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ducing me to this topic, for the amount of time he devoted to me and for his2
guidance and patience throughout the whole process of writing this thesis.3

ii



Title: Nonassociativity in two operations

Author: Martina Lehká
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Abstract: This thesis follows up mainly on the research of Drápal and Valent,
who in [1], [2] and [3] studied the nonassociativity of one quasigroup operation.
Its central objective is to examine the number of triples (x, y, z) ∈ Q3 such that
(x ∗ y) ◦ z = x ∗(y ◦ z), where (Q, ∗) and (Q, ◦) are two quasigroups, |Q| = n.
Let a2(C) be the number of such triples in a quasigroup couple C. Call it the
associativity index. Denote by a2(n) the minimal a2(C), where C is a couple of
order n. By averaging the associativity index over all the principal isotopes of
a quasigroup couple, we prove that a2(n) ≤ n2(1 + 1/(n − 1)), n > 2. We then
characterize the couples C that, on average, attain a2(C) = n2 and we prove
that this value is an improved upper bound on a2(n), n > 2. Furthermore, we
begin research on couples of quasigroups isotopic to groups. Lastly, we present
computational results with examples, including a2(4) = 8 and a2(5) = 9.
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Introduction1
Though they may seem different, quasigroups and latin squares are two sides of2
the same coin. Whereas the first notion refers to an algebraic structure resembling3
a group but lacking the neutral element and the associativity, the second has a4
more combinatorial nature. However, they interconnect tightly since bordering5
any latin square yields a multiplication table of a quasigroup and vice versa.6
In this thesis, we focus on quasigroups and their associativity, and the other7
viewpoint gives us a way to represent the structure on a computer.8

If (Q, ·) is a quasigroup, then we say that a triple (a, b, c) ∈ Q3 is associative if9
it fulfils the condition (a ·b) ·c = a · (b ·c). We call the total number of such triples10
the associativity index of Q and denote it by a(Q). Also, let a(n) be the minimal11
associativity index that a quasigroup of order n can attain. Quasigroups with12
small associative indices have been studied by Drápal and Valent in [1], [2], [3],13
by Drápal and Wanless in [4] and by many more, most of the relevant papers are14
listed in the references of the last article. These quasigroups are of interest, since15
they have potential applications in constructions of hash functions as explained16
in [6].17

The first three chapters of this thesis modify approaches from previously men-18
tioned [1] and from [12] to obtain similar results, but in a situation where we19
consider two quasigroup operations instead of one. In other words, we are in-20
terested in the number of triples (a, b, c) ∈ Q3 such that (a ∗ b) ◦ c = a ∗(b ◦ c),21
where ∗ and ◦ are two quasigroup operations on a set Q. We fully analyze the22
average number of such triples and as a result we establish an upper bound on23
the number of these triples. The remaining two chapters report on our partial24
results. They were motivated by the questions of whether it is possible to find25
a couple of quasigroups with a relatively small number of triples fulfilling the26
condition above as isotopes of groups and what are the possible numbers of these27
triples for a couple of quasigroups of order n. Overall, the associativity of two28
quasigroup operations offers fascinating problems that, once solved, could poten-29
tially lead to applications in cryptography since some cryptographical systems30
based on quasigroups, take [5] for example, use multiple operations.31

The outline of this thesis is as follows. Chapter 1 summarizes definitions32
and important facts about quasigroups and introduces a new algebraic structure33
called the quasigroup couple, which can also be interpreted as two quasigroups on34
the same set in a fixed order. The following two parts, Chapter 2 and Chapter 3,35
aim to find an upper bound on the associativity index of quasigroup couples36
of a given order. That is achieved firstly by finding the average value of the37
associativity index over all the principal isotopes of one of the quasigroups in the38
couple and secondly by averaging the index over all the principal isotopes of the39
quasigroup couple itself. Chapter 3 then generalizes the first result and contains40
a characterization of the situation in which the minimal average index is attained.41
Chapter 4 analyzes several special cases of quasigroup couples principally isotopic42
to group couples. We focus on finding the lower bound on the associativity index43
of these couples and on determining whether this minimal value is achievable.44
Computational results – all possible associativity indices of couples up to order45
5 – are presented in Chapter 5.46
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1. Quasigroup couples1
The main objective of this chapter is to state well-known facts about quasigroups.2
For further information on their properties, we recommend the first chapter of3
[10]. Also, we formally introduce a new algebraic structure, a quasigroup couple,4
that we can view as a pair of quasigroups on the same set in a fixed order.5

1.1 General properties of quasigroups6
Definition. A quasigroup (Q, ·) is a set Q with a binary operation · defined on7
Q such that for every two elements a, b ∈ Q each of the equations a · x = b and8
y · a = b has exactly one solution.9
The order of (Q, ·), denoted by |Q|, is the number of elements of Q. Throughout10
this thesis, unless written otherwise, we shall assume that |Q| = n, for n ∈ N.11

Definition. A latin square of order n is a square matrix consisting of n2 entries12
using n different symbols, each of which does not repeat in any row and column.13

Remark. The body of a multiplication table of any quasigroup is a latin square14
of the same order. Conversely, we can border any latin square (in many different15
ways) to get a multiplication table of a quasigroup.16

Definition. Let (Q, ·) be a quasigroup. For every a ∈ Q, define the left and right17
translations as follows18

La(x) = a · x and Ra(x) = x · a, for all x ∈ Q.

The inverse mappings are the left and right divisions, defined by19

L−1
a (x) = a\x and R−1

a (x) = x/a, for all x ∈ Q.

Remark. By the definition

LaL
−1
a (x) = x = L−1

a La(x),
RaR

−1
a (x) = x = R−1

a Ra(x),

from which we obtain the following identities describing the relationship between
quasigroup multiplication and division

a · (a\x) = x = a\(a · x),
(x/a) · a = x = (x · a)/a.

The following two definitions will give us ways of talking about relationships20
between quasigroups.21

Definition. Let (Q, ∗) and (R, ◦) be two quasigroups. A triple (θ, ϕ, ψ) of bijec-22
tions θ, ϕ, ψ : Q → R is called an isotopy of (Q, ∗) upon (R, ◦) if23

θ(x) ◦ϕ(y) = ψ(x ∗ y), for all x, y ∈ Q.

Such quasigroups are then said to be isotopic.24
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Definition. Let (Q, ∗) and (R, ◦) be quasigroups. An isotopy (θ, ϕ, ψ) of (Q, ∗)1
upon (R, ◦) such that θ = ϕ = ψ is called an isomorphism. An isomorphism of a2
quasigroup onto itself is called an automorphism.3

It is worth remarking that there exist equivalent notions for latin squares.4
An isotopy of a latin square L permutes the rows of L, permutes the columns of5
L and permutes the symbols of L. Further details can be found in [10], chap-6
ter Elementary properties. We shall talk more about latin square isotopy and7
isomorphism in Chapter 5 of this thesis.8

Now, let us define a special case of an isotopy: a principal isotopy.9

Definition. Let (Q, ∗) be a quasigroup. For each pair of permutations α, β ∈ SQ10
define (Q, ∗α,β) by11

x ∗α,β y = α(x) ∗ β(y), for all x, y ∈ Q.

