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Abstract: This thesis is dedicated to a problem of heat transport where radiation
is taken into account. Models for such setting, although complicated, are very
important for industrial purposes.

We provide a derivation and explanation of the fundamental physical model for
radiative heat transport. The resulting system of radiative transfer equations
(RTE) is then approximated with so-called SPn equations. Here, we focus on
asymptotically deriving a simple set of SP1 equations. Special attention is given
to Marsak-type boundary conditions which we formulate in a more precise form
than other sources.

Inspired by the float-glass forming process, we look into problems with multiple
domains with different refractive indices. For such an arrangement, there is a
need for transition conditions describing the behaviour of the solutions on the
interface between two domains of interest. By following an analogous procedure
as for the boundary conditions, we have managed to identify a natural set of
transition conditions that allow for discontinuity in the intensity variable. To our
best knowledge, these conditions have not been yet presented in the literature.

Finally, we present several numerical experiments of solving these equations in
Wolfram Mathematica software and compare them with benchmark results.
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Abstrakt: Tato práce je zaměřená na studium a popis úlohy přenosu tepla, při
které uvažujeme také př́ıspěvek přenosu zářeńım. Jde o úlohu velmi d̊uležitou z
hlediska praktického využit́ı v pr̊umyslu.

V úvodu práce podrobně vysvětlujeme odvozeńı stěžejńıho systému ř́ıdićıch rovnic
pro radiačńı přenos tepla. Vzhledem ke komplexnosti tohoto systému pokraču-
jeme v daľśı části představeńım aproximace pomoćı tzv. SPn rovnic. Zaměř́ıme
se zejména na nejjednodušš́ı sadu, SP1 rovnice, které odvod́ıme technikou asymp-
totického rozvoje. Zvláštńı pozornost je věnována okrajovým podmı́nkám Mar-
sakova typu, které jsou v r̊uzných zdroj́ıch formulovány nepřesně. Tyto rovnice
opět asymptoticky odvod́ıme do správného tvaru.

Inspirováni výrobńım procesem tabulového skla se zaj́ımáme také o problematiku
s v́ıce oblastmi o rozd́ılných indexech lomu. Pro řešeńı této úlohy je potřeba znát
přechodové podmı́nky popisuj́ıćı chováńı teploty a intenzity zářeńı na hranici
mezi studovanými oblastmi. Obdobným postupem jako v př́ıpadě okrajových
podmı́nek se nám podařilo odvodit přirozenou sadu přechodových podmı́nek,
které připoušt́ı jistou nespojitost v intenzitě zářeńı. Tyto podmı́nky zřejmě do-
posud nebyly uvedeny v žádném článku zabývaj́ıćım se t́ımto tématem.

Práci zakonč́ıme ukázkami několika numerických experimet̊u v softwaru Wolfram
Mathematica, ve kterých srovnáváme naše řešeńı s benchmarkem dostupným v
literatuře.
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Introduction
In many industrial areas, it is crucial to monitor the temperature evolution of cer-
tain objects. Materials can change their properties dramatically when heated up,
thus it is in our interest to be able to predict and model heat transfer in complex
configurations. In the most simple setting, it suffices to simulate heat transport
via conduction, but we can come across problems where this simple model is not
accurate enough. Firstly, the material itself can be in motion changing form and
shape, in that case, it is obvious that heat transport by convection has to be
considered. Or the material could be at least semi-transparent allowing for heat
to be transferred by the means of radiation. The latter case is the main subject
studied in this thesis.

We take a look at the problem of heat transport between semi-transparent
materials, where we assume that the energy can be transferred not only locally
by conduction but is also continuously radiated in all directions. This additional
assumption dramatically complicates the model structure and the governing equa-
tions as well. The heat equation is no longer a mere parabolic equation, but
a complex integro-differential equation theoretically coupled with uncountably
many elliptic equations.

In this thesis, we are interested in such models and techniques that make them
solvable. In real-world applications, these models can describe processes like flat
glass manufacturing, see attachment A for further information.

Physical summary
Now let us summarize what kind of model structure we are looking for. We
are interested in the heat transfer between a stationary arrangement of several
immiscible mediums, in reality, they can be for example glass, tin, and then
surrounding gas, typically nitrogen. There are no heat sources, we simply let
the system cool down by exchanging energy with the outer reservoir via heat
conduction and thermal radiation. For such a problem, there exist a number
of approaches that couple thermal evolution with various approximations to the
problem of radiation transfer. Each technique brings its own challenges in the
form of identification of suitable boundary and transition conditions.

Goals
This thesis is in a sense sort of follow-up on the studies of the Department of
Mathematical Modeling, Charles University (Řehoř et al. [2017]) which did great
analysis of mechanical models of the glass forming process described in attach-
ment A. Their work was motivated by the needs of a company Glass Service and
the main goal of this study is to integrate a certain approximation to the radiation
heat transfer into the evolution of temperature during the cooling of glass.

Although we have this vision in the back of our minds, this thesis operates
in rather general setting focusing on the derivation and analysis of the equations
without committing to any actual setup or real-world data.

3



Outline
The thesis itself consists of four parts. In the first one we derive the full governing
system of the partial differential equations that model our situation. It is achieved
thanks to the tools of basic ray physics, or rather optics.

In the key second part, we look at the problem from the numerical point of
view. We derive a simpler system of equations that is easier to solve and that is
actually used in industrial computing. Here we talk about SPn equations, SP1 in
particular, and we describe their idea for a specific set of assumptions.

In the third part, we test the equations with our own implementation of
numerical solvers for such systems. We define chosen computing method and
make some modifications to the equations resulting in them being more suitable
for numerical calculations. Finally, we provide a comparison with benchmark
results adopted from the literature.

The final fourth part includes a discussion about the application of the model
to simple geometry setup and whether our equations are consistent. We also offer
a glimpse of SP2 equations and on how they differ from SP1.
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1. Radiative heat transfer
We begin our work with a brief overview of the subject, defining basic quanti-
ties and principles. Full analysis of the pivotal ideas regarding this matter can
be found in a book written by Martin Frank and Axel Klar (Frank and Klar
[2011]). It is well-known that heat can be mainly transported by three distinct
mechanisms: heat conduction, material convection, and radiation. We will briefly
summarize certain aspects of all of them, special attention will be then dedicated
to radiation.

Heat conduction

We start with the principle of each mechanism. Conduction can be at a suffi-
ciently fine scale described as energy transfer due to particles’ interactions. These
interactions are happening on an atomic length scale, 10−9 m (Frank and Klar
[2011]). One can visualize a collision of two point-like particles, during which they
exchange their energy, thus transporting it through space. According to Fourier’s
law, the heat flux is proportional to the local temperature difference, or rather a
spatial derivative (gradient).

qcon = −k∇T, (1.1)

where k is thermal conductivity of given material. Usually, k is taken as a con-
stant, although it doesn’t have to be totally precise and in reality, it may slightly
vary with temperature. However, to simplify the model, we will use constant-
value approximation. Therefore in our equations, k is a constant.

Convection

This process is omitted in the models we will focus on, so we do not discuss it
in detail. Convection is an energy transfer process that is directly related to the
motion of the matter itself, in other words heat is carried along with the moving
material. As such, the process is also local in the sense that its effectiveness
depends on the local velocity and the local thermal gradient.

To illustrate this, consider a vessel full of liquid with heterogeneous tempera-
ture distribution. If there is a peak in thermal energy on one side of the vessel,
by the convection and also conduction, the thermal energy has to be ”passed on”
through the material to reach the other side. Certain point affects only its close
neighborhood.

Thermal radiation

This mechanism is not like the previous two. It is realized by travelling photons,
not material particles themselves. Of course, the matter has its influence on the
radiation, but it is rather inhibiting. Energy can be transferred by radiation
without the need for any medium. If we again picture a situation, this time with
two vessels (or simply bodies) separated with vacuum, there is no way that any
energy would be transported via conduction or convection. But an exchange of

5



energy would still occur because of radiation. And similarly, within only one
vessel (body), the hot right side immediately affects the cold left side.

As we can see, radiative transfer can be really effective. Another reason for
that is so-called Stefan-Boltzmann law. It states that energy flux leaking out of
volume through radiation is proportional to the fourth power of temperature:

E = σT 4 (1.2)

This means that radiation will have a significant impact when dealing with high
temperatures, which is characteristic for the application we consider (see A).

We can see that thermal radiation will dramatically change the solution to
the heat evolution problem. However, it is clear that we do not get by with
just differential equations, since radiation is not a local process. A single point’s
temperature is at each moment affected by the temperature of every other point
in the material. The governing system will have to contain an integral, meaning
we will deal with integro-differential equations.

On the other hand, we are able to kind of get around integrating over the
whole volume of the vessel, but at the cost of implementing a new unknown
function that represents a direction-dependent field of radiation.

1.1 Radiative transfer equation
As we hinted above, there are several typical functions that we have to introduce
first before we start deriving the radiative transfer equations (RTE). There is a
wider spectrum of them actually, but we will settle with only a couple of them
that are actually needed in this thesis (for further information see Frank and Klar
[2011] or Howell et al. [2021], p. 4-42).

1.1.1 Physical quantities
Spectral intensity

The most important quantity in this entire work is spectral intensity, de-
noted I. It describes the radiative transport of energy at a given point (x, t)
in space and time. It is also dependent on specific direction Ω (unit vector) and
lastly, on frequency ν at which the radiation propagates.

I(x, t, Ω, ν) (1.3)

Its physical meaning can be stated as the amount of radiative energy dE that
flows through an area dA spread into solid angle dΩ over time dt in spectrum
band dν. Another way of perceiving this quantity is as rays of photons traveling
through a medium in a given direction at a certain energy level (frequency). This
image will help us later motivate processes like absorption or scattering.

Let us emphasize here that the key feature of intensity that allows it to model
complex radiative transport is the direction-dependence. It results in a quite
complicated set of equations, but the complexity is naturally embedded in the
problem itself. Note that we are not actually interested in knowing the shape of
the intensity function. Later we will see that it will be more relevant to compute
its moments, resp. directional averages.
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For starters, let us define total intensity I(x, t, Ω), as summed intensities
across the whole spectrum.

I(x, t, Ω) =
∫︂ ∞

0
I(x, t, Ω, ν) dν (1.4)

Taking the integration one step further, we get another important quantity.

Energy flux

Next, we establish energy flux E(x, t), or rather φ(x, t) to be consistent with the
literature. It will be essential for deriving the governing equation later because
as it often goes in physics, the equation is based on energy conservation.

It is defined:

φ(x, t) =
∫︂

S2
I(x, t, Ω) dΩ =

∫︂
S2

∫︂ ∞

0
I(x, t, Ω, ν) dν dΩ (1.5)

It will also play a key role in our diffusion-based approximation, where we
employ the reduction of one of the variables, direction Ω. Since we are not
interested in intensity after all, it does not bother us to calculate with its integrals
only. We will see the point in chapter 2.

Radiative heat flux

Analogously to the conductive heat flux q given by Fourier’s law, there is a
vector quantity that describes net energy transport by means of radiation. To be
consistent with the literature, let us denote it F and it is defined as

F(x, t) =
∫︂

S2
ΩI(x, t, Ω) dΩ =

∫︂
S2

∫︂ ∞

0
ΩI(x, t, Ω, ν) dν dΩ (1.6)

We could also define spectral radiative flux dependent on frequency by omit-
ting the integral over the whole spectrum, but it will not be used in this paper
anyway.

Blackbody intensity

A very important milestone in this field was Planck’s distribution law. It describes
the behaviour of an idealized object called a blackbody. It serves as the first
approximation for any body that radiates energy.

We can visualize the energy transfer as rays of electromagnetic radiation.
Any regular object is able to emit and absorb radiation within its volume and
emit, absorb or reflect it at the boundary. The behavior is determined by the
properties of the studied object and the energy level of the radiation. The basic
relation E = hf states that energy is proportionate to the frequency of the
electromagnetic wave. After radiation hits an object, depending on that exact
frequency, the ray is either reflected back or transferred inside.

Then, in the bulk region, the radiation can experience some sort of attenua-
tion via absorption by individual molecules. This results in different degrees of
transparency.

The blackbody approximation assumes that all the radiation that arrives at
the object’s surface is absorbed, ergo no radiation is reflected. Hence the name
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blackbody, because due to the absence of reflection, it would appear as totally
black. On top of this, the radiation emitted by this body is again through the
whole spectrum and also isotropic (equal in all directions).

In this paper, we will not be spending time on deriving the formula for the
blackbody intensity B(ν, T ) (for details, see Frank and Klar [2011], sec. 2.2),
instead we content with knowing the formula

B(ν, T ) = n2
1
2hP ν3

c2
0

1

e
hP ν

kBT − 1
, (1.7)

where T is the thermodynamic temperature at a certain point in space and time,
ν is the frequency of the radiation, n1 is the refractive index of our environment,
c0 is the speed of light in vacuum (c0 = 299 792 458 m·s−1), hP is Planck constant
(hP = 6.626 · 10−34 J·s) and kB is Boltzmann constant (kB = 1.38 · 10−23 J·K−1).

Note that we will also work with mediums that have different refractive in-
dices, at those times mind the index that corresponds to the refractive index of
that medium, i.e. B1 in medium with n1, B2 in medium with n2 etc. If we con-
sider only one domain with a homogeneous medium, then we omit the index and
write just B instead of B1 to be consistent with the literature.

1.1.2 Derivation
Now that we have defined the necessary quantities, we dive deeper into relations
telling how one influences the other. First, we look into the effects on intensity
in bulk regions.

Absorption

As we stated earlier, the radiation propagating through a medium is slowly and
partially reduced due to a number of phenomena, absorption being one of them.
This process can be explained by the image of photons colliding with atoms,
getting absorbed, and exciting them onto higher energy levels, thus the radiation
itself loses energy. The number of encountered atoms is clearly linearly dependent
on the traveled distance ∆s. We simplify the situation by introducing a single
parameter κ that describes the absorbing properties of the material. It tells us
the proportion of energy that is passed on from photons to atoms. If we now
imagine a ray of photons that travel distance ∆s through a medium, we can state
simple relation for the decrease of intensity:

I(x + Ω∆s, t + ∆s

c
, Ω, ν) = I(x, t, Ω, ν) − κI(x, t, Ω, ν)∆s (1.8)

where c is the speed of light in considered medium (c = c0
n1

).

Emission

On the other hand, there are also sources that increase the intensity, here we ex-
clusively mean the thermal radiating of the medium. Although thermal radiation
is mainly related to higher temperatures, it is (just like gravity force) constantly
happening even at the scale of everyday objects at room temperature (as long as
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the temperature is not 0). Therefore, if we study the intensity field in a body we
do not get by with considering only incoming outer radiation that decays inside.
The overall field of intensity will be also magnified by inner radiation.

