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Abstract: Modern compilers attempt to optimize programs as much as possible.
One such significant effort is Link–Time Optimization (LTO). LTO takes the
whole program as accessible to a linker, and performs global optimizations that
are impossible in previously local compilations. Because of the global nature,
LTO must be performed in full in each compilation, which results in long compile
times even in edit–compile cycles. Incremental compilation can reduce compile
times of edit–compile cycles by reusing unchanged objects.

This thesis aims to implement incremental compilation for Link–Time Optimiza-
tions of GNU Compiler Collection, specifically of local transformation phase. We
implement incremental compilation by caching files of compilation units of local
transformation.

For best success of incremental compilation we also aim to minimize number
of changed compilation units after small edit. We achieve this in two ways.
First, we create better partitioning strategy, that concentrates the changes into
fewer compilation units. Second, we analyzed sources of divergence and, if easily
possible, removed them. That includes stabilizing values and fixing streaming and
inter–procedural optimizations to increase their robustness against small edits.
Both without influencing quality of the final binary.
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Introduction
Modern compilers provide increasing amount of optimizations. Traditionally op-
timizations are performed only locally in code corresponding to a single source
file, but for last 2 decades optimizations across source files are becoming com-
mon. Cross source files optimizations may provide direct benefit of performance,
smaller code size, and better warnings. They also have indirect benefit of requir-
ing less strict decomposition into source files to achieve best performance.

Compilers such as GNU Compiler Collection and LLVM implement cross
source file optimizations using Link–Time Optimizations (LTO). Some Linux dis-
tributions, such as SUSE since 20191, already turn LTO on by default for their
packages. With such widespread adoption, it is important to make the develop-
ment with LTO enabled as painless as possible. While it is possible to develop
with LTO disabled and only use LTO for the final binary, their behavior may
not be entirely identical, be it in performance or because of bugs. Thus it is
desirable to reduce compile times of LTO for edit–compile cycles with typically
minor changes. Such reduction can be achieved by incremental compilation, which
reuses unchanged results of local transformation units from previous edit–compile
cycle. This is already implemented in LLVM.

This thesis aims to implement such incremental compilation in GNU Com-
piler Collection. In addition we analyze sources of divergence which make reuse
impossible, in many cases even without influencing the quality of the final binary.
And in such cases we attempt to remove these sources by stabilizing values and
by making some algorithms in GCC more robust against small changes.

Section 1 introduces the reader into the world of compilers ending with ex-
planation how LTO works in GCC and quick overview of alternative approaches
LIPO and LLVM’s ThinLTO. Section 2 describes how we implement the incre-
mental compilation with cache. In Section 3 we design partitioning strategy that
partitions local transformation units to minimize propagation of divergence. In
Section 4 we analyze the sources of divergence and attempt to fix them. In Sec-
tion 5 we explain how to apply our changes to GCC and how to use them. In
Section 6 we measure how successful is our implementation in reusing results of
local units.

1https://lists.opensuse.org/archives/list/factory@lists.opensuse.org/
message/UT2YVWPZK2IZ5EUHMSHNCW3Q72CMPWCJ/
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1. Introduction to Compilers and
Link–Time Optimization

1.1 Compilers
Compilers are programs that translate program description from one language to
another [Muc+97]. Most common example is to translate from a programming
language, such as C, to machine code of target architecture. However this trans-
lation is often not done directly, and there exist multiple intermediate languages.

We will be working on GNU Compiler Collection1 (GCC). GCC is open source
compiler supporting many programming languages such as C, C++, and Fortran,
and many target architectures. It is the primary compiler used in Linux ecosys-
tem.

1.2 Optimizations
Important feature of modern compilers are optimizations. In a language there
may exist multiple ways to describe an identical program. Compilers try to find
such transformations that the observable behavior of a valid program is identical,
while the program requirements improve — such as faster execution or smaller
binary size.

Optimizations are usually done on intermediate languages designed for easier
and faster modification useful for given optimization strategy. Following is a list
of examples of simple transformations:

• Dead code elimination removes parts of the program that will never be
used/executed [Muc+97, p. 592]. Trivial examples would be unused vari-
able or if(false) statement. Such a statement might not be common in
code written directly by a programmer, but it is common result of other
optimizations.

• In most programs there are variables that do not change their value dur-
ing any execution of the program. During constant propagation compiler
identifies such variables and replaces their usage with a constant [Muc+97,
p. 362]. This then allows other passes such as dead code elimination.

• Inlining replaces call to a function by copy of the function’s body [Muc+97,
p. 465]. This removes overhead required to call a function, which may
be significant for trivial functions. However the more important result of
inlining is that it allows optimizations across, now nonexistent, function
boundary.

Modern compilers contain hundreds of such optimization passes. We will focus
on inter-procedural optimizations. List of such optimizations is in Section 1.5.3.

1https://gcc.gnu.org/
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1.3 Standard compilation
Large programs consist of multiple source files. In standard compilation each
source file is compiled into machine code as one compilation unit with no interac-
tion with other source files. Results of these compilation units are represented as
object files. Object files contain symbols which can represent for example func-
tions, variables, and debug information. Object files are then glued together by
a linker. This process is shown in Figure 1.1.

Since the compilation units are unrelated, this process can be trivially paral-
lelized. It also allows trivial incremental compilation, by simply reusing object
files from previous compilation as long as the corresponding source file has not
changed.

source1.c

source2.cpp

source3.f

obj1.o

obj2.o

obj3.o

linker executable

Figure 1.1: Standard compilation

1.4 Link–Time Optimization (LTO)
While the standard compilation has many benefits given its simplicity, it also
misses many opportunities to optimize the code across source files. These un-
realized opportunities to optimize across source files is the target of Link–Time
Optimization (LTO). It also allows us to optimize across different programming
languages.

As the name suggest these further optimizations are done during linking where
we can see the whole program at once. Initial compilation is similar to the
standard compilation and covers the local optimizations. However because the
program will be further optimized, the object files now must contain intermediate
language instead of final machine code.

LTO is not a new concept. In 1990 there was attempt to implement LTO
directly as part of linker, called loader in Plan 9 [Tho90].

1.5 GCC LTO
LTO in GCC was designed [05; Bri+07] and implemented [GH10] in years 2005–
2010 and since 2019 it is in some Linux distributions turned on by default2. First
was LTO mode [05] which reads the whole program at link–time and optimizes it
as if it was single compilation unit, which is not parallelized. Later came WHOPR
mode [Bri+07] which divides link–time optimizations into hard to be parallelized
global phase and easily parallelizable local units phase which should do most of

2https://www.phoronix.com/news/OpenSUSE-Tumbleweed-LTO
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the work. This leads to shorter compile times and less memory usage than LTO
mode. We will talk only about WHOPR mode of LTO and call it simply LTO.

We represent the program using a callgraph (with nodes being functions and
edges being call between them). We do so because inter–procedural passes, the
main focus of LTO, depend on call relations of functions which is well represented
by the callgraph.

LTO in GCC consists of 3 main stages: [GH10, p. 3]

• Local generation (LGEN) happens in place of compilation units of standard
compilation and can be identically parallelized. LGEN mimics compilation
units of standard compilation, so that they can share large parts of im-
plementation, and so LTO can be enabled by single -flto flag without
changing building process. The source files are compiled into intermediate
language and packed into lgen object files together with their summary
information.

