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Introduction

Over the last few decades, various definitions of the so-called statistical depth
function have been introduced. In essence, a statistical depth function is a tool
used to determine how “central” a particular point in Rd is with respect to a
probability distribution in the same space. The function assigns greater values to
points that are situated nearer to the distribution’s center, while smaller values are
assigned to points that are further from the center. The rationale for introducing
a depth function is to extend the idea of quantiles beyond one-dimensional data
and into multi-dimensional spaces. This extension is driven by the need to identify
central tendencies within datasets that have multiple dimensions, similar to how
quantiles are used to identify central tendencies in one-dimensional data.

Figure 1: The figure displays a sample of 100 points randomly drawn
from a standard bivariate normal distribution. The assigned value of the
simplicial depth function for each point is represented by its z-coordinate.
Points with higher depth are considered to be more centrally located,
whereas those with lower depth are positioned towards the distribution’s
periphery. The point with the greatest depth can be viewed as a
generalization of a median to higher dimensions.
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Bearing in mind the importance of quantiles in nonparametric statistics, it
is of no surprise that this generalization has become increasingly pursued over
the years. The quantile function in R relies on the ordering of data, a concept
that is relatively straightforward to define in the one-dimensional case due to
the natural ordering of real numbers. However, there is no equivalent canonical
ordering in the multivariate scenario, which makes the generalization of quantiles
for multivariate data more challenging and allows for multiple definitions to be
introduced. One such definition is the simplicial depth, to which this work is
dedicated.

The simplicial depth function was first introduced in 1988 by Liu [11]. Since
then, multiple attempts have been made to alter and revise Liu’s original definition
of simplicial depth. In Chapter 1 we will discuss and compare a few of them.
Naturally, there are some essential properties which are desired for a depth
function to possess, and so our assessments will be based on these properties.
Since the concept of simplicial depth is fairly geometrical, theorems and definitions
will be often times accompanied by illustrations to enhance understanding.

In Chapter 2, our focus shifts towards exploring the characteristics of a revised
definition of the simplicial depth function. Specifically, we examine the sample
simplicial depth that was initially proposed by Burr, Rafalin and Souvaine in [5].
However, our investigation revealed an error in their work that led to several
unpleasant consequences regarding their findings. Thus, our objective is to rectify
their reasoning and, in some instances, even expand the theory further.

Lastly, in final Chapter 3 we unveil a relationship between simplicial depth
and Sylvester’s four-point problem. Consequently, we discuss a minor paradox
that we came across during our investigation. This requires us to present our
findings on the computation of population simplicial depth. To be more specific,
we provide the exact value of the simplicial depth of the centroid of a triangle
in R2, with respect to the uniform continuous distribution on that triangle in the
same space. To the best of our knowledge, such result is original.
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1 Simplicial depth

The purpose of this chapter is to summarize some of the main definitions
that have arisen along the way of fiddling with the simplicial depth function.
Each of these definitions is essentially a variation of the original concept with
minor alterations. In spite of that, their behavior may differ greatly, as will be
demonstrated on examples. Then, after introducing all the necessary terminology,
we will provide rigorous proofs for the four primary properties of a depth function.

1.1 General depth function
If not stated otherwise, consider d to be a natural number. All random

variables in the thesis are defined on a common probability space (Ω,A,P). By
P(Rd) we will understand the class of all distributions on the Borel sets in Rd

and by PX the distribution of a given random vector X. In the introduction
we slightly touched what the general notion of statistical depth means. For
further analysis, however, it is important to formulate it more precisely. Several
intuitively desirable properties were formulated by Zuo and Serfling [19] in a
general definition of depth function. In their work, the attention was confined to
depth functions that are nonnegative and bounded. For such functions were then
formulated the following four properties:

(P1) Affine invariance. The depth of a point x ∈ Rd should not depend on the
underlying coordinate system.

(P2) Maximality at center. For a distribution having a uniquely defined point of
symmetry (with respect to some notion of symmetry), the depth function
should attain maximum value at that point.

(P3) Monotonicity relative to the deepest point. As a point x ∈ Rd moves away
from the point with the maximal depth function value along any fixed ray
through the “deepest” point, the depth at x should decrease monotonically.

(P4) Vanishing at infinity As ∥x∥ approaches infinity, the depth of a point x
should approach zero.

Putting all four main properties together, we arrive at Zuo’s and Serfling’s
general notion of a depth function.

Definition 1 (statistical depth function). Let the mapping D(·; ·) : Rd×P(Rd) −→
R1 be bounded, non-negative, that satisfies the following conditions:
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(i) D(Ax + b; PAX+b) = D(x; PX) holds for any random vector X in Rd, any
non-singular matrix A ∈ Rd×d and any vector b ∈ Rd;

(ii) D(θ; PX) = supx∈Rd D(x; PX) holds for any PX that is symmetric about
θ ∈ Rd;

(iii) For any PX having the deepest point (point with the highest depth) θ and
any λ ∈ [0,1], we have D(x; PX) ≤ D(λx + (1− λ)θ; PX);

(iv) lim∥x∥−→∞ D(x; PX) = 0.

Then D(·; PX) is called statistical depth function.

In Definition 1 we used the term “symmetric about θ.” Since multiple notions
of multi-dimensional symmetry are possible, we introduce three that are of our
highest interest.

Definition 2 (halfspace). Let u ∈ Rd be an arbitrary unit vector (that is ∥u∥ = 1)
and c ∈ R a constant. The set of points Hu,c = {x ∈ Rd : u⊤x ≤ c} defines
a closed halfspace in Rd. Its interior is an open halfspace, and its boundary
{x : u⊤x = c} defines a hyperplane.

Definition 3 (multivariate symmetry). Let θ ∈ Rd and let X be a random vector
in Rd. Its distribution is said to be:

(i) centrally symmetric about θ if P(X − θ ∈ H) = P(X − θ ∈ −H), for all
H ⊂ Rd, H is a closed halfspace;

(ii) angularly symmetric about θ if P(X − θ ∈ H) = P(X − θ ∈ −H), for all
H ⊂ Rd, H is a closed halfspace with the origin on its boundary;

(iii) halfspace symmetric about θ if P(X ∈ H) ≥ 1/2 for all H ⊂ Rd, H is a
closed halfspace with θ on its boundary.

The definitions of central and angular symmetry are not in their original form.
However, the conditions above are equivalent to the original ones as was shown
for central symmetry by Zuo and Serfling in [20, Lemma 2.1] and indirectly1 for
angular symmetry by Rousseeuw and Struyf [16, Theorem 1]. We opt to use
these alternative definitions, since it is now straightforward to see the following
implications:

C-symmetry =⇒ A-symmetry =⇒ H-symmetry,

where C,A,H will abbreviate central, angular and halfspace, respectively. The
converse implications do not hold as can be seen in Figure 1.1.

1Even though it was not stated explicitly, it follows from their work, which can be seen
in [21, Theorem 7].
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Figure 1.1: H-symmetry, not A-symmetry (left; d = 2): consider
a discrete probability distribution PX , whose support is comprised of
points A,B,C and D as in the figure, with the corresponding probability
displayed above each point. Then, PX is trivially H-symmetric about the
origin D. However, PX is not A-symmetric; for u = (−1,− 1)⊤ we have
P(X ∈ Hu,0) = 5/6, while P(X ∈ −Hu,0) = 4/6.
A-symmetry, not C-symmetry (right; d = 2): take a uniform discrete
probability distribution PX at points E,F,G and H arranged as in the
figure. Then PX is A-symmetric, while not C-symmetric (about the
origin). For u = (−1, − 1)⊤ we have P(X ∈ Hu,−1) = 0 ̸= 1/4 =
P(X ∈ −Hu,−1), contradicting the definition of C-symmetry.

1.2 Definitions and terminology
At first, let us start with defining the notion of a simplex upon which the

whole concept of simplicial depth stands.

Definition 4 (affine and convex hull). For K ⊂ Rd, K ̸= ∅ we define an affine
hull and convex hull as

aff(K) =
{︄∑︂

x∈I

λ(x)x :
∑︂
x∈I

λ(x) = 1, ∅ ≠ I ⊂ K, I is finite
}︄

,

conv(K) =
{︄∑︂

x∈I

λ(x)x : λ(x) ≥ 0 ∀x ∈ I,
∑︂
x∈I

λ(x) = 1, ∅ ≠ I ⊂ K, I is finite
}︄

,

respectively.

Definition 5 (simplex). By k-dimensional simplex (k-simplex for short) S with
vertices x1, . . . ,xk+1 ∈ Rd, where k ≤ d, we understand the convex hull of the set
of points {x1, . . . ,xk+1}. We denote it by S(x1, . . . ,xk+1). Additionally, by writing
simplex we will always understand a d-simplex.

0-simplex 1-simplex 2-simplex 3-simplex
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Definition 6 (simplicial depth). The simplicial depth of a point x in Rd with
respect to PX ∈ P(Rd) is defined to be the probability that x belongs to a random
simplex in Rd, that is,

SD(x; PX) = P(x ∈ S(X1, . . . , Xd+1)), (1.1)

where X1, . . . , Xd+1 is a random sample from PX .

Definition 6 is the original population notion of the simplicial depth introduced
by Liu [11]. Note that with this definition we use the word population. One of
the main motivations to define the depth function was to find the multivariate
median of some given dataset. The probability measure from which our dataset
comes is often unknown and only a sample of points x1, . . . ,xn is observed. To
help us define the sample version of simplicial depth we represent the distribution
of our data by an empirical measure Pn̂ ∈ P(Rd). The probability distribution
Pn̂ corresponds to n (possibly repeated) points x1, . . . ,xn ∈ Rd, with mass 1/n
attached to each of them.

Definition 7 (sample simplicial depth). Let x1, . . . ,xn ∈ Rd be observed data
points and let Pn̂ ∈ P(Rd) denote the corresponding empirical measure. The
sample counterpart to the population simplicial depth is then defined as

SDclosed
n (x; Pn̂) = 1(︂

n
d+1

)︂ ∑︂
1≤i1<···<id+1≤n

I(x ∈ S(xi1 , . . . , xid+1)), (1.2)

where I denotes the indicator function.

From here we can see that the sample simplicial depth of a point is basically
the proportion of simplices that contain x to the total number of

(︂
n

d+1

)︂
simplices,

where we only consider simplices generated by distinct sample points (which may
nonetheless repeat, if the location of several sample points is the same). The
reason for including the term “closed” in reference to SDn will become clearer in
what follows later in this chapter.
Notation. Occasionally, we may only be concerned with the relative order of the
sample simplicial depth of points. In such scenarios, we can disregard the fraction
1/
(︂

n
d+1

)︂
in (1.2), as it is the same for every point. To denote this modified depth

function, we use a distinct font type:

SDclosed
n (x; P̂ n) =

(︄
n

d + 1

)︄
· SDclosed

n (x; P̂ n).

If it is clear from the context, we will refer to this modified sample simplicial
depth simply as to the sample simplicial depth.

Next, in order to prevent any potential confusion, we introduce a set of
supplementary definitions that will help to disambiguate certain concepts later
on.

• To a point that is part of a dataset is referred to as a data point.

• To a non-dataset point is referred to as a position.
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• A convex polytope of dimension k (or shortly k-polytope) is a bounded
non-empty intersection of finitely many closed halfspaces in Rd, where
the dimension refers to the dimension of the smallest affine subspace of
Rd that contains the entire polytope. One example of a k-polytope is a
non-degenerate k-simplex.

• A face of a d-polytope D is defined as either D itself, or a non-empty
subset of D of the form D∩ h, where h is a hyperplane such that D is fully
contained in one of the closed halfspaces determined by h. Observe that
each face of D is a convex polytope of some dimension less than or equal
to d. This is because D is a bounded intersection of finitely many halfspaces
and h is the intersection of two halfspaces.

• By a k-dimensional face (k-face for short) of a d-polytope D for 0 ≤ k ≤ d
we understand a face of D of dimension k, where the dimension of a face
is the dimension of the smallest affine subspace that contains it. Notice,
that the k-face of a d-simplex is always a k-simplex. For this reason, terms
k-face of a d-simplex and k-simplex can be used synonymously.

h

h

D D

1-face
0-face

Figure 1.2: The illustrations of a 2-polytope D and its 1-face (left, bold
line segment) and 0-face (right, cross).

• A facet of a d-polytope D is defined as a (d− 1)-face of D.

