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1. Introduction
Definition 1.1. A universal cover of a family M of sets in the plane is a set
that contains a congruent copy of every element of M.

We call a universal cover smallest if it has the smallest possible area.
Especially important for us will be a smallest convex universal cover which

we will often refer to as SCUC.

In 1914 Lebesque asked for the smallest universal cover of a family of all sets
of diameter one. This problem remains open, with some approximations of the
area known [1, 2, 5]. Since then, universal covers have been studied for various
families of sets in the plane, for example a set of all curves of unit length (Moser’s
worm problem) [6].

And while for the more general families we often do not have a better method
than an exhaustive computational approximation, for triangles the problem ap-
pears to be more approachable. Park and Cheong stated the following conjecture.

Conjecture 1.2. [7, Conjecture 1] For any family M of triangles of bounded
diameter there is a triangle T that is a smallest convex universal cover of M.

Several results that prove more specific version of this conjecture are known.
Füredi and Wetzel showed that a SCUC of the family of all triangles with given
perimeter is a triangle [4], Park and Cheong showed the same for the family of
triangles that fit into a unit circle and any family of two triangles [7]. Cheong,
Devillers, Glisse and Park showed the same for the family of all triangles that fit
into a unit half-disk and the family of all triangles that fit into a unit square [3].

In this thesis we will find a SCUC of

• every family of all triangles with the lengths of their two sides fixed (The-
orem 3.2),

• every family of all triangles with the length of a side and the size α of the
opposite angle fixed (where α is from an interval (0, λ] ∩ [3π/7, π) with λ
being the root of expression (Λ)) (Theorem 5.3),

• every finite sufamily of a family of all triangles with the length of a side
and the size α of the opposite angle fixed (where α ≥ π/2) (Theorem 5.5).

All of them will be triangles. All three theorems will be proved by finding a
SCUC of two elements of the family (Park and Cheong’s result [7] will be crucial
for that (Lemma 4.4)) and subsequentially showing that the found triangle is also
a universal cover of the whole family.
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2. Preliminaries
As in this thesis we will be using a term triangle a lot, it is neccessary to remark
that in this term we also include degenerate triangles—triangles with all the
vertices lying on a line.

For referring to the area of a set X in the plane we will be using the notation
a(X).

Let us define a few key terms.

Definition 2.1. The diameter of a compact set in the plane is the maximum
distance of its two points.

The width of a compact set S in the plane is the minimum distance of two
parallel lines such that every point of S lies either on them or in the region
between them.

Observation 2.2. The diameter of a triangle is its longest edge and the width is
its shortest height.

Observation 2.3. Both the diameter and the width are monotone in regards to
inclusion. In other words, if A ⊆ B, the width and the diameter of B are not
smaller than those of A.

Lemma 2.4. The area of a convex compact set S in the plane of width w and
diameter d is at least dw/2.

Proof. Let A and B be any two points from S such that |AB| = d and let hX be
the distance from an arbitrary point X to the line AB. Then there must exist
two points C and D from S which lie on the opposite sides of line AB such that
hC + hD ≥ w. Since S is convex, both triangles ABC and ABD are subsets of S
and therefore the area of S is at least

|AB| · hC

2 + |AB| · hD

2 ≥ |AB| · w

2 = d · w

2 .
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3. Triangles with the lengths of
their two sides fixed
In this section we will focus on finding a smallest convex universal cover of the
family of all triangles with the lengths a and b of their two sides given. We will
show that it will be a triangle Tab which can be constructed as follows.

Definition 3.1. With given lengths a and b such that a ≥ b let ABX be an
isosceles triangle where |AB| = |BX| = a and |AX| = b. Then let C be a point
on the ray opposite to −−→

XB such that |XC| = b. Now we define Tab = △ABC
(figure 3.1).

A

B CXa

a
b

b

Figure 3.1: Construction of Tab

Now we can formulate a theorem.

Theorem 3.2. With given lengths a and b such that a ≥ b let M be the family
of all triangles with two sides of length a and b. Then Tab is a smallest convex
universal cover of the family M.

Proof. First, we show that no SCUC of M can have area smaller than the area
of Tab.

The family M includes a segment of length a + b (a degenerate triangle) and
also an isosceles triangle with sides of lengths a, a and b. Let h be the height
of this isosceles triangle, perpendicular to the side of the length b. Then the
diameter of a SCUC is at least a + b and its width is at least h. Therefore, by
Lemma 2.4, its area is at least (a + b)h/2, which is exactly the area of Tab.

In order to show that Tab is indeed a convex universal cover we must find a
congruent copy of each element of M in Tab. Let KLM be a triangle from M
with |KL| = a and |KM | = b. Then we distinguish two cases, depending on the
size of the third side LM .