• Whole program analysis (WPA) is the only phase which works with the
whole program and thus is difficult to parallelize. It decides what transfor-
mations should be made, but it only modifies the summaries. The trans-
formation itself is postponed into later parallelizable stage. At the end it
partitions the global callgraph into several local callgraphs into ltrans.in
object files, one for each LTRANS unit.

• Local transformation (LTRANS) transforms the code from ltrans.in ac-
cording to optimization summaries from WPA into ltrans.out.

The basic relations of these stages and linker is shown in Figure 1.2.

source1.c

source2.cpp

source3.f

lgen1.o

lgen2.o

lgen3.o

LGEN

LGEN

LGEN

linker executable

linker plugin

LTO wrapper
resolution file

lgen1.o

lgen2.o

lgen3.o

WPA

ltrans1.in.o

ltrans2.in.o

ltrans3.in.o

ltrans1.out.o

ltrans2.out.o

ltrans3.out.o

LTRANS

LTRANS

LTRANS

Figure 1.2: GCC LTO compilation
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1.5.1 Local generation (LGEN)
LGEN compiles source files into intermediate language. LGEN performs early
optimizations, with inter–procedural optimizations being limited by local knowl-
edge. While these optimizations could be performed in later stages, this phase is
easiest to reuse and thus it is preferable to keep the work in early stage [GH10,
p. 3]. Implementation of these optimizations is shared with standard compilation.

Function bodies are analysed and relevant information is streamed into object
files as summary, along with the intermediate code.

1.5.2 Linker plugin — LTO wrapper
GCC inserts itself into linker using linker plugin [GH10, p. 6]. Plugins are not
specific to GCC and are supported by multiple linkers. Such a plugin can rec-
ognize object files compiled with LGEN, and replace them with LTO optimized
object files. It also gains information how the symbols are resolved which is writ-
ten into resolution file. The resolution information specifies how the symbols will
be linked together, and from it we can find out whether symbols are exclusive to
our LTO context or they are externally visible by for example a shared library
which we do not optimize with LTO.

The linker plugin sends the recognized object files to lto_wrapper which
executes WPA and LTRANS stages and returns back LTO optimized files.

1.5.3 Whole program analysis (WPA)
WPA takes all the object files and tries to find possible optimizations between
them. WPA contains many passes, that may become relevant to our caching
effort. Chronologically:

1. Tree merging streams in types and declarations from object files and unifies
duplicates.

2. Linking creates a global callgraph according to resolution file.

3. Summary based optimizations:

(a) Symbol promotion takes global symbols and if possible localizes them
by making them static. This then allows local reasoning about the
symbol. For example it can remove the symbol if it is inlined in all
locations.

(b) Profile propagation. Profiles, either measured or estimated, specify
how often is each part of the callgraph expected to be used. This pass
propagates these estimates across function boundaries.

(c) Identical code folding finds identical duplicates of functions and merges
them [Lǐs14]. Such duplicates may be a result of templates with similar
types.

(d) Devirtualization turns polymorphic calls using virtual functions into
direct calls [Hub14]. In clearest example, if virtual function is im-
plemented only by one class, we can call that single implementation
directly.
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(e) Iter–Procedural Constant propagation analyses arguments of functions
to find which are constant. It also can create cloned versions of func-
tions which specialize for a given constant [LN05].

(f) Scalar Replacement of Aggregates optimizes functions arguments by
replacing an aggregate, such as struct, with only its contents. This is
useful for example when only single struct member is used inside the
function [Jam09].

(g) Constructor merging creates a function that calls all static construc-
tors. In ideal circumstance the call will be inlined and we will have a
single function initializing the whole program [GH10, p. 9]. This way
the constructors are together, and we reduce how much of the binary
must be read to execute static constructors at the start of the program
execution.

(h) Inlining, as described earlier, inserts function body into caller instead
of the call. During WPA it has much more useful global information
and tries to inline as much as usefully possible within its parameters
[GH10, p. 9]. Inlining across source files is among the main benefits of
LTO. It is also the most time consuming pass of WPA.

(i) Function attribute discovery auto–detects optimization hints in form
of attributes, such as noreturn, const [GH10, p. 7, 10].

(j) Mod–Ref and Reference passes identify which memory locations (func-
tion arguments, static variables) can be modified or referenced by any
given function [Hub21]. It is useful for preventing unnecessary reads
after calling a function that does not access the value.

4. After optimizations global callgraph is partitioned into partitions, each cor-
responding to one compilation unit during LTRANS phase.

5. After partitioning we need to fix static symbols. If original LGEN unit is
split into multiple partitions, and at least 2 of those partitions interact with
the same static symbol, the symbol must be promoted to be global. If a
global symbol with the same name already exists, it must be also renamed.
If two LGEN units are partitioned together and both have identically named
static symbol, their names must be changed to be unique.

6. Finally, symbols and optimization summaries of each partition are streamed
out into corresponding ltrans.in file.

1.5.4 Local transformation (LTRANS)
Local transformation phase works on local compilation units which can be easily
parallelized. Each LTRANS unit transforms the callgraph based on optimization
summaries from WPA phase.

They start with ltrans.in object files containing intermediate language and
end with ltrans.out object files containing machine code, which are fed back to
linker.

8



1.5.5 Early debug
In LTO debug information is handled separately from WPA and LTRANS phases
using early debug [Bie15]. LGEN creates debug information and streams it into
lgen file. However it is not linked directly with any declarations. Instead symbol
of LGEN compile unit and offset into it’s debug symbols is used to identify debug
information in WPA and LTRANS.

When building ltrans.out, LTRANS adds shadow early debug with the sym-
bol and offset pair, which during final linking will be replaced with corresponding
debug information by linker.

1.6 Alternative approaches
It is good to mention that there exist multiple different approaches to cross source
file optimizations.

1.6.1 LIPO
Lightweight feedback-directed cross-module optimization (LIPO) [LAH10] achieves
cross source file optimizations without use of LTO. Instead it first requires mea-
sured profile specifying which function calls are used the most for typical inputs.
With the profile the compilation starts again, each source file having its indi-
vidual compilation unit. However depending on the profile, the source file is
temporally joined with another source files to allow inlining of likely candidates.
After inlining phase, everything from the other joined file is thrown away.

This has benefit that it is easily parallelizable, does not require any special
intermediate language or support from linker, but there needs to be support from
front–end to be able to combine source files.

The negatives are that it requires profiling, does not mix languages well. Also
because there is no phase with global knowledge, some optimization passes are
impossible.

LIPO was implemented for GCC by Google, but it never became official part
of GCC and is no longer maintained. Relatively few users use profile feedback
required for LIPO and standard LTO became the focus.

1.6.2 ThinLTO
LLVM3 is another open source set of compilers which is the major competitor to
GCC. It contains ThinLTO [JAL17], LTO implementation that aims to be highly
parallelizable.

ThinLTO is similar to GCC in the structure of phases, but is inspired by LIPO
to further thin out the global phase even at cost of optimization opportunities.
It uses similar 3 phases:

• Compile phase is principally identical to LGEN.

• Thin link is a serial global phase similar to GCC’s WPA with the main
difference that it only works purely with summaries. While GCC’s WPA

3https://llvm.org/
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also loads the intermediate representation from object files and partitions
them. It is intended to be as minimal as possible, and does not do any
complex passes.

