
BACHELOR THESIS

Matúš König

Detection of Influential Individuals,
Communities, and Link Prediction in

Social Networks

Department of Theoretical Computer Science and Mathematical Logic

Supervisor of the bachelor thesis: doc. RNDr. Iveta Mrázová, CSc.

Study programme: Computer Science

Study branch: Artificial Intelligence

Prague 2023





I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In . . . . . . . . . . . . . date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Author’s signature

i



ii



I want to express my most profound appreciation to the supervisor of this thesis
doc. RNDr. Iveta Mrázová, CSc., whose invaluable advice and support assisted
me in achieving success.

iii



iv



Title: Detection of Influential Individuals, Communities, and Link Prediction in
Social Networks

Author: Matúš König

Department: Department of Theoretical Computer Science and Mathematical
Logic

Supervisor: doc. RNDr. IvetaMrázová, CSc., Department of Theoretical Computer
Science and Mathematical Logic

Abstract: Social network analysis provides several means to better understand the
structure of the underlying social networks. This thesis is focused on the area of
community detection in social networks. We discuss six of the main community
detection algorithms and their hybrid variants involving a combination of rough
and fine partitioning techniques. The text explains the measures used to quantify
the detected communities’ properties. For different problem sizes, the Zachary’s
karate club and Enron email datasets were used. Further, the work concentrates on
experiments that provide performance assessment for the investigated methods.
Based on the obtained results, we draw conclusions towards recommendations
for a reliable usage of the findings in practice. At the same time, we aim to
identify the appropriate number of communities in the data at hand since this is
a parameter of many community detection algorithms. For the same reason, we
also investigate whether non-hierarchical clustering algorithms could be used to
form a sub-community hierarchy. All of the mentioned experiments were run by
means of a community detection system CGAT - Config-based Graph Analysis
Tool we developed and implemented as a part of the thesis.

Keywords: data mining, social networks, detection of influential individuals,
community detection, link prediction, knowledge representation

v



vi



Contents

Contents 1

Introduction 5

1 Social networks 7
1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Key properties of social network . . . . . . . . . . . . . . . . . . 8

1.2.1 Homophily . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.2 Triadic closure and clustering coefficient . . . . . . . . . 8

1.3 Detection of influential individuals . . . . . . . . . . . . . . . . 9
1.3.1 Degree centrality . . . . . . . . . . . . . . . . . . . . . . 9
1.3.2 Closeness centrality . . . . . . . . . . . . . . . . . . . . 10
1.3.3 Betweenness centrality . . . . . . . . . . . . . . . . . . . 10
1.3.4 PageRank . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Link prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.1 Neighborhood-based measures . . . . . . . . . . . . . . 12
1.4.2 Katz measure . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.3 Random walk-based measures . . . . . . . . . . . . . . . 14
1.4.4 Feature-based link prediction . . . . . . . . . . . . . . . 14

2 Community detection 17
2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Edge cut . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Normalized cut and conductance . . . . . . . . . . . . . 18
2.2.3 Modularity . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1 Kernighan-Lin Algorithm . . . . . . . . . . . . . . . . . 19
2.3.2 Recursive Kernighan-Lin . . . . . . . . . . . . . . . . . . 20
2.3.3 Girvan-Newman . . . . . . . . . . . . . . . . . . . . . . 23
2.3.4 Greedy modularity algorithm . . . . . . . . . . . . . . . 23

1



2.3.5 Louvain algorithm . . . . . . . . . . . . . . . . . . . . . 24
2.3.6 Spectral clustering . . . . . . . . . . . . . . . . . . . . . 25
2.3.7 METIS - Multilevel graph partitioning . . . . . . . . . . 27
2.3.8 Nested variants of community detection algorithms . . . 29

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Datasets 31
3.1 Zachary’s karate club . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Enron email dataset . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Experiment setup 35
4.1 Estimation of number of communities . . . . . . . . . . . . . . . 35
4.2 Hierarchy of non-hierarchical method . . . . . . . . . . . . . . . 37
4.3 Algorithm comparison . . . . . . . . . . . . . . . . . . . . . . . 38

4.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.2 Statistics and measures . . . . . . . . . . . . . . . . . . . 38
4.3.3 Algorithm configuration . . . . . . . . . . . . . . . . . . 39

5 Results 41
5.1 Estimation of number of communities . . . . . . . . . . . . . . . 41

5.1.1 Inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.1.2 Silhouette score . . . . . . . . . . . . . . . . . . . . . . . 42
5.1.3 Edge cut . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 Hierarchy of non-hierarchical method . . . . . . . . . . . . . . . 43
5.2.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3 Algorithm comparison . . . . . . . . . . . . . . . . . . . . . . . 44
5.3.1 Zachary’s karate club . . . . . . . . . . . . . . . . . . . . 44
5.3.2 Enron email dataset . . . . . . . . . . . . . . . . . . . . 46

6 Implementation 65
6.1 Repository structure . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.2 Input and output format . . . . . . . . . . . . . . . . . . . . . . 66
6.3 CGAT: Config-based Graph Analysis Tool . . . . . . . . . . . . 67

6.3.1 Configuration files . . . . . . . . . . . . . . . . . . . . . 67
6.3.2 Instructions to run . . . . . . . . . . . . . . . . . . . . . 68
6.3.3 Makefile . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.4 Community detection library . . . . . . . . . . . . . . . . . . . . 72
6.4.1 Girvan-Newman . . . . . . . . . . . . . . . . . . . . . . 72
6.4.2 Greedy modularity . . . . . . . . . . . . . . . . . . . . . 72
6.4.3 Heavy clique METIS . . . . . . . . . . . . . . . . . . . . 73

2



6.4.4 Kernighan-Lin Naive . . . . . . . . . . . . . . . . . . . . 73
6.4.5 Kernighan-Lin . . . . . . . . . . . . . . . . . . . . . . . 73
6.4.6 Recursive bipartition . . . . . . . . . . . . . . . . . . . . 74
6.4.7 Spectral clustering . . . . . . . . . . . . . . . . . . . . . 74
6.4.8 Louvain algorithm . . . . . . . . . . . . . . . . . . . . . 74

6.5 GraphVisualizer UI application . . . . . . . . . . . . . . . . . . . 75
6.5.1 Color generation . . . . . . . . . . . . . . . . . . . . . . 75

Conclusion 77

Bibliography 81

List of Figures 83

List of Tables 85

3



4



Introduction

With the enormous rise of recently used internet and computational resources,
it became possible to collect and process structured graph data on a large scale.
Social network analysis and community detection have become strategic topics,
mostly due to the creation of online social networks such as Facebook. This
highlights the advantages of understanding the structure of social networks and
is widely used in psychology, economy and politics.

Nowadays, multiple approaches and paradigms exist to detect communities
in social networks. Naturally, with a vast offer of algorithms, choosing the most
appropriate method is complicated due to all the differences. In practice, this
results in the need to perform grid search on as many algorithms and parameters
as possible, since only this technique can ensure the optimality of the result. The
main disadvantage of this approach is time and memory requirements, creating
pressure on all parts of the processing chain.

Our work aims to solve this issue and reduce the variety of feasible algo-
rithms to only a few reasonably efficient ones, which will provide universally
good results. The beforementioned condition should be fulfilled with all data
types, including graphs with thousands of nodes and edges and different graph
clustering conditions and objectives. This also includes an estimation of algorithm
parameters that would yield maximum accuracy and performance.

Inmore detail, we specify social networks and their key properties in Chapter 1.
Here, we illustrate major types and applications involving social networks and
graph data. This includes the properties of homophily and triadic closure, which
enable us to define and detect communities. In this chapter, we also introduce the
terms centrality and link prediction, which are trending topics in social network
analysis.

Chapter 2 is dedicated to formally defining the community detection problem.
We describe what is perceived as a community and state multiple community
detection measures. Later, we establish the main algorithms applicable to commu-
nity detection. In this chapter, we also formulate hybrid variants of community
detection algorithms, where we combine rough and fine graph partitioning. It is
important to note the algorithms are, in all cases, optimizing objective functions

5



and their performance metrics are later assessed in the thesis.
This thesis uses two datasets to compare the algorithms defined in Chapter 3.

Those datasets cover a range of small and medium-sized problems and provide a
baseline for universal community detection. The Zachary Club dataset covering
small data is labeled with regard to the actual node community. The assigned
labels allow us to compare the achieved accuracies of the algorithm. Within this
study, bigger networks are omitted to allow us to evaluate fairly all algorithms,
even with high time complexity, which would not be possible with larger datasets.

The experiments outline can be found in Chapter 4, and the results of the
respective experiments can be found in Chapter 5. First, we estimate the number
of communities that can be found in the Enron dataset since the number of
communities is a parameter for many community detection algorithms. Next, we
study the behavior of nonhierarchical clustering, where new communities are
not necessarily created on the basis of previous clustering. Finally, we evaluate
the performance of the algorithms on two datasets of different sizes to form a
conclusive recommendation.

All experiments are run using CGAT - Config-based Graph Analysis Tool.
While the system was developed primarily for the thesis, it works independently,
creates persistent replicable results and is open to extensions in the field of
community detection. Chapter 6 illustrates the design of the framework in more
detail.

6



Chapter 1

Social networks

Nowadays, most readers have associations such as Facebook or Twitter associ-
ated with social networks. This term, however, has a much broader application,
unlocking much more resources to study. In this section, we will introduce so-
cial networks, their most important properties and many important measures in
various fields according to Aggarwal et al. [1].

1.1 Definition

It is generally assumed that social network 𝐺 = (𝑉 , 𝐸) is a graph, where 𝑉 (𝐺) is
the set of vertices and 𝐸(𝐺) is a set of edges. The graph can be either undirected or
directed and is directly derived from observed data. It will be assumed the social
network is undirected unless stated otherwise. Usually, the naming convention
calls the node an actor, and the edge is a link between actors. All parts of the
social networks can contain additional data, including classification information.
The definition assumes graph 𝐺 is static for some timestep 𝑡. This definition can
be extended to a dynamic graph by considering a series of snapshots 𝐺0, ..., 𝐺𝑡.

The most common examples of real-life social networks include the following:

• Traditional social network as we know from sociology. Observation of
humans and their social interactions over time. The main disadvantage is
measurements of fields of interest, such as information flow or community
detection, can not be done with much precision.

• Online social network and communication platforms. User interaction in
online platforms forms a social network, whether we are considering online
social networks such as Facebook or other means of online communication
such as emails and instant messaging.

7



B

CA

Figure 1.1 Triadic closure example. Since node A is connected to B and C, there is a
high chance nodes B and C are also connected.

• World wide web. Document hyperlinks naturally form directed graphs
describing connections between different web pages.

• General graph data. Many common things, such as scientific citations or
money transactions, form social networks and their analysis can uncover
hidden structures of the network.

1.2 Key properties of social network
As Aggarwal et al. [1] defines in his book, social network structure can be de-
scribed using properties such as homophily and triadic closure. They describe how
the network is formed and explain more information about found connections in
the network.

1.2.1 Homophily
According to Aggarwal et al. [1],homophily is a fundamental property defining
social network structure. Homophily is node similarity when connected nodes
have a high chance of having similar properties or common background.

This can be explained by how the node connections are formed in the human
social network. A lot of a person’s connections are acquired through school, work
experience or hobbies. This implies that connected nodes might have common
properties and interests. As a direct consequence, links in social networks are
formed using common ground rather than random acquaintances.

1.2.2 Triadic closure and clustering coefficient
The main undirect consequence of homophily is triadic closure. Triadic closure
can be defined as a structural homophily, where it is assumed if two nodes have a
friend in common, those nodes are either connected or a connection will form in
the future. We can see an example of triadic closure in Figure 1.1.

8



Triadic closure can be explained easily using homophily. If two nodes have a
common friend, it is assumed they might have common background or attributes
and thus increasing the chance of the current or future connection.

Clustering coefficient is a triadic closure measure and according to Aggarwal
[1], quantifying the tendency of the network to create clusters. Formally, let 𝑆𝑖
mark a set of adjacent nodes to node 𝑖 ∈ 𝑁 (𝐺), where 𝐺 = (𝑁 , 𝑉 ) is an undirected
graph. Let 𝑛𝑖 = |𝑆𝑖|. For the set 𝑆𝑖, there is a total of (

𝑛𝑖
2) possible edges. If there

is a connection (𝑗, 𝑘) ∈ 𝑉 , 𝑗 ∈ 𝑆𝑖, 𝑘 ∈ 𝑆𝑖, there is a mutual connection with node 𝑖.
Node clustering coefficient 𝜂(𝑖) for node 𝑖 is then a fraction of such connections
to all possible connections.

𝜂(𝑖) =
|{(𝑗, 𝑘) ∈ 𝑉 ∶ 𝑗 ∈ 𝑆𝑖, 𝑘 ∈ 𝑆𝑖, }|

(𝑛𝑖2)
(1.1)

The concept of node clustering coefficient can be extended to the whole
network by calculation of average clustering coefficient using all nodes of the
graph.

1.3 Detection of influential individuals
Network structure is usually nonhomogeneous and therefore nodes which are
considered central have a significant impact on properties of the social network.
Naturally, many of hub nodes tend to have high centrality measure as a result of
dynamic network creation process and have higher influence on the other nodes.
Methods of determining centrality will be discussed with undirected networks,
while with directed network wewill consider prestige. Prestige can be summarized
by how much is an actor being followed by other actors of the network. Opposite
case is gregariousness, which is focused more on outgoing connections. This
section defines all centrality measures as defined by Aggarwal [1].

1.3.1 Degree centrality
Simplest centrality metrics to define is degree centrality 𝐶𝐷(𝑖). Degree centrality
is defined as

𝐶𝐷(𝑖) =
𝐷𝑒𝑔𝑟𝑒𝑒(𝑖)
𝑛 − 1

(1.2)

and represents a degree of a node divided by a maximal possible node degree and
thus can be considered as a relative node degree. Analogously, we define degree
prestige as

𝑃𝐷(𝑖) =
𝐼 𝑛𝑑𝑒𝑔𝑟𝑒𝑒(𝑖)

𝑛 − 1
(1.3)

9



and degree gregariousness as

𝐺𝐷(𝑖) =
𝐼 𝑛𝑒𝑔𝑟𝑒𝑒(𝑖)
𝑛 − 1

(1.4)

1.3.2 Closeness centrality

Main drawback of degree centrality is it is considering only local connections
and discards any indirect ones. Closeness centrality is a more efficient metric for
measuring indirect links.

Let 𝐷𝑖𝑠𝑡(𝑖, 𝑗) be a length of shortest path from node 𝑖 to node 𝑗. Average node
distance is then defined as pairwise node distance average as follows:

𝐴𝑣𝐷𝑖𝑠𝑡(𝑖) =
∑𝑛

𝑖=1 𝐷𝑖𝑠𝑡(𝑖, 𝑗)
𝑛 − 1

(1.5)

Closeness centrality 𝐶𝐶(𝑖) is then simply defined as inverse of average distance.

𝐶𝐶(𝑖) = 1/𝐴𝑣𝐷𝑖𝑠𝑡(𝑖) (1.6)

It is easy to see closeness centrality scales from 0 to 1 and that nodes close to
the rest of the networm reach high closeness centrality.

1.3.3 Betweenness centrality

While closeness centrality provides great results using shortest path distances,
many details about information flow in terms of number of shortest paths passing
through the node is ommited. It is assumed nodes critical to the network have
a great control on information flow, which is represended by high amount of
passing by shortest paths.

Let 𝑞𝑗𝑘 denote number of shortest paths between nodes 𝑗 and 𝑘 and let 𝑞𝑗𝑘(𝑖)
mark number of shortest paths between nodes 𝑗 and 𝑘 passing through node 𝑖.
We can observe the fraction 𝑓𝑗𝑘(𝑖) = 𝑞𝑗𝑘(𝑖)/𝑞𝑗𝑘 describes influence of the node 𝑖
on information flow between the nodes 𝑗 and 𝑘. We then define betweenness
centrality 𝐶𝐵(𝑖) as an average through every possible pair of nodes (𝑛2).

𝐶𝐵(𝑖) =
∑𝑗<𝑘 𝑓𝑗𝑘(𝑖)

(𝑛2)
(1.7)

We can similarly extend betweenness centrality to edges instead of nodes by
adjusting the formula to accept an edge rather than a node.

10



1.3.4 PageRank

PageRank was developed by Brin and Page [2] to model the importance of WWW
pages using the natural graph structure of the internet. It is based on the idea
that influential web pages are linked to other important documents. PageRank
can be used in social network analysis to detect influential actors in the network.