Such quasigroup is isotopic to (Q, ∗) and we call it a principal isotope of (Q, ∗).12

A connection between isotopes and principal isotopes of a quasigroup is de-13
scribed in the next theorem. For the proof see the first chapter of [10].14

Theorem 1.1. Every isotope (R, ◦) of a quasigroup (Q, ∗) is isomorphic to a15
principal isotope of the quasigroup.16

The following lemma borrowed from [12] relates translations of a quasigroup17
to translations of its principal isotope.18

Lemma 1.2. Let (Q, ∗) be a quasigroup, (Q, ∗α,β) its principal isotope and La, Ra19
and Lα,βa , Rα,β

a their translations. Then Lα,βa = Lα(a)β and Rα,β
a = Rβ(a)α, for all20

a ∈ Q.21

Proof. Let x ∈ Q, then Lα,βa (x) = a ∗α,β x = α(a) ∗ β(x) = Lα(a)(β(x)). Analo-22
gously for every x ∈ Q: Rα,β

a (x) = x ∗α,β a = α(x) ∗ β(a) = Rβ(a)(α(x)).23

1.2 Associativity of quasigroup couples24
Definition. We define a quasigroup couple C = (Q, ∗, ◦) as a set Q with two25
binary operations ∗ and ◦ on Q such that (Q, ∗) and (Q, ◦) are quasigroups. The26
order of C, denoted by |C|, is the order of the quasigroups of C.27

Definition. Let C = (Q, ∗, ◦) be a quasigroup couple. We say that a triple28
(a, b, c) ∈ Q3 is associative in C (shortly, associative) if29

(a ∗ b) ◦ c = a ∗(b ◦ c).

We will call the total number of such triples in C the associativity index of C and30
denote it by a2(C). We also put31

a2(n) = min{a2(C) |C is a quasigroup couple of ordern}.

For a set X and a permutation φ ∈ SX , we shall denote the set of fixed points32
of φ by Fix(φ) = {x ∈ X |φ(x) = x}. Following a convention of group theory,33
[φ, ψ] = φ−1ψ−1φψ will denote the commutator of permutations φ and ψ. Then34
the associativity index of a quasigroup couple can be expressed in the following35
way:36
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Lemma 1.3. Suppose that C = (Q, ∗, ◦) is a quasigroup couple. For all a ∈ Q,1
let La, Ra and λa, ρa be the left and right translations of the quasigroups (Q, ∗)2
and (Q, ◦). Then3

a2(C) =
∑︂
a,c∈Q

|Fix([La, ρc])|.

Proof. [La, ρc](b) = b ⇔ L−1
a (ρ−1

c (La(ρc(b)))) = b ⇔ La(ρc(b)) = ρc(La(b)) ⇔4
a ∗(b ◦ c) = (a ∗ b) ◦ c.5

A lower bound on a2(n) can be found analogously as in the case of one quasi-6
group described, for example, in [1]. Before we proceed to determine it, let us7
introduce one more notion. If (Q, ∗) is a quasigroup, then for every element a ∈ Q8
there exist ea∗, fa∗ ∈ Q such that ea∗ ∗ a = a and a ∗ fa∗ = a. We call them the left9
and right local units of a in (Q, ∗). We shall talk more about local units and their10
connection to associative triples in Chapter 4.11

Now, let C = (Q, ∗, ◦) be a quasigroup couple of order n. Since for all a ∈ Q12
we have (ea∗ ∗ a) ◦ fa◦ = a ◦ fa◦ = a = ea∗ ∗ a = ea∗ ∗(a ◦ fa◦ ), the triple (ea∗, a, fa◦ ) is13
always associative. Hence, a2(n) ≥ n, for all n ∈ N.14

As for an upper bound on a2(n), it follows from the case of one quasigroup15
that it, with finitely many exceptions, equals n whenever n is not of the form16
n = 2p1 or n = 2p1p2 for primes p1, p2 with p1 ≤ p2 < 2p1 as proven in [4]. As a17
result of the following two chapters, we shall get general estimates on the index.18
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2. Average index1
over all principal isotopes2
This chapter aims to find the average number of associative triples of a quasi-3
group couple over all its principal isotopes. First, we will prove some general4
observations about the newly defined structure.5

2.1 Principal isotope of a quasigroup couple6
Definition. We say, that a quasigroup couple C is the principal isotope of a7
quasigroup couple (Q, ∗, ◦), if there exist permutations α, β, γ, δ ∈ SQ, such that8
C = (Q, ∗α,β, ◦γ,δ).9

Lemma 2.1. Let α, β, γ and δ be permutations of Q and let (Q, ∗, ◦) be a quasi-10
group couple. Denote by La, Ra and λa, ρa the left and right translations of (Q, ∗)11
and (Q, ◦). Then12

a2((Q, ∗α,β, ◦γ,δ)) =
∑︂
x,y ∈Q

|Fix([Lxβ, ρyγ])|.

Proof. Let Lα,βa , Rα,β
a and λγ,δa , ργ,δa be the translations of (Q, ∗α,β) and (Q, ◦γ,δ),13

respectively. Then by Lemma 1.2,14

Lα,βa = Lα(a)β and ργ,δa = ρδ(a)γ, for all a ∈ Q.

Also, since α, δ ∈ SQ, we get15

{(Lα(a)β, ρδ(c)γ)| a, c ∈ Q} = {(Lxβ, ρyγ)|x, y ∈ Q}, for all β, γ ∈ SQ.

Therefore, by Lemma 1.3 and by the previous steps,

a2((Q, ∗α,β, ◦γ,δ)) =
∑︂
a,c∈Q

|Fix([Lα,βa , ργ,δc ])|

=
∑︂
a,c∈Q

|Fix([Lα(a)β, ρδ(c)γ])|

=
∑︂
x,y ∈Q

|Fix([Lxβ, ρyγ])|.

16

Corollary 2.2. Let (Q, ∗, ◦) be a quasigroup couple and let α, β, γ and δ be per-17
mutations of Q. Then for all σ, τ ∈ SQ the following equality holds:18

a2((Q, ∗α,β, ◦γ,δ)) = a2((Q, ∗σ,β, ◦γ,τ )).

Proof. By the previous lemma, the associativity index is not dependent on the19
permutations α and δ. They only permute the summands and therefore do not20
affect the final sum.21

6



2.2 Average associativity index1
In the following lemmas, we will prove two identities from [1] and then use them2
to find the desired average index. We shall need a well-known theorem, here in a3
formulation from [9]:4

Theorem 2.3 (Burnside’s lemma). Let G be a finite group acting on a set X5
and let k denote the number of orbits of X. Then6

k = 1
|G|

∑︂
g ∈G

|Fix(g)|.

Lemma 2.4. Let f = |Fix(α)| for a permutation α ∈ Sn. Then7 ∑︂
φ∈Sn

|Fix([α, φ])| = n(n− 2)!(f 2 − 2f + n).

Proof. Put F = Fix(α) and M = {1, 2, ..., n}. The goal is to count the number8
of pairs (i, φ), where i ∈ M and φ ∈ Sn, such that αφ(i) = φα(i).9
First, let us prove the following observation: if (i, φ) is a pair fulfilling αφ(i) =10
φα(i), then11

i ∈ F ⇔ φ(i) ∈ F.

Let i ∈ F , that is α(i) = i. This condition yields the following equivalence12

αφ(i) = φα(i) ⇔ αφ(i) = φ(i),

where the right side implies that φ(i) ∈ F . Therefore, i ∈ F ⇒ φ(i) ∈ F .13
For the other implication, let φ(i) ∈ F , equivalently α(φ(i)) = φ(i). Then14

αφ(i) = φα(i) ⇔ φ(i) = φα(i) ⇔ i = α(i),

and so by the last equation i ∈ F . Hence, φ(i) ∈ F ⇒ i ∈ F . This concludes the15
observation.16

Therefore, the problem of counting pairs can be divided into two cases depend-17
ing on whether the given permutation α preserves the elements i and j = φ(i):18

(a) Consider a pair of elements (i, j) ∈ F 2. There are exactly f 2 such pairs, since19
|F | = f .20
For each selected pair, we want to count all φ ∈ Sn such that φ(i) = j,21
because then from α(i) = i and α(j) = j follows that φ(α(i)) = α(j), thus,22
φα(i) = αφ(i) as needed.23
Clearly, there are (n − 1)! permutations φ ∈ Sn such that φ(i) = j. Hence,24
in this case, there exist f 2(n− 1)! possible pairs (i, φ).25

(b) Now, similarily as above, let us consider a pair (i, j) such that i, j ∈ M\F .26
There are (n− f)2 such pairs.27
Next, we need to count all φ ∈ Sn such that φ(i) = j and also φα(i) = α(j).28
Clearly, substituting for j in the second equality yields the desired condition.29
The two requirements on φ give us (n − 2)! possibilities for choosing the30
permutation. Therefore, the second case leaves us with (n− f)2(n− 2)! more31
pairs (i, φ).32
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i i

j j = φ(i)

