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Introduction
The history of additive number theory goes back to Leonhard Euler (1707 –
1783), who in 1740 studied the problem of how many ways can an integer n be
represented as a sum of integers, i.e. the partitions of n. This led to a number
of significant results about the partition function p(n), which represents the total
number of partitions of n. One of which is the Euler recursion formula (see
[Apo76, p. 315]):

p(n) = [p(n − 1) + p(n − 2)] − [p(n − 5) + p(n − 7)] + · · · , (1)

where 1, 2, 5, 7 . . . are the pentagonal numbers. This gave a powerful way to
compute the partition function, which is otherwise hard to evaluate.

Euler’s discoveries initiated an extensive study of the partition function in
number theory and combinatorics. For example, in 1918 the British mathem-
atician G.H. Hardy (1877–1947) and an Indian mathematical prodigy Srinivasa
Ramanujan (1887–1920) discovered its remarkable asymptotic behaviour (see
[Apo76, p. 316] for reference):

p(n) ∼ 1
4n

√
3

exp
⎛⎝π

√︄
2n

3

⎞⎠ as n → ∞.

With the development of algebraic number theory, an interesting notion that
came up in the real quadratic fields K = Q(

√
D) was the totally positive integers.

They were used in the field of universal quadratic forms and lattices and their
notable additive structure was studied by T. Hejda and V. Kala [HK20]. Their
work used the idea of indecomposable elements, i.e. totally positive integers,
which cannot be written as a sum of two totally positive integers. These were
fully characterized by A. Dress and R. Scharlau in [DS82].

Consequently, given an additive structure of totally positive integers in a real
quadratic field K, a natural question is: in how many ways can a totally positive
integer be written as a sum of totally positive integers? Building on the work
mentioned above, we consider an analogous partition function pK(α), where α is
a totally positive integer, and study its behaviour. Our main goal in this thesis
is to find an effective algorithm to compute pK(α) for K = Q(

√
D) and to study

its properties for different square-free D.
In Chapter 1, we introduce the notation and notions we use throughout this

thesis. This includes some elementary algebraic number theory, the definition
of our partition functions pK(α) for the real quadratic fields K = Q(

√
D) and

the establishment of the notions of indecomposable and uniquely decomposable
elements. In Lemma 3, Proposition 4, Proposition 6 and Proposition 9 we prove
some elementary observations we use in the following two chapters.

Chapter 2 subsequently concerns the algorithm computing pK(α) for different
K = Q(

√
D) and different totally positive integers α. We describe the main idea

behind our program and prove its correctness in Proposition 12. We include its
proper documentation and several tables of values of pK(α). These tables will
later be used for reference in the last chapter.
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Finally in Chapter 3, with the help of our algorithm from Chapter 2, we
study the behaviour of our partition functions pK(α). Namely which values it
can (or cannot) attain. We do this by first analyzing the connection between
pK(α) and the integer partition function p(n) in Theorem 13. Then, by studying
the decompositions of totally positive integers into indecomposable elements in
Lemma 15 through to Lemma 19 we arrive at the characterization of square-free
D, for which pK(α) obtains the values 1, 2, 3 and 5, in Theorem 20. The rest of
the chapter is devoted to analyzing, if values 4 and 6 may be also obtained by
pK(α). Theorem 23 concludes our thesis, showing the existence of particular D
and particular α, for which pK(α) = 4 or 6.

Thus, the culmination of our inquiry into partitions of totally positive in-
tegers is represented by three main theorems: Theorem 13, Theorem 20, and
Theorem 23. In particular, the proof of Theorem 20 required a long and thor-
ough investigation into the structure of decompositions of totally positive integers
into indecomposable elements. This shed light on some interesting properties of
totally positive integers.

The results obtained in Chapter 2 and Chapter 3 are from the author’s original
research and will be submitted for publication in a reputable scientific journal in
2023.
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1. Preliminaries
1.1 Algebraic number theory in quadratic fields
Throughout this thesis we will use the following notation: For a fixed square-free
integer D ≥ 2 we let K denote the real quadratic field K = Q(

√
D) = {a+b

√
D |

a, b ∈ Q} and denote by OK its ring of integers.
We know that {1, ωD} forms an integral basis of OK , where

ωD =
⎧⎨⎩

√
D if D ≡ 2, 3 (mod 4),

1+
√

D
2 if D ≡ 1 (mod 4).

Thus, any integral element α ∈ OK can be written as α = a + bωD, a, b ∈ Z. We
define its Galois conjugate as α′ := a+bω′

D, where ω′
D = −

√
D if D ≡ 2, 3 (mod 4)

and ω′
D = 1−

√
D

2 otherwise. Hence, we can define its trace Tr(α) and norm N(α)
as

Tr(α) := α + α′,

N(α) := αα′.

It can be easily verified, that ∀α, β ∈ OK : N(αβ) = N(α)N(β) and Tr(α + β) =
Tr(α)+Tr(β). As we will see later in this chapter, Galois conjugates are essential
for the notion of totally positive elements.

An important notion from algebraic number theory are the invertible elements,
i.e. ε ∈ OK such that there exists ε−1 ∈ OK : εε−1 = 1. We call these elements
the units of OK and denote them by ε. We denote by O×

K the set of all units in
OK . It can be observed, that all units have norm equal to ±1. Moreover, the
converse is also true, i.e. we can write O×

K = {ε ∈ OK | N(ε) = ±1}.
Example. In real quadratic fields K = Q(

√
D), where D ≡ 2, 3 (mod 4), the units

are exactly the solutions to the well known Pell’s equation: x2 − Dy2 = ±1.
In the real quadratic fields K = Q(

√
D), there exists a fundamental unit ε > 1

of O+
K , such that O×

K = {±(ε)k | k ∈ Z}.

1.2 Totally positive integers and indecompos-
ables

As we outlined in our introduction, we focus on the additive structure of O+
K

as opposed to the multiplicative structure of OK , which is usually studied in
algebraic number theory.

Definition 1. Let α ∈ OK. We say that α is totally positive if α > 0 and α′ > 0.
We denote by α ≻ 0 the fact that α is totally positive.

For α, β ∈ OK we denote α ≻ β the fact that α − β ≻ 0. The relation ≻ on
the set of totally positive integers is clearly irreflexive, asymmetric and transitive.
We denote by O+

K the set of all totally positive integers in K = Q(
√

D). We can
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observe, that the set O+
K(+) with the operation of addition forms a semigroup

(i.e. a set with associative binary operation).
Because quadratic integers have two coordinates, we cannot order them lin-

early simply by the <-relation. Very useful to us will be the lexicographical or-
dering defined as follows:

Definition 2. Let K = Q(
√

D). Let α = a + bωD, β = c + dωD be elements in
K. Given the basis {1, ωD}, we define the lexicograpical ordering >LEX in K as:

α >LEX β ⇐⇒ a > c or a = c and b > d.

We denote by α ≥LEX β the fact that α = β or α >LEX β.

It is easy to see this ordering is linear on the elements of K.
From our definition of totally positive elements above, it is not as obvious to

see which integers are totally positive based on their coefficients. An important
observation we will use many times throughout this thesis is that, given a coeffi-
cient a ∈ N, there are only finitely many coefficients b ∈ Z such that a + bωD is
a totally positive element.

Lemma 3. Let K = Q(
√

D).

• If α ≻ 0, then N(α), Tr(α) > 0.