PageRank is described as a random-walk model. To explain it further, define
a random surfer who visits web pages by following random hyperlinks. We can
observe the number of visits is directly connected with the number of incoming
edges. In addition, long-term visit frequency will be higher if incoming links are
from other frequently visited nodes. We note long-term frequency as a steady-
state probability.

It is easy to see not all network topologies will work correctly with this simple
random-walk model. The main issue is dead-ends, either as nodes or graph
components, without any outgoing edges. In principle, any random walk will
get stuck in such dead-ends, negatively adjusting steady-state probability. To
solve matter in question, we adjust our model. Firstly, dead-end nodes can be
solved easily by adding edges to every other node in the graph including itself.
To solve isolated components, we introduce restart step. With probability of 𝛼 we
restart the random walk by teleporting random surfer to random node and with
probability 1 − 𝛼 we continue by selecting random adjacent node. Parameter 𝛼 is
usually set to 0.1.

Let 𝐺 = (𝑁 , 𝐴) to be directed graph and let 𝑛 mark total number of nodes.
Assume𝐴 also contains added edges for dead-end nodes to all other edges. Denote
𝐼 𝑛(𝑖) and 𝑂𝑢𝑡(𝑖) as sets of nodes pointing to and from node 𝑖. Also denote steady-
state probability as 𝜋(𝑖). The PageRank of the node 𝑖 is then equal to steady-state
probability 𝜋(𝑖). Mark 𝑝𝑖𝑗 = 1/|𝑂𝑢𝑡(𝑖)| the probability of transition from node 𝑖 to
𝑗 in case where restart step is not applied.

We will discuss possible transitions to node 𝑖 below. Steady-state probability
𝜋(𝑖) is a sum of probability of teleporting to the node with probability 𝛼 and a
transition from adjacent nodes with probability 𝛼 − 1. We can see easily that
the probability of random teleportation to node 𝑖 is 𝛼/𝑛. Probability of transition
from adjacent nodes to node 𝑖 can be then written as (1 − 𝛼)∑𝑗∈𝐼 𝑛(𝑖) 𝜋(𝑗)𝑝𝑗𝑖. We
then have a system of equations, which holds for each node 𝑖:

𝜋(𝑖) = 𝛼/𝑛 + (1 − 𝛼) ∑
𝑗∈𝐼 𝑛(𝑖)

𝜋(𝑗)𝑝𝑗𝑖 (1.8)

In practise, this is solved using power iteration by adjusting values of 𝜋
iteratively.

11



A

C

BD

E

F

Figure 1.2 Link prediction example.

1.4 Link prediction
Predicting future links between pairs of nodes in a social network is often a
desirable task. Online social networks such as Facebook or Twitter often use this
method to recommend potential friends and followers to their users.

According to Aggarwal et al. [1], both structural and content similarity can be
utilized to predict future links between nodes. Structural measures are based on
the property of triadic closure. Main idea is if two nodes have common neighbors,
it is high probability they will be connected in the future. Content-based measures
is formed using homophily principle. In this case nodes with similar content
have bigger chance of connection. For example, if two actors attended same high
school and they are of similar age, there is a great chance they know each other
and have interacted in the past. This section introduces all important measures
related to link prediction as stated by Aggarwal [1].

1.4.1 Neighborhood-based measures
Simplest method for estimating probability of link is using neighborhood-based
measures. In principle, number of common neighbors between pair of nodes 𝑖
and 𝑗 defines probability of node connection. We state different methods below.

Define 𝑆𝑖 as a neighborhood set of node 𝑖, marking a set of adjacent nodes of
node 𝑖. We can then define first metric:

Definition 1 (Common neighbor measure). Commom neighbor measure between
nodes 𝑖 and 𝑗 is equal to number of common neighbors of nodes 𝑖 and 𝑗 and is defined
as follows:

𝐶𝑁𝑀(𝑖, 𝑗) = |𝑆𝑖 ∩ 𝑆𝑗| (1.9)

It is easy to see the Common Neighbors Measure takes into account only
absolute values of neighbors, dismissing information about node degrees. This

12



is a disturbing property, since we can see high-degree nodes representing either
public figures might cause connections being recommended only by chance. The
Jaccard measure is designed to use relative value instead of absolute node count,
taking into account different degree distributions.

Definition 2 (Jaccard Measure). Jaccard measure for link prediction is equal to
Jaccard coefficient between respective neighborhood node sets 𝑆𝑖, 𝑆𝑗.

𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝑖, 𝑗) =
|𝑆𝑖 ∩ 𝑆𝑗|
|𝑆𝑖 ∪ 𝑆𝑗|

(1.10)

We can see in Figure 1.2 that Jaccard measure between nodes 𝐴 and 𝐵 is 1.
If we increase either node 𝐴 or 𝐵 degree without adding common neighbor, it
would result in lower coefficient.

Jaccard measure works great for degree adjustments of nodes between which
the link prediction is measured. However, for degrees of intermediate neighbors
it is not adjusted well. In Figure 1.2, common neighbors are only connected
to nodes 𝐴 and 𝐵. Nevertheless, those common neighbors could be popular
actors represented with high degree nodes. As a result, those nodes would have
much higher statistical occurance as they would occur as common neighbors
of many neighboring nodes, marking them as less important in link prediction.
The Adamic-Adar measure is introduced to consider for different importance
of common neighbor. It can be seen it is a modification of commom neighbor
measure with applied weights, where weight is defined as a function of node
degree.

Definition 3 (Adamic-Adar Measure). Adamic-Adar common neighbor measure
for nodes 𝑖 and 𝑗 is equal to weighted count of common neighbors. The weight of
node 𝑘 is then defined as 1/ log(|𝑆𝑘|).

𝐴𝑑𝑎𝑚𝑖𝑐𝐴𝑑𝑎𝑟(𝑖, 𝑗) = ∑
𝑘∈𝑆𝑖∩𝑆𝑗

1
log(|𝑆𝑘|)

(1.11)

1.4.2 Katz measure
While neighborhood-based methods presents great estimation of probability of
forming a connection between a pair of nodes, they lack capability to predict
properly for pair of nodes with low amount of common neighbors. For example,
we can see in Figure 1.3 that nodes 𝐴 and 𝐵 have no direct common neighbors.
However, it is easy to see nodes have significant indirect connection after con-
sideration of longer paths. For such cases, walk-based measures such as Katz
measure are more suitable.

13



A B

Figure 1.3 Link prediction example with indirect connectivity.

Definition 4 (Katz measure). Let 𝑛𝑡𝑖𝑗 be the number of paths of length 𝑡 between
nodes 𝑖 and 𝑗. Then for parameter 𝛽 < 1 the Katz measure is defined as follows:

𝐾𝑎𝑡𝑧(𝑖, 𝑗) =
∞
∑
𝑡=1

𝛽 𝑡𝑛𝑡𝑖𝑗 (1.12)

Parameter 𝛽 is a discount factor penalizing longer paths. Convergence of
Equation (1.12) is guaranteed for small values of 𝛽. Let 𝐴 be an adjacency matrix
of an undirected network. It is easy to see the matrix is symmetric. Pairwise 𝑛 × 𝑛
Katz coefficient matrics can be then computed as:

𝐾 =
∞
∑
𝑖=1

(𝛽𝐴)𝑖 = (𝐼 − 𝛽𝐴)−1 − 𝐼 (1.13)

As per Aggarwal et al. [1], the value of 𝛽 should always be smaller than the
inverse of the largest eigenvalue of 𝐴 to ensure convergence. As an extension, we
can consider a weighted version of 𝐴 considering of edge weights of the graph.

1.4.3 Random walk-based measures
Random walk-based measures are another way to quantify connectivity between
pairs of nodes. Representative of this approach is PageRank defined in Sec-
tion 1.3.4. To measure the similarity between nodes 𝑖 and 𝑗, we perform per-
sonalized PageRank of node 𝑗, where the restart step is applied at node 𝑖. The
consequence of the random-walk model being started at node 𝑖 is that close nodes
will be visited more often, representing a higher chance of indirect connection.
That means if node 𝑗 is close to node 𝑖, then the value of personalized PageRank
will be high.

1.4.4 Feature-based link prediction
All measures mentioned above are unsupervised methods for link prediction.
Usually, beforehand mentioned measures do not have equal accuracy in different
networks. Aggarwal [1] we can improve the results by considering link prediction
as a binary classification problem by treating the absence or presence of the link as

14



a binary classification result. This can be achieved by extracting multidimensional
data record from each pair of nodes. In the feature construction, we can consider
all link prediction measures as well as descriptors such as node degrees. In
addition, we can add information special to the network, such as node and edge
content.

We construct multidimensional feature values for each edge in the input
graph to create data for positive training examples. To create negative examples,
we sample pairs of nodes without a connection. Only a sample of negative
connections is sufficient since real-world networks are sparse and thus, the ratio
of present to absent links is unbalanced. Such data suits any binary classifiers such
as binary trees, SVN, or neural networks. During model inference, we construct
data records consistently with the training phase.

15



16



Chapter 2

Community detection

In this chapter, we focus on community detection as an important area of social
network analysis. At first, we define what a community is, and we introduce
multiple functions measuring the quality of the partition. Next, we state essential
algorithms and methods for community detection. Finally, we summarize the
theoretical results and conclude a set of candidates providing the best results.

2.1 Definition
Community detection is an integral part of social network science. It allows us to
inspect the network structure in the bigger context, in the context of nodes sharing
similar properties. It is an important field of study with further implications in
psychology, public health, economics, and politics.

Intuitively, a community in a social network is defined as a densely connected
part of the graph sparsely connected to other communities. In other words, a
member of the community is much more likely to interact with other members
of the same community than the rest of the network. Distinct algorithms usu-
ally work using different objective measures. However, all of those metrics are
consistent with the intuition.

As a side note, there are exponentially many possible graph partitions. This
is the equivalent of a partition of a set and that is exponentially large in the size
of the set. The number of all set partitions is called Bell number.

2.2 Metrics
In this section, we will define quality functions for community detection. Quality
functions are important, as theymeasure the goodness of clustering and determine
the performance of different algorithms. Some of the measures are directly used

17



as algorithm objection functions and optimized. The literature suggests multiple
metrics, all of them directly based on the interpretation of the definition of
community in social networks.

2.2.1 Edge cut
Edge cut is the easiest metric to define, and it is based on a simple principle. Define
intra-cluster edge weight as the sum of edge weights whose nodes lie within the
same community and define inter-cluster edge weight as the sum of edge weights
of edges connecting different communities.

We define edge cut as the difference between intra-cluster and inter-cluster
edge weights. We want to maximalize this difference, as it reflects the need
for strong connections between community members and weak links otherwise.
Alternatively, we can define edge cut as only inter-cluster edge weight, measuring
the sparsity of connections between different clusters.

2.2.2 Normalized cut and conductance
According to Parthasarathy, Ruan, and Satuluri [3], important metrics are normal-
ized cut and conductance. Consider graph 𝐺(𝑁 , 𝐸) with weighted edges 𝑤𝑖𝑗. Mark
𝑑𝑒𝑔𝑟𝑒𝑒(𝑖) as a weighted degree for node 𝑖 of the graph 𝐺. For directed graphs, out
degree is used.

Normalized cut for a group 𝑆 ⊂ 𝑁(𝐺) is then defined as

𝑁𝑐𝑢𝑡(𝑆) =
∑𝑖∈𝑆,𝑗∈𝑆 𝑤𝑖𝑗

∑𝑖∈𝑆 𝑑𝑒𝑔𝑟𝑒𝑒(𝑖)
+

∑𝑖∈𝑆,𝑗∈𝑆 𝑤𝑖𝑗
∑𝑗∈𝑆 𝑑𝑒𝑔𝑟𝑒𝑒(𝑗)

(2.1)

The normalized cut represents a sum of edges connecting 𝑆 with the rest of
the graph normalized by the sum of edge weights in 𝑆, resp. 𝐺(𝑉 ) ⧵ 𝑆. The lower
the normalized cut, the sparser the connection of 𝑆 and the rest of the graph, and
the denser the links inside 𝑆 itself. The low normalized cut then marks a good
division of the graph.

Similarly, conductance is defined as

𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑎𝑛𝑐𝑒(𝑆) =
∑𝑖∈𝑆,𝑗∈𝑆 𝑤𝑖𝑗

min(∑𝑖∈𝑆 𝑑𝑒𝑔𝑟𝑒𝑒(𝑖),∑𝑗∈𝑆 𝑑𝑒𝑔𝑟𝑒𝑒(𝑗))
(2.2)

In the case of 𝑘 clusters, we calculate the normalized cut or conductance
of the graph as the sum of normalized cuts / conductances for each individual
community.

18



2.2.3 Modularity
The breakthrough approach to community detection is comparing the graph to
randomly wired networks. According to Barabási and Pósfai [4], random wired
networks lack any structure resembling communities, all independent of network
degree distribution.

The null hypothesis states random wired networks lack any structure related
to communities. Consider a network with 𝑁 nodes and 𝐿 links. Consider a
community 𝐶 with 𝑁𝐶 nodes and 𝐿𝐶 edges. Using degree preserving model, we
will decide whether 𝐶 is the result of random wiring or whether 𝐶 is close to what
we define as a community.

Define modularity for a community 𝐶 as

𝑀𝐶 =
𝐿𝐶
𝐿

− (
𝑘𝐶
2𝐿

) (2.3)

where 𝑘𝐶 is the total weighted degree of the nodes in the community 𝐶.
The value of the modularity𝑀𝐶 corresponds to how well the subgraph resem-

bles random wiring. If 𝑀𝐶 is 0, then the graph is random. Higher 𝑀𝐶 correlates
with better community structure, marking a better graph division. Negative 𝑀𝐶
defines part of the graph, which is definitely not a community.

Modularity of a network is then defined as

𝑀 = ∑
𝐶=1

𝑀𝐶 (2.4)

Graph clustering with high modularity implies good division and makes it
reliable to compare different results. The main advantage of modularity is the
naturally greater context it captures. Themodularity is still fast to compute, which
is greatly exploited in different algorithms optimizing the modularity value.

2.3 Algorithms

2.3.1 Kernighan-Lin Algorithm
One of the first attempts to formalize graph clustering comes from Kernighan and
Lin [5]. The main motivation of his research was to evaluate different approaches
to electronic circuit design, where the number of connections between different
circuit boards has to be minimal. We can see the analogy to community detection
as we are trying to find such partitioning of the weighted graph that results in
dense subgraphs with sparse connections between different communities.

As the result of the research, a simple 2-way graph partitioning algorithm
is suggested. We start with random graph bipartition. In each epoch, we swap

19



nodes in a defined manner between those partitions to improve the clustering
metrics. We return the result when an exit condition, such as the number of
epochs is met. Kernighan-Lin algorithm is a good heuristic even for larger inputs.
However, there is no guarantee the result is global optimum.

Define internal cost 𝐼𝑖 as the sum of the weight of incident edges of 𝑖, which are
in the same partitioning as 𝑖. Then define external cost 𝐸𝑖 as the sum of the weight
of incident edges of 𝑖, which are in different partitioning as 𝑖. We can observe that
if we switch the node to another partition, values of 𝐸𝑖 and 𝐼𝑖 are swapped. Thus
define node gain 𝐷𝑖 as the result of swapping partition for a node 𝑖.

𝐷𝑖 = 𝐸𝑖 − 𝐼𝑖 (2.5)

As we are interested in exchanges of pairs of nodes between two partitions,
we are interested in edge gain 𝐽𝑖𝑗.

𝐽𝑖𝑗 = 𝐷𝑖 + 𝐷𝑗 − 2 ∗ 𝑤𝑖𝑗 (2.6)

This equals to the exchange of pair of nodes between the partitions with the
adjustment of (𝑖, 𝑗) edge. This edge stays as part of the external gain of both
nodes, thus the need for adjustment.

The algorithm then proceeds as follows. At each epoch, 𝑘/2 node exchanges
are performed heuristically. At each exchange, a pair of nodes with maximum
gain 𝐽𝑖𝑗 is selected. It is important to note the exchanges are done virtually,
remembering the gains, adjusting the partitions, and recalculating the 𝐽𝑖𝑗 as if
the exchange was performed. However, the actual input for the current epoch
is left unchanged. In the next step, such 1 ≤ 𝑘 ≤ 𝑛/2 is found the overall gain
is maximalized. Overall gain is the sum of partial gains from each individual
exchange. If for any 𝑘 holds the overall gain is negative, the algorithm terminates
as no exchange can be performed to improve the partitioning.

According to Aggarwal [1], the algorithm converges rapidly to the local
optimum and may terminate in as little as five epochs. However, as with any
other NP-hard problems, the local optimum may differ from the global one. A
single epoch can be amortized as 𝒪(𝑁 log(𝐿)).