α

φ φ

α

(a) First case

i α(i) ̸= i

j α(j) = φ(α(i))

α

φ φ

α

(b) Second case

Figure 2.1: Commutative diagrams illustrating the proof of Lemma 2.4

Thus, in total, there are f 2(n− 1)! + (n− f)2(n− 2)! = (n− 2)!(f 2n− f 2 + n2 −1
2fn+ f 2) = (n− 2)!n(f 2 + n− 2f) pairs (i, φ) fulfilling our condition.2

Remark. Lemma 2.4 with switched positions of α and φ in the commutator also3
holds since [φ, α] = φ−1α−1φα = (α−1φ−1αφ)−1 = ([α, φ])−1 and |Fix(ψ)| =4
|Fix(ψ−1)| for all ψ ∈ Sn.5

Lemma 2.5. The following equation holds:6 ∑︂
φ,ψ ∈Sn

|Fix([φ, ψ])| = n3(n− 1)!(n− 2)!.

Proof.∑︂
φ,ψ ∈Sn

|Fix([φ, ψ])| =
∑︂
φ∈Sn

∑︂
ψ ∈Sn

|Fix([φ, ψ])|

=
∑︂
φ∈Sn

n(n− 2)!(|Fix(φ)|2 − 2|Fix(φ)| + n)

= n(n− 2)!
⎛⎝ ∑︂
φ∈Sn

|Fix(φ)|2 − 2
∑︂
φ∈Sn

|Fix(φ)| + nn!
⎞⎠ ,

where the second equality follows from Lemma 2.4.7
Next, consider an action of the group Sn on a set M = {1, 2, ..., n}; the symmetric8
group acts on the set by permuting its elements. Clearly, an element of M can be9
mapped by a permutation to any of the elements of M . Thus, the orbit of any x10
is [x] = {π(x) | π ∈ Sn} = M or, in other words, all elements belong to the same11
orbit. Therefore this action has a single orbit.12
Now, by Burnside’s lemma 2.3 and by the fact that |Sn| = n!, we get13 ∑︂

φ∈Sn

|Fix(φ)| = n!.

Analogously, consider an action of Sn on a set M2. In this case, the group acts on14
the set by permuting its elements coordinatewise, that is π((x, y)) = (π(x), π(y))15
for (x, y) ∈ M2 and π ∈ Sn. Clearly, all elements (x, x) ∈ M2 form an orbit16
[(x, x)] = {π((x, x)) | π ∈ Sn}. Also, since any pair (a, b) ∈ M2, a ̸= b, can be17
mapped to any pair (c, d) ∈ M2, c ̸= d, by any permutation mapping a to c and18
b to d, all the remaining elements belong to [(x, y)] = {π((x, y)) | x ̸= y, π ∈ Sn}.19
Therefore this action has two orbits.20
Thus, Burnside’s lemma 2.3 gives21 ∑︂

φ∈Sn

|FixM2(φ)| = 2n!,

8



where FixM2(φ) = {(x, y) ∈ M2 |φ((x, y)) = (φ(x), φ(y)) = (x, y)}. For each1
φ ∈ Sn, the set of points FixM2(φ) ⊆ M2 fixed by the action of Sn on M22
consists of all possible couples of elements from the set of points Fix(φ) ⊆ M3
fixed by the action of Sn on M , since Fix(φ) = {x ∈ M |φ(x) = x}. Hence, we4
get that |FixM2(φ)| = |Fix(φ)|2, for all φ ∈ Sn, and so5 ∑︂

φ∈Sn

|Fix(φ)|2 = 2n!.

Therefore, ∑︂
φ,ψ ∈Sn

|Fix([φ, ψ])| = n(n− 2)! (2n! − 2n! + nn!)

= n3(n− 1)!(n− 2)!.

6

After preparing the auxiliary lemmas, we can start calculating the average7
index. Firstly, consider a situation when one of the operations is fixed and the8
other quasigroup of the couple runs through all its principal isotopes.9
Proposition 2.6. Suppose that (Q, ∗, ◦) is a quasigroup couple, |Q| = n, and
La, Ra and λa, ρa are the left and right translations of (Q, ∗) and (Q, ◦). Then

1
(n!)2

∑︂
α,β ∈SQ

a2((Q, ∗α,β, ◦)) = 1
n!

∑︂
β ∈SQ

a2((Q, ∗id,β, ◦))

= n

n− 1

⎛⎝ ∑︂
y ∈Q

|Fix(ρy)|2 − 2n+ n2

⎞⎠ .

Proof. By using an equivalent notation (Q, ∗α,β, ◦) = (Q, ∗α,β, ◦id,id), we get that
1

(n!)2

∑︂
α,β ∈SQ

a2((Q, ∗α,β, ◦id,id)) = 1
n!

∑︂
β ∈SQ

a2((Q, ∗id,β, ◦id,id))

= 1
n!

∑︂
β ∈SQ

∑︂
x,y ∈Q

|Fix([Lxβ, ρy])|

= 1
n!

∑︂
y ∈Q

∑︂
β ∈SQ

∑︂
x∈Q

|Fix([Lxβ, ρy])|,

where the first equality follows from Corollary 2.2, the second from Lemma 2.110
and the last one holds due to the finiteness of the sums. Since for each ψ ∈ SQ and11
each x ∈ Q the equation Lxβ = ψ has a unique solution β ∈ SQ, the commutator12
[ψ, ρy] can be written in exactly n ways as [Lxβ, ρy]. Therefore,13

1
(n!)2

∑︂
α,β ∈SQ

a2((Q, ∗α,β, ◦id,id)) = 1
n!

∑︂
y ∈Q

∑︂
ψ ∈SQ

n|Fix([ψ, ρy])|.

Next, put fy = |Fix(ρy)|. Since ρy ∈ SQ for all y ∈ Q, the remark after Lemma 2.4
yields:

1
(n!)2

∑︂
α,β ∈SQ

a2((Q, ∗α,β, ◦id,id)) = n

n!
∑︂
y ∈Q

(n(n− 2)!(f 2
y − 2fy + n))

= n

n− 1

⎛⎝ ∑︂
y ∈Q

f 2
y − 2 ·

∑︂
y ∈Q

fy + n2

⎞⎠ .

9



Recall that Fix(ρy) = {x ∈ Q |x ◦ y = x}, for each y ∈ Q. By the definition of1
a quasigroup, for all x ∈ Q the equation x ◦ y = x has a single solution y ∈ Q.2
Hence, ∑︁

y ∈Q |Fix(ρy)| = n.3
Finally,4

1
(n!)2

∑︂
α,β ∈SQ

a2((Q, ∗α,β, ◦id,id)) = n

n− 1

⎛⎝ ∑︂
y ∈Q

f 2
y − 2n+ n2

⎞⎠ .

5

Remark. By the previous proposition and by the triangle inequality6

n =
∑︂
y ∈Q

|Fix(ρy)| ≤
∑︂
y ∈Q

|Fix(ρy)|2 ≤

⎛⎝ ∑︂
y ∈Q

|Fix(ρy)|
⎞⎠2

= n2,

for all n ∈ N. Thus, we get the following estimates on the average7

n2 ≤ 1
(n!)2

∑︂
α,β ∈SQ

a2((Q, ∗α,β, ◦)) ≤ 2n2.