• Let a ∈ N, α = a + bωD ∈ OK. Then

α ≻ 0 if and only if b ∈
(︄

a

−ωD

,
a

−ω′
D

)︄
. (1.1)

Proof. Both statements are direct consequences of our definition of totally pos-
itive integers. Specifically, for the second statement we have α ≻ 0 if and only
if

a + bωD > 0 ⇔ b >
a

−ωD

and a + bω′
D > 0 ⇔ b <

a

−ω′
D

as ω′
D < 0.

Together with the notion of indecomposable elements, which we mentioned
above, one can ask, if every totally positive integer can be expressed as a sum of
indecomposables.

Proposition 4. Every totally positive integer in K can be written as a finite sum
of indecomposable elements.

Proof. Let α ∈ O+
K . If α is indecomposable, then we are done. Otherwise

∃α1, α2 ∈ O+
K such that α = α1 + β1. The same process can be repeated for α1

and α2. This cannot be repeated indefinitely, because otherwise we would have
an infinite sequence α = α0, α1, α2 . . . , where Tr(α0) > Tr(α1) > Tr(α2) > . . . > 0
(using the Lemma 3 above), which is impossible.

This motivates the question, if this expression is always unique. As we see in
the following example, uniqueness does not always hold.
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Example. Let K = Q(
√

2). Then the integers in K are of the form: α = a + b
√

2
and we can write the totally positive integer 4 + 2

√
2 as

4 + 2
√

2 = (2 +
√

2) + (2 +
√

2) = (3 + 2
√

2) + 1,

where 1, 2 +
√

2, and 3 + 2
√

2 are all indecomposable elements.
Finally it is convenient to introduce the notation of totally positive units in

K. We denote ε+ > 1 the smallest totally positive unit > 1 and call it the
fundamental totally positive unit. Then the set of totally positive units, denoted
by O+,×

K , is of the form: O+,×
K = {εn

+ | n ∈ Z}

1.3 Indecomposable elements
In the last section we proved in Proposition 4 the existence of a decomposition of
an arbitrary totally positive integer into a sum of indecomposable elements. As
we saw in the example above, the uniqueness of this sum does not always hold.
This motivates the notion of uniquely decomposable elements.

Definition 5. Let α ∈ O+
K. We say that α is

• indecomposable if α cannot be written as a sum of two totally positive in-
tegers,

• uniquely decomposable if there is a unique way of expressing α as a sum of
indecomposable elements.

Equivalently, an element α is indecomposable if and only if ∄β ∈ O+
K such that

α ≻ β. We now look into the notion of indecomposable elements in more detail.
We start with an interesting connection between the indecomposable elements
and the totally positive units in a given field.

Proposition 6. Every totally positive unit in K is indecomposable.

Proof. Let ε be a totally positive unit and let us assume the contrary, i.e. there
exist α, β ∈ O+

K such that ε = α + β. Then we have (using Lemma 3)

1 = N(ε) = N(α + β) = (α + β)(α + β)′ = (α + β)(α′ + β′)
= (αα′) + (ββ′) + (αβ′ + α′β) > N(α) + N(β) ≥ 2,

as α, β ≻ 0. This is a contradiction, therefore ε is indecomposable.

However, as we will see, in general the totally positive units are not the only
indecomposable elements. The complete characterization of indecomposables was
done by A. Dress and R. Scharlau in [DS82]. We adopt the notation from [HK20]
as follows:

Let σD = [u0, u1, . . . , us] be the periodic continued fraction of:

σD := ωD + ⌊−ω′
D⌋ =

⎧⎨⎩
√

D + ⌊
√

D⌋ if D ≡ 2, 3 (mod 4),
1+

√
D

2 + ⌊1−
√

D
2 ⌋ if D ≡ 1 (mod 4).
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We then have that ωD = [⌈u0/2⌉, u1, . . . , us]. This notation is helpful for defining
the convergents of ωD. As we will see, indecomposable elements correspond with
the convergents and semiconvergents of ωD.

Denote pi/qi its convergents. Then the sequences (pi), (qi) satisfy the rec-
curence:

Xi+2 = ui+2Xi+1 + Xi for i ≥ −1 (1.2)

with the initial condition: q−1 = 0, p−1 = q0 = 1, p0 = ⌈u0/2⌉ [Per13]. We thus
have all we need to characterize indecomposable elements.

Denote αi := pi − qiω
′
D an αi,r = αi + rαi+1. Then we the following holds

[DS82]:

• The sequence (αi) satisfies the recurrence 1.2.
• We have that αi ≻ 0 if and only if i ≥ −1 is odd.
• The indecomposable elements in O+

K are αi,r with odd i ≥ −1 and 0 ≤ r ≤
ui+2 − 1, together with their conjugates.

• We have that αi,ui+2 = αi+2,0.
• The indecomposables αi,r are increasing with increasing (i, r) (in the lex-

icographic sense).
• The indecomposables α′

i,r are decreasing with increasing (i, r).
• Considering the fundamental unit ε > 1 of OK , we have that ε = αs−1.

We then know that ε+ = ε if s is even and ε+ = ε2 = α2s−1 if s is odd. This
observation corresponds to the Proposition 6 above about the relation between
totally positive units and indecomposables. Lastly, we mention an important fact
due to [DS82] regarding the associate elements of indecomposables:

• Denoting s+ := s if s is even and s+ := 2s if s is odd, we have αi+s+ = ε+αi

for all odd i ≥ −1.

Using this notation, we can introduce an important theorem proved by T.
Hejda and V. Kala in [HK20] characterizing all uniquely decomposable elements
in O+

K :

Theorem 7 ([HK20], Theorem 4). All uniquely decomposable elements x ∈ O+
K

are the following:

1. αi,r with odd i ≥ −1 and 0 ≤ r ≤ ui+2 − 1;

2. eαi,0 with odd i ≥ −1 and with 2 ≤ e ≤ ui+1 + 1;

3. αi,ui+2−1 + fαi+2,0 with odd i ≥ −1 odd such that ui+2 ≥ 2 and with 1 ≤
f ≤ ui+3;

4. eαi,0 + αi,1 with odd i ≥ −1 such that ui+2 ≥ 2 and with 1 ≤ e ≤ ui+1;

5. eαi,0+fαi+2,0 with odd i ≥ −1 such that ui+2 = 1 and with 1 ≤ e ≤ ui+1+1,
1 ≤ f ≤ ui+3 + 1, (e, f) ̸= (ui+1 + 1, ui+3 + 1);

6. Galois conjugates of all of the above.

This theorem will be especially useful in Chapter 3 for studying special prop-
erties of partition functions.

7



1.4 Partition functions
Before we delve into our algorithm, the last definition we need is of partition
functions:

Definition 8. Let K = Q(
√

D), α ∈ O+
K. We say that the non-increasing se-

quence (in the lexicographic sense): (λ1, λ2, . . . , λm), where λ1, λ2, . . . , λm ≻ 0,
m ∈ N; is a partition of α, if λ1 + λ2 + · · · + λm = α.

For K = Q(
√

D) we define the partition function pK(α) as a number of
partitions of α ∈ O+

K.

Thus, we have pK(α) = 1 if α ∈ O+
K is indecomposable and pK(α) ≤ 2

if α ∈ O+
K is uniquely decomposable. An important property of the partition

functions is their invariance under conjugation and under multiplication by a
unit.

Proposition 9. Let K = Q(
√

D), α ∈ O+
K, ε ∈ O+,×

K . Then

pK(α) = pK(α′) = pK(εα).

Proof. Observe that for conjugation and multiplying by a totally positive unit we
have:

If α = λ1 + λ2 + · · · + λn then: α′ = λ′
1 + λ′

2 + · · · + λ′
n,

εα = ελ1 + ελ2 + · · · + ελn.