• Let S be a dataset of n points in Rd in general position,2 where n ≥ d + 1.
All possible (d−1)-simplices, defined by d data points from S, subdivide Rd

into regions. And so, last but not least a cell is the set of all positions inside
the convex hull of S that can be connected by a line segment which does
not intersect any (d− 1)-simplex induced by the observed data points. The
closure of a cell classifies as a d-polytope. On the other hand, a cell can be
viewed as the interior of some d-polytope. For illustrations see Figure 1.3.

Before we proceed to the revised definitions of the sample simplicial depth, we
may want to look at a motivation for why were these other definitions proposed
in the first place. Among the problems that arise with Liu’s definition of depth
function in the finite sample case is the (sometimes) unwanted discontinuity. It
is not difficult to see that the depth of all positions on the boundary of a cell
is at least the depth of a position in its interior. In fact, it is usually the case
that the depth values on the boundaries are higher than the depth in each of the
adjacent cells. To demonstrate why this might be a problem we use the examples
presented in Figure 1.4 below.

2A set of at least d + 1 points in Rd is said to lie in general position if no d + 1 of these
points lie on the same hyperplane.
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position

facet

cell

data point

Figure 1.3: Terminology introduced above depicted in 2-dimensional
space (left) and 3-dimensional space (middle and right). A facet of
a simplex for d = 2 is a line segment with data points as endpoints
(displayed in a red ellipse), whereas a facet of a simplex for d = 3 is a
closed triangle with data points as vertices (displayed in red). In these
illustrations, a cell for d = 2 is an open triangle and a cell for d = 3 is
an open tetrahedron (both displayed in orange). For clarity, all of the
cells in the middle picture were split apart in the right hand panel of the
figure.

0 1 3-3

1

-1

1-1

43

2

2

3

-1 2

4 5 3 3

Figure 1.4: (left; d = 1): Consider a dataset {−3,−1, 1, 3}. The
corresponding empirical measure P4̂ is C-symmetric about 0 and
an easy calculation gives SDclosed

4 (0; P4̂) = 4, SDclosed
4 (1; P4̂) = 5,

violating both (P2) and (P3). The sample simplicial depth of points
is displayed in red and by the convention below Definition 7 the
fraction 1/

(︂
4
2

)︂
is not included. (right; d = 2): Consider a dataset

{(−1, 0)⊤, (1, 0)⊤, (0,−1)⊤, (0, 1)⊤}. Then, the corresponding empirical
measure P4̂ is C-symmetric about (0,0)⊤ and, as can be seen in the figure,
both (P2) and (P3) are satisfied.

After viewing the example depicted on the left in Figure 1.4, one could inquire
whether open simplices would not be a more suitable option compared to closed
ones. In fact, several authors argue that a depth based on open simplices is to
be preferred [6, 7]. Thus, the definition changes to

SDopen
n (x; Pn̂) = 1(︂

n
d+1

)︂ ∑︂
1≤i1<···<id+1≤n

I(x ∈ int(S(xi1 , . . . , xid+1))), (1.3)

where by the interior of S ⊂ Rd, denoted by int(S), we understand the union of all
subsets of S that are open in Rd. Analogously to the notation below Definition 7
we define

SDopen
n (x; P̂ n) =

(︄
n

d + 1

)︄
· SDopen

n (x; Pn̂).
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To see how using open simplices behaves in the counterexamples from Figure 1.4
we refer to Figure 1.5.

0 1 3-3

1

-1

1-1

00

0

2

1

-1 2

4 2 3 0

Figure 1.5: This time we used SDopen
4 to calculate the corresponding

depth. Apparently, the use of open simplices fixed property (P2) in our
counterexample on the left. However, (P3) still does not hold. What is
worse, the example on the right now violates both (P2) and (P3).

Figures 1.4 and 1.5 suggest another solution to this problem. Using closed
simplices resulted in the depth of positions lying on the boundary of a cell being
greater or equal to those lying inside that cell. Meanwhile, using open simplices
did the opposite. That is, the depth of positions inside the cell was greater than
or equal to those lying on the boundary of that cell. In [4, 5], Burr, Rafalin and
Souvaine came up with an idea to combine both definitions in order to cancel
out the above mentioned inconveniences. Their idea was based upon a simple
averaging of open and closed simplices:

SDavg
n (x; Pn̂) = 1

2(SDclosed
n (x; Pn̂) + SDopen

n (x; Pn̂)); (1.4)

SDavg
n (x; P̂ n) =

(︄
n

d + 1

)︄
· SDavg

n (x; Pn̂).

In Figure 1.6, we revisit the counterexamples presented earlier, but this time we
use SDavg

n .

0 1 3-3

1

-1

1-1

21.5

1

2

2

-1 2

4 3.5 3 1.5

Figure 1.6: Indeed, the behavior of SDavg
4 in the given examples seems

promising, since (P2) and (P3) are satisfied in both of them.

To wrap up this section we formulate the following observation.
Observation 1. Consider a set of observed data points and the corresponding
empirical measure P̂ n. Regardless of the type of the sample simplicial depth used,
i.e., SDclosed

n , SDopen
n , SDavg

n , the sample simplicial depth of any position x within
a cell remains the same, that is SDclosed

n (x; P̂ n) = SDopen
n (x; P̂ n) = SDavg

n (x; P̂ n).
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Proof. From the definition of a cell, we have that any position x inside a
cell does not intersect any (d− 1)-simplex induced by the observed data points.
Alternatively, we can say that no facet of any simplex contains x. Thus, the
simplices containing the position x must contain it in their interior. From that
follows SDclosed

n (x; P̂ n) = SDopen
n (x; P̂ n) and therefore by the definition of SDavg

n ,
also SDclosed

n (x; P̂ n) = SDavg
n (x; P̂ n).

1.3 Properties
In this section, we summarize several proven properties that indicate the

relevance of using simplicial depth. Our starting point is to verify the consistency
of the sample simplicial depth. Afterwards, we prove the four main properties
(P1)-(P4) from Section 1.1 for the population simplicial depth.

1.3.1 Consistency
Probably the most important aspect of any depth function is whether its

sample version converges to the population counterpart. In our case, it is indeed
possible to prove that the sample simplicial depth is uniformly consistent and
to show that, we will help ourselves with known results. However, in our first
theorem below, the notion of a random empirical measure is used, and so we need
to define it beforehand.

Definition 8 (random empirical measure). Let X1, X2, . . . , Xn be a random
sample from PX ∈ P(Rd). The random empirical measure Pn is a mapping from
B(Rd)× Ω to [0,1] defined as

Pn(A; ω) = 1
n

n∑︂
i=1

δXi(ω)(A), A ∈ B(Rd), ω ∈ Ω,

where δy is the Dirac measure at y ∈ Rd and B(Rd) denotes the Borel σ-algebra
on Rd.

Note. The difference between Pn̂ and Pn is in randomness. While the empirical
measure Pn̂ was deterministic (non-random), constructed from one realization
of a random sample, the random empirical measure Pn is constructed using the
random sample “directly.” Apart from this, notice that for each ω from Ω the
map Pn(·; ω) is a probability measure. That follows from the fact that a Dirac
measure is a probability measure and the average of a finite number of probability
measures is also a probability measure. Further in this subsection, the notation
Pn(ω) is used as a shorthand for Pn(·; ω).

Theorem 1. Let X1, X2, . . . , Xn be a random sample from PX ∈ P(Rd) and
Pn ∈ P(Rd) the corresponding random empirical measure. Then the following
holds:

P
(︄{︄

ω ∈ Ω : sup
x∈Rd

|SD(x; Pn(ω))− SD(x; PX)| n−→∞−−−−→ 0
}︄)︄

= 1.
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Theorem 2. The following statement holds true:

sup
Pn̂

sup
x∈Rd

|SDclosed
n (x; Pn̂)− SD(x; Pn̂)| = O(1/n),

where the first supremum is taken over all empirical measures Pn̂ ∈ P(Rd) and
O refers to the “big O notation.”3

The proof of Theorem 1 can be found in Dümbgen’s paper [9, Corollary 1]
and Theorem 2 was proven by Nagy in [14, Theorem 1]. Although not explicitly
stated by Dümbgen in [9], the following corollary can be easily derived from his
work.
Corollary. The sample simplicial depth is uniformly consistent, meaning

P
(︄{︄

ω ∈ Ω : sup
x∈Rd

|SDclosed
n (x; Pn(ω))− SD(x; PX)| n−→∞−−−−→ 0

}︄)︄
= 1. (1.5)

Proof. (Corollary) From Theorem 2 we have

sup
x∈Rd

|SDclosed
n (x; Pn̂)− SD(x; Pn̂)| n−→∞−−−−→ 0

for all empirical measures Pn̂ ∈ P(Rd). Now, as stated earlier, Pn(ω) is a
probability measure for all ω ∈ Ω. More specifically, it is an empirical measure
corresponding to n points in Rd. Therefore, by Theorem 2, for every fixed ω ∈ Ω
and thus a fixed sequence of empirical measures {Pn(ω)}∞

n=1 we can write

sup
x∈Rd

|SDclosed
n (x; Pn(ω))− SD(x; Pn(ω))| n−→∞−−−−→ 0. (1.6)

Using the triangle inequality we obtain that

sup
x∈Rd

|SDclosed
n (x; Pn(ω))− SD(x; PX)| ≤ sup

x∈Rd

|SDclosed
n (x; Pn(ω))− SD(x; Pn(ω))|

+ sup
x∈Rd

|SD(x; Pn(ω))− SD(x; PX)|

for all ω ∈ Ω. And finally, by Theorem 1 and (1.6), the right-hand side of the
triangle inequality equation goes to 0 almost surely. This completes the proof.

1.3.2 Affine invariance
Proving the first of our four main properties in its full generality can be done

without great difficulties. The idea of the proof of Theorem 3 was outlined in [12].

Theorem 3. Let A ∈ Rd×d be a non-singular matrix and b ∈ Rd. Then for all
x ∈ Rd and any random vector X in Rd we have

SD(Ax + b; PAX+b) = SD(x; PX).
3By an = O(bn) as n −→ ∞ we mean that the sequence {an/bn}∞

n=1 is well defined and
bounded.
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Proof. A point x ∈ Rd is contained in a simplex S(x1, . . . , xd+1) if x can be
written as convex combination of the given simplex vertices. Therefore, by the
definition of a convex combination, checking whether or not a point x is contained
in a simplex S(x1, . . . , xd+1) amounts to solving the following system of d+1 linear
equations for ai, i ∈ {1,2,...,d + 1}

x = a1x1 + a2x2 + · · ·+ ad+1xd+1,

1 = a1 + a2 + · · ·+ ad+1,

ai ≥ 0, i ∈ {1, 2, . . . ,d + 1}.
(1.7)

Consequently, we claim that the following equivalence holds

x ∈ S(x1, . . . ,xd+1) ⇐⇒ Ax + b ∈ S(Ax1 + b, . . . , Axd+1 + b). (1.8)

To prove our claim, let us write

Ax + b = a1(Ax1 + b) + a2(Ax2 + b) · · ·+ ad+1(Axd+1 + b)
= A(a1x1 + a2x2 + · · ·+ ad+1xd+1) + b(a1 + · · ·+ ad+1)
= A(a1x1 + a2x2 + · · ·+ ad+1xd+1) + b.

Subtracting b from both sides of the equation and then multiplying by A−1 from
the left gives

x = a1x1 + a2x2 + · · ·+ ad+1xd+1.

From here we can see that whenever x belongs to S(x1, . . . ,xd+1), meaning that
there exists a set of coefficients {ai}d+1

i=1 satisfying the conditions in the box
(1.7), then the same set of coefficients can be used to write Ax + b as a convex
combination of the points Ax1 + b, . . . , Axd+1 + b, meaning that Ax + b belongs
to S(Ax1 + b, . . . , Axd+1 + b). Thus, we have proven one implication of the
equivalence (1.8) and by the same line of reasoning, the converse implication holds
true as well. Hence, by the definition of the simplicial depth (1.1) it follows that
SD(Ax + b; PAX+b) = SD(x; PX) and the proof of (P1) is therefore complete.

1.3.3 Maximality at center and monotonicity
Properties (P2) and (P3), in contrast to (P1), were only proved for absolutely

continuous and angularly symmetric distributions in [12]. However, as mentioned
in [14], the proof can be generalized to all distributions PX satisfying the so called
smoothness condition

PX(h) = 0, for every h ⊂ Rd, h is a hyperplane, (1.9)

along with A-symmetry. To all distributions PX satisfying (1.9) is further referred
to as smooth distributions. Moreover, it is sufficient to require only H-symmetry.
Let θ be the center of H-symmetry. Indeed, by the definition of H-symmetry and
the assumption of smoothness (1.9), we have

P(X − θ ∈ H) = P(X − θ ∈ −H) = 1
2 , for all halfspaces H ∈ Rd,

which by Definition 3 implies A-symmetry.