We will discuss the case where the average attains the minimum in the following8
chapter. As for the maximum, if a quasigroup (Q, ◦) has an identity element9
e ∈ Q, then |Fix(ρe)| = n and |Fix(ρx)| = 0 for all e ̸= x ∈ Q. Thus, such a10
quasigroup attains the maximal average. Quasigroups with an identity element11
are called loops, and in contrast to groups, loops need not be associative.12

Next, we focus on a case where the average is taken over all the principal13
isotopes of a quasigroup couple.14
Proposition 2.7. Let (Q, ∗, ◦) be a quasigroup couple of order n with translations
defined as in Proposition 2.6. Then

1
(n!)4

∑︂
α,β,γ,δ ∈SQ

a2((Q, ∗α,β, ◦γ,δ)) = 1
(n!)2

∑︂
β,γ ∈SQ

a2((Q, ∗id,β, ◦γ,id))

= n3

n− 1 = n2
(︃

1 + 1
n− 1

)︃
.

Proof. The first equality follows directly from Corollary 2.2. By Lemma 2.1 then15
1

(n!)2

∑︂
β,γ ∈SQ

a2((Q, ∗id,β, ◦γ,id)) = 1
(n!)2

∑︂
β,γ ∈SQ

∑︂
x,y ∈Q

|Fix([Lxβ, ρyγ])|.

For each φ ∈ SQ and for each x ∈ Q the equation Lxβ = φ has exactly one
solution β ∈ SQ. Similarly for ψ ∈ SQ. Therefore, for each [φ, ψ] there are exactly
n2 ways of expressing it in the form of [Lxβ, ρyγ].
Hence,

1
(n!)2

∑︂
β,γ ∈SQ

a2((Q, ∗id,β, ◦γ,id)) = 1
(n!)2

∑︂
φ,ψ ∈SQ

n2|Fix([φ, ψ])|

= n2

(n!)2n
3(n− 1)!(n− 2)!

= n3

n− 1 ,

where the second equality follows from Lemma 2.5.16

10



Similarly, as [1] and [12] have found the average number of associative triples1
of a single quasigroup over all its principal isotopes, we have obtained analogous2
results for a quasigroup couple. As the earlier mentioned papers have noted, the3
average associativity index of one quasigroup over all its principal isotopes does4
not depend on the structure of the quasigroup but solely on its order. We now5
know that the same applies when considering two operations.6

Proposition 2.7 also gives us an upper bound on a2(n), which is, for n > 2,7
equal to n2 (1 + 1/(n− 1)). However, we will improve this estimate in the next8
chapter.9
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3. Nonassociativity and1
orthomorphisms2
In this chapter, we shall first introduce the notion of an orthomorphism, then use3
it to generalize the situation from Proposition 2.6 and characterize the quasigroup4
couples for which the average associativity index taken over the principal isotopes5
of one of the quasigroups in the couple attains its minimum.6

Definition. Let (Q, ·) be a quasigroup. A permutation φ of Q is a (left) com-7
plete mapping if the mapping x ↦→ ϑ(x) defined by ϑ(x) = x · φ(x) is again a8
permutation of Q. The associated mapping ϑ is called a (left) orthomorphism.9

Remark. By the definition, ϑ(x) = x · φ(x), thus, also φ(x) = x\ϑ(x). Clearly,10
there is a one-to-one correspondence between complete mappings and orthomor-11
phisms of a quasigroup.12

Throughout this thesis, only the left versions of the definitions above shall13
be considered. However, similarily, we could define the right orthomorphism by14
ϑ(x) = φ(x) · x, with the right complete mapping fulfilling φ(x) = ϑ(x)/x, and15
work with those instead.16

We shall follow an approach similar to the one used in [12]. We will first prove17
a combinatorial lemma from [12], that shall later be useful in our estimations.18

Lemma 3.1. For a permutation α ∈ Sn put f = |Fix(α)|. Then19 ∑︂
φ∈Sn

|Fix([α, φ])| = n! ⇐⇒ f = 1.

Proof. By Lemma 2.420 ∑︂
φ∈Sn

|Fix([α, φ])| = n(n− 2)!(f 2 − 2f + n),

therefore the reverse implication holds.21
To prove the forward direction of the equivalence, consider a function h(x) =22
n(n− 2)!(x2 − 2x+n), n ≥ 2, x ∈ R, and its derivatives h′(x) = n(n− 2)!(2x− 2)23
and h′′(x) = 2n(n − 2)!, n ≥ 2, x ∈ R. Clearly, h′(x) = 0 if and only if x = 1.24
Also, h′′(x) > 0 in R. Thus, the function h is convex and has its global minimum25
at x = 1 with a value h(1) = n!. Therefore, by Lemma 2.4 and by the observations26
above, the statement is true.27

Lemma 3.2. Let (Q, ∗, ◦) be a quasigroup couple of order n with the translations
defined as in Proposition 2.6 and let γ ∈ SQ. For every y ∈ Q put fy = |Fix(ρyγ)|.
Then

1
(n!)2

∑︂
α,β,δ ∈SQ

a2((Q, ∗α,β, ◦γ,δ)) =
∑︂
β ∈SQ

a2((Q, ∗id,β, ◦γ,id))

= n2(n− 2)!
⎛⎝n2 +

∑︂
y ∈Q

(f 2
y − 2fy)

⎞⎠ ≥ n2n!.
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Proof.

1
(n!)2

∑︂
α,β,δ ∈SQ

a2((Q, ∗α,β, ◦γ,δ)) =
∑︂
β ∈SQ

a2((Q, ∗id,β, ◦γ,id))

=
∑︂
β∈SQ

∑︂
x,y ∈Q

|Fix([Lxβ, ρyγ])|,

as follows from the Corollary 2.2 and Lemma 2.1. Since for each φ ∈ SQ and
each x ∈ Q the equation φ = Lxβ holds for exactly one β ∈ SQ, the commutator
[φ, ρyγ] can be expressed in n ways in the form of [Lxβ, ρyγ]. Hence,

1
(n!)2

∑︂
α,β,δ ∈SQ

a2((Q, ∗α,β, ◦γ,δ)) =
∑︂
φ∈SQ

∑︂
y ∈Q

n|Fix([φ, ρyγ])|

= n ·
∑︂
y ∈Q

∑︂
φ∈SQ

|Fix([φ, ρyγ])|.

Now, Lemma 2.4 applied for α = ρyγ yields:

1
(n!)2

∑︂
α,β,δ ∈SQ

a2((Q, ∗α,β, ◦γ,δ)) = n ·
∑︂
y ∈Q

(︂
n(n− 2)!(f 2

y − 2fy + n)
)︂

= n2(n− 2)!
⎛⎝n2 +

∑︂
y ∈Q

(f 2
y − 2fy)

⎞⎠ ≥ n2n!,

where the final inequality follows from the fact that f 2
y − 2fy ≥ −1 for all y ∈ Q1

and n2 + ∑︁
y ∈Q(f 2

y − 2fy) ≥ n2 − n = n(n− 1).2

Lemma 3.3. Let (Q, ∗, ◦) be defined as in the previous lemma and let γ ∈ SQ be3
a permutation. For every y ∈ Q put fy = |Fix(ρyγ)|. Then4

1
(n!)2

∑︂
α,β,δ ∈SQ

a2((Q, ∗α,β, ◦γ,δ)) = n2n! ⇐⇒ fy = 1 for every y ∈ Q.

Proof. From the proof of Lemma 3.2 follows that5

1
(n!)2

∑︂
α,β,δ ∈SQ

a2((Q, ∗α,β, ◦γ,δ)) = n ·
∑︂
y ∈Q

∑︂
φ∈SQ

|Fix([φ, ρyγ])|,

and by Lemma 3.1, for each y ∈ Q,6 ∑︂
φ∈SQ

|Fix([α, ρyγ])| = n! ⇐⇒ fy = 1.

Therefore,7

1
(n!)2

∑︂
α,β,δ ∈SQ

a2((Q, ∗α,β, ◦γ,δ)) = n ·
∑︂
y ∈Q

n! = n2n! ⇐⇒ fy = 1 for every y ∈ Q.