• ThinLTO backend is parallelizable phase similar to LTRANS. However each
ThinLTO backend corresponds to a single Compile unit and starts with ob-
ject file of that unit. The ThinLTO backend reads the summaries and
transforms the code according to them. However, because there was no
partitioning step, each unit must import symbols required for these trans-
formations by itself.

Because of the more decentralized nature it is easier to parallelize, but some op-
timizations are not possible during local importing instead of global partitioning.
This leads to worse and larger generated code.

ThinLTO implements incremental strategy very similar to the one we created
in this thesis. Both ThinLTO and our implementation use cache on disk using
hash for lookup, to skip compilation of given LTRANS unit. ThinLTO computes
the hash of object file from Compile phase, which is identical to object file from
backend phase, and of the summaries. GCC implementation combines these two
objects into ltrans.in file, containing both the symbols for LTRANS phase and
the summaries, of which our implementation takes the hash. The major difference
is that ltrans.in can contain much more information created during WPA, and
thus there are more possibilities for divergence, intended or not.

10



2. Incremental Compilation -
Cache

2.1 Incremental Compilation
Incremental compilation is a compilation that reuses results from previous com-
pilation runs. It is useful to reduce needless work and thus reduce edit–compile
cycle times.

With standard non–LTO compilation, compilation units are local and don’t
influence each other. So we only need to recompile changed source files. In typical
case, the developer changes a single source file, in which case only a single file
must be recompiled leading to fast edit–compile cycles. Build systems, such as
make, can simply check which source files were modified after the last compilation.

With LTO ltrans.in files are recreated during each compilation and can be
potentially influenced by any source file. However it still holds, that if ltrans.in
is identical, ltrans.out will be identical as well. It is also reasonable to as-
sume, that small changes in source files will change only small amount of code
at LTRANS stage. With good partitioning the changes may be localized to few
partitions and many ltrans.in files will be identical to the ones in previous
compilation.

To achieve incremental compilation, we implement cache around LTRANS
phase, as suggested in Figure 2.1, which holds ltrans.* file pairs and will com-
pare new ltrans.in files against them and in case of cache hit, will skip LTRANS
compilation.

source1.c

source2.cpp

source3.f

lgen1.o

lgen2.o

lgen3.o

LGEN

LGEN

LGEN

linker executable

linker plugin

LTO wrapper
resolution file

lgen1.o

lgen2.o

lgen3.o

WPA

ltrans1.in.o

ltrans2.in.o

ltrans3.in.o

ltrans1.out.o

ltrans2.out.o

ltrans3.out.o

LTRANS

LTRANS

LTRANS

Cached

Figure 2.1: GCC LTO compilation with cache
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2.2 Time spent during WPA vs LTRANS
Before we implement the cache, it is needed to establish that LTRANS takes
significant amount of time, so that cache can have any impact. We can exclude
LGEN phase, because it’s incremental compilation is trivial just as standard
compilation. Thus we compare only WPA with LTRANS.

LTRANS by design is supposed to do majority of work. However it is also
parallelizable while WPA is not.

For attachment A.2 we tried to self compile GCC’s C++ compiler cc1plus
on machine with 24 threads. The WPA took 13s and in total real time and whole
LTO took 52s. Thus even on such relatively parallelized machine the LTRANS
is the bottleneck of LTO. Thus the cache would be useful to decrease the LTO
compile time.

Furthermore, in the attachment there is also measured time spent in individual
passes of WPA. It is dominated by two passes: streaming in (14 %) and inlining
(42 %). If WPA becomes the bottleneck, they have a potential to be improved.
GCC developers work on improving WPA compile times, continually improving
it. There are also plans to parallelize WPA with threads but it is a complicated
problem.

2.3 Requirements
Primary purpose of cache is to reuse previously compiled LTRANS partitions.
Identical and only identical ltrans.in files if found in cache will prevent compi-
lation of this partition and cached ltrans.out will be taken.

This should be achieved with low overhead, we will first compare by checksum
and only then we will try to compare ltrans.in files byte by byte.

The cache should be parallelizable. This is needed in case of current build
systems which build multiple executables at the same time. With parallelization
we can simply specify cache globally without changing anything in the build
system. Second reason is potential future use to reuse partitions across similar
binaries, e.g. GCC’s C and C++ compilers.

The cache should have a way to remove longest unused cache items, so that
cache size cannot grow infinitely.

2.4 Design
Whole cache implementation fits into lto-wrapper which is called by linker and
calls WPA and then LTRANS stages.

Relevant patches from A.1 are 3rd and 4th which implement filelock and the
cache itself respectively.

2.4.1 Representation
Environmental variable GCC_LTRANS_CACHE specifies directory where the cache is
located. If the variable is not set, or is not a valid directory the cache is ignored.

12



The persistent cache info contains only ltrans.* pair filenames, checksum
of ltrans.in file to quickly find cache hits, and counter of last usage for each
cache info. Temporary cache info also includes maps from ltrans.in filename /
checksum to cache item.

2.4.2 Caching process inside lto–wrapper
First we can execute WPA phase mostly as normal. However since the resulting
ltrans.in files will likely become part of cache, we need these files to be on
the same disk partition to allow quick move to a new location. We achieve this
simply by instructing WPA to create files in cache directory with some prefix.
The prefix needs to be unique, so that we can run multiple WPA phases at once,
uniqueness is achieved using mkstemps.

After that we setup cache and insert new ltrans.in files, cached ltrans.*
filenames will be given by cache. If the pair already existed in cache, the new
ltrans.in file is deleted. If the pair was not in cache, the new ltrans.in file is
moved into cached ltrans.in filenames, and we are expected to fill ltrans.out
filename by the new compiled file. Then we update cache directory to include
new cache items.

We now need to compile all LTRANS partitions that were not found in cache.
This works mostly as if there was no cache. However without cache, ltrans.in
files are deleted once compilation of given partition is completed, while with cache
we need to keep them.

Finally we have all LTRANS partitions compiled and cache filled and updated.
We need to return these files to the linker, but the linker will delete them, so we
create copy of all returned files using link to prevent deletion from cache.

2.4.3 Pruning
The cache automatically deletes cache items that were unused for the longest
time. To know which cache item was longest unused, each item contains value
of last usage, which is written from global counter whenever some cache item is
used.

When cache is initialized from cache directory, items’ last usage is remapped
to lowest natural numbers while conserving their usage order.

If the cache has too many items, the cache is automatically pruned at the end
of lto-wrapper once everything else is completed. The longest unused items are
deleted until cache size fits into the limit.

2.5 Synchronization
Synchronization is required to allow parallelization. This implementation does
not require locks across neither WPA nor whole LTRANS phase. Only when
pruning is forced, we need to wait for all other accesses to finish.

2.5.1 Filelock implementation
Filelocks are now implemented using fcntl.
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Filelock implementation only needs to implement write-lock and shared read-
lock for cache to function. Which should be available on any platform LTO is
likely to be used on.

2.5.2 Locks Used
Three different lock types are used to synchronize.

• First is a lock for creating new items in cache. This is always write–lock,
only one process can create new items.

