
BACHELOR THESIS

Samyuktha Ramesh

Reduction-based Solvers for Multi-agent
Pathfinding: Comparing Different

Models

Department of Theoretical Computer Science and Mathematical Logic

Supervisor of the bachelor thesis: RNDr. Jǐŕı Švancara, Ph.D.
Study programme: Computer Science

Study branch: Artificial Intelligence

Prague 2023

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I would like to express my sincere gratitude to my supervisor RNDr. Jǐŕı Švancara,
PhD for his valuable guidance at every step of writing this thesis.

ii

Title: Reduction-based Solvers for Multi-agent Pathfinding: Comparing Different
Models

Author: Samyuktha Ramesh

Department: Department of Theoretical Computer Science and Mathematical
Logic

Supervisor: RNDr. Jǐŕı Švancara, Ph.D., Department of Theoretical Computer
Science and Mathematical Logic

Abstract: Multi-agent path finding (MAPF) is the problem of navigating a set
of agents from their starting position to their respective goal position without
any collisions. In this thesis, we provide an overview of the current approaches
to solving MAPF. We implement six different encodings found in the literature
using the Python programming language and the Glucose3 SAT solver. We run
experiments on maps of different types and sizes to compare the performances of
the encodings.

Keywords: multi-agent pathfinding reduction-based solvers SAT makespan

iii

Contents

Introduction 2

1 Background 4
1.1 Graphs . 4
1.2 Multi-agent Path Finding . 4

1.2.1 Agent . 5
1.2.2 Types of Conflicts . 6
1.2.3 Agent Behaviour at Goal 7
1.2.4 Metrics . 8
1.2.5 Complexity . 9

2 Approaches to Solving Multi-Agent Path Finding 10
2.1 Searching a state-space . 11
2.2 Constraint-based Search . 11
2.3 Reduction to SAT . 12

2.3.1 Makespan Optimal Models 13
2.3.2 Sum of Costs Optimal Models 17

3 Methodology 20
3.1 Implementation . 20
3.2 Optimisations . 20
3.3 Instances . 21

4 Experiments and Results 23
4.1 Experiments . 23
4.2 Results . 24
4.3 Limitations . 28

5 Conclusion 30
5.1 Future Work . 30

Bibliography 32

List of Figures 37

List of Tables 38

A User Documentation 39
A.1 Introduction . 39
A.2 System Requirements . 39
A.3 Getting Started . 39
A.4 Arguments . 39
A.5 Using the Program . 40
A.6 Instances . 40

B Attachments 41

1

Introduction
Multi-agent path finding (MAPF) is the problem of navigating a set of agents
from their starting position to their respective goal position without any colli-
sions. The field of MAPF has seen extensive research due to its applications
in numerous real-world scenarios. For example, warehouses and traffic junctions
have multiple agents moving along shared paths (Barták and Svancara [2019]).
Some of the areas that it can be applied to are autonomous traffic (Gebser et al.
[2018]), railway planning (Li et al. [2021]), aviation (Ho et al. [2022], as well as
in the video game industry (Botea and Surynek [2015])

Algorithms for finding collision-free paths for multiple agents can be catego-
rized in several ways, but two common ways of categorizing them are by optimal-
ity and by the technique used. Optimality refers to the quality of the solution
produced by the algorithm. The choice of technique is dependent on the type
of problem and its constraints, and they each have their strengths and weaknesses.

Based on optimality, MAPF algorithms can be classified as either optimal or
sub-optimal. Optimal solutions guarantee the best possible solution to a given
MAPF problem. On the other hand, sub-optimal solutions may prioritize effi-
ciency over optimality. A sub-optimal solution may be useful in situations where
finding an optimal solution may be computationally expensive, but a solution is
still required.

Based on the technique, MAPF algorithms can be broadly classified as ei-
ther search-based or reduction-based. Search-based solutions search a graph that
represents an MAPF problem and looks for a solution that satisfies all the con-
straints. Reduction-based solutions convert the MAPF problem into a different
problem, such as a constraint satisfaction problem or a Boolean satisfiability prob-
lem (SAT), and then try to solve it. Examples of search-based solvers include
the A* algorithm and tree search algorithm while examples of reduction-based
solvers include constraint satisfaction problems, SAT solvers, inductive logic pro-
gramming and answer set programming Surynek et al. [2016]. Here, we focus on
reduction-based solvers, specifically SAT solvers.

Two of the commonly used objective functions used to measure the optimality
of an MAPF solution are makespan and the sum of costs. In this thesis, we will
be using the makespan metric to evaluate the solutions.

The reduction from MAPF to a SAT problem involves defining the problem
variables and propositional logic formulas. By varying the number and type of
variables and propositional rules, we can derive different methods of performing
this reduction. In this thesis, we provide an overview of the current research in
MAPF, specifically the different methods to reduce an MAPF problem to a SAT
problem. We also contribute a comparison of the performances of these meth-
ods. We refer to the different methods as encodings. The objective function used
in this thesis is the makespan. We conduct experiments on various types and

2

sizes of maps. The experiments are designed to measure several key parameters,
including makespan, time to build clauses, time to solve the SAT formula, and
total runtime.