The algorithm can be sped up significantly by considering only nodes instead
of edges at each exchange and using smart data structures to store the nodes and
their gains in each partition. In addition, a balancing ratio can be defined to allow
for unbalanced partitioning. Those improvements were suggested by Fiduccia
and Mattheyses and reduced the epoch time to 𝒪(𝑁 ).

2.3.2 Recursive Kernighan-Lin
A simple extension of any bipartition algorithm is by doing bipartitions recursively.
In this subsection, we will discuss the suggested extension of the Kernighan-Lin

20



C3 C4

B1

C1 C2

A1

B2

Figure 2.1 Example of recursive tree expansion. Red nodes are selected community
partitions splitting the input graph to 3 communities.

algorithm. Instead of bipartition, we will create a whole partition tree and split
the graph into 𝑘 communities.

In the first step of the algorithm, we create a partition tree by recursively
applying bipartition until we have a full tree consisting of 𝑇 leaves, where 𝑇 is
nearest bigger power of 2 such that 𝐾 ≤ 𝑇. In the next step, we decide which
leaves we want to keep to reduce the tree’s last layer to contain exactly 𝐾 leaves.
We can use clustering performance metrics of our choice, however in the thesis,
we use Kernighan-Lin objective. Enumeration of all possible leaf configurations
might be potentially exponential, and it is totally dependent on the choice of 𝐾.
When 𝐾 is chosen exactly between two powers of 2, the number of configurations
is maximal. We can see a simple example in Figure 2.1.

In the assumption the bipartition is producing partitions of similar size on each
level of the tree, we split the previous layer in half. This means most of the pro-
cessing time of the algorithm is spent on calculating the first bipartition. Possible
performance gains are in parallelization, where we can parallelize computations
on the same level as the tree and configuration evaluation.

We derive the time complexity of recursive bipartition below. We can observe
the number of possible configurations is rising exponentially in regard to 𝑘. We
can show that easily. Consider we set 𝑘 exactly between two powers of 2. Then
we would need to expand exactly half of the nodes to form the leaves of the
final division. Asymptotically, this yields ( 𝑘

𝑘/2) combinations, and it is the upper
bound for the binomial coefficient. After applying Stirling’s approximation of

factorial, we receive a total of 2𝑘

√𝑘𝜋/2
configurations. If 𝐸 marks the complexity

of the evaluation of a single configuration, the total complexity of configuration

evaluation is 𝒪( 2𝑘

√𝑘𝜋/2
𝐸). If we consider edge cut as optimization metrics, which

21



can be calculated in 𝒪(𝐿) time, we get 𝒪( 2𝑘

√𝑘𝜋/2
𝐿).

We will continue with estimating the cost of the partitioning itself. For sim-
plicity, we start with the time complexity of optimized Kernighan-Lin. Optimized
Kernighan-Lin runs in 𝒪(𝑁 ) time for single bipartition. Considering we have
log2 𝑘 levels of bipartitions, we get

log2 𝑘 times

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝒪(𝑁 ) + 2 ∗ 𝒪(𝑁/2) + 4 ∗ 𝒪(𝑁/4) + ... (2.7)

After simplification, we get

log2 𝑘 times

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝒪(𝑁 ) + 𝒪(𝑁 ) + 𝒪(𝑁 ) + ... (2.8)

We can see the total complexity of the division is then 𝒪(𝑁 log 𝑘) and the total
complexity of the optimized recursive Kernighan-Lin algorithm is then𝒪(𝑁 log 𝑘+

2𝑘

√𝑘𝜋/2
𝐸).

As mentioned above in Section 2.3.1, complexity of naive Kernighan-Lin
implementation is 𝑁 log(𝐿). Under the assumption we create balanced bipartition
in regards of nodes and edges, we get

log2 𝑘 times

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝑁 log(𝐿) + 2 ∗ 𝑁/2 log(𝐿/2) + 4 ∗ 𝑁/4 log(𝐿/4) + ... (2.9)

After simplification, we get

log2 𝑘 times

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝑁 log(𝐿) + 𝑁 log(𝐿/2) + 𝑁 log(𝐿/4) + ... (2.10)

By splitting logarithms, we receive

log2 𝑘 times

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝑁 (log(𝐿) − 0) + 𝑁(log(𝐿) − log(2)) + 𝑁(log(𝐿) − log 4) + ... (2.11)

We can write it asymptotically as

𝒪(𝑁 log(𝑘) log(𝐿)) (2.12)

and the total complexity of recursive naive Kernighan-Lin is then

𝒪(𝑁 log(𝑘) log(𝐿) + 2𝑘

√𝑘𝜋/2
𝐸) (2.13)

22



2.3.3 Girvan-Newman

In 2004, Newman and Girvan [6] suggested a novel approach to community
detection using information flow. Instead of traditional weights, this algorithm
uses edge costs 𝑐𝑖𝑗. The main intuition is that the bigger the weight, the smaller
the edge cost. Inversion or negation are good heuristics to estimate the edge
costs.

The main metric in the Girman-Newman algorithm is betweenness centrality
as defined in Section 1.3.3. Girvan and Newman proposed that edges with high
centrality tend to connect different communities. This is explained by informa-
tion flow, as nodes and edges with high centrality lie on more shortest paths.
Tight edges can then be marked as communication bridges, connecting different
communities. This is also explained by the anatomy of the community, where
nodes inside a community are densely connected, whereas there are only a few
edges connecting different communities.

This gives us a simple divisive algorithm. In the first step, we calculate the edge
betweenness of the edges in the network. Until convergence, we then remove
edges with the highest betweenness and recalculate the values. Since in this
algorithm, every connected component is considered an independent community,
the algorithm finishes when we have found the desired number of connected
components.

The main disadvantage of this algorithm is the time complexity, as finding all
shortest paths is slow by nature. This comes with a time cost of 𝒪(𝑉 3), which
might make it unfeasible for bigger networks.

2.3.4 Greedy modularity algorithm

One of the first successful attempts to exploit modularity as defined in Equa-
tion (2.4) is captured in the simple greedy algorithm. This algorithm as proposed
by Newman [7] does greedy modularity maximization ensuring the community
clustering is optimal

Define Δ𝑀𝐴𝐵 as the difference in modularity when we merge communities 𝐴
and 𝐵 in comparison tomodularity of the graphwhen they are separate. According
to Barabási and Pósfai [4] for undirected graph holds

Δ𝑀𝐴𝐵 =
𝑙𝐴𝐵
𝐿

−
𝑑𝑒𝑔𝐴 × 𝑑𝑒𝑔𝐵

2𝐿2
(2.14)

where 𝑙𝐴𝐵 is sum of edge weights connecting communities 𝐴 and 𝐵 and 𝑑𝑒𝑔𝐴 and
𝑑𝑒𝑔𝐵 are weighted degrees in community 𝐴, resp. 𝐵. 𝐿 is then the weighted sum
of the edges of the whole graph.

23



For directed graphs, we then define

Δ𝑀𝐴𝐵 =
𝑙𝐴𝐵
𝐿

− √𝑑𝑒𝑔
−
𝐴𝑑𝑒𝑔

+
𝐴√𝑑𝑒𝑔

−
𝐵 𝑑𝑒𝑔

+
𝐵

𝐿2
(2.15)

where 𝑑𝑒𝑔−𝐴 is weighted indegree and 𝑑𝑒𝑔+𝐴 is weighted outdegree of the
community 𝐴, resp. 𝐵.

The algorithm is then based on an agglomerative approach and works as
follows:

1. Each node forms a community on its own at the start of the algorithm

2. Merge 2 interconnected communities with biggest Δ𝑀𝐴𝐵

3. Repeat until we have more communities to merge

4. Return partition with maximal modularity

Calculation of Δ𝑀𝐴𝐵 is calculated using constant time, each merge then takes
at most 𝒪(𝐿) computations. In summary, the algorithm runs in 𝒪(𝑁𝐿) time and
in 𝒪(𝑁 2) when the graph is sparse.

2.3.5 Louvain algorithm
Modularity-based approaches have been the breakthrough in community detec-
tion. However, there are some improvements possible, both in times of the speed
of the algorithm and in the quality of the results. In this subsection, we will
introduce the Louvain method, an efficient algorithm for community detection.
Louvain algorithm was introduced by Blondel in 2008 [8].

It is a simple extension of the greedy modularity approach defined in Sec-
tion 2.3.4 and is reusing already defined terms and definitions. The algorithm
works in 2 phases, which are repeated iteratively until convergence.

The algorithm starts by making each node an individual community, setting
the number of communities in the beginning to 𝑁 In the first step, for each node 𝑖
and all its neighbors 𝑗, we evaluate modularity gain by removing node 𝑖 from its
community and placing it in the community of 𝑗. Node 𝑖 is then placed to such
a neighboring community where the modularity gain is maximum, under the
condition the gain is positive. Those steps are repeated sequentially for every
node 𝑖 in the graph until there is no possible positive change in modularity. When
no further positive adjustment to modularity is possible, the first phase finds the
local optimum, and the algorithm proceeds to the second phase.

24



Define Δ𝑄 as a difference in the modularity after moving individual isolated
node 𝑖 into community 𝐶. Then Δ𝑄 can be defined as

Δ𝑄 = [
∑𝑖𝑛 +𝑘𝑖,𝑖𝑛

2𝑚
− (

∑𝑡𝑜𝑡 +𝑘𝑖
2𝑚

)
2
] − [

∑𝑖𝑛
2𝑚

− (
∑𝑡𝑜𝑡
2𝑚

)
2
− (

𝑘𝑖
2𝑚

)
2
] (2.16)

where∑𝑖𝑛 is the weighted sum of the edges inside community 𝐶,∑𝑡𝑜𝑡 is the
weight sum of edges incident to nodes in community 𝐶, 𝑘𝑖 is the weighted sum of
edges incident to node 𝑖, 𝑘𝑖,𝑖𝑛 is the weighted sum of links from 𝑖 to nodes in the
community 𝐶, and 𝑚 is the weighted sum of all graph edges. Similar formula can
be derived for removing node 𝑖 from its community. Total modularity gain is then
composed of both components, where 𝑖 is removed from its original community
and placed into a community of node 𝑗.

In the second phase of the algorithm, a new network based on the clustering
from the first phase is constructed. Nodes of a single community are contracted
into a single node. Edges are contracted as well, where the weight of the edge
connecting two contracted communities is the sum of the weights of the original
edges connecting nodes of those communities. Edges inside the community will
form a self-loop naturally. When the second phase is finished, this new network
can be processed by the first phase of the algorithm, and the process repeats.

The algorithm finishes when no more changes can be made, namely when the
first phase of the algorithm can not make any positive modularity gain. Louvain
algorithm can terminate after a fixed number of epochs as well, however, this is
not used in practice.

It is worth to note the algorithm spends most of the time in the first iteration
of the first epoch. This is caused by decreasing number of communities as the
algorithm proceeds. In typical social networks with low density, the algorithm
finishes in linear time and belongs to one of the most performant algorithms.

2.3.6 Spectral clustering

A spectral clustering method is an efficient approach to community detection,
according to Aggarwal [1]. The main idea is to create such embedding of the
graph into k-dimensional space where standard machine learning methods could
be used.

Themain expectation from such embedding is that the stronger the connection
between nodes of the graph, the closer are the nodes in the graph embeddings.
Formally, assume 𝑊 ∈ ℝ𝑛×𝑛 is a weighted adjacency matrix, where 𝑤𝑖𝑗 is the
weight of the edge (𝑖, 𝑗). Assume the nodes themselves are not weighted. For sim-
plification assume we are looking for one-dimensional embedding 𝑦 = (𝑦1, ..., 𝑦𝑛)𝑇

25



of the nodes 𝑁(𝐺) ∈ {1, ..., 𝑛}. Define the objective function to minimize as

𝑂 =
𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

𝑤𝑖𝑗(𝑦𝑖 − 𝑦𝑗)2 (2.17)

We can see for the objective to be minimal, the node distance should be inverse
proportional to the edge weight. Minimizing the objective function ensures the
densely connected nodes are close together.

Laplacian matrix L is defined as 𝐿 = Λ − 𝑊, where Λ is diagonal matrix
satisfying Λ𝑖𝑖 = ∑𝑛

𝑗=1 𝑤𝑖𝑗. The objective function can then be rewritten as

𝑂 = 2𝑦𝑇𝐿𝑦 (2.18)

Laplacian matrix L is positive semidefinite since the objective function is
always non-negative. This results in nonnegative eigenvalues. Since we need
to exclude trivial solution 𝑦 = (0, ..., 0)𝑇 from optimization, we define a scaling
constrain

𝑦𝑇Λ𝑦 = 1 (2.19)

After solving Lagrangian optimization, optimal solution is held by

Λ−1𝐿𝑦 = 𝜆𝑦 (2.20)

It can be seen that 𝜆 is eigenvalue and 𝑦 is eigenvector of matrix Λ−1𝐿. Also,
it can be proven the objective function 𝑂 = 2𝜆 for eigenvector 𝑦.

The optimal solution is the smallest nontrivial eigenvalue 𝜆 and respective
eigenvector 𝑦. This can be seen from trivial solution 𝑦 = (1, ..., 1)𝑇, where by
definition 𝑂 = 0 and 𝜆 = 0. This solution contains no added information and
must be omitted. That way, 𝑦 holds one-dimensional graph embeddings with the
smallest possible optimization function.

We can easily extend the embedding to 𝑘 dimensions. Consider 𝑘 smallest
nontrivial eigenvalues 0 < 𝜆1 ≤ ... ≤ 𝜆𝑘 and corresponding eigenvectors 𝑒1, ...𝑒𝑘 ∈
ℝ𝑛 of matrix Λ−1𝐿. Define matrix 𝐷 = [𝑒1, ..., 𝑒𝑘] ∈ ℝ𝑛×𝑘. Then each row of such
matrix corresponds to the k-dimensional embedding of the graph node, and for
𝑘 = 1, it is identical with the one-dimensional case. It is good to mention that
columns are not necessarily orthogonal and are not in the L2 norm, thus later
normalization is required.

To reveal communities in a graph, the K-Means algorithm can be used to
graph embeddings. That said, we are trying to find densely populated and isolated
subspaces of k-dimensional space.

Finding eigenvectors and eigenvalues from sparse matrices according to the
ARPACK library [9] takes 𝒪(𝑛𝐷2) time, where 𝐷 is the number of eigenvectors

26



and the dimension of the embedding. ARPACK is a state-of-the-art library for
linear algebra implementing the Implicitly Restarted Arnoldi Method to efficiently
find a defined number of eigenvectors according to sorting criterium. The time
complexity of the K-Means algorithm for further clustering is 𝒪(𝑛𝑘𝐷) for a fixed
number of iterations where 𝑘 is the number of communities to find. The total
complexity of the algorithm is then 𝒪(𝑁𝐷2 + 𝑁𝑘𝐷).

The main advantage of this approach is the use of standard linear algebra
methods and algorithms. In practice, the underlying algorithms are usually fast
and optimized and will benefit from future research, even outside community
detection fields. In addition, social networks are sparse graphs in practice, which
allow for even more optimization in terms of sparse matrix representation and
parallelization, enabling great scalability of the method.

2.3.7 METIS - Multilevel graph partitioning
The main problem with many graph clustering algorithms is they do not scale
well. That being said, the complexity of the algorithms becomes an issue as the
network grows larger, with the algorithm becoming unusable for bigger networks.

Parthasarathy, Ruan, and Satuluri [3] in his article suggests using Multilevel
graph partitioning. Multilevel graph partitioning (METIS) is a method for graph
compression, allowing to use standard algorithms on compressed data. METIS
works in multiple interconnected phases:

1. Coarsing. This phase creates a condensed graph of a similar structure as the
original graph with collapsed nodes and edges, enabling faster calculation.
The resulting graph is just a fraction of the original, and it is acceptible to
go as low as 100 nodes.

2. Partitioning. This phase applies the black box graph splitting algorithm and
creates graph clustering.

3. Uncoarsing. In this phase coarsened partition is mapped to the original
graph.

Coarsening phase

In this phase, sequence of graphs 𝐺 = 𝐺0, 𝐺1, ..., 𝐺𝑚 is created, where |𝐺𝑗| > |𝐺𝑗+1|
holds. At each step 𝑘, a small number of nodes and edges is contracted to form a
single node in 𝐺𝑘+1. Aggarwal [1] defines multiple methods of graph compression,
especially node and edge selection.

Random edge matching Random node is selected. If there is at least one adja-
cent unselected node, then such node is selected at random and such pair

27



will be contacted. Contracting in a single epoch is made until there are any
unselected nodes.