• Second are locks for individual cache items. If new cache item is created,
we need to prevent other processes to use this item until the ltrans.out
file is compiled. These locks are never directly on the files related to them,
but they are on files with added suffix. This is because ltrans.out are
handled by different subprocesses and the files can be created/deleted by
them, or filelock implementation could prevent those subprocesses to use
locked files.

• Final one is global deletion lock, that is only needed for deleting items. This
lock is set as read–lock by any process that needs cache items to persist.

2.5.3 Lock Usage
Before and during WPA phase, no lock is needed.

During insertion of new ltrans.in files, we need to hold write-lock for cre-
ating new items. This way we prevent two processes allocating cache item with
identical name. For all cache items that were not already in cache, we write-lock
them, so that no other process can access them until they are compiled. After
updating cache directory, we can release the lock for creating new items.

For all files that we compile, we already hold a write–lock, so LTRANS phase
compiling is synchronized where needed.

To create copies of ltrans.out files for linker, we lock the given cache item
with a read–lock to make sure that compilation of ltrans.out file is finished.
If we already hold write–lock we relock as read–lock, this does not need to be
atomic. After creating copies for linker, all locks can be released.

During all previous steps since before creating new files is locked, read–lock
to deletion lock is held. Now we can try to write–lock deletion lock to prune the
cache from long unused items.

If deletion is important to happen more frequently it would be possible prune
without a global lock and more granularly. Though it would require a second
lock for each file pair, to signify whether the pair is intended to be used.

2.5.4 Impossibility of deadlocks
Deadlocks makes execution of a process impossible because one process while
holding lock A, tries to lock B, while second process holds lock B and unlocking
of B is in some cyclical nature dependent on A being unlocked.

We prevent deadlocks for each individual lock:
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• During holding of a creation lock, only locks on newly created files are
created, which cannot be locked by any other processes.

• While holding locks to individual files, only other locks to individual files
can be locked. Since the we try to read–lock, only previous write–lock can
prevent us locking. Write–locks are only created during creation, read–
locks depend only on files that were already in cache during creation, and
each compilation has only single creation. Thus there cannot be a cyclical
dependence.

• Active deletion write–lock is mutually exclusive with (trying to) holding
any other locks and its creation is optional.
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3. Partitioning Strategy
WPA phase partitions symbols into partitions — ltrans.in files. Each partition
corresponds to a single LTRANS unit which can be cached. For cache to be
successful for a given partition, contents of that partition cannot change from
previous edit–compile cycle.

Partition can change for multiple reasons:

• Symbols can change. This is mostly covered by next chapter. However if
symbol change is inevitable we can minimize number of changed partitions
by concentrating changed symbols together. Further we assume that the
changes made are relatively small and most changed symbols are related
to this change. Thus to reduce this source of divergence, we want to keep
related symbols together.

• Symbols can be created/deleted. This is relatively rare, and mostly covered
by previous point.

• Symbols can be partitioned into different partition. This is main target of
our partitioning strategy. We want to minimize moving symbols from one
partition to another. But we do not care about moving individual symbols,
only about whole partitions.

As secondary goal we want partitioning where partitions have similar sizes, so
that LTRANS phase can be reasonably parallelized. The sizes are counted from
amount of instructions which are only estimated.

3.1 Existing strategies
There already exist several partitioning strategies. None of them are ideal for our
use case.

• Partitioning strategy balanced is current default. It tries to create N
equally sized partitions. This leads to relatively small binaries and good
parallelizable compile times. We want to achieve similar results but also
reduce chances of partitions changing as outlined at the start of chapter.

• Partitioning strategies 1to1 and max are intended for GCC development,
where single partition corresponds to single source file or single symbol
respectively. Such small partitions would be beneficial for caching. However
our main reason for incremental compilation is to work on identical final
binary which will be deployed. Thus the partitioning strategy must be also
suitable for compiling from scratch and then deploying.
Both max and to lesser extent 1to1 result in a lot of small partitions. For
small partitions WPA must stream more data that would otherwise be
shared inside a partition. These duplicates then often persist to final binary,
significantly increasing its size. It also inhibits some optimizations, such as
inter–procedural registry allocation, which happen locally within a single
partition.
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Interestingly we found that in our quick single measurement, while 1to1
was slower in real time, total time was faster than balanced. So the longer
real time was only because some individual compiled files contain almost
10 % of all program instructions. Exact reason why balanced was slower is
yet unclear, likely the tuned parameter of number of partitions is outdated.
In any case, our partitioning strategy starts with results of 1to1 and then
joins xor divides the files to equalize partition sizes. Thus if there is any
fundamental benefit of 1to1 over balanced, our implementation is likely to
get it as well.

• Partitioning strategies one and none which create single partition and com-
pile everything directly in WPA respectively. Neither are useful for caching
since there is only single partition (or none at all).

3.2 Design
Our partitioning strategy is implemented in 5th patch of A.1.

3.2.1 Files
We keep contents of a source file together, to keep related symbols together. This
is also beneficial for partitioning symbols to the same partition. We always move
whole files from one partition to another, which is less frequent than if individual
symbols could change partition slowly one by one.

Most files are small enough so we can combine multiple files into one parti-
tion. If the files are too large we can split a file into multiple partitions. But
for simplicity and reducing sources of divergence, we do not partition generally
multiple files into multiple partition.

3.2.2 Partition set
Partition set is here used as a name of intermediate representation that contains
groups of symbols and number of final partitions n_partitions that these sym-
bols will be partitioned into. Groups of symbols are used to represent files from
previous section and should be kept undivided as long as possible.

Partition sets do not influence each other and do not depend on global state.
If partition set contains symbols with identical instruction sizes, and has identical
n_partitions, distribution of symbols into resulting partitions will be identical.

Partition set with n_partitions=1 is equivalent to final partition with con-
tained symbols.

Only allowed operation partition set is to split it into multiple partition sets.
These new partition sets must disjointly contain all original symbols and their
sum of n_partitions should be the same as original.

All partition sets also contain additional metadata, such as whether symbol
groups are already split into individual symbols.

Target size is simply total instruction count of whole partition set divided by
n_partitions. In ideal situation this would be the size of all partitions resulting
from this partition set.
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3.2.3 Partitioning phases
Partitioning phases are procedures that split a partition set into multiple partition
sets. The phases are intentionally depending on as little information as possible
to reduce divergence.

Each symbol has a defined order in which it appeared in source files or when
it was created during compilation. Some symbols are sensitive to this order and
require to be in the same relative order in the final binary. But most symbols are
not sensitive to change of order, so we can change it most of the time. However
by trying to conserve order of symbols in most phases, we also reduce sources
of divergence. Without conserving order, we can pick and choose any symbol
groups to be in new partition sets. With conserving order, we can only choose
single order which divides all symbol groups into two sets.

At the start of development there were attempts to disregard symbol order
and to join symbol groups which are most connected by for example function calls
between them. Such connections would mean that the symbols are related and
by joining such related groups we concentrate changes to less partitions. This
reduction was observed in average test cases, however divergence of partitioning
symbols to different partitions is much more common. Thus this was abandoned
and simpler phases which conserve order are now used.