It is important to note, that the product of two totally positive integers is totally
positive. This is easily observed from our definition. Then, taking into considera-
tion, that (α′)′ = α and ε−1(εα) = α, we have two well-defined bijections between
the partitions of α, α′ and εα.
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2. Algorithm for the partition
function
In this chapter we use our newly built theory from Chapter 1 to construct an
algorithm for computing the partition function pK . Furthermore, we generate
some tables of partition function values for a few D, which will become helpful
in the following Chapter 3.

2.1 Algorithm
Our algorithm is based on a recursive property of partitions. Sadly, we do not
yet have a very efficient recursion formula as the one stated in the introduction
(1) for integer partitions. However, as we will see, we can make use of a simple
property of partitions, that will be adequate for our purposes. We first show the
idea of our algorithm on an example.
Example. Let us consider the integer partition function p(n) for n ∈ N. Then for
n = 4 we have

4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1.

Similarly to our definition of partitions in K, the numbers in these sums are
non-increasing. We can make use of this property. Let us adopt the notation
used by G. Andrews and K. Eriksson [AE04, Chapter 6.] to denote the number
of partitions n with terms ≤ m (i.e. the summands of the partition ≤ m ) as
p(n, m). Then, defining p(0, m) := 1 for all m ∈ N, the following holds for all
n ∈ N:

p(n) =
n∑︂

i=1
p(n − i, i).

Example. We have p(4) = p(3, 1) + p(2, 2) + p(1, 3) + p(0, 4) = 1 + 2 + 1 + 1 = 5.

We can use the analogous property for general pK(α), where, instead of ≤-
ordering, we use the lexicographic ordering we defined in Chapter 1.

Definition 10. Let K = Q(
√

D), α, β ∈ O+
K. Then we denote by pK(α, β)

the number of partitions of α with terms ≤LEX β. We define pK(0, β) = 1 for
arbitrary β ∈ O+

K.

Remark. It is clear from the definition, that

• if β ≥LEX α, then pK(α, β) = pK(α, α),

• pK(α, α) = pK(α).

Analogously to the lexicographical ordering, we denote by α ⪰ β the fact
α = β or α ≻ β. We analyze the relationship of these two orderings of O+

K .

Lemma 11. α ⪰ β implies α ≥LEX β.
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Proof. Let α = a + bωD, β = c + dωD. By our assumption α ⪰ β. Thus, we have
a + bωD ≥ c + dωD and a + bω′

D ≥ c + dω′
D. We first establish that a ≥ c.

If a < c, then from the first inequality we have b > d, as ωD > 0. But then,
we get a + bω′

D < c + dω′
D, because ω′

D < 0, which is a contradiction with the
second inequality. Thus, a ≥ c. Moreover, if a = c, then b ≥ d from the first
inequality.

Furthermore, the opposite implication does not hold as we can take α :=
a+bωD, β := a+(b−1)ωD. Then clearly α ≥LEX β, but α ⪰̸ β, since α−β = ωD

is not totally positive.

As in the example above for the natural numbers, the following holds:

Proposition 12. Let K = Q(
√

D). Then for all α ∈ O+
K

pK(α) =
∑︂
β⪯α

pK(α − β, β). (2.1)

Proof. We prove the statement by constructing a bijection between the set of
partitions of α and the set of partitions of (α − β) with terms less than or equal
to β for β ⪯ α.

First, we consider an arbitrary partition (λ1, λ2, . . . λn) of α. Let β ⪯ α,
i.e. from Lemma 11 above β ≤LEX α ⇒ β can (by our definition of partition)
appear in the partition of α. Hence, we set λ1 = β. We thus get the partition
(λ2, λ3, . . . λn) of α − β ∈ O+

K , where the λ2, λ3, . . . λn are lexicographically less
than or equal to β. Conversely, given a partition (µ1, µ2, . . . µm) of α − β with
terms lexicographically less than β, the sequence (α −∑︁m

i=1 µi = β, µ1, . . . , µm) is
clearly a partition of α. Thus, we have a map

{λ | λ is a part. of α} −→
⋃︂

β⪯α

{µ | µ is a part. of (α − β) with µi ≤LEX β},

(λ1, λ2, . . . λn) ↦−→ (λ2, λ3, . . . λn),

(α −
m∑︂

i=1
µi, µ1, . . . , µm) ↦−→(µ1, µ2, . . . µm),

which is injective and has an injective inverse, i.e. we have a bijection.

Our recursion 2.1 above thus can be used to compute pK(α) for arbitrary
α ∈ O+

K .
Example. Let K = Q(

√
2) and α = 4 + 2

√
2. Then the elements in O+

K which are
⪯ α are: 4 + 2

√
2, 3 + 2

√
2, 2 +

√
2, 1. Thus, from 2.1 we have

pK(4 + 2
√

2) = pK(0, 4 + 2
√

2) + pK(1, 3 + 2
√

2) + pK(2 +
√

2, 2 +
√

2) +
pK(3 + 2

√
2, 1) = 1 + 1 + pK(2 +

√
2)⏞ ⏟⏟ ⏞

= 1

+ 0 = 3.

We thus base our algorithm on this simple recursive process. The implement-
ation of this algorithm is the subject of the next section.
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2.2 Implementation - Data structures
Before we can delve into the implementation of the algorithm itself, we need to
define the data structures we use in our program. Clearly, we must find a way to
describe and work with quadratic integers. It is however helpful to first introduce
the class of omega.

class Omega:
"second element of the basis in the integer ring O_K"
INIT(self, omega)

"the value associated to self" = omega

For fixed D > 0, class Omega constructs the number ωD we defined in
Chapter 1. Moreover, it defines addition, multiplication, conjugation, trace and
norm of ωD, since we can regard it as a quadratic integer. These definitions are
analogous with the definitions we worked with in Chapter 1.

METHOD add(self, other):
"self" = self_omega
"other" = other_omega
RETURN rounded(self_omega + other_omega)

METHOD multiply(self,other):
"self" = self_omega
"other" = other_omega
RETURN rounded(self_omega * other_omega)

METHOD conjugate(self):
IF D MOD 4 == 2,3:

RETURN "new Omega" = -omega
ELSE IF D MOD 4 == 1:

RETURN "new Omega" = 1-omega

METHOD norm(self):
RETURN self_omega * conjugate(self_omega)

def trace(self):
RETURN self_omega + conjugate of self_omega

For the method of conjugation we use the property ω′
D = Tr(ωD) − ωD, where

Tr(ωD) = 0 if D ≡ 2, 3 (mod 4) and Tr(ωD) = 1 otherwise.
As we will see, class Omega helps us to simplify our definitions of multiplic-

ation and conjugation (as well as norm and trace) in the quadratic integers.
We can thus proceed to define the class Quadint.

class Quadint:
"integers of the form a + b*omega_D"
INIT(self,a,b):

"first coordinate of self" = a
"second coordinate of self" = b

11



In Quadint, we identify the quadratic integer α = a + bωD as an ordered pair
(a, b). We define the methods of addition, multiplication and conjugation in the
following way:

METHOD add(self, other):
"self" = (a,b)
"other" = (c,d)
RETURN "new Quadint" = (a+b, c+d)

METHOD multiply(self, other):
"self" = (a,b)
"other" = (c,d)
"e" = a*c + -"norm of omega"*b*d
"f" = a*d + b*c + "trace of omega"*b*d
RETURN "new Quadint" = (e,f)

METHOD conjugate(self):
"self" = (a,b)
RETURN "new Quadint" = (a + "trace of omega"*b,-b)

Here we use the "norm of omega" and "trace of omega" defined in class
Omega. Furthermore, the definitions of multiplication and conjugation use prop-
erties of quadratic integers. Specifically

• (a + bωD)(c + dωD) = ac + (ad + bc)ωD + bd(ωD)2,
where (ωD)2 = −N(ωD) + Tr(ωD)ωD.