13



Theorem 4. If PX ∈ P(Rd) is smooth and halfspace symmetric about the origin,
then SD(αx; PX) is a monotone non-increasing in α ≥ 0 for all x ∈ Rd.

Proof. Let d = 2 for simplicity. The object of our interest is the difference
SD(x; PX)−SD(αx; PX), where α ≥ 1. Only two types of events (see Figure 1.7)
contribute to this difference:

Ain = [arrow from x to αx enters the random simplex S(X1,X2,X3)],
Aout = [arrow from x to αx leaves the random simplex S(X1,X2,X3)].

Making our argument precise requires additional notation (for illustrations see

x

αx

0

αx

x

0
X1

X2

X3

X1

X2

X3

event Aout event Ain

x

αx

0

X1

X2X3 x

αx

0

both Aout and Ain neither Aout nor Ain

X2

X1

X3

Figure 1.7: Some examples of the notation Ain and Aout.

Figure 1.8). We write a, b for the line segment from a to b and ←→a,b for the line
containing two distinct points a,b ∈ Rd (in this proof d = 2). The line ←→a, b
divides R2 into two halfplanes. If that line does not contain the origin, we call
the closed halfplane with the boundary ←→a, b which contains the origin the “inner
side,” denoted by I(a,b). Let x and α ≥ 1 be fixed. Let us denote by C the set
of all possible pairs (a,b) ∈ R2 × R2 whose line segment intersects x, αx, that is

C = {(a,b) : a,b ∩ x, αx ̸= ∅}.

Let us further define events Aij
in and Aij

out for i,j,k ∈ {1,2,3}, i ̸= j ̸= k:

Aij
in = [{(Xi, Xj) ∈ C} ∩ {Xk /∈ int(I(Xi, Xj))}],

Aij
out = [{(Xi, Xj) ∈ C} ∩ {Xk ∈ I(Xi, Xj)}].

Instances of events A23
out, A12

in, A13
in can be seen in Figure 1.7, more precisely in

the subfigures: top left, top right, bottom left, respectively. Clearly, Ain is a
subset of A12

in ∪ A23
in ∪ A13

in. Only those events, where all three points X1, X2, X3

14



x

αx

0

b1

a1I(a1, b1)

b2

a2

Figure 1.8: To clarify the notation, the pair (a1, b1) belongs to the set
C, while the pair (a2, b2) does not, since the line segment a2,b2 does not
intersect the line segment x,αx . The line←−→a1,b1 divides the plane into two
halfplanes, where I(a1,b1) denotes the one containing the origin (blue
arrows).

lie on a hyperplane (a line in this case) containing x, contribute to the union
while not to the set Ain. Therefore, using the assumption of smoothness, we get
P(Ain) = P(A12

in ∪ A23
in ∪ A13

in). Similar remark holds for the set Aout.
Let i,j and k continue to refer to the same values as before. Then,

Aij
in ∩ Ajk

in = [{(Xi, Xj) ∈ C} ∩ {Xk /∈ int I(Xi, Xj)}
∩ {(Xj, Xk) ∈ C} ∩ {Xi /∈ int I(Xj, Xk)}].

This means that in order for an event to belong to this intersection, the only
possible configuration of points Xi,Xj,Xk is for them to lie on a line, with Xi, Xj

and Xj, Xk intersecting x,αx. And so, using the assumption of smoothness and
neglecting sets with zero probability, the events Aij

in and Ajk
in are disjoint for all

possible combinations of i,j,k.
The three events Aij

in are equally probable since the orders of observations
Xi, Xj, Xk are also equally probable. The same remarks (disjunction and equal
probability) hold for the three events Aij

out as well. Now, with α ≥ 1 and x ∈ R2

fixed, the event Aout \ Ain includes those random simplices that contain x but
do not contain αx and the event Ain \Aout includes those random simplices that
contain αx but do not contain x. Let us additionally abbreviate the random
simplex S(X1, X2, X3) by S. Finally, using all of our notation, we may now
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rewrite the difference SD(x; PX)− SD(αx; PX) in the following manner:

SD(x; PX)− SD(αx; PX) =
= P(x ∈ S)− P(αx ∈ S)
= P(x ∈ S, αx /∈ S) + P(x ∈ S, αx ∈ S)− (P(αx ∈ S, x /∈ S) + P(αx ∈ S, x ∈ S))
= P(x ∈ S, αx /∈ S)− P(αx ∈ S, x /∈ S)
= P(Aout \ Ain)− P(Ain \ Aout)
= P(Aout)− P(Aout ∩ Ain)− (P(Ain)− P(Ain ∩ Aout))
= P(A12

out ∪ A23
out ∪ A13

out)− P(A12
in ∪ A23

in ∪ A13
in)

= 3P(A12
out)− 3P(A12

in)

= 3
∫︂

(x1,x2)∈C
P(X3 ∈ I(x1, x2))− P(X3 /∈ int I(x1, x2)) d PX(x1) d PX(x2)

= 3
∫︂

(x1,x2)∈C
(2P(X3 ∈ I(x1, x2))− 1) d PX(x1) d PX(x2),

where in the last equality we used the assumption of smoothness (1.9) in order
to write

P(X3 /∈ int I(x1, x2)) = P(X3 /∈ I(x1,x2)) = 1− P(X3 ∈ I(x1,x2)).

The last integral is greater than or equal to 0 thanks to the assumption of
H-symmetry which gives P(X3 ∈ H) ≥ 1/2, for any closed halfspace H with origin
on its boundary. Indeed, there exists H ⊆ I(a,b), for all a,b ∈ R2, a ̸= b and for
such H we obtain P(X3 ∈ I(x1,x2)) ≥ P(X3 ∈ H) ≥ 1/2. This proves the
assertion.

Note that in the original version of Theorem 4, the assumption of absolute
continuity of the distribution was used when neglecting null sets in order to split
Ain and Aout into A12

in, A23
in, A13

in and A12
out, A23

out, A13
out, respectively, and to show

that these triplets are disjoint. As was seen in the proof, however, replacing the
condition of the absolute continuity by the condition of smoothness preserved the
correctness of the proof.

Moving on to property (P2), we start by proving an auxiliary lemma, whose
proof was not included in Liu’s papers.

Lemma 5. Let X1, X2, . . . , Xd+1 be random vectors from smooth distribution
PX ∈ P(Rd) and for i = 1, 2, . . . , d + 1 denote X∗

i = Xi/ ∥Xi∥. Then, except for
zero probability sets, the following four events are equivalent

(i) {(X1, . . . , Xd+1) : 0 ∈ S(X1, . . . , Xd+1)};

(ii) {(X1, . . . , Xd+1) : 0 ∈ S(X∗
1 , . . . , X∗

d+1)};

(iii) {(X1, . . . , Xd+1) : 0 ∈ S(e1, . . . , ed, V )}, where ei is the i-th canonical vector
in Rd and V = [X∗

1 | · · · |X∗
d ]−1X∗

d+1, where [X∗
1 | · · · |X∗

d ] is the matrix with
columns X∗

1 , . . . , X∗
d ;

(iv) {(X1, . . . , Xd+1) : V (1) < 0, . . . , V (d) < 0}; where V (i) is the i-th component
of the vector V.
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X1

X2

X3

X∗
1

X∗
2

X∗
3

e2

e1

V

0 0 0

0 ∈ S(X1, X2, X3) 0 ∈ S(X∗
1 , X

∗
2 , X

∗
3 ) 0 ∈ S(e1, e2, V )

Figure 1.9: To gain an intuitive understanding of the equivalences, we
provide illustrations of the first three events in Lemma 5.

Proof. (i) ⇐⇒ (ii)
It is sufficient to establish the implication

0 ∈ S(X1, . . . , Xd+1) =⇒ 0 ∈ S(cX1,X2, . . . , Xd+1), for any c > 0.

The actual equivalence from the lemma then follows by induction and by setting
c appropriately. Note that due to the assumption of smoothness (1.9) we have
P(∥X1∥ ≠ 0) = 1, and so we only consider events where all the points X1, . . . , Xd+1
are non-zero. Assume that 0 ∈ S(X1, . . . , Xd+1). Then, for X1, . . . , Xd+1 as
vertices, there exists a set of coefficients {ai}d+1

i=1 fulfilling the conditions in the
box (1.7). We aim to find a set of coefficients {bi}d+1

i=1 that satisfies these conditions
for cX1, X2, . . . , Xd+1. Let us set

b1 = a1, bi = c · ai, i = 2, . . . , d + 1.

Now the sum ∑︁d+1
i=1 bi is equal to some K > 0. We claim that by setting bi = bi/K

for i = 1, . . . , d+1 we obtain the correct set of coefficients. We indeed have bi ≥ 0
and ∑︁d+1

i=1 bi = 1. To prove that 0 can be expressed as a convex combination of
points cX1, X2, . . . , Xd+1 with coefficients {bi}d+1

i=1 , we use the assumption 0 ∈
S(X1, . . . , Xd+1) and write

0 =
d+1∑︂
i=1

aiXi

0 =
d+1∑︂
i=1

aic

K
Xi

0 = b1cX1 +
d+1∑︂
i=2

biXi.

(ii) ⇐⇒ (iii)
This equivalence follows from (1.8) with A = [X∗

1 | · · · |X∗
d ]−1 and b = 0 ∈ Rd,

where again, assuming smoothness (1.9) gives P(A is non-singular) = 1.
¬(iv) =⇒ ¬(iii)

We aim to prove that when at least one V (i) > 0, then 0 is not contained
within the simplex S(e1, . . . , ed, V ). Note that we do not need to consider the
case where V (i) = 0 for any i = 1, . . . ,d, since from smoothness (1.9) we have
P(⋃︁d

i=1[V (i) = 0]) = 0. Without loss of generality, let V (1) > 0. Take a convex
combination

W = a1e1 + · · ·+ aded + ad+1V. (1.10)
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In order for the first element of W to be zero, the coefficients a1 and ad+1 must
be zero. Furthermore, in order for the j-th element (j = 2, . . . ,d) of W to be
zero, the coefficient aj must be zero. Therefore, in order for W to be 0 ∈ Rd, we
obtain ai = 0 for all i = 1, . . . ,d + 1, which results in a contradiction with {ai}d+1

i=1
being coefficients of convex combination as ∑︁d+1

i=1 ai = 0 ̸= 1.
(iv) =⇒ (iii)

Set ai = −V (i) for i = 1, . . . , d and ad+1 = 1. It is not difficult to see that

a1e1 + · · ·+ aded + ad+1V = 0.

Now, ∑︁d+1
i=1 ai = K > 0. By dividing all of the coefficients ai by K, we get

ai/K ≥ 0,
d+1∑︂
i=1

ai/K = 1,
a1

K
e1 + · · ·+ ad

K
ed + ad+1

K
V = 0,

which implies the statement given in (iii).

Theorem 6. If PX ∈ P(Rd) is smooth and halfspace symmetric about θ ∈ Rd,
then SD(θ; PX) = 2−d.

Proof. Using the already proven affine invariance in Theorem 3, we might
without loss of generality assume that PX is H-symmetric about the origin. As
stated at the beginning of this subsection, under the conditions of this theorem
H-symmetry implies A-symmetry. With the use of the original definition4 of
A-symmetry (as listed in [11]) we know that X∗

i and−X∗
i are identically distributed,

where X∗
i = Xi/ ∥Xi∥. Then, as we proved in Lemma 5, the following two events

are (except for sets with zero probability) equivalent:

• {(X1, . . . , Xd+1) : 0 ∈ S(X1, . . . , Xd+1)};

• {(X1, . . . , Xd+1) : V (1) < 0, . . . , V (d) < 0}; where V (i) is the ith component
of the vector V = [X∗

1 | · · · |X∗
d ]−1X∗

d+1.

