is common to use linearly
polarised light parallel and perpendicular to the plane of incidence as a basis
for Jones vectors. The corresponding polarisations are called p-polarisation and
s-polarisation, respectively.

z(I)

x(I)

y(I)

p
s

z(R)
x(R)

y(R)

s
p

x(T)

y(T)

z(T)

p
s

Rsp, Tsp 

S(I) S(R)

S(T)

Figure 2.2 Reflection and transmission of light through an optical element with corre-
sponding coordinate systems S(I) for the incident, S(R) for the reflected and S(T ) for the
transmitted light.

First, let us investigate the reflected light wave. Let us denote the Jones
vector of the incident wave J(I) and the Jones vector of the reflected wave J(R).
We can write the following relationship between them utilising Jones calculus

J(R) = RspJ
(I) , (2.22)

where Rsp stands for the Jones reflection matrix of the illuminated optical ele-
ment. This matrix describes changes to the polarisation state of the incident
light wave upon reflection off the optical element. By substituting the definition
of the Jones vector 2.12 using the aforementioned s, p-polarisation basis into
2.22 and expressing Rsp in terms of its elements we get[︄

A
(R)
s

A
(R)
p

]︄
=

[︃
rss rsp
rps rpp

]︃ [︄
A

(I)
s

A
(I)
p

]︄
, (2.23)
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from whence the following relations for the Jones reflection matrix elements are
easily derived

rss =

(︄
A

(R)
s

A
(I)
s

)︄
A

(I)
p =0

, (2.24)

rsp =

(︄
A

(R)
s

A
(I)
p

)︄
A

(I)
s =0

, (2.25)

rps =

(︄
A

(R)
p

A
(I)
s

)︄
A

(I)
p =0

, (2.26)

rpp =

(︄
A

(R)
p

A
(I)
p

)︄
A

(I)
s =0

. (2.27)

In the case of reflection off an optically isotropic sample, the diagonal elements
rss, rpp represent the Fresnel reflection coefficients. The off-diagonal elements
represent the mixing of s-polarised and p-polarised light upon reflection and
vice versa.

As for the transmitted light wave, we shall follow the same procedure. The
change to the polarisation state of the incident light wave upon transmission
into the optical element is described by the Jones transmission matrix Tsp. The
Jones vector of transmitted light can be written as

J(T ) = TspJ
(I) . (2.28)

Substituting the definition of the Jones vector, with respect to the s, p-
polarisation basis, into the above equation 2.28 and writing Tsp in terms of
its elements yields [︄

A
(T )
s

A
(T )
p

]︄
=

[︃
tss tsp
tps tpp

]︃[︄
A

(I)
s

A
(I)
p

]︄
, (2.29)

which leads to analogous relations for the respective elements of Tsp

tss =

(︄
A

(T )
s

A
(I)
s

)︄
A

(I)
p =0

, (2.30)

tsp =

(︄
A

(T )
s

A
(I)
p

)︄
A

(I)
s =0

, (2.31)

tps =

(︄
A

(T )
p

A
(I)
s

)︄
A

(I)
p =0

, (2.32)

tpp =

(︄
A

(T )
p

A
(I)
p

)︄
A

(I)
s =0

. (2.33)

Here the diagonal elements tss, tpp stand for the Fresnel transmission coeffi-
cients for the case of transmission through an optically isotropic sample.
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Once more, the off-diagonal elements hold information about the transformation
of one basis linear polarisation into the other upon transmission.

Jones calculus can also be used to describe changes to the polarisation state
of light induced by commonly used optical elements. Their Jones matrices are
listed below, expressed in the linear (XY) and circular (LR) basis

• Linear polarizer oriented at an arbitrary angle φ with respect to the x
axis:

P(XY ) =

[︃
cos2 φ sinφ cosφ

sinφ cosφ sin2 φ

]︃
, P(LR) =

[︃
1 e2iφ

e−2iφ 1

]︃
(2.34)

• Phase plate with retardance Γ and fast axis parallel to the x axis:

C(XY ) =

[︃
1 0
0 e−iΓ

]︃
, C(LR) =

1

2

[︃
1 + e−iΓ 1− e−iΓ

1− e−iΓ 1 + e−iΓ

]︃
(2.35)

• Polarisation rotator - rotating the polarisation by an angle ϕ:

N(XY ) =

[︃
cosϕ − sinϕ
sinϕ cosϕ

]︃
, N(LR) =

[︃
eiϕ 0
0 e−iϕ

]︃
(2.36)

In order to monitor the polarisation state after the light wave interacts with
an optical system consisting of multiple different optical elements, one multiplies
the Jones vector of the incident light with the Jones matrices of all present optical
elements in the order the light wave encounters them. Suppose a light wave
represented with the Jones vector J

(I)
IN propagating through an optical system

made up of N optical elements X1, X2, . . . , XN indexed in the order the light
wave encounters them. Then the resulting Jones vector J(I)

OUT is

J
(I)
OUT = XNXN−1 . . .X1J

(I)
IN . (2.37)

2.3 Complex polarisation parameter
Let us introduce one last parameter used to represent the polarisation state.
The previous sections have already demonstrated the description of polarisation
states with two parameters (θ, ϵ) or (α, δ). The complex polarisation parameter χ
is defined as the ratio of the complex amplitudes

χ =
Ay

Ax

= tanαeiδ . (2.38)

Substituting the complex amplitudes from the Jones vector of a general
polarisation state represented in terms of (θ, ϵ) 2.21 into the definition above
yields

χ =
cos ϵ sin θ + i sin ϵ cos θ

cos ϵ cos θ − i sin ϵ sin θ
=

tan θ + i tan ϵ

1− i tan θ tan ϵ
. (2.39)

Assuming small angles θ, ϵ, utilising the approximation tanx ≈ x emerging
from the Maclaurin series of the tangent function and assuming the second order
term in the denominator to be zero, 2.39 simplifies to

χ ≈ θ + iϵ . (2.40)
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2.4 Magneto-optical observables
Magneto-optical (MO) observables are parameters that describe changes in
the polarisation state of light waves upon reflection or transmission through a
sample inside a magnetic field. The magneto-optical Kerr effect (MOKE) refers
to the case of reflection, while the magneto-optical Faraday effect refers to the
case of transmission. When light waves interact with isotropic materials via
reflection or transmission, there is no transformation of incident s-polarised
waves into p-polarised waves or vice versa. This is because the Jones reflection
and transmission matrices are diagonal for such materials. However, introducing
anisotropy in the material would result in the mixing of the two orthogonal
polarisations. In the case of this study, the anisotropy is caused by the magnetic
moment of a ferromagnetic material in an external magnetic field.

First, consider the case of an s-polarised wave reflecting off a magnetised
ferromagnetic material. The off-diagonal elements of the Jones reflection matrix
of such material will no longer be zero. We can use 2.24 and 2.25 to express
the ratio of the off-diagonal to diagonal elements of the reflection matrix for an
incident s-polarised wave as follows

rps
rss

=

⎛⎜⎝ A
(R)
p

A
(I)
s

A
(R)
s

A
(I)
s

⎞⎟⎠
A

(I)
p =0

=
A

(R)
p

A
(R)
s A

(I)
p =0

= χ(R)
s , (2.41)

which can be simplified under the assumption of small angles θ
(R)
s , ϵ(R)

s analo-
gously to 2.39 as

χ(R)
s ≈ θ(R)

s + iϵ(R)
s . (2.42)

We then can define the complex magneto-optical Kerr Angle ΦK,s for an
incident s-polarised wave as

ΦK,s := −rps
rss

= −χ(R)
s , (2.43)

ΦK,s ≈ θ
(R)
K,s − iϵ

(R)
K,s , (2.44)

where we have defined two new real parameters Kerr rotation θ
(R)
K,s and Kerr

ellipticity ϵ
(R)
K,s. By comparing 2.44 to 2.42 we can deduce the following relations

θ
(R)
K,s = −θ(R)

s , (2.45)

ϵ
(R)
K,s = ϵ(R)

s . (2.46)