• If |LM | ≥ a:
First let us make two observations.

Observation 3.3. The height hK of the triangle KLM is minimal when
|LM | = a + b and maximal when |LM | = a.
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Observation 3.4. In Tab we have |∠XAC| = (π − |∠CXA|)/2 =
|∠BAX|/2, and therefore |∠BAC| = 3/2|∠BAX|. With △ABX being
isosceles, the longer the segment XA, the smaller the angle ∠BAX. Con-
sidering our assumption that a ≥ b, XA is the longest when △BAX is
equilateral and therefore |∠BAX| = π/3. That means that ∠BAC is al-
ways at least π/2.

With these observations we are ready to construct the triangle KLM .
First, let o be the circle with the center B and the radius |BX|. We place
L in B. Then place M on the segment BC so that the length |LM | is the
required length (because of triangle inequality we know that |LM | ≤ a+b =
|BC|). Then we place K onto o so that the ∠KML has the appropriate
size and so K lies in the same half-plane defined by the line BC as point
A. As we observed in the Observation 3.3 earlier, the height of KLM is
smaller than or equal to the height of ABX, which means that K lies on
the arc of o between points A and X, which, due to the Observation 3.4
lies in △ABC (Figure 3.2).
We have shown that all three vertices of △KLM indeed lie in △ABC.

A

B = L CX

K

M

ba

o

Figure 3.2: KLM in Tab for |LM | ≥ a

• If |LM | ≤ a:

Observation 3.5. The height hM of triangle KLM is minimal when
|LM | = a − b and maximal when |LM | = a.

Now we place M on the line defined by the height hA of △ABC so that
the foot of hA lies on the foot of hM (let us denote this point H). Then we
place points K and L on the line BC so that −−→

LK is of the same orientation
as −−→

BC (Figure 3.3).
Due to Observation 3.5 M lies on hA, thus in △ABC. The segment HK
is the smallest when M = A, in which case |HK| = |HX|. Also |HK| ≤
|MK| = b. That implies |HX| ≤ |HK| ≤ |HC|, which means that K lies
on the segment XC. Then L lies on the segment BX.
We have again shown that all three vertices of △KLM lie in △ABC.
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A

B CX KL H

M
b

a

hA

Figure 3.3: KLM in Tab for |LM | ≤ a
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4. Two triangles
Park and Cheong ([7]) have solved the problem of finding a smallest convex
universal cover for families of two triangles. This result is extremely important
for our own results, especially the following two lemmas.

Definition 4.1. We say that X fits into Y if there exists a subset X ′ of Y such
that X ′ and X are congruent.

Definition 4.2. We say that X maximally fits into Y if X fits into Y , but there
is no set X ′ that is similar to X and larger than X that fits into Y .

Lemma 4.3. ([7, Lemma 5]) If a triangle S maximally fits into a convex polygon
T , then there are at least four incidences between vertices of S and edges of T .
That is, there are four distinct pairs (p, e), where p is a vertex of S, e is an edge
of T , and p ∈ e.

Lemma 4.4. ([7, Lemma 9]) Let M be a family of triangles, and let Z be a
convex universal cover for M. Let S ∈ M , and let S ′ be the smallest universal
cover for M that is similar to S. If

a(S ′)
a(S) =

(︄
a(Z)
a(S)

)︄2

,

then Z is a smallest convex universal cover for M.

For completeness, we also provide the proof of this lemma by Park and Cheong
(identical to the one in [7]).

Proof. [7] Let S = △PQR and let X be a convex universal cover of M. We
can assume S ⊆ X. We draw tangents to X that are parallel to to the edges of
S, obtaining a triangle P ′Q′R′ that is similar to △PQR and contains X. That
means a(△P ′Q′R′) ≥ a(S ′), therefore by the assumption

a(△P ′Q′R′)
a(△PQR) ≥

(︄
a(Z)
a(S)

)︄2

,

from which we get
|P ′Q′|
|PQ|

≥ a(Z)
a(S) .

Let U , V , W be points of X on the three edges of △P ′Q′R′ and then let H be
the convex hull of the points P , U , Q, V , R, W . Let K be any point in S and hu,
hv and hw be the distances from K to the lines P ′Q′, Q′R′ and R′P ′ respectively
(Figure 4.1).
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P ′

Q′ R′

P

Q R

K

U

V

W

X

hv

hw

hu

Figure 4.1: Proof of Lemma 4.4

By the convexity of X we know that H ⊆ X. Then we have

a(X) ≥ a(H) = 1
2 (|PQ|hu + |QR|hv + |RP |hw)

= |PQ|
|P ′Q′|

· 1
2 (|P ′Q′|hu + |Q′R′|hv + |R′P ′|hw)

= |PQ|
|P ′Q′|

· a(△P ′Q′R′) = |PQ|
|P ′Q′|

·
(︄

|P ′Q′|
|PQ|

)︄2

· a(△PQR)

|P ′Q′|
|PQ|

· a(S) ≥ a(Z)
a(S) · a(S) = a(Z).