In the next step we demonstrate that by changing X∗
i to −X∗

i , the random vector
(V (1), . . . , V (d))⊤ changes to (V (1), . . . , V (i−1),−V (i), V (i+1), . . . , V (d))⊤.
Without loss of generality let i = 1, then

[−X∗
1 |X∗

2 | · · · |X∗
d ]−1 X∗

d+1 = [[X∗
1 | · · · |X∗

d ] diag(−1, 1, . . . , 1)]−1 X∗
d+1

= diag(−1, 1, . . . , 1)−1 [X∗
1 | · · · |X∗

d ]−1 X∗
d+1

= diag(−1,1, . . . , 1)V,

where diag is a diagonal d× d matrix. Thus,

[−X∗
1|X∗

2 | · · · |X∗
d ]−1 X∗

d+1 =

⎛⎜⎜⎜⎜⎝
−V (1)

V (2)

...
V (d)

⎞⎟⎟⎟⎟⎠
4A random variable X ∈ Rd or its distribution PX is said to be angularly symmetric about

θ ∈ Rd if and only if (X − θ)/ ∥X − θ∥ and −(X − θ)/ ∥X − θ∥ are identically distributed. In
case of PX({θ}) > 0 we use the convention 0/0 = 0.
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from which we obtain that the probability of (V1, . . . ,Vd)⊤ is the same as the
probability of the same random vector with the signs of its coordinates arbitrary
changed. This further implies that each orthant5 has an equal probability which
must be 2−d, since there are precisely 2d possible orthants. Therefore,

SD(0; PX) = P({(X1, . . . , Xd+1) : 0 ∈ S(X1, . . . , Xd+1)})
= P({(X1, . . . , Xd+1) : V1 < 0, . . . , Vd < 0})
= 2−d.

Theorems 4 and 6 yield the following.
Corollary. Given a smooth and halfspace symmetric distribution PX , it follows
that SD(x; PX) is at most 2−d for any x ∈ Rd.

It is worth noting that the tight upper bound for the simplicial depth of any
absolutely continuous probability distribution in Rd is still an open problem for
d ≥ 2.

1.3.4 Vanishing at infinity
To conclude this section, we establish the last of the main properties, whose

proof is once again sourced from [12]. Note that property (P4) “vanishing at
infinity” is proven in its full generality as it was with the affine invariance (P1).

Theorem 7. For any PX ∈ P(Rd), we have that sup
∥x∥≥n

SD(x; PX) n−→∞−−−−→ 0.

Proof. Given x ∈ Rd, we observe that the event [x ∈ S(X1, . . . , Xd+1)] is
contained in the event [∃i ∈ {1, . . . ,d + 1} : ∥Xi∥ ≥ ∥x∥]. This can be shown
using the triangle inequality for the norm and a fact that whenever x belongs to
a simplex S, it can be written as a convex combination of its vertices. Formally,

∥x∥ = ∥a1X1 + · · ·+ ad+1Xd+1∥ ≤ a1 ∥X1∥+ · · ·+ ad+1 ∥Xd+1∥ ≤ max
i=1,...,d+1

∥Xi∥ ,

for some ai ≥ 0, i ∈ {1, . . . , d + 1}, ∑︁d+1
i=1 ai = 1. Thus, we obtain

[x ∈ S(X1, . . . , Xd+1)] ⊂
[︄

d+1⋃︂
i=1

(∥Xi∥ ≥ ∥x∥)
]︄

.

Let us denote by An the event
[︂⋃︁d+1

i=1 (∥Xi∥ ≥ n)
]︂
, where n ∈ N. Then we have

A1 ⊃ A2 ⊃ · · · and limn−→∞ An = ⋂︁
n An = ∅. For each x such that ∥x∥ ≥ n, n ∈

N we can write

P(x ∈ S(X1, . . . , Xd+1)) ≤ P
(︄

d+1⋃︂
i=1

(∥Xi∥ ≥ ∥x∥)
)︄

≤ P
(︄

d+1⋃︂
i=1

(∥Xi∥ ≥ n)
)︄

n−→∞−−−−→ P(∅) = 0.

5An orthant is a region of space that is defined by the signs of its coordinates. In two
dimensions, an orthant is one of the four quadrants of the coordinate plane.
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The convergence in the second line of the equation follows from the fact that a
probability measure is continuous from above [8, Theorem 3.1.1]. Since it holds
for each x with norm greater than or equal to n, it also holds for the supremum.
The claim follows.

20



2 Averaged simplicial depth

The main objective of this chapter is to examine the averaged simplicial
depth (1.4). As was suggested in Figure 1.6, the averaged simplicial depth indeed
alleviated some of the problems that arose with Liu’s original definition. The
revised definition appeared to smooth out the irregularities created at boundaries
which caused property (P3) not to be satisfied. As a result, the concept of
simplicial depth could now seem more appealing for statistical analysis. However,
despite these improvements, there are still counterexamples where (P3) or even
(P2) is not satisfied. Furthermore, there may be cases where the use of SDclosed

n

from (1.2) could yield better results.
In the following counterexample to (P3), we will use an averaged analogue of

the population simplicial depth (1.1) which we define under the circumstances of
Definition 6 as

SDavg(x; PX) = 1
2 (P(x ∈ S(X1, . . . , Xd+1)) + P(x ∈ int S(X1, . . . , Xd+1))) .

(2.1)
Example 2.1 (Violation of (P3)). To show that SDavg does not fix the problem
with the monotonicity property (P3), we borrow a counterexample presented in
Zuo’s and Serfling’s work [19, Counterexample 3]. Originally, the counterexample
was used to show that Liu’s simplicial depth fails to be maximized at the center of
H-symmetry. However, their calculation of depth of points (as we will see later)
was inaccurate, leading to false conclusions.

A

B

θ
C

D

M−ε

Mε

N

3
40

16
40

1
40

1
40

19
40

Figure 2.1: Illustration of the distribution described in Example 2.1.
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Let d = 2 and let PX ∈ P(R2) be a distribution (see Figure 2.1) such that
PX({θ}) = 19/40, PX({A}) = 3/40, and PX({B}) = PX({C}) = 1/40, where
θ = (0,0)⊤, A = (−1,1)⊤, B = (−1, − 1)⊤, C = (1,0)⊤. The last point is
to be taken arbitrary from the open triangle with vertices θ, A and D, where
D = (1

3 ,1
3)⊤ is the intersection point of lines←→B,θ and←−→A,C. So, for any 0 < ε < 1/2,

we set our last point as Mε = (0, ε)⊤, with PX({Mε}) = 16/40. The distribution
PX is H-symmetric about θ. Besides, by calculating all of the possible simplicial
depth values it can be shown that the maximum simplicial depth of PX is attained
only at θ. These calculations are straightforward but lengthy and similar to those
given below; we do not include them. Choose and denote any point inside the
line segment θ,Mε by N . In order for (P3) to be fulfilled, the simplicial depth of
N must be greater than or equal to the simplicial depth of Mε, while, at the same
time, less than or equal to the simplicial depth of θ. The calculation of simplicial
depth of these three points using Liu’s depth (1.1) gives

SD(θ; PX) = 3!
403 (3 + 16)⏞ ⏟⏟ ⏞

3!(P (S(A,B,C))+P (S(Mε,B,C)))

+ 3! · 19
403 (1 + 3 + 3 + 16 + 16 + 3 · 16)⏞ ⏟⏟ ⏞

3!P (S(θ,Y,Z), Y ̸=Z, Y,Z∈{A,B,C,Mε})

+ 3 · 19
403

(︂
1 + 1 + 32 + 162

)︂
⏞ ⏟⏟ ⏞

3P (S(θ,Y,Y ), Y ∈{A,B,C,Mε})

+ 3 · 192

403 (1 + 1 + 3 + 16)⏞ ⏟⏟ ⏞
3P (S(θ,θ,Y ), Y ∈{A,B,C,Mε})

+ 193

403⏞⏟⏟⏞
P (S(θ,θ,θ))

= 54853
403 ,

SD(N ; PX) = 3!
403 (3 + 16 + 3 · 19) + 3! · 16 · 19

403 (1 + 3 + 3)

+ 3 · 16 · 192

403 + 3 · 162 · 19
403

= 41496
403 ,

SD(Mε; PX) = 3!
403 (3 + 3 · 19) + 3! · 16

403 (1 + 3 + 3 + 19 + 19 + 3 · 19)

+ 3 · 16
403

(︂
1 + 1 + 32 + 192

)︂
+ 3 · 162

403 (1 + 1 + 3 + 19) + 163

403

= 50536
403 .

The mistake in [19] was due to not considering degenerate simplices, which
resulted in Mε having greater SD than θ, contradicting (P2). Despite that not
being the case, it is clear that the simplicial depth of N is less than the simplicial
depth of Mε, and so our depth function is not monotone on that particular ray.

The first summands in each of the formulae above correspond to the triangles
that contain the reference point in their interior. Halving all the terms of the
equations, except those first summands, allows us to derive SDavg for these three
points. This fact becomes clearer with the upcoming observation. We thus have

SDavg(θ; PX) = 27483.5
403 , SDavg(N ; PX) = 20976

403 , SDavg(Mε; PX) = 25448
403 ,

which means that property (P3) remains violated even for SDavg. △
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In spite of SDavg not being successful in this case, we can observe that the
difference was a little less extreme compared to SD. This raises another question:
could we potentially employ a weighted average, rather than an unweighted one,
to scale down the depth of point Mε to a level where monotonicity is satisfied?
To further elaborate upon this idea, it is beneficial to introduce the rephrased
definitions presented in [4, 5]. We formulate them as an observation.
Observation 2. The averaged population simplicial depth SDavg from (2.1) can
be rewritten as

SDavg(x; PX) = P(x ∈ int S(X1, . . . , Xd+1)) + 1
2P(x ∈ bd S(X1, . . . , Xd+1)),

where the symbol bd stands for the boundary of a set. Similarly, the averaged
sample simplicial depth SDavg

n from (1.4) can be expressed as

SDavg
n (x; Pn̂) = 1(︂

n
d+1

)︂ (︃ρ(x; Pn̂) + 1
2σ(x; Pn̂)

)︃
, (2.2)

where ρ(x; Pn̂) is the number of data-determined simplices which contain x in
their interior, and σ(x; Pn̂) is the number of data-determined simplices which
contain x in their boundary.

With the use of Observation 2, we can now reformulate the problem as finding
a fitting constant c ∈ (0,1) so that the depth function

SDavg,c(x; PX) = P(x ∈ int S(X1, . . . , Xd+1)) + c · P(x ∈ bd S(X1, . . . , Xd+1))

fulfills (P3). Let us explore this idea further using our example.
Example 2.2 (Example 2.1 continued). In our specific scenario, we are basically
looking for c such that

50176
403 · c + 360

403 <
41040
403 · c + 456

403 <
54739
403 · c + 114

403 .

Unfortunately, a constant c ∈ (0,1) that would satisfy both of the inequalities
does not exist. This means that even a weighted average is not sufficient to scale
down the depth of these points appropriately.

It is also important to point out, that the constant c would depend on the
geometry of the points. Changing Mε to M−ε (with the mass 16

40) and consequently
N to lie inside θ,M−ε would result in a system of inequalities

50176
403 · c + 132

403 <
41040
403 · c + 420

403 <
54739
403 · c + 306

403 .

In this altered case, any c ∈ ( 6
721 , 18

571) would satisfy both of the inequalities,
meaning that SDavg,c would be monotonous on that part of the ray. △
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2.1 Properties of averaged simplicial depth
As we saw in the previous example, the simplicial depth function applied to

finitely atomic6 distributions appeared to be problematic. Aside, we may ask,
whether or not it even makes sense to scale down the depth of the atoms of
the distribution. For this reason, our focus in this section will be exclusively
on probability distributions that are smooth (in the sense of (1.9)). For such
distributions and any x ∈ Rd, the probability of x lying on the boundary of a
random simplex would always amount to zero. This means that SDavg in (2.1)
would reduce to Liu’s original simplicial depth SD from (1.1). Thus, we shall
only work with its sample counterpart SDavg

n from (1.4) and consider only data
points sampled from smooth probability distributions. Nevertheless, for all the
assertions stated in this section, the condition of smoothness may be relaxed to
a requirement of points lying in general position.

The most essential properties/advantages of averaged sample simplicial depth
were formulated in [4, 5]. Nonetheless, the proof of their first proposition was
based on an incorrect argumentation. We demonstrate this in a counterexample,
which can be also considered an example of SDclosed

n providing more plausible
results when compared to SDavg

n . Similarly, the two propositions [4, 5, Corollary 1
and Proposition 2] that followed the first (incorrect) one, were consequently also
inaccurate, as their proof was based on the first proposition. We will therefore
try to reformulate and partly extend the original assertions from [4, 5]. As we
will be relying mostly on the averaged sample simplicial depth, we will at times
abbreviate it and call it a depth (in this chapter only). For brevity, we will write
SDavg

n (x) with the second argument in the depth function omitted. We begin by
stating the following lemma, borrowed from [4, 5, Lemma 1], which will prove
useful in the proofs presented in this section.

Lemma 8. For any version of the sample simplicial depth ( (1.2), (1.3), (1.4)),
the depth of any two positions in the same cell is equal.