8

For the proof of the following equivalence see Lemma 4.7 of [12].9
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Lemma 3.4. Suppose that (Q, ◦) is a quasigroup of order n with the translations1
λa, ρa, for all a ∈ Q, and γ ∈ SQ. Then |Fix(ρyγ)| = 1 for every y ∈ Q if and2
only if γ−1 is an orthomorphism.3

Proposition 3.5. Let (Q, ∗, ◦) be a quasigroup couple of order n and let γ ∈ SQ.4
Then5

1
(n!)3

∑︂
α,β,δ ∈SQ

a2((Q, ∗α,β, ◦γ,δ)) = 1
n!

∑︂
β ∈SQ

a2((Q, ∗id,β, ◦γ,id)) ≥ n2

and the equality holds if and only if γ−1 is an orthomorphism in (Q, ◦).6

Proof. The first statement was already proven in Lemma 3.2. The equivalence7
follows directly from Lemma 3.3 and Lemma 3.4.8

We say that a quasigroup (Q, ∗) is idempotent if for all its elements a ∈ Q :9
a ∗ a = a. By [10] (Theorem 1.5.6), there exists an idempotent quasigroup of order10
n iff n ̸= 2. Furthermore, it is easy to see that for every idempotent quasigroup,11
identity mapping is an orthomorphism. Therefore, Proposition 3.5 gives us an12
improved upper bound on a2(n), that is a2(n) ≤ n2 for n > 2.13
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4. Quasigroups isotopic to groups1
Since the impracticality of computer representation of quasigroups as multipli-2
cation tables is increasing with their growing order, it is desirable to research3
quasigroups principally isotopic to groups. Due to the potential cryptographical4
applications, the couples of low associativity indices are of particular interest.5

4.1 Groups and associativity6
For starting, we shall make several observations about a couple of groups. Denote7
by 1∗ the identity of the group (G, ∗) and by x−1

∗ the inverse of x in the group8
(G, ∗).9

Lemma 4.1. Let (G, ∗) be a group and let u ∈ G be any element in G. Then the10
operation defined by x ◦ y = x ∗u−1

∗ ∗ y for all x, y ∈ G is a group operation on G11
and the groups are isomorphic.12

Proof. Firstly, verify that (G, ◦) is a group. It is associative, since13

(x ◦ y) ◦ z = (x ∗u−1
∗ ∗ y) ∗u−1

∗ ∗ z = x ∗u−1
∗ ∗(y ∗u−1

∗ ∗ z) = x ◦(y ◦ z).

Also, since14

x ◦u = x ∗u−1
∗ ∗u = x ∗ 1∗ = x and u ◦x = u ∗u−1

∗ ∗x = 1∗ ∗x = x,

the neutral element in (G, ◦) is 1◦ = u. Lastly, the inverse of x in (G, ◦) has the15
form of x−1

◦ = u ∗x−1
∗ ∗u, because16

x ◦x−1
◦ = x ∗u−1

∗ ∗u ∗x−1
∗ ∗u = x ∗ 1∗ ∗x−1

∗ ∗u = x ∗x−1
∗ ∗u = 1∗ ∗u = u

and similarly17
x−1

◦ ◦x = u ∗x−1
∗ ∗u ∗u−1

∗ ∗x = u.

Thus (G, ◦) is a group. Next, consider a bijection:

Lu−1
∗

: G → G

x ↦→ u−1
∗ ∗x.

Since for all x, y ∈ G :

L−1
u−1

∗
(Lu−1

∗
(x) ∗Lu−1

∗
(y)) = Lu(Lu−1

∗
(x) ∗Lu−1

∗
(y)) = u ∗((u−1

∗ ∗x) ∗(u−1
∗ ∗ y))

= (u ∗u−1
∗ ) ∗x ∗u−1

∗ ∗ y = x ∗u−1
∗ ∗ y = x ◦ y,

it is an isomorphism from (G, ◦) to (G, ∗).18

Lemma 4.2. Let (G, ∗) and (G, ◦) be two groups. Then (x ∗ y) ◦ z = x ∗(y ◦ z),19
for all x, y, z ∈ G, if and only if there exists u ∈ G such that x ◦ y = x ∗u−1

∗ ∗ y,20
for all x, y ∈ G.21
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Proof. We start with the forward implication. Since the equation (x ∗ y) ◦ z =
x ∗(y ◦ z) holds for all x, y, z ∈ G, put y = 1◦. Then:

(x ∗ 1◦) ◦ z = x ∗(1◦ ◦ z)
(x ∗ 1◦) ◦ z = x ∗ z

We are only interested in the number of solutions of this equation and a right1
translation is a permutation. Hence, we can put x = x ∗(1◦)−1

∗ . Then:2

x ◦ z = (x ∗(1◦)−1
∗ ) ∗ z.

Thus, for all x, y ∈ G : x ◦ y = x ∗u−1
∗ ∗ y, where u = 1◦.3

The reverse direction follows directly from:4

(x ∗ y) ◦ z = (x ∗ y) ∗u−1
∗ ∗ z = x ∗(y ∗u−1

∗ ∗ z) = x ∗(y ◦ z).

5

Corollary 4.3. Let (G, ∗) and (G, ◦) be two groups. If for all x, y, z ∈ G :6
(x ∗ y) ◦ z = x ∗(y ◦ z), then the groups are isomorphic.7

As will soon become evident, the reverse implication of the corollary does not8
hold.9

4.2 Lower bounds on associativity indices10
In this section, we pose several questions concerning the associativity of couples11
of quasigroups isotopic to groups and provide partial solutions.12

Problem 4.1. What is the lower bound on the associativity index of a quasigroup13
couple C = (Q, ∗, ◦) of order n such that (Q, ∗) and (Q, ◦) are groups?14

Lemma 4.4. Let C = (Q, ∗, ◦) be a quasigroup couple of order n such that (Q, ∗)15
and (Q, ◦) are groups. Then a2(C) ≥ 2n2 − n.16

Proof. For a triple (x, y, z) ∈ Q3:17

(x ∗ y) ◦ z = x ∗ y = x ∗(y ◦ z) (4.1)

iff z = 1◦, and so, to satisfy the condition on the right-hand side, we have n218
choices for (x, y) ∈ Q2. Also, for a triple (x, y, z) ∈ Q3:19

(x ∗ y) ◦ z = y ◦ z = x ∗(y ◦ z) (4.2)

iff x = 1∗. The latter condition leaves us with n2 options for (y, z) ∈ Q2. However,20
we have counted the triples (1∗, y, 1◦) twice for each y ∈ Q. Therefore, it is21
neccessary to subtract n triples.22

After determining the lower bound theoretically, we may inquire if the value23
agrees with the computed minima in small orders or if there is a scope for im-24
provement. We first focus on a special case where the two groups are isomorphic.25
The computationally found minimal associativity indices are listed in Table 4.1.26
However, all these values are higher than the expected lower bound 2n2 − n.27
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n 2n2 − n min{a2((Q, ∗, ◦))}
3 15 27
4 28 36
5 45 61
6 66 84
7 91 115
8 120 146
9 153 201

Table 4.1: Computed minima of a2((Q, ∗, ◦)), where |Q| = n and ∗, ◦ are two
isomorphic group operations

1

In a general situation with one quasigroup operation, if we have a quasigroup
(Q, ·), then for a triple (x, y, z) ∈ Q3

(x · y) · z = x · y = x · (y · z) ⇐⇒ z = f y· = f (x·y)
· ,

(x · y) · z = y · z = x · (y · z) ⇐⇒ x = ey· = e(y·z)
· ,

and it can also fulfill2

(x · y) · z = x · z = x · (y · z) ⇐⇒ fx· = y = ez· ,

where the conditions on the right-hand side use the local units defined at the end3
of Chapter 1. Further analysis of this case can be found in [2].4

Thus, returning to our scenario with two groups, one might start wondering
whether the minimal number of triples such that

(x ∗ y) ◦ z = x ∗ z = x ∗(y ◦ z) or (4.3)
(x ∗ y) ◦ z = x ◦ z = x ∗(y ◦ z) (4.4)

can be described similarly.5
However, that seems to be a rather complicated question. Our computations6

on the couples of isomorphic groups of orders 3 to 8 having the minimal indices7
from Table 4.1 suggest that these triples might always be present, and their8
number can vary within each order. The results are listed in Table 4.2. Note that9
each of the two last equations can be fulfilled by a different number of associative10
triples. Also, let us emphasize that these equations do not determine disjoint11
subsets of triples. We shall describe the intersections of these sets in a general12
scenario with two quasigroups in the following section.13