This emitted radiation will be referred to as emission and its intensity is in
the form of isotropic blackbody intensity. If we again keep track of intensity as we
move through the medium, the contribution of emission is linearly dependent on
that traveled distance (number of atoms come across). For the intensity balance,
we can set up a similar relation:

I(x + Ω∆s, t + ∆s

c
, Ω, ν) = I(x, t, Ω, ν) + κB(ν, T )∆s (1.9)

We can see that we used the same constant κ as in the equation (1.8). We can
validate this step by considering a blackbody-like material. If the absorption was
different from emission, there would spontaneously arise a magnifying intensity
field.

Scattering

For the sake of completeness, we have to mention also the process of scattering,
as it can also alter the intensity field. The key observation is that the intensity
I(x, t, Ω, ν) is direction-dependent and scattering is the process during which the
radiation is sort of randomly distributed into other directions. We recall the image
of a photon traveling in direction Ω′ colliding with atom. If it is not absorbed,
it is instead redirected to other direction Ω. Or in other words, photons from
various directions Ω′ can be directed in Ω, the direction of interest (now the
notation makes more sense).

The ”random” character of scattering is modeled by probability density func-
tion s(Ω, Ω′) that determines the probability of change of direction Ω′ −→ Ω.
Since it represents the probability, it has to hold that:∫︂

S2
s(Ω, Ω′) dΩ′ = 1 (1.10)

where we integrate over unit sphere S2.
We again assert that the amount of scattered radiation is proportional to the

distance traveled by the ray of photons, let us denote the constant of proportion-
ality by σ.

Similarly to the absorption/emission balance, we have the term contributing
to increase of the intensity in our direction Ω, so called in-scattering term, as
well as the term representing the decrease, out-scattering term.

I(x + Ω∆s, t + ∆s

c
, Ω, ν) =

= I(x, t, Ω, ν) + σ
(︃∫︂

S2
s(Ω, Ω′)I(x, t, Ω′, ν) dΩ′ − I(x, t, Ω, ν)

)︃
∆s (1.11)

The integral in equation (1.11) accounts for all possible directions on S2 from
which the radiation might be reflected. The out-scattering term −σI∆s is anal-
ogous to absorption or emission terms.

One thing we may be interested in is the actual form of the function s(Ω, Ω′).
It turns out that isometric approximation is fairly accurate and, of course, it
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simplifies the model. We will therefore in this paper consider s(Ω, Ω′) ≡ 1
4π

.
Later, we will point out the step of derivation at which this assumption makes
the scattering effect vanish from the equations.

Now we consider all the previous effects (equations (1.8), (1.9) and (1.11))
acting at the same time and we get a balance equation for intensity I(x, t, Ω, ν):

I(x + Ω∆s, t + ∆s

c
, Ω, ν) = I(x, t, Ω, ν) +

[︃
κ
(︃

B(ν, T ) − I(x, t, Ω, ν)
)︃

+

+σ
(︃∫︂

S2
s(Ω, Ω′)I(x, t, Ω′, ν) dΩ′ − I(x, t, Ω, ν)

)︃]︃
∆s (1.12)

We will gather the terms of the difference quotient on the left-hand side

I(x + Ω∆s, t + ∆s
c

, Ω, ν) − I(x, t, Ω, ν)
∆s

= κ
(︃

B(ν, T ) − I(x, t, Ω, ν)
)︃

+

+ σ
(︃∫︂

S2
s(Ω, Ω′)I(x, t, Ω′, ν) dΩ′ − I(x, t, Ω, ν)

)︃
(1.13)

and take the limit ∆s −→ 0,

Full Radiative transfer equation

Ω · ∇I(x, t, Ω, ν) + 1
c

∂

∂t
I(x, t, Ω, ν) = κ

(︃
B(ν, T ) − I(x, t, Ω, ν)

)︃
+

+ σ
(︃∫︂

S2
s(Ω, Ω′)I(x, t, Ω′, ν) dΩ′ − I(x, t, Ω, ν)

)︃
. (1.14)

Thus we got the Radiative transfer equation in its full form.
As we have hinted before, some terms will not play a significant role in further

derivation. Firstly, it is the scattering term which we assume to be isometric and
secondly, it’s the term with time derivative. The time that radiation needs to
propagate through a medium is much smaller than the considered time scale.
So, we neglect any momentary changes and treat the intensity at any time as in
its stationary state. We can also naively motivate this step by saying that the
coefficient 1

c
in front of that term is very small. After this reasoning, we get a

steady radiative transfer equation:

Ω · ∇I(x, t, Ω, ν) = κ
(︃

B(ν, T ) − I(x, t, Ω, ν)
)︃

+

+ σ
(︃∫︂

S2
s(Ω, Ω′)I(x, t, Ω′, ν) dΩ′ − I(x, t, Ω, ν)

)︃
(1.15)

from which we later deduce the heat flux for the energy balance equation.

1.2 Energy conservation
In this section, we will finally discuss equations concerning temperature T , our
desired quantity. We directly focus on the equation representing the conservation
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of energy of incompressible fluid (we have adopted the formula from lecture notes
Matyska [2005]).

ρmcm
∂T

∂t
= −ρmcmv · ∇T − ∇ · q + aT

(︄
∂p

∂t
+ v · ∇p

)︄
+ tD : ∇v + ρmhm

(1.16)
where ρm is the density of the medium, cm is its heat capacity, v is the velocity
vector, q is the heat flux, a is thermal expansion coefficient, p is pressure, t is the
Cauchy stress tensor and hm represents inner sources of heat. There are quite a
lot of complicated terms, however, most of them vanish because we consider our
medium at rest, ergo v = 0. Plus, we do not consider any heat generated inside
our medium, hm = 0.

These assumptions greatly simplify the equation into the form:

ρmcm
∂T

∂t
= −∇ · q (1.17)

One may think that we reduced the problem to a simple heat equation, but keep
in mind that q does not represent mere conduction, it includes radiative heat
transport.

q = qcon + F (1.18)

For qcon we can simply substitute from equation (1.1) and get:

−∇ · qcon = ∇ · (k∇T ) (1.19)

We can rewrite F according to our definition (1.6):

−∇ · F(x, t) = −∇ ·
∫︂

S2

∫︂ ∞

0
ΩI(x, t, Ω, ν) dν dΩ (1.20)

Now we interchange differentiation and integration as they are independent and
then we use the relation from steady radiative transfer equation (1.15).

−∇ · F(x, t) = −
∫︂

S2

∫︂ ∞

0
Ω · ∇I(x, t, Ω, ν) dν dΩ

= −
∫︂

S2

∫︂ ∞

0
κ
(︃

B(ν, T ) − I(x, t, Ω, ν)
)︃

dν dΩ+

+
∫︂

S2

∫︂ ∞

0
σ
(︃∫︂

S2
s(Ω, Ω′)I(x, t, Ω′, ν) dΩ′ − I(x, t, Ω, ν)

)︃
dν dΩ
(1.21)

We will take a closer look on that second integral term and recall the assump-
tion of isotropic radiation scattering:∫︂

S2

∫︂ ∞

0
σ
(︃∫︂

S2
s(Ω, Ω′)I(x, t, Ω′, ν) dΩ′ − I(x, t, Ω, ν)

)︃
dν dΩ =

=
∫︂

S2
σ
(︃∫︂

S2
s(Ω, Ω′)I(x, t, Ω′) dΩ′ − I(x, t, Ω)

)︃
dΩ =

= σ
∫︂

S2

∫︂
S2

1
4π

I(x, t, Ω′) dΩ′ dΩ − σ
∫︂

S2
I(x, t, Ω) dΩ =

= σ
(︃ 1

4π

∫︂
S2

I(x, t, Ω′) dΩ′ ·
∫︂

S2
dΩ −

∫︂
S2

I(x, t, Ω) dΩ
)︃

=

= σ
(︃∫︂

S2
I(x, t, Ω′) dΩ′ −

∫︂
S2

I(x, t, Ω) dΩ
)︃

= 0 (1.22)
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At this point we see that for isotropic scattering, the in and out scattering
terms cancel out, this is what we have insinuated earlier. Therefore substitut-
ing everything back will give us the final form of governing bulk equation for
temperature.

Temperature evolutionary equation

ρmcm
∂T (x, t)

∂t
= ∇ · (k∇T (x, t)) −

∫︂ ∞

0

∫︂
S2

κ
(︃

B(ν, T ) − I(x, t, Ω, ν)
)︃

dΩ dν

(1.23)

1.3 Boundary conditions
So far, we have obtained two time-dependent partial integro-differential equations,
(1.15) and (1.23), for unknown functions I(x, t, Ω, ν) and T (x, t). Naturally, there
is a question of initial and boundary conditions present. First, we look at the
boundary condition for intensity I. In this section we still follow the work of
Frank and Klar (Frank and Klar [2011]).

1.3.1 Intensity boundary condition
As an electromagnetic ray hits an object’s boundary, one of two things must
happen. Either it is reflected according to law of reflection back into the same
material, or it is transmitted through to the other material behind the boundary.

We consider a flat (for simplicity) boundary between two mediums, M1 and
M2, and radiation passing through it, see figure 1.1. Their refractive indices are
n1 and n2, respectively. We can assume that n1 > n2 because in the real case,
our goal is to model a glass panel (M1) surrounded by air or other gas (M2).
We would like to determine intensity at boundary point x ∈ ∂M1 in direction Ω
aiming into medium M1.

Reflectivity

First, let us establish the basic notation. As we know the ray of electromagnetic
radiation changes on crossing the boundary its direction. This change is described
by Snell’s law:

n1 sin(θ1) = n2 sin(θ2) (1.24)

where θ1 and θ2 are the angles at which do directions of the ray meet with
the normal line passing through x in M1 and M2 resp. Let us then denote
n a unit normal vector at point x pointing into M2 (n · Ω < 0) and Ωi (for
incident) the direction that gets transformed on the boundary into Ω. Then
cos(θ1) = cos(θ) = |n · Ω| and cos(θ2) = cos(θi) = |n · Ωi|.

Naturally, not all the radiation hitting a boundary gets transmitted to the
other side. Transmittance of a boundary can be for simplicity characterized by
a single parameter: reflectivity ρ. It represents the ratio between the number
of photons which are reflected and the total amount that hit the boundary. It

12



generally depends on the angle of incidence, particularly on the quantity |n · Ω|
since we care about the slant of Ω instead of its orientation.

However, what really does matter, is on which side of the boundary we con-
sider the reflection happening. For example, above the critical angle θc, the
reflectivity on one side will be equal to 1, while the same does not apply to the
other side. It can also be shown directly from the formula for ρ(|n · Ω|) itself. We,
therefore, have to distinguish between reflectivity ρ1 that describes the behavior
of a ray coming to the boundary from medium M1 and analogous reflectivity ρ2
in M2. For each one, we are able to put together an explicit formula, a. k. as
Fresnel equation (Howell et al. [2021], p. 90) (µ = |n · Ω| = cos θ1 in equation
(1.25) or µ = |n · Ωi| = cos θ2 in (1.26)):

ρ1(µ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 , µ ≤
√︃

1 −
(︂

n2
n1

)︂2

1
2

⎡⎢⎢⎢⎣
⃓⃓⃓⃓
⃓⃓⃓⃓n1µ−n2

√︃
1−
(︂

n1
n2

)︂2
(1−µ2)

n1µ+n2

√︃
1−
(︂

n1
n2

)︂2
(1−µ2)

⃓⃓⃓⃓
⃓⃓⃓⃓
2

+

⃓⃓⃓⃓
⃓⃓⃓⃓n1

√︃
1−
(︂

n1
n2

)︂2
(1−µ2)−n2µ

n1

√︃
1−
(︂

n1
n2

)︂2
(1−µ2)+n2µ

⃓⃓⃓⃓
⃓⃓⃓⃓
2⎤⎥⎥⎥⎦ , µ >

√︃
1 −

(︂
n2
n1

)︂2

(1.25)

ρ2(µ) = 1
2

⎡⎢⎢⎢⎣
⃓⃓⃓⃓
⃓⃓⃓⃓n2µ − n1

√︃
1 −

(︂
n2
n1

)︂2
(1 − µ2)

n2µ + n1

√︃
1 −

(︂
n2
n1

)︂2
(1 − µ2)

⃓⃓⃓⃓
⃓⃓⃓⃓
2

+

⃓⃓⃓⃓
⃓⃓⃓⃓n2

√︃
1 −

(︂
n2
n1

)︂2
(1 − µ2) − n1µ

n2

√︃
1 −

(︂
n2
n1

)︂2
(1 − µ2) + n1µ

⃓⃓⃓⃓
⃓⃓⃓⃓
2⎤⎥⎥⎥⎦ (1.26)

The formula for intensity at boundary point x in direction Ω aiming into
medium M1 reads:

I(x, t, Ω, ν) = Iref + Itr (1.27)

It means that the intensity at the boundary is solely merged from two separate
components.

First is the intensity Iref originally heading out into medium M2 but reflected
back. The initial direction can be easily deduced from the law of reflection. If
the final direction of our intensity is Ω, then the initial direction has to be

Ω′ = Ω − 2(n · Ω)n (1.28)

Of course, the reflected intensity is only a portion of I(x, t, Ω′, ν) as part of
it is transmitted into M2. The ratio is given by aforementioned reflectivity
ρ1(|n · Ω′|) ∈ [0, 1]

Iref = ρ1(|n · Ω′|)I(x, t, Ω′ν) (1.29)

The second term, Itr is a bit trickier. It represents the contribution of intensity
that is transmitted through the boundary from M2. Here we deal with radiation
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Figure 1.1: Boundary between mediums M1 and M2

that comes over from the environment with a different refractive index, hence
Ωi ̸= Ω. However, the direction is not the only parameter that changes. If
we take a look at the bundle of rays in solid angle dΩi when passing through
the boundary from M2 into M1, they all change direction as expected, but the
resulting cone narrows down, in other words, the solid angle gets smaller. This
phenomenon is well described in (Howell et al. [2021], p. 836-838) Rigorously we
can describe this shrinkage as follows:

sin(θ2) = n1

n2
sin(θ1)

cos(θ2) dθ2 = n1

n2
cos(θ1) dθ1

cos(θ2) dΩi = cos(θ2) sin(θ2) dθ2 dϕ =
(︃

n1

n2

)︃2
cos(θ1) sin(θ1) dθ1 dϕ =

(︃
n1

n2

)︃2
cos(θ1) dΩ

(1.30)

Once again, we use the conservation of energy which we express from definition
of intensity.

dE1 = Itr(x, t, Ω, ν) dA1 dΩ dt dν (1.31)
dE2 = [1 − ρ2(|n · Ωi|)] I(x, t, Ωi, ν) dA2 dΩi dt dν (1.32)

Note that the area dA1, resp. dA2, is meant in plane perpendicular to Ω, resp.
Ωi. If we consider infinitesimal area dA in the boundary plane at point x, it
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holds dA1 = cos θ1 dA, dA2 = cos θ2 dA. Energy must be conserved, hence:

dE1 = dE2

Itr(x, t, Ω, ν) dA1 dΩ dt dν = [1 − ρ2(|n · Ωi|)] I(x, t, Ωi, ν) dA2 dΩi dt dν

Itr(x, t, Ω, ν) cos(θ1) dA dΩ dt dν =
[1 − ρ2(|n · Ωi|)]I(x, t, Ωi, ν) cos(θ2) dA dΩi dt dν

Itr(x, t, Ω, ν) cos(θ1) dA dΩ dt dν =

[1 − ρ2(|n · Ωi|)]I(x, t, Ωi, ν)
(︃

n1

n2

)︃2
cos(θ1) dA dΩ dt dν (1.33)

From this, it follows that:

Itr(x, t, Ω, ν) = [1 − ρ2(|n · Ωi|)]
(︃

n1

n2

)︃2
I(x, t, Ωi, ν) (1.34)

Putting together formulas (1.27), (1.29), and (1.34) we obtain the final form of
the boundary condition for intensity.