Proof. Let A be a cell defined by d-dimensional data points x1, . . . ,xn and let y
and z be two positions in A. The conclusion drawn in Observation 1 states that
all variants of the sample simplicial depth are identical for positions inside any
cell. By the definition of a cell, the line segment L = y,z lies entirely within A
and no (d− 1)-simplex defined by d data points intersects L.

Assume that y does not have the same sample simplicial depth as z. Without
loss of generality, let the depth of y be greater than the depth of z. Consequently
there exists a simplex which contains the point y but not z. Therefore, the
segment L must then intersect the boundary of this simplex (its (d− 1)-face),
giving a contradiction as no (d− 1)-simplex can intersect the segment L.

6A measure PX ∈ P(Rd) is said to be finitely atomic if the support of PX is finite, meaning
that there exists an integer m ≥ 1 and points x1, . . . , xm such that PX({x1, . . . , xm}) = 1. We
call each such xi with PX({xi}) > 0 an atom of PX .
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2.1.1 A counterexample
For contradictions to be seen more clearly, we paraphrase the propositions

from [4, 5] prior to our counterexample. While we have adjusted the phrasing
to match our own terminology, the intended meaning remains unchanged. In
addition, the last proposition requires us to define the term opposite cells. However,
it is crucial to point out that the original definition of opposite cells was not precise
enough and will be corrected along with the propositions in Section 2.1.2. Lastly,
the term sample simplicial median refers to a point or a set of points with the
greatest depth.

Proposition 9 (incorrect). Let x1, . . . ,xn ∈ Rd be observed data points in general
position. The averaged sample simplicial depth of a position on a facet between
two cells is equal to the average of the depths of positions in the two adjacent
cells.

Proposition 10 (incorrect). Let x1, . . . ,xn ∈ Rd be observed data points in
general position. The maximum averaged sample simplicial depth is attained in a
cell or at a data point.

Definition 9 (opposite cells, incorrect). Two cells whose boundaries both contain
a position θ lying on the intersection of two or more hyperplanes induced by the
observed data points are opposite cells if and only if the two cells lie on opposite
sides of every facet that contains θ. It can be shown that every cell has a unique
opposite.

Proposition 11 (incorrect). Let x1, . . . ,xn ∈ Rd be observed data points in
general position. The averaged sample simplicial depth of the position at the
intersection between two or more facets is equal to the average of the depths of
two opposite cells of the intersection point.

Example 2.3 (Counterexample for SDavg
n ). For any integer d ≥ 3 consider the

following dataset of d + 2 points:

O = (0,0, . . . , 0)⊤ ∈ Rd, V = (1, 1, . . . , 1)⊤ ∈ Rd, Di = ei, for all i = 1, 2, . . . , d,

where ei denotes i-th canonical vector in Rd.

D1

D2

D3

O

V

Figure 2.2: The illustration for the situation d = 3.
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Clearly, such points lie in general position. Thus, by Proposition 9 we should
get that SDavg

d+2 of a position on a facet between two cells is equal to the average
of the depths of positions in the two adjacent cells; and by Proposition 10 that
the sample simplicial median is attained either in the interior of a cell or at a
data point. Neither of that happens to be the case in our setup.

For simplicity, let d = 3 first. We have
(︂

5
4

)︂
= 5 simplices and 6 cells. There

are precisely 3 simplices with vertices O, V to which will be referred to as vertical
simplices. As for the remaining two simplices, one of them has V as a vertex
while not O and the other has O as a vertex, while not V . We will call them
upper and lower simplex, respectively.

D1

D2

D3

O

V

D1

D2

D3

O

V

D1

D2

D3

O

V

Vertical simplex Upper simplex Lower simplex

As a reminder, we note that the use of different fonts (SD vs. SD) indicates
whether or not the depth is normalized by the factor 1/

(︂
n

d+1

)︂
. Calculating the

depth of any position inside an arbitrary cell is straightforward, since it must be
contained in exactly one interior of a vertical simplex and also in the interior of
either the upper or the lower simplex. This means that SDavg

5 of any point in any
cell is the same and equal to 2. The depth SDavg

5 of all data points is also the
same, and takes value 2. This follows from the geometry of data points, as each
one of them is part of the boundary of the convex hull of all data points, thus
cannot be contained in any open simplices. We get

SDavg
5 (data point) = 1

2 ·
(︄

4
3

)︄
= 2.

Denote X = (1
3 ,1

3 ,1
3)⊤ and Y = (ε, ε, ε)⊤ for ε ∈ (0, 1

3). Both X and Y lie on
the line segment O,V , which is part of the boundary of every vertical simplex.
Position Y is also contained in the lower simplex and position X was chosen so
that it lies on the boundary of the upper and the lower simplex. That leads to

SDavg
5 (X) = 1

2 · 5 = 2.5; SDavg
5 (Y ) = 1 + 1

2 · 3 = 2.5.

Our computations have the following consequences:

• The depth of the positions X and Y is not equal to the average depth of
their two adjacent cells, as it is strictly greater than the depth of any cell.

• The sample simplicial median is attained neither in a cell nor at a data
point, but in a 1-face instead.

• It is not possible for the depths of both X and Y to be equal to the
average depth of two opposite cells. Additionally, it is unclear which cells
are considered “opposite” in this context.

26



Another noteworthy observation is that by the depth calculated above, any
point near O or near V that lies on the line segment O,V is considered a simplicial
median. This version of simplicial median is not an optimal representation of the
“hypothetical center” of all data points. Let us therefore compare it with SDclosed

5
in Figure 2.3.

O D1

D3

X

Y

Z
2

2

2.5

2.5

O D1

D3

X

Y

Z
2

4

4

5

Figure 2.3: The three “bottom” cells (split apart) from Figure 2.2. Depth
evaluated using SDavg

5 (left), and depth evaluated using SDclosed
5 (right).

In both pictures, the point Z represents any position within any cell.

As can be drawn from the picture, X is the only point at which the simplicial
median is attained when considering the depth SDclosed

5 . This might be viewed as
a more desirable outcome, especially when looking only for the simplicial median.

In order to define simplicial median in the case of SDavg
5 more appropriately

we may have the following idea: define the simplicial median to be a barycenter7

of M , where M is the set of all points with the greatest depth. Nevertheless,
such an idea would consequently make our median sensitive to extreme values in
the data. Changing V to k · V in our previous example, where k > 0 is some
large constant, would result in the “simplicial barycenter median” to be at k

2 · V ,
which is far from all the points near the origin. On the other hand, the simplicial
median for SDclosed

5 would stay unchanged at X.
In an analogous manner we now derive all of the above, but for a general

dimension d ≥ 3. Together there are d+2 simplices of which d are vertical. Again
there is 1 upper and 1 lower simplex. We have 2·d cells and they all have the same
depth. This time, we set X = (1

d
,1
d
, . . . ,1

d
)⊤ ∈ Rd and Y = (ε, ε, . . . , ε)⊤ ∈ Rd,

for any ε ∈ (0,1
d
). Formulae for calculating SDavg

d+2 of points of our interest are
displayed in Table 2.1.

To get formulae for SDclosed
d+2 we can simply omit all the fractions 1

2 in Table 2.1.
As SDavg

d+2(X) = 1
2(d + 2) is strictly greater than SDavg

d+2(Z) = 2 and SDavg
d+2(O) =

1
2(d + 1), we arrive at the same contradictions with Propositions 9, 10 and 11 as
before. △

7The barycenter of a compact set K in Rd is the expectation of the uniform distribution
on K.
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point\
dimension 3 4 5 · · · d

X 2.5 3 3.5 · · · 1
2(d + 2)

Y 2.5 3 3.5 · · · 1 + 1
2d

Z 2 2 2 · · · 2
O 2 2.5 3 · · · 1

2(d + 1)

Table 2.1: SDavg
d+2 of points in different dimensions.

2.1.2 Reformulations and extensions
To lay ground for the reformulated theorems, we begin this subsection with an

extended version of the definition from (2.2) and a corrected version of Definition 9.
In addition, it is essential to introduce the concept of relative interior. The relative
interior of a set S ⊂ Rd (denoted by relint S) is defined as its interior within the
smallest affine subspace of Rd that contains S.
Definition 10. In the situation from Definition 7, the averaged sample simplicial
depth can be expressed as

SDavg
n (x; Pn̂) = 1(︂

n
d+1

)︂ (︃ρ(x; Pn̂) + 1
2σd−1(x; Pn̂) + · · ·+ 1

2σ0(x; Pn̂)
)︃

,

where ρ(x; Pn̂) is the number of data-determined simplices which contain x in their
interior, and σj(x; Pn̂) for j ∈ {0,1, . . . ,d− 1} is the number of data-determined
simplices which contain x in the relative interior of some of their j-face. For
brevity, we further omit the second argument of ρ and σj. Clearly, σ(x) from
formula (2.2) is equal to the sum ∑︁d−1

j=0 σj(x).

A B

SDavg
4 (x) = ρ(x) + 1

2
σ1(x) +

1
2
σ0(x)

C
SDavg

4 (A) = 0 + 1
2
· 0 + 1

2
· 3

SDavg
4 (B) = 1 + 1

2
· 2 + 1

2
· 0

SDavg
4 (C) = 0 + 1

2
· 4 + 1

2
· 0

Figure 2.4: Definition 10 in practice.

To shed some light on the upcoming definition of opposite cells and to compare
it with the original one, we demonstrate its application in Figure 2.5 in the setup
of Example 2.3.

28



Definition 11 (opposite cells - corrected). Let x1, . . . ,xn ∈ Rd be observed data
points in general position. Let θ be a position that satisfies the following two
conditions:

(C1) the position θ lies in at least one (d − 1)-simplex induced by the observed
data points.

(C2) the position θ does not lie in any k-simplex induced by the observed data
points for all k < d− 1.

Two cells whose boundaries both contain the position θ are called opposite cells
around θ if and only if the two cells lie on opposite sides of every (d− 1)-simplex
that contains θ.

O D1

D3

X

X

D1

D3
V

D2

θ

γ

D3

D2

D1

D1

D2

D3

O

V

Y

Figure 2.5: For a dataset of 5 points in R3 we have
(︂

5
3

)︂
(d− 1)-simplices

which partition the convex hull of the dataset into six cells. Consider
first the positions Y and X which lie at the intersection of three and four
(d−1)-simplices (facets in the original definition), respectively. According
to Definition 9, the orange cell whose boundary contains both X and Y
should have a uniquely defined opposite cell. Nevertheless, such a cell
in this case does not exist. According to our definition, none of these
points satisfy (C2) as they lie on (d − 2)-simplex S(O,V ). Therefore,
the term opposite cell around X and around Y is not defined. Consider
now the positions θ and γ. The position θ fulfills (C1), as it lies at the
intersection of (d − 1)-simplices S(D1,D2,D3) and S(D1,O,V ), but also
the condition (C2). Since the boundary of the red cell contains θ, the
opposite cell to the red cell around θ is well defined. As the red cell lies
below S(D1,D2,D3), the opposite cell must lie above. As the red cell
lies behind S(D1,O,V ), the opposite cell must lie in front of it, which
results in the uniquely defined opposite cell depicted in yellow. Lastly,
the position γ lies exactly in one (d− 1)-simplex S(D1,O,V ), thus fulfills
(C1) as well. Since also (C2) is fulfilled, the opposite (adjacent) cell to
the red cell around the position γ is well defined and depicted in orange.
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Note. The notion of opposite cells is now correctly defined. First of all, notice
that the definition of opposite cell depends on the considered position θ. For two
different positions in the boundary of some cell, the opposite cells around these
positions may differ. Secondly, to ensure the accuracy of the definition of opposite
cells, we had to impose an additional condition (C2) on the considered position.
Lastly, the term adjacent cells in Proposition 9 can be viewed as a special case
scenario in our definition of opposite cells. That is, two cells are adjacent around
θ if θ lies in the boundary of both of these cells and θ lies in the relative interior
of precisely one data-determined (d− 1)-simplex.

Theorem 12 (Propositions 9 and 11). Let x1, . . . ,xn ∈ Rd be observed data points
in general position. Let θ be a position that satisfies conditions (C1) and (C2).
Then, the depth of θ is equal to the average of the depths of any pair of opposite
cells around θ.

Proof. Consider any two opposite cells around θ and denote them by A and B.
Let xA be a position in cell A and xB be a position in cell B. As both xA and
xB are positions in cells, they can be only contained in an interior of any simplex
determined by data points. Hence, we can write

SDavg
n (xA) = ρ(xA),

SDavg
n (xB) = ρ(xB),

SDavg
n (θ) = ρ(θ) + 1

2σ(θ).