Furthermore, by our computations on couples of isomorphic groups, it seems14
that there are always some associative triples that fulfill neither of the four equa-15
tions mentioned above and their number is also not fixed. All the computed16
numbers can be found in Table 4.3. Therefore, it is possible that even if we17
managed to include the triples fulfilling the equations (4.3) and (4.4) in our lower18
bound from Lemma 4.4, there still might not exist couples with such minimal19
indices.20
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n (4.1) (4.2) (4.3) (4.4)
3 9 9 9 9
4 16 16 9 9
5 25 25 {12, 13} {12, 13}
6 36 36 {13, 14, 15} {13, 14, 15}
7 49 49 {16, 19} {16, 19}
8 64 64 {17, 18, 19, 22} {17, 18, 19, 22}

Table 4.2: Computed possible numbers of associative triples fulfilling given
equations over couples of isomorphic groups attaining the minimal indices from

Table 4.1

n number of triples
3 {4, 8}
4 {4, 6}
5 {9, 10, 12, 13}
6 {10, 11, 12, 13, 14, 15, 16}
7 {15, 18, 21}
8 {12, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24}

Table 4.3: Computed possible numbers of associative triples that fulfill neither
of (4.1), (4.2), (4.3) and (4.4) over couples of isomorphic groups attaining the

minimal indices from Table 4.1

1

2

We can also generalize the situation by letting C = (Q, ∗, ◦) be a quasigroup3
couple of two groups in general. We shall refer to it as a group couple. Our com-4
putations on orders 4, 6 and 8 found that the minimal values of a2(C) correspond5
with the minima previously listed in Table 4.1. Thus, judging by results on the6
small orders, it seems that the minimal indices may not be attainable by any7
group couple unless the two groups are isomorphic.8

Problem 4.2. Consider a quasigroup couple C = (Q, ∗, ◦γ,δ) of order n such that9
(Q, ∗) is a group and (Q, ◦γ,δ) is a principal isotope of a group (Q, ◦). What can10
we say about the lower bound on a2(C) in this scenario?11

The lower bound on a2(C) for such couples is at least n2, since the triple12
(1∗, y, z) ∈ Q3 is associative for all y, z ∈ Q.13

Let C = (Q, ◦, ◦γ,δ) be a quasigroup couple of order n such that (Q, ◦) is a
group and (Q, ◦γ,δ) is its principal isotope. Then, a2(C) can be obtained as the
number of solutions of the equation:

(x ◦ y) ◦γ,δ z = x ◦(y ◦γ,δ z)
γ(x ◦ y) ◦ δ(z) = x ◦ γ(y) ◦ δ(z)

γ(x ◦ y) = x ◦ γ(y).
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We can computationally verify that minimum a2(C) = n2 is attainable even1
for small orders. Several examples of all orders 3 to 8, except for order 6, were2
found and some are presented in Appendix, see A.1 and A.2.3

It turns out that this case corresponds to the situation where we consider
a single quasigroup (Q, ◦γ,id) isotopic to a group (Q, ◦) of order n and count
a((Q, ◦γ,id)) as the number of solutions of:

(x ◦γ,δ y) ◦γ,δ z = x ◦γ,δ(y ◦γ,δ z)
γ(γ(x) ◦ y) ◦ z = γ(x) ◦(γ(y) ◦ z)

γ(x ◦ y) = x ◦ γ(y).

By [1], a((Q, ◦γ,δ)) = n2 for a group (Q, ◦) of order n iff γ is a left orthomorphism4
or δ is a right orthomorphism. Also, by [7], a complete mapping, and therefore an5
orthomorphism, of a finite group of even order exists only if its Sylow 2-subgroup6
is non-cyclic, and this condition is sufficient for solvable groups. Thus, we could7
not find an example of order 6.8

If C = (Q, ∗, ◦γ,δ), |Q| = n, is a quasigroup couple defined as in Problem 4.2
then the associativity index of C can be calculated as the number of solutions of
the equation:

(x ∗ y) ◦γ,δ z = x ∗(y ◦γ,δ z)
γ(x ∗ y) ◦ δ(z) = x ∗(γ(y) ◦ δ(z))
γ(x ∗ y) ◦ z = x ∗(γ(y) ◦ z).

However, it still remains to discuss this situation in which the quasigroup couple9
consists of a group and a group isotope in general in more detail.10

Problem 4.3. Let C = (Q, ∗α,β, ◦γ,δ) be a quasigroup couple of order n such that11
both (Q, ∗α,β) and (Q, ◦γ,δ) are principal isotopes of groups. Can C attain the12
associativity index of n?13

In this scenario, the lower bound on the associativity index is at least n by14
the argument with local units mentioned at the end of Chapter 1.15

First, let C = (Q, ∗α,β, ∗γ,δ) be a quasigroup couple, |Q| = n, such that both
(Q, ∗α,β) and (Q, ∗γ,δ) are principal isotopes of a group (Q, ∗). Then the number
of associative triples is the number of solutions of the equation:

(x ∗α,β y) ∗γ,δ z = x ∗α,β (y ∗γ,δ z)
γ(α(x) ∗ β(y)) ∗ δ(z) = α(x) ∗ β(γ(y) ∗ δ(z))

γ(x ∗ β(y)) ∗ z = x ∗ β(γ(y) ∗ z).

However, this is an equivalent problem to the one with a single operation where16
we consider a quasigroup (Q, ∗γ,β) isotopic to a group (Q, ∗) and count how many17
associative triples it has. This case was already studied in [1] and it was proven18
that the lower bound n can never be attained. Therefore, neither two isotopes of19
the same group can achieve the associativity index n.20

Next, consider a quasigroup couple C = (Q, ∗α,β, ◦γ,δ) of order n, where
(Q, ∗α,β) and (Q, ◦γ,δ) are principal isotopes of groups (Q, ∗) and (Q, ◦), respec-
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tively. Then a2(C) can be found as the number of solutions of:

(x ∗α,β y) ◦γ,δ z = x ∗α,β(y ◦γ,δ z)
γ(α(x) ∗ β(y)) ◦ δ(z) = α(x) ∗ β(γ(y) ◦ δ(z))

γ(x ∗ β(y)) ◦ z = x ∗ β(γ(y) ◦ z).

As for now, we can only say that based on our computations presented in1
Chapter 5, we have a2(C) > n, for all 1 < n ≤ 5.2

Further research is required on this topic, as we have not fully answered all3
the questions. Especially interesting might be the most general scenario intro-4
duced in Problem 4.3 since two group isotopes could possibly attain the maximal5
nonassociativity by having the associativity index of n, which is unachievable for6
one group isotope. However, for now, it remains an open question.7

4.3 Intersections of associative triple types8
In this section, we shall return to the equations (4.1) to (4.4) from the previous9
section and describe the intersections of the associative triple subsets they deter-10
mine. We will work in two general quasigroups, but the propositions can also be11
easily applied to the group setting described in Problem 4.1.12

Firstly, let us introduce some notation adapted from [2]. Let (Q, ∗) be a13
quasigroup. We say that an element a ∈ Q is idempotent if a ∗ a = a. The set of14
idempotent elements of a quasigroup (Q, ∗) shall be denoted by I((Q, ∗)).15

Also, consider mappings e∗, f∗ : Q → Q such that e∗(x) = ex∗ and f∗(x) = fx∗ ,
for all x ∈ Q. To a given element x ∈ Q, these mappings assign the left and right
local units in (Q, ∗), respectively. Then for all x, y ∈ Q we have

x ∈ e−1
∗ (y) ⇐⇒ y ∗x = x and x ∈ f−1

∗ (y) ⇐⇒ x ∗ y = x. (4.5)