Boundary condition to (RTE)

I(x, t, Ω, ν) = ρ1(|n · Ω′|)I(x, t, Ω′ν) + [1 − ρ2(|n · Ωi|)]
(︃

n1

n2

)︃2
I(x, t, Ωi, ν)

(1.35)

1.3.2 Temperature boundary condition
We try to come up with suitable boundary conditions for our modified heat
equation (1.23). We consider a region of interest containing medium M1 in which
we calculate the evolution of temperature T . Let it be surrounded by medium
M2 with its own temperature T2. We are not interested in fixing the temperature
T at a constant value at the boundary, rather we want to model the heat flux
that flows through the boundary. We do that using a parameterization of heat
transfer across thin layers, standard in engineering:

k(n · ∇)T (x, t) = h (T2(x, t) − T (x, t)) (1.36)

where h is a parameter describing the boundary properties and is determined by
experiment.

The next remark is quite important and has a significant impact on the dis-
cussed problem. It turns out naturally that glass does not allow radiation to
propagate across the whole spectrum. Below a certain threshold, a frequency ν1,
the material starts acting like blackbody material, I ≡ B. We call this part of the
spectrum the opaque band. The behavior of intensity in the opaque band has a
significant impact on bulk equations. Firstly, the equation (1.15) does not make
sense in the opaque band since it has been posed for direction-dependent intensity
field instead of isotropic intensity B. And in equation (1.23), the integrand on
the right-hand side vanishes for all frequencies ν < ν1.

The last note is about intensity boundary condition in the opaque band. It is
clear that the behaviour is not the same as described in the previous section. For
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example, at the boundary of a blackbody object, there is no reflection of incoming
radiation, everything is absorbed. So, instead of complex intensity combining, the
material simply radiates energy in the form of blackbody intensity corresponding
to its temperature T and absorbs incoming blackbody radiation at surrounding
temperature T2, with no reflectivities involved. Since all this radiation is coming
from and going to medium M2, it is in the form of B2 (mind the index). We can
consider the resulting heat flux and include this phenomenon in the temperature
boundary condition.

We need to calculate the normal component of the heat flux which is fairly
straightforward since B2(ν, T ) does not depend on Ω.

n · Fout(x, t) =
∫︂ ν1

0

∫︂
H2

n · ΩB2(ν, T ) dΩ dν =
∫︂

H2
n · Ω dΩ

∫︂ ν1

0
B2(ν, T ) dν =

=
∫︂

H2
cos(θ) sin(θ) dθ dϕ

∫︂ ν1

0
B2(ν, T ) dν = π

∫︂ ν1

0
B2(ν, T ) dν

(1.37)

H2 denotes the hemisphere with rotational symmetry around the vector n.
Fin is calculated in a similar way and after calibrations needed due to refractive
indexes n1 and n2, we obtain full boundary condition for temperature.

k(n · ∇)T (x, t) = h (T2(x, t) − T (x, t)) + απ
∫︂ ν1

0
B2(ν, T2) − B2(ν, T ) dν (1.38)

We have not fully derived this formula, we only hinted possible way, the rest is
adopted from (Frank and Klar [2011]). Here, α is so-called hemispheric emissivity
and it is defined as

α = 2n1

∫︂ 1

0
1 − ρ1(µ) dµ (1.39)

1.4 Governing system

Now let us summarize our development in the derivation. We have derived two
bulk equations, the radiative transfer equation (1.15) and heat equation (1.23).
And together with that, for each unknown function we have also obtained equa-
tion that describes its behaviour on the boundary. Let us rewrite this system
for specific setup. Consider a volume of medium M1 with refractive index n1
surrounded by medium M2, which is a thermal reservoir. The outer radiation
coming from M2 to M1 is Planckian in distribution. To emphasize the difference
between the nature of domain M1 and reservoir M2, at the end of this section we
denote quantities associated with the reservoir by lower index b (blackbody-like).
M2, or rather later Mb, has refractive index n2 = nb and ρ2 = ρb. We assume
that Mb is at constant temperature T2 = Tb. Intensity B2 gets redenoted too, in
fact we start denoting B2 = Bb and T2 = Tb immediately from now on, just to
keep reminding us that they are associated with blackbody-like reservoir.
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Full radiative transfer equations (RTE)

ρmcm
∂T (x, t)

∂t
=∇ · (k∇T (x, t)) −

∫︂ ∞

ν1

∫︂
S2

κ
(︃

B(ν, T ) − I(x, t, Ω, ν)
)︃

dΩ dν

(1.40a)

Ω · ∇I(x, t, Ω, ν) =κ
(︃

B(ν, T ) − I(x, t, Ω, ν)
)︃

+

+ σ
(︃∫︂

S2
s(Ω, Ω′)I(x, t, Ω′, ν) dΩ′ − I(x, t, Ω, ν)

)︃
(1.40b)

for all inner points x ∈ M1.

Boundary condition to (RTE)

k(n · ∇)T (x, t) = h (Tb − T (x, t)) + απ
∫︂ ν1

0
Bb(ν, Tb) − Bb(ν, T ) dν

(1.41a)

I(x, t, Ω, ν) = ρ1(|n · Ω′|)I(x, t, Ω′ν) + [1 − ρ2(|n · Ωi|)]
(︃

n1

nb

)︃2
Bb(ν, Tb)

(1.41b)

for all points at the boundary ∂M1. Since the equation (1.40a) is evolutionary,
it has to be accompanied with initial condition

T0(x) := T (x, 0). (1.42)

Note that in equation (1.40b) we allow only for frequencies ν > ν1.
This system accurately captures the temperature evolution as the energy is

partially transported via radiation. However, even though we have made some
strong simplifying assumptions during the derivation, it is still incredibly difficult
system of equations to solve.

The main cause of difficulties has proved to be the directional dependence of
the intensity function and the integral coupling. It makes the system in essence
contain continuous set of functions for each direction separately, and only then
coupled in the equation (1.40a). Not to mention similar problem with frequency
spectrum. We have to therefore further simplify our model and try to obtain
reasonable equations. We will achieve this by diffusive approximation for the
intensity field.
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2. SPn approximation
In this section, we assemble a simpler system of equations that is actually used in
industrial computing, the methods used for derivation are adopted from article
written by Edward W. Larsen et al. (Larsen et al. [2002]). These approximations
yield so-called SPn equations, simplified Pn equations. In spite of their name, the
connection between SPn and Pn equations is somewhat vague and indirect. In
this paper, we avoid the formulation of Pn equations altogether and derive our
system of SPn equations completely independently of them.

The idea is to consider an optically thick medium with a great absorption
coefficient κ. In this environment, it is not absurd to assume that the radiation
is propagating in a diffusion-like manner, rather than via an elaborate (ray-type)
transport process. We therefore aim at obtaining a diffusion equation that would
reasonably describe the behavior for all directions at once.

Our approach in deriving SPn equations is based on an asymptotic approxima-
tion as described for example in (Larsen et al. [2002]). Another known procedure
is by variational analysis (Brantley and Larsen [2000]), but it turns out to be
more formal and less illustrative.

We start with reformulating the governing equations into a dimensionless form
that allows us to rigorously neglect small terms. We establish two referential
scaling relations

tref = cmρmκrefx2
ref

Tref

Iref

kref = Iref

κrefTref

(2.1)

according to (Larsen et al. [2002]). If we then denote

ε = 1
κrefxref

(2.2)

we get dimensionless parameter ε which can be used to rewrite equations (1.40a),
(1.40b), (1.41a) and (1.41b) like this:

ε2 ∂T (x, t)
∂t

= ε2∇ · (k∇T (x, t)) −
∫︂ ∞

ν1

∫︂
S2

κ
(︃

B(ν, T ) − I(x, t, Ω, ν)
)︃

dΩ dν

(2.3a)

εΩ · ∇I(x, t, Ω, ν) = κ
(︃

B(ν, T ) − I(x, t, Ω, ν)
)︃

(2.3b)

for all inner points x ∈ M1 and

εk(n · ∇)T (x, t) = h (Tb − T (x, t)) + απ
∫︂ ν1

0
Bb(ν, Tb) − Bb(ν, T ) dν (2.4a)

I(x, t, Ω, ν) = ρ1(|n · Ω′|)I(x, t, Ω′ν) + [1 − ρ2(|n · Ωi|)]
(︃

n1

n2

)︃2
Bb(ν, Tb) (2.4b)

for points on the boundary ∂M1.
Note that we have again neglected the scattering effect, we plan on integrating

over a sphere so it would vanish anyway, see (1.22). Let us proceed with the
derivation itself.
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2.1 SP1 model derivation
We start with our derivation by rewriting equation (2.3b) in a special form.

(︃
1 + ε

κ
Ω · ∇

)︃
I(x, t, Ω, ν) = B(ν, T ) (2.5)

Now we invert the operator via a mathematical trick, known as the Neumann
series for operators (Larsen et al. [2002]). Let us note that the whole procedure
of deriving the SPn equations asymptotically is only formal and we do not examine
its mathematical correctness.

I(x, t, Ω, ν) =
(︃

1 + ε

κ
Ω · ∇

)︃−1
B(ν, T )

I(x, t, Ω, ν) =
[︄
1 +

(︃
− ε

κ
Ω · ∇

)︃
+
(︃

− ε

κ
Ω · ∇

)︃2
+
(︃

− ε

κ
Ω · ∇

)︃3
+ . . .

]︄
B(ν, T )

I(x, t, Ω, ν) =
[︄
1 − ε

κ
(Ω · ∇) + ε2

κ2 (Ω · ∇)2 − ε3

κ3 (Ω · ∇)3 + . . .

]︄
B(ν, T ) (2.6)

Now we integrate both sides over a unit sphere.

∫︂
S2

I dΩ =
∫︂

S2

[︄
1 − ε

κ
(Ω · ∇) + ε2

κ2 (Ω · ∇)2 − ε3

κ3 (Ω · ∇)3 + . . .

]︄
B dΩ

φ =
∫︂

S2

[︄
1 − ε

κ
(Ω · ∇) + ε2

κ2 (Ω · ∇)2 − ε3

κ3 (Ω · ∇)3 + . . .

]︄
dΩB (2.7)

On the left-hand side we obtain spherical intensity average, or in other words:
energy flux. At this moment we have to dedicate some time to modify the right-
hand side. First, we are able to move blackbody intensity out of the integral as
it does not depend on direction Ω.

The next step involves employing an integral formula
∫︂

S2
(Ω · ∇)n dΩ = [1 + (−1)n] 2π

n + 1∇n. (2.8)

In this chapter, we only show its application in deriving desired equations, the
proof of the formula is provided in the attachment B.

2.1.1 Governing equations
In this section, we use result (2.8) to further simplify equation (2.7).

φ = 4π

[︄
1 + ε2

3κ2 ∇2 + ε4

5κ4 ∇4 + ε6

7κ6 ∇6 + . . .

]︄
B (2.9)

Here we use notation ∇2 = ∇ · ∇ = ∆. The absence of odd terms allows for
the desired diffusion approximation. However, we want the operators to act on
the unknown function, φ in this case, not on B. We therefore invert everything
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back to the left-hand side using the Neumann series once again.

4πB =
[︄
1 + ε2

3κ2 ∇2 + ε4

5κ4 ∇4 + ε6

7κ6 ∇6 + . . .

]︄−1

φ

4πB =
[︄
1 −

(︄
ε2

3κ2 ∇2 + ε4

5κ4 ∇4 + ε6

7κ6 ∇6 + . . .

)︄
+

+
(︄

ε2

3κ2 ∇2 + ε4

5κ4 ∇4 + ε6

7κ6 ∇6 + . . .

)︄2

−

−
(︄

ε2

3κ2 ∇2 + ε4

5κ4 ∇4 + ε6

7κ6 ∇6 + . . .

)︄3

+ . . .

⎤⎦φ (2.10)

Here we step in with the classic approximation technique, we neglect high
order terms in our expansion. First, we clean up our formula a bit by gathering
all the same order terms together and then we introduce ”big O” notation.

4πB =
[︄
1 − ε2

3κ2 ∇2 − 4ε4

45κ4 ∇4 − 44ε6

945κ6 ∇6
]︄

φ + O(ε8) (2.11)

For illustration, we calculated the first three terms with error of order O(ε8).
Depending on the order of error, i.e. which terms we choose to neglect, we get
different SPn models. This paper is further dedicated mainly to SP1 equations
which correspond to approximation up to O(ε4).

4πB =
[︄
1 − ε2

3κ2 ∇2
]︄

φ + O(ε4) (2.12)

We can see that we have obtained an equation not for the original unknown
function I, but its spherical average φ instead. An important fact is that this
new quantity is no longer dependent on direction, so if we are able to adjust the
coupling of governing equations, we successfully get rid of one of the problematic
variables.

Here we hugely appreciate the genius behind this method. The coupling term
that relates equations (2.3a) and (2.3b) reads

∫︂ ∞

ν1

∫︂
S2

κ
(︃

B(ν, T ) − I(x, t, Ω, ν)
)︃

dΩ dν. (2.13)

The only form in which the intensity is present here is exactly in its directional
average over the unit sphere. We can simply replace it with the new unknown
function φ and completely forget about direction-dependency.∫︂ ∞

ν1
4πκB(ν, T ) − κφ(x, t, ν) dν (2.14)

This term can be finally modified by substituting from (2.12)

−ε2
∫︂ ∞

ν1

1
3κ

∇2φ(x, t, ν) dν + O(ε4) (2.15)
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We can now install new coupling term (2.15) into (2.3a). We can see that in
reality, this equation is only O(ε2) after cancellation.