Heavy edge matching This approach is similar to random edge matching, with
the difference in edge weight taken into consideration. For every unse-
lected random node 𝑖, unselected adjacent node 𝑗 is selected such that 𝑤𝑖𝑗
is maximal. The main intuition is that heavy edges tend to connect nodes
within the community and are not part of the partition cut.

Heavy clique matching It is beneficial to merge densely connected sets of
nodes, as this approach will maximalize the number of contracted edges.
Define 𝑣𝑖 as the number of contracted nodes the node 𝑖 represents (can
be weighted sum in case of weighted nodes), and 𝑠𝑖 denotes the weighted
sum of collapsed edges at node 𝑖 from previous contracted phases. We
can observe, that if contracted node 𝑖 is a clique in original graph, 𝑠𝑖 will
approach 𝑣𝑖(𝑣𝑖−1)

2 . Define edge density 𝜇𝑖𝑗 ∈ (0, 1) of (𝑖, 𝑗) edge as

𝜇𝑖𝑗 =
2(𝑠𝑖 + 𝑠𝑗 + 𝑤𝑖𝑗)

(𝑣𝑖 + 𝑣𝑗)(𝑣𝑖 + 𝑣𝑗 − 1)

Contracting high-density edges thus correlates with contracting cliques in
graph 𝐺0. Usually, the first node of the edge is selected at random.

Partitioning phase

In this phase, any partitioning algorithm is used to get a partition of the condensed
graph. Algorithms such as spectral clustering, Girvan-Newman or recursive
Kernigan-Lin can be used to obtain a high-quality approximation of original
graph clustering. Even low-quality partitioning can produce reasonable output,
mostly because densely connected parts of the graph are contracted, avoiding
any partition cuts.

Uncoarsening phase

Mapping between graphs 𝐺 = 𝐺0, ..., 𝐺𝑘 is applied in reverse order to obtain
partitioning of the original graph from the condensed variant. It is possible to
extend the approach with fine-tuning between every transition. If this extension
is used, then 𝐺𝑙 is the initial seed for clustering algorithms such as Kernigan-Lin
to obtain partitioning for 𝐺𝑙−1. This approach can uncover hidden structures in
collapsed parts of the graph.

28



2.3.8 Nested variants of community detection algorithms
As different algorithms have different optimization objectives, the single algorithm
might not be the optimal choice for the data selected. This shortcoming might
be overcome by combining different algorithms into a hybrid approach. The
combined nested algorithm works in multiple steps: We choose 𝑘 (preferably
different) algorithms. At each level of nesting, we take the input graph and run
a single algorithm from the pipeline on the data. Each cluster returned will
serve as an input for the next layer when we consider a subgraph defined by the
community.

We can imagine it as performing community detection with different sensitiv-
ity settings. We start with a rough clustering, making it finer at each step. When
we proceed with all selected algorithms, we have a final clustering of the original
graph. A division tree is built in the process, with leaves representing the final
results.

From now on, we will consider only a combination of two algorithms. There
are multiple properties the individual algorithms must follow. Ideally, the first
algorithm must have short runtime and create good rough clustering. There is
also a requirement to have an adjustable number of communities detected so that
we can regulate the roughness of the first clustering. For the second algorithm,
there are no hard requirements. However, it is useful to set different algorithm as
in the first step. Also, it might be beneficial to select the algorithm that works
best when used on a small number of nodes to exploit the division of the original
data.

Those algorithms were selected for further evaluation:

• Spectral clustering - Louvain

• Recursive Kernighan-Lin - Louvain

• Recursive Kernighan-Lin - Girvan-Newman

This selection of algorithms adheres to the requirements mentioned before
and tries to maximalize overall utility. It is important to note that the number of
communities in the first step is fixed in future experiments, however, this could
be improved upon by automatically determining how rough the initial clustering
should be.

2.4 Summary
In this chapter, we have defined multiple important metrics for community de-
tection as well as the most important algorithms relevant to the community

29



Name Complexity

Spectral clustering 𝒪(𝑁𝐷2 + 𝑁𝑘𝐷)
Louvain 𝒪(𝑁 + 𝐿)
Kernighan-Lin 𝒪(𝑁 )
Kernighan-Lin Recursive 𝒪(𝑁 log 𝑘 + 2𝑘

√𝑘𝜋/2
𝐸)

Greedy modularity 𝒪(𝑁𝐿)
Girvan-Newman 𝒪(𝑁 3)
Kernighan-Lin Naive 𝒪(𝑁 log(𝐿))
Kernighan-Lin Naive Recursive 𝒪(𝑁 log(𝑘) log(𝐿) + 2𝑘

√𝑘𝜋/2
𝐸)

Table 2.1 Algorithm complexity summary

detection field in social network analysis. By summarizing the algorithms and
their respective complexities in Table 2.1 we observe some of the algorithms are
not well scalable for bigger inputs.

From theoretical complexity, the Girvan-Newman algorithm and greedy mod-
ularity are both at least quadratic and thus they might be unusable for networks of
bigger sizes. The recursive Kernighan-Lin algorithm might be unfeasible in case
𝑘 is big enough. In that case, the algorithm might face a combinatorial explosion.
Those algorithms should be run on a compressed version of the input graphs
using the METIS compression algorithm and in that case, we have some guarantee
the runtime of the algorithm would be reasonable.

Other algorithms should not have significant problems with performance
and, in theory, should be able to process even large datasets in a reasonable time.
We will test this hypothesis in the experiment section, where we compare the
hypothesis of the runtime with actual implementation.

30



Chapter 3

Datasets

The choice of the data for research is as essential as the choice of the algorithms
itself. In this chapter, we will describe in detail the datasets selected as the bench-
mark for community detection problem. The main factor driving the selection
is dataset size, since as the instance of the problem grows, the priorities in the
clustering shift.

As a representative of small social networks, we choose Zachary’s karate
club. In small graphs, we should achieve a similar length of the algorithm run-
time. Although, only a slight change in the clustering can significantly alter the
algorithm’s accuracy.

For mid-sized networks, we selected the Enron email dataset. For more
extensive networks, we are interested more in the speed of the algorithm, as
algorithm time complexity might make some algorithms unfeasible. Opposing
small datasets, minor deviations of the clustering are much more acceptable, as
they have only a tiny impact on the resulting metrics.

3.1 Zachary’s karate club
Zachary’s karate club is a social network of the university karate club first in-
troduced by Zachary [10] in 1977. The social network was observed from 1970
to 1972. The graph consists of 34 nodes and 78 edges. Edge is weighted by the
number of interactions of the club members outside the club.

Due to rising tensions between instructor ”Mr. Hi” and the club administrator
over the member fees, the club split into two entities. As a result of the split,
each former club member was assigned to a new club leader by their preference,
effectively labeling each node as either a student of ”MR. Hi” or ”Officer”. Labeling
of the club members predetermines the social network to become a benchmark
dataset for the study of community structure in social networks. Labels enable us

31



to view any clustering algorithm as a prediction function, allowing us to compare
the results to the original labels.

We have chosen this dataset to represent small networks. With this choice,
we are aiming more at the evaluation of algorithm precision and behavior, since
in many cases difference in the runtime is insignificant.

3.2 Enron email dataset

Enron was an American company engaged in the energy sector, services, and
commodities. The company had a significant share in the energy sector in the
USA at that time. It belonged to Fortune 500 companies and was named among
the most innovative American companies.

On January 25th, 2002 company filed for bankruptcy when the shares plum-
meted from $90 to 50 cents. The investigation revealed that the company’s
financial results were organized accounting fraud, hiding its previous debt and
tremendous losses from failed investments. On top of that, the company was
extensively involved in the California energy crisis in 2000-2001. Deregulations
in the energy industry and market liberalization indirectly caused the crisis. As a
result of market manipulations, energy prices skyrocketed, and due to artificially
reduced power supply, complete blackouts started to happen. The investigation
found leadership guilty of accounting fraud and insider trading.

As part of the investigation, company email communication was released to
the public for research purposes, and the dataset was introduced in 2004 by Bryan
Klimt and Yiming Yang [11]. For the public release, dataset maintainers restored
all integrity issues and due to the request of touched persons, a small amount of
email users were removed for privacy reasons.

The dataset contains roughly 500 000 emails. Each dataset file is an email
in original data exchange format parsable by standard email parsers. The social
network is then constructed by considering each email address as a node, and
edges are weighted by the number of communications between two nodes. That
way, we obtain the network containing 20 926 nodes and 181 303 edges. It is
worth to note we can construct both directed and undirected variants of the Enron
dataset. Nonetheless, only the undirected version is used later in the thesis.

We choose this dataset for benchmarking the mid-sized networks, where the
run time of the algorithm is taken into consideration as well as its capabilities.

Below is an example of the dataset email. It is easy to see the file follows
standard email format and thus is parsable by any standard email parser.

32



Message-ID: <29020904.1075840230207.JavaMail.evans@thyme>
Date: Mon, 2 Aug 1999 08:33:00 -0700 (PDT)
From: ggalata@enron.co.uk
To: kenneth.lay@enron.com
Subject: Franco Bernabe's tel number
Mime-Version: 1.0
Content-Type: text/plain; charset=us-ascii
Content-Transfer-Encoding: 7bit
X-From: "Giuseppe Galata" <ggalata@enron.co.uk>
X-To: Kenneth Lay
X-cc:
X-bcc:
X-Folder: \Kenneth_Lay_Dec2000\Notes Folders\Business
X-Origin: LAY-K
X-FileName: klay.nsf

Ken,

I finally found Franco Bernabe's work number: +39-06-3600-4741
+39-06-3600-4742

He actually returned my call (I had left a message with his secretary
saying that you were looking to talk to him). He mentioned that IMI (the
Italian investment bank) would like to do a joint-venture with us to
develop a power trading structure. He will put me in contact with someone
at IMI.

You can reach him at any of the above numbers.

Best wishes

Giuseppe Galata
ECT London (Italian Team)

33



34



Chapter 4

Experiment setup

In previous chapters, we performed a deep explanation of the social network
analysis, introduced key algorithms and approaches to community detection and
set up benchmarking datasets. This chapter is then dedicated to defining key
experiments of this thesis, consuming previously gained knowledge.

4.1 Estimation of number of communities

In Chapter 2, we defined multiple algorithms performing community detection in
social networks. We can observe many of the algorithms works similarly to K-
Means, where the number of clusters is defined as a parameter 𝑘. This algorithm’s
common property puts us in a chicken and egg problem, where we need to know
𝑘 to obtain optimal clustering. However, we do not know 𝑘 in advance. For
Zachary’s karate club, the choice of 𝑘 is simple: We will be consistent with the
labels of the original dataset.

For the Enron email dataset, things are more complicated. Since we have
no labels or external information about the expected graph structure, we must
estimate 𝑘 by ourselves. This estimate of community count will be processed
later in Section 4.3. We will use this estimate for every algorithm where 𝑘 is a
hyperparameter to enable fairness in algorithm evaluation. An alternative to this
approach is to fine-tune each individual algorithm for the optimal partition of the
graph, however, this method is even more expensive in terms of computational
resources.

In this experiment, we estimate the count of communities in the Enron dataset
by performing grid search using spectral clustering. For each possible clustering
with a different cluster count, we calculate 3 different metrics:

• inertia

35



• silhouette

• edge cut as defined in Section 2.2.1

Inertia is defined as 𝑛
∑
𝑖=1

min
𝜇𝑗∈𝐶

(||𝑥𝑖 − 𝜇𝑗||2) (4.1)

where 𝜇𝑗 is the respective cluster center. This metric represents objective function
of K-Means and the function represents the sum of squared distances of data
points from the nearest cluster centers. Minimal inertia means perfect clustering,
as that would mean data points are close to cluster centroids. This approach
evaluates the performance of K-Means clustering on spectral embeddings and
does not use the original input graph.

Silhouette value for data point 𝑖 is defined as

𝑠(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

max(𝑎(𝑖), 𝑏(𝑖))
(4.2)

where 𝑎(𝑖) is the mean distance of the data point to the other points in the same
cluster and 𝑏(𝑖) is the mean distance of the data point to the nearest points from
another cluster. Silhouette score 𝑠(𝑖) is scaled to [-1, 1] where 1 means perfect
clustering with dense, well-distinguished cluster, 0 means insignificant clustering
regarding distances, and -1 interprets as wrong cluster assignment. The silhouette
score for the whole dataset is then calculated as the average silhouette score
through all data points. The objective is to find 𝑘 where the silhouette score is
maximal.

Results of individual metrics are collected and analyzed. We then try to find
either the global optimum of the data or use the elbow method to find a point
where any future gains are insignificant. The elbow point is found using a second-
order derivative of the curve. To obtain a second-order derivative of the original
data, we will use 2 approaches. First, the polynomial curve is fit using observed
data points. Secondly, the second-order central difference is calculated directly to
approximate the second-order derivative.

A simple derivative approximation for a single dimension can be defined as

𝜕ℎ[𝑓 ](𝑥) =
𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)

ℎ
(4.3)

For more precise calculation, findiff Python library [12] is used, which is based
on Taylor series expansion.

As a result of this experiment, such 𝑘 is chosen, which is expected to work
well with all algorithms on the Enron dataset.

36



4.2 Hierarchy of non-hierarchical method
Algorithms such as greedy modularity or Kernighan-Lin work in either an ag-
glomerative or divisive approach. That means it is possible to track down how
individual community was formed, and it eventually means we have access to
the whole partitioning tree. That stability and predictability is a major flaw in
the spectral clustering method.

As defined in Section 2.3.6, spectral clustering is a two-step process. Firstly,
multidimensional graph embedding is created, and then K-Means is used to
determine the clustering. From the very definition of K-Means, results are greatly
dependent on initialization, which is based on randomness and therefore are
unstable. This holds particularly true when we consider clusters with partially
unclear boundaries, where some boundary points are assigned differently.

K-Means clustering on the same graph embedding becomes much more in-
teresting as we change the number of clusters we want to identify. This stems
from the fact that it is new clustering, not using any information from cluster-
ings with different cluster counts 𝑘. This opens up questions about behavior on
𝑘 → 𝑘 + 1 change and how adding a new community will reshuffle community
label assignment.

For this experiment, assume we have source graph 𝐺𝑠 and target graph 𝐺𝑡,
both containing the same nodes and with community labels assigned. Assume
we are observing 𝑘 → 𝑘 + 1 case and the difference in respective cluster counts is
one. Then for the community label 𝑠 in the source graph and label 𝑡 in the target
graph we calculate alignment 𝑃(𝑡|𝑠) as the probability of transition from label 𝑠 to
𝑡. The alignment can be estimated using maximum likelihood estimation as

𝑃(𝑡|𝑠) =
𝑐(𝑠, 𝑡)

∑𝑡′ 𝑐(𝑠, 𝑡′)
(4.4)

where 𝑐(𝑠𝑙, 𝑡𝑙) is a count function, marking the number of nodes that have 𝑠𝑙
community label in the source graph and 𝑡𝑙 community label in the target graph.
It is easy to see the alignment calculates the percentage of how the source graph
is split into target graph communities.

Another observation is that clustering itself can be seen as the division of
nodes into equivalence classes, as reflexivity, symmetry and transitivity property
hold trivially and we are finding alignment between such equivalence classes.

Behavior such as instability and randomness is expected and will be subject to
examination for the Enron dataset. To obtain a bigger picture of how this splitting
behaves, we will examine the sequence of clusterings 𝑘 → 𝑘 + 1 → 𝑘 + 2. In this
experiment, we will calculate alignments for respective pairs of labeled graphs
and create a visualization of observed data.

37



4.3 Algorithm comparison
The main and most interesting part of this thesis is the evaluation of community
detection algorithms on different data types. This section is devoted to the
definition of a methodology for execution and result evaluation for differently
sized datasets and algorithms.

4.3.1 Datasets
As mentioned in Chapter 3, we have chosen two differently-sized benchmark
datasets. To represent small data, Zachary’s karate club is the perfect option. In
addition, nodes are labeled, allowing us to evaluate the accuracy of individual
algorithms.

As the representative of mid-range data size, we have chosen the Enron email
dataset. This network is large enough to test and evaluate the performance of
community detection algorithms and find algorithms suitable for bigger networks.
Opposing to Zachary’s karate club dataset, Enron is unlabeled, adding additional
burden to the estimation of the number of clusters.