We showed, that the area of any universal cover is larger or equal to Z, which
means that Z must be a smallest convex universal cover.

4.1 Finding a SCUC of two triangles similar to
one of them

In further results we will need to be able to prove that a particular set is a smallest
convex universal cover of two triangles. Lemma 4.4 is a very powerful tool for
that. However, for using that we need to have SCUC which is similar to one of
the triangles.

If S ′ is the smallest universal cover of two triangles S and T that is similar
to S, then T has to maximally fit into S ′ and so by Lemma 4.3 there has to be
an edge of S ′ that is incident to two vertices of T , thus its edge. That means
we have 18 possibilities to consider—one for each combination of a side from S,
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side of T and their mutual orientation. Note, that many of these configurations
might be the same.

Each configuration can be constructed as follows: we take one side of S and
one side of T . Then we place T inside a big enough triangle S ′ similar to S, so T
lies inside of S ′ and the two chosen sides are colinear (Figure 4.2a). That makes
two incidences. Then we shrink S ′ by taking one of the remaining two sides and
replacing it with a parallel line that touches T , keeping the new triangle similar
to S and adding one incidence (Figure 4.2b). Finally we do the same with the
remaining side (Figure 4.2c).

S ′

T

(a)

S ′

T

(b)

S ′

T

(c)

Figure 4.2: Constructing a SCUC of two triangles

Naturally, the smallest S ′ out of these 18 is a smallest convex universal cover
of the family {S, T}, similar to S.
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5. Triangles with the length of a
side and the size of the opposite
angle fixed
In this section we will focus on finding a smallest convex universal cover of the
family of triangles with the length of one side and the opposite angle fixed. This
family can also be described as a set of all the triangles KLM where k is an arc
given by a chord LM and K is an arbitrary point on k.

We narrow Conjecture 1.2:

Conjecture 5.1. With a given length a and a given angle α, let M be the family
of all triangles KLM such that |LM | = a and |∠MKL| = α. Then there exists
a triangle T such that T is a smallest convex universal cover of the family M.

Our result proves the Conjecture 5.1, except for the cases when α ∈ (λ, 3π/7),
where λ is the only root of the expression(︄

− cos π − δ

4 − sin π − δ

4 · tan δ

2 + 1
2

)︄2

+
(︄

1
2 tan δ

2

)︄2

− 1 (Λ)

for δ ∈ [π/3, π). For reference, λ ≈ 0.396π.
This leaves us with a lemma to prove.

Lemma 5.2. Expression (Λ) has exactly one root for δ ∈ [π/3, π).

We prove this lemma later on in the next subsection at 5.1.3.
The main result is the following theorem.

Theorem 5.3. Let λ be the only root of an expression (Λ) for δ ∈ [π/3, π). With
a given length a and a given angle α ∈ (0, λ] ∩ [3π/7, π), let M be the family of
all triangles KLM such that |LM | = a and |∠MKL| = α. Then there exists a
triangle T such that T is a smallest convex universal cover of the family M.

We prove this theorem later in Subsection 5.1.
We also state the following conjecture, which is more general version of Con-

jecture 5.1.

Conjecture 5.4. With a given length a and a given angle α, let M be the family
of all triangles KLM such that |LM | = a and |∠MKL| = α and let L be a
subfamily of the family M. Then there exists a triangle T such that T is a
smallest convex universal cover of the family L.

We will prove this conjecture for any finite subfamily with α ≥ π/2, formu-
lating the following theorem.

Theorem 5.5. With a given length a and a given angle α ∈ [π/2, π), let M be
the family of all triangles KLM such that |LM | = a and |∠MKL| = α and let
L be a finite subfamily of M. Then there exists a triangle T such that T is a
smallest convex universal cover of the family L.

We prove this theorem later in Subsection 5.2.
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5.1 Proof of Theorem 5.3
Before we start with the proof itself, we will name three important triangles from
the family M:

• Vα is the isosceles triangle with equal sides adjacent to the angle α.

• Uα is the triangle with one of the remaining angles of size (π − α)/4 (which
is half the size of the angles of Vα adjacent to its base).

• Pα is the right-angled triangle. Note that it only exists for α < π/2.

Now let us make an observation about Uα.

Observation 5.6. We know the sizes of two angles in Uα and so we can calculate
the third, name it β:

β = π − α − π − α

4 = 3
4(π − α).