• a + bω′
D = a + b(Tr(ωD) − ωD).

Hence, we easily define trace and norm in the class Quadint, as in Chapter 1,
using multiplication and addition of two quadratic integers defined above.

METHOD norm(self):
"new Quadint = (a,b)" = self * conjugate(self)
RETURN round(a)

METHOD trace(self):
"new Quadint = (a,b)" = self + conjugate(self)
RETURN round(a)

Lastly we define the methods for lexicographical ordering and the ≺-ordering
for totally positive integers.

METHOD lex(self, other):
"self" = (a,b)
"other" = (c,d)
IF a > c:

RETURN TRUE
ELSE IF a = c AND b > d:

RETURN TRUE

12



ELSE:
RETURN FALSE

METHOD totally_positive(self):
"self" = (a,b)
IF a + b*"omega" > 0 AND a + b*"conjugate of omega" > 0:

RETURN TRUE
ELSE:

RETURN FALSE

Apart from the method of trace and norm, we use every method in class
Omega defined above in our implementation of the partition function.

2.3 Implementation - Partition function
We can proceed to develop our function for computing partition numbers. Firstly
we construct functions max(a) and min(a), which for a ∈ N output the greatest
and the lowest integer b such that a + bωD ∈ O+

K , respectively. For ,this we use
Lemma 3, setting b = ⌊ a

−ω′
D

⌋ as the maximum and b = ⌈ a
−ω′

D
⌉ as the minimum.

FUNCTION max(a):
RETURN floor(a/-"conjugate of omega")

FUNCTION min(a):
RETURN ceil(a/-"omega")

Hence, we define the augmented partition function pK(α, β):

FUNCTION partition(self, other):
"returns the number of partitions of the integer ’self’
with the greatest part ’other’"
SET p = 0

IF NOT totally_positive(self) OR NOT totally_positive(other):
RETURN p = 0

IF lex(other,self):
SET other = self

FOR s -> "first coordinate of other" to 1:
FOR t -> "min(s)" to "max(s)":

SET beta = ("new Quadint" = (s,t))
IF "totally_positive(self - beta)":

INCREMENT p by "partition(self-beta, beta)"
ELSE IF self - beta == 0:

INCREMENT p by 1
RETURN p

13



In our implementation of partition function we use the recursion (2.1) we
proved in Proposition 12. It is also evident from Proposition 12, that this imple-
mentation always arrives at the correct value. Moreover, our algorithm always
ends, because for any α ∈ O+

K , there are only finitely many β ∈ O+
K such that

β ≤LEX α.

2.4 Tables
Hence, with our algorithm we can generate some tables of partition function val-
ues for different D. In every table we label the rows and columns with integers
representing the first and the second coordinates of quadratic integers, respect-
ively. Denoting a as the a-th row and b as the b-th column, the number in the
corresponding cell (a,b) is pK(a + bωD). As we know from Chapter 1, the conjug-
ates of quadratic integers have the same number of partitions. Hence, it suffices
to include quadratic integers with the second coordinate ≥ 0.

The implementation of our algorithm available at:

https://github.com/davidstern2001/partitions_of_tot_pos_int.git

was used to generate the following tables. They consist of partition values for
K = Q(

√
D), where D = 2, 3 and 5.

0 1 2 3 4 5 6 7 8 9 10 11 12
1 1
2 2 1
3 3 2 1
4 6 4 3
5 10 8 6 2
6 19 16 12 6 2
7 34 29 23 13 6
8 62 54 44 28 16 4
9 108 98 81 56 33 13 3
10 190 175 149 107 69 33 12 1
11 329 308 267 199 134 73 33 8
12 570 538 472 365 257 153 79 28 6
13 973 926 820 652 475 301 169 73 23 2
14 1658 1583 1415 1151 866 577 346 172 69 16
15 2789 2678 2412 2000 1541 1071 676 368 169 56 10
16 4667 4497 4082 3436 2707 1945 1285 748 383 153 44 4
17 7740 7488 6842 5838 4679 3462 2371 1458 801 368 134 29 1

Table 2.1: Partition values for K = Q(
√

2)
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0 1 2 3 4 5 6 7 8 9 10 11 12
1 1
2 2 1
3 3 2
4 6 4 2
5 10 7 4
6 18 14 9 3
7 29 25 16 7 1
8 52 45 32 16 6
9 87 76 57 32 14 2
10 149 133 103 64 32 10
11 244 224 177 118 64 25 4
12 410 378 309 215 128 57 18
13 669 624 521 376 237 118 45 7
14 1098 1034 878 656 432 237 103 29 2
15 1776 1684 1448 1115 760 447 215 76 14
16 2876 2737 2388 1876 1328 819 432 177 52 4
17 4601 4400 3876 3105 2262 1456 819 376 133 25
18 7349 7053 6267 5110 3811 2549 1512 760 309 87 9
19 11633 11203 10029 8298 6317 4365 2701 1456 656 224 45
20 18365 17722 15986 13385 10390 7373 4747 2701 1328 521 149 16
21 28779 27839 25263 21394 16872 12263 8156 4860 2549 1115 378 76 3
22 44929 43558 39743 33992 27200 20191 13814 8570 4747 2262 878 244 32

Table 2.2: Partition values for K = Q(
√

3)

0 1 2 3 4 5 6 7 8 9 10 11 12
1 1 1
2 2 2 2 1
3 4 4 4 4 2
4 8 9 10 9 8 4 2
5 14 18 21 21 18 14 9 4 1
6 29 36 43 46 43 36 29 18 10 4
7 54 71 84 92 92 84 71 54 36 21 9 2
8 106 136 166 183 191 183 166 136 106 71 43 21 8

Table 2.3: Partition values for K = Q(
√

5)
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3. Specific values of the partition
function
With the tables in Chapter 2, we can observe some interesting properties of the
partition functions. For example, in all the tables above, we can find quadratic
integers with 1, 2 and 4 partitions. Is this a special fact in Q(

√
D) for D = 2, 3, 5

or does this property hold in general? In this final chapter, we will answer this
particular question together with proving a number of other interesting properties
and facts.

3.1 The connection to p(n)
We begin with the study of partitions of natural numbers in different K =
Q(

√
D), i.e. for fixed n ∈ N, we look at pQ(

√
D)(n) for different D. We base our

analysis on the comparison between our partition functions pK and the integer
partition function p.

Observe, that pK(1) = 1 = p(1) for all D, because 1 is always a unit in O+
K

and all totally positive units are indecomposable (as we proved in Proposition 6).
From our tables in Chapter 2, we may think that pK(2) = 2 = p(2) for all D. It is
however not as trivial. For instance, there may exist D, where (1+ωD)+(1−ωD) =
2. Our strategy in this case will be showing (1 + ωD) or (1 − ωD) is not totally
positive for an arbitrary D. We can generalize this idea:

Theorem 13. Let n ∈ N. Then there exists Dn > 0 such that ∀D ≥ Dn :
pQ(

√
D)(n) = p(n). Furthermore,

• for D ≡ 2, 3 (mod 4): Dn = (⌊n
2 ⌋)2,

• for D ≡ 1 (mod 4): Dn =
⎧⎨⎩ (n − 1)2 if n is even,

n2 if n is odd.