A simplex with θ in its interior: For any data-determined simplex S which
contains θ in its interior, there exists ε > 0 such that the ball B(θ, ε) is also
contained by S. Since θ lies on the boundary of cells A and B, the ball B(θ, ε)
must contain some points from both of these cells. By Lemma 8, this implies
that the simplex S contains cells A and B, thus contributes to ρ(xA) and ρ(xB).
A simplex with θ in its boundary: Consider now a data-determined simplex T
which contains θ in its boundary. The (d−1)-simplex from (C1), which includes θ
must be some (d − 1)-face of T . Therefore, the interior of the simplex T lies to
one side of this facet and the exterior to the other. By the definition of opposite
cells, exactly one of A or B lies inside T .

Now, let ρxA(θ) be the number of simplices which contain both θ and xA in
their interiors and let σxA(θ) be the number of simplices which contain θ in their
boundary and xA in their interior. Define ρxB (θ) and σxB (θ) similarly. By the
above argument, we have

ρxA(θ) = ρxB (θ) = ρ(θ).

Finally, consider a simplex U , which contains cell A. Then, the point θ must be
also contained in the simplex U (either on a boundary or in interior), since for all
ε > 0 the ball B(θ, ε) contains some points of cell A and by definition, a simplex
is a closed set. Thus,

SDavg
n (xA) = ρxA(θ) + σxA(θ),

SDavg
n (xB) = ρxB (θ) + σxB (θ).
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The depth of θ is therefore

SDavg
n (θ) = 1

2(2ρ(θ) + σ(θ))

= 1
2(ρxA(θ) + ρxB (θ) + σxA(θ) + σxB (θ))

= 1
2(SDavg

n (xA) + SDavg
n (xB)).

Note. The requirement of cells A and B to be opposite around θ in Theorem 12
was crucial. Otherwise, the underlined statement in the proof would not hold.
In the original proof of Proposition 9, the same statement was made. In their
case, however, any position in the shared facet of two cells could be considered,
which consequently made the claim of Proposition 9 not true for general d (see
Figure 2.6).

A

B

A

B

A

Bθ θ θ

Figure 2.6: If the cells A and B are opposite around θ (left) then every
simplex which contains θ in its boundary, contains exactly one of the cells
A and B. Whereas, if we only require that the cells share the same facet,
there can be simplices with θ in its boundary that contain both of the
cells A and B (middle), as well as none of them (right).

For d = 2, their assertion in Proposition 10 remains valid since the situation is
simplified. For this reason we formulate it individually in the following theorem.

Theorem 13 (Proposition 10, d = 2). Let x1, . . . ,xn ∈ R2, n > 3 be observed
data points in general position. Let H denote the convex hull formed by these
points. Then the following statements hold true:

(i) There either exists a data point, or a position in a cell, where the maximum
averaged sample simplicial depth is attained.

(ii) The maximum averaged sample simplicial depth is never attained at the
boundary of H.

Proof. (i) As d = 2, every position satisfies (C2). Moreover, there are only two
“types” of position: a position satisfying (C1), and a position in a cell. Whenever
the maximum sample simplicial depth is attained in a position satisfying (C1),
Theorem 12 guarantees that it is also attained at some cell.

(ii) The depth SDavg
n of any position from the boundary of H equals 1

2(n−2),
while SDavg

n of any data point from the boundary of H (boundary data points for
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short) equals 1
2

(︂
n−1

2

)︂
. Since the latter is always greater than the former for all

n > 3, the maximum sample simplicial depth is not attained at any position from
the boundary of H. Now, let k ≤ n be the number of boundary data points.

If k < n, then there exists an index i such that xi is contained in the interior
of H. By the Carathéodory theorem [18, Theorem 2.2.4], at least one simplex
with boundary data points as vertices contains xi in its interior. Hence,

SDavg
n (xi) ≥ 1⏞⏟⏟⏞

ρ(xi)

+ 1
2 · 0⏞⏟⏟⏞

σ1(xi)

+1
2

(︄
n− 1

2

)︄
⏞ ⏟⏟ ⏞

σ0(xi)

> 0⏞⏟⏟⏞
ρ(xj)

+1
2 · 0⏞⏟⏟⏞

σ1(xj)

+1
2

(︄
n− 1

2

)︄
⏞ ⏟⏟ ⏞

σ0(xj)

= SDavg
n (xj),

where xj is an arbitrary boundary data point. Note that σ1 on both sides is zero
thanks to the assumption of general position.

If k = n, then every observed data point is a boundary data point and we
need to find a position in the interior of H with SDavg

n greater than 1
2

(︂
n−1

2

)︂
. Let n

be even. Take an arbitrary data point x. For this x there always exists some data
point y such that half of the remaining data points lie on one side of the line←→x,y,
while the other half lie on the other side. We denote one of these groups of data
points by S1 and the other one by S2. We have that |S1| = |S2| = n−2

2 , where
|S| is the cardinality of S. Any line segment s1,s2, where s1 ∈ S1, s2 ∈ S2, must
intersect the line segment x,y. Otherwise, for a pair s1̂, s2̂ that would not intersect
x,y we would have that either x lies inside the simplex S(y,s1̂, s2̂) or y lies inside
the simplex S(x,s1̂, s2̂). This results in a contradiction with k = n. Lastly, denote
by z any position lying on x,y, that is in between x and the closest intersection
point of line segments x,y and s1,s2, for any s1 ∈ S1, s2 ∈ S2. Position z is on

x

y

S1

S2

x

y

ŝ1

ŝ2

z

the boundary of every possible simplex having two of the vertices x and y. At
the same time, it is inside of every simplex S(x, s1, s2), for any s1 ∈ S1, s2 ∈ S2.
The corresponding depth is thus

SDavg
n (z) =

(︃
n− 2

2

)︃2
+ 1

2

(︄
n− 2

1

)︄
= n2 − 2n

4 >
1
2

(︄
n− 1

2

)︄
,

where the last inequality holds for n > 2.
If n is odd, for an arbitrary data point x we find a data point y (not uniquely

defined) so that |S1| = n−1
2 and |S2| = n−3

2 . In an analogous manner we arrive at

SDavg
n (z) =

(︃
n− 1

2

)︃
·
(︃

n− 3
2

)︃
+ 1

2

(︄
n− 2

1

)︄
= n2 − 2n− 1

4 >
1
2

(︄
n− 1

2

)︄
,

where the last inequality holds for n > 3. This proves our assertion.
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The set of propositions from [4, 5] aimed to simplify the search for the
maximum value of SDavg

n by reducing the number/types of points that need
to be considered. If Proposition 10 were true for all dimensions d, we could limit
our attention to data points and positions within the cells. In other words, when
looking for the maximum depth, we could omit all the calculations of depth of
positions lying on the boundaries of cells. Unfortunately, we had to impose an
additional condition (C2) on positions for which the statements in Propositions
9 and 11 hold true. As a result, in dimensions d ≥ 3, there is no relationship
between the positions lying in data-determined k-simplices for k < d− 1 and the
positions in the cells. Hence, these positions cannot be excluded when searching
for the maximum value of SDavg

n .
Although Proposition 10 does not hold as it was initially thought, we were

able to establish a relationship between certain types of positions located in
data-determined k-simplices, where k < d−1. This relationship will be detailed in
Theorem 17 (addition to Theorem 12), and its implications will help us reinforce
the correct version of Proposition 10. In order to formulate a follow up to
Theorem 12 however, we need a few additional lemmas. We start by formulating
an extended version of Lemma 8 for the faces of the closure of a cell.

Lemma 14. Choose any version of sample simplicial depth ( (1.2), (1.3), (1.4)).
Then, for k = 1, . . . , d−1, the chosen sample simplicial depth of any two positions
in the relative interior of the same k-face of the closure of a cell is the same.

Proof. The closure of a cell is a d-polytope. Any k-face of a d-polytope is
a k-polytope, thus convex. Moreover, the relative interior of a convex set is a
convex set. Denote by F the relative interior of a k-face and let x1 and x2 be
two positions in F . From the convexity of F , the line segment L = x1,x2 lies
entirely within F . Any (d − 1)-simplex that intersects the line segment L must
contain the whole line segment. Otherwise, the (d− 1)-simplex which intersects
L but does not contain it entirely, must also intersect the neighboring cells. That
contradicts the definition of a cell. The proof can be now carried out in a similar
manner as the proof of Lemma 8. Finally, the version of the sample simplicial
depth used does not impact the argumentation above.

For the next lemma we delve into the intersection theory. Consider a set of
observed data points in R3 in general position. Then, the intersection of any two
different data-determined 1-simplices (line segments) is an empty set. Otherwise,
the observed data points would not lie in a general position (the endpoints of the
line segments would lie in the same hyperplane). In Lemma 15, we show that
this observation can be extended to higher dimensions.

Lemma 15. Let x1, . . . ,xn ∈ Rd, d ≥ 3 be observed data points in general
position. Let U be a data-determined k-simplex, T be a data-determined m-simplex
and let y1, . . . , yℓ be their common vertices, where ℓ ∈ {0, . . . , min(k,m)} and
k + m− ℓ ≤ d− 1. Then U ∩ T = conv({y1, . . . , yℓ}).

Proof. It is clear that conv({y1, . . . , yℓ}) ⊆ U ∩ T . Suppose, for the sake of
contradiction that conv({y1, . . . , yℓ}) ⊊ U ∩ T .
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Take an arbitrary point z from the difference (U ∩ T ) \ conv({y1, . . . , yℓ}).
Since z lies in the intersection of the k-simplex U = S(y1, . . . , yℓ, z1, . . . , zk+1−ℓ)
and the m-simplex T = S(y1, . . . , yℓ, w1, . . . , wm+1−ℓ), it can be written as two
different convex combinations

z = λ1y1 + · · ·+ λℓyℓ + λℓ+1z1 + · · ·+ λk+1zk+1−ℓ,

z = µ1y1 + · · ·+ µℓyℓ + µℓ+1w1 + · · ·+ µm+1wm+1−ℓ,

where
λt ≥ 0 for all t = 1, . . . , k + 1,

k+1∑︂
t=1

λt = 1, and

µs ≥ 0 for all s = 1, . . . , m + 1,
m+1∑︂
s=1

µs = 1.

As z /∈ conv({y1, . . . , yℓ}), at least one µt for t = ℓ + 1, . . . , m + 1 is greater
than zero. Without loss of generality let µℓ+1 > 0. Then w1 can be expressed as
an affine combination of the other vertices as follows

w1 = λ1 − µ1

µℓ+1
y1 + · · ·+ λℓ − µℓ

µℓ+1
yℓ + λℓ+1

µℓ+1
z1 + · · ·+ λk+1

µℓ+1
zk+1−ℓ

− µℓ+2

µℓ+1
w2 − · · · −

µm+1

µℓ+1
wm+1−ℓ.

(2.3)

The coefficients of each term in expression (2.3) must sum to 1 in order for it to
be classified as an affine combination. This criterion is met, which can be verified
by the following computation

k+1∑︂
t=1

λt

µℓ+1
−

m+1∑︂
s=1,s ̸=ℓ+1

µs

µℓ+1
= 1

µℓ+1
− µ2

µℓ+1
− · · · − µm+1

µℓ+1
= µℓ+1

µℓ+1
= 1.

Finally, denote by M the set of all vertices in U and T . Then M is a set of
k + m− ℓ + 2 ≤ d + 1 points and conv M = conv(M \ {w1}). In order for points
x1, . . . ,xn to be in a general position, no N of them lie in a (N − 2)-dimensional
subspace, where N = 2,3, . . . , d + 1. In other words, any subset of N points
must span an (N − 1)-dimensional subspace. However the set M \ {w1} , a set of
k + m − ℓ + 1 points, can span at most a (k + m − ℓ)-dimensional subspace.
Consequently, we arrive at a contradiction with points x1, . . . , xn being in a
general position, as set M can span at most a (k +m− ℓ)-dimensional subspace.

The subsequent lemma is essentially a corollary of the previous lemma, phrased
in terms of Definition 10.