Now following an analogous procedure for an incident p-polarised wave with
the use of 2.25 and 2.27 we write

rsp
rpp

=

⎛⎜⎝ A
(R)
s

A
(I)
p

A
(R)
p

A
(I)
p

⎞⎟⎠
A

(I)
s =0

=
A

(R)
s

A
(R)
p A

(I)
s =0

= (χ(R)
p )−1 . (2.47)
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To simplify the derivation, we multiply both the numerator and denominator of
2.39 by cot θ, leaving us with

χ =
1 + i cot θ tan ϵ

cot θ − i tan ϵ
. (2.48)

This is done so that we may express the cotangent function as a part of a power
series. The azimuth of a p-polarised wave is π/2. Assuming small changes
to the azimuth caused upon reflection, θ

(R)
p is close to π/2 and we can ap-

proximate the cotangent function with the first two terms of its Taylor series
cot xx ≈ π/2 ≈ π/2 − x. Additionally, again assuming small ϵ(R)

p and neglecting
the imaginary term in the numerator by assuming it close to zero gives

χ(R)
p ≈ 1

π/2− θ
(R)
p − iϵ

(R)
p

, (2.49)

(χ(R)
p )−1 ≈ π/2− θ(R)

p − iϵ(R)
p . (2.50)

The complex magneto-optical Kerr Angle ΦK,p for an incident p-polarised
wave is then analogously defined as

ΦK,p :=
rsp
rpp

= (χ(R)
p )−1 , (2.51)

ΦK,p ≈ θK,p − iϵK,p , (2.52)
where we have defined Kerr rotation θK,p and Kerr ellipticity ϵK,p for an incident
incident p-polarised wave similarly to 2.45 and 2.46 as

θK,p = π/2− θ(R)
p , (2.53)

ϵK,p = ϵ(R)
p . (2.54)

The choice of sign in the definitions 2.43 and 2.51 of the Kerr effect for the s
and p polarisation, respectively, is not arbitrary. Consider a sample placed in
a magnetic field perpendicular to its surface1 and a light wave propagating at
normal incidence along the z axis. The Jones reflection matrix has to respect
the symmetry of the system and consequently be invariant to any rotation along
the z axis. This requirement can be expressed in a matrix relation using the
already defined rotation matrix 2.18 as

R(φ)RspR(φ) = Rsp , (2.55)
which yields the following relations for the elements of the Jones reflection
matrix

rsp = rps , (2.56)
rss = −rpp . (2.57)

Still considering the same example, there is no way to define a plane of
incidence and thus no way to define s and p polarisation. Therefore we expect
the magneto-optical Kerr effect angles for the s and p polarisation to be equal,
which is accomplished by the opposite signs in the aforementioned definitions
2.43 and 2.51.

1Defined as polar geometry in section 3.1

16



Chapter 3

Optically anisotropic media

In the previous chapters, we described light propagation through isotropic me-
dia. Anisotropic media were modelled as a black box with a 2x2 reflection and
transmission matrix. This chapter aims to describe anisotropy further by first
introducing the permittivity tensor and subsequently using it to describe the
propagation of light through multi-layer systems with the use of Yeh formalism.

3.1 Permittivity tensor
The permittivity tensor is a material property describing how electric fields
interact in a given material. Since light is an electromagnetic wave, parameters
measured in this work, such as the MO Kerr angle, depend on the material’s
permittivity tensor. Knowing the permittivity tensor does allow us to compute
the reflection coefficients and, in turn, the MO Kerr angle, but above all, in
specific circumstances, we may work backwards and compute the permittivity
tensor from a measured MO Kerr angle. In general, the permittivity tensor is a
second-order tensor denoted as

ε =

⎡⎣εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

⎤⎦ . (3.1)

Exposing a ferromagnetic sample to an external magnetic field induces optical
anisotropy, which manifests as a small perturbation of the permittivity tensor
dependant on the magnetisation of the sample M1. The small magnitude of the
perturbation allows us to express the perturbed permittivity tensor in the form
of a Taylor series centred at zero magnetisation. Seeing as the perturbation is
small and the fact that the second-order terms cancel out due to the measuring
technique used (see Section 4.4), we will represent the elements of the perturbed
permittivity tensor with the first two terms of their Taylor series

εij(M) = εij(0) +
∂εij
∂Mk

⃓⃓⃓⃓
Mk=0

Mk , (3.2)

where i, j, k represent any index of the Cartesian basis x, y, z.
1Defined as the magnetic dipole moment per unit volume.
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Let us define three main geometrical configurations of the magnetisation
vector M relative to the sample and the reflected light wave for the description
of MOKE. In polar geometry, the magnetisation vector is perpendicular to the
sample’s surface. In longitudinal geometry, the magnetisation vector lies within
the plane of incidence and the sample’s surface. Lastly, in transverse geometry,
the magnetisation vector is perpendicular to the plane of incidence and lies
within the surface of the sample (See Figure 3.1).

x

y

z

M

(a) Polar geometry

x

y

z

M

(b) Longitudinal geometry

x

y

z

M

(c) Transverse geometry

Figure 3.1 Definitions of polar (a), longitudinal (b) and transverse (c) geometries for
MOKE measurements of a magnetised sample.

Suppose an optically isotropic ferromagnetic sample is placed into an external
magnetic field in polar geometry. The permittivity tensor of such a sample will
no longer be diagonal as the external magnetic field magnetised the sample,
which introduced optical anisotropy. The new perturbed permittivity tensor
has to respect the symmetry of the system according to the Voigt symmetry
principle [14]. In polar geometry, the permittivity tensor has to be invariant
under any rotation along the z axis, which yields the following general form of
the permittivity tensor

εp =

⎡⎣ εxx εxy 0
−εxy εxx 0
0 0 εzz

⎤⎦ . (3.3)

It can be shown that the restriction to linear magneto-optical effects gives
εxx ≈ εzz [15]. This allows us to write the permittivity tensor for polar geometry
in a more conventional way as

εp =

⎡⎣ ε1 iε2 0
−iε2 ε1 0
0 0 ε1

⎤⎦ . (3.4)
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To obtain the permittivity tensor of the sample in longitudinal geometry, one
simply has to rotate the polar coordinate system 90◦ counterclockwise along the
x axis, which results in

εl =

⎡⎣ ε1 0 iε2
0 ε1 0

−iε2 0 ε1

⎤⎦ . (3.5)

The permittivity tensor for the transverse configuration is obtained analo-
gously. Rotating the polar coordinate system clockwise along the y axis results
in

εt =

⎡⎣ε1 0 0
0 ε1 −iε2
0 iε2 ε1

⎤⎦ . (3.6)

3.2 Yeh formalism
Yeh formalism describes the propagation of light through anisotropic layered
media. Yeh’s original formalism from 1980 [16] was later extended to absorbing
materials and MO effects by Professor Višňovský [15]. The formalism allows for
calculating the reflected and transmitted wave from an incident wave, assuming
the thickness and optical properties of every layer, along with the angle of
incidence, are known. By comparing the incident and the calculated reflected
wave, we can obtain the reflection matrix elements and hence the MOKE of a
multi-layer system, allowing us to model its magneto-optic response.

Let us consider a plane wave impacting an optically anisotropic sample
consisting of N distinct layers as depicted in Figure 3.2. Every layer has its
corresponding thickness tk and a permittivity tensor ε(k). These layers are
stacked on top of each other with their surfaces perpendicular to the z axis,
meaning the interface between the kth and (k+1)th layer has coordinates (x, y, zk),
where zk is constant for every interface. This multi-layer system is surrounded
by two semi-infinite half-spaces – 0 and N + 1 – which are considered optically
isotropic and thus are characterised by scalar permittivities ε(0) and ε(N+1),
respectively. In this work, the substrate shall be considered the N +1 half-space
as its thickness is orders of magnitude larger than the thickness of all individual
layers. The plane of incidence is perpendicular to the x axis, and the angle of
incidence is ϕ0.
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x

y

z

ϕ0

Layer 1

Layer 2

Layer N

ε(1)

ε(2)

ε(N)

t1

t2

tN

z1

z0

zN-1

zN

Half-space 0 ε(0)

Half-space N+1 ε(N+1)

Figure 3.2 Ligthwave impacting a multi-layer sample consisting of N optically anisotropic
layers with thicknesses tk described by the permittivity tensors ε(k) surrounded by two optically
isotropic half-spaces with scalar permittivities ε(0) and ε(N+1). The interface between layer
k and k + 1 has coordinates (x, y, zk).