Let (Q, ∗, ◦) be a quasigroup couple. Put L = (x ∗ y) ◦ z and R = x ∗(y ◦ z).
Using (4.5), the equations (4.1) to (4.4) can be expressed in the following way:

L = x ∗ y = R ⇐⇒ y, (x ∗ y) ∈ f−1
◦ (z), (4.6)

L = y ◦ z = R ⇐⇒ y, (y ◦ z) ∈ e−1
∗ (x), (4.7)

L = x ∗ z = R ⇐⇒ y = e◦(z) ∧ (x ∗ y) ◦ z = x ∗ z, (4.8)
L = x ◦ z = R ⇐⇒ y = f∗(x) ∧ x ∗(y ◦ z) = x ◦ z. (4.9)

Now, we can describe the intersections.16

Proposition 4.5. Let C = (Q, ∗, ◦) be a quasigroup couple and let (x, y, z) ∈ Q317
be a triple in C. Then:18

(i) L = x ∗ y = y ◦ z = R ⇐⇒ y ∈ e−1
∗ (x) ∩ f−1

◦ (z),19
(ii) L = x ∗ y = x ∗ z = R ⇐⇒ y = z ∈ I((Q, ◦)) ∧ (x ∗ y) ∈ f−1

◦ (y),20
(iii) L = x ◦ z = y ◦ z = R ⇐⇒ x = y ∈ I((Q, ∗)) ∧ (y ◦ z) ∈ e−1

∗ (y),21
(iv) L = x ∗ y = x ◦ z = R ⇐⇒ x, y ∈ f−1

◦ (z) ∧ x ∈ f−1
∗ (y),22

(v) L = x ∗ z = y ◦ z = R ⇐⇒ y, z ∈ e−1
∗ (x) ∧ z ∈ e−1

◦ (y),23
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(vi) L = x ∗ z = x ◦ z = R ⇐⇒ x ∗ z = x ◦ z ∧ f∗(x) = y = e◦(z),1
(vii) L = x ∗ y = y ◦ z = x ∗ z = R ⇐⇒ (x ∗ y) = y = z ∈ I((Q, ◦)),2
(viii) L = x ∗ y = y ◦ z = x ◦ z = R ⇐⇒ (y ◦ z) = x = y ∈ I((Q, ∗)),3
(ix) L = x ∗ y = x ∗ z = x ◦ z = R ⇐⇒ f∗(x) = f◦(x) = y = z ∈ I((Q, ◦)),4
(x) L = y ◦ z = x ∗ z = x ◦ z = R ⇐⇒ e∗(z) = e◦(z) = x = y ∈ I((Q, ∗)),5

(xi) L = x ∗ y = y ◦ z = x ∗ z = x ◦ z = R ⇐⇒ x = y = z ∈ I((Q, ∗)) ∩6
I((Q, ◦)).7

Proof. (i) The forward implication follows from (4.6) and (4.7). For the other8
direction, let y ∈ e−1

∗ (x)∩f−1
◦ (z), then by (4.5) we get x ∗ y = y = y ◦ z, and thus9

(x ∗ y) ◦ z = y ◦ z = x ∗ y = x ∗(y ◦ z).10
(ii) By (4.6) and (4.8), y ∈ f−1

◦ (z) and y = e◦(z). Thus y ◦ z = y and y ◦ z = z,11
and so y = z ∈ I((Q, ◦)). Therefore from (x ∗ y) ◦ z = x ∗ z follows (x ∗ y) ◦ y =12
x ∗ y, and thus x ∗ y ∈ f−1

◦ (y). For the reverse implication, let y = z ∈ I((Q, ◦))13
and (x ∗ y) ∈ f−1

◦ (y). Then, (x ∗ y) ◦ z = (x ∗ y) ◦ y = x ∗ y = x ∗ z = x ∗(z ◦ z) =14
x ∗(y ◦ z).15
(iv) By (4.6) and (4.9), y ∈ f−1

◦ (z) and y = f∗(x), thus y ◦ z = y, x ∗ y = x16
and x ∈ f−1

∗ (y). Hence, x = x ∗ y = x ∗(y ◦ z) = (x ∗ y) ◦ z = x ◦ z, and so17
x ∈ f−1

◦ (z). To prove the other implication, let x, y ∈ f−1
◦ (z) and x ∈ f−1

∗ (y),18
then (x ∗ y) ◦ z = x ◦ z = x = x ∗ y = x ∗(y ◦ z).19
(vi) Clearly holds.20
(vii) By (i), y ∈ e−1

∗ (x), so x ∗ y = y. From (ii), y = z ∈ I((Q, ◦)) and21
(x ∗ y) ∈ f−1

◦ (y), thus (x ∗ y) ◦ y = x ∗ y = y. For the other implication, let22
x ∗ y = y = z ∈ I((Q, ◦)). Then (x ∗ y) ◦ z = y ◦ z = y ◦ y = y = x ∗ y = x ∗ z =23
x ∗(z ◦ z) = x ∗(y ◦ z).24
(ix) By (ii), y = z ∈ I((Q, ◦)) and (x ∗ y) ∈ f−1

◦ (z), thus (x ∗ y) ◦ z = x ∗ y. Since25
from (iv) also x ∈ f−1

∗ (y), so y = f∗(x) and x ∗ y = x. Hence, we have x ◦ z = x,26
so z = f◦(x). To prove the reverse implication, let f∗(x) = f◦(x) = y = z ∈27
I((Q, ◦)). Then (x ∗ y) ◦ z = x ◦ z = x = x ∗ z = x ∗ y = x ∗(y ◦ y) = x ∗(y ◦ z).28
(xi) The forward direction follows directly from (ix) and (x). For reverse im-29
plication, let x = y = z ∈ I((Q, ∗)) ∩ I((Q, ◦)). Then x ∗(y ◦ z) = x ∗(y ◦ y) =30
x ∗ y = x ∗ z = x ∗x = x = x ◦ y = x ◦ z = (x ∗x) ◦ z = (x ∗ y) ◦ z.31
Points (iii), (v), (viii) and (x) follow by mirror arguments.32

Similarly, as an analogous lemma for a single operation that can be found33
in [2], Proposition 4.5 might be the first step towards determining an improved34
lower bound on the number of associative triples for a general quasigroup couple.35
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5. Computational results1
for small quasigroup couples2
We observed that the problem of finding the value of a2(n) for an arbitrary n ∈ N3
is difficult. However, for quasigroup couples of small orders, these numbers can4
be obtained by computer evaluations, which might give us a better idea about5
the behaviour of a2(n) as a function of n.6

5.1 2-associativity spectra7
For each n ∈ N, denote by assspec2(n) the set of all a2(C), where C is a quasigroup
couple of order n. We shall refer to this set as the 2-associativity spectrum of n.
We have computed that:

assspec2(1) = {1}
assspec2(2) = {8}
assspec2(2) = {9, 27}
assspec2(4) = {8, 12, 16, 24, 32, 36, 48, 64}
assspec2(5) = {9, 11, ..., 63, 65, 67, 68, 69, 71, 74, 76, 77, 79, 80, 89, 125}

The resulting values of a2(n) along with values of a(n) determined by Ježek8
and Kepka in [8] are listed in Table 5.1. Two examples of found extremal quasi-9
group couples are presented in Table 5.2 and Table 5.3.10

In the next section, we shall explain how we arrived at these results.11

5.2 Computations12
All programs were written in Python using library NumPy and run on a computer13
with 1.8 GHz Intel Core i7 processor, using 4 GB of RAM, with macOS version14
10.13.15

n a2(n) a(n)
1 1 1
2 8 8
3 9 9
4 8 16
5 9 15

Table 5.1: A comparison of minimal associativity indices of one and two
operations

16
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∗ 0 1 2 3
0 1 0 2 3
1 3 2 1 0
2 0 1 3 2
3 2 3 0 1

◦ 0 1 2 3
0 1 3 0 2
1 3 1 2 0
2 2 0 3 1
3 0 2 1 3

Table 5.2: Multiplication tables of a quasigroup couple C = (Q, ∗, ◦) of order 4
with a2(C) = 8