4.3.2 Statistics and measures
Tomeasure the performance of community detection algorithms, we select metrics
describing the core properties of any partition of the input graph. To mitigate
randomness, each algorithm is evaluated 5 times and for each algorithm run
we calculate the statistics for that particular run. Aggregated statistics are then
calculated from all runs of the same instance of the algorithm, calculating mean,
sample standard deviation, and 95% confidence interval. Selected aggregated
properties include:

• runtime of the algorithm

• community count and community size

• modularity and community average modularity

• conductance and community average conductance

• normalized edge cut and community average normalized edge cut

• edge cut ratio

• edge cuts

• clustering coefficient and average community clustering coefficient

38



• graph density and average community density

We select those properties because they are either direct objectives of the com-
munity detection problem or are tightly connected to how the ideal community
is perceived. Quantitative analysis will strictly consider only these properties.

4.3.3 Algorithm configuration
Zachary’s karate club

Since Zachary’s karate club is a dataset of small size, the comparison consists
only of basic algorithms as there are only a few nodes to test on. That means
there is no graph compression using the METIS algorithm, nor is there the use of
nested algorithms or recursive Kernighan-Lin. Algorithms and their parameters
are listed in Table 4.1.

Name Notes

Kernighan-Lin 20 iterations
Kernighan-Lin Naive 20 iterations
Louvain -
Greedy modularity -
Girvan-Newman K=2
2D spectral clustering K=2, 3, 4
3D spectral clustering K=2

Table 4.1 Algorithms evaluated for Zachary’s karate club.

Since all of the actors in the dataset are labeled by one of the two labels, we
will also measure algorithm accuracy in addition to the previously mentioned
metrics. In the modularity-based approaches, the number of communities is
detected automatically and is not subject to the parameter.

Enron enail dataset

As this dataset is considerably larger than Zachary’s karate club, we have a
greater choice of algorithms available. On the other hand, due to the algorithm’s
theoretical complexity, we now have time constraints as mentioned in Chapter 2.
This means the graph compression algorithm METIS must be used to enable the
evaluation of bigger datasets. Algorithms where METIS compression is used
are listed in Table 4.2, and their runtime is calculated using compressed graphs.
Algorithms, where theoretical time complexity suggests they can process large
input graphs, are listed in Table 4.3. Those algorithms are not compressed, and
their run time matches the processing time of the original data.

39



As spectral clustering is directly optimized for parallel processing, we allow
it to use all CPU cores to measure end-to-end performance. This results in the
serial execution of all instances of spectral clustering. All other algorithms are
executed simultaneously, allocating only a single CPU core for each algorithm
run. This setup greatly improves the run time of the experiment as a whole and
still let the algorithms run uninterrupted.

Name METIS Notes

Kernighan-Lin Naive 4000 nodes 25 iterations
Kernighan-Lin Naive Recursive 4000 nodes 25 iterations
Girvan-Newman 4000 nodes -
Greedy modularity 1000 nodes -
Kernighan-Lin recursive → greedy modularity 4000 nodes see notes

Table 4.2 Algorithms evaluated for Enron dataset using METIS compression. Since we
estimate the optimal number of communities in Section 4.1, we use the community count
parameter from this experiment where applicable. In nested algorithm Kernighan-Lin
recursive→ greedy modularity, we will use the nearest lower power of 2.

Name Notes

Kernighan-Lin 25 iterations
Kernighan-Lin Recursive 25 iterations
Louvain -
10D spectral clustering -
30D spectral clustering -
Kernighan-Lin recursive → Louvain see notes
Spectral clustering → Louvain see notes

Table 4.3 Algorithms evaluated for Enron dataset. Since we will estimate the optimal
number of communities in Section 4.1, we use the community count parameter from this
experiment where applicable. In nested algorithm Kernighan-Lin recursive→ Louvain,
we will use 2 lowest powers of 2 and in Spectral clustering → Louvain we will use lowest
power of 2.

40



Chapter 5

Results

5.1 Estimation of number of communities
In this chapter, we estimate the optimal number of communities of the Enron
dataset in an experiment defined in Section 4.1. For every 𝑘 ∈ {2, ..., 3500}, we
calculate inertia, silhouette score and edge cost of clustering with 𝑘 clusters using
a 30D spectral clustering algorithm. Results are then stored in a CSV file for
further processing. All calculations are done in parallel, and calculations of all
possible clusters took 21 hours.

For all mentioned measures, we plot their respective values for each 𝑘. In
addition, we fit the polynomial curve on observed data and calculate the second
derivative of that curve. To cross-check the results, we calculate the second-
order central difference directly from observed data. To illustrate how the curve
behaves, we also calculate the difference of values for all neighbor pairs.

In the next subsections, we describe each of the metrics independently and
we will conclude by setting a 𝐾 for the next experiments.

5.1.1 Inertia
Inertia is an optimization objective of the K-Means algorithm. It is a squared
distance of data points from the nearest clusters center, thus we want to minimize
the function value. As we use K-Means directly on the graph embeddings, we
obtain the inertia value directly from the clustering object. Estimating the number
of clusters by observing the inertia curve is a standard procedure in machine
learning, used mostly with K-Means.

As we can see in Figure 5.1, the graph is convex and decreasing, thus, estima-
tion of elbow point is possible. When we analyze second-order derivative, we
come to the conclusion that for 𝑘 = 9 the second-order derivative is maximal.
The elbow point has been marked into graphs. Visual inspection of the inertia

41



and difference curve confirms this discovery, as bigger 𝐾 contribute less to inertia
changes.

5.1.2 Silhouette score

Similarly as in inertia, the evaluation of silhouette score is a standard procedure
in machine learning. Since for each data point 𝑖 higher silhouette score means
better clustering, we want to obtain maximum results.

From Figure 5.2 we can see the silhouette score is more noisy and less pre-
dictable than inertia. We can see the curve is rising from the lowest possible values
to the highest ones, and as a result, there is no maximal value in the calculated
interval. The rising tendency is caused by adding more clusters to the graph,
which makes clusters naturally denser, as even a small group of close nodes can
form a cluster. With lower 𝑘, naturally, such nodes are a part of bigger clusters.

Using the curve fitting technique brings no conclusive results, as the second-
order derivative is in all cases on a small range of nondecreasing value levels. The
second-order central difference suggests there is a local maximum on previously
found 𝑘 = 9, however it is not a global optimum, which suggests for 𝑘 = 2. The
same applies to examining the difference between two consecutive values, where
we alternate between negative and positive values.

5.1.3 Edge cut

The main drawback of the before-mentioned measures is they operate on graph
embedding instead of input graph. As edge cut represents one of the main
community detection measures, naturally, we want to have it maximal. This
points to measuring edge cut metrics for all of the performed clusterings. We can
observe all measured values in Figure 5.3.

Similarly, as using silhouette score, edge cut value is noisy, making it impos-
sible to estimate elbow point from second order derivative or central difference.
There is as well no global maximum, as the curve has decreasing tendency. This
is caused by adding more communities, which naturally add edges connecting
different communities. As a result, we might observe denser clusters, however,
with much more inter-cluster connections. Inversion of the values happens at
𝑘 = 54 where there are more edges connecting different communities than edges
within those communities.

As a result, there is a rapid decrease in edge cut value, providing no significant
interpretation of the data.

42



5.1.4 Conclusion
As we can see from the observed values, the only significant measure is inertia.
Other metrics are noisy. Silhouette score provides support for inertia analysis,
however, it is incapable of the verdict of its own. Edge cut analysis provided no
added value as no elbow point nor optimal value can be determined. To conclude,
for further work we will use 𝐾 = 9 as a baseline community count for the Enron
dataset.

5.2 Hierarchy of non-hierarchical method
As mentioned in Section 4.2, spectral clustering is not a divisive or agglomerative
algorithm, meaning we can not reconstruct the exact process of how communities
are formed, and we can not create community dendrogram. In this experiment,
we observe community splitting behavior for consecutive community counts. As
a baseline, we choose 𝐾 = 9 as per the result of the experiment in Section 5.1.
Alignments 𝐾 = (9, 10) and 𝐾 = (10, 11) are calculated and visualized.

We can see calculated alignments for 𝐾 = (9, 10) in Table 5.1 and for 𝐾 =
(10, 11) in Table 5.2. Visualized alignments are in Figure 5.4. It is easy to see the
alignment value of 1 is equal to the isomorphism of community labels.

Most of the alignments are either isomorphisms or only small diversions of the
original communities. In the 𝐾 = (9, 10) alignment we can see the only significant
diversions of ratio 75 ∶ 25 are 1 → 1, 2 and 5 → 1, 5. From the visualization it is
easy to see those diversions create a new community labeled 1 for target graph
𝐾 = 10. Similarly by observing 𝐾 = (10, 11) we come to similar conclusion with
0 → 9, 2 and 5 → 4, 8with ratio up to 60 ∶ 40. These diversions create community
label 8 in graph 𝐾 = 11. We can also see the migration of nodes caused by 0 → 2.
This can be explained by the slight change in node cluster centers by adding a
new cluster.

The joint diagram shows that the newly formed community 1 in 𝐾 = 10 is
untouched in the next iteration. We can also see many nodes untouched by the
clustering through multiple iterations, suggesting parts of the embedding clearly
distinguished from the rest of the nodes and parts with ambiguity. From the
definition of K-Means, clustering labels might change in ambiguous spaces as
different clustering might be found more optimal.

5.2.1 Conclusion
In theory, when we gradually increase the detected community count, we should
observe divisions, merges and isomorphisms. Using the Enron dataset, we verified
this assumption and observed the behavior of the spectral clustering algorithm.

43



0 1 2 3 4 5 6 7 8

0 0.96 0 0 0 0 0 0 0.02 0
1 0 0.21 0 0 0 0.26 0 0 0
2 0 0.79 0 0 0 0 0 0 0
3 0 0 1.00 0 0 0 0 0 0
4 0 0 0 1.00 0 0 0 0 0
5 0 0 0 0 0.07 0.74 0 0 0
6 0 0 0 0 0 0 0 0.98 0
7 0 0 0 0 0 0 0 0 1.00
8 0 0 0 0 0 0 1.00 0 0
9 0.04 0 0 0 0.93 0 0 0 0

Table 5.1 Results for graph alignment for 𝐾 = 9 and 𝐾 = 10

0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0.89 0 0 0
1 0 0 0.95 0 0 0 0 0 0 0
2 0.34 0 0 0 0 0 0 0 0 0.61
3 0 0 0 1.00 0 0 0 0 0 0
4 0 0.07 0 0 0 0.77 0 0 0 0
5 0 0 0 0 1.00 0 0 0 0 0
6 0 0 0 0 0 0 0 0 1.00 0
7 0 0 0 0 0 0 0 1.00 0 0
8 0 0 0 0 0 0.23 0 0 0 0.39
9 0.66 0 0 0 0 0 0.11 0 0 0
10 0 0.93 0.05 0 0 0 0 0 0 0

Table 5.2 Results for graph alignment for 𝐾 = 10 and 𝐾 = 11

New communities were formed as a combination of small parts of two former
communities. We can also observe small migration of other nodes, possibly caused
by a light shift of cluster centers. This points out that spectral clustering works
in a more predictable approach than previously thought, creating a hierarchy of
communities in the process. In all examined alignments, we observed most of the
communities are mapped (nearly) isomorphically, suggesting clusters are well
distinguished at a given scale.

5.3 Algorithm comparison

5.3.1 Zachary’s karate club
As theory suggests, community detection is a straightforward task in small
datasets. As Table 5.3 shows, the run-time of individual algorithms is extraor-

44



Name Mean STD

Kernighan-Lin 4 ±3 ms 2 ms
Louvain 5 ±2 ms 2 ms
Greedy modularity 16 ±4 ms 3 ms
Kernighan-Lin Naive 24 ±2 ms 2 ms
Spectral clustering 3D (K=2) 42 ±5 ms 4 ms
Spectral clustering 2D (K=2) 48 ±7 ms 5 ms
Spectral clustering 2D (K=4) 49 ±7 ms 6 ms
Spectral clustering 2D (K=3) 51 ±10 ms 8 ms
Girvan-Newman 73 ±7 ms 6 ms

Table 5.3 Zachary karate club algorithm runtime

dinarily small. Algorithm duration is kept under 100ms in all cases, where the
fastest algorithm takes 4 ms and the slowest algorithm 70ms to complete the
calculation. While the range itself is small, we can see the 20-fold difference
between the fastest and slowest variants. This proposes a much bigger difference
on a larger dataset.

Analyzing Figure 5.5, we see algorithms discovered either 2, 3, or 4 commu-
nities. Algorithms, where the number of communities is determined from the
data, found more communities as the dataset’s author suggests, namely greedy
modularity detected 3 communities, while the Louvain algorithm detected even 4
clusters.

Figure 5.9 shows accuracy for algorithms which found exactly two commu-
nities. Kernighan-Lin and Girvan-Newman both achieved label accuracy of 94
%. When we visualize 2D spectral encoding in Figure 5.10, we will discover that
the resulting structure resembles at least 3 clusters. Spectral clustering thus
might reveal hidden structures and potential communities of the graph. When
we observe spectral embedding applied to Louvain algorithm labels in Figure 5.11,
we can see the algorithm correctly distinguished most of the communities, and
we can also note discrepancies with the spectral clustering in a single case.

Consider key objective metrics modularity and edge cut in Figure 5.6. Edge
cut is dominated in Kernighan-Lin, followed by Girvan-Newman. Modularity
is dominated by modularity-based methods followed by spectral clustering and
Kernighan-Lin. Interestingly, the Louvain algorithm performed best in modularity
metrics, however, it was among the worst in edge cut metrics. This does not
apply in opposite direction, as Kernighan-Lin performs reasonably well in the
modularity objective.

We can also see that spectral clustering detecting the same amount of clusters
as the Louvain algorithm performed much worse. This can be compared to over-
fitting in machine learning, suggesting the algorithms are sensitive to community

45



count parameter.
If we consider normalized edge cut and conductance in Figure 5.7, we can

clearly see that the resulting graphs are similar. As the number of communities
grows, both metrics reach higher values. Those metrics are highly similar to
regular edge cut objective. To add, observation of Figure 5.8 suggest the commu-
nity subgraph density in small datasets more relies on community count than on
partition structure. For reference, the graph density for Zachary’s karate club is
0.139 and graph clustering coefficient is 0.241.

To conclude, we performed tests on Zachary’s karate club dataset. As results
show, all algorithms perform similarly well on small datasets in both run time and
results. That suggests that the choice is dataset dependant and no silver bullet is
possible. For edge cut maximization, Kernighan-Lin works best for bipartition
problems and Girvan-Newman scores great for any general case.

Main disadvantage of edge cut measure is the requirement to know commu-
nity count in advance or determine it manually. For cases where 𝑘 is unknown
modularity-based approaches are recommended. Results provided by modularity-
based approaches are substantial, however, their representation of the community
might differ from suggested clustering in the case of provided labels.

5.3.2 Enron email dataset

Name Mean STD METIS

Spectral clustering (K=10) 5.9 s ±0.3 s 0.2 s -
Spectral clustering 6.3 s ±0.9 s 0.7 s -
Louvain 6.7 s ±0.8 s 0.6 s -
Nested Spectral clusterin - Louvain 8.8 s ±0.2 s 0.2 s -
Kernighan-Lin 9.5 s ±1.0 s 0.8 s -
Nested KL Recursive - Louvain (init split K=4) 25.8 s ±2.8 s 2.3 s -
Kernighan-Lin Recursive 26.6 s ±2.7 s 2.2 s -
Nested KL Recursive - Louvain (init split K=8) 28.7 s ±3.1 s 2.5 s -
Greedy modularity 2.2 h ±13.2 m 10.6 m 1000 nodes
Girvan-Newman 3.0 h ±1.7 h 1.4 h 4000 nodes
Nested KL Recursive - Greedy modularity 4.0 h ±59.5 m 47.9 m 4000 nodes
Kernighan-Lin Naive 15.2 h ±12.2 m 9.8 m 4000 nodes
Kernighan-Lin Naive Recursive 19.4 h ±9.7 m 7.8 m 4000 nodes
Nested KL Recursive - Girvan-Newman 23.9 h ±10.5 h 8.5 h -

Table 5.4 Enron algorithm runtime

As the size of the data grows, the complexity of the community detection
problem rises. We will observe a much wider spectrum of observed properties

46



when we consider mid-sized datasets such as the Enron email dataset. As we
can see in Table 5.4, run time of algorithms is as small as 6 seconds ranging to
24 hours. Fast algorithms include spectral clustering, the Louvain algorithm,
Kernighan-Lin, Kernighan-Lin recursive and their nested variants. We can also
see METIS compression can make complex algorithms feasible by effectively
reducing input graph.