In order to calculate the reflected wave, we need to solve the wave equation
for each layer. Assuming every layer is non-conductive, we can write the wave
equation 1.12 for every layer as

∆E(k) − ε0µ0ε
(k)∂

2E(k)

∂t2
−∇(∇ · E(k)) = 0 . (3.7)

First, we assume a plane-wave solution

E(k) = E
(k)
0 ei(ωt−k(k)·r) , (3.8)

which we substitute into 3.7. Making use of the Einstein summation convention
this yields

k
(k)
j k

(k)
j E

(k)
0i − k

(k)
i k

(k)
j E

(k)
0j − ω2

c2
ε
(k)
ij E

(k)
0j . (3.9)
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In order to simplify this equation, we introduce the reduced wavevector N
defined as

N(k) =
c

ω
k(k) . (3.10)

All reduced wavevectors of both reflected and transmitted waves lie in the
original plane of incidence; hence the x component of each reduced wavevector is
equal to zero. Additionally, from Snell’s law, it follows that the Ny component for
all layers is equal to

Ny = n0 sinφ0 , (3.11)
where n0 stands for the refractive index of the isotropic half-space 0. Multiplying
3.9 by c2/ω2 and substituting in the newly introduced reduced wavevector gives
us

−N
(k)
j N

(k)
j E

(k)
0i +N

(k)
i N

(k)
j E

(k)
0j + ε

(k)
ij E

(k)
0j = 0 . (3.12)

This equation can be rewritten in matrix form as

⎡⎢⎣ε
(k)
xx −N2

y − (N
(k)
z )2 ε

(k)
xy ε

(k)
xz

ε
(k)
yx ε

(k)
yy − (N

(k)
z )2 ε

(k)
yz +NyN

(k)
z

ε
(k)
zx ε

(k)
zy +NyN

(k)
z ε

(k)
zz −N2

y

⎤⎥⎦
⎡⎢⎣E

(k)
0x

E
(k)
0y

E
(k)
0z

⎤⎥⎦ = 0 . (3.13)

A non-trivial solution to the equation 3.13 exists only if the determinant of the
matrix is equal to zero. Solving the characteristic equation of the matrix

(N (k)
z )4ε(k)zz + (N (k)

z )3[Ny(ε
(k)
yz + ε(k)zy )]−

− (N (k)
z )2[ε(k)yy (ε

(k)
zz −N2

y ) + ε(k)zz (ε
(k)
xx −N2

y )− ε(k)xz ε
(k)
zx − ε(k)yz ε

(k)
zy ]−

−N (k)
z Ny[(ε

(k)
xx −N2

y )(ε
(k)
yz + ε(k)zy − ε(k)zx ε

(k)
xz − ε(k)yx ε

(k)
xz ]+

+ ε(k)yy [(ε
(k)
xx −N2

y )(ε
(k)
zz −N2

y )]− ε(k)zx ε
(k)
xz (ε

(k)
zz −N2

y )− ε(k)yz ε
(k)
zy (ε

(k)
xx −N2

y )+

+ ε(k)xy ε
(k)
zx ε

(k)
yz + ε(k)yx ε

(k)
xz ε

(k)
zy = 0 .

(3.14)
gives us four roots N

(k)
zj . Each root of 3.14 gives us a solution to 3.13 in the form

of

e
(k)
j =

⎡⎢⎣ −ε
(k)
xy (ε

(k)
zz −N2

y ) + ε
(k)
xz (ε

(k)
zy +NyN

(k)
zj )

(ε
(k)
zz −N2

y )(ε
(k)
xx −N2

y − (N
(k)
zj )2)− ε

(k)
xz ε

(k)
zx

−(ε
(k)
xx −N2

y − (N
(k)
zj )2)(ε

(k)
zy +NyN

(k)
zj ) + ε

(k)
xy ε

(k)
zx

⎤⎥⎦ . (3.15)

These solutions are known as the proper modes, and they represent polari-
sation states propagating unchanged through the corresponding medium2. We
can use these proper modes to form a basis of all possible solutions to 3.13. A
general solution to 3.13 can be then written as

E(k) =
4∑︂

j=1

E
(k)
0j (zk)e

(k)
j ei{ωt−

ω
c
[Nyy+N

(k)
zj (z−zk)]} . (3.16)

2Proper modes e
(k)
1 and e

(k)
3 propagate forwards through the multilayer, proper modes e

(k)
2

and e
(k)
4 represent the reflected wave, hence they propagate backwards.
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It can be shown from the Maxwell equations that in electromagnetic plane-
waves vectors N,E,B satisfy the following relation

B =
1

c
N× E . (3.17)

Using this relation we can obtain the proper magnetic modes b
(k)
j as

b
(k)
j = N

(k)
j × e

(k)
j , (3.18)

and the magnetic induction vector in terms of its proper modes as

B(k) =
1

c

4∑︂
j=1

E
(k)
0j (zk)b

(k)
j ei{ωt−

ω
c
[Nyy+N

(k)
zj (z−zk)]} . (3.19)

After solving the wave equation within each layer of the sample, the next
step is implementing the boundary conditions. From Maxwell’s equation 1.3, it
follows that the tangential components of the electric field vector are continuous
at every interface between any two layers. Similarly, from Maxwell’s equation
1.1, it follows that the tangential components of the magnetic induction vector
are also continuous at the interface between two layers as long as there are no
free currents present. In other words for the interface between (k − 1)th and kth

layer we can write

4∑︂
j=1

E
(k−1)
0j (zk−1)e

(k−1)
j · x =

4∑︂
j=1

E
(k)
0j (zk)e

(k)
j · xei

ω
c
N

(k)
zj tk , (3.20)

4∑︂
j=1

E
(k−1)
0j (zk−1)b

(k−1)
j · y =

4∑︂
j=1

E
(k)
0j (zk)b

(k)
j · yei

ω
c
N

(k)
zj tk , (3.21)

4∑︂
j=1

E
(k−1)
0j (zk−1)e

(k−1)
j · y =

4∑︂
j=1

E
(k)
0j (zk)e

(k)
j · yei

ω
c
N

(k)
zj tk , (3.22)

4∑︂
j=1

E
(k−1)
0j (zk−1)b

(k−1)
j · x =

4∑︂
j=1

E
(k)
0j (zk)b

(k)
j · xei

ω
c
N

(k)
zj tk , (3.23)

which can be again rewritten in matrix form as

D(k−1)E
(k−1)
0 (zk−1) = D(k)P(k)E

(k)
0 (zk) , (3.24)

where we have introduced the dynamical matrix D(k) and the propagation matrix
P(k). The dynamical matrix describes the transformation of the light wave at
the interface. Its rows are made up of x and y components of the electric and
magnetic proper modes

D(k) =

⎡⎢⎢⎢⎣
e
(k)
1 · x e

(k)
2 · x e

(k)
3 · x e

(k)
4 · x

b
(k)
1 · y b

(k)
2 · y b

(k)
3 · y b

(k)
4 · y

e
(k)
1 · y e

(k)
2 · y e

(k)
3 · y e

(k)
4 · y

b
(k)
1 · x b

(k)
2 · x b

(k)
3 · x b

(k)
4 · x

⎤⎥⎥⎥⎦ . (3.25)
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The propagation matrix P(k) describes the propagation of light through the
kth layer

P(k) =

⎡⎢⎢⎢⎢⎣
ei

ω
c
N

(k)
z1 tk 0 0 0

0 ei
ω
c
N

(k)
z2 tk 0 0

0 0 ei
ω
c
N

(k)
z3 tk 0

0 0 0 ei
ω
c
N

(k)
z4 tk

⎤⎥⎥⎥⎥⎦ . (3.26)