∗ 0 1 2 3 4
0 0 2 3 4 1
1 3 1 4 2 0
2 4 0 2 1 3
3 1 4 0 3 2
4 2 3 1 0 4

◦ 0 1 2 3 4
0 3 0 1 4 2
1 4 2 0 1 3
2 2 1 4 3 0
3 0 4 3 2 1
4 1 3 2 0 4

Table 5.3: Multiplication tables of a quasigroup couple C = (Q, ∗, ◦) of order 5
with a2(C) = 9

5.2.1 Exhaustive search1
The values of assspec2(n) for n = 1, ..., 4 were obtained by performing an ex-2
haustive search of the space of all quasigroup couples. Firstly, using a recursive3
algorithm, we generated all latin squares (and thus multiplication tables of all4
quasigroups) of a given order and saved them to a file. Then, we iterated through5
all the quasigroups in the file and for each one, we again looped through the same6
file, thus getting all the possible couples. Afterwards, we counted the associative7
triples of each couple.8

However, this approach very soon proved to be ineffective due to the enormous9
search space. For instance, there are 576 latin squares of order 4, therefore we10
had to go through 5762 = 331, 776 couples to aquire assspec2(4), which took less11
than 20 seconds. But, if we tried to apply the same algorithm to order 5, the12
computations would last approximately 24 days on a personal computer since13
there are 161, 280 latin squares of this order, and so 161, 2802 = 26, 011, 238, 40014
couples.15

5.2.2 Using isomorphism class representatives16
Before we proceed to explain the second method, we need to talk briefly about17
the classification of latin squares. We will mention several useful definitions and18
theorems from the first and the fourth chapter of [10]. For further details and19
proofs, you can refer to that source.20

The isotopy and isomorphism of latin squares are equivalence relations, as can21
be verified easily. Thus, we define:22

Definition. An isotopy class of a latin square is an equivalence class for the iso-23
topy relation. Similarily, an isomorphism class of a latin square is an equivalence24
class for the isomorphism relation.25
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Every latin square L = (aij)ni,j=1 of order n can be represented as a set of n21
triples TL = {(i, j, aij) | i, j = 1, ..., n}. By permuting the entries within all the2
triples by a permutation σ ∈ S3, we obtain a representation of a latin square,3
that is called a parastrophe of L.4

Two latin squares are said to be paratopic, if one is isotopic to a parastrophe5
of the other. The set of all latin squares paratopic to L is called the main class6
of L.7

Theorem 5.1. The set of all latin squares of a given order is a disjoint union of8
main classes. Each main class is a disjoint union of isotopy classes. And finally,9
each isotopy class is a disjoint union of isomorphism classes.10

Each isomorphism class of a latin square determines a unique quasigroup up11
to isomorphism. Therefore, by generating a representative of each isomorphism12
class, we significantly reduce the amount of duplicit work, that we have done in13
the previous method.14

For each generated isomorphism class representative, we looped through the15
earlier generated file of all quasigroups. Finally, we counted the associative triples16
of all the created couples. Since for order 5 there are 1, 411 isomorphism classes,17
we only had to go through 1, 411 · 161, 280 = 227, 566, 080 couples, which we18
finished in around 15 hours.19

The isomorphism class representatives were obtained in the following way.20
First, we created all principal isotopes of isotopy class representatives that we21
downloaded from an online combinatorial data collection [11]. By Theorem 1.1,22
it is sufficient to generate only the principal isotopes. Then, we presorted them23
using isomorphism class invariants, like the number of elements on the main24
diagonal, the number of latin subsquares of order 2 (also called intercalates) and25
the number of transversals (a set of n cells of the latin square, one in each row, one26
in each column, each containing a different symbol). Lastly, we finished sorting27
by finding the isomorphisms, and finally, we selected our representatives.28

Obtaining results for greater orders would require optimizing our algorithms29
and using greater computational power. However, even that would not get us30
much further, as with the current technology, this problem is very challenging31
even for a single operation.32
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Conclusion1
The main purpose of this thesis was to adapt the methods used by Drápal and2
Valent in studying the nonassociativity of one quasigroup operation, apply them3
to a scenario with two quasigroups and obtain similar results. We succeeded in4
modifying their approaches and examined the newly defined algebraic structure5
called a quasigroup couple from two different angles.6

Firstly, using the altered techniques, we thoroughly explored the average value7
of the associativity index of a quasigroup couple of order n over the principal8
isotopes of the quasigroup couple. As a result, we established an upper bound on9
the associativity index of a quasigroup couple.10

We calculated that the average over the principal isotopes of one of the11
quasigroups in the couple lies between n2 and 2n2. Then we took the average12
over all the principal isotopes of the quasigroup couple and obtained the value13
n2(1 + 1/(n− 1)), which can be regarded as an upper bound on a2(n) for n > 2.14
In Chapter 3, we again returned to the average over the principal isotopes of15
one of the quasigroups in the couple, and we characterized the setting in which16
the minimal average value n2 is attained. As a result, we proved that it is an17
improved upper bound on the associativity index, that is a2(n) ≤ n2.18

Secondly, we began studying couples of quasigroups isotopic to groups. We19
presented observations about a couple of groups and isomorphism, then posed20
several questions concerning nonassociativity.21

In the case of a group couple C of order n, we proposed that a2(C) ≥ 2n2 −n22
and presented computations on small orders that suggest that this lower bound23
might be higher as there exist types of associative triples that we have not ac-24
counted for. As a first step in addressing this problem, we described the intersec-25
tions of the types of associative triples in a general scenario with two quasigroups.26

In the more general scenarios that feature quasigroups isotopic to groups,27
we then reported on partial solutions that follow from the situation with one28
quasigroup operation and pointed out areas where more research is required.29

Lastly, we also determined all possible values of associativity indices for orders30
n ≤ 5 by performing computations on quasigroup couples of small orders. In31
addition, we presented examples of quasigroup couples attaining the minimal32
indices.33
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[4] A. Drápal and I. Wanless. Maximally nonassociative quasigroups via8
quadratic orthomorphisms. Algebraic Combinatorics, 4(3):501–515, 2021.9

[5] D. Gligoroski, S. Markovski, and S. J. Knapskog. The Stream Cipher Edon80.10
In M. Robshaw and O. Billet, editors, New Stream Cipher Designs: The11
eSTREAM Finalists, volume 4986 of LNCS, pages 152–169. Springer, Berlin,12
2008.13
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A. Appendix1

◦ 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5

◦γ,id 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 2 3 4 5 6 0 1
2 5 6 0 1 2 3 4
3 1 2 3 4 5 6 0
4 6 0 1 2 3 4 5
5 4 5 6 0 1 2 3
6 3 4 5 6 0 1 2

Table A.1: Multiplication tables of a quasigroup couple C = (Q, ◦, ◦γ,id) of order
7 with a2(C) = 49, (Q, ◦) = Z7 and (Q, ◦γ,id) is isotopic to Z7

◦ 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 3 4 5 6 0 7 2
2 2 7 3 6 1 4 0 5
3 3 5 6 0 7 1 2 4
4 4 2 5 7 3 6 1 0
5 5 0 7 1 2 3 4 6
6 6 4 0 2 5 7 3 1
7 7 6 1 4 0 2 5 3

◦γ,id 0 1 2 3 4 5 6 7
0 3 5 6 0 7 1 2 4
1 2 7 3 6 1 4 0 5
2 0 1 2 3 4 5 6 7
3 1 3 4 5 6 0 7 2
4 4 2 5 7 3 6 1 0
5 7 6 1 4 0 2 5 3
6 5 0 7 1 2 3 4 6
7 6 4 0 2 5 7 3 1

Table A.2: Multiplication tables of a quasigroup couple C = (Q, ◦, ◦γ,id) of order
8 with a2(C) = 64, (Q, ◦) is the quaternion group and (Q, ◦γ,id) is its isotope
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