Proof. We first prove the existence of Dn. Let n ∈ N be fixed and let (λ1, . . . , λm)
be an arbitrary partition of n in K. Write λi := ai + biωD, for all 1 ≤ i ≤ m. As
λi are totally positive, we have ai > 0, i.e. ai ∈ {1, 2, . . . n} since we consider the
partition of n. Let us fix the sequence of integers (a1, . . . , am). We want to show
that for a large enough D, it must hold that bi = 0 ∀i ∈ {1, . . . , m}.
Observe that from (1.1) bi ∈

(︃
ai

−ωD
, ai

−ω′
D

)︃
for all i, so we have

n

−ωD

≤ ai

−ωD

< bi <
ai

−ω′
D

≤ n

−ω′
D

,

as ω′
D < 0. Because −ω′

D
D→∞−−−→ +∞ and −ωD

D→∞−−−→ −∞, there exists Dn > 0
such that bi ∈ (−1, 1). Thus, since bi is an integer for all i, we have bi = 0.

Now we prove the second part of the statement, i.e. determining Dn. For the
sake of clarity, we denote En := Dn for D ≡ 2, 3 (mod 4) and Fn := Dn for
D ≡ 1 (mod 4). Let us denote by Bi the set of values bi can attain, if, for a
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fixed integer ai, the quadratic integer λi = ai + biωD is totally positive. Clearly
Bi =

(︃
ai

−ωD
, ai

−ω′
D

)︃
∩ Z. We want to find En, Fn such that for an arbitrary partition

(λ1, λ2, . . . , λm) we have Bi = {0} for all i ∈ {1, . . . , m}, i.e. all the terms in the
partition cannot have nonzero second coordinate.

Firstly, we show that, if Bi = {0} for some 1 ≤ i ≤ m, then the same holds
for Bj, where i ≤ j ≤ m. That is {0} = Bi = Bi+1 = · · · = Bm.

Since λ1, . . . λm are lexicographicaly non-increasing, we have ai ≥ ai+1 ≥ · · · ≥
am. Thus {0} = Bi ⊇ Bi+1 ⊇ · · · ⊇ Bm, which implies Bj = {0} ∀i ≤ j ≤ m.

Furthermore, if b2, b3, . . . , bm = 0, then surely b1 = 0 − ∑︁m
i=2 bi = 0, as we

partition n = n + 0ωD. Combining these two observations, we only need to find
En, Fn, such that B2 = {0} for all possible a2. We can do so by finding the largest
possible a2, which can appear in the partition of n, and then computing En, Fn,
such that B2 = {0}, respectively. The same will then hold for arbitrary a2.

Clearly, the case where a2 is the largest, is the case

n = λ1 + λ2 =
⎧⎨⎩(k + b1ωD) + (k + b2ωD) if n = 2k is even,

((k + 1) + b1ωD) + (k + b2ωD) if n = 2k + 1 is odd.

Otherwise, if a2 > k, then the sequence (λ1, λ2) would not be a non-increasing
sequence, and thus could not be a partition of n.

Furthermore, if n is even, then b1 ≥ 0 and b2 = −b1 ≤ 0 (otherwise we
would also not have a non-increasing sequence). Hence, in this case B2 ={︂
⌈ a2

−ωD
⌉, . . . , 0

}︂
. Otherwise B2 =

{︃
⌈ a2

−ωD
⌉, . . . , ⌊ a2

−ω′
D

⌋
}︃

as we established above.
It remains to find En, Fn such that B2 = {0}. We consider the cases:

• If D ≡ 2, 3 (mod 4), then ωD =
√

D, thus a2
ωD

= a2√
D

= a2
−ω′

D
. Therefore, we

only have to solve the inequality ⌊ a2√
D

⌋ ≤ a2√
D

< 1. We have a2 <
√

D ⇒
En = (a2)2 = k2 = (⌊n

2 ⌋)2.

• If D ≡ 1 (mod 4), then ωD = 1+
√

D
2 . As in this case ωD = 1+

√
D

2 ̸=
√

D−1
2 =

−ω′
D, we need to consider the following possibilities:

– if n is even, then we are solving the inequality ⌈ a2
−ωD

⌉ ≥ a2
−ωD

> −1,
which is equivalent to a2 < 1+

√
D

2 ⇒ Fn = (2a2 − 1)2 = (2k − 1)2 =
(n − 1)2.

– if n is odd, then we have the inequality a2
ωD

< a2
−ω′

D
< 1, that is, we

only need to solve a2 <
√

D−1
2 ⇒ Fn = (2a2 + 1)2 = (2k + 1)2 = n2.

Remark. From the proof above, we can observe, that our estimates of the val-
ues En and Fn are optimal, i.e. they are the smallest possible values satisfying
Theorem 13.
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3.2 Values 2, 3 and 5
In this section we study, for which D does the partition function pK attain the
values 2, 3 and 5. We first observe, that p(2) = 2, p(3) = 3 and p(4) = 5. Thus
we can use Theorem 13 and arrive at:
Proposition 14. Let K = Q(

√
D). Then pK attains the value:

• 1 for arbitrary D

• 2 for arbitrary D

• 3 for D = 2, 3 and D > 5

• 5 for D > 5
Proof. The case where pk(α) = 1, for α ∈ O+

K , we already analyzed above. For
other values, we use Theorem 13. Thus

• E2 = 1, F2 = 1 ⇒ pK(2) = p(2) = 2 for D > 1,

• E3 = 1, F3 = 9 ⇒ pK(3) = p(3) = 3 for all D > 1 except D = 5,

• E4 = 4, F4 = 9 ⇒ pK(4) = p(4) = 5 for D > 5.

Notice pK(3) ̸= 3 for D = 5 and pK(4) ̸= 5 for D = 2, 3, 5, since we see (using
our algorithm) that

• 3 = 2 + 1 = (2 − ω5) + (1 + ω5) = 1 + 1 + 1 ⇒ pK(3) = 4 in Q(
√

5).

• 4 = 3+1 = (2+
√

D)+(2−
√

D) = 2+2 = 2+1+1 = 1+1+1+1 ⇒ pK(4) = 6
in Q(

√
D), where D = 2 and 3.

• 4 = 3 + 1 = (3 − ω5) + (1 + ω5) = (2 + ω5) + (2 − ω5) = 2 + 2 = (2 − 2ω5) +
(1 + ω5) + (1 + ω5) = 2 + 1 + 1 = 1 + 1 + 1 + 1 ⇒ pK(4) = 9 in K = Q(

√
5).

Looking at the tables in Chapter 2, one can ask, if pK attains these values (in
the respective fields) at all. The remainder of this section is devoted to answering
this question. Specifically, our goal is to prove the non-existence of α ∈ O+

K in a
given field K, such that pK(α) = 3, 5.

Recall from Proposition 4 that every totally positive integer can be written
as a sum of indecomposable elements. Hence, for α ∈ O+

K , we can write:

α =
r∑︂

i=1
kiαi,

where αi are pairwise distinct indecomposable elements and ki ∈ N, for all i ∈
{1, . . . , r}. Without loss of generality, we consider the sequence (k1, . . . , kr) to be
non-increasing.

From the structure of the sum above, we can estimate the number of partitions
of α. If, for instance, α = α1, then α is indecomposable and thus pK(α) = 1.
Furthermore, if α = α1 + α2, we can see, that pK(α) ≥ 2. Continuing in this
sense, we classify the number of partitions of totally positive integers depending
on their indecomposable sums, i.e. the sums of the form described above.
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Lemma 15. Consider the sum of indecomposables above.