Multiplying 3.24 from the left by the inverse of the dynamical matrix for the
(k − 1)th layer gives us a relation between amplitudes of all the proper modes in
two adjacent layers in the form of the transfer matrix T(k−1,k)

E
(k−1)
0 = (D(k−1))−1D(k)P(k)E

(k)
0 = T(k−1,k)E

(k)
0 . (3.27)

The transfer matrix can be constructed for all interfaces except the last one.
We consider the substrate semi-infinite, meaning there is no way to construct
its propagation matrix. The transfer matrix T(N,N+1) is then defined as

E
(N)
0 = (D(N−1))−1D(N+1)E

(N+1)
0 = T(N,N+1)E

(N+1)
0 . (3.28)

Applying this procedure for each interface, we can construct the matrix M
characterising the entire anisotropic multi-layer system as

E
(0)
0 =

(︄
N+1∏︂
k=1

T(k−1,k)

)︄
E

(N+1)
0 = ME

(N+1)
0 . (3.29)

Now suppose a polarised light wave is interacting with an arbitrary multi-
layer system characterised by the matrix M. The choice of proper modes in the
optically isotropic half-space 0 is arbitrary. The incident wave can be decomposed
into two orthogonal, but not necessarily linear, proper modes e

(0)
1 and e

(0)
3 with

their respective amplitudes E
(0)
01 and E

(0)
03 . Let us assume these proper modes to

be the s and p polarisations for the following derivation. Let us assume the same
for the proper modes of the reflected wave e

(0)
2 and e

(0)
4 with amplitudes E

(0)
02 and

E
(0)
04 . We assume the same orthogonal basis of proper modes for the incident

and reflected wave except for the z-component pointing in the opposite direction.
If we define proper modes of the optically isotropic substrate analogously, we
get E(N+1)

02 , E(N+1)
04 = 0, since there is no reflected wave propagating through the

substrate. Substituting all of this into 3.29 and expressing the matrix M in
terms of its elements yields⎡⎢⎢⎢⎣

E
(0)
01

E
(0)
02

E
(0)
03

E
(0)
04

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎣
M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

⎤⎥⎥⎦
⎡⎢⎢⎣
E

(N+1)
01

0

E
(N+1)
03

0

⎤⎥⎥⎦ . (3.30)
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We can now express all the reflection coefficients according to their definitions
2.24-2.27 in terms of elements of the matrix M as

rss =

(︄
E

(0)
02

E
(0)
01

)︄
E

(0)
03 =0

=
M21M33 −M23M31

M11M33 −M13M31

, (3.31)

rsp =

(︄
E

(0)
02

E
(0)
03

)︄
E

(0)
01 =0

=
M11M23 −M21M13

M11M33 −M13M31

, (3.32)

rps = −

(︄
E

(0)
04

E
(0)
01

)︄
E

(0)
03 =0

= −M41M33 −M43M31

M11M33 −M13M31

, (3.33)

rpp = −

(︄
E

(0)
04

E
(0)
03

)︄
E

(0)
01 =0

= −M11M43 −M41M13

M11M33 −M13M31

. (3.34)

The negative sign in front of the reflection coefficients rps and rpp stems from
the proper modes chosen in the last paragraph. Contrary to 2.2, the reflected
p-polarisation does not change orientation which is compensated for by the added
minus sign.

With the calculated reflection coefficients, we have everything needed to
calculate the MO response of any arbitrary multi-layer system. Furthermore,
we may use this process in reverse and numerically determine the off-diagonal
permittivity tensor elements from the knowledge of the MO Kerr effect and the
diagonal elements for any of the geometries defined in Figure 3.1.
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Chapter 4

Experimental techniques

This chapter introduces the experimental methods utilised to prepare and subse-
quently analyse the samples studied in this work. First, pulsed laser deposition
(PLD) will be introduced as a means to grow thin layers. Afterwards, we will
present atomic force microscopy used for the analysis of sample surfaces. Lastly,
two more experimental techniques – spectroscopic ellipsometry and magneto-
optical spectroscopy – will be introduced, and their workings will be explained
in terms of the Jones calculus.

4.1 Pulsed laser deposition
Pulsed laser deposition is a physical vapour deposition technique popularised
in the late 1980s as a fast and reproducible way to grow thin oxide films. Its
main virtues are the ability to grow good quality epitaxial thin oxide films
and stoichiometric transfer between the target and the substrate [17]. These,
among others, make PLD an excellent choice for growing epitaxial films of
multicomponent inorganic materials, such as LSMO.

Figure 4.1 depicts a typical PLD set-up. A dense target made from the
material we wish to deposit is placed inside a vacuum chamber. A system of
lenses focuses short (∼ ns) high energy density (∼ J/cm2) laser pulses onto the
target. Each pulse ablates a small part of the target creating a plasma plume.
The plasma plume is launched upwards, carrying the ablated material onto the
substrate providing material flux for film growth.

In order to achieve epitaxial growth, the plume must consist of atomic, di-
atomic, or other low-mass components. This is accomplished by choosing an
ultraviolet wavelength laser and a short pulse width.1 Such pulses are strongly
absorbed by a small volume of the target [17].

PLD is often done with the presence of a background gas. The background gas
serves two purposes. First, the formation of some thin-film materials requires
a reactive species (oxides require molecular oxygen). The background gas also
serves as a protective buffer for the growing layer. Kinetic energies of the plume
can reach up to several hundred eV, enough to damage the growing film. A
background gas can reduce plume energies to much less than 1 eV [17].

1In this work, a KrF laser emitting light at 248 nm was selected.
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Figure 4.1 Schematic diagram of a PLD set-up. Pulses from the ultraviolet KrF laser are
focused by a system of lenses (L) into a vacuum chamber with a turbo-molecular pump
(TMP). The pulses impact a solid target (T), creating a plasma plume (P). The plume
carries the ablated material towards the substrate attached to a heater (H).

A post-deposition oxygen annealing is known to improve the quality of fabri-
cated thin oxide films by oxidising the film or, conversely, by removing excess
oxygen. This treatment leads to significant improvements in Curie temperature
and CMR [18].

4.2 Atomic force microscopy
Atomic force microscopy (AFM) is a surface imaging technique regarded for its
very high spatial resolution (up to 0.1 nm for vertical resolution and 1 nm for
lateral resolution [19]).

A schematic diagram of a typical AFM set-up can be seen in Figure 4.2. A
very sharp tip (∼ nm) is attached to a flexible cantilever. The analysed sample
is moved by a set of piezoelectric actuators, making the AFM tip scan along the
sample’s surface. As the tip is scanning the surface, the cantilever mechanically
bends as a result of the Van der Waals and electrostatic forces acting on the tip.
This movement is then tracked by a laser and a photodetector. A topographical
image of the sample’s surface is then obtained by relating the recorded movement
of the cantilever to the magnitude of short-range forces exerted on the tip.

The most basic mode of AFM operation is the static contact mode. In static
contact mode, the tip is dragged along the surface, and the image is constructed
directly from the cantilever’s deflection. Although this approach is simple, it
is burdened by practical difficulties. In ambient conditions, the tip is usually
attracted to the sample’s surface due to capillary condensation, making the tip
stick to the sample.
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As the tip scans the surface, the sample experiences both compressive stress
from the tip-sample interaction and shear stress related to the lateral scanning
movement. This can induce deformation in the analysed sample, or worsen
image quality by degrading the tip.

Photodetector

Detector &

Control electronics

Laser

Piezoelectric

scanner

x y
z

AFM probe

Figure 4.2 Schematic diagram of an AFM set-up. Piezoelectric scanners move with the
sample. As the sample moves, the AFM probe tip is affected by short-range forces. The
resulting movement of the tip is tracked by a laser and a photodetector, which feeds recorded
data to the detector and the control electronics.

To combat these difficulties, tapping mode AFM is utilised. In tapping mode,
the tip oscillates near its resonant frequency with a constant amplitude. The
tip is made to strike the surface during each oscillation. The oscillation energy
is set so that the tip overcomes the stickiness of the surface. The image is then
produced from the changes in oscillation amplitude caused by the differences
in surface height. This eliminates the shear stress while also subjecting the
sample to lower compressive stress [19].