And so if
α ≥ 3

7π,

then
4α ≥ 3π − 3α

and so
α ≥ 3

4(π − α) = β,

which makes α the largest angle in Uα.
On the other hand, when α ≤ 3π/7, then α ≤ β and so β is the largest angle

in Uα.
Also notice that if α ≥ π/3, then β ≤ π/2.

For proving Theorem 5.3 it is essential to also prove Lemma 5.2. We shall to
that later on, when the context of the expression (Λ) is given.

We distinguish three cases, depending on the size of α.

(a) 3
7π ≤ α

(b) α ≤ 1
3π

(c) 1
3π ≤ α ≤ λ

5.1.1 Case (a)
In this case 3π/7 ≤ α.

We will take SCUC of triangles Vα and Uα and we show that it is also SCUC
of the whole family M.
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Finding SCUC of {Uα, Vα} similar to Vα

For finding SCUC of Vα and Uα we have to find their SCUC similar to Vα. For
that we use the process described in Section 4.1, however, because of Vα being
isosceles, we only have to consider 9 possibilities for SCUC similar to Vα (the
other 9 possibilities created by switching the orientation of Vα will result in the
same configurations).

We will denote the vertices of Uα as PQR so that α = |∠RPQ| and |∠PQR| ≥
|∠QRP | and the triangle similar to Vα that we fit Uα into will be V ′

α = KLM so
that α = |∠MKL|. Note that α is the largest angle in △PQR, as we observed
earlier (Observation 5.6).

Then in Figure 5.11 we can see all the 9 configurations.

K

L M = R

P

Q

(a)

K = Q

L = R M

P

(b)

K = R

L MP

Q

(c)
K = R

L MP Q

(d)

K = P

L M = R

Q

(e)

K = Q

L M

P

R

(f)
K

L = R MP

Q

(g)

K = R

L M

P

Q

(h)

K = P

L M = R

Q

(i)

Figure 5.1: Maximally fitting Uα into Vα in case (a)

Now we show that △KLM in the configuration (a) is smaller (not neccesarily
strictly) than △KLM in the other configurations.

In (a) △KPM is similar to △PQR, which makes ∠MKP the largest angle
in △KPM and therefore the side PM is the largest. That means |KM | ≤ |PR|.

In (b), (d), (f), (h) the segment RQ, which is the longest side of △PQR, is
between the point K and the base LM of the triangle V ′

α. Therefore the leg of
the triangle must be at least as long as RQ, which is longer than PR.

In (c) the segment RQ lies on the leg of V ′
α and therefore the leg is no smaller

than RQ too.
In (e) and (i) (which are the same configuration) |KM | = |PR|.

1note that for simplicity the pictures are scaled so that the triangle KLM is the same size,
even though all the triangles PQR are congruent
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In (g) △KQL is congruent with △PQR and so |PR| = |KL| = |KM |.

Constructing SCUC of {Uα, Vα}

We take the configuration (a) and construct points K ′ and M ′ on the segments
KL and LM respectively so that △K ′LM ′ is congruent wth Vα. Denote T =
△K ′LM (Figure 5.2).

K

L M = R

P

Q

K ′

M ′

Figure 5.2: Constructing a SCUC of Vα and Uα

We see that

a(V ′
α)

a(Vα) = a(△KLM)
a(△K ′LM ′) =

(︄
|LM |
|LM ′|

)︄2

=
(︄

a(△K ′LM)
a(△K ′LM ′)

)︄2

=
(︄

a(T )
a(Vα)

)︄2

and so, according to Lemma 4.4, T is indeed a smallest convex universal cover of
the family {Vα, Uα}.

Fitting each triangle into T

Now we show that we can fit every element of M into T , which would mean that
T is a SCUC of M.

Let △S be an element of M. Then we construct point X on the circumcircle of
△K ′LM ′ so that △XLM ′ is congruent with S. That is possible, since |LM ′| = a
and |∠M ′K ′L| = α is an inscribed angle with chord LM ′. Now we move the
triangle XLM ′ alongside the line LM ′ so that X lands on the segment K ′L
(and points L and M ′ land on the same line). This forms a triangle ABC, also
congruent with S (Figure 5.3).

The only thing left to show now is that each vertex of △ABC lies in T .
Let Y be the middle of the smaller arc between K ′ and L on the curcumcircle

of △K ′LM ′. Then |∠LM ′Y | = |∠LM ′K ′|/2 and therefore △Y LM ′ is congruent
with △PQR, which means that |Y P | = |M ′R|. Also because of the way we
constructed triangle ABC, |XA| = |M ′C|. Now let X ′ be the perpendicular foot
of X onto the line LK ′, similarily Y ′ for the point Y . Notice that triangles XX ′A
and Y Y ′P are similar. Since Y is in the middle of arc LK ′, then |XX ′| ≤ |Y Y ′|,
which implies |XA| ≤ |Y P |, which implies |M ′C| ≤ |M ′R|. From that we see
that C lies on segment M ′R, then also B lies on segment LC and we already
know that A lies on segment LK ′. Therefore all three vertices lie in T .