As we can see in Figure 5.12, the difference in the number of detected commu-
nities is in order of magnitudes. In the most extreme case, 6315 communities were
formed with an average size of just 3 nodes. This might be caused by algorithm
nesting, where we treat communities as standalone subgraphs, removing infor-
mation about the rest of the graph in the process. Surprisingly, modularity-based
approaches found more communities than expected, where greedy modularity
was detected in an average of 30.4 communities and Louvain even 38.4. Even
though community count was set as a parameter, the Girvan-Newman algorithm
found 25 communities. This stems from how the algorithm works, where we are
removing edges with maximal centrality and observing connected components.

When we visualize Girvan-Newman clustering in Figure 5.16 we observe the
main difficulty with the algorithm. The community in this algorithm is defined
as a graph component. Since the Enron email dataset is not a single connected
component, this creates pressure on the algorithm and moves to focus more on
the small components of the original graph. As a result, the division is uneven,
creating a dense super component in the process.

When we analyze key metrics in Figure 5.13, we see diverse results. Modular-
ity metrics confirm Louvain as state-of-the-art modularity optimization. Greedy
modularity did underperform since it can be considered a median of all results.
Most of the algorithms are in 2/3 of the maximal modularity, including the bipar-
tition algorithm Kernighan-Lin. Nested algorithms tend to perform better, which
might be probably caused by the smallness of detected communities.

Edge cut metrics is heavily correlated with the number and size of detected
communities. The best algorithms are either bipartition algorithms or algorithms
which create the dense super component in the process since this minimizes the
number of edges connecting different communities. This can be verified using
edge cut ratio, which confirms only a small portion of edges actually form a bridge
connecting different communities. The second group forms algorithms such as
spectral clustering, Louvain and recursive Kernighan-Lin. Those algorithms show
the great trade-off between actual performance and expected result properties.

Conductance and normalized edge cut can be found in Figure 5.14. In contrary
to Zachary’s karate club, conductance and normalized cut ordering are more
different from edge cut. However, similarly, as with edge cut, the chart is domi-
nated by bipartition algorithms and Girvan-Newman. Nested algorithms perform
orders of magnitude worse than their nonnested counterparts. Similar applies to

47



normalized edge cut, where we can create 3 groups of algorithms divided by their
performance.

It is easy to see in Figure 5.15 that greedy modularity, Louvain algorithm
and spectral clustering tends to create denser communities compared to nested
algorithms and all of the variants of the Kernighan-Lin algorithm. Spectral
clustering, recursive Kernighan-Lin, and Louvain also have higher clustering
coefficient, which points to a higher number of triadic closures. For comparison,
the graph density of the Enron dataset is 0.0008 and the clustering coefficient is
0.00048.

In conclusion, we tested different algorithms on the mid-sized Enron email
dataset. Similarly, as with smaller datasets, we identify two use cases of algorithms,
depending on whether the number of communities is known beforehand or not.

In the first case, when the number of communities is defined and known, the
best approach for community detection is using recursive Kernighan-Lin and
spectral clustering. For recursive Kernighan-Lin, choosing 𝐾 near the power of
two is important to ensure the size balance of partitions. In cases where the input
graph is a single connected component, Girvan-Newman combined with METIS
might be a viable choice. In our case, however, the input graph has 24 independent
components, which leads to the creation of a single dense supercomponent.

When the number of clusters is unknown, the Louvain algorithm is the only
feasible choice. Louvain algorithm proved itself to be a state-of-the-art modularity
optimization algorithm. Greedy modularity can also be used in combination with
METIS compression, which should provide denser communities, however, on the
cost of much higher run time and as a result, the greedy modularity algorithm
can not be recommended as a fast universal community detection algorithm.

We can also observe METIS compression greatly reduces the input graph
and enables us to evaluate fairly all algorithms. By observing algorithms with
METIS applied, we can see there is a difference in performance, however, it can
be considered as expected and acceptable. Usually, one of the metrics is affected
more, leaving the second metric nearly untouched.

Those results also suggest that for even bigger datasets, spectral clustering,
recursive Kernighan-Lin and Louvain algorithm will provide reasonable per-
formance. Those algorithms then form a set of universally good community
detection methods.

48



0 500 1000 1500 2000 2500 3000 3500
Number of communities

0

2000

4000

6000

8000

10000

In
er

tia

Inertia

(a) Inertia

5 10 15 20 25 30 35 40
Number of communities

2000

4000

6000

8000

10000

In
er

tia

Inertia

(b) Inertia zoomed

0 500 1000 1500 2000 2500 3000 3500
Number of communities

0

200

400

600

800

1000

1200

1400

1600

In
er

tia
 d

iff
er

en
ce

Inertia difference

(c) Neighbor difference

5 10 15 20 25 30 35 40
Number of communities

0

200

400

600

800

1000

1200

1400

1600

In
er

tia
 d

iff
er

en
ce

Inertia difference

(d) Neighbor difference zoomed

0 500 1000 1500 2000 2500 3000 3500
Number of communities

102

103

104

In
er

tia

Inertia fit
Original data points
Fitted curve

(e) Curve fit

0 25 50 75 100 125 150 175
Number of communities

1750

1500

1250

1000

750

500

250

0

In
er

tia
 d

er
iv

at
iv

e

Inertia derivative

(f) Curve derivative

0 10 20 30 40 50
Number of communities

0

100

200

300

400

In
er

tia
 c

en
tra

l d
iff

er
en

ce

Inertia central difference

(g) Second order central difference

Figure 5.1 Inertia measured data.

49



0 500 1000 1500 2000 2500 3000 3500
Number of communities

0.10

0.15

0.20

0.25

0.30

0.35

0.40
Si

lh
ou

et
te

Silhouette

(a) Silhouette score

0 50 100 150 200 250 300
Number of communities

0.10

0.15

0.20

0.25

0.30

Si
lh

ou
et

te

Silhouette

(b) Silhouette score zoomed

0 500 1000 1500 2000 2500 3000 3500
Number of communities

0.05

0.00

0.05

0.10

0.15

0.20

Si
lh

ou
et

te
 d

iff
er

en
ce

Silhouette difference

(c) Neighbor difference

0 20 40 60 80 100 120 140
Number of communities

0.05

0.00

0.05

0.10

0.15

0.20

Si
lh

ou
et

te
 d

iff
er

en
ce

Silhouette difference

(d) Neighbor difference zoomed

0 500 1000 1500 2000 2500 3000 3500
Number of communities

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Si
lh

ou
et

te

Silouette fit

Original data points
Fitted curve

(e) Curve fit

0 500 1000 1500 2000 2500 3000 3500
Number of communities

8

7

6

5

4

3

2

1

0

Si
lh

ou
et

te
 d

er
iv

at
iv

e

1e 6 Silhouette fit derivative

(f) Curve derivative

0 10 20 30 40 50
Number of communities

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Si
lh

ou
et

te
 c

en
tra

l d
iff

er
en

ce

Silhouette central difference

(g) Second order central difference

Figure 5.2 Silhouette score measured data.

50



0 500 1000 1500 2000 2500 3000 3500
Number of communities

2000000

1500000

1000000

500000

0

500000

1000000

1500000

2000000

Ed
ge

 c
ut

Edge cut

(a) Edge cut

0 20 40 60 80 100
Number of communities

500000

0

500000

1000000

1500000

Ed
ge

 c
ut

Edge cut

(b) Edge cut zoomed

0 500 1000 1500 2000 2500 3000 3500
Number of communities

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Ed
ge

 c
ut

1e6 Edge cut
Original data points
Fitted curve

(c) Curve fit

0 250 500 750 1000 1250 1500 1750
Number of communities

800000

600000

400000

200000

0

200000

400000

600000

Ed
ge

 c
ut

 d
er

iv
at

iv
e

Edce cut derivative

(d) Curve derivative

0 20 40 60 80 100
Number of communities

300000

200000

100000

0

100000

200000

300000

400000

Ed
ge

 c
ut

 c
en

tra
l d

iff
er

en
ce

Edge cut central difference

(e) Second order central difference

Figure 5.3 Edge cut measured data.

51



K=9

K=10

0 0

9

1 1

22

3

3 4

4

55

6 8

7 6

8 7

(a) 𝐾 = (9, 10)

K=11

K=10

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

(b) 𝐾 = (10, 11)

K=11

K=10K=9

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

(c) Joint diagram

Figure 5.4 Visualization of community splitting.

52



Louvain
Spectral clustering 2D (K=4)

Greedy modularity
Spectral clustering 2D (K=3)

Kernighan-Lin Naive
Kernighan-Lin
Girvan-Newman
Spectral clustering 2D (K=2)

Spectral clustering 3D (K=2)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Community count

(a) Community count

Kernighan-Lin Naive
Kernighan-Lin
Girvan-Newman
Spectral clustering 2D (K=2)

Spectral clustering 3D (K=2)

Greedy modularity
Spectral clustering 2D (K=3)

Louvain
Spectral clustering 2D (K=4)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Community size

(b) Average community size

Figure 5.5 Zachary’s karate club: Basic community info.

53



Louvain
Greedy modularity
Spectral clustering 2D (K=3)

Kernighan-Lin Naive
Kernighan-Lin
Spectral clustering 2D (K=4)

Girvan-Newman
Spectral clustering 2D (K=2)

Spectral clustering 3D (K=2)

0.0

0.1

0.2

0.3

0.4

Modularity

(a) Modularity

Kernighan-Lin Naive
Kernighan-Lin
Girvan-Newman
Spectral clustering 2D (K=2)

Greedy modularity
Spectral clustering 2D (K=3)

Spectral clustering 3D (K=2)

Louvain
Spectral clustering 2D (K=4)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
Average modularity

(b) Average community modularity

Kernighan-Lin Naive
Kernighan-Lin
Girvan-Newman
Greedy modularity
Spectral clustering 2D (K=3)

Spectral clustering 2D (K=2)

Spectral clustering 3D (K=2)

Louvain
Spectral clustering 2D (K=4)

0

25

50

75

100

125

150

175

Edge cut

(c) Edge cut

Kernighan-Lin Naive
Kernighan-Lin
Girvan-Newman
Greedy modularity
Spectral clustering 2D (K=3)

Spectral clustering 2D (K=2)

Spectral clustering 3D (K=2)

Louvain
Spectral clustering 2D (K=4)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Edge cut ratio

(d) Edge cut ratio

Figure 5.6 Zachary’s karate club: Modularity and edge cut.

54



Kernighan-Lin Naive
Kernighan-Lin
Girvan-Newman
Spectral clustering 2D (K=2)

Spectral clustering 3D (K=2)

Greedy modularity
Spectral clustering 2D (K=3)

Louvain
Spectral clustering 2D (K=4)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Total conductance

(a) Conductance

Kernighan-Lin Naive
Kernighan-Lin
Girvan-Newman
Greedy modularity
Spectral clustering 2D (K=3)

Spectral clustering 2D (K=2)

Spectral clustering 3D (K=2)

Louvain
Spectral clustering 2D (K=4)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Average community conductance

(b) Average community conductance

Kernighan-Lin Naive
Kernighan-Lin
Girvan-Newman
Spectral clustering 2D (K=2)

Greedy modularity
Spectral clustering 2D (K=3)

Spectral clustering 3D (K=2)

Louvain
Spectral clustering 2D (K=4)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Total normalized edge cut

(c) Normalized edge cut

Kernighan-Lin Naive
Kernighan-Lin
Greedy modularity
Spectral clustering 2D (K=3)

Girvan-Newman
Spectral clustering 2D (K=2)

Louvain
Spectral clustering 3D (K=2)

Spectral clustering 2D (K=4)

0.0

0.1

0.2

0.3

0.4

0.5
Community average normalized cut

(d) Average normalized edge cut

Figure 5.7 Zachary’s karate club: Conductance and normalized edge cut

55



Louvain
Greedy modularity
Spectral clustering 2D (K=3)

Spectral clustering 2D (K=4)

Girvan-Newman
Kernighan-Lin Naive
Kernighan-Lin
Spectral clustering 2D (K=2)

Spectral clustering 3D (K=2)
0.0

0.1

0.2

0.3

0.4

0.5
Average community density

(a) Average community density

Girvan-Newman
Kernighan-Lin
Kernighan-Lin Naive
Louvain
Spectral clustering 3D (K=2)

Greedy modularity
Spectral clustering 2D (K=3)

Spectral clustering 2D (K=2)

Spectral clustering 2D (K=4)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Community average clustering coefficient

(b) Average community clustering coeffi-
cient

Figure 5.8 Zachary’s karate club: Density and clustering coefficient

Kernighan-Lin Naive
Kernighan-Lin

Girvan-Newman
Spectral clustering 2D (K=2)
Spectral clustering 3D (K=2)

0.0

0.2

0.4

0.6

0.8

Accuracy

Figure 5.9 Zachary’s karate club: Accuracy

56



Figure 5.10 Zachary’s karate club: Spectral encoding using GraphVisualizer applica-
tion

57



Figure 5.11 Zachary’s karate club: Spectral encoding of Louvain algorithm using
GraphVisualizer application

58



KL Recursive K=8 -> Louvain

KL Recursive K=8 -> Girvan-Newman

KL Recursive K=4 -> Louvain

KL Recursive -> Greedy modularity

Spectral clustering -> Louvain

Louvain
Greedy modularity

Girvan-Newman

10D Spectral clustering K=11

10D Spectral clustering K=10

Kernighan-Lin Naive Recursive

Kernighan-Lin Recursive

10D Spectral clustering K=9

Kernighan-Lin Naive

Kernighan-Lin

101

102

103

104
Community count

(a) Community count

Kernighan-Lin Naive

Kernighan-Lin
Kernighan-Lin Naive Recursive

Kernighan-Lin Recursive

10D Spectral clustering K=9

10D Spectral clustering K=10

10D Spectral clustering K=11

Girvan-Newman

Greedy modularity

Louvain
Spectral clustering -> Louvain

KL Recursive -> Greedy modularity

KL Recursive K=4 -> Louvain

KL Recursive K=8 -> Girvan-Newman

KL Recursive K=8 -> Louvain

101

102

103

104

Community size

(b) Average community size

Figure 5.12 Enron: Basic community info.

59



Louvain
Spectral clustering -> Louvain

KL Recursive K=4 -> Louvain

KL Recursive K=8 -> Girvan-Newman

Kernighan-Lin Recursive

KL Recursive K=8 -> Louvain

Greedy modularity

KL Recursive -> Greedy modularity

Kernighan-Lin Naive Recursive

10D Spectral clustering K=11

10D Spectral clustering K=9

10D Spectral clustering K=10

Kernighan-Lin
Kernighan-Lin Naive

Girvan-Newman

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Modularity

(a) Modularity

Kernighan-Lin
Kernighan-Lin Recursive

Kernighan-Lin Naive Recursive

Kernighan-Lin Naive

10D Spectral clustering K=9

10D Spectral clustering K=10

10D Spectral clustering K=11

Louvain
Greedy modularity

Spectral clustering -> Louvain

KL Recursive -> Greedy modularity

KL Recursive K=4 -> Louvain

KL Recursive K=8 -> Girvan-Newman

KL Recursive K=8 -> Louvain

Girvan-Newman

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
Average modularity

(b) Average community modularity
Girvan-Newman

Kernighan-Lin Naive

Kernighan-Lin
10D Spectral clustering K=9

10D Spectral clustering K=10

Kernighan-Lin Recursive

10D Spectral clustering K=11

Louvain
Kernighan-Lin Naive Recursive

KL Recursive K=8 -> Girvan-Newman

Spectral clustering -> Louvain

Greedy modularity

KL Recursive K=4 -> Louvain

KL Recursive -> Greedy modularity

KL Recursive K=8 -> Louvain

0.0

0.5

1.0

1.5

2.0

2.5
1e6 Edge cut

(c) Edge cut

Girvan-Newman

Kernighan-Lin Naive

Kernighan-Lin
10D Spectral clustering K=9

10D Spectral clustering K=10

Kernighan-Lin Recursive

10D Spectral clustering K=11

Louvain
Kernighan-Lin Naive Recursive

KL Recursive K=8 -> Girvan-Newman

Spectral clustering -> Louvain

Greedy modularity

KL Recursive K=4 -> Louvain

KL Recursive -> Greedy modularity

KL Recursive K=8 -> Louvain

0.0

0.1

0.2

0.3

0.4

0.5
Edge cut ratio

(d) Edge cut ratio

Figure 5.13 Enron: Modularity and edge cut.