Distribution of n partitions

During many phases we first separate symbols into partition sets and only then
we assign n_partitions. In such cases we try to achieve fairness in distributing
n_partitions by following algorithm:

forall i:
new[i].n_partitions = floor(old.n_partitions * new[i].size / old.size)
new[i].n_partitions = max(new[i].n_partitions, 1)

while (sum over i: new[i].n_partitions) <= old.n_partitions:
forall i:
target_size[i] = new[i].size / new[i].n_partitions
new_target_size[i] = new[i].size / (new[i].n_partitions + 1)

j = index with max (target_size[j] + new_target_size[j])
new[j].n_partitions += 1

Where old is the original partition set, new is list of all new partition sets
the original is divided into. The algorithm assumes that amount of new partition
sets is lower than total n_partitions.

In the first loop we add to each new partition the safe lower estimate of
n_partitions. Each partition set must be partitioned into at least one parti-
tion, so we add this lower limit. In doing so, it is possible to overflow the total
n_partitions. In these rare cases, there is also the reverse of the second loop,
which removes n_partitions from partitions with smallest target size.

The second loop tries to fairly distribute rest of n_partitions. We try to
maximize equivalent of:

(target_size[j]-old.target_size)-(old.target_size-new_target_size[j])
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The basic assumption behind this is that in ideal case each new partition set
would have target size equivalent to old.target_size. Thus we consider it to be
positive when target size decreases to this value, and negative when it decreases
further.

Fixed split

Fixed split is the simplest phase intended to be the first. It is designed to not
depend on any information that changes in common edit–compile cycle, so that
divergence in partitioning is never global.

Only number of files is considered. Partition set is split into constant number
of partition sets where all have the same (or off by one) number of symbol groups
– files. Ordering of symbols is conserved. Partition sets’ n_partitions are then
distributed based on their sizes.

As an example in Figure 3.1 we split partition set with 42 files/ symbol groups
and total n_partitions=128 into 4 partition sets with fixed split. The symbol
groups are shown ordered, with width of each rectangle representing instruction
size of given group. The longer lines show where the splits will be separating
new partition sets. For each new partition set, files/symbol groups count and
n_partitions are shown.

files: 11 11 10 10

n_partitions:43 52 9 24

Figure 3.1: Fixed split

Over target split

Over target split separates groups (files) that are larger than partition set’s target
size. Then n_partitions are distributed based on sizes of partition sets.

Then if a new partition set is large enough to be split further n_partitions>1,
its single group is divided into groups where each group is a single symbol.

As example in Figure 3.2 we split partition set with total n_partitions=18.
In total 3 symbol groups, shown with angled lines interior, were larger than the
target size and are split of from the remaining groups. First two are large enough
to be split into 4 and 3 n_partitions and are split into individual symbols.
Third one is small with n_partitions=1 and is kept as is. Rest of groups are in
one new partition set.

Binary split

Binary split divides partition set into two partition sets with equal (or off by one)
n_partitions. Ordering of symbols is conserved.

For even n_partitions symbol groups are split by finding the middle of all
symbols by their size, and then snapping to the closest group boundary.
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n_partitions: 4 3 1 10

Figure 3.2: Fixed over target

For odd n_partitions instructions counts/distances are scaled to match
nonequal n_partitions in resulting partition sets.

As an example in Figure 3.3 we split partition set with total n_partitions=3.
The symbol groups are shown ordered, with width of each rectangle representing
size/instruction count of given group. Only full lines correspond to symbol group
boundaries. First we find the ideal split, showed by long dashed line, if the sizes
were in perfect ratio 2:1. Then we find the closest symbol boundary, but now
adjusted by opposite ratio 1:2. The reasoning is that if we move the split to the
right, those symbols are added to left 2 partitions, and vise versa, and we care
mainly about maximum size of partition. The long full line shows the closest
found boundary, with short dashed line showing corresponding distance on the
other side scaled by the ratio.

n_partitions: 2 1

1:2

Figure 3.3: Binary split

3.2.4 Partitioner – phases composition
Partitioner decides which phases should be used for a given partition set. It is
implemented using “dividing state machine”. In each step we have single partition
set with current state. The state describes which phase should be used to split
the partition set. The state changes depending on the results of phase – and
potentially differently for individual partition sets. Then each partition set with
state is used individually in next step.

Default partitioner starts with Fixed divide, then continues with over target
split and then binary division, which recursively returns to over target split, until
n_partitions=1.

Basic partitioner is implemented to cover cases common for all possible par-
titioners. Thus implementation of previously mentioned default partitioner is:

virtual void
split_state (partition_set& p, uintptr_t state) {
std::vector<partition_set> ps;
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switch (state) {
case FIXED:
if (p.n_partitions > 64 && p.sym_groups.size () >= 4) {
ps = partition_fixed_split (p, 4);
split_list (ps, OVER_TARGET);
break;

}
/* FALLTHROUGH */

case OVER_TARGET:
ps = partition_over_target_split (p);
if (!ps.empty ()) {

split_list (ps, BINARY);
break;

}
/* FALLTHROUGH */

case BINARY:
ps = partition_binary_split (p);
split_list (ps, OVER_TARGET);
break;

}
}

Where FIXED must equal 0 to be the first state. Function split_list recursively
calls split_state for all new partition sets in the list. But first it handles
cases where the n_partitions is too small or too large to fit into limits, and if
n_partitions=1 it is finalized into partition.
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4. Sources of divergence
Our cache will work best if as many as possible partitions do not change during
edit–compile cycle. Previous chapter minimizes number of changed partitions by
trying to concentrate changes into few partitions. However it would be better if
those changes did not exist in the first place.

There are variables whose exact values don’t influence quality of resulting
binary. They might not influence the resulting binary at all or their influence is
confined to unintentionally being a random seed. These values (or their influence)
are stored in ltrans.in which on change make caching impossible, even if the
ltrans.out would be always identical.

In this chapter we try to find as many such sources of divergence and try to
find remedies.

4.1 Order of symbols
Each symbol is given order value which defines order in which the symbol ap-
peared in source files. Most symbols are not sensitive to their order, but for
some the order is important to conserve in final binary. The order is also given
to symbols created during compilation, but it mainly useful for dumping symbol
names to uniquely identify them.

This introduces a divergence, that if we introduce new symbol in the first file,
every following symbols’ order is shifted by one.

We care only about relative order of symbols. In LTRANS phase we need to
know order of symbols in local partition and not about other partitions. Thus we
can remap order of symbols in any partition to first N natural numbers, where
N is number of symbols, while conserving their relative order. This way the local
order is no longer influenced by outside symbols.

This problem is solved by patch number 6 of A.1.
There is a problem with symbols that were created during compilation in-

tended to be inlined in LTRANS phase. They are sometimes created in different
order and their order diverges. Since they will be inlined, their order does not
matter and we can use order 0 for all such symbols. But it would be better to
find and fix source of this divergence as well.

4.2 Order of inlining
During WPA phase there is an inlining pass. During inlining pass, inlining can-
didates are inserted into Fibonacci heap ordered by their badness. Badness is
computed based on sizes of functions that should be inlined and that should in-
lined into. If both of their sizes are identical, badness will be identical as well. If
two inlining candidates have identical badness their relative order of inlining is
badly defined and will be dependent on exact state of Fibonacci heap, which is
influenced by all other unrelated candidates.

To prevent this divergence, we added unique ID of edge, corresponding to the
inlining candidate, as secondary comparison in Fibonacci heap. This way their
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relative order is always well defined.
This problem is solved by 10th patch of A.1.