13



K ′

L M ′

Y P

Q R

Y ′

A

B C

X

X ′

Figure 5.3: Fitting triangles in T

5.1.2 Case (b)
In this case α ≤ 1

3π.
Here we take triangles Vα and Pα and find their SCUC.
If V ′

α is SCUC of the family {Vα, Pα}, then, as we observed earlier in Observa-
tion 2.3, the diameter of V ′

α is at least the diameter of Pα, which is its hypotenuse.
And since the diameter of V ′

α is its longest side (Observation 2.2), that has to be
at least as long as the hypotenuse of Pα. Knowing that, we can construct triangle
T , which we will later prove to be a SCUC of the family {Vα, Pα}.

Constructing SCUC of {Pα, Vα}

Construct △PQR which is congruent with Pα such that |∠RPQ| = α, |∠PQR| =
π/2 and |QR| = a. Then construct △KLM similar to Vα such that K = P ,
M = R and Q ∈ KL. Then place points L′ and M ′ on the segments KL and
KM respectively so that △KL′M ′ is congruent with Vα. Then T = △KL′M
(Figure 5.4).

K = P

L′ M ′

Q

M = RL

α

Figure 5.4: Constructing a SCUC of Vα and Pα
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As we observed earlier, KLM is SCUC of {Vα, Pα}, because the longest side
KM is the same length as the hypotenuse of △PQR (and also contains copies of
both triangles). Denote V ′

α = △KLM .
Then the following holds:

a(V ′
α)

a(Vα) = a(△KLM)
a(△KL′M ′) =

(︄
|MK|
|M ′K|

)︄2

=
(︄

a(△KL′M)
a(△KL′M ′)

)︄2

=
(︄

a(T )
a(Vα)

)︄2

,

and so, according to Lemma 4.4, T is indeed a smallest convex universal cover of
the family {Vα, Pα}.

Fitting each triangle into T

Now we show that we can find a congruent copy of an arbitrary triangle S from
M in the triangle T .

Let X be a point on the circumcircle k of KL′M ′ so that the triangle XL′M ′

is congruent with S (which is possible, because |L′M ′| = a and the inscribed
angle with chord L′M ′ is of size α). Since K is in the middle of the arc L′M ′,
|L′X| ≤ |L′K|. We also know that the circumcircles of triangles Pα and Vα are
congruent, and so PR is of the same length as the diameter of k, which means
that every chord is no greater than |PR|. Thus |XM ′| ≤ |KR|. Now we know
that we can construct points B and C on segments KL′ and KM ′ respectively
so that |XL′| = |KB| and |XM ′| = |KC|, which makes triangle KBC congruent
with S and it is clear that it lies in the triangle T = KL′M .

K = P

L′

X

M = R

B

C

k

α
α

Figure 5.5: Fitting triangles into T

5.1.3 Case (c)
In this case π/3 ≤ α ≤ λ.

First we will take a SCUC of triangles Vα and Uα and then we will show that
it is also a SCUC of the whole family M. For that we first have to find SCUC of
{Uα, Vα} similar to Vα.
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Finding SCUC of {Uα, Vα} similar to Vα

As we observed earlier in Observation 5.6, in this case is the angle PQR the
largest angle in Uα and so the incidences in some of the 9 configurations change
(Figure 5.6). We denote vertices and angles the same way we did in (a).

K

L M = R

P

Q

(a)

K

L = R M

P

Q

(b)

K = R

L MP

Q

(c)
K = R

L MP Q

(d)

K = P

L M = R

Q

(e)

K

L = R M

P

Q

(f)
K

L = R MP

Q

(g)

K = R

L M

P

Q

(h)

K = P

L M = R

Q

(i)

Figure 5.6: Maximally fitting Uα into Vα in case (b)

Now we show that △KLM is the smallest (not neccesarily strictly) in the
configuration (g):

In (g) △PQR and △KQL are congruent and so the leg of △KLM is the
same length as segment PR.

In (c) and (d) the segment PR lies between vertex K and the base LM ,
therefore the leg of △KLM has length of at least |PR|.

In (e), (h), (i) the segment PR lies on the leg of △KLM , therefore the leg
has length of at least |PR|.

In (a) the triangles PQR and KPR are similar, therefore KR is the largest
side of △KPR, which means |KR| ≥ |PR|.

In (b) we see that |∠LPK| ≥ α = |∠LKP |, which means that LK is the
longest edge of △KPL, implying |KL| ≥ |PR|.