• Let r = 1, then

– if α = α1, then pK(α) = 1,
– if α = 2α1, then pK(α) ≥ 2,
– if α = 3α1, then pK(α) ≥ 3,
– if α = 4α1, then pK(α) ≥ 5,
– if α = 5α1, then pK(α) ≥ 7,

...

• Let r = 2, then

– if α = α1 + α2, then pK(α) ≥ 2,
– if α = 2α1 + α2, then pK(α) ≥ 4,
– if α = 3α1 + α2, then pK(α) ≥ 7,

...
– if α = 2α1 + 2α2, then pK(α) ≥ 9,

...

• Let r = 3, then

– if α = α1 + α2 + α3, then pK(α) ≥ 5,
– if α = 2α1 + α2 + α3, then pK(α) ≥ 11,

...

• For r ≥ 4 we have pK(α) ≥ 15.

Proof. We will prove for example the case α = α1 + α2 + α3. We have

α = α1 + α2 + α3 = (α1 + α2) + α3 = α1 + (α2 + α3) = α2 + (α1 + α3),

which are all distinct partitions of α, thus pK(α) ≥ 5. The rest of the statements
we get by straightforward checking.

We use this observation to arrive at a characterization of elements with a
specific number of partitions.
Example. • If α ∈ O+

K has exactly one indecomposable sum (i.e. sum of in-
decomposables): α = α1 + α2, then pK(α) = 2.

• If α = 3α1 = β1+β2 are the only indecomposable sums of α, where α1, β1, β2
are distinct, then α = 2α1 + α1 = α1 + α1 + α1 = β1 + β2 are all of the
partitions of α. Hence pK(α) = 4.

The main idea of our proof is to characterize the totally positive elements α,
for which pK(α) = 3, 5; by their sums into indecomposables. This will help us to
prove their non-existence in the fields Q(

√
D), where D = 2, 3, 5.

Firstly, to simplify our characterization, we need to make an observation:
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Lemma 16. If α = kα1 = lβ1, then k = l and α1 = β1

Proof. Without loss of generality let k ≥ l. Clearly l | k, otherwise β1 = k
l
α1 /∈

OK . Thus we have β1 = mα1 for m ∈ N. If m = 1, we are done. Otherwise we
get β1 = α1 + (m − 1)α1. However, we assumed β1 is indecomposable, so this
cannot occur.

Thus we can finally characterize the decompositions.

Lemma 17. Let K = Q(
√

D), α ∈ O+
K.

1. pK(α) = 3 if and only if it has one of the following forms:

• α = 2α1 = β1 + β2,
• α = α1 + α2 = β1 + β2,
• α = 3α1.

2. pK(α) = 5 if and only if it has one of the following forms:

• α = 2α1 = β1 + β2 = γ1 + γ2 = δ1 + δ2,
• α = 2α1 = 2β1 + β2,
• α = 3α1 = β1 + β2 = γ1 + γ2,
• α = 4α1,
• α = α1 + α2 = β1 + β2 = γ1 + γ2 = δ1 + δ2,
• α = α1 + α2 = 2β1 + β2,
• α = α1 + α2 + α3.

We assume all the indecomposables in each expression of α are distinct and each
α has no other decompostition.

Proof. We see from Lemma 15 that the only combinations of sums into indecom-
posables of α can be only of these forms (given pK(α)). We excluded all the forms
α = kα1 = lβ1, since from Lemma 16 they are not distinct.

We proceed with a powerful lemma, which eliminates the majority of expres-
sions of α we need to take into consideration.

Lemma 18. Let K = Q(
√

D), α = α1 + α2 ∈ O+
K be the sum into indecompos-

ables.

• If D = 5, then pK(α) ̸= 3, 5.

• If D = 2, 3, 5, then pK(α) ̸= 5.

Proof. Our proof is based on the observation that in each K there are only finitely
many fundamental indecomposable elements. By "fundamental" we mean, there
is a finite set ΦK = {ϕ1, ϕ2, . . . , ϕm} such that for every α ∈ O+

K indecomposable,
there exists a unit εn

+ ∈ O+
K , n ∈ Z, such that α = εn

+ϕi, for some i ∈ {1, . . . , m}.
This fact is due to A. Dress and R. Scharlau [DS82], who proved there are only
finitely many unique indecomposables up to conjugation and multiplication by
ε+. For reference, see [BK18, Section 2.]
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Thus we have for α1 = εk
+ϕi, α2 = εl

+ϕj, where k, l ∈ Z and i, j ∈ {1, . . . , m}.
Therefore, we can get the associated form:

ε−k
+ α = ε−k

+ (α1 + α2) = εk−k
+ ϕi + εl−k

+ ϕj = ϕi + εn
+ϕj, where n := l − k.

Therefore, using Proposition 9 we arrive at the fact, that pK(α) = pK(ϕi +
εn

+ϕj) for some n ∈ Z; i, j ∈ {1, . . . , m}. Hence, it suffices to check, that every
totally positive element of the form ϕi +εn

+ϕj cannot have 3 or 5 partitions in the
respective fields above.

We regrettably cannot use an inductive argument, as for all i, j ∈ {1, . . . , m}
we have ϕi + εk

+ϕj ⊀ ϕi + εl
+ϕj for k ≤ l, because εl

+ − εk
+ cannot be totally

positive, as otherwise εl
+ would not be indecomposable (this is impossible, as all

totally positive units are indecomposable from Proposition 6). Therefore, in the
rest of the proof, we proceed by checking each possibility for ϕi + εn

+ϕj.
We begin with the case, where D = 5. By analyzing the continuous fraction of

ω5 = 1+
√

5
2 = [1, 1], we deduce that the only fundamental indecomposible element

in K = Q(
√

5) is 1, i.e. ΦK = {1}. Hence, we have exactly one form for ϕi +εn
+ϕj:

1 + εn
+, where n ∈ Z and ε+ = 1 + ω5 = 3+

√
5

2 . Observe, that from Proposition 9
we have pK(1 + εn

+) = pK((1 + εn
+)′) = pK(1 + ε−n

+ ). Thus, it suffices to check
only the partitions for n ≥ 0.

• If n ∈ {0, 1, 2, 3, 4, 5}, we can check by our algorithm, that

pK(α) ∈ {2, 4, 10, 54, 753}, i.e. pK(α) ̸= 3, 5.

• If n > 5, then we claim, that pK(α) > 5.

Furthermore, we observe, that ∀0 < k ≤ n we have εk
+ ≺ 1 + εn

+.
Clearly εk

+ < 1 + εn
+. Also (εk

+)′ = ε−k
+ < 1 < 1 + ε−n

+ = (1 + εn
+)′, as

0 < ε−k
+ < 1 for each k ≥ 0. Moreover, we claim, that each εk

+ gives a unique
partition of 1 + εn

+. We cannot have the same partition for different k, l < n, as
we have

εk
+ + εl

+ ≤ 2εn−1
+ < εn

+ < 1 + εn
+,

where we used the estimate: ε+ = 3+
√

5
2 > 2. Consequently εk

+ + εl
+ = 1 + εn

+ if
and only if k = n and l = 0.

Thus every integer of the form 1 + εn
+ has at least n partitions. Specifically

pK(α) > 5 for n > 5. This establishes the proof, that there does not exist a
totally positive integer α = α1 + α2 in Q(

√
5), such that pK(α) = 3 or 5.