ε2 ∂T (x, t)
∂t

= ε2∇ · (k∇T (x, t)) + ε2
∫︂ ∞

ν1

1
3κ

∇2φ(x, t, ν) dν + O(ε4)

∂T (x, t)
∂t

= ∇ · (k∇T (x, t)) +
∫︂ ∞

ν1

1
3κ

∇2φ(x, t, ν) dν + O(ε2) (2.16)

If we combine this result with equation (2.12), we get complete bulk SP1
equations

Bulk SP1 equations

∂T (x, t)
∂t

= ∇ · (k∇T (x, t)) +
∫︂ ∞

ν1
∇ · 1

3κ
∇φ(x, t, ν) dν (2.17)

−ε2∇ · 1
3κ

∇φ(x, t, ν) + κφ(x, t, ν) = κ(4πB(ν, T )) (2.18)

Note that we have rewritten the Laplace operator in the original form of a
divergence of gradient, putting the coefficient κ inside. This is the correct form
for situations when κ is spatially dependent coefficient. In chapter 4, we conduct
several numerical experiments also considering setting with non-constant κ, then
this modification becomes necessary.

2.1.2 Rosseland approximation
Before we proceed with complementary boundary equations, we stop to investi-
gate an interesting idea. Because the equation (2.18) is approximation of order
O(ε2), nothing goes wrong if we substitute from relation

4πB = φ + O(ε2) (2.19)
with the same order of error. This equation is easily obtained from equation

(2.11) by neglecting every but one term in expansion. By this maneuver, we
eliminate the complex intensity field altogether and we are left with a simple
blackbody approximation. It means that the problem is significantly simplified
and reduced to only one unknown function T (x, t) and one diffusion equation.

∂T (x, t)
∂t

= ∇ · (k∇T (x, t)) +
∫︂ ∞

ν1
∇ · 4π

3κ
∇B(ν, T ) dν (2.20)

Using the chain rule results in a simple heat equation only with one extra
term representing a contribution of thermal radiation. The full system, known
as the Rosseland approximation (Frank and Klar [2011], p. 96), when written
including the (thermal) boundary conditions reads as follows

Rosseland approximation

∂T (x, t)
∂t

= ∇ ·
(︄

k + 4π

3κ

∫︂ ∞

ν1

∂B(ν, T )
∂T

dν

)︄
∇T (x, t) (2.21a)

εk(n · ∇)T (x, t) = h (Tb − T (x, t)) + απ
∫︂ ν1

0
Bb(ν, Tb) − Bb(ν, T ) dν (2.21b)
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2.1.3 Boundary conditions
We may have switched the unknown function from I to φ in bulk equations, but
our boundary conditions still remain in the old form with direction as one of the
variables. In this section, we derive desired boundary condition for quantity φ.
This is one of the main contributions of this paper because the procedure is not
trivial at all. We proceed with asymptotic derivation which is not commonly
discussed in literature. As we stated at the beginning of chapter 2, one can
approach the whole (RTE) system with tools of the calculus of variations and
end up with SPn equations. The same holds for the boundary conditions and
that is usually the resource for most papers regarding this topic.

Here, we present, in a detailed manner, a procedure how to obtain the same
equations via asymptotic expansion. It allows us to get a clearer insight into in-
dividual terms in the boundary conditions and additionally, our derivation makes
it possible for us to constitute even transition conditions on the interface between
two mediums with different refractive indices for multiple-domain problems.

Let us start with the derivation. Our goal is to transform an equation (1.41b):

I(x, t, Ω, ν) = ρ1(|n · Ω′|)I(x, t, Ω′ν) + [1 − ρ2(|n · Ωi|)]
(︃

n1

n2

)︃2
Bb(ν, Tb) (2.22)

into one concerning φ.
The idea is to calculate the normal component of the radiative flux generated

by intensity terms. We are driven by the vision of an integral average of intensity.
But since we are situated on the boundary, it turns out that we do not have to
integrate over the whole sphere, but hemisphere orientated into medium M1
(n · Ω < 0) does suffice. Let us denote this hemisphere H2

−. Although we say we
integrate over this hemisphere, our spherical variables ϕ ∈ (0, 2π) and θ ∈ (0, π

2 )
in fact parametrize the other half. In other words, we consider Ω to equal

Ω =

⎛⎜⎝cos(ϕ) sin(θ)
sin(ϕ) sin(θ)

− cos(θ)

⎞⎟⎠ , specially n =

⎛⎜⎝0
0
1

⎞⎟⎠ . (2.23)

We are interested in knowing the normal part of the heat flux, we multiply
the equation (2.22) by (n · Ω) and then take an integral over H2

−. Quick note, we
omit excessive function arguments for the sake of simplicity of notation.∫︂

H2
−

(n · Ω)I(Ω) dΩ =
∫︂

H2
−

(n · Ω)ρ1(|n · Ω′|)I(Ω′) dΩ+

+
∫︂

H2
−

(n · Ω) [1 − ρ2(|n · Ωi|)]
(︃

n1

n2

)︃2
Bb dΩ (2.24)

Let us now dissect this equation (2.24) term by term and rigorously calculate
the result. Right at the first integral on the left-hand side we bump into a problem,
we don’t know the intensity I as a function of Ω, hence we can’t calculate that
integral. Here we apply the first trick, we employ the asymptotic expansion (2.6)
again as promised and deduce this relation

I(Ω) =
[︃
1 − ε

κ
(Ω · ∇)

]︃
B. (2.25)
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Note that there is an error of order O(ε2) which is exactly the order we aim
at with SP1 equations, see (2.16).

We can substitute this in (2.24) and make it at the very least possible for us to
try to calculate those integrals. The following pages contain in-depth derivation
of the SP1 boundary conditions, they are summarized in (2.54) on page 28.

Left-hand side

First, we calculate the integral on the left-hand side.∫︂
H2

−

(n · Ω)I(Ω) dΩ =
∫︂

H2
−

(n · Ω)
[︃
1 − ε

κ
(Ω · ∇)

]︃
B dΩ (2.26)

The blackbody radiation function is together with the nabla operator no longer
dependent on Ω, so after splitting into two integrals it can be factored outside of
the integral.

. . . =
∫︂

H2
−

(n · Ω) dΩB − ε

κ

∫︂
H2

−

(n · Ω)Ω dΩ · ∇B (2.27)

The first integral is already trivial, in the second one the integrand is a vector,
therefore we integrate every component separately.

=
∫︂ 2π

0

∫︂ π
2

0
− cos(θ) sin(θ) dθ dϕB

− ε

κ

∫︂ 2π

0

∫︂ π
2

0
− cos(θ)

⎛⎜⎝cos(ϕ) sin(θ)
sin(ϕ) sin(θ)

− cos(θ)

⎞⎟⎠ sin(θ) dθ dϕ · ∇B =

= −2π
∫︂ 1

0
µ dµB − 2π

ε

κ

∫︂ 1

0
µ2 dµ

⎛⎜⎝0
0
1

⎞⎟⎠ · ∇B = −πB − π
2ε

3κ
(n · ∇)B (2.28)

In the process, we adopted a simple substitution µ = cos(θ) that simplified
our notation. Note that the first two components in the second integral have
vanished because we have integrated cos(ϕ) and sin(ϕ) resp. from 0 to 2π.

Right-hand side

At the beginning of this subsection, we stop to define auxiliary integrals that
appear in our results.

r
(1)
1 =

∫︂ 1

0
µρ1(µ) dµ r

(1)
2 =

∫︂ 1

0
µρ2(µ) dµ (2.29)

r
(2)
1 =

∫︂ 1

0
µ2ρ1(µ) dµ r

(2)
2 =

∫︂ 1

0
µ2ρ2(µ) dµ (2.30)

r
(3)
1 =

∫︂ 1

0
µ3ρ1(µ) dµ r

(3)
2 =

∫︂ 1

0
µ3ρ2(µ) dµ (2.31)

Remind ourselves that ρ1, resp. ρ2, is reflectivity of the boundary for radiation
incoming from M1, resp. M2. In our case, we of course work with M2 being a
blackbody-like reservoir, ergo Mb, so its moments will be later (in final formula
(2.54)) renamed to r

(1)
b and so on.
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We continue with the first integral on the right-hand side of equation (2.24).∫︂
H2

−

(n · Ω)ρ1(|n · Ω′|)I(Ω′) dΩ (2.32)

Recall relation (1.28) and see that

Ω′ =

⎛⎜⎝cos(ϕ) sin(θ)
sin(ϕ) sin(θ)

cos(θ)

⎞⎟⎠ . (2.33)

After substituting from (2.25) the integral reads∫︂
H2

−

(n · Ω)ρ1(|n · Ω′|)
[︃
1 − ε

κ
(Ω′ · ∇)

]︃
B dΩ =

=
∫︂

H2
−

(n · Ω)ρ1(|n · Ω′|) dΩB − ε

κ

∫︂
H2

−

(n · Ω)ρ1(|n · Ω′|)Ω′ dΩ · ∇B (2.34)

Let us resolve the first integral. It is useful to realize that

n · Ω′ = n · (Ω − 2(n · Ω)n) = n · Ω − 2(n · Ω)(n · n) = −n · Ω, (2.35)

meaning in absolute value, they are the same. We can therefore write∫︂
H2

−

(n · Ω)ρ1(|n · Ω′|) dΩB =
∫︂

H2
−

(n · Ω)ρ1(|n · Ω|) dΩB =

=
∫︂ 2π

0

∫︂ π
2

0
− cos(θ)ρ1(cos(θ)) sin(θ) dθ dϕB = −2π

∫︂ 1

0
µρ1(µ) dµB =

= −2πr
(1)
1 B, (2.36)

where we got to use the notation introduced by relation (2.29).
We continue with the second integral.

− ε

κ

∫︂
H2

−

(n · Ω)ρ1(|n · Ω′|)Ω′ dΩ · ∇B =

= − ε

κ

∫︂ 2π

0

∫︂ π
2

0
− cos(θ)ρ1(cos(θ))

⎛⎜⎝cos(ϕ) sin(θ)
sin(ϕ) sin(θ)

cos(θ)

⎞⎟⎠ sin(θ) dθ dϕ · ∇B =

= 2π
ε

κ

∫︂ π
2

0
cos2(θ)ρ1(cos(θ)) sin(θ) dθ(n · ∇)B =

= 2π
ε

κ

∫︂ 1

0
µ2ρ1(µ) dµ(n · ∇)B = 2π

ε

κ
r

(2)
1 (n · ∇)B (2.37)

For the vector integration, we have employed a procedure similar to (2.28). By
putting (2.36) and (2.37) together, we obtain∫︂

H2
−

(n · Ω)ρ1(|n · Ω′|)I(Ω′) dΩ = −2πr
(1)
1 B + 2π

ε

κ
r

(2)
1 (n · ∇)B (2.38)

Now we turn our attention to the last integral from (2.24),∫︂
H2

−

(n · Ω) [1 − ρ2(|n · Ωi|)]
(︃

n1

n2

)︃2
Bb dΩ (2.39)
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We notice the presence of direction Ωi in argument of reflectivity ρ2. Unlike
Ω′ it has no simple relation to Ω, thus integrating with respect to Ω is not ideal
(there is a way to do it discussed at the top of p. 27). We rewrite the integral in
form (︃

n1

n2

)︃2 ∫︂ 2π

0

∫︂ π
2

0
− cos(θ) [1 − ρ2(cos(θi))] sin(θ) dθ dϕ Bb (2.40)

The main problem here is that due to the difference in refractive indices be-
tween M1 and Mb the hemisphere H2

− parametrized by direction Ω does not
correspond well to hemisphere parametrized by Ωi. We know that if we take
full hemisphere in the optically thinner medium, then it transforms only into a
spherical sector determined by a critical angle from Snell’s law. This reminds us
of our discussion about the shrinking cone of rays. In fact, we can use substi-
tution (1.30) and after assigning θ1 → θ, θ2 → θi transform our coordinates into
hemisphere parametrized by Ωi.

However, for the sake of rigor, we first employ the following identity

ρ2(cos(θi)) = ρ1(cos(θ)), (2.41)

which follows directly from Snell’s law (1.24) and Fresnel’s equations (1.25) and
(1.26) after incorporating relation

cos(θ) =
√︄

1 −
(︃

n2

n1

)︃2
(1 − cos(θi))2. (2.42)

Then the integral reads(︃
n1

n2

)︃2 ∫︂ 2π

0

∫︂ π
2

0
− cos(θ) [1 − ρ1(cos(θ))] sin(θ) dθ dϕ Bb. (2.43)

If we take a closer look at formula (1.25), we can deduce that the bracket here
in integrand is zero for θ ∈ (θc,

π
2 ), where θc is so called critical angle defined as

sin(θc) = n2
n1

⇐⇒ cos(θc) =
√︃

1 −
(︂

n2
n1

)︂2
. That means nothing changes if we set

θc as upper integration limit instead of π
2 .(︃

n1

n2

)︃2 ∫︂ 2π

0

∫︂ θc

0
− cos(θ) [1 − ρ1(cos(θ))] sin(θ) dθ dϕ Bb (2.44)

Now we can use substitution (1.30) and with proper rescaling of integration
interval we obtain∫︂ 2π

0

∫︂ π
2

0
− cos(θi) [1 − ρ1(cos(θ))] sin(θi) dθi dϕ Bb =

=
∫︂ 2π

0

∫︂ π
2

0
− cos(θi) [1 − ρ2(cos(θi))] sin(θi) dθi dϕ Bb (2.45)

This integral can be split into two and calculated in a similar fashion as the
previous ones.

−
∫︂ 2π

0

∫︂ π
2

0
cos(θi) sin(θi) dθi dϕ Bb = −2π

∫︂ 1

0
µ dµ Bb = −πBb (2.46)∫︂ 2π

0

∫︂ π
2

0
cos(θi)ρ2(cos(θi)) sin(θi) dθi dϕ Bb = 2π

∫︂ 1

0
µρ2(µ) dµ Bb = 2πr

(1)
2 Bb

(2.47)

26



A little side comment, as we have hinted in this case the coordinate trans-
formation can be avoided. If we have just calculated the integral from (2.43)
directly, we would obtain the result

−
(︃

n1

n2

)︃2 (︂
1 − 2r

(1)
1

)︂
πBb, (2.48)

where the factor
(︂

n1
n2

)︂2
has not disappeared, because there is no substitution

involved. However, it can be shown that(︃
n1

n2

)︃2 (︂
1 − 2r

(1)
1

)︂
=
(︂
1 − 2r

(1)
2

)︂
, (2.49)

giving us the same result and confidence about the correctness. The proof is
quite straightforward, once again it utilizes substitution (1.30) and the procedure
described on the previous page:(︃

n1

n2

)︃2 (︂
1 − 2r

(1)
1

)︂
= 2

(︃
n1

n2

)︃2 (︃1
2 − r

(1)
1

)︃
= 2

(︃
n1

n2

)︃2 ∫︂ 1

0
µ − µρ1(µ) dµ =

= 2
(︃

n1

n2

)︃2 ∫︂ π
2

0
cos(θ) (1 − ρ1(cos(θ)) sin(θ) dθ =

= 2
(︃

n1

n2

)︃2 ∫︂ θc

0
cos(θ) (1 − ρ1(cos(θ)) sin(θ) dθ =

= 2
∫︂ π

2

0
cos(θi) (1 − ρ1(cos(θ)) sin(θi) dθi =

= 2
∫︂ π

2

0
cos(θi) (1 − ρ2(cos(θi)) sin(θi) dθi =

= 2
∫︂ 1

0
µ (1 − ρ2(µ)) dµ = 2

(︃1
2 − r

(1)
2

)︃
=
(︂
1 − 2r

(1)
2

)︂
(2.50)

Why we have chosen to prefer the coordinate transformation technique in
the derivation of boundary conditions will be clear when we get to the general
setting where the incoming radiation is direction-dependent. Then it is necessary
to make this step to proceed.