4.3 Global Counters — Unique Identifiers
A lot of identifiers must be unique and by default this is achieved by using a
global counter. Global counters allow local changes to leak to unrelated contexts.

Typically the identifiers are in format name.counter and we can generally fix
this information leak by using name.name_of_local_context.local_counter
format. We have to ensure that name_of_local_context is unique or that
local_counter is shared among identically named local contexts.

4.3.1 tmp variables
During compilation of initial compilation units additional variables are created
which are differentiated by counter global to the compilation unit. Example can
be a static variable inside of function.
void foo () { static int a; }
void bar () { static int a; }

The static variable persist to next function call, and thus must be elevated to
the global scope of the file. Without renaming, the variables from foo and bar
would collide.

In this case local context is a single function and global context are whole
compilation unit. Although this counter is only global to a compilation unit, and
a single compilation unit is partitioned together, this counter can leak to other
partitions through inlining.

Originally the variable names are in format name.counter, or a.0 and a.1. To
reduce divergence we can use name.function_name.local_counter, or a.foo.0
and a.bar.0. In case of variables local to a function, global uniqueness is not
important and we can use name.local_counter as new identifier.

Partial fix is implemented in 9th patch of A.1.

4.3.2 lto priv
In WPA after partitioning, we handle a case where multiple LGEN units are joined
into one partition, while they both contained static variable with identical name.
To prevent collision, we rename them into name.lto_priv.counter format.

In this case we can use partition where this collision happened as local con-
text. Thus name.lto_priv.partition_checksum.local_counter as new iden-
tifier can be used to reduce divergence.

The 7th patch of A.1 for this divergence is in very experimental state, but it
fulfills its role of removing divergence at least for our test cases.

4.4 Debug Information
Because of early debug, debug information is not directly contained in ltrans.in.
It only contains symbol of the source file and offset identifying the debug infor-
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mation in that file. Unfortunately the symbol identifier is created as filename
with hash of the source file to uniquely identify the file.

In principle we only need a stable unique identifier covered by previous section.
We already have a format that is equivalent to file_indentifier.counter,
however because the identifier is created in compile unit of the source file and has
no knowledge about the outside world, it attaches unstable file hash to prevent
filename collision. If we would know that there will be no filename collision, we
could remove the hash and its divergence.

To remove the divergence from offset is more complicated. In principle we
could use formats such as filename.function_name.local_counter. However
the file identifier and offset is part of debug format DWARF [17].

4.5 Source file order
In partitioning we assumed that the source files have a constant order. However
if the resulting object files are contained in an archive file, they are loaded on
demand. So if a symbol is used earlier the whole file will be ordered earlier.

4.6 Random seed in section names
Object files are divided into multiple sections that contain symbols. Section
names were named in format symbol.random_seed. This is useful for incremental
linking. However it is mutually exclusive with LTO, so we can simply use 0 instead
of random_seed.

Solved by patch number 2 of A.1.

4.7 Flags in object files
Object files, and ltrans.in specifically, contain list of all flags that were used for
compilation. These are useful for caching, because if we use different flags, the
basic assumption that identical ltrans.in files result in identical ltrans.out
would be broken.

However not all flags influence the compilation. Many such flags were excluded
already, but there is an unexcluded flag which specifies a filename into which
WPA prints list of ltrans.in filenames. This filename must change to allow
parallelization, but does not change anything during LTRANS phase.

Removed by patch number 1 of A.1.
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5. Usage guide
Some parts (filelocks) of the implementation are for now only implemented for
POSIX systems, thus Linux is recommended to test it.

5.1 Building modified GCC
To build modified GCC, we start specifically with GCC’s commit 423d34f61c4
from 14th of March 2023. This is the last commit we tested and future commits
may conflict with our patches, which means then won’t be trivially appliable. We
create the git directory $GCC_DIR. All directory paths are for simplicity absolute
paths. We also create branch ltrans_cache to track our patches.

git clone git://gcc.gnu.org/git/gcc.git $GCC_DIR/
cd $GCC_DIR/
git checkout 423d34f61c4
git switch -c ltrans_cache

Then we apply all patches in attachment A.1 to our branch. The 8th patch
is optional for debugging/measuring of our implementation, but we will assume
it is applied.

git am *.patch

To build it, we create new directories $BUILD where GCC will be built and
$INSTALLED where GCC will be installed. These directories must be outside of
$GCC_DIR. Then we can build modified GCC:

mkdir $BUILD $INSTALLED
cd $BUILD
$GCC_DIR/configure --disable-bootstrap --prefix=$INSTALLED/ \

--enable-languages=c,c++,lto --enable-checking=release
make -jN
make install

To use the modified GCC in existing build systems, we need to export $CC and
$CXX variables specifying compilers to be used for C and C++ respectively. To
make exporting easier, we setup sourced shell script $SOURCE, which we source
with ‘. $SOURCE’ in any shell instance used for compiling or setting up build
systems:

#!/bin/sh
INSTALLED=Fill in the full path $INSTALLED directory
GCC_BIN=$INSTALLED/bin

export CC=$GCC_BIN/gcc
export CXX=$GCC_BIN/g++
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5.2 Compiling with incremental LTO
To compile projects with our modified GCC, we need to export $CC and $CXX so
that the build system of the project uses theses compilers. To enable LTO and
our partitioning strategy we have to add compiler flags -flto-partition=cache
and -flto. To enable LTO incremental compilation we only need to export
$GCC_LTRANS_CACHE variable to point to existing directory where the cache will
be located. Simple LTO incremental compilation example would be:

. $SOURCE
export GCC_LTRANS_CACHE=$(realpath cache/)
mkdir $GCC_LTRANS_CACHE
$CXX -O2 -flto -flto-partition=cache -c *.cc
$CXX -O2 -flto -flto-partition=cache *.o -o executable

5.3 Observing incremental compilation
With debug patch applied, during incremental compilation following information
is print out:

• Instruction sizes of files and final partitions. These are useful to assess
fairness of our partitioning strategy.

• In how many bytes each partition differs from first compilation. We use
this to find which partition differs by only few bytes and thus are likely
to contain fixable divergence. This information is reliable only for first
recompilation.

• Which partitions were cached and which were recompiled. We use this to
measure success of our incremental compilation.

For too small programs incremental compilation is not useful, because they are
partitioned into too few partitions. In such cases it is possible to reduce the min-
imal partition size with compilation flag --param lto-min-partition=10000
which defaults to 10000. Successful caching was observed with programs with as
little as 7 partitions.
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6. Results
To measure results we build the compiler and modify our test projects to be
compiled with incremental LTO as described in previous chapter.

To test our implementation we measure our success by number of partitions
that were cached/recompiled for a given edit–compile cycle. We want to emulate
edit–compile cycles with representative real world examples. For a given pro-
gram, we start with a benchmark base corresponding to master branch in its git
repository. Then we pseudorandomly select individual git commits which will be
reverted/applied to the benchmark base. These commits will be our test cases.

6.1 cc1 – debug(less)
We used GCC’s C compiler cc1 as our main target with many test cases to
find divergences in previous sections. The benchmark base we use is commit
f8cb07a7a44 from 14th January 2023. The reverted/applied commits are from
around similar time.