We continue with the case: D = 2. From the continuous fraction of
√

2 =
[1, 2], the fundamental indecomposable elements are {1, (2 +

√
2)}, where the

fundamental totally positive unit is ε+ = 3 + 2
√

2. This gives us the following
four possibilities:

ϕi + εn
+ϕj ∈ {1 + εn

+, (2 +
√

2) + εn
+, 1 + (2 +

√
2)εn

+, (2 +
√

2) + (2 +
√

2)εn
+},

where n ∈ Z. We can further reduce these possibilities using Proposition 9.

• pK(1 + εn
+) = pK((1 + εn

+)′) = pK(1 + ε−n
+ ),
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• pK((2+
√

2)+εn
+) = pK(((2+

√
2)+εn

+)′) = pK((2−
√

2)+ε−n
+ ) = pK(ε−1

+ (2+√
2) + ε−n

+ ) = pK((2 +
√

2) + ε−n+1
+ ),

• pK(1 + (2 +
√

2)εn
+) = pK((2 +

√
2) + ε−n

+ ),

• pK((2+
√

2)+(2+
√

2)εn
+) = pK(((2+

√
2)+(2+

√
2)εn

+)′) = pK((2−
√

2)+
(2 −

√
2)ε−n

+ ) = pK((2 +
√

2) + (2 +
√

2)ε−n
+ ).

Here we used (2 −
√

2) = ε−1
+ (2 +

√
2). In all the items above, we showed, that it

suffices to check the number of partitions only for n ≥ 0. Also, we see, that the
second and the third possibility are equivalent. Observe, that we can use the fact
∀1 ≤ k ≤ n : εk

+ ≺ 1 + εn
+ we proved above for the case D = 5, since we used a

general argument. Furthermore, it holds that ∀1 ≤ k < n : (2 +
√

2)εk
+ ≺ 1 + εn

+,
as

(2 +
√

2)εk
+ < 1 + (3 + 2

√
2)εk

+ ≤ 1 + εn
+,

(2 −
√

2)ε−k
+ < 1 < 1 + ε−n

+ ,

since 0 < ε−k
+ < 1 for all k ≥ 1. We already proved above, that all εk

+ give unique
partitions of 1 + εn

+. The same can be said about the terms (2 +
√

2)εk
+, since for

k, l < n:

εk
+ + (2 +

√
2)εl

+ < (3 + 2
√

2)εn−1
+ = εn

+ < 1 + εn
+,

(2 +
√

2)εk
+ + (2 +

√
2)εl

+ < (12 + 8
√

2)εn−2
+ < εn

+ < 1 + εn
+, if l ≤ n − 2.

Hence, the totally positive integer (2 +
√

2)εk
+ gives a unique partition of 1 + εn

+
for all 1 ≤ k < n. The same argument can be similarly applied to the other two
cases: (2 +

√
2) + εn

+ and (2 +
√

2) + (2 +
√

2)εn
+.

We thus proved that for all n ≥ 0 : pK(ϕ1 + εn
+ϕ2) ≥ 2n − 1. Hence, we have

to only check by our algorithm pK(ϕ1 + εn
+ϕ2) for n ∈ {0, 1, 2, 3}. We get:

a) pK(1 + εn
+) ∈ {2, 3, 19, 1732},

b) pK((2 +
√

2) + εn
+) ∈ {2, 8, 301},

c) pK((2 +
√

2) + (2 +
√

2)εn
+) ∈ {3, 6, 34067}.

This completes the proof that α = α1+α2 cannot have 5 partitions in K = Q(
√

2).

In the last case: D = 3, we have ω3 =
√

3 = [1, 1, 2], thus the fundamental
indecomposable elements in Q(

√
3) are ΦK = {1} and the fundamental unit is

ε+ = 2 +
√

3. Similarly to the case D = 5, we only check the possibilities for
n ∈ {0, 1, . . . , 5}:

pK(1 + εn
+) ∈ {2, 6, 32, 1098, 377024}, i.e. pK(α) ̸= 3, 5.

This finishes our proof.

Lemma 19. 1. Let K = Q(
√

5). Then ∄α ∈ O+
K such that pK(α) = 3.

2. Let K = Q(
√

D), where D = 2, 3, 5. Then ∄α ∈ O+
K such that pK(α) = 5.
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Proof. The proof uses Lemma 16 above. We first characterize the elements α,
for which pK(α) = 3, 5; by their sum into indecomposables. We then proceed by
showing that such totally positive elements cannot exist in a given field.

Let us prove the first statement. In Lemma 16 above, we characterized totally
positive elements α, where pK(α) = 3. We omit all cases, where α = α1 + α2, as
we have studied them in the previous Lemma 18. Therefore, the only remaining
instance is α = 3α1. We know, that the continued fraction for 1+

√
5

2 is [1, 1].
Hence, using Theorem 7, we have α = 3α1 is not uniquely decomposable, i.e.
such α with only one decomposition 3α1 cannot exist.

The second statement we prove analogously. Firstly, we have the character-
ization of α, such that pK(α) = 5. Of course, we omit the cases discussed in
Lemma 18). This leaves us with the following possibilities:

• α = 4α1,

• α = 2α1 = 2β1 + β2,

• α = α1 + α2 + α3.
Using Theorem 7, we see, that the first and third cases cannot occur, since ele-
ments of these forms cannot be uniquely decomposable in Q(

√
2), Q(

√
3) or in

Q(
√

5) (we look at the continuous fraction of
√

2,
√

3 and 1+
√

5
2 ).

Let us look at the remaining case, i.e. where α = 2α1. From Proposition 9 we
can multiply α by a unit and the number of partitions will stay the same. Thus
we find a totally positive unit ε such that εα1 is a fundamental indecomposable
element (see the proof of Lemma 18 for reference). We consider the cases:

• If K = Q(
√

2), then we can find a unit ε such that εα1 = 1 or εα1 = 2+
√

2.
Hence

pK(α) =
⎧⎨⎩pK(2) = 2

pK(4 + 2
√

2) = 3

• If K = Q(
√

3), then we can find a unit ε such that εα1 = 1. Hence

pK(α) = pK(2) = 2

• If K = Q(
√

5), then we can similarly find a unit ε such that εα1 = 1. Then

pK(α) = pK(2) = 2.

In summary, the only remaining case above also cannot occur in Q(
√

2), Q(
√

3)
or in Q(

√
5). This finishes the proof.

Theorem 20. Let K = Q(
√

D). Then pK attains the value:

• 1 for all D,

• 2 for all D,

• 3 if and only if D ̸= 5,

• 5 if and only if D ̸= 2, 3, 5.

Proof. This result is a direct consequence of Proposition 14 and Lemma 19.
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3.3 Values 4 and 6
After we analyzed values 1,2,3 and 5, we may ask, whether there is a character-
ization of D, for which pQ(

√
D) attains the values 4 and 6. This question is very

interesting, as these values do not appear as the number of partitions of natural
numbers. This section looks into this problem in more detail.

Proposition 21. Let K = Q(
√

D), α := σD + 3, then pK(α) = 4.

Proof. Let D be arbitrary. Recall, that σD := ωD + ⌊−ω′
D⌋, thus we have α =

(⌊−ω′
D⌋ + 3) + ωD. For abbreviation, we denote a := (⌊−ω′

D⌋ + 3). We then see
pK(α) ≥ 4, since

α = (a − 1) + ωD = ((a − 2) + ωD) + 2 = ((a − 2) + ωD) + 1 + 1,

where all the elements (including α) are totally positive. We prove this by showing
for k ≥ 0: ((a − k) + ωD) ≻ 0 if and only if 0 ≤ k ≤ 2.