We have successfully integrated the boundary equation (2.22) and obtained
several minor results that need to be reassembled. Particularly, we have calculated
formulas (2.28) on the left-hand side and (2.38), (2.46) and (2.47) on the right-
hand side.

−πB − π
2ε

3κ
(n · ∇)B = −2πr

(1)
1 B + 2π

ε

κ
r

(2)
1 (n · ∇)B − πBb + 2πr

(1)
2 Bb (2.51)

We continue with some basic operations.(︂
1 − 2r

(1)
1

)︂
B + 2ε

3κ

(︂
1 + 3r

(2)
1

)︂
(n · ∇)B =

(︂
1 − 2r

(1)
2

)︂
Bb (2.52)

Note that equation (2.52) does not involve quantity φ whatsoever for which
we want the boundary condition to apply. We resort once again to the asymptotic
expansion and use modified relation (2.19),

B = φ

4π
+ O(ε2). (2.53)
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The error order of O(ε2) we hold for the entire SP1 formulation and is therefore
sufficient.

Thus we gain the final form of SP1 intensity boundary condition.

SP1 boundary condition
(︂
1 − 2r

(1)
1

)︂
φ(x, t, ν) + 2ε

3κ

(︂
1 + 3r

(2)
1

)︂
(n · ∇)φ(x, t, ν) =

(︂
1 − 2r

(1)
b

)︂
4πBb(ν, Tb)

(2.54)

Formulation (2.54) is similar to the ones presented in the literature, for ex-
ample (Larsen et al. [2002], eq. (3.2)), only nuance is in term

(︂
1 − 2r

(1)
b

)︂
on

the right-hand side. It correctly accounts for the difference in refractive indices,
reflectivities and their moments. In mentioned article, there is just

(︂
1 − 2r

(1)
1

)︂
instead of it.

Temperature boundary condition (2.21b) does not require any modification.

2.1.4 Transition conditions
Up to now, we have only considered a simple problem of one domain with evolving
temperature while the optically different surroundings is being fixed at constant
temperature. Plus the incoming radiation is Planckian in distribution, ergo not
direction-dependent. Such problem is fairly accurately described by many authors
(Larsen et al. [2002]; Larsen et al. [2003]; Frank and Klar [2011]) in literature.
Still we have managed to make several improvements concerning the boundary
conditions, see (2.54).

However, now we turn to a little different setup. We still consider two mediums
M1 and M2 with different refractive indexes in contact, but we allow the temper-
ature to evolve freely in both of them. The heat transport is again modeled by
conduction together with radiation, the only difference is that blackbody-like ra-
diation from M2 is no longer good enough approximation and in both mediums,
we consider direction-dependent intensity function, I1 and I2 resp.

In the bulk regions M1 and M2 not much changes. Equations (1.40a) and
(1.40b) still hold and can be approximated with equations (2.17) and (2.18). Of
course, now that we think of medium M2 as full-fledged domain of interest, we
introduce a new set of parameters for M1 and M2, respectively; naturally κ1 and
κ2 absorption coefficients, k1 and k2 thermal conductivity coefficients. In M1 we
solve bulk equations with one set of parameters and in M2 with the other. In
essence, we could say that the parameters κ and k became spatially dependent,
although this dependence is very simple - piecewise constant functions.

The individual domains of M1 and M2 are bounded and on parts of their
boundary which they do not share we can prescribe boundary conditions discussed
in the previous section. In other words, we regard them as being surrounded by
a reservoir Mb at a constant temperature. We can also picture the first setting
with just one domain of interest divided into two optically different parts and
a proper description of temperature and intensity behavior near the interface
between them is required.

We shall start with the derivation of the transition conditions. We are looking
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for equations to correctly couple functions I1 and I2 across the interface between
M1 and M2. Let equation (1.35) be our starting point after distinguishing in-
tensity for both sides of the interface.

I1(x, t, Ω, ν) = ρ1(|n · Ω′|)I1(x, t, Ω′, ν) + [1 − ρ2(|n · Ωi|)]
(︃

n1

n2

)︃2
I2(x, t, Ωi, ν)

(2.55)

Not much has changed here compared with (2.22) because we have already
accounted for the refraction in the first setting. Only, I2 does have direction
as an argument and Bb does not. This makes our calculation a tiny bit more
complicated but not too much.

In our SP1 bulk equations we work with average φ, hence we define

φ1(x, t, ν) =
∫︂

S2
I1(x, t, Ω, ν) dΩ (2.56)

φ2(x, t, ν) =
∫︂

S2
I2(x, t, Ω, ν) dΩ (2.57)

and we would like to gain a relationship between these two functions at the
interface. They are two functions each solving second-order differential equations
on separate domains. To couple them, two equations are required.

Since we have treated simpler boundary conditions with care, the ideas and
techniques can now be applied also to the current setting. Therefore we proceed
by calculating the radiative flux running through the boundary. We multiply the
equation by (n·Ω) and integrate over the unit hemisphere H2

−. All the notation is
the same as introduced in section 2.1.3 (also we omit evident function arguments).

∫︂
H2

−

(n · Ω)I1(Ω) dΩ =
∫︂

H2
−

(n · Ω)ρ1(|n · Ω′|)I1(Ω′) dΩ +

+
(︃

n1

n2

)︃2 ∫︂
H2

−

(n · Ω) [1 − ρ2(|n · Ωi|)] I2(Ωi) dΩ (2.58)

We can see that integrals involving I1 are identical to ones in equation (2.24)
and we can straight write results analogous to (2.28) and (2.38).

∫︂
H2

−

(n · Ω)I1(Ω) dΩ = −πB1 − π
2ε

3κ1
(n · ∇)B1 (2.59)∫︂

H2
−

(n · Ω)ρ1(|n · Ω′|)I1(Ω′) dΩ = −2πr
(1)
1 B1 + 2π

ε

κ1
r

(2)
1 (n · ∇)B1 (2.60)

Note that we distinguish also between B1 in M1 and B2 in M2 as they do
have refractive index n1, resp. n2, in their definition, recall (1.7).

The only thing left to do is to calculate the integral that has altered a bit.
Now there is a direction-dependent function I2(Ωi) instead of Bb.

(︃
n1

n2

)︃2 ∫︂
H2

−

(n · Ω) [1 − ρ2(|n · Ωi|)] I2(Ωi) dΩ (2.61)
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According to the technique described within equations (2.40) up to (2.45) we
transform the integration variable to Ωi and thus simplify the expressions.(︃

n1

n2

)︃2 ∫︂ 2π

0

∫︂ π
2

0
(n · Ω) [1 − ρ2(|n · Ωi|)] I2(Ωi) sin(θ) dθ dϕ(︃

n1

n2

)︃2 ∫︂ 2π

0

∫︂ π
2

0
(n · Ω) [1 − ρ1(|n · Ω|)] I2(Ωi) sin(θ) dθ dϕ(︃

n1

n2

)︃2 ∫︂ 2π

0

∫︂ θc

0
(n · Ω) [1 − ρ1(|n · Ω|)] I2(Ωi) sin(θ) dθ dϕ∫︂ 2π

0

∫︂ π
2

0
(n · Ωi) [1 − ρ2(|n · Ωi|)] I2(Ωi) sin(θi) dθi dϕ∫︂

H2
−

(n · Ωi) [1 − ρ2(|n · Ωi|)] I2(Ωi) dΩi (2.62)

We proceed with substituting from asymptotic expansion

I2(Ωi) =
[︃
1 − ε

κ2
(Ωi · ∇)

]︃
B2 (2.63)

and obtain integral∫︂
H2

−

(n · Ωi) [1 − ρ2(|n · Ωi|)]
[︃
1 − ε

κ2
(Ωi · ∇)

]︃
B2 dΩi (2.64)

which can be split into four simple integrals and resolved individually.∫︂
H2

−

(n · Ωi) dΩiB2 −
∫︂

H2
−

(n · Ωi)ρ2(|n · Ωi|) dΩiB2 −

− ε

κ2

∫︂
H2

−

(n · Ωi) Ωi dΩi · ∇B2 + ε

κ2

∫︂
H2

−

(n · Ωi)ρ2(|n · Ωi|) Ωi dΩi · ∇B2 (2.65)

All techniques used have already been explained in the previous section 2.1.3.
1. ∫︂

H2
−

(n · Ωi) dΩiB2 =
∫︂ 2π

0

∫︂ π
2

0
− cos(θi) sin(θi) dθi dϕB2 =

= −2π
∫︂ 1

0
µ dµB2 = −πB2 (2.66)

2.
−
∫︂

H2
−

(n · Ωi)ρ2(|n · Ωi|) dΩiB2 =

= −
∫︂ 2π

0

∫︂ π
2

0
− cos(θi)ρ2(cos(θi)) sin(θi) dθi dϕB2 =

= 2π
∫︂ 1

0
µρ2(µ) dµB2 = 2πr

(1)
2 B2 (2.67)

3.
− ε

κ2

∫︂
H2

−

(n · Ωi) Ωi dΩi · ∇B2 =

= − ε

κ2

∫︂ 2π

0

∫︂ π
2

0
− cos(θi)

⎛⎜⎝cos(ϕ) sin(θi)
sin(ϕ) sin(θi)

− cos(θi)

⎞⎟⎠ sin(θi) dθi dϕ · ∇B2 =

= −2π
ε

κ2

∫︂
µ2 dµ (n · ∇)B2 = −π

2ε

3κ2
(n · ∇)B2 (2.68)
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4.
ε

κ2

∫︂
H2

−

(n · Ωi)ρ2(|n · Ωi|) Ωi dΩi · ∇B2 =

= ε

κ2

∫︂ 2π

0

∫︂ π
2

0
− cos(θi)ρ2(|n · Ωi|)

⎛⎜⎝cos(ϕ) sin(θi)
sin(ϕ) sin(θi)

− cos(θi)

⎞⎟⎠ sin(θi) dθi dϕ · ∇B2 =

= 2π
ε

κ2

∫︂ 1

0
µ2ρ2(µ) dµ(n · ∇)B2 = 2π

ε

κ2
r

(2)
2 (n · ∇)B2 (2.69)

Now let us assemble the whole equation together. On the left-hand side, we
use our prepared result (2.59) and on the right we add to earlier calculated (2.60)
new findings, from (2.66) up to (2.69).

− πB1 − π
2ε

3κ1
(n · ∇)B1 = −2πr

(1)
1 B1 + 2π

ε

κ1
r

(2)
1 (n · ∇)B1−

− πB2 + 2πr
(1)
2 B2 − π

2ε

3κ2
(n · ∇)B2 + 2π

ε

κ2
r

(2)
2 (n · ∇)B2, (2.70)

which can be rewritten in the form
(︂
1 − 2r

(1)
1

)︂
B1 + 2ε

3κ1

(︂
1 + 3r

(2)
1

)︂
(n · ∇)B1 =

(︂
1 − 2r

(1)
2

)︂
B2

+ 2ε

3κ2

(︂
1 − 3r

(2)
2

)︂
(n · ∇)B2 (2.71)

Now we make a final touch and substitute φ for B according to relation (2.53).

(︂
1 − 2r

(1)
1

)︂
φ1 + 2ε

3κ1

(︂
1 + 3r

(2)
1

)︂
(n · ∇)φ1 =

(︂
1 − 2r

(1)
2

)︂
φ2

+ 2ε

3κ2

(︂
1 − 3r

(2)
2

)︂
(n · ∇)φ2 (2.72)

Here we stop and think about our current result. We have stated that there
is a need for two controlling equations to properly couple our elliptic equations
(2.18), so far we have got one of them, (2.72). Quite naturally we ask ourselves
how we can obtain the missing counterpart.

Note that the equation (2.72) is not entirely symmetric, the sign in front of
one of the terms with normal derivative is flipped compared to the other side.
This is a glimpse of hope that if we look at the boundary from the other side’s
perspective, we get another equation that is not degenerated and brings us useful
information.

Let us do it rigorously, the flipped perspective yield equation

I2(x, t, Ω, ν) = ρ2(
⃓⃓⃓
n · Ω′ ⃓⃓⃓)I2(x, t, Ω′

, ν) +
[︂
1 − ρ1(

⃓⃓⃓
n · Ωi

⃓⃓⃓
)
]︂ (︃n2

n1

)︃2
I1(x, t, Ωi, ν),

(2.73)

which is altered (2.55). Pay attention to our notation at the moment, Ω represents
the direction of the ray going from boundary to medium M2, Ω′ is the direction
that gets reflected into Ω, it sort of stands for established direction Ωi. On the
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Figure 2.1: Boundary from other side’s perspective

other hand, Ωi is the direction coming from M1 that gets partially transmitted
through. And n is flipped normal vector, n = −n. Every is depicted in figure
2.1.

The equation is multiplied by (n · Ω) and integrated over a hemisphere H2
−

where Ω · n < 0.

∫︂
H2

−

(n · Ω)I2(Ω) dΩ =
∫︂

H2
−

(n · Ω)ρ2(
⃓⃓⃓
n · Ω′ ⃓⃓⃓)I2(Ω

′) dΩ +

+
∫︂

H2
−

(n · Ω)
[︂
1 − ρ1(

⃓⃓⃓
n · Ωi

⃓⃓⃓
)
]︂ (︃n2

n1

)︃2
I1(Ωi) dΩ (2.74)

With the left-hand side integral and the first integral on the right-hand side,
there is nothing extraordinary, we have already calculated such integrals before.
With complete analogy, we refer to integrals (2.59) and (2.60).