Lemma 16. Let x1, . . . ,xn ∈ Rd, d ≥ 3 be observed data points in general
position. Suppose we have a point x ∈ Rd with the depth

SDavg
n (x) = 1(︂

n
d+1

)︂ (︃ρ(x) + 1
2σd−1(x) + · · ·+ 1

2σ0(x)
)︃

,

where σk(x) is nonzero for some fixed k = 0,1,2, . . . , d − 1. Then σm(x) = 0 for
all m ∈ {0, . . . , d − k − 1}, m ̸= k. If m = k and m ∈ {0, . . . , d − k − 1}, then
σk(x) =

(︂
n−k−1

d−k

)︂
.
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Proof. Let first m ̸= k. In order to reach a contradiction, assume that there
exists k ∈ {0,1, . . . ,d − 1} and m ∈ {0, . . . ,d − k − 1} such that σk(x) > 0
and σm(x) > 0. By the definition of σj (Definition 10), we have that there
exists a data-determined k-simplex U which contains x in its relative interior, and
that there exists a data-determined m-simplex T which contains x in its relative
interior. Let y1, . . . , yℓ be their common vertices, where ℓ ∈ {0, . . . , min(k,m)}.
By the definition of the relative interior it follows that x must belong to the set
(U ∩ T ) \ conv({y1, . . . ,yℓ}). However, by Lemma 15 no such x exists.

Now, let m = k. As σk(x) is nonzero, then σk(x) ≥
(︂

n−k−1
d−k

)︂
. Assume that

σk(x) >
(︂

n−k−1
d−k

)︂
. Then there exists two different k-faces (k-simplices) U and T

with ℓ common vertices y1, . . . , yℓ, where ℓ ∈ {0, . . . , k}. The point x belongs to
the relative interior of U and T , thus it follows that x ∈ (U∩T )\conv({y1, . . . ,yℓ})
which again contradicts Lemma 15.

To elucidate the meaning of the statements in Lemmas 15 and 16, we may look
at the situation in R4.
Example 2.4. Let us have data points in R4 in general position. Consider a
1-simplex T1 and a 2-simplex T2 induced by some of these data points. In terms
of Lemma 15 we have k = 1, m = 2, d = 4, ℓ ∈ {0,1,2}, and

k + m− ℓ = 1 + 2− ℓ ≤ 3 = d− 1, for all ℓ ∈ {0,1,2}.
Thereby, the intersection of T1 and T2 is either equal to the convex hull of
their common vertices or an empty set. This further implies that (relint T1) ∩
(relint T2) = ∅. Thus, for any position x1 ∈ relint T1 we would have σ1(x1) > 0
and therefore σ2(x1) = 0.

Consider now two data-determined 2-simplices with no common vertices. Here
we have k = 2, m = 2, d = 4, ℓ = 0 and

k + m− ℓ = 2 + 2− 0 ≰ 3 = d− 1.

Conditions in Lemma 15 are not satisfied, thus we cannot assume that the
intersection of the relative interior of these two data-determined 2-simplices is
an empty set. Indeed, there exists a configuration of 6 vertices in R4 which lie in
general position such that the relative interior of the corresponding 2-simplices
intersect. Take for instance 2-simplices S1 and S2, where

S1 = S

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝

1
0
0
0

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
0
1
0
0

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
−1
−1
0
0

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ , S2 = S

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝

0
0
1
0

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
0
0
0
1

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
0
0
−1
−1

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ .

Then, S1∩S2 = (0,0,0,0)⊤, but also (relint S1)∩ (relint S2) = (0,0,0,0)⊤. Besides,
all of n = 6 vertices of S1 and S2 lie in a general position. In terms of Lemma 16,
for a dataset comprised of the vertices of S1 and S2 and a position o = (0,0,0,0)⊤

we have that σ2(o) is nonzero as o belongs to the relative interior of both 2-simplices
S1 and S2. Lemma 16 could yield σk(o) = σ2(o) =

(︂
6−2−1

4−2

)︂
=
(︂

n−k−1
d−k

)︂
if its

conditions were satisfied. However, in this case, those conditions are not met
since m = k but m /∈ {0,1} = {0, . . . , d− k − 1}. And indeed we can write

σk(o) = σ2(o) ≥
(︄

6− 2− 1
4− 2

)︄
+
(︄

6− 2− 1
4− 2

)︄
>

(︄
6− 2− 1

4− 2

)︄
=
(︄

n− k − 1
d− k

)︄
,
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where the first inequality follows from the fact that there are
(︂

6−2−1
4−2

)︂
different

simplices with three of its vertices from S1, and similarly
(︂

6−2−1
4−2

)︂
different simplices

with three of its vertices from S2 and all such simplices contribute to σ2(o). △
As Theorem 17 is also rather technical, we will endeavor to illuminate the

idea behind its formulation in advance. Consider again Example 2.3 for d = 3,
where we had a dataset {O,V,D1, D2, D3}. The only positions that will be of our
interest this time are those lying in the line segment O,V . We will add one and
then two data points to the original dataset (see Figure 2.7) and recalculate the
new depth of these positions (see Figure 2.8). The points are added so that the
general position is maintained and so that the data points O and V remain as
extreme points of the convex hull of all data points. To clarify, an extreme point
of a convex set is a point that lies on the boundary of the set and cannot be
expressed as a convex combination of any other points in the set. As this is just
a motivation for the upcoming theorem, the details, such as the exact location
of the added points, will not be discussed. Note that thanks to Lemma 16 and
Lemma 14 we only need to calculate the depth of

(i) positions lying at the intersection of some (d− 1)-simplex and O,V ;

(ii) one representative of the positions lying between the intersections from (i).

D1

D2

D3

O

V
5 points 6 points

D1 D2

D3

V

7 points

V V

before adding points after adding points

D1 D2

D3

D1 D2

D3

Figure 2.7: The original dataset with a different point of view, so that
data points O and V overlap (left) and the new dataset after points
“around” the line segment O,V have been added (right). Whether the
new points are added within or outside the convex hull of the previous
points is irrelevant to the observation.

To calculate the depth of positions of our concern, we use both SDclosed
n

and SDavg
n . However, only the results, not the actual calculation is provided

in Figure 2.8. The sole purpose of including the depths calculated with SDclosed
n

was to compare them to those obtained using SDavg
n . Although SDclosed

n provided
a more appropriate sample simplicial median for the dataset with 5 points, adding
more points to the dataset seemingly (Figure 2.8) favored the use of SDavg

n . In
conclusion, while there may be situations where SDclosed

n produces better results,
we conjecture that SDavg

n would be generally more suitable for most applications.
The main purpose of this motivation, however, was to outline an interesting

observation. The first thing to note is that none of these considered positions
fulfills (C2) as they lie in (d − 2)-simplex (line segment) S(O,V ). Therefore,
Theorem 12 does not apply to them in any way. In spite of that, it appears that
SDavg

n of positions at the intersections can be obtained by averaging the depths
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12

12

11

18
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Figure 2.8: The depth of positions in the line segment O,V calculated
using SDclosed

n (red) and with SDavg
n (blue). The number of points in the

dataset is displayed above each line segment. The cross symbols denote
the intersections described in (i). Circles refer to the representatives
from (ii).

of the closest representatives, one above and one below. The fact that this is
not a coincidence is supported by the following theorem, which formalizes the
generalization of this observation.
Theorem 17 (Addition to Theorem 12). Let x1, . . . ,xn ∈ Rd be observed data
points in general position. A hyperplane induced by some data-determined (d −
1)-simplex D defines two open halfspaces H1 and H2. Let K be a data-determined
k-simplex such that

I1 = (relint K)∩H1 ̸= ∅, I2 = (relint K)∩H2 ̸= ∅, I = (relint K)∩(relint D) ̸= ∅,

where k ∈ {1,2, . . . , d − 2} (if such K exists). Additionally, let us assume the
following

(A1) For all η ∈ I let σd−1(η) = n− d;

(A2) If k ≥ 2, for all η ∈ I let σj(η) = 0 for all j ∈ {d− k, . . . , d− 2}.
For ε > 0, let us denote Iε = ⋃︁

x∈I B(x,ε), where B(x,ε) is an open ball in Rd

centered at x with radius ε. Then there exists ε > 0 small enough so that the
depth of any position η ∈ I is equal to the average of the depths of positions
y1 ∈ Iε ∩ I1 and y2 ∈ Iε ∩ I2.

Proof. By assumption (A1) we have that σd−1(η) = n − d which means that
there is only one data-determined (d−1)-simplex that intersects I. There are only
finitely many data-determined m-simplices D1, . . . , DN , N ∈ N (other than D)
for m = d− k, . . . , d− 1. Set

ε = 1
2 ·min{dist(D1,I), . . . , dist(DN ,I)},
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where dist(A,B) = inf{∥x − y∥ : x ∈ A, y ∈ B} denotes the distance between
sets A and B. The assumption (A1) cannot be satisfied if ε is zero, thus ε > 0.
For this ε we have σd−1(y1) = σd−1(y2) = 0, for y1 and y2 as in the statement
of the theorem. By Lemma 14, Lemma 16 and assumption (A2) we have that
σk(η) = σk(y1) = σk(y2) =

(︂
n−k−1

d−k

)︂
and also that σi(η) = σi(y1) = σi(y2) = 0

for all i ∈ {0,1,2, . . . ,d − 2} \ {k}. Now we continue in a fashion similar to the
proof of Theorem 12. Every simplex contributing to ρ(η) also contributes to ρ(y1)
and ρ(y2). Every simplex contributing to σd−1(η) contains either y1 or y2 in its
interior. Finally, every simplex which contribute to SDavg

n (y1) or SDavg
n (y2) must

also contribute to SDavg
n (η). Putting everything together and using the same

notation as in the proof of Theorem 12 we get

SDavg
n (η) = 1

2(2ρ(η) + σd−1(η) + σk(η))

= 1
2(ρy1(η) + ρy2(η) + σy1

d−1(η) + σy2
d−1(η) + 1

2(σk(y1) + σk(y2)))

= 1
2(SDavg

n (y1) + SDavg
n (y2)),

which completes the proof.

V

O

D

K

η

y1

y2

I1

I2

H1

H2

Figure 2.9: Theorem 17 applied on our motivational example in Figure 2.8
(6 data points) with d = 3: The (d − 1)-simplex D (orange triangle)
intersects the 1-simplex K = S(O,V ) in η. Thus, in this case I = {η}
is a singleton. Open halfspaces H1 and H2 are above and below D,
respectively (orange arrows). Consequently, I1 and I2 are also above and
below, respectively (red curly brackets). Note that both conditions (A1)
and (A2) are satisfied. Condition (A2) is trivially true since k = 1.
Thus, Theorem 17 can be applied, which gives a general version of the
observation from Figure 2.8.

The combination of Theorems 12 and 17 enables us to derive a weakened
generalized version of our Theorem 13, or conversely, an enhanced accurate
version of the incorrect Proposition 10.
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Theorem 18 (Proposition 10, d ≥ 2). Let x1, . . . ,xn ∈ Rd be observed data points
in general position. Let H denote the convex hull formed by these points. Then
the following statements hold true:

(i) In order to find the maximum averaged sample simplicial depth, it is not
necessary to calculate the depth of these types of positions: θ in the sense
of Theorem 12, and η in the sense of Theorem 17.

(ii) If the observed data points are not in a convex position8, then the maximum
averaged sample simplicial depth is not attained at the boundary of H.

Proof. (i) By Theorems 12 and 17, whenever the depth of a sample simplicial
median is attained at any of the positions of these types (θ, η), then it must be
also attained at some positions which do not fall into these categories.

(ii) The depth of any position from the boundary of H is always less then the
depth of any boundary data point. By the assumption that the observed data
points are not in a convex position, there exist an index i such that xi is contained
in the interior of H. By the Carathéodory theorem [18, Theorem 2.2.4], at least
one simplex with boundary data points as vertices contains xi in its interior. We
can write

SDavg
n (xi) ≥ 1 + 1

2

(︄
n− 1

d

)︄
>

1
2

(︄
n− 1

d

)︄
= SDavg

n (xj),

where xj is an arbitrary boundary data point.

Note. In contrast to Theorem 13 (ii), for general d, we only managed to prove
a similar assertion for data points that are not in convex position. Even though
the problem for data points in convex position may seem intuitively trivial, we
were not able to come up with any formal proof.

One of the ideas to approach that problem was to apply the so called first
selection lemma from discrete geometry [13, Chapter 9] which in our case can be
formulated as follows.

Lemma 19 (First selection lemma). Consider a dataset of n points in Rd. Then
there exists a point p ∈ Rd contained in at least cd ·

(︂
n

d+1

)︂
data-determined

simplices, where cd > 0 is constant depending only on the dimension d.