We clearly see from the definition of the indecomposable elements, that for
k ≥ 0: ((a − k) + ωD) ≻ 0 if and only if a − k > −ω′

D, which is equivalent to
3 + ⌊−ω′

D⌋ + ω′
D > k, where ⌊−ω′

D⌋ + ω′
D ∈ (−1, 0). Thus k ∈ {0, 1, 2}.

Hence, we showed that if β = k ∈ O+
K is in the partition of α, then β ∈ {1, 2}.

For the proposition to hold, it suffices to show there does not exist a term β =
b + cωD in the partition of α, where c > 1 or c < 0. We use the fact, that β ∈ OK

is in the partition of α, if β ∈ O+
K and α − β ∈ O+

K .
We first use that β ∈ O+

K . Let us first consider the case, where c > 1. We
want β ∈ O+

K . Thus, from the estimation (1.1) we proved in Lemma 3, we have:

1 < c <
b

−ω′
D

≤ a − 1
−ω′

D

= ⌊−ω′
D⌋ + 2

−ω′
D

,

where the left hand side is < 2 for all D, except D = 2, 5, 13. Thus, since c is an
integer, there cannot be β of this form. We will analyze the cases for D = 2, 5, 13
separately.

Analogously for c < 0, we have:
⌊−ω′

D⌋ + 2
−ωD

= a − 1
−ωD

≤ b

−ωD

< c < 0,

where the right hand side is > −2 for all D, except D = 2. Thus, (for D ̸= 2)
the only possibility for c < 0 is c = −1. Then, however, in order that β is in
the partition of α, α − β must also be totally positive. Hence, we have α − β =
(a− b)+2ωD ≻ 0, which holds, if a− b > −2ω′

D. This is equivalent to 2+ω′
D > b.

Thus, we have the inequality 0 < b < 2 + ω′
D, which does not have a solution for

all D, except D = 5. Hence, we proved that, for all D ̸= 5, there cannot be such
β in the partition of α.

By our implementation of the algorithm described in Chapter 2 we can easily
verify the individual cases, where D = 2, 5, 13; and thus completing our proof.

Thus, we can always find an element α in K such that pK(α) = 4. For
the number 6, we employ a similar strategy. We, however, find, that it is more
intricate than the previous case.

For simplicity of notation, we denote ξD := −ω′
D =

⎧⎨⎩
√

D if D ≡ 2, 3 (mod 4),
√

D−1
2 if D ≡ 1 (mod 4).
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Proposition 22. Let K = Q(
√

D), D ̸= 5.

1. If ξD − ⌊ξD⌋ > 1
2 , then for α := 2σD + 4: pK(α) = 9

2. If ξD − ⌊ξD⌋ < 1
2 , then for α := 2σD + 3: pK(α) = 6

Proof. We observe, that α in both statements is indeed totally positive. This is
easily seen from the definition of σD. Also observe, we can unify both cases into
one, as we have

α = (⌊2ξD⌋ + 3) + 2ωD =
⎧⎨⎩(2⌊ξD⌋ + 4) + 2ωD = 2σD + 4 if ξD − ⌊ξD⌋ > 1

2 ,

(2⌊ξD⌋ + 3) + 2ωD = 2σD + 3 if ξD − ⌊ξD⌋ < 1
2 ,

because ⌊2ξD⌋ = 2⌊ξD⌋+1 if ξD −⌊ξD⌋ > 1
2 , and ⌊2ξD⌋ = 2⌊ξD⌋ otherwise. Thus,

for a few of the following steps of the proof, we let D > 0 be arbitrary.
Now we prove, that (for almost all D) if β = a+bωD is in a partition of α, then

b ∈ {0, 1, 2}. Our proof of this fact is analogous to the proof in Proposition 21.
Clearly, if b > 2, then from Lemma 3

2 < b <
a

ξD

≤ ⌊2ξD⌋ + 2
ξD

,

where the right hand side is < 3 for all D ̸= 5, 13, 17. Thus, (for D ̸= 5, 13, 17) no
such b or, more precisely, no such β cannot exist, since we require β to be totally
positive. Analogously, if b < 0, then α − β = (⌊2ξD⌋ + 4 − a) + (2 − b)ωD. We
want α − β to be totally positive. This holds, if (⌊2ξD⌋ + 4 − a) + (2 − b)ω′

D > 0,
which can be rewritten to

3 ≤ 2 − b <
(⌊2ξD⌋ + 3 − a)

ξD

≤ ⌊2ξD⌋ + 2
ξD

.

Here, similarly to the argument above, the right hand side < 3 for all D ̸=
5, 13, 17. This proves our observation. We will now assume, that D ̸= 5, 13, 17.
We will come back to these cases later.

We proved, that the only terms in the partition of α are of the form a, a+ωD,
a + 2ωD, where a > 0. We can write a = k, a + ωD = σD + k, a + 2ωD = 2σD + k
for an appropriate choice of k ∈ N in each case. We first note, which terms of
the form above are totally positive, and then we exhaust all the options of the
partitions of α. Observe, that

• k ≻ 0 for all k > 0.

• σD + k ≻ 0 if and only if k ≥ 1 > ξD − ⌊ξD⌋

• 2σD + k ≻ 0 if and only if k > 2(ξD − ⌊ξD⌋), that is

– if ξD − ⌊ξD⌋ > 1
2 , then the condition holds if and only if k ≥ 2,

– if ξD − ⌊ξD⌋ < 1
2 , then the condition holds if and only if k ≥ 1.
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Hence, if ξD − ⌊ξD⌋ > 1
2 , then we have

α = (2σD + 3) + 1
= (2σD + 2) + 2
= (2σD + 2) + 1 + 1
= (σD + 3) + (σD + 1)
= (σD + 2) + (σD + 2)
= (σD + 2) + (σD + 1) + 1
= (σD + 1) + (σD + 1) + 2
= (σD + 1) + (σD + 1) + 1 + 1.

These are (as we analyzed above) all the partitions of α. Thus pK(α) = 9.
Analogously, if ξD − ⌊ξD⌋ < 1

2 , then we get

α = (2σD + 2) + 1
= (2σD + 1) + 2
= (σD + 2) + (σD + 1)
= (2σD + 1) + 1 + 1
= (σD + 1) + (σD + 1) + 1.

Hence, we have pK(α) = 6.
For D = 13, 17 we can check by our algorithm that:

• pK(α) = pK(2σ13 + 3) = pK(5 + 2ω13) = 6 and ξ13 − ⌊ξ13⌋ < 1
2 ,

• pK(α) = pK(2σ17 + 4) = pK(6 + 2ω17) = 9 and ξ17 − ⌊ξ17⌋ > 1
2 .

This finishes our proof.

Remark. For D = 5, we have (by the computation of our algorithm):

pK(α) = pK(2σ5 + 4) = pK(4 + 2ω5) = 10, since ξ5 − ⌊ξ5⌋ >
1
2 .

This is because (2 + ω5) + (2 − ω5) is also a valid partition of α.
We can thus conclude with:

Theorem 23. Let K = Q(
√

D). Then pK(α) attains the value:

• 4 for all D,

• 6 for all D, such that ξD − ⌊ξD⌋ < 1
2 .

Proof. Both statements are direct consequences of Proposition 21 and Proposi-
tion 22.

Observe, that for the attainability of the value 6 we do not have a complete
characterization, but only a sufficient condition. It, however implies, that pK(α)
attains 6 for infinitely many D. The first values of D satisfying this condition
are: 2, 6, 10, 11, 13, 15, 19, 26, 29, . . . .
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