∫︂
H2

−

(n · Ω)I2(Ω) dΩ = −πB2 − π
2ε

3κ2
(n · ∇)B2 (2.75)∫︂

H2
−

(n · Ω)ρ2(
⃓⃓⃓
n · Ω′ ⃓⃓⃓)I2(Ω

′) dΩ = −2πr
(1)
2 B2 + 2π

ε

κ2
r

(2)
2 (n · ∇)B2 (2.76)

The last integral does call for coordinate transform so we integrate with re-
spect to Ωi. For that we recall substitution (1.30), the angles playing roles are

32



now θ2 = θ where cos
(︂
θ
)︂

= −n · Ω and θ1 = θi where cos
(︂
θi

)︂
= −n · Ωi.∫︂

H2
−

(n · Ω)
[︂
1 − ρ1(

⃓⃓⃓
n · Ωi

⃓⃓⃓
)
]︂ (︃n2

n1

)︃2
I1(Ωi) dΩ(︃

n2

n1

)︃2 ∫︂ 2π

0

∫︂ π
2

0
− cos

(︂
θ
)︂ [︂

1 − ρ1(
⃓⃓⃓
n · Ωi

⃓⃓⃓
)
]︂

I1(Ωi) sin
(︂
θ
)︂

dθ dϕ∫︂ 2π

0

∫︂ θic

0
− cos

(︂
θi

)︂ [︂
1 − ρ1(

⃓⃓⃓
n · Ωi

⃓⃓⃓
)
]︂

I1(Ωi) sin
(︂
θi

)︂
dθi dϕ∫︂ 2π

0

∫︂ π
2

0
− cos

(︂
θi

)︂ [︂
1 − ρ1(

⃓⃓⃓
n · Ωi

⃓⃓⃓
)
]︂

I1(Ωi) sin
(︂
θi

)︂
dθi dϕ∫︂

H2
−

(n · Ωi)
[︂
1 − ρ1(

⃓⃓⃓
n · Ωi

⃓⃓⃓
)
]︂

I1(Ωi) dΩi (2.77)

This final integral is also familiar. It is analogous to one from (2.61) and
calculations can be carried out as follows in (2.62) up to (2.69).

. . . = −πB1 + 2πr
(1)
1 B1 − π

2ε

3κ1
(n · ∇)B1 + 2π

ε

κ1
r

(2)
1 (n · ∇)B1 (2.78)

We can see that by switching the perspective to the other side, the calculations
themselves do not in principle change a bit. In fact, we could just take equation
(2.70) and interchange indices 1 and 2 regarding mediums M1 and M2 and we
would obtain same result.

− πB2 − π
2ε

3κ2
(n · ∇)B2 = −2πr

(1)
2 B2 + 2π

ε

κ2
r

(2)
2 (n · ∇)B2−

− πB1 + 2πr
(1)
1 B1 − π

2ε

3κ1
(n · ∇)B1 + 2π

ε

κ1
r

(2)
1 (n · ∇)B1 (2.79)

However, we are dealing with somewhat new theory and formulas not written
in available literature, thus rigor is our priority.

After reassembling the terms, we get the equation into a more condensed form.(︂
1 − 2r

(1)
2

)︂
B2 + 2ε

3κ2

(︂
1 + 3r

(2)
2

)︂
(n · ∇)B2 =

(︂
1 − 2r

(1)
1

)︂
B1

+ 2ε

3κ1

(︂
1 − 3r

(2)
1

)︂
(n · ∇)B1 (2.80)

We would like to compare this equation with (2.72) (here we write again
for better clarity as (2.82)), the one transition condition already obtained. We
therefore switch sides of the equation, substituting φ1 and φ2 according to (2.53).
Lastly we see the derivative n · ∇ still differs from n · ∇, to solve this we just use
relation n = −n and obtain the second transition condition(︂

1 − 2r
(1)
1

)︂
φ1 − 2ε

3κ1

(︂
1 − 3r

(2)
1

)︂
(n · ∇)φ1 =

(︂
1 − 2r

(1)
2

)︂
φ2

− 2ε

3κ2

(︂
1 + 3r

(2)
2

)︂
(n · ∇)φ2. (2.81)

Here we state the first condition (2.72) as a reminder:(︂
1 − 2r

(1)
1

)︂
φ1 + 2ε

3κ1

(︂
1 + 3r

(2)
1

)︂
(n · ∇)φ1 =

(︂
1 − 2r

(1)
2

)︂
φ2

+ 2ε

3κ2

(︂
1 − 3r

(2)
2

)︂
(n · ∇)φ2 (2.82)
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We have achieved our desired goal that is obtained two independent transition
conditions for functions φ1 and φ2. We can subtract or add those equations to
get form that is a little more clear and does not seem fully arbitrary.

SP1 transition conditions

1
κ1

(n · ∇)φ1 = 1
κ2

(n · ∇)φ2 (2.83)(︂
1 − 2r

(1)
1

)︂
φ1 + 2ε

κ1
r

(2)
1 (n · ∇)φ1 =

(︂
1 − 2r

(1)
2

)︂
φ2 − 2ε

κ2
r

(2)
2 (n · ∇)φ2 (2.84)

where φ1 = φ1(x, t, ν) (same for φ2) and these equations hold for all x on the
boundary between mediums M1 and M2.

After all manipulations, a subtle asymmetry still persists in formula (2.84). It
looks like there has to be an error deep in our thinking when we got an asymmetric
result. Common sense tells us that if M1 and M2 are identical regarding κ and n,
then functions φ1 and φ2 should be identical, in other words, the whole situation
should be symmetric along the boundary. Here we can be relieved because in our
model, once there is no difference in refractive indices n1 and n2, the reflectivities
ρ1 and ρ2 are both zero functions and the system behaves as if there is no boundary
whatsoever. At that moment the transition conditions (2.83) and (2.84) become
simpler and read

(n · ∇)φ1 = (n · ∇)φ2 (2.85)
φ1 = φ2 (2.86)

This means that derived equations are also consistent with the basic assump-
tions we lay on the model. The asymmetry in transition conditions stems solely
from the specified direction of n.

2.1.5 SP1 summary
Let us now summarize the idea and formulas of SP1 approximations. The full
(RTE) system properly describing radiative heat transport is very difficult to solve
directly, therefore we need simpler theoretical approximations. One of the many
possibilities are just the SPn equations. Using them, we consider the complex
transport of radiation being replaced by a diffusive one and thus allowing the
direction-dependency to disappear.

We have asymptotically derived the bulk SP1 equations by following steps
discovered by other authors in the literature (Larsen et al. [2002]).

Then we supplemented them with appropriate boundary conditions which we
derived asymptotically on our own. These are applied to boundaries between two
mediums where one represents the problem domain itself and the other is just a
thermal black-body reservoir.

On top of that, we have also generalized the boundary conditions for interfaces
between two mediums within the domain of interest with each having its own
refracting index and coefficient of absorption. These are the transition conditions.

Note that the temperature function is not directly affected by multiple refrac-
tive mediums. The only impact is through a complex intensity field that plays its
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role in the evolutionary equation. Therefore we do not need any special temper-
ature transition conditions and we use the traditional assumptions of continuity
of temperature and of the normal heat flux.

SP1 approximation
Bulk equations

∂T (x, t)
∂t

= ∇ · (k∇T (x, t)) +
∫︂ ∞

ν1
∇ · 1

3κ
∇φ(x, t, ν) dν (2.87a)

−ε2∇ · 1
3κ

∇φ(x, t, ν) + κφ(x, t, ν) = κ(4πB(ν, T )) (2.87b)

Temperature boundary condition

εk(n · ∇)T (x, t) = h (Tb − T (x, t)) + απ
∫︂ ν1

0
Bb(ν, Tb) − Bb(ν, T ) dν (2.87c)

Temperature transition conditions

T1(x, t) = T2(x, t) (2.87d)
k1(n · ∇)T1(x, t) = k2(n · ∇)T2(x, t) (2.87e)

Intensity boundary condition
(︂
1 − 2r

(1)
1

)︂
φ + 2ε

3κ

(︂
1 + 3r

(2)
1

)︂
(n · ∇)φ =

(︂
1 − 2r

(1)
b

)︂
4πBb(ν, Tb) (2.87f)

Intensity transition conditions

1
κ1

(n · ∇)φ1 = 1
κ2

(n · ∇)φ2 (2.87g)(︂
1 − 2r

(1)
1

)︂
φ1 + 2ε

κ1
r

(2)
1 (n · ∇)φ1 =

(︂
1 − 2r

(1)
2

)︂
φ2 − 2ε

κ2
r

(2)
2 (n · ∇)φ2 (2.87h)

35



36



3. Numerical experiments
In this chapter, we briefly comment on some of the results that we have obtained
during numerical experiments. Our vision was to show that the SPn equations
are indeed viable resources for modeling heat transport when radiation is counted
in.

In this paper, we discuss only experiments done on a simple 1D problem. The
setting can be interpreted as an infinite slab enclosed between two plains, x = 0
and x = 1, in 3D space. Since this slab domain is infinite in y and z−direction
and we start from a homogeneous initial condition, the temperature evolution
and intensity field do not depend on those coordinates. The temperature and
intensity functions have nontrivial dependence only on one spatial variable along
the x-axes. Thus the problem reduces into 1D problem.

3.1 One-domain setting
The basic setup is the one where our domain is formed by one medium M1 with
constant refractive index n1 and constant thermal conductivity k. The surround-
ing medium Mb has refractive index nb and emits blackbody-like radiation Bb

corresponding to fixed temperature Tb. Coefficients kb and κb for Mb are ir-
relevant since we do not consider bulk equations to govern temperature in its
volume.

The medium M1 is originally at constant temperature T0 and then let cool
down.

We have implemented a script for solving radiative heat transport problem
by Rosseland approximation ((2.21a)) and also SP1 equations ((2.17), (2.18)).
Walfram Mathematica 13.0.1 has been the software used for this purpose.

Before we jump to our results, there are some important notes about the
implementation. We set up an equation for the function φ = φ(x, t) with only
spatial and time dependency, no frequency. It resembles the total energy flux
defined at the beginning of section 2, it just does not take frequencies from the
opaque band into account.

φ(x, t) =
∫︂ ∞

ν1
φ(x, t, ν) dν (3.1)

By this, we create an auxiliary function, with fewer arguments. However, for
this averaging to be valid in our equations, the coefficient κ, which also appears
inside the integral (see (2.87a)), needs to be constant.

For more accurate results we have the option of introducing several spectral
bands (νi, νi+1), assigning each one with different κνi

coefficient and defining
separate intensity functions φνi

. The coupling is then realized via their sum.

∂T (x, t)
∂t

= ∇ · (k∇T (x, t)) +
∑︂

i

∇ · 1
3κi

∇φνi
(x, t) (3.2)

In the article (Larsen et al. [2003]) authors use 8 frequency bands to properly
capture the behaviour of molten glass.
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3.1.1 Rosseland approximation implementation
For the Rosseland equation, which is really just a single partial differential equa-
tion, the implementation was fairly straightforward.

In this approximation, we have eliminated the function φ from calculations
and we consider radiation B(ν, T ) instead. For this case, we also work with an
average over the transparent spectrum. The expression∫︂ ∞

ν1
B(ν, T ) dν (3.3)

can be precalculated as a function of T (x, t).
As for the actual solving technique, we employed the standard NDSolveValue

function that was able to deal with a nonlinear partial differential equation with
nontrivial mixed boundary condition. For the discretization, we set the solver to
use so-called Method of lines. There were not many obstacles during these tests,
we have kept the discretization at the default setting with spacing between grid
points ∆x = 0.01m and time step ∆t = 0.000 01s.

We have conducted a couple of numerical tests and compared our results to
benchmark from the literature (Larsen et al. [2003]).

Here is a list of values for every coefficient needed.

• Tb = 300 K, T0 = 1000 K, k = 1 W·m−1 ·K−1, h = 1 W·m−2 ·K−1, n1 = 1.46,
nb = 1, ν1 = 4.28 · 1013 Hz, ν2 = 9.99 · 1013 Hz, α = 0.92, ε = 1

It is quite a peculiar fact that our allegedly small parameter ε is not in fact
that small. It is true that the smaller parameter ε is, the more sensitive and
unstable the solving process gets. Plus as it turns out, even approximating with
quite large ε value (≈ 1) gives quite satisfying results. After all, the SPn and
Rosseland equations can be derived without an asymptotic approach (McClarren
[2010]; Brantley and Larsen [2000]).

Note that we are still to specify the κ coefficient. In our experiments, we have
varied this parameter according to the article (Larsen et al. [2003]) to be able
to compare the results. Here we actually computed with the two-band scheme,
hence the frequency ν2 listed among the coefficients. For each experiment we
choose different κν1 for frequencies from (ν1, ν2) and κν2 for the rest from (ν2, ∞).

In the following graphs that have been adopted from the article (Larsen et al.
[2003]), we can see the data, the temperature functions, as presented in the
literature, including original plot legends. Our results are depicted with thick
dashed red line. The coincidence between their and our Rosseland outcomes is
quite good, thus the graphs overlap and are harder to see.

What is actually being displayed is temperature distribution in studied inter-
val (0, 1), a cross-section of the slab, at time tmax = 0.001 s.

Although it may seem like everything worked out perfectly, there is one little
glitch. The agreement between our results and the benchmark shown in figures
from 3.1 to 3.5 only holds, if we set all blackbody radiation B, even in medium
M1, to be equal to Bb associated with nb = 1, in other words, the same refractive
index n = 1 was used both for the external and internal medium

B = 12 2hP ν3

c2
0

1

e
hP ν

kBT − 1
, as oppose to B = n2

1
2hP ν3

c2
0

1

e
hP ν

kBT − 1
(3.4)
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After carefully checking our code, we are convinced that in the considered
reference, the authors computed with a different setting than the one claimed.

Figure 3.1: Test of heat transport in slab geometry - Rosseland equations - Tem-
perature (T [K]) distribution (x[m]) at t = 0.001 s for κν1 = 2 m−1, κν2 = 1 m−1

3.1.2 SP1 equations implementation
The next challenge was to test the more complex diffusive model, SP1 derived
in this paper. These equations, although they are themselves approximation to
(RTE), do carry a lot of difficulties. Compared to Rosseland, we now face a system
of nonlinear partial differential equations with complicated boundary conditions.

We are able to get rid of the frequency dependence according to (3.1) and (3.2),
this time with only one spectral band. However, a simple method of lines does
not suffice. Here we had to engage a more sophisticated approach to solving this
system and we have implemented so-called Rothe’s method for the discretization
of the PDE.

First, let us analyze the system at our hands. The bulk equations (2.87a) and
(2.87b) are different in nature. The first one is a parabolic evolutionary equation
for temperature, on the other hand, the second one is a stationary elliptic equation
determining the distribution of intensity. Due to their coupling, we are forced to
solve them simultaneously.