4.3 Spectroscopic ellipsometry
Spectroscopic ellipsometry (SE) is an experimental technique used to analyse
the optical response of a material.

A schematic diagram of a rotating compensator ellipsometry set-up (RCE) is
depicted in Figure 4.3. First, the light from a wide-spectrum lamp passes through
the polariser P . The polarised light then reflects off sample S before passing
through a rotating compensator C, analyser A and ultimately into a detector D.
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Figure 4.3 Schematic of the rotating compensator ellipsometry set-up. Light from a
wide-spectrum lamp passes through polariser P , reflects off sample S, continuing through a
rotating compensator C, analyser A and into a detector D.

Next, we will make use of Jones formalism to calculate the resulting polar-
isation state of the detected light. We will be working in the basis of s and p
polarisations as defined in Figure 2.2.

The light from the wide-spectrum lamp is polarised by a polariser P oriented
at an angle ξ measured from the x axis. The Jones transmission matrix P of
the polariser is given by 2.34

P =

[︃
cos2 ξ sin ξ cos ξ

sin ξ cos ξ sin2 ξ

]︃
. (4.1)

Reflection off the sample is characterised by the Jones reflection matrix as
defined in 2.22. Assuming the sample is optically isotropic, we can write its
Jones reflection matrix R in a simplified diagonal form as

Rsp =

[︃
rss 0
0 rpp

]︃
. (4.2)

The rotating compensator C is a phase plate with retardance Γ and a fast
axis rotated at an angle φ from the x axis. The Jones transmission matrix of an
unrotated compensator is given by 2.35. We get the Jones transmission matrix
of the rotated compensator by rotating the coordinate system with the use of
2.18 as

R(φ)CR(−φ) =

[︃
cosφ − sinφ
sinφ cosφ

]︃ [︃
1 0
0 e−iΓ

]︃ [︃
cosφ sinφ
− sinφ cosφ

]︃
. (4.3)

The analyser A is a linear polariser oriented at an angle ζ measured from
the x axis and its Jones transmission matrix is given analogously to 4.1 by

A =

[︃
cos2 ζ sin ζ cos ζ

sin ζ cos ζ sin2 ζ

]︃
. (4.4)
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Finally, we can write the Jones vector of the detected light JOUT in agreement
with 2.37 as

JOUT = AR(φ)CR(−φ)RspPJIN , (4.5)

from which we can determine the detected intensity as

I = (JOUT)
+(JOUT) . (4.6)

Spectroscopic ellipsometry measures the change between the s and p com-
ponents of the incident wave upon reflection off the sample. This change is
expressed in terms of the complex reflectance ratio ρ defined as the ratio of the
rpp and rss elements of the sample’s reflection matrix

ρ =
rpp
rss

= tan(Ψ)ei∆ , (4.7)

where we have also introduced the ellipsometric angles Ψ and ∆. These can
be extracted from the intensity calculated according to 4.5 and 4.6. The cal-
culation will not be presented in this work as it is quite complex and can be
found in [20]. Spectral measurement of the ellipsometric angles allows us to
calculate the optical properties of the sample, namely the refraction index n
and extinction coefficient k. These two parameters are often combined into the
complex refraction index ñ = n+ ik, which is related to the diagonal element of
the permittivity tensor ε1 as

ε1 = (ñ)2 . (4.8)

In this work, we are analysing intricate multilayer samples. In order to calcu-
late the complex refraction index of a layer in such a sample, multiple reflections
inside the sample need to be considered. For that reason, the computation of
the complex refraction index is done numerically by software, typically with full
knowledge of all optical and physical parameters of layers other than the layer
of interest.

4.4 Magneto-optical spectroscopy
MO spectroscopy is a suite of highly sensitive experimental techniques capable
of measuring the, usually small, MO Kerr angles θK and εK . MO spectroscopy
can be further divided based on the quantity measured. In this work we employ
rotating analyser MO spectroscopy, which falls into the intensity based class of
MO spectroscopy measurements. It was shown that this technique can achieve
similar or even higher signal to noise ratio as the other ellipticity or azimuth
modulation based methods [21]. Its precision makes it suitable to measure
MO signals from thin-layers, which allows us to calculate their off-diagonal
permittivity tensor elements as discussed in Section 3.2.
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MO spectroscopy is fundamentally similar to SE discussed above. The main
difference is the ferromagnetic sample’s exposure to a magnetic field during
measurement, inducing optical anisotropy in the sample. The actual measure-
ment set-up differs from SE in the rotating element. We will be using a static
compensator and a rotating analyser.2 A schematic diagram of this set-up can
be found below in Figure 4.4.

P

A

Copt

D

S

M

Figure 4.4 Light from a wide-spectrum lamp passes through polariser P , reflects off
sample S with induced magnetisation M and continues onward passing through an optional
compensator Copt, analyser A and ultimately into a detector D.

Regarding the MO spectroscopy set-up itself, first light from a wide-spectrum
lamp passes through a polariser P before reflecting off the sample S placed
inside a magnetic field. The reflected beam then continues through an optional
compensator Copt, a rotating analyser A and finally into the detector D.

Analogously to SE, we will use Jones calculus and the s, p basis of linear
polarisations to calculate the detected light intensity. For the polariser P ori-
ented at an angle ξ, we will use 4.1. Transmission through the compensator with
retardance Γ will be described by 2.35. The analyser oriented at an arbitrary
angle ζ will be described by 4.4.

The Jones reflection matrix of the sample will no longer be diagonal due to
the anisotropy induced by the magnetic field and thus will have the general form
as written in 2.22. Assuming the sample to be magnetised in polar geometry
and the angle of incidence to be approximately zero, we can use identities 2.56,
2.57 and the definition of the MO Kerr angle 2.43 to rewrite the Jones reflection
matrix of the sample as

Rsp =

[︃
1 −ΦK

−ΦK −1

]︃
. (4.9)

2This set-up can also be used for SE and is commonly referred to as RAE.
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In agreement with 2.37 we can write the Jones vector of the detected light as

JOUT = ACRspPJIN . (4.10)
Let us now consider the specific case of the set-up used to analyse the samples.

The polariser P is set at 90◦, and thus the light reflecting off the samples is p-
polarised. The angle ζ of the analyser A is measured from the crossed position.
Applying the above to 4.10 yields

JOUT =

[︃
cos2 ζ sin ζ cos ζ

sin ζ cos ζ sin2 ζ

]︃ [︃
1 0
0 e−iΓ

]︃ [︃
1 −ΦK

−ΦK −1

]︃ [︃
0
1

]︃
. (4.11)

Multiplying all the Jones matrices with the Jones vector of the incident light,
we arrive at the Jones vector of detected light

JOUT =

[︃
−ΦK cos2 ζ − e−iΓ sin ζ cos ζ
−ΦK sin ζ cos ζ − e−iΓ sin2 ζ

]︃
, (4.12)

from which the light’s intensity can be calculated according to 4.6. Substituting
4.12 into 4.6 gives us the intensity of detected light as

I = sin2 ζ + |ΦK |2 cos2 ζ + sin(2ζ)Re
{︂
ΦKe

iΓ
}︂
. (4.13)

The quadratic term in ΦK can be neglected as the magnitude of the Kerr
effect of thin layers is very small. The absolute value of intensity was neglected
throughout the calculation; hence the left side of the equation should be mul-
tiplied by a multiplier I0. We should also account for dark current inside the
detector, which is done by introducing an additive constant Idark. Following
through on the above we can rewrite 4.13 in terms of the Kerr rotation θK and
Kerr ellipticity εK as

I = I0[sin
2 ζ + |ΦK |2 cos2 ζ + sin(2ζ)(θK cos Γ + εK sin Γ)] + Idark . (4.14)

The above equation enables us to calculate both the Kerr rotation and Kerr
ellipticity by conducting the following sequence of measurements. First, the
intensity is measured for a number of analyser angles ζ without a phase plate,
or in other words, with Γ = 0. Then from 4.14, we can fit the measured intensity
as a function of ζ with θK being a constant parameter for each wavelength. The
second measurement is done with the phase-plate present. One could follow the
same procedure for the Kerr ellipticity if Γ were π/2, but, unfortunately, no phase
plate can deliver constant retardance throughout a broad spectrum. The second
measurement then measures the effect of both θK and εK . Assuming the spectral
dependence of Γ is known, the intensity from the second measurement can be
fitted as a function of ζ with (θK cos Γ + εK sin Γ) being the constant parameter
for each wavelength. Since θK is already known, εK can be extracted from the
result of the fit.