In (f) △KLP is isosceles and so |KL| = |PR|.
Now we have SCUC similar to Vα and we can construct △T—a smallest convex

universal cover of family {Vα, Uα}, as we will then show.
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Constructing SCUC of {Uα, Vα}

We take configuration (g) and construct points K ′ and L′ on segments MK and
ML respectively so that △K ′L′M is congruent with Vα. Now let T = △K ′LM
(Figure 5.7).

K

L = R MP

Q

K ′

L′

α

α

αγ

Figure 5.7: Constructing a SCUC of Vα and Uα

We see that

a(V ′
α)

a(Vα) = a(△KLM)
a(△K ′L′M) =

(︄
|LM |
|L′M |

)︄2

=
(︄

a(△K ′LM)
a(△K ′L′M)

)︄2

= a(T )
a(Vα) ,

and so, according to Lemma 4.4, T is indeed a smallest convex universal cover of
the family {Vα, Uα}.

Fitting each triangle into T

Now we show that we can find a congruent copy of an arbitrary triangle S ∈ M
in T .

We will distinguish three cases, depending on the size of the smallest angle in
S, which we will denote ω. Also let |∠QRP | = γ.

(A) ω ≤ γ

(B) γ ≤ ω ≤ |∠K ′RM |

(C) |∠K ′RM | ≤ ω ≤ 2γ

Case (A)
Here we assume ω ≤ γ.

We know that α ≥ π/3 and therefore γ ≤ (π − π/3)/4 = π/6. Then
|∠RQM | = π − |∠QRM | − |∠RMQ| = π − 3γ ≥ π/2.
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Let k be the arc of a circle with the center R and radius |RQ| defined by the
angle QRM . Since |∠RQM | ≥ π/2, the whole arc k lies on one side of the line
K ′M , thus in T .

Now we can place a point Q′ on k so that |∠MRQ′| = ω. Then we place a
point P ′ on the line RM so that |∠RP ′Q′| = α. Since |∠RP ′Q′| ≥ |∠RMQ|,
point P ′ must lie on the segment RM .

Triangle P ′Q′R is congruent with S and all of its vertices lie in T (Figure 5.8).

K ′

L′ M

Q′

P ′

Q

R

α

αω

k

Figure 5.8: Fitting triangles into T (A)

Case (B)
Here we assume γ ≤ ω ≤ |∠K ′RM |.

Let Q1 be a point on the line K ′M such that |RQ1| = |RQ| and Q1 ̸= Q
(unless when α = π/3 and |∠RQK ′| = 3γ = π/2, in which case let Q1 = Q) and
let P1 be also a point on K ′M such that |∠RP1Q1| = α (Figure 5.9).

K ′

L′ MP

Q

R

Q1

P1
α

3γ

3γ

Figure 5.9: Constructing P1Q1R

We see that |∠RQK ′| = π − α − γ = 3γ and therefore if α ≥ π/3, then the
angle RQK ′ is not obtuse. That means, that Q1 lies on the ray

−−→
QK ′.

Triangle Q1RQ is an isosceles triangle, thus |∠QQ1R| = |∠Q1QR| = 3γ.
With that we can see that △P1Q1R is congruent with △PQR.
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We will show that Q1 lies in T for α ∈ [π/3, λ]. For that we will use a bit of
analytic geometry.

Without loss of generality, let a = 1. Then let the midpoint of L′M be the
origin and

L′ =
(︃

−1
2 , 0

)︃
,

M =
(︃1

2 , 0
)︃

,

K ′ =
(︄

0,
1

2 tan α
2

)︄
.

Since we know the size of the angle QRM and that |QR| = 1, the y coordinate
of the point Q is sin((π − α)/4) and as it lies on the line K ′M , we can calculate
the x coordinate too:

Q =
(︃

− sin π − α

4 · tan α

2 + 1
2 , sin π − α

4

)︃
.

Finally we can deduce the x coordinate of R from Q and so

R =
(︃

− cos π − α

4 − sin π − α

4 · tan α

2 + 1
2 , 0

)︃
.

If Q1 is to lie on the segment K ′M , it must hold that |K ′R| ≥ |Q1R|. When
expressing the length of K ′R we get the following inequality.

|K ′R| =
(︃

− cos π − α

4 − sin π − α

4 · tan α

2 + 1
2

)︃2
+
(︄

1
2 tan α

2

)︄2

≥ 1 = |Q1R|.

Now that we can see where the expression (Λ) comes from, we can prove
Lemma 5.2.

Proof of Lemma 5.2. We see that (Λ) being equal to 0 is equivalent to |K ′R|
being equal to 1. That is equivalent to |K ′R| = |Q1R|, which is equivalent to
K ′ = Q1. We shall show, that the lengths of QQ1 and QK ′ are equal only for
one value of α.