This might give us an idea to discretize the time variable and obtain two
stationary equations with unknown functions dependent only on spatial variables.
Now our system consists of two elliptic equations that can be solved subsequently
for each time level.
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Figure 3.2: Test of heat transport in slab geometry - Rosseland equations - Tem-
perature (T [K]) distribution (x[m]) at t = 0.001 s for κν1 = 20 m−1, κν2 = 10 m−1

Figure 3.3: Test of heat transport in slab geometry - Rosseland equations - Tem-
perature (T [K]) distribution (x[m]) at t = 0.001 s for κν1 = 100 m−1, κν2 = 50 m−1
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Figure 3.4: Test of heat transport in slab geometry - Rosseland equations - Tem-
perature (T [K]) distribution (x[m]) at t = 0.001 s for κν1 = 10 m−1, κν2 = 1 m−1

Figure 3.5: Test of heat transport in slab geometry - Rosseland equations - Tem-
perature (T [K]) distribution (x[m]) at t = 0.001 s for κν1 = 100 m−1, κν2 = 1 m−1
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Let us denote Tj(x) the temperature function at time tj (j-th time level) and
analogously φj(x) the intensity function. The discretized (in time) form of the
SP1 system then reads:

− ε2∇ · 1
3κ

∇φj(x) + κφj(x) = κ
∫︂ ∞

ν1
4πB(ν, Tj) dν for x ∈ M1 = (0, 1)

(3.5a)(︂
1 − 2r

(1)
1

)︂
φj(x) + 2ε

3κ

(︂
1 + 3r

(2)
1

)︂
(n · ∇)φj(x) =

=
(︂
1 − 2r

(1)
2

)︂ ∫︂ ∞

ν1
4πBb(ν, Tb) dν for x ∈ ∂M1 = {0, 1}

(3.5b)

Tj+1(x) − Tj(x)
∆t

= ∇ · (k∇Tj+1(x)) + ∇ · 1
3κ

∇φj(x) for x ∈ M1 = (0, 1)
(3.6a)

εk(n · ∇)Tj+1(x) = h (Tb − Tj+1(x)) +

+ απ
∫︂ ν1

0
Bb(ν, Tb) − Bb(ν, Tj(x)) dν for x ∈ ∂M1 = {0, 1}

(3.6b)

Here the equations are in atypical order with intensity equations first and tem-
perature second, but it is only natural like that because it is the way they have
to be computed. Starting with T0(x) ≡ T0, we are able to obtain function φ0(x).
This function is then used to complete the equation for temperature T1(x) and
this process repeats. To solve equations (3.5a) and (3.6a), function NDSolveValue
uses Finite Element Method.

First, we conducted two experiments to replicate the benchmark that was
published in the article (Larsen et al. [2002]). The parameters are set to

• Tb = 300 K, T0 = 1000 K, k = 1 W·m−1 ·K−1, h = 1 W·m−2 ·K−1, n1 = 1.46,
nb = 1, ν1 = 4.28 · 1013 Hz, α = 0.92, r

(1)
1 = 0.285574, r

(2)
1 = 0.145208,

r
(1)
b = 0.04293, κ = 1 m−1

This time we limit ourselves only to one spectral band (ν1, ∞), but on the
other hand, between the experiments we alter parameter ε from value 1 to 0.01.
The first case is similar to the setting for Rosseland tests, the latter models
optically thick diffusive environment.

Same as before, we observe the temperature distribution at time tmax =
0.001 s. One of the reasons for the more complicated implementation of Rothe’s
method was the option of properly regulating the resolution of our computational
grid.

In the case with ε = 1, there was no need to make any alternations, we stuck
with ∆ = 0.000 01 s, thus needed 100 time steps to reach tmax. We also kept the
grid spacing at ∆x = 0.01m.

We can see in figure 3.6 that again we managed to obtain quite nice look-
ing results (our result is thick dashed blue line) coinciding with data from
literature although we still face the unclarity regarding the refractive index n1,
((3.4)).

In figure 3.7 we also display the distribution of auxiliary intensity function
φ(x), everything is symmetric as was expected.
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Figure 3.6: Test of heat transport in slab geometry - SP1 equations - Temperature
(T [K]) distribution (x[m]) at t = 0.001 s for ε = 1

Figure 3.7: Test of heat transport in slab geometry - SP1 equations - Intensity
(φ[J·m−2 · s−1]) distribution (x[m]) for ε = 1
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Figure 3.8: Test of heat transport in slab geometry - SP1 equations - Temperature
(T [K]) distribution (x[m]) at t = 0.001 s for ε = 0.01

Figure 3.9: Test of heat transport in slab geometry - SP1 equations - Intensity
(φ[J·m−2 · s−1]) distribution (x[m]) for ε = 0.01
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When we decreased the value ε = 0.01, numerical calculations were not as
smooth anymore. To get the solver output proper result we had to dramatically
shorten our time step to ∆t = 0.000 000 2 s, thus requiring 5000 time steps to
finish. Axel Klar in paper (Klar et al. [2005], p. 1021) describes also similar
experience. Yet, the solution does not match the benchmark perfectly, though
it is similar in nature, see figure 3.8. As the published results only contain the
temperature fields, and do not show the intensity, we have been unable to identify
the source of the mismatch between our results and the published ones.

We again add also a graph of intensity φ(x), see figure 3.9.

3.2 Two-domain setting
In this section, we present experiments with settings where the domain is divided
into two parts with different optical properties. We are getting closer to the
desired setup that replicates an industrial setting of molten glass surrounded by
nitrogen.

3.2.1 SP1 equations implementation
We proceed with using our implemented Rothe’s method for the discretization of
given SP1 equations.

The first set of tests is calculated with just spatially dependent absorption
coefficient κ. To be precise, we consider κ to be a piecewise constant function
with one step at the middle of our domain interval. The results for this case are
also provided in (Larsen et al. [2002]). Here we do not consider refractive indices
to differ from one another, in other words, we set them both at value n1 = 1.46.
We can still use equations (3.5a)-(3.6b) mentioned above, no transition conditions
required just yet.

All the parameters are listed here:

• Tb = 300 K, T0 = 1000 K, k = 1 W·m−1 ·K−1, h = 1 W·m−2 ·K−1, n1 = n2 =
1.46, nb = 1, ν1 = 4.28 · 1013 Hz, α = 0.92, r

(1)
1 = 0.285574, r

(2)
1 = 0.145208,

r
(1)
b = 0.04293, ε = 0.1

• κ1 = 0.1 m−1 for x ∈ (0, 0.5), κ2 = 1 m−1 for x ∈ (0.5, 1)

In this simulation we again had to adjust the time step size appropriately
according to ε, this instant we got by with ∆t = 0.000 001s needing 1000 time
steps, similar to (Klar et al. [2005], p. 1021). Grid spacing is still the same,
equidistant with ∆x = 0.01.

In figure 3.10, we can see again that our solution is not exactly matching with
those from the article (Larsen et al. [2002]) but is similar in nature, the reason
could be (3.4) or other confusion about the parameters, for instance, tmax listed
in that article is 0.01s instead of 0.001s. However, if we compare for example
the values of Rosseland approximation with the ones from (Larsen et al. [2003])
where it is stopped at tmax = 0.001s, there are only minor differences for which we
give credits to distinct band division. Ten times longer time span would change
the results significantly more.
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Figure 3.10: SP1 equations - discontinuous κ - Temperature (T [K]) distribution
(x[m]) at t = 0.001 s for κ1 = 0.1 m−1 on (0, 0.5) and κ2 = 1 m−1 on (0.5, 1)

Figure 3.11: SP1 equations - discontinuous κ - Intensity (φ[J·m−2 · s−1]) distribu-
tion (x[m]) at t = 0.001 s for κ1 = 0.1 m−1 on (0, 0.5) and κ2 = 1 m−1 on (0.5, 1)
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Figure 3.12: SP1 equations - discontinuous κ - Temperature (T [K]) distribution
(x[m]) at t = 0.001 s for κ1 = 0.1 m−1 on (0, 0.5) and κ2 = 10 m−1 on (0.5, 1)

Figure 3.13: SP1 equations - discontinuous κ - Intensity (φ[J·m−2 · s−1]) distribu-
tion (x[m]) at t = 0.001 s for κ1 = 0.1 m−1 on (0, 0.5) and κ2 = 10 m−1 on (0.5,
1)
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We provided again an intensity distribution, figure 3.11. Since φ(x) as an
average over a sphere is a mere auxiliary function we do not have intuitive expec-
tations on how it should behave at problematic spots like points of discontinuity
of a parameter.

Here, we are delighted to see that the behavior is exactly what we expected.
Since there is no jump in refractive indices, the SP1 transition conditions reduce
to form (2.85) and (2.86). We observe that the function is indeed continuous at
the boundary and its left and right derivatives are proportional to the coefficient
κ on each side.

A very similar simulation is shown in figures 3.12 and 3.13 with altered κ2
coefficient.

• κ1 = 0.1 m−1 for x ∈ (0, 0.5), κ2 = 10 m−1 for x ∈ (0.5, 1)

3.2.2 Implementation with novel transition conditions
Finally, we present experiments considering two domains that differ from one
another not only with κ coefficient but also with refractive index n. In this
section, we employ derived transition conditions (2.83) and (2.84) just to test the
numerical solvability of such a system and confirm that it produces solutions with
a discontinuous intensity.

This system is again discretized according to Rothe’s method. In each time
step, we have to compute the intensity field and then, from that the temperature
distribution.

The intensity field is now a bit tricky to calculate, since we have to implement
conditions in the middle of our domain interval. In fact, we search for two un-
known functions φ1(x) and φ2(x) in an interval half the length of the original, (0,
0.5). These functions are then connected next to each other to create a function
on the interval (0, 1). This means that for φ1, the transition conditions apply at
point 0.5, whereas for φ2 they apply at point 0.

Thus we obtain a system of elliptic partial differential equations with non-
localized boundary conditions, which still can be solved with standard NDSolve-
Value function.

Since there is no need for us to try to fit some benchmark results with this
experiment, because there are not any, we can set B1 to its proper form (not one
from (3.4)). The parameters were in this case set to:

• Tb = 300 K, T0 = 1000 K, k = 1 W·m−1 · K−1, h = 1 W·m−2 · K−1,
ν1 = 4.28 · 1013 Hz, ε = 0.1

• κ1 = 0.1 m−1 for x ∈ (0, 0.5), κ2 = 1 m−1 for x ∈ (0.5, 1)

• n1 = 1.46, n2 = 1.000 3, nb = 1, α1 = 0.92, α2 = 2, r
(1)
b,1 = 0.04293, r

(1)
1,b =

0.285574, r
(2)
1,b = 0.145208, r

(1)
1,2 = 0.28543, r

(2)
1,2 = 0.1451, r

(1)
2,1 = 0.0428973,

r
(2)
2,1 = 0.0191179, r

(1)
2,b = 0.00035, r

(2)
2,b = 6.662 · 10−6, r

(1)
b,2 = 0.000 049

These sets of numbers can be quite confusing, hence the helpful figure 3.14 in
which we see two slab domains, M1 and M2, in contact surrounded by thermal
reservoir Mb. There is a number of rays depicted, each denoted with reflectivity
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corresponding to the boundary it is pointing at. These reflectivities are calculated
with the help of Fresnel’s equation (1.25) or (1.26). We have to pay attention to
the notation, the first index stands for the medium from which the ray is coming
and the second one stands for the medium on the other side of the boundary.
And for moments r

(1)
1,2 etc., the same rule holds.

Figure 3.14: Scheme of two-domain setting

Brief comment dedicated to parameters α1, resp. α2: it is standard hemispher-
ical emissivity used in temperature boundary condition at the interface between
M1, resp. M2, and Mb.

We have set n1 = 1.46 and n2 = 1.0003 to somewhat replicate the situation
with molten glass mixture and surrounding nitrogen.

The graph in figure 3.15 carries some resemblance with the one in 3.10 but
they are not completely the same. We can nicely see what difference changing the
refractive index makes. Importantly, in figure 3.16 auxiliary intensity function is
displayed. Clearly, the transition conditions force it to be discontinuous which
does not necessarily mean the solution is wrong. In the last chapter, we discuss
the possibility that the discontinuous solution may be the right answer to our
problem.
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Figure 3.15: SP1 equations - discontinuous κ and n - Temperature (T [K]) dis-
tribution (x[m]) at t = 0.001 s for κ1 = 0.1 m−1, n1 = 1.46 on (0, 0.5) and
κ2 = 1 m−1, n2 = 1.000 3 on (0.5, 1)

Figure 3.16: SP1 equations - discontinuous κ and n - Intensity (φ[J·m−2 · s−1])
distribution (x[m]) at t = 0.001 s for κ1 = 0.1 m−1, n1 = 1.46 on (0, 0.5) and
κ2 = 1 m−1, n2 = 1.000 3 on (0.5, 1)
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4. Discussion
After demanding derivations, approximations and testing, we have come to a
part when it’s time to stop for a while and think about current results and the
direction of further efforts.

4.1 Qualitative analysis of SP1 boundary and
transition conditions

The SP1 boundary and especially transition conditions are formulas probably not
presented in the literature so far. It would be useful to convince ourselves that
there is no fundamental problem with their application.

We have already noticed that for intensity average function φ(x) they give us
discontinuous solutions. Normally, this could be considered a red flag but not in
this case. Let us take a look at the summarized system (2.87).

Usually, the first test of any complex system could be to investigate its station-
ary states, and whether they coincide with our expectations. It is only natural
to assume that if the initial temperature T0 is identical to the temperature of the
outer reservoir Tb, then this state persists and no net energy transport occurs.
Indeed, if we substitute T0 = Tb into our governing equations, then we get a
trivial stationary solution Tst(x, t) ≡ Tb.

First, we check that in such a scenario, intensity field φst in domain M1 with
refractive index n1 is constant with respect to space and time. Its value is

φst(x, t, ν) ≡ 4π
(︃

n1

nb

)︃2
Bb(ν, Tb). (4.1)

This function satisfies equation (2.87b) because

B(ν, Tb) =
(︃

n1

nb

)︃2
Bb(ν, Tb), (4.2)

which follows straight from definition (1.7). The fact that φst fulfils also boundary
condition (2.87f) can be deduced from relation (2.49) in special form(︃

n1

nb

)︃2 (︂
1 − 2r

(1)
1

)︂
=
(︂
1 − 2r

(1)
b

)︂
, (4.3)

Since φst is constant in space, all the derivatives vanish from the equations
and we are left with the aforementioned identities.

Similar reduction also happens in temperature equation (2.87a). There are
only terms with derivatives so any constant solution satisfies this bulk equation.
However, we need the exact temperature Tb to zero the right-hand side of bound-
ary condition (2.87c).

We have convinced ourselves that functions Tst and φst are indeed stationary
solutions in a one-domain setup. Now we proceed to the multi-domain arrange-
ment and put our transition conditions to the test. We would like them to be
consistent and allow for a similar type of stationary solution. It turns out that
they do.
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Let us consider a two-domain setup for simplicity. All we have to do is to
define partial auxiliary intensity functions as constants in their domain:

φst1(x, t, ν) ≡ 4π
(︃

n1

nb

)︃2
Bb(ν, Tb) (4.4a)

φst2(x, t, ν) ≡ 4π
(︃

n2

nb

)︃2
Bb(ν, Tb) (4.4b)

We have already seen that these functions satisfy bulk and boundary equa-
tions, only left are the transition conditions (2.83) and (2.84). Since they are
constants, the first one holds trivially and in the latter, we end up with identity
(2.49) once again.