The sensitivity of the measurements described above is further improved
by doing each measurement twice, once with each possible orientation of the
magnetic field in polar geometry. Taking the difference of the Kerr angles from
the two measurements with the opposite orientations of the magnetic field gives
us two times the Kerr angle while eliminating both any unwanted optical effects
and the quadratic MO Kerr effect.

31



Chapter 5

Structural and magnetic
properties of La2/3Sr1/3MnO3

The following chapter includes a brief overview of the physical properties of
La2/3Sr1/3MnO3 (LSMO). Firstly, the material structure of bulk LSMO will be
introduced. Secondly, a short review of ferromagnetism is included before we
present the magnetic properties of bulk LSMO.

5.1 Structure of bulk LSMO
LSMO is a hole-doped manganese oxide. Its ideal crystallographic structure is
the cubic perovskite. The perovskite structure is shown for an arbitrary ABO3

oxide in Figure 5.1. A-site atoms form a cubic cell. A BO6 octahedron is nested
inside this cube, with the oxygen atoms lying in the centre of the faces of the
cube. The B-site atom lies in the centre of the octahedron.

A

O

B

Figure 5.1 A schematic depiction of the ideal cubic perovskite structure ABO3. A BO6

octahedron centred at the B-site is nested inside the cube.
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The structure of manganese oxides is dictated by the tolerance factor t, which
is defined as

t :=
rA + rO√︁
2(rB + rO)

, (5.1)

where rA, rB and rO represent the ionic radii of the A and B atoms and oxygen,
respectively. For an ideal cubic perovskite structure t = 1. The structure
remains stable for 0.89 < t < 1.02 [22]. Generally, t greatly differs from 1 due to
varying cation radii leading to rhombohedral or orthorhombic structure. When
LaMnO3 is doped by Sr, it becomes rhombohedral LSMO with lattice parameters
a = 5.47 Å and α = 60.43◦ [23].

5.2 Ferromagnetism
Ferromagnetism is one of the four basic types of magnetic ordering. It is charac-
terised by the formation of magnetic domains; regions where spins of unpaired
electrons align in parallel. Naturally these domains are not uniformly aligned
throughout the material, yielding zero net magnetisation. However, these do-
mains can be aligned in the same direction by applying an external magnetic
field to the material. The resulting magnetisation as a function of the magnitude
of the external magnetic field traces a hysteresis loop, which can be seen in Figure
5.2. This loop is commonly described using three parameters. The saturation
magnetisation Ms is the maximum achievable magnetisation of the sample. The
remanent magnetisation Mr measures the remaining magnetisation after the
external magnetic field has been set to zero. Lastly, the coercivity Hc describes
the magnetic field required to set the magnetisation back to zero.

The saturation magnetisation Ms is an intrinsic property inherent to the
material itself. On the other hand, the remanent magnetisationMr and coercivity
Hc are extrinsic and thus are dependent on many external factors, among which
are the geometry of the sample, microscopic defects, thermal history and the
rate of change of the magnetic field [24].
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Figure 5.2 The hysteresis loop of a ferromagnetic material. At zero external field in an
unmagnetised virgin state. An increasing magnetic field magnetises the material until all
magnetic moments across domains are aligned and saturation magnetisation Ms is reached.
After setting the magnetic field back to zero, remanent magnetisation Mr remains. A
magnetic field of magnitude Hc is required for zero net magnetisation.

5.3 Magnetic properties of LSMO
The magnetic ordering in LSMO has been explained by C. Zener [6]. He found
that the origin of LSMO’s ferromagnetic ordering lies in the double-exchange
(DE) interaction between manganese ions of mixed valence enabled by the overlap
of manganese d-orbitals and oxygen p-orbitals.

In ambient conditions, pure LaMnO3 is neither ferromagnetic [2] nor is it a
good conductor [25]. In this stoichiometry, each manganese atom must be triply
charged resulting in the ionic composition La3+Mn3+O2−

3 . The manganese ions
in Mn3+–O2−–Mn3+ bonds present in this compound can undergo both ferromag-
netic and antiferromagnetic ordering, but only at very low temperatures [26].

Substituting some of the lanthanum atoms with strontium leads to a corre-
sponding number of Mn3+ becoming quadruply charged Mn4+ since strontium
has a maximum valence of 2+. The presence of mixed Mn3+/Mn4+ ions leads
to ferromagnetic ordering through the double exchange interaction which is
schematically depicted in Figure 5.3. In this interaction, an eg electron transfer
occurs from the Mn3+ ion to the O2− ion simultaneously with a transfer of an
electron from the O2− ion to the Mn4+ ion. The minimal energy of the system is
achieved when the spins in the Mn3+–O2−–Mn4+ and the Mn4+–O2−–Mn3+ state
point in the same direction, which leads to ferromagnetic ordering [6].

LSMO is a half-metal meaning it is a conductor for electrons with one orien-
tation of spin while being an insulator for electrons with the other orientation.
This behaviour and the conductivity of LSMO, in general, are also explained by
the DE interaction.
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Mn3+ Mn4+O2-

Mn4+ Mn3+O2-

Figure 5.3 Schematic diagram of the double exchange interaction between d-shells of
Mn3+ and Mn4+ ions via the 2p state of O2−.

The presence of Sr atoms also affects the Curie temperature (i.e. the tem-
perature below which ferromagnetic ordering takes place). The stoichiometry
La2/3Sr1/3MnO3 chosen for this work possesses the highest curie temperature of
TC ∼ 370 K [2] while also exhibiting good conductivity [25].
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Chapter 6

Investigated samples

This chapter will familiarise the reader with the investigated samples. It will
give insight into the structure and properties of LSMO thin films deposited onto
silicon with an intermediary nanosheet buffer layer.

6.1 Thin film LSMO
Depositing a material as a thin film results in modifications in its crystallographic
structure. These changes are induced by epitaxial strain caused by a difference
in lattice parameters between the substrate and the material of the thin film.
Denoting al and as as the bulk in-plane lattice parameters of the deposited
material and the substrate, respectively, lattice mismatch m can be defined as

m :=
al − as
as

. (6.1)

Negative values of m correspond to a thin film grown under tensile strain, while
positive values of m to a film grown under compressive strain.

One of the effects caused by epitaxial strain in LSMO is the change in the
ordering of the manganese atom 3d electron energy levels. For a manganese
atom in a spherically symmetric field, all five 3d energy levels are degenerated.
These five levels split into two, eg and t2g, under the effect of a crystal field
with perfect cubic symmetry. Epitaxial strain further lowers the symmetry,
which in turn causes further lifting of the degeneracy. The ferromagnetic double-
exchange interaction is mainly exhibited in structures with strongly degenerated
eg energy levels; hence epitaxial strain has been tied to suppression of the double-
exchange mechanism [21]. The formation of a magnetically inert layer at the
LSMO/substrate interface was also attributed to the suppression of the double
exchange caused by epitaxial strain [27].

Magnetic anisotropy of LSMO is also greatly affected by epitaxial strain.
For bulk LSMO, the easy axis of magnetisation lies in the pseudocubic [111]
direction [28]. Epitaxial strain typically shifts this axis into the plane of the film.
The orientation of easy axes of magnetisation exhibit strong dependence on the
type of epitaxial strain and temperature [29].
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6.2 Ca2Nb3O10 nanosheets
Growing high-quality textured LSMO thin films on low-cost substrates such
as silicon would prove beneficial for future large-scale industrial adaptation.
However, growing LSMO directly on silicon results in low crystalline quality
of the film [30] along with a major degradation of LSMO’s properties. This is
due to substantial differences in their respective crystalline structure and their
reactivity with oxygen [8]. In order to deposit LSMO with a higher crystiline
quality on silicon we introduce a nanosheet (NS) seed layer onto the substrate
to facilitate textured growth. In this study, Ca2Nb3O10 (CNO) nanosheets were
used.