It should be pointed out that the best possible value for cd is not known,
except for d = 2. For d ≥ 3 only bounds are available. Let us look at the
situation in d = 3. It was proved in [1] that for a set M of n points in R3 there
exists a point p ∈ R3 contained in at least 0.00227 · n4 simplices spanned by M .
In our case, however, we need to differentiate between simplices which contain
p in their interior and those which contain p in their boundary. To do so, we
can use a lemma from [13, Lemma 9.1.2] which states that for set N of n points
in general position, no point in Rd is contained in more than dnd−1 hyperplanes

8A set of points is said to lie in a convex position if none of the points can be represented
as a convex combinations of the others.
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induced by N . The lower bound derived from these assertions would lead to the
following inequality

0.00227 · n4 − 3 · n2 + 3
2 · n

2 >
1
2

(︄
n− 1

3

)︄
,

which holds true for n > 46. Consequently, for d = 3 and n > 46, we can
guarantee that the maximum averaged sample simplicial depth is not attained at
the boundary of H from Theorem 18. The problem of determining whether there
exists a configuration of n data points in R3 with n ≤ 46, where the maximum
averaged sample simplicial depth is highest at the boundary, remains unresolved.

During the search for such configuration, we explored the following idea.
Example 2.5. Consider general dimension d ≥ 3 and a simplex S. Let us have
(d+1) groups of k data points, where each group is situated in the neighborhood
of one of the vertices of S, so that the data points lie in convex position (for d = 3
see Figure 2.10). Together we have n = k · (d + 1) data points.

centroid

Figure 2.10: Situation in Example 2.5 for d = 3 and k = 12.

In this specific configuration we can easily determine the depth SDavg
n of

• any data point D: SDavg
n (D) = 1

2

(︂
n−1

d

)︂
= 1

2

(︂
(d+1)k−1

d

)︂
;

• any position M in the “middle” cell: SDavg
n (M) = kd+1, where by the middle

cell we understand the cell which contains the centroid of S.
The latter follows from the observation that M is contained in exactly those
data-determined simplices whose all vertices belong to different k-element groups.
Notice, that SDavg

n (D) is O(nd), while SDavg
n (M) is O(nd+1). Hence, for n large

enough we have SDavg
n (D) < SDavg

n (M), which corresponds to the first selection
lemma, as we would expect. However, for n small enough we have SDavg

n (D) >
SDavg

n (M). For instance, in dimension d = 3, the inequality

SDavg
n (D) = 1

2

(︄
4k − 1

3

)︄
> k4 = SDavg

n (M)

holds for k = 2 or k = 3. Meanwhile, in dimension d = 25, the inequality

SDavg
n (D) = 1

2

(︄
26k − 1

25

)︄
> k26 = SDavg

n (M)
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holds for every k ≤ 7632345541. Due to these calculations we had a hypothesis
which goes as follows: For each d ≥ 3 there exists n > d + 1 such that for less
than n observed data points in convex position, there exists a configuration such
that the maximum averaged sample simplicial depth is attained in a data point.

It is important to note that the depth of position M being smaller than the
depth of data point D does not necessarily mean that the maximum averaged
sample simplicial depth is attained in D. Therefore, to test our hypothesis we
have to calculate the depth of other positions as well. In order to do so, we
use the “easiest to compute” situation. That is, a dataset of 8 points in R3

located as described in the beginning of this example (Figure 2.10 with k = 2
instead of k = 12). At first, in order to compute SDavg

8 in each (most) of the
cells, we randomly generated 10000 positions inside the convex hull of all 8 data
points. The maximum SDavg

8 of these generated positions was 17 which is less
than SDavg

8 (D) = 17.5. Thus, it is highly unlikely there is a cell with greater
depth than the depth of a data point. By Theorem 12, the same remark can
be made for positions in the relative interior of some data-determined 2-simplex.
The only positions left, whose depth we need to evaluate, are those lying in
data-determined 1-simplices. Due to the general position of data points, no
two data-determined 1-simplices intersect. Besides, thanks to Theorem 17 we
do not need to calculate the depth of positions which have nonzero both σ2
and σ1. This enables us to bypass the need to search for intersections among
data-determined 1-simplices and 2-simplices. By randomly generating positions
within data-determined 1-simplices we found that the maximum SDavg

8 value was
21.5, exceeding 17.5. As a result, we ended up not being able to support our
hypothesis in this particular case, but our general hypothesis remains open. △
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3 A paradox

While writing this thesis we stumbled upon an interesting problem which
goes by the name Sylvester’s four-point problem [17, 10]. It can be stated as
follows: “What is the probability that four randomly chosen points in R2 create a
convex quadrilateral?” Due to the inaccurate phrasing of the original question,
many inconsistent results were published throughout the years. For an overview
see [15]. Clearly, the question depends on the considered probability distribution,
or the shape of the subset of R2 from which the points are randomly sampled if the
distribution is uniform. Most of the results focus on points sampled independently
from continuous uniform distribution defined on some convex compact subset of
R2 with non-empty interior. Not so long ago, results concerning a Gaussian
distribution were published as well [3]. For some of the most recent results,
regarding a discrete uniform distribution defined on an n× n net in R2 we refer
to [10].

For the purposes of this chapter, only continuous uniform distributions defined
on a convex compact subset K of R2 are of our concern and we will denote them
by PK ∈ P(R2). Let us further denote the following complementary events

CQK = [random sample X1, X2, X3, X4 from PK created a convex quadrilateral];
NQK = Ω \ CQK .

In order to find the probability P(CQK), it is sufficient to determine the
expected value of the area spanned by three random points from PK . We can see
that from

P(CQK) = 1− P(NQK)
= 1− P(X1 ∈ S(X2,X3,X4))− P(X2 ∈ S(X1,X3,X4))
− P(X3 ∈ S(X1,X2,X4))− P(X4 ∈ S(X1,X2,X3))

= 1− 4P(X4 ∈ S(X1,X2,X3))

= 1− 4 · E X1,X2,X3 [λ2(S(X1,X2,X3))]
λ2(K) ,

where λ2(·) denotes Lebesgue measure. In the last equality we used a geometric
interpretation of the continuous uniform distribution PK . This allows us to
establish a connection with the simplicial depth from Definition 6

E X4 [SD(X4; PK)] = E X4 [P (X4 ∈ S(X1, X2, X3))]

= E X4

[︄
E X1,X2,X3 [λ2(S(X1,X2,X3))]

λ2(K)

]︄

= E X1,X2,X3 [λ2(S(X1,X2,X3))]
λ2(K) .
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To put this in words, the expected value of simplicial depth SD(X; PK) is the
same as the expected value of the area spanned by three random points from PK ,
all that divided by the area of K.

Interestingly enough, Blaschke in [2] managed to prove that for all convex
compact K ⊆ R2

E X4 [SD(X4; Pellipse)] = 35
48π2 ≤ E X4 [SD(X4; PK)] ≤ 1

12 = E X4 [SD(X4; Ptriangle)].

Here Pellipse stands for the uniform distribution defined on (any full-dimensional)
ellipse in R2, and Ptriangle analogously for a triangle. As we can see, the mean
value of the simplicial depth is maximal for Ptriangle, while minimal for Pellipse.
On the other hand, if we now compare the maximum simplicial depth of Ptriangle

and Pellipse instead, we conjecture that

max
x∈ triangle

SD(x; Ptriangle) = 3
729(18 + 40 · log(2) + 5 · log(16)) ≈ 0.245222, (3.1)

which would result in a converse inequality as it is less than

max
x∈ ellipse

SD(x; Pellipse) = 1
4 . (3.2)

Equation (3.2) follows from Theorem 6 as Pellipse is C-symmetric about the
center of the considered ellipse. The distribution of Ptriangle, however, is not
even H-symmetric about any point. Therefore, Theorem 6 cannot be used.

Naturally, one would expect the simplicial median of the distribution Ptriangle

to be located at the centroid of the considered triangle. First of all, let us
mention that in order to show that simplicial median is attained in the centroid
of a triangle, it is immaterial what non-degenerate triangle we consider. This
claim follows from the affine invariance in Theorem 3. Therefore, we proceed
by considering an equilateral triangle T with vertices A = (−1

2 , − 1
2
√

3)⊤, B =
(1

2 ,− 1
2
√

3)⊤, C = (0, 1√
3)⊤. The length of the side of T is 1 and the centroid M of

T is located at (0,0)⊤. By the statement (1.5) in the corollary of our treatment
of consistency of the simplicial depth, we know that SDclosed

n (x; Pn(ω)) converges
to SD(x; PT ) almost surely. Thus, to support our hypothesis of SD(M ; PT ) =
maxx∈T SD(x; PT ), we randomly generated 10000 points uniformly inside T and
calculated SDclosed

10000 (·; P̂ 10000) for all generated points, where P̂ 10000 is the empirical
measure induced by the generated points. The maximum sample simplicial
depth was attained at the point p ≈ (0.000, 0.005)⊤ with SDclosed

10000 (p; P̂ 10000) ≈
0.2454. To increase our level of certainty even further, we randomly generated
additional 2500 points uniformly in a circular disk centered at M with radius
0.07. After computing the corresponding depth of these 2500 points with respect
to P̂ 10000, we again obtained nearly identical results as before. For a visualization
of this simulation exercise, see Figure 3.1. Unfortunately, as we were not able to
rigorously prove that the centroid of the triangle is the point where the simplicial
median is attained, we were bound to use the word “conjecture.”

Before we proceed to the value of the depth presented in the equation (3.1),
it is worth noting that computing the simplicial depth SD with respect to a
probability measure P ∈ P(Rd) is a challenging task. As far as we are aware,
there are only three types of probability distributions P whose simplicial depth
has been exactly determined in the literature:
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Figure 3.1: The top figure displays 10000 randomly generated points.
The depth of these points is represented with colors, according to the
legend to its right. The bottom figure displays another 2500 randomly
generated points, where again, their depth is represented with colors
corresponding to the legend to its right. Clearly, the simulation suggests
that the simplicial median is indeed attained at M .
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• One-dimensional measures P ∈ P(R);

• Finitely supported measures P ∈ P(Rd);

• Several specific measures P ∈ P(Rd), whose support is a one-dimensional
subset of Rd.

For more detailed discussion we refer to [14, Chapter 3]. The complexity of
determining the probability in (1.1) (for d ≥ 2) stems from the involved integrals
being too complicated to be solved directly. However, during our research, we
developed a method in R2 to reduce this problem to evaluating a single integral
of a function with one variable. Although this simplification is rather intriguing,
we will not include it due to time and space constraints of this work. Hopefully,
we will be able to provide a detailed explanation elsewhere.

Thanks to this method, we were able to determine the exact simplicial depth
of several points lying on the median (in the sense of a median line of a triangle)
of T with respect to PT . The results are plotted in Figure 3.2. Besides, the results
support our conjecture of centroid M being the point with the greatest depth.

Figure 3.2: (left): triangle T depicted in a 3-dimensional space (cyan).
The z coordinate of 46 dark blue points represents the simplicial depth
of the corresponding points lying on the medians of T . The points were
connected for visualization purposes. (right): Here, the value x on the
horizontal axis determines point (0,x)⊤, and the value y on the vertical
axis represents a simplicial depth with respect to PT .

Hence, according to our calculations, if we were to assume that M is the
simplicial median, we could write

max
x∈ T

SD(x; PT ) = SD(M ; PT ) = 3
729(18 + 40 · log(2) + 5 · log(16)).

Finally, as the inequalities

E X4 [SD(X4; Pellipse)] < E X4 [SD(X4; Ptriangle)];
max

x∈ ellipse
SD(x; Pellipse) > max

x∈ triangle
SD(x; Ptriangle),

seems counter-intuitive at the first glance, we decided to label them as a paradox.

45



Conclusion

In this work, we introduced and thoroughly examined the concept of simplicial
depth, providing detailed proofs of its four main properties. Our proofs were
accompanied by illustrations, making them more accessible.

In the second part of the thesis we explored various definitions of sample
simplicial depth and focused primarily on the averaged sample simplicial depth.
We corrected and reformulated several original propositions while extending parts
of the related theory further.

Our efforts led us to an intriguing problem: Is there a configuration of data
points in dimension d ≥ 3 in convex position such that the maximum averaged
sample simplicial depth is attained in a data point? Although this problem may
appear simple at first, we were unable to uncover a solution. Furthermore, we
proposed that this problem is closely tied to the unsolved first selection lemma
for d ≥ 3, or a version of it, where we only consider points in convex position.

Quite recently, we discovered a potential original link between the simplicial
depth and Sylvester’s four-point problem. That novel aspect of simplicial depth
could be promising for determining the exact simplicial depth for absolutely
continuous distributions in R2. However, due to time limitations, we were unable
to fully explore the practical implications of this connection, and only presented
an interesting paradox that we encountered.

In any case, the study of simplicial depth still holds many unanswered questions,
and we plan to pursue further investigations in this area in the near future.
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