We measured compilation both with debug symbols and without them. The
results are in Figure 6.1 where we compiled with 128 partitions, the names corre-
spond to hashes of reverted/applied commits. In case of incremental compilation
without debug symbols we have consistent high fraction of cache hits. On average
only roughly 1/6 of partitions is recompiled. In the case with debug symbols the
consistency is much worse, but the average number of cache hits is still worth-
while, on average only roughly 1/3 of partitions is recompiled.

Important test case is b1f30bf42d8 which has the most recompilations. This
is because this test case is an example of diverging source files order mentioned
in 4.5. So this case is likely to improve. The other interesting test case is
10bd26d6efe because the case with debug symbols has more cache hits than
debugless case. It is yet unclear why.
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Figure 6.1: Edit–compile cycles of cc1

The exact number of recompilations are in attachment A.3.
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6.2 Other programs
After finding divergences we also tested other programs to make sure the solution
works in general conditions. We only try few cases to get very rough estimate of
recompilations.

6.2.1 Clang
Clang1 is C/C++ frontend for LLVM. We have chosen it as another large pro-
gram which has 3 times more instructions than already tested GCC’s cc1. We
measure it the same way as cc1, we start with benchmark base being commit
7adf3849e40e from 10th of May 2023.

Results are in Figure 6.2 and the values are in A.4. The results are similar
to cc1, but the d1d35f04c6cb and 6db007a0654e require more recompiling than
we expected from debugless. It is likely because they contain header files, which
cause multiple LGENs to recompile.

84deed2b7b63

5984ea216d2a

d1d35f04c6cb

6db007a0654e

96bc78631f16

3060304906f0

50

100

128

R
ec

om
pi

la
tio

ns

debugless

Figure 6.2: Edit–compile cycles of clang

6.2.2 Athena++
As an example of a small program we used Athena++2 which is partitioned into
15 partitions. Since it is code for astrophysical simulations, most changes happen
in the problem description source file. So we tried to modify problem description
file (specifically disk, configured in spherical coordinates) in several ways:

• Modifying contents of functions consistently leads to recompiling 3–5 of 15
partitions.

• Removing one of the two virtual functions leads to recompiling either 2 or
9 of 15 partitions.

• Removing everything leads to recompiling 11 of 15 partitions.
1https://clang.llvm.org/
2https://www.athena-astro.app/
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6.3 Cache vs balanced partitioning
With our new cache partitioning strategy there may be concern that the partition
sizes will be less uniform than previous balanced strategy which could negatively
affect parallelization. So we compare partition sizes of those two partitioning for
benchmark base used in case of cc1 specifically commit f8cb07a7a44 in Figure
6.3, data are in A.5. Partitions are sorted by their instruction sizes to see their
size distribution. Average size of partitions is 65637.

We can see that the size distributions are similar with massive difference in
the largest partitions, where the old balanced strategy fails. Sizes of balanced
are from 40505 to 162594, while sizes of cache are from 43987 to 87654. So if
anything we would expect better parallelization with cache.
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Figure 6.3: Partition sizes when compiling cc1

29



Conclusion
GCC’s WHOPR model of LTO (see Section 1.5) consists of two link–time phases
WPA and LTRANS, where WPA analyzes the whole program and parallelized
LTRANS does majority of work. This is great scalability improvement over naive
single global phase. Natural extension of this idea is to LTO incrementally and
reuse results of LTRANS from previous compilations to reduce edit–compile cycle
times.

Incremental Link–Time Optimization, as implemented here, significantly re-
duces work required during local transformation phase and thus reduces edit–
compile compile times, most importantly on machines with low core count. It
works well with both large (GCC’s cc1, Clang) or small (Athena++) programs.

On average roughly 1/6 of partitions need to be recompiled without debug
information. And there are still several divergences that can be fixed to make
incremental compilation more successful. The needed recompilations are less
consistent and greatly increased on average to 1/3 of partitions when debug in-
formation is enabled. This is not a fundamentally unsolvable problem, however it
requires changes to how debug information is indexed, which is part of DWARF
debug format.

Our results show that incremental LTO in GCC is practically usable. It is
planned to make these changes in some form part of official GCC. However first
we need to fix problems with debug information caused by early debug. This was
an unexpected problem and needs to be discussed with maintainers of debug info
in GCC.

A pleasant side effect of incremental LTO is a motivation to improve LTO
infrastructure. First, we remove divergences which are undesirable even without
incremental compilation. Small changes to part of a program should not influence
other parts without a good reason. Second, the global WPA becomes the bot-
tleneck, which motivates its improvement. Which would be otherwise noticeable
only to highly parallelized systems.

Still, other avenues to LTO exist. LLVM contains substantially different im-
plementation of scalable LTO called ThinLTO (see Section 1.6.2). Benefit of
ThinLTO is almost full elimination of WPA at cost of less optimizations working
over the whole program. It is possible to implement hybrid between ThinLTO
and GCC’s WHOPR, but it is unclear how many users are not satisfied with -O2
but would compromise build time at cost of optimization opportunities.
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A. Attachments

A.1 Patches
GCC’s source code modifications divided into 10 patches. It is in electronic
form only.