CNO nanosheets are made by exfoliating KCa2Nb3O10 (KCNO) prepared by
a solid-state route from precursor oxides. KCNO crystallises in a monoclinic
structure but is usually described using a larger tetragonal unit cell. Its struc-
ture comprises a repeating motif of three perovskite layers laying in the (001)
plane and a K+ cation layer [31]. Exfoliating KCNO creates a two-dimensional
lattice of nanosheets with a square a-b plane. This lattice has a lattice pa-
rameter aNS = 0.384 nm [8], making it suitable as a seed layer for the growth
of LSMO films, as the lattice mismatch between the nanosheets and LSMO
(aLSMO = 0.386 nm) is -0.18 %. A very low lattice mismatch should mitigate
issues caused by mechanical strain illustrated in Section 6.1.

The Si substrate with the NS layer was analysed by AFM before the deposition
of LSMO. Selected images from the AFM scans are shown below in Figure 6.1.
The AFM scans show frequent overlapping of the individual nanosheets near
their edges. Occasional full overlap between two nanosheets was observed. From
multiple AFM scans, it was determined that, on average, (91 ± 2) % of the
substrate is covered by nanosheets. Additionally, average root mean square
(RMS) roughness of (0.59 ± 0.04) nm was measured. The scans also revealed
the presence of unknown agents randomly scattered throughout the surface.
Ultrasonic cleaning with acetone and ethanol baths was attempted to rid the
substrate of these impurities. This improved the situation slightly without
damaging the NS seed layer.

(a) NS/Si 5x5 µm2 (b) NS/Si 2x2 µm2

Figure 6.1 AFM tapping mode images of the nanosheet buffer layer at two levels of
magnification.
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6.3 LSMO/NS/Si thin films
Growing LSMO thin films on a CNO NS seed layer results in the growth of
(001)-textured LSMO even on amorphous substrates [8]. (001)-textured growth
was also observed in the case of the investigated samples where silicon was used
as a substrate [9].

Growing LSMO on conventionally used single-crystal oxide substrates such
as SrTiO3 (STO) results in epitaxial growth, meaning the LSMO film grows as
an extension of the substrate’s crystalline structure. Epitaxial LSMO films are
extensively studied, and their properties are well known [21], [32]. On the other
hand, a polycrystalline film is made of small, randomly oriented crystal grains.
This leads to the formation of magnetic domain walls at grain boundaries, which
inhibit LSMO’s transfer and magnetical properties [33]. A (001)-textured film
grown on an NS seed layer comprises uniformly facing grains. The grains are
oriented with their [001] crystallographic direction facing out of the plane of the
samples’ surface but are randomly rotated around the normal of the substrate.

6.4 Investigated LSMO/NS/Si films
The samples analysed in this work were deposited on a set of NS/Si substrates by
a PLD set-up described in Section 4.1. The pulse repetition rate was 2 Hz, and the
energy fluence of the KrF laser was 3 J/cm2. The deposition was performed in a
110 mTorr oxygen atmosphere with the substrate kept at 650 ◦C. Post-deposition
annealing was enacted at 75 Torr of background oxygen pressure. A series of
samples with varying thicknesses were made by calculating the number of pulses
required to grow a layer of the desired thickness. The target thicknesses of the
films were 2, 5, 7, 10, 15, 40 and 100 nm.

The prepared samples were also analysed by AFM. An AFM scan of all
samples is displayed in Figure 4.2. These scans revealed that the morphology
of the deposited film copies the morphology of the NS layer. Dots on the AFM
scans reveal a granular morphology of the surfaces of thicker samples. RMS
roughness of the 2-15 nm films is in the (0.5 ± 0.1) nm range. The roughness
then increased for the thicker films. The 40 nm sample has an RMS roughness
of 1.5 nm, while the 100 nm sample has an RMS roughness of 1.8 nm. Both the
granular structure of the films and the RMS roughness are in agreement with
the behaviour observed in [8].
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(a) 2 nm LSMO/NS/Si (b) 5 nm LSMO/NS/Si

(c) 7 nm LSMO/NS/Si (d) 10 nm LSMO/NS/Si

(e) 15 nm LSMO/NS/Si (f) 40 nm LSMO/NS/Si

(g) 100 nm LSMO/NS/Si

Figure 6.2 AFM tapping mode images for all analysed samples.
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Chapter 7

Permittivity tensor element
spectra of investigated samples

Having introduced the theory, experimental techniques and the analysed sam-
ples, in this penultimate chapter, we present the culmination of this work’s
research efforts – information about the full permittivity tensor of LSMO thin
films with varying thicknesses grown on NS/Si. First, the spectra of the diagonal
permittivity tensor elements of all studied samples will be presented. After-
wards, the diagonal permittivity tensor element spectra and MO Kerr effect
spectra will be used to numerically determine the spectra of the off-diagonal
elements of the permittivity tensor.

7.1 Diagonal elements of the permittivity tensor
The spectra of the diagonal elements of the permittivity tensors were modelled
from the ellipsometric angles measured by SE (see Figure 4.3) as a B-Spline.
B-Spline, a shorthand for basis spline, is a smooth piecewise polynomial function.
Its shape can be perfectly controlled by a defined number of control points,
making them a good choice for curve-fitting and numerical differentiation. The
samples were modelled as a series of 3 thin layers on a Si substrate. From the
top, these were an LSMO layer, an NS+LSMO effective medium approximation
(EMA) layer and a layer of SiO2. EMA allows for including layers consisting of a
mixture of materials while also accounting for the geometry of the mixture [34].
In this work, EMA was used to factor in the presence of LSMO between individual
nanosheets. A 10% LSMO content in the NS seed layer and a depolarisation
factor of 0 representing inclusions parallel to the surface was assumed based on
the AFM scans. The modelling process was carried out using the CompleteEASE
software.

The thicknesses of the NS+LSMO EMA and SiO2 layers were approximated
from SE measurements conducted first on the pure Si substrate itself and
afterwards on the NS/Si substrate. From these measurements, it was determined
that the SiO2 layer is around 4.5 nm, while the NS layer is around 2.3 nm. The
optical constants of Si and SiO2 were taken from [35]. The spectra of their
respective permittivities can be found in Appendix A.1 along with the permittivity
spectra of the NS.
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Figure 7.1 Real and imaginary parts of the diagonal elements of the permittivity tensor of
LSMO thin films with varying thicknesses grown on an NS/Si substrate.
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The spectra of the diagonal permittivity tensor elements of all analysed
samples are presented in Figure 7.1. The calculated optical constants conform
to the Kramers-Kronig relations. Analysis of the spectra of the imaginary parts
(bottom panel of Figure 7.1) reveals several trends. The position of local maxima
present in the imaginary part spectra corresponds to an electronic transition
of the same energy. First, a gradual red-shift of the absorption structure, and
hence the electronic transition, located outside the measurement bounds in
the infrared region, can be observed. The energy of these infrared electron
transitions decreases as the thickness of the LSMO film increases. This hints at
a continuous relaxation of strain within the layer as the film grows in thickness
since such a shift in the energy levels along with decreasing strain would be
consistent with the behaviour observed in [21]. There also seem to be two more
electron transitions in the 3.5 eV to 4.5 eV energy range, which is again in
agreement with [21]. These transitions move closer together with increasing
layer thickness until they are not recognisable at a glance. This phenomenon
can also be attributed to strain relaxation. Strain in the thinner layers induces
modifications in the crystalline structure of LSMO, which result in higher energy
differences between different energy levels of the manganese atom. As the strain
relaxes, these energy levels move closer together, bringing forth the behaviour
observed in Figure 7.1. The 100 nm sample exhibits an extra peak near 3 eV,
which is not visible in the spectra of other samples. It is plausible this peak forms
as an extension of the effect observable between 2–3 eV for the other samples,
but the origin of this effect is not known.