60



Kernighan-Lin
Kernighan-Lin Naive

Girvan-Newman

Greedy modularity

10D Spectral clustering K=9

Kernighan-Lin Recursive

10D Spectral clustering K=10

Louvain
10D Spectral clustering K=11

Kernighan-Lin Naive Recursive

Spectral clustering -> Louvain

KL Recursive -> Greedy modularity

KL Recursive K=4 -> Louvain

KL Recursive K=8 -> Girvan-Newman

KL Recursive K=8 -> Louvain
10 1

100

101

102

103

104
Total conductance

(a) Conductance

Girvan-Newman

Louvain
Greedy modularity

Kernighan-Lin
10D Spectral clustering K=9

10D Spectral clustering K=10

Kernighan-Lin Recursive

10D Spectral clustering K=11

Kernighan-Lin Naive

Kernighan-Lin Naive Recursive

Spectral clustering -> Louvain

KL Recursive -> Greedy modularity

KL Recursive K=4 -> Louvain

KL Recursive K=8 -> Louvain

KL Recursive K=8 -> Girvan-Newman

0.0

0.2

0.4

0.6

0.8

1.0
Average community conductance

(b) Average community conductance

Kernighan-Lin
Kernighan-Lin Naive

Girvan-Newman

10D Spectral clustering K=9

Greedy modularity

Kernighan-Lin Recursive

10D Spectral clustering K=10

Louvain
10D Spectral clustering K=11

Kernighan-Lin Naive Recursive

Spectral clustering -> Louvain

KL Recursive -> Greedy modularity

KL Recursive K=4 -> Louvain

KL Recursive K=8 -> Girvan-Newman

KL Recursive K=8 -> Louvain

10 1

100

101

102

103

104
Total normalized edge cut

(c) Normalized edge cut

Girvan-Newman

Louvain
Greedy modularity

Kernighan-Lin
10D Spectral clustering K=9

10D Spectral clustering K=10

Kernighan-Lin Recursive

Kernighan-Lin Naive

10D Spectral clustering K=11

Kernighan-Lin Naive Recursive

Spectral clustering -> Louvain

KL Recursive -> Greedy modularity

KL Recursive K=4 -> Louvain

KL Recursive K=8 -> Louvain

KL Recursive K=8 -> Girvan-Newman

0.0

0.2

0.4

0.6

0.8

1.0
Community average normalized cut

(d) Average normalized edge cut

Figure 5.14 Enron: Conductance and normalized edge cut

61



Girvan-Newman

Greedy modularity

Louvain
Spectral clustering -> Louvain

KL Recursive -> Greedy modularity

10D Spectral clustering K=10

10D Spectral clustering K=9

10D Spectral clustering K=11

KL Recursive K=8 -> Louvain

KL Recursive K=4 -> Louvain

KL Recursive K=8 -> Girvan-Newman

Kernighan-Lin Recursive

Kernighan-Lin Naive Recursive

Kernighan-Lin
Kernighan-Lin Naive

10 3

10 2

10 1

100
Average community density

(a) Average community density

Spectral clustering -> Louvain

10D Spectral clustering K=11

10D Spectral clustering K=9

10D Spectral clustering K=10

Kernighan-Lin Recursive

Louvain
Kernighan-Lin Naive Recursive

Greedy modularity

Kernighan-Lin
Kernighan-Lin Naive

KL Recursive K=8 -> Louvain

KL Recursive -> Greedy modularity

KL Recursive K=4 -> Louvain

KL Recursive K=8 -> Girvan-Newman

Girvan-Newman

0.000

0.001

0.002

0.003

0.004

0.005

0.006
Community average clustering coefficient

(b) Average community clustering coeffi-
cient

Figure 5.15 Enron: Density and clustering coefficient

Figure 5.16 Enron: Girvan-Newman clustering

62



Figure 5.17 Enron: Spectral clustering visualization

63



64



Chapter 6

Implementation

As an integral part of the thesis, we have developed a community detection library
and CLI application for automated community detection. The main requirements
for the system are:

1. Running of community clustering algorithms. It should be open to ex-
tensions, stable in results and replicable even for algorithms containing
randomness.

2. Export of graph visualization oriented to community detection.

3. Statistics calculation with results stored in the parsable format for future
processing.

4. No programming is expected from the end user. The user should be able to
specify input and computation instructions without writing a single line of
code. A persistent solution is preferable, limiting command line arguments
to a minimum.

5. Suitable for use in the server environment. Should be able to use the
maximum of allocated resources and enable maximum parallelization for
selected data.

In addition, we have built a graph visualization tool, enabling us to observe
clustering behavior in small data.

The implementation repository is reachable by the public, and it is located at
https://gitlab.mff.cuni.cz/konigma/social-network-tools/.

All scripts use Python 3.10.4 and networkx 2.8. In addition, standard
data analysis libraries such as numpy, scipy, pandas and scikit-learn are
used.

65

https://gitlab.mff.cuni.cz/konigma/social-network-tools/


6.1 Repository structure
The implementation consists of multiple folders representing different aspects
of the repository. In the root of the repository, we find software documenta-
tion and requirements.txt, which is a file describing all Python dependencies.
Dependencies can be installed by using pip install -r requirements.txt
command. It is recommended to install dependencies using Python virtual envi-
ronment.

Main application scripts are in the src folder. The main algorithm library is
located at src/algos and exports all community detection algorithms. Folder
src/GraphVisualizer contains interactive visualization application runnable
with python src/GraphVisualizer/app.py. Respective CLI endpoints for
community detection, persistent visualization, and metrics calculation as well as
Jupyter notebooks performing result analysis are located in the root of src folder.

All datasets are located in datasource folder. This includes Zachary’s karate
club dataset and Enron dataset as well. There are both directed and undirected
variants as well as their reduced variants with only 200 nodes. Configuration
files are located in configs folder and are set up for evaluation of community
detection algorithms defined in the thesis.

Graphs labeled with detected communities are located in the results folder.
In addition, together with community detection results, we ship console logs
processed later to perform algorithm run time evaluation. Visualizations are
placed in visualizations folder, and calculated statistics are in stats folder.
All folders contain enron_undirected and karate_club subfolders, dividing
computed data along their source datasets.

6.2 Input and output format
One of the main decisions of the system itself was how the graph should be
represented on the input. There are many different ways how to represent and
store graphs starting from the simple textual list of edges.

We will compare two different approaches to storing graphs. Since we are
using networkx library to represent graphs in the code, naturally, the first ap-
proach is to store graphs using Python binary serializer pickle. Using this
method, we can store Python objects in persistent storage. The second approach
consists of using an XML-based format named GraphML. Both approaches can
store any graphs and attributes. Furthermore, GraphML is also a multiplatform
human-readable format independent of the Python version.

There are multiple advantages to using binary serialized over text-based
formats. The first one is the size of uncompressed data, the second is load speed.

66



In practice, however, we can mitigate the size of XML by using compression,
where we can reduce graph size by about 90%.

We have chosen GraphML to be the default format of input and output of
all graph data, since it is a standard format. In conclusion, using a native binary
serializer provides no added benefits, as the speed difference is insignificant and
binary format is not universally transferable.

Page http://graphml.graphdrawing.org/ provides more information
about GraphML format, including the formal definition of the standard.

Listing 1 Example of the simple graph with 2 nodes and 1 edge in valid GraphML
format.

<?xml version="1.0" encoding="UTF-8"?>
<graphml>

<key id="d0" for="edge" attr.name="weight"
attr.type="long" />

<graph edgedefault="undirected">
<node id="0" />
<node id="1" />
<edge source="0" target="1">

<data key="d0">1</data>
</edge>

</graph>
</graphml>

6.3 CGAT: Config-based Graph Analysis Tool

6.3.1 Configuration files
Since the main requirements for the system are ease of use and reproducibility,
a custom computation description format was developed. Persistent configura-
tion allows the storage of definitions for all experiments and all related calcu-
lations. Configuration file stored in JSON format can be described by abstract
type GraphRuntimeConfig and subtype SingleRunConfiguration listed in Ta-
ble 6.1 and Table 6.2. We can see the example of the JSON configuration file in
Listing 2.

An algorithm run is a single instance of algorithm and respective algorithm
parameters executed the number of times defined in the configuration file. This
ensures the algorithm remains stable, and a rerun of the script does not change

67

http://graphml.graphdrawing.org/


Parameter Type Notes

in_file string path to GraphML file
out_folder string folder where results are stored
weight_key string node and edge attribute for weight
community_key string node attribute for community id
seed int seed for randomness
repetitions int number of repetitions for single run
runs list[SingleRunConfiguration]

Table 6.1 GraphRuntimeConfig type

Parameter Type Notes

algorithm see below path to GraphML file
metis bool folder where results are stored
optimal_node_count int | None METIS, compressed graph size
parallel bool enable parallel execution with other algorithms
dimension int | None parameter for Spectral clustering
max_iter int | None parameter for Kernighan-Lin
community_count int parameter for Girvan-Newman, Spectral clustering

Table 6.2 SingleRunConfiguration type. The parameter algorithm can be girvan_new-
man, greedy_modularity, louvain, kernighan_lin_naive, kernighan_lin_naive_recursive,
kernighan_lin, kernighan_lin_recursive, spectral_clustering and nested X Y, where X and
Y are algorithms from the list above.

clustering. It is important to note the user can decide whether to use parallel
or serial execution of selected runs in the config. This is an important factor in
parallel algorithms such as spectral clustering, where we can measure end-to-end
performance using multiple CPU cores.

6.3.2 Instructions to run
Computation of the results

When input data and configuration file are both provided, the calculation can be
then easily run with

python src/run_communities.py configs/config.json

from the repository root folder using provided valid JSON configuration file. The
config file is read, and all respective calculations are performed. For this thesis,
to run clustering for Zachary’s karate club and Enron dataset, we use commands

python src/run_communities.py configs/karate_club_config.json
python src/run_communities.py configs/enron_config.json

68



Listing 2 Example of simple JSON configuration

{
"in_file":"datasource/karate_club.graphml",
"out_folder":"results/karate_club",
"weight_key":"weight",
"community_key":"community",
"seed":42,
"runs":[

{
"name":"karate_club_louvain",
"algorithm":"louvain",
"metis":false,
"parallel":true

},
{

"name":"karate_club_kernigan_lin",
"algorithm":"kernighan_lin",
"metis":false,
"parallel":true,
"max_iter":20

}
]

}

When algorithm execution is finished, the graph is copied, and a com-
munity label is assigned to each node according to detected clustering. Re-
sulting graphs from predefined configs relevant to this thesis are placed in
results/enron_undirected, respectively results/karate_club. The stan-
dard output of the script is the runtime of the algorithm measured in seconds,
which will be evaluated in algorithm analysis.

Running the visualization

When graphs have their respective community assignments computed, the system
can be used to create persistent visualizations. Graph visualizations are saved in
both SVG and JPG, as both formats have their valid use cases. Graph visualization
can be run with simple command

python src/create_visualization.py \
configs/config.json visualizations/dataset --dpi 100

69



Listing 3 Standard output from Zachary’s karate club dataset.

python src/run_communities.py configs/enron_config.json
karate_club_kernigan_lin 0.0011 0.0020 0.0009
karate_club_louvain 0.0020 0.0023 0.0021
karate_club_louvain: 0.002267599105834961s
karate_club_louvain: 0.001999378204345703s
karate_club_kernigan_lin: 0.0020437240600585938s
karate_club_kernigan_lin: 0.0011334419250488281s
karate_club_kernigan_lin: 0.0009000301361083984s
karate_club_louvain: 0.0020751953125s

from the repository root folder. --dpi is a parameter used in JPG generation and
marks pixel density in the resulting image.

Below we find standard commands for predefined config files. This will
run the visualization for Zachary’s karate club and Enron dataset, saving the
visualizations into visualizations folder.

python src/create_visualization.py \
configs/karate_club_config.json visualizations/karate_club \
--dpi 100

python src/create_visualization.py \
configs/enron_config.json visualizations/enron_undirected \
--dpi 20

Similarly, the runtime is printed to standard output as with result calculation.
Found communities are distinguished visually and are clustered together if appli-
cable. Visualization, however, starts to struggle when either the graph becomes
large, or there is a great amount of detected communities.

Running the statistics computation

An important part of the evaluation of community detection is the result evalua-
tion. To evaluate results and calculate all important metrics, a standalone script
has been added to the system. Command

python src/calculate_stats.py \
configs/config.json stats/config

called from the repository root folder calculates the statistics. The config file is
read, and all statistics are saved to the defined output folder. Statistics are saved
as a JSON file with a predefined structure to enable further processing.

70



Below we can find commands for predefined config files. Commands will
calculate all significant metrics and statistics for Zachary’s karate club and En-
ron dataset, saving results as JSON files in stats/karate_club, respectively
stats/enron_undirected.

python src/calculate_stats.py \
configs/karate_club_config.json stats/karate_club

python src/calculate_stats.py \
configs/enron_config.json stats/enron_undirected

We calculate results for each iteration of a single algorithm run as well as
aggregated statistics for all iterations. For each aggregated metrics value, we
calculate the mean, sample standard deviation, and 95% confidence interval.

6.3.3 Makefile

For easier usage on the server and Linux machines in general, we have created
Makefile to run all connected commands. We can see all implemented commands
in Table 6.3. Commands are supposed to be run in the order listed in the table.
However, because the repository itself contains all the data and the results, only
commands related to processing the data are relevant.

Command Notes

make download_enron downloads original Enron tar file
make create_karate_club create karate club GraphMl file
make create_enron process downloaded Enron into GraphML file
make create_reduced_enron create Enron dataset with top 200 nodes
make create_datasets create karate club and all Enron datasets
make calculate_enron_community_count measure metrics for all community counts
make run_clustering run clustering for karate club and Enron
make visualize create visualizations for the datasets
make calc_stats calculate statistics for karate club and Enron

Table 6.3 Makefile commands.

We can see that use of CLI commands make run_clustering,
make visualize and make calc_stats is sufficient. Those commands will
run all respective scripts for community detection, visualization, and statistics
calculation for both karate club and Enron datasets, consuming provided configs
and datasets. It also might be useful to pipe the standard output to a standalone
text file with > to save the runtimes of individual scripts.

71



6.4 Community detection library

The main implementation consists of the community detection library and its
use in standalone CLI applications. The library contains multiple Python func-
tions performing specified clustering algorithms. In this section, we will provide
programmer documentation for the community detection library since the ap-
plication script was documented in detail in the previous section. The library is
located in src/algos in the repository. For a start, it is important to mention all
algorithm implementations return iterable structure over sets of nodes, which
marks the final clustering for provided parameters.

6.4.1 Girvan-Newman

Function girvan_newman_clustering(graph: Graph, community_count: int) will
perform Girvan-Newman clustering according to Section 2.3.3. The algorithm
is based on iteratively removing the current highest centrality edge. During the
algorithm computation, the connected component marks a single community,
and graph disintegration is the basis for the creation of a community dendrogram.
In this implementation, however, we do not return the whole dendrogram and
instead, we return first clustering with at least community_count communities.

Algorithm accepts Graph or DiGraph instances and desired minimal commu-
nity count and returns an iterable collection of node sets, each representing a
community.

6.4.2 Greedy modularity

Function greedy_modularity(graph: Graph | DiGraph, weight_key: str = ’weight’)
performs community detection using simple modularity maximization as defined
in Section 2.3.4. In simplicity, the greedy modularity algorithm works as follows:

1. In initialization, each node forms a community.

2. Merge 2 communities with the highest modularity gain until we have
communities to merge.

3. Return graph partition with maximal modularity.

Implementation is plug & play as the only required parameters are a graph
to perform clustering and weight attribute name. The algorithm returns the
collection of node sets.

72



6.4.3 Heavy clique METIS

As introduced in Section 2.3.7, a heavy clique matching METIS compression algo-
rithm is implemented in the function heavy_clique_matching_metis(graph: Graph,
optimal_node_count: int, clustering_algo: Callable[[Graph], Iterable[frozenset]],
weight_key: str = ’weight’). The algorithm works in 3 phases. In the first phase,
the graph is compressed using heavy clique edge matching. In the second step,
provided community detection algorithm is used on the compressed graph. In
the last step graph is decompressed into the original input graph together with
assigned communities.

Function besides input graph receives optimal_node_count as a parameter,
marking the desired size of the compressed graph. The community detection
algorithm is supplied as clustering_algo marking a function receiving graph and
returning clustering and can be viewed as a curried version of another community
detection algorithm. We need to supply also graph weight attribute marked as
weight_key to calculate edge matching properly.

6.4.4 Kernighan-Lin Naive

kernighan_lin_naive_bipartition(graph: Graph, weight_key=’weight’, generator:
numpy.random._generator.Generator, max_iter: int = 20) is a function applying
naive Kernighan-Lin bipartition into the input graph. As defined in Section 2.3.1,
Kernighan-Lin algorithm works by using selective switch of two adjacent nodes
maximizing edge cut in the process.