These conditions are therefore perfectly consistent with our expectations and
we can conclude that in the case of different refractive indices, the auxiliary
intensity variable φ must indeed be discontinuous.

4.2 SP2 approximation

We have seen the derivation of boundary and transition conditions for a system
of SP1 equations. It raises the question, of whether an analogous procedure can
be done also in the case of SP2 equations, after all, they are quite similar.

In fact, it can be done and we have managed to find the right procedure by an
asymptotic approach. The derivation itself is quite lengthy, thus here we provide
just a brief outlook and present the results as curiosity without the full derivation,
which may be presented in the future work.

Main nuance in the procedure is always taking more terms in asymptotic
expansions, because SP2 are higher order, particularly we need to use

I(Ω) =
[︄
1 − ε

κ
(Ω · ∇) + ε2

κ2 (Ω · ∇)2
]︄

B (4.5)

instead of (2.25). One more trick is required in final operations. Regarding the
boundary conditions, to get the same formulation as presented in literature, we
have neglect some terms of order O(ε2),

ε2 (n · ∇)2 B ≈ ε2∇2B (4.6)

thus we diminish the accuracy of our equations to achieve more pleasant form.
This step can be somehow got around for the cost of more complex equations.
However, we have not done any deeper analysis of this remark.

After fairly lengthy procedure, it is possible to obtain the final form of those
equations.
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SP2 approximation
Bulk equations

∂T (x, t)
∂t

= ∇ · (k∇T (x, t)) +

+
∫︂ ∞

ν1
∇ · 1

3κ
∇
[︃
φ(x, t, ν) + 4

5

(︃
φ(x, t, ν) − 4πB(ν, T )

)︃]︃
dν (4.7a)

− ε2∇ · 1
3κ

∇
[︃
φ(x, t, ν) + 4

5

(︃
φ(x, t, ν) − 4πB(ν, T )

)︃]︃
+

+ κφ(x, t, ν) = κ(4πB(ν, T )) (4.7b)

Temperature boundary condition

εk(n · ∇)T (x, t) = h (Tb − T (x, t)) + απ
∫︂ ν1

0
Bb(ν, Tb) − Bb(ν, T ) dν (4.7c)

Temperature transition conditions

T1(x, t) = T2(x, t) (4.7d)
k1(n · ∇)T1(x, t) = k2(n · ∇)T2(x, t) (4.7e)

Intensity boundary condition

(︂
1 − 2r

(1)
1

)︂
φ + 2ε

3κ

(︂
1 + 3r

(2)
1

)︂
(n · ∇)

[︃
φ + 4

5

(︃
φ − 4πB(ν, T )

)︃]︃
+

+ 1
2
(︂
1 − 12r

(3)
1 + 4r

(1)
1

)︂ [︃
φ − 4πB(ν, T )

]︃
=
(︂
1 − 2r

(1)
b

)︂
4πBb(ν, Tb) (4.7f)

Intensity transition conditions

1
κ1

(n · ∇)
[︃
φ1 + 4

5

(︃
φ1 − 4πB1(ν, T )

)︃]︃
= 1

κ2
(n · ∇)

[︃
φ2 + 4

5

(︃
φ2 − 4πB2(ν, T )

)︃]︃
(4.7g)(︂

1 − 2r
(1)
1

)︂
φ1 + 2ε

κ1
r

(2)
1 (n · ∇)

[︃
φ1 + 4

5

(︃
φ1 − 4πB1(ν, T )

)︃]︃
+

+ 1
2
(︂
1 − 12r

(3)
1 + 4r

(1)
1

)︂ [︃
φ1 − 4πB1(ν, T )

]︃
=

=
(︂
1 − 2r

(1)
2

)︂
φ2 − 2ε

κ2
r

(2)
2 (n · ∇)

[︃
φ2 + 4

5

(︃
φ2 − 4πB2(ν, T )

)︃]︃
+

+ 1
2
(︂
1 − 12r

(3)
2 + 4r

(1)
2

)︂ [︃
φ2 − 4πB2(ν, T )

]︃
(4.7h)
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Conclusion
Let us recapitulate our goals and compare them with our achievements.

In the first part of the thesis, we successfully rederived the partial differ-
ential equations for the conductive and radiative heat transport between semi-
transparent materials as presented in the numerous literature on the topic (Frank
and Klar [2011]; Howell et al. [2021]). We recognized the complexity of this system
and proceeded with approximation by relations with higher order diffusion oper-
ators, in other words, SPn equations. Their derivation carefully followed asymp-
totic methods described in preceding articles (Frank and Klar [2011], Larsen et al.
[2002]). To obtain a full system, we had to transform also the boundary condi-
tions, where, in contrast to most other authors, we employed asymptotic methods.
In the end, we generalized the boundary equation and obtained transition condi-
tions describing the behaviour of the radiation field on the interface between two
domains with different refractive indices.

During numerical experiments, we restricted ourselves only to 1D problems
given the persisting complexity of the approximating governing system. We man-
aged to test Rosseland approximation and SP1 equations. There were some dis-
crepancies between our and the benchmark results, thus we were able to match
them only by considering different values for certain parameters. Naturally, this
tinted our joy from the match, which turned out quite well (especially in Rosse-
land case) but since along the way, we had discovered more than one typo in the
article providing the benchmark (Larsen et al. [2003]), the error could have been
made by the authors of the benchmark.

Independently of the previous experiments, we also tested our new transition
conditions. We showed, in particular, that they allow for numerical solvability of
the arising system while providing solutions with discontinuous radiation inten-
sity. We have provided a reasoning why such discontinuous solutions should be
favorable compared to continuous ones.

In future work, we would like to employ our results regarding SP2 equations
mentioned in 4.2 and simulate proper glass cooling in 3D setting probably with
different more suitable software.

Of course, there are still options for improvement and further research out-
side the scope of SPn equations. The thermal radiation could be calculated by
brute force with ray-tracing methods, those calculations are however extremely
demanding and one has to engage certain numerical theory and a huge amount
of computing power to pursue this case.
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A. Pilkinkton process
To closer introduce the topic to the reader and for the sake of better understand-
ing, we first discuss the principles of flat-glass formation. This procedure, which
is sometimes called Pilkington process, has been used in industry since 1950 when
it was developed for the first time. Detailed description of the process can be
found in article written by Pilkington himself.

The idea of this method is to melt the glass material to gain homogenous
structure and then to pour it into a form, so it remolds into shape with absolutely
flat faces. The clever trick inheres in the construction of the form. It is actually a
bath with molten tin on the bottom whose surface is perfectly flat, thus creating
very good base for the form. So, the molten glass mixture is emptied out of the
furnace and poured onto a layer of molten tin. Then the ”melded” mixture is let
to settle, note that glass and tin are immiscible, thus making this step possible.

Then the cooling process starts. This part has a significant impact on the
final product quality, meaning if the temperature is not lowered uniformly, the
glass might be fragile and even cracking.

This method was developed and widely used because it guarantees a glass
panel with completely flat surface and doesn’t require any type of grinding or
polishing.

A.1 Principles of glass forming procedure

What we consider general knowledge is that the glass is created from a molten
mixture of specific materials, those being mainly silicon dioxide extracted from
sand and potassium carbonate, else sodium carbonate, or limestone. The assort-
ment is then heated up to around 1500°C so it melts to achieve a truly uniform
structure of the resulting product.

Now that we have the molten glass mixture ready, we deal with a very simple
problem with a nontrivial solution: How to form perfectly flat sheets of glass?
Sir Alastair Pilkington came up with an ingenious answer to our question. He in-
vented the aforementioned game-changing manufacturing procedure, later called
after him, the Pilkington process. The molten mixture is poured out into a bath
of molten tin. One might ask, why the bottom of the bath has to be liquid, it
seems that it only increases the costs of energy for heating, plus it may be im-
practical and encumber any manipulation. On top of that, a liquid substances in
their presence make the mechanical models really complicated.

One of the main advantages and reasons for the form to have liquid bottom
is the perfect flatness. The liquid ensures not only that the surface alone is
completely flat, but also the level is naturally in exact horizontal plane. This
really effortlessly helps the molten glass mixture to have constant depth over the
whole volume, as even the slightest tilt would cause the liquid to accumulate on
one side of the form.
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A.2 Cooling phase
One may think that the main part of glass production is over once we have
melted the glass mixture and filled the appropriate form with it. However, the
cooling phase is at the same level of importance, if not even higher. In any case,
it is definitely the part that requires to be treated meticulously and with great
caution.

During the cooling of the glass, our goal is to keep the temperature as uniform
as possible. temperature heterogeneities lead to a formation of structures, internal
mechanical tension and other defects leading to increased fragility of the product.
The cooling process has to be slow and fully controlled.

In mathematical modelling of the Pilkington process, proper treatment of the
thermal evolution is thus of utmost importance. The fact that both the gas and
glass mediums are semi-transparent, together with the very high temperatures
in the system, imply the necessity of considering radiative contribution to the
heat transfer. From this point of view, this particular application presents a nice
real-world example of a process where application of the methods presented in
the thesis are necessary.
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B. Integral formula
We provide proof of identity∫︂

S2
(Ω · ∇)n dΩ = [1 + (−1)n] 2π

n + 1∇n (B.1)

that is crucial for derivation and yet many authors just use it without any com-
ment on why it holds. Let us take a look at that integral that frequently appears
in our equations. ∫︂

S2
(Ω · ∇)n dΩ (B.2)

We can express the product of n terms as tensor inner product and move the
differential tensor out of the integral as the two operations commute∫︂

S2
(Ω · ∇)n dΩ =

∫︂
S2

(Ω ⊗ Ω ⊗ . . . ⊗ Ω) dΩ : (∇ ⊗ ∇ ⊗ . . . ⊗ ∇) (B.3)

Here we integrate a tensor one component at a time. Each of them consists of
product of n components from Ω:∫︂

S2
(Ω ⊗ Ω ⊗ . . . ⊗ Ω)ij...z dΩ =

∫︂
S2

ΩiΩj . . . Ωz dΩ (B.4)

where i, j, . . . , z ∈ {1, 2, 3}. Now we introduce another trick into our calculation,
we consider a special generating function G(a) = G((a1, a2, a3)):

G(a) =
∫︂

S2
ea·Ω dΩ (B.5)

It is easy to see that once we obtain this function G, we can write that integral
from (B.4) is equal to:∫︂

S2
ΩiΩj . . . Ωz dΩ = ∂n

∂ai∂aj . . . ∂az

G(a)
⃓⃓⃓⃓
a=0

(B.6)

or in a more elegant way using multiindexes
∫︂

S2
Ωα dΩ = ∂|α|

∂aα
G(a)

⃓⃓⃓⃓
a=0

, (B.7)

where |α| = n and we use multiindex notation

α = (α1, α2, α3)
(︄

n

α

)︄
= n!

α1!α2!α3!
aα = aα1

1 aα2
2 aα3

3 (B.8)

Let us figure out the actual form of the function G then. We will expand
the exponential inside into its Taylor series and then interchange the sum and
integral to get:

G(a) =
∫︂

S2

∞∑︂
k=0

(a · Ω)k

k! dΩ =
∞∑︂

k=0

∫︂
S2

(a · Ω)k

k! dΩ (B.9)
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Since there is spherical symmetry that can be taken advantage of, it does not
really matter in which direction vector a is pointing. The result depends only on
its magnitude. Without the loss of generality, we choose a to be in direction of
the z-axis, a = ∥a∥e3. Then it holds:

∫︂
S2

(a · Ω)k

k! dΩ = ∥a∥k

k!

∫︂
S2

(e3 · Ω)k dΩ = ∥a∥k

k!

∫︂ 2π

0

∫︂ π

0
cosk(θ) sin(θ) dθ dϕ =

= 2π
∥a∥k

k!

∫︂ 1

−1
µk dµ = 2π

∥a∥k

k!
1

k + 1
(︂
1 + (−1)k

)︂
(B.10)

This expression is non-zero only for even values of k. We can quickly check
the correctness of our result; odd-k terms vanish because they allow (a ·Ω)k to be
positive on one hemisphere and negative on the other, thus canceling each other
out.

We combine (B.9), (B.10) and the fact that ∥a∥2 = a · a to get final form of
G(a):

G(a) =
∞∑︂

k=0
4π

(a · a)k

(2k + 1)! (B.11)

Each term is a polynomial with variables a1, a2 and a3 containing only sum-
mands with certain degree

(a · a)k =
∑︂

|β|=k

(︄
2k

2β

)︄
a2β, (B.12)

Recall equation (B.7), we want to differentiate G function n times and then
set a = 0. Note that from the whole series (B.11), only terms where 2k = n have
the chance of not vanishing once we proclaim a = 0. They are those which stay
constant after differentiating. So if there should end up at least one non-zero
term, n must be even.

∂|α|

∂aα

[︂
(a · a)k

]︂
= ∂|α|

∂aα

∑︂
|β|=k

(︄
2k

2β

)︄
a2β (B.13)

Again, the only term left after differentiating is precisely one for which α =
2β, because in the others we surpass with differentiating operator degree of some
variable and get 0 (like when ∂4(x2y2)

∂x4 = 0). Therefore we get

∂|2β|

∂a2β

(︄
2k

2β

)︄
a2β = ∂2k

∂a2β1
1 ∂a2β2

2 ∂a2β3
3

(2k)!
(2β1)!(2β2)!(2β3)!

a2β1
1 a2β2

2 a2β3
3 = (2k)! (B.14)

We can conclude that if n = 2k, in other words, it is an even number, then

∂2k

∂a2β
G(a)

⃓⃓⃓⃓
a=0

= 4π
(2k)!

(2k + 1)! = 4π

2k + 1 (B.15)

otherwise (n odd) it evaluates to 0. On top of that, the multiindex α from (B.7)
has to be in the form of α = 2β. Thus in tensor

∫︁
S2(Ω ⊗ Ω ⊗ . . . ⊗ Ω) dΩ,
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only components whose coordinates contain every index even number of times
are non-zero. Once we then apply the inner product, it simplifies to
∫︂

S2
(Ω ⊗ Ω ⊗ . . . ⊗ Ω) dΩ : (∇ ⊗ ∇ ⊗ . . . ⊗ ∇) = 4π

2k + 1
∑︂

|β|=k

(︄
2k

2β

)︄
∂2k

∂x2β
=

= 4π

2k + 1(∇ · ∇)k (B.16)

Thus we can write for any n ∈ N∫︂
S2

(Ω · ∇)n dΩ = [1 + (−1)n] 2π

n + 1∇n (B.17)
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