Further insight into the electronic structure of all samples could be gained
by fitting the imaginary parts of the diagonal permittivity tensor elements
by Lorentz curves. This would reveal the positions and number of electronic
transitions present for each layer, which is necessary information to draw further
conclusions about the electronic structure of analysed samples. However, this
lies outside the scope of this work.

7.2 MO Kerr effect
MOKE spectra were measured first on the set-up depicted in Figure 4.4. The mea-
surements were realised at nearly normal light incidence in a polar configuration
with the magnetic field set to 1 T and at room temperature.

The recorded MOKE spectra are shown in Figure 7.2. There we can see
that the intensity of the MO signal and shape of the MOKE spectra is heavily
dependent on thickness of the LSMO film. The thinner films, namely the 7, 10
and 15 nm samples, give MOKE spectra similar to those recorded for LSMO
films on STO [21]. On the other hand, a very faint MO signal was recorded even
from the 2 nm thick sample. This is intriguing when compared to the behaviour
observed in [36], where it was found that approximately the first six monolayers
(∼ 2 nm) of LSMO grown on STO are magnetically inert due to an interplay of
mechanical strain and interface effects suppressing the DE mechanism. This
hints at ferromagnetic ordering taking place from a lower number of monolayers
owing to lower lattice mismatch.
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Figure 7.2 Kerr rotation and Kerr ellipticity of LSMO thin films with varying thicknesses
grown on an NS/Si substrate. Data corresponding to the 2 nm LSMO film were multiplied
tenfold for better readability.
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The 40 nm LSMO film had the largest recorded MOKE from all the samples.
A supplementary reflectometry measurement conducted on it revealed very low
reflectivity of the sample (< 10 %) in the 2.4-3.4 eV energy range. Looking at the
definition of MOKE 2.43, one can deduce that a small value of rss would explain
the unusually large magnitude of Kerr rotation and Kerr ellipticity.

The closest published comparison to the MOKE spectra of the 100 nm sample
we found is in [37], where they analyse a 100 nm LSMO film grown on LaAlO3

(LAO). From [37], we see that the magnitude of the recorded MOKE is comparable
to that of the film grown on LAO. LSMO on LAO grows under considerable
compressive strain due to its lattice mismatch of m = 2.27 %, which leads to a
degradation of LSMO’s magnetical properties. However, at a film thickness of
100 nm this strain is partially relaxed, explaining the similarity in magnitude
of the recorded MO response between LSMO/LAO and the investigated samples.

7.3 Off-diagonal elements of the permittivity
tensor

The spectra of the off-diagonal elements of the permittivity tensor of all but the
100 nm sample were numerically determined by the process illustrated in 3.2.
The algorithm didn’t converge in the case of the 100 nm sample. The suspected
cause of this behaviour is incident light not being able to interact with the whole
of the used multi-layer model due to non-negligible absorption in some parts of
the visible light spectrum. The absorption coefficient spectrum of the 100 nm
sample is included in appendix A.2. The Kerr spectra of the 100 nm sample were
accurately simulated by Yeh formalism using ε2 spectra of the 40 nm sample
(presented in appendix A.3). This means there is little difference in the ε2 spectra
between the 40 nm and 100 nm samples. The ε2 spectra of the 100 nm sample
were approximated by the bulk formula. The bulk formula describes the MO
response of a semi-infinite material, and its derivation can be found in [14].

The spectra of the off-diagonal permittivity tensor element of all samples
are presented in Figure 7.3. There we can see that the magnitude of the spectra
generally increases with film thickness. This can be attributed to gradual
strain relaxation enabling stronger ferromagnetic ordering as the film grows
in thickness. The main feature of all the spectra is the spectroscopic structure
(a peak in the real part and an S shape in the imaginary part) around 3.6 eV.
This feature has been shown in literature to correspond to an already reported
electronic transition from the O 2p state into the Mn t2g states. Its presence has
been reported for bulk LSMO [38], films grown on single-crystal substrates [39],
[37], as well as NS/Si [40]. A neighbouring spectroscopic structure manifested as
a peak in the imaginary part of the ε2 spectra of the thinner films at around 3.25
eV. This peak and the peak located at around 3.5 eV merge together in the spectra
of the 40 nm and 100 nm samples. Such behaviour abides by the established
motif of strain in the thinner layers inducing larger splitting of energy levels
of the manganese ion via the deformation of the oxygen octahedra. As the
strain relaxes in the thicker films, these split energy levels move closer together,
making them mutually unrecognisable. We can see a similar effect happen-
ing with the peak sitting at around 2.25 eV in the imaginary part of the ε2 spectra.
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Figure 7.3 Real and imaginary parts of the off-diagonal elements of the permittivity tensor
of LSMO thin films with varying thicknesses grown on an NS/Si substrate.
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The 2 nm sample is a clear outlier in the series. Judging by its very weak MO
response and these spectra, it seems the 2 nm sample has its Curie temperature
near room temperature. The Curie temperature of LSMO films is known to
decrease with increasing strain [41], and the spectra show a clear trend of thinner
layers experiencing larger strain.

The spectra of the 100 nm sample show an extra spectroscopic structure
centred at 3 eV. This structure is also visible in the spectra of the diagonal
elements of the permittivity tensor in Figure 7.1 and the MOKE spectra in
Figure 7.2. It is important to note, that the absorption coefficient of the 100 nm
sample (See Appendix A.2) decreases to less than half its UV value for photon
energies less than 3.5 eV. Hence the bulk formula is a worse approximation for
lower photon energies and can produce unnatural artefacts in the infrared part
of the spectrum.
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Conclusion

The thickness-dependent development of optical and magneto-optical properties
of LSMO films grown on an NS/Si substrate was analysed using SE and MO
spectroscopy. The off-diagonal elements of the samples’ permittivity tensors were
then numerically determined from the acquired data. The series of investigated
samples showed gradual strain relaxation with increasing layer thickness, which
was observable as systematic changes to known electronic transitions of LSMO.

The most notable effect observed was the splitting of peaks in the permittivity
tensor element spectra of the thinner samples. This can be explained by the larger
strain within the thinner films causing more pronounced defects in the crystalline
structure. The deformation of the crystalline structure leads to a larger splitting
of the energy levels in the electronic structure of LSMO, which manifests itself
as a bigger number of observable electronic transitions in the permittivity tensor
element spectra. This occurs due to a lowering of the symmetry of the oxygen
octahedra and concurrent lifting of the degeneracy of the electron energy levels
in the manganese ion. A steady increase in the magnitude of the off-diagonal
element of the permittivity tensor spectra with increasing film thickness was
also recorded. The increasing MO effect of the samples as they grow in thickness
can also be attributed to strain relaxation and better crystalline growth, as strain
and bad crystalline quality inhibit the double-exchange interaction responsible
for the ferromagnetic ordering in LSMO.

A set of textured high-quality LSMO films was successfully grown on a silicon
substrate with a CNO seed layer. The LSMO/NS/Si thin films exhibit optical
and magneto-optical properties comparable to LSMO films grown on STO. A
faint MO response was recorded from our 2 nm sample, which could hint at
ferromagnetic ordering taking place at lower thicknesses than was observed
for films grown on STO. This could be explained by the lower lattice mismatch
between LSMO and CNO inducing lower strain in the grown films.

A more thorough examination of the electronic structure and temperature-
based measurements are planned in order to gain further insight into the for-
mation of optical and magneto-optical of LSMO/NS/Si thin films.
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Appendix A

Supplementary graphs

A.1 Diagonal elements of the permittivity ten-
sors of selected materials

Figure A.1 Optical constants of Si used for modelling our samples. Data taken from [35].
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Figure A.2 Optical constants of native SiO2 used for modelling our samples. Data taken
from [35].

Figure A.3 Optical constants of the CNO nanosheet buffer layer.
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A.2 100 nm LSMO/NS/Si absorption coefficient

Figure A.4 The absorption coefficient spectrum of the 100 nm LSMO/NS/Si sample.
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A.3 Simulated MOKE of the 100 nm sample

Figure A.5 The recorded MOKE spectrum of the 100 nm sample and the MOKE spectrum
simulated from ε2 spectra of the 40 nm sample using Yeh formalism.
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