The algorithm in the input receives graph, weight_key marking weight at-
tribute, generator initialized for random number generation andmax_iter marking
the maximum number of epochs of the algorithm. As a result, a tuple of two sets
of nodes is returned.

6.4.5 Kernighan-Lin

Function kernighan_lin_bipartition(graph: Graph, weight_key=’weight’, generator:
numpy.random._generator.Generator, max_iter: int = 20) is the optimization of
the naive Kernighan-Lin algorithm. The main improvement is we no longer
consider adjacent nodes connected by an edge, but instead, we select 2 nodes
with maximal modularity gain from opposing bipartitions. This results in huge
performance improvement. This function is based on the standard implementation
of Kernighan-Lin in networkx package.

This function has the same inputs and outputs as the naive variant.

73



6.4.6 Recursive bipartition
As defined in Section 2.3.2, we can extend the Kernighan-Lin algorithm to perform
a general k-partition of the input graph. Function recursive_bipartition(graph:
Graph, community_count: int, bipartition_algo: Callable[[Graph], tuple[frozenset,
frozenset]], weight_key: str = ’weight’) is designed to apply partitioning algorithm
recursively.

Function in addition to standard Kernighan-Lin parameters accepts biparti-
tion_algo parameter. It is a function accepting graph and returning bipartition
of the such graph and in practice it is a curried version of Kernighan-Lin. This
ensures the great extensibility of the recursive method.

6.4.7 Spectral clustering
Python function spectral_clustering(graph: Graph | DiGraph, dimension: int = 2,
clusters: int = 2, weight_key: str = ’weight’) performs spectral clustering on the
input graph. As defined in Section 2.3.6 spectral clustering consists of two steps.
In the first step, we calculate spectral embeddings, a mapping into k-dimensional
space where densely connected nodes have minimal connecting distance. In the
second step, we run K-Means to calculate real-valued clusters.

Besides the input graph, the algorithm on the input also receives a dimension
of the embedding and number of clusters to detect (which maps directly to the
number of communities on the output). List of communities represented as a set
of nodes is returned when the algorithm finishes.

6.4.8 Louvain algorithm
State-of-the-art modularity optimization is reached using the Louvain algorithm
as described in Section 2.3.5. The function louvain(graph: Graph | DiGraph,
weight_key: str) implements the Louvain community detection algorithm. Louvain
algorithm can be summarized in two steps. Initially, each node represents a
community on its own. In the first step, for each node 𝑖 and its neighbors 𝑗, we
calculate modularity gain by moving the node from the community of node 𝑖 to
the community of node 𝑗. We perform the move with maximal gain under the
condition the gain is positive. In the second step, we concatenate each community
into a single node and move to the first step. The algorithm terminates when
there are no positive modularity gains possible.

Similarly, as with greedy modularity, the function accepts the input graph
and weight_key parameter specifying the name of the weight attribute. It is easy
to see the algorithm is considered plug & play since no other hyperparameters
are required to detect communities in the input graph.

74



6.5 GraphVisualizer UI application
For research purposes, we also built a social network visualization application,
GraphVisualizer. This application is needed to gain more insight into Zachary’s
karate club clustering and to visualize connections between spectral embedding
and other clustering methods. Application is located in src/GraphVisualizer
and can be launched using
python src/GraphVisualizer/app.py. Visualization is performed on pro-
vided graphs with community label provided on each node. If no label is provided
on some graph nodes, the graph is considered to be unclustered.

Visualization application is built using Python and kivy framework. It is
an UI application with an infinite scrolling canvas on the right-hand side of
the screen dedicated to showing information about the currently selected node.
If the graph contains valid clustering, each node has a color according to the
assigned community. Supported layouts include spring layout, community layout,
and spectral layout. The latter is important to understand the reasoning behind
spectral clustering. The application also supports performing simple community
detection using the Louvain community detection algorithm.

Visualizations are supported for small graphs only. Even though the UI
framework is heavily optimized and operates on OpenGL graphic layer directly,
many rendered elements significantly impact performance.

6.5.1 Color generation
The interesting part about the application was creating a method for generating
a set of distinguishable colors for different communities. This is solved by using
Hue Lightness Saturation model. Hue is defined as a radial basis, ranging from 0
to 360, where lightness and saturation range from 0 to 1.

To generate 𝑛 colors, we split the circle radius into 𝑛 uniformly spaced an-
gles, which form the hue value. Lightness and saturation are picked randomly.
Lightness is picked uniformly from interval [0, 5; 0.6] and saturation from interval
[0, 9; 1.0]. That way, we can generate 𝑛 different colors covering the whole color
spectrum.

75



Figure 6.1 Zachary’s karate club: Kernighan-Lin communities

76



Conclusion

In this thesis, we have provided a deep dive into social network science and its
part devoted to community detection. The thesis covers the definition of social
networks and their fundamental properties (Chapter 1) and specifies the notion
of communities and the methods for their detection (Chapter 2). Datasets that
are used for evaluation, namely Zachary’s karate club and Enron dataset, are
discussed in Chapter 3. The work outlines all related experiments (Chapter 4)
and analyzes their results (Chapter 5).

Within the framework of the research, we implemented a community detec-
tion system, which is able to detect communities automatically, visualize social
networks and evaluate the performance of the selected community detection
algorithms. In addition, this system can be configured with persistent JSON
files and permanently save the obtained results. The system is extendable and is
perfectly suitable for any future research.

As a part of the experiments, we proposed and evaluated a novel approach to
community detection. The recursive extension of the Kernighan-Lin bipartition
algorithm has proven worthy, where a combination of a reasonable tree expansion
with a well-defined objective function significantly improved the results. Secondly,
we introduced and evaluated nested method to community detection that creates
gradually finer partitions using two different clustering algorithms. However,
this technique provided mixed-quality results at best.

In further experiments, we estimated the actual number of communities in
the Enron dataset. A large amount of time and computing power is necessary to
solve this task correctly. We discovered that two out of three criteria delivered no
promising value. However, inertia analysis provided all the required information
to proceed to further experiments.

Secondly, we investigated the behavior of a non-hierarchical algorithm named
spectral clustering and its ability to form a sub-community hierarchy. This was
observed by progressively increasing the community count parameter. In theory,
even a slight change in the number of clusters can significantly change the
clustering itself. According to this experiment, the spectral clustering method
resembles other hierarchical approaches that create new communities by merging

77



base subparts, building more predictability. This suggests we can analyze a
community hierarchy even with the non-hierarchical algorithm.

Name Speed Modularity Edge cut Plug & play

Spectral clustering ++ + ++ -
Louvain ++ ++ + +
Kernighan-Lin ++ + ++ +
Kernighan-Lin Recursive + + + -

Greedy modularity - + - +
Girvan-Newman - – ++ -
Kernighan-Lin Naive – – ++ +
Kernighan-Lin Naive Recursive – + + -
Nested algorithms + + - –

Table 6.4 Algorithm recommendation summary. The table summarizes key properties
of the community detection algorithms and highlights the most usable algorithms. Plug
& play marks algorithms where no other parameters except input data are required.

Finally, we performed community detection on two differently-sized datasets.
We tested and evaluated algorithms listed in Table 6.4. The table contains four
main criteria for good community detection, and each algorithm is assigned a
different score. Plug & play means the algorithm is ready to be used without any
other parameters but the input graph.

As expected, the differences in the algorithm performance began to emerge as
we scaled up the data. The best algorithms for the known number of communities
are spectral clustering and recursive Kernighan-Lin. These algorithms provided
superior results at a rapid speed.

In cases where the number of communities is unknown beforehand, the
Louvain algorithm represents the best choice due to automatically deciding on
the appropriate clustering. For simple bipartitions, Kernighan-Lin performed well
and provided reasonable results. For any other algorithm, METIS compression is
needed to reduce the runtime to a runnable limit. As we discovered, the METIS
compression works perfectly, providing only a small loss to the processed data.
We show the Girvan-Newman algorithm behaves oddly when the input graph is
not a single connected component, and in such case, other algorithms shall be
preferred.

Selected algorithms provide superior results for small and mid-sized datasets.
As mentioned earlier, datasets of great size were not evaluated to promote fairness.
However, results suggest the top-performing algorithms should also stand out in
big data.

78



Further research
While we observed remarkable results in community detection, there are more
areas for improvement and further research. Firstly, as in machine learning,
estimating the number of clusters is a time-demanding task. This problem is
currently solved via grid search, where we test a set of predefined parameters to
estimate the number of clusters. This can be improved further upon by defining
a method for automated computation of the number of communities using fewer
computational resources.

Secondly, while our suggestion of nested algorithms did not provide sufficient
results, we believe there are more possible improvements to the model. We
observed the method is sensitive to the choice of the roughness of the first
algorithm, and if chosen wrong, the algorithm returns only a great number of
extremely small communities. We believe this can be improved by developing
an online method for roughness estimation, which connects the first and second
step. This might be based on adjusting the first algorithm parameters based on
the overall results. In that particular case, there is only a relatively small overhead
since there are not that many parameters to evaluate for the first algorithm.
However, other approaches would be greatly admittable, discarding grid search
altogether.

79



80



Bibliography

[1] Charu C Aggarwal et al. Data mining: the textbook. Vol. 1. Springer, 2015.
Chap. 19.

[2] Sergey Brin and Lawrence Page. “The anatomy of a large-scale hypertextual
web search engine”. In: Computer networks and ISDN systems 30.1-7 (1998),
pp. 107–117.

[3] Srinivasan Parthasarathy, Yiye Ruan, and Venu Satuluri. “Community dis-
covery in social networks: Applications, methods and emerging trends”. In:
Social network data analytics (2011), pp. 79–113.

[4] Albert-László Barabási and Márton Pósfai. Network science. Cambridge:
Cambridge University Press, 2016. isbn: 9781107076266 1107076269. url:
http://barabasi.com/networksciencebook/.

[5] B.W. Kernighan and S. Lin. “An efficient heuristic procedure for partitioning
graphs”. In: The Bell System Technical Journal 49.2 (1970), pp. 291–307. doi:
10.1002/j.1538-7305.1970.tb01770.x.

[6] Mark EJ Newman andMichelle Girvan. “Finding and evaluating community
structure in networks”. In: Physical review E 69.2 (2004), p. 026113.

[7] Mark EJ Newman. “Fast algorithm for detecting community structure in
networks”. In: Physical review E 69.6 (2004), p. 066133.

[8] Vincent D Blondel et al. “Fast unfolding of communities in large networks”.
In: Journal of Statistical Mechanics: Theory and Experiment 2008.10 (2008),
P10008. doi: 10.1088/1742-5468/2008/10/p10008. url: https://doi.
org/10.1088%2F1742-5468%2F2008%2F10%2Fp10008.

[9] Richard B Lehoucq, Danny C Sorensen, and Chao Yang. ARPACK users’
guide: solution of large-scale eigenvalue problems with implicitly restarted
Arnoldi methods. SIAM, 1998.

[10] Wayne W Zachary. “An information flow model for conflict and fission in
small groups”. In: Journal of anthropological research 33.4 (1977), pp. 452–
473.

81

http://barabasi.com/networksciencebook/
https://doi.org/10.1002/j.1538-7305.1970.tb01770.x
https://doi.org/10.1088/1742-5468/2008/10/p10008
https://doi.org/10.1088%2F1742-5468%2F2008%2F10%2Fp10008
https://doi.org/10.1088%2F1742-5468%2F2008%2F10%2Fp10008


[11] Bryan Klimt and Yiming Yang. “Introducing the Enron Corpus”. In: CEAS
2004 - First Conference on Email and Anti-Spam, July 30-31, 2004, Mountain
View, California, USA. 2004. url: http://www.ceas.cc/papers-2004/
168.pdf.

[12] M. Baer. findiff Software Package. https : / / github . com / maroba /
findiff. 2018. url: https://github.com/maroba/findiff.

82

http://www.ceas.cc/papers-2004/168.pdf
http://www.ceas.cc/papers-2004/168.pdf
https://github.com/maroba/findiff
https://github.com/maroba/findiff
https://github.com/maroba/findiff


List of Figures

1.1 Triadic closure example . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Link prediction example. . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Link prediction example with indirect connectivity. . . . . . . . 14

2.1 Example of recursive tree expansion . . . . . . . . . . . . . . . . 21

5.1 Inertia measured data. . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Silhouette score measured data. . . . . . . . . . . . . . . . . . . 50
5.3 Edge cut measured data. . . . . . . . . . . . . . . . . . . . . . . 51
5.4 Visualization of community splitting. . . . . . . . . . . . . . . . 52
5.5 Zachary’s karate club: Basic community info. . . . . . . . . . . 53
5.6 Zachary’s karate club: Modularity and edge cut. . . . . . . . . . 54
5.7 Zachary’s karate club: Conductance and normalized edge cut . 55
5.8 Zachary’s karate club: Density and clustering coefficient . . . . 56
5.9 Zachary’s karate club: Accuracy . . . . . . . . . . . . . . . . . . 56
5.10 Zachary’s karate club: Spectral encoding using GraphVisualizer

application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.11 Zachary’s karate club: Spectral encoding of Louvain algorithm

using GraphVisualizer application . . . . . . . . . . . . . . . . . 58
5.12 Enron: Basic community info. . . . . . . . . . . . . . . . . . . . 59
5.13 Enron: Modularity and edge cut. . . . . . . . . . . . . . . . . . . 60
5.14 Enron: Conductance and normalized edge cut . . . . . . . . . . 61
5.15 Enron: Density and clustering coefficient . . . . . . . . . . . . . 62
5.16 Enron: Girvan-Newman clustering . . . . . . . . . . . . . . . . 62
5.17 Enron: Spectral clustering visualization . . . . . . . . . . . . . . 63

6.1 Zachary’s karate club: Kernighan-Lin communities . . . . . . . 76

83



84



List of Tables

2.1 Algorithm complexity summary . . . . . . . . . . . . . . . . . . 30

4.1 Algorithms evaluated for Zachary’s karate club. . . . . . . . . . 39
4.2 Algorithms evaluated for Enron dataset using METIS compression. 40
4.3 Algorithms evaluated for Enron dataset . . . . . . . . . . . . . . 40

5.1 Results for graph alignment for 𝐾 = 9 and 𝐾 = 10 . . . . . . . . 44
5.2 Results for graph alignment for 𝐾 = 10 and 𝐾 = 11 . . . . . . . 44
5.3 Zachary karate club algorithm runtime . . . . . . . . . . . . . . 45
5.4 Enron algorithm runtime . . . . . . . . . . . . . . . . . . . . . . 46

6.1 GraphRuntimeConfig type . . . . . . . . . . . . . . . . . . . . . 68
6.2 SingleRunConfiguration type . . . . . . . . . . . . . . . . . . . . 68
6.3 Makefile commands. . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.4 Algorithm recommendation summary . . . . . . . . . . . . . . . 78

85



86


	Contents
	Introduction
	Social networks
	Definition
	Key properties of social network
	Homophily
	Triadic closure and clustering coefficient

	Detection of influential individuals
	Degree centrality
	Closeness centrality
	Betweenness centrality
	PageRank

	Link prediction
	Neighborhood-based measures
	Katz measure
	Random walk-based measures
	Feature-based link prediction


	Community detection
	Definition
	Metrics
	Edge cut
	Normalized cut and conductance
	Modularity

	Algorithms
	Kernighan-Lin Algorithm
	Recursive Kernighan-Lin
	Girvan-Newman
	Greedy modularity algorithm
	Louvain algorithm
	Spectral clustering
	METIS - Multilevel graph partitioning
	Nested variants of community detection algorithms

	Summary

	Datasets
	Zachary's karate club
	Enron email dataset

	Experiment setup
	Estimation of number of communities
	Hierarchy of non-hierarchical method
	Algorithm comparison
	Datasets
	Statistics and measures
	Algorithm configuration


	Results
	Estimation of number of communities
	Inertia
	Silhouette score
	Edge cut
	Conclusion

	Hierarchy of non-hierarchical method
	Conclusion

	Algorithm comparison
	Zachary's karate club
	Enron email dataset


	Implementation
	Repository structure
	Input and output format
	CGAT: Config-based Graph Analysis Tool
	Configuration files
	Instructions to run
	Makefile

	Community detection library
	Girvan-Newman
	Greedy modularity
	Heavy clique METIS
	Kernighan-Lin Naive
	Kernighan-Lin
	Recursive bipartition
	Spectral clustering
	Louvain algorithm

	GraphVisualizer UI application
	Color generation


	Conclusion
	Bibliography
	List of Figures
	List of Tables