A.2 LTO times
With 24 threads, compiling cc1plus the total compile time of WPA and
LTRANS was 52.620s real time, 12m36.361s use time. Measured compile time
of WPA and LTRANS in total, and measured individual passes of WPA.
Following is list of times spent in individual WPA passes, created by
-ftime-report.
Time variable usr sys wall GGC
phase setup : 0.00 ( 0%) 0.00 ( 0%) 0.00 ( 0%) 2583k ( 0%)
phase opt and generate : 11.07 ( 84%) 0.15 ( 20%) 11.23 ( 79%) 770M ( 46%)
phase stream in : 1.79 ( 14%) 0.19 ( 26%) 1.98 ( 14%) 887M ( 53%)
phase stream out : 0.06 ( 0%) 0.39 ( 53%) 0.75 ( 5%) 4096 ( 0%)
phase finalize : 0.30 ( 2%) 0.01 ( 1%) 0.32 ( 2%) 0 ( 0%)
garbage collection : 0.32 ( 2%) 0.02 ( 3%) 0.35 ( 2%) 0 ( 0%)
callgraph optimization : 0.17 ( 1%) 0.00 ( 0%) 0.16 ( 1%) 7560 ( 0%)
ipa ODR types : 0.12 ( 1%) 0.00 ( 0%) 0.16 ( 1%) 0 ( 0%)
ipa function summary : 0.29 ( 2%) 0.05 ( 7%) 0.32 ( 2%) 186M ( 11%)
ipa dead code removal : 0.73 ( 6%) 0.01 ( 1%) 0.75 ( 5%) 0 ( 0%)
ipa devirtualization : 0.01 ( 0%) 0.00 ( 0%) 0.01 ( 0%) 313k ( 0%)
ipa cp : 0.39 ( 3%) 0.01 ( 1%) 0.40 ( 3%) 34M ( 2%)
ipa inlining heuristics : 5.54 ( 42%) 0.05 ( 7%) 5.58 ( 39%) 560M ( 34%)
ipa comdats : 0.13 ( 1%) 0.00 ( 0%) 0.13 ( 1%) 0 ( 0%)
lto stream decompression : 0.24 ( 2%) 0.01 ( 1%) 0.25 ( 2%) 0 ( 0%)
ipa lto gimple in : 0.10 ( 1%) 0.03 ( 4%) 0.15 ( 1%) 77M ( 5%)
ipa lto decl in : 0.76 ( 6%) 0.06 ( 8%) 0.81 ( 6%) 524M ( 32%)
ipa lto constructors in : 0.01 ( 0%) 0.00 ( 0%) 0.00 ( 0%) 3442k ( 0%)
ipa lto cgraph I/O : 0.06 ( 0%) 0.03 ( 4%) 0.08 ( 1%) 109M ( 7%)
ipa lto decl merge : 0.08 ( 1%) 0.00 ( 0%) 0.08 ( 1%) 2564k ( 0%)
ipa lto cgraph merge : 0.10 ( 1%) 0.00 ( 0%) 0.10 ( 1%) 0 ( 0%)
whopr wpa : 0.17 ( 1%) 0.01 ( 1%) 0.21 ( 1%) 8192 ( 0%)
whopr wpa I/O : 0.05 ( 0%) 0.39 ( 53%) 0.73 ( 5%) 4096 ( 0%)
whopr partitioning : 0.74 ( 6%) 0.00 ( 0%) 0.73 ( 5%) 853k ( 0%)
ipa reference : 0.67 ( 5%) 0.00 ( 0%) 0.67 ( 5%) 0 ( 0%)
ipa profile : 0.05 ( 0%) 0.00 ( 0%) 0.04 ( 0%) 0 ( 0%)
ipa pure const : 0.85 ( 6%) 0.01 ( 1%) 0.86 ( 6%) 0 ( 0%)
ipa icf : 0.59 ( 4%) 0.01 ( 1%) 0.60 ( 4%) 26M ( 2%)
ipa SRA : 0.30 ( 2%) 0.02 ( 3%) 0.31 ( 2%) 64M ( 4%)
ipa free inline summary : 0.14 ( 1%) 0.00 ( 0%) 0.14 ( 1%) 0 ( 0%)
ipa modref : 0.57 ( 4%) 0.01 ( 1%) 0.58 ( 4%) 47M ( 3%)
tree SSA incremental : 0.00 ( 0%) 0.00 ( 0%) 0.01 ( 0%) 1234k ( 0%)
tree operand scan : 0.02 ( 0%) 0.02 ( 3%) 0.03 ( 0%) 17M ( 1%)
tree modref : 0.00 ( 0%) 0.00 ( 0%) 0.00 ( 0%) 1025k ( 0%)
dominance computation : 0.01 ( 0%) 0.00 ( 0%) 0.01 ( 0%) 0 ( 0%)
varconst : 0.00 ( 0%) 0.00 ( 0%) 0.02 ( 0%) 0 ( 0%)
TOTAL : 13.22 0.74 14.28 1660M

A.3 GCC’s cc1 recompilation counts
Recompilation counts for GCC’s cc1 both with and without debug info. Names
of commits contain either part of commit message, or names of files they
modified.
debugless debug commit
35/128 113/128 b_rev_db959e25007_ipa
83/128 128/128 b_rev_b1f30bf42d8_Fix_wrong_code_issues_with_ipa-sra
2/128 89/128 b_rev_98b41fd4045_c_c++_Allow_ignoring_-Winit-self_through_pragmas

24/128 118/128 b_rev_0f85ae6591c_c_ICE_with_nullptr_as_case_expression
11/128 28/128 b_rev_adbee4a197c_tree-optimization
11/128 13/128 b_rev_3e1cba12a8d_tree-sra_cc
12/128 13/128 b_rev_ec1db901793_i386_lujiazui_md
9/128 124/128 b_rev_a5a8242153d_cfgexpand_cc

11/128 54/128 b_rev_50a02703899_varpool_cc
7/128 14/128 b_rev_ddcaa60983b_loop-invariant_cc

27/128 36/128 b_apply_16bd9e14f22_tree-ssa-loop-niter_cc
2/128 31/128 b_apply_265a749f290_lra-constraints_cc

13/128 30/128 b_apply_c29d85359ad_tree-ssa-sccvn_cc
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10/128 21/128 b_apply_a82ce9c8d15_opts_cc
27/128 51/128 b_apply_da3aca031be_ipa-utils_cc
40/128 40/128 b_apply_963315a922e_i386_i386-expand_cc
47/128 76/128 b_apply_97258480438_dominance_cc
4/128 4/128 b_apply_e4473d7cf87_ree_cc
6/128 17/128 b_apply_0f349928e16_tree-nested_cc
6/128 8/128 b_apply_f4e1b46618e_rtl-ssa_accesses_cc

12/128 52/128 b_apply_e8109bd8776_ipa-{sra,param-manipulation}_cc
35/128 32/128 b_apply_10bd26d6efe_range-op-float_cc
33/128 40/128 b_apply_e261fcefb71_value-range_cc
14/128 27/128 b_apply_0d6f7b1dd62_analyzer_h
23/128 45/128 b_apply_809d661aff9_range-op_cc_h

A.4 Clang recompilation counts
Recompilation counts for clang, only without debug info.
debugless commit
4/128 84deed2b7b63

28/128 5984ea216d2a
78/128 d1d35f04c6cb
62/128 6db007a0654e
29/128 96bc78631f16
5/128 3060304906f0

A.5 Partition sizes
Sorted partition sizes when compiling cc1, with new cache and old balanced
partitioning strategy. Sizes of partitions are expected instruction counts as
computed by inline heuristics.
Cache:
43987 45460 48150 48503 48705 50015 50156 51525
52766 52811 53641 54032 54150 54364 54392 55028
55220 55404 56450 56465 57797 57991 59106 60569
60677 61319 61330 61341 61435 61451 61575 61630
62458 62467 62550 62963 63126 63213 63371 63382
63416 63500 63504 63510 63571 63691 63718 63743
63815 63818 64026 64095 64137 64148 64148 64272
64272 64291 64308 64327 64336 64342 64347 64355
64359 64360 64372 64426 64429 64639 64823 64967
65228 65272 65650 66010 66264 66356 66416 66921
67307 67422 67558 67618 67783 67961 68302 68447
68504 68527 68852 68881 69567 69884 70252 70781
70971 71152 71255 71706 71862 71868 71918 72149
72542 72624 73287 73400 73600 73839 73914 74504
74921 75358 76354 76413 80392 80516 80519 80795
81634 81660 82040 83016 83298 83474 84107 87654

Balanced:
40505 43692 48371 49325 49739 51378 53386 54675
55421 56068 56102 56244 56469 56475 56720 57257
57430 57489 57522 57640 57641 57797 57798 57814
57889 58047 58154 58286 58528 58542 58735 58868
58942 59143 59496 59580 60028 60087 60104 60175
60196 60357 60409 60561 60684 60704 60800 60959
61057 61166 61198 61353 61541 61838 61954 62084
62369 62463 62496 62518 62565 62835 63011 63163
63544 63642 63783 63940 63973 64105 64269 64388
64472 64615 64749 64791 64823 64901 65008 65128
65190 65311 65359 65426 65678 65793 65904 66007
66277 66415 66482 66705 66970 67147 67408 67776
68031 68187 68218 68723 68724 69118 69232 69783
70258 70444 70621 71261 71719 72396 72999 73051
73885 74241 75082 76716 80057 80764 80948 83474
85613 89077 90228 90681 96114 97119 126365 162594
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