Let us define two functions f(δ) and g(δ) as the lengths of QQ1 and QK ′

for when α = δ (f(δ) = |QQ1| and g(δ) = |QK ′|). We show, that f is strictly
increasing while g is stricly decreasing.

• Triangle RQQ1 is an isosceles triangle with the angles adjacent to its base
the size of 3γ. The length of its legs is constant (|RQ| = |RQ1| = 1) and
so the smaller the angle by the base, the longer the base. And since 3γ is
strictly decreasing, the length of QQ1 is strictly increasing.

• By increasing α the height of △K ′L′M is decreasing and so is |K ′M |. In
addition to that we see that the x coordinate of Q is also strictly decreasing,
as both

sin π − α

4 and tan α

2
are strictly increasing (on our interval). Therefore the length of K ′Q is
strictly decreasing too.
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For α = π/3 is |∠RQK ′| = π/2 and so the triangle RQQ1 is a degenerate
triangle where Q = Q1. Therefore f(π/3) ≤ g(π/3).

On the other hand for α = 3π/7 it holds that |∠QRQ1| = γ ≥ |∠QRK ′|, thus
clearly f(3π/7) ≥ g(3π/7)

Now from the intermediate value theorem we see that for α in between the
values of π/3 and 3π/7 it it holds exactly once that f(α) = g(α).

Because of the monotonicity of both functions from the proof we also see that
for α ≤ λ it holds that f(α) ≤ g(α) and so the point Q1 lies on the segment K ′Q.
Otherwise f(α) ≥ g(α).

Now let us distinguish two cases depending on the size of ω.

• γ ≤ ω ≤ |∠MRQ1|:
Let l be the circumcircle of the triangle P1Q1R and P ′ a point on its arc
between P1 and RM so that |∠Q1RP ′| = ω. △P ′Q1R is congruent with
S and since |∠RMQ1| ≤ |∠RP ′Q1|, P ′ lies in T and so do the other two
vertices (Figure 5.10).

K ′

L′ MR

P ′

Q1

P1
α

α
ω

l

Figure 5.10: Fitting triangles into T (B1)

• |∠MRQ1| ≤ ω ≤ |∠MRK ′|:
Let m be a circle with center R and radius a and Q′ a point on its arc
between Q1 and RK ′ so that |∠Q′RM | = ω. Then let P ′ be a point on
RM such that |∠RP ′Q′| = α (Figure 5.11).
Now △P ′Q′R is congruent with S and since |∠RQ1K

′| ≥ π/2, the arc
(including Q′) is in T . So is P ′, because |∠RP ′Q′| ≥ |∠RMK ′|.
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K ′

L′ MR

Q′

P ′

Q1

αω

Figure 5.11: Fitting triangles into T (B2)

Case (C)
Here we assume |∠K ′RM | ≤ ω ≤ 2γ.

Vα has the largest height opposite to the angle α out of all the triangles
in M. Therefore we can place a point P ′ on the height K ′V so that |P ′V |
equals the height of S. Then we place R′ on the ray −→

V R and Q′ on the ray−−→
V M so that △P ′Q′R′ is congruent with S. Now as |∠K ′RM | ≤ |∠P ′R′Q′| and
|∠K ′MR| ≤ |∠P ′Q′R′ both Q′ and R′ lie on the segment RM .

We have found △P ′Q′R′ that lies in T and is congruent with S.

K ′

L′ MR VR′ Q′

P ′

α

ω

Figure 5.12: Fitting triangles into T (C)

5.2 Proof of Theorem 5.5
First of all, if the family L consists only of one triangle, it is clear that our theorem
holds. So further we assume, that there are at least two triangles in L.

This proof will be very similar to the proof of case (a) (5.1.1) of Theorem 5.3.
However, we can not choose the same triangles as before, as they might not be
in the family L. We will take a different pair of triangles.
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First, we take the triangle V , which is the triangle with the largest height
(perpendicular to the base of length a). Then let k be its circumcircle. We know,
that a copy of every triangle from the family M can be constructed as a triangle
RLM , where R is a point on the longer arc of k between the points L and M .
Since KLM is the higest triangle from L, a copy of every triangle from L can
then be constructed as a triangle PLM , where P is a point on the shorter arc of
k between K and L. Let d be the distance between P and the line KL. Then let
U be the triangle from L with maximal d

We will construct the SCUC of U and V and then show, that it is also a
SCUC of the whole family L.

Finding SCUC of {U, V } similar to V

Let V ′ be the SCUC of U and V similar to V . Then let V ′ = △KLM so
that α = |∠MKL| ≥ |∠KLM | ≥ |∠LMK| and U = △PQR so that α =
|∠RPQ| ≥ |∠PQR| ≥ |∠QRP |. From the construction of U it is also clear that
|∠QRP | ≤ |∠LMK| and |∠PQR| ≥ |∠KLM |.

Now we consider the 18 possible configurations of maximally fitting U in V ′,
as described in 4.1 (Figure 5.13).

We will show, that V ′ is the smallest (not neccesarily strictly) in the configu-
ration (a).

For referring to points, segments and triangles in a particular configuration
we will be using subscript. For example triangle ABC in configuration a would
be △ABC(a).

In (a) the segment PR(a) is the longest side of △KPR(a) and therefore
|KM(a)| ≤ |PR|.

In (b), (c), (d), (e), (f), (h), (i), (k), (l), (m), (n), (o), (q), (r) there is either
segment PR or QR leading from the vertex K to the opposite side LM . That
means, that in each of these configurations |KM | ≥ |PR|.

The triangles QLM(p) and △PLM(a) are similar. However, the side PM(a) is
smaller than the side QR(p) and therefore also |LM(a)| ≤ |LM(p)|.

Similar argument can be applied for the pair of similar triangles QLM(g) and
PLM(j) and that leads to |LM(j)| ≤ |LM(g)|.

Triangles PQL(a) and PQM(j) have congruent sides (PQ) and the same angle
adjacent to it (|∠PQL(a)| = |PQM(j)|). Then since |∠QPM(j)| ≥ |∠QPL(a)| we
see that |QM(j)| ≥ |QL(a)|. And then

|LM(a)| = |QL(a)| + |QR(a)| ≤ |QM(j)| + |QR(j)| = |LM(j)|

and so the triangle V ′ is smaller in (a) than in (j) and therefore also than in (g).
Now that have the SCUC similar to V , we can construct the actual SCUC.

Constructing SCUC of {U, V }

We take the configuration (a) and construct points K ′ and M ′ so that they lie
on the segments KL and LM respectively and K ′LM ′ is congruent to V . Since
V has larger height than U , point K ′ will lie on the segment KP . Then let
T = △K ′LM (Figure 5.14).
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L M
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Q
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Figure 5.13: Maximally fitting U into V
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K

L M = R

P

Q

K ′

M ′

Figure 5.14: Constructing SCUC of V and U

We see that
a(V ′)
a(V ) = a(△KLM)

a(△K ′LM ′) =
(︄

|LM |
|LM ′|

)︄2

=
(︄

a(△K ′LM)
a(△K ′LM ′)

)︄2

=
(︄

a(T )
a(V )

)︄2

and then, according to Lemma 4.4, T is a smallest convex universal cover of the
family {V, U}.

Fitting each triangle into T

Now we will find a congruent copy of an arbitrary triangle S from L in T in order
to show, that T is a SCUC of the family L. We will do that the same way as in
Section 5.1.1.

We construct point X on the arc of the circumcircle k of △K ′LM ′ between the
points K ′ and L so that △XLM ′ is congruent with S. Then we move △XLM ′

along LR so that X lands on the point A on K ′L, creating another congruent
copy of S—triangle ABC.

Let Y be a point on the arc of k between K ′ and L such that △Y LM ′ is
congruent with △PQR.

Let Y ′ and X ′ be the perpendicular feet from X and Y onto K ′L respectively.
Then triangles Y Y ′P and XX ′A are similar. By the definition of U , |Y Y ′| ≥
|XX ′| and therefore |Y P | ≥ |XA|, which implies |M ′R| ≥ |M ′C| and so C lies
inside T . So do the other two vertices of △ABC, which means we have found a
congruent copy of S in T (Figure 5.15).

K ′

L M ′

Y P

Q R

Y ′
A

B C

X

X ′

Figure 5.15: Fitting triangles into T
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6. Conclusion
In this thesis we have found a smallest convex universal cover of certain families
of triangles, which can, hopefully, get us closer to proving Conjecture 1.2.

However, we have also left a few obvious questions to be answered.
For Conjecture 5.1 to be proved it is left to find a SCUC for when α ∈

(λ, 2π/7). For that, our approach of finding a SCUC of two elements seems to
come short and probably a different method is needed.

For Conjecture 5.4 to be proved we would have to extend Theorem 5.5 to
infinite subsets and also an acute angle α. In our proof of Theorem 5.5 we relied
heavily on knowing the longest side of each triangle in L. That ensured that we
knew the ordering of angles of our triangles U and V and finding their SCUC
similar to V was rather simple (Section 5.2). This is not the case for an acute
value of α, which would lead to many different cases. We also relied on the subset
being finite when we picked a triangle with the maximal height. This would not
be possible with infinite subsets. However, we believe that choosing supremum
from the set would lead to a solution.
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