This thesis is structured into four chapters. In Chapter 1, we provide a theo-
retical background on MAPF. In Chapter 2, we discuss the different approaches
to solving MAPF, including search-based and reduction-based methods, as well as
various encodings proposed in the literature. Chapter 3 details the methodology
used in this project, including the implementation of the different encodings that
were discussed in Chapter 2. Finally, in Chapter 4, we present our experimental
setup, the selection of benchmark problems and the computational environment
setup. We also present the experimental results obtained from running the im-
plemented encodings on various maps and scenarios.

3

1. Background
In this chapter, we define and provide an overview of some of the concepts that
are used throughout this thesis, including graphs and their use in representing the
problem space, agents and their possible actions, the different types of conflicts
that can arise in MAPF scenarios, and the behaviour of agents when they reach
their goal. We also discuss various metrics that can be used to evaluate the
performance of an MAPF solution.

1.1 Graphs
A graph G = (V,E) consists of a set V of vertices and a set E of edges. The set
of edges E can be defined as the set of two element subsets of V , that is, E ⊆ V 2.
Two distinct vertices u and v are adjacent if there exists an edge e ∈ E(G) such
that both u and v are endpoints of e. The neighbourhood of a vertex v is the set
of all vertices that are adjacent to v.

A graph G = (V,E) is said to be directed if the edges have a direction and
are represented by an ordered pair (u, v). An undirected graph G = (V,E) is a
graph where the edges are represented by an unordered pair {u, v}.

In this thesis, we will be using 2D grid graphs where the individual cells are
the vertices. Each vertex has four neighbours: the four cardinal directions (north,
south, east, west). Since we require agents to be able to wait at a vertex (wait
actions will be explained later in this chapter), each vertex has a self-loop, that
is, an edge to itself. For simplicity, we consider a vertex a neighbour of itself.

1.2 Multi-agent Path Finding
Most of the definitions in this section are from Stern et al. [2019]. We first explain
the general term ’path finding’. Pathfinding is the process of finding a path be-
tween two vertices. Multi-agent pathfinding (MAPF) deals with the problem of
navigating a set of agents from their initial position to their goal position without
any collisions.

We can define an MAPF problem with k agents as a tuple < G, s, g, A > where
G = (V,E) is a graph that can be either directed or undirected. Here, all our
graphs are undirected so the agents can move both forwards and backward. The
set of all agents is denoted by A. The injective functions s : [1, ..., k] → V and
g : [1, ..k]→ V are mappings from an agent to a source vertex and an agent to a
target vertex respectively. In this thesis, we will refer to the source as the ”start”
and to the target as the ”goal”. Time is discretized and is measured in time steps.

Figure 1.1 shows an example map where the black squares are obstacles, that
is, positions where the agent cannot be located. The circles represent the start
positions of the agents and the triangles represent their goal positions.

4

Figure 1.1: Example of an MAPF map where each cell is a vertex

1.2.1 Agent
Every agent has a start position and a goal position. Here, these positions are
assumed to be unique and therefore no two agents start at the same position nor
do they aim for the same goal position. Further, all agents are present on the
map at the start (timestep 0).

At every time step, the agent is present at a vertex and can perform one
action. An action is a function action : V → V such that action(u) → v means
that if an agent at vertex u performs that action, then in the next time step it
will be at vertex v. An agent can perform any of the two following actions:

1. move: an agent can move from its current vertex to a neighbouring vertex.
It is of the form action(u)→ v, where (u, v) ∈ E.

2. wait: an agent can stay at its current vertex. It is of the form action(v)→ v,
where v ∈ V .

For a sequence of actions πi(action1, ..., actionn) and an agent i, the location
of the agent after the first x actions in πi, starting from the agent’s start position
s(i) is denoted by πi[x]. A sequence of actions πi is a single agent plan for an
agent if and only if executing all the actions in πi results in the agent being at its
goal position. We denote the length of the plan as |πi|. A solution to MAPF is
a set of k single agent plans, each corresponding to a unique agent. An example
solution can be seen in the table below.

Timestep 0 1 2 3 4 5
Blue Agent 2 3 4 5 1 5
Red Agent 3 4 5 6 5 4

Table 1.1: Example solution to the MAPF instance in Figure 1.1. The numbers
correspond to the vertex each agent occupies at that timestep.

We assume that it takes the same amount of time for each agent to traverse
each edge. This can be inferred as all edges having the same unit length and all
agents having the same speed.

5

1.2.2 Types of Conflicts
An MAPF solution is valid if and only if there is no conflict between any two
single-agent paths. Listed below are some common conflicts. Let πi and πj be
any two single-agent plans.

• Vertex Conflict: A vertex conflict is said to be present between two plans
πi and πj if and only if there exists a time step x such that πi[x] = πj[x].
We can state this alternatively as this conflict is present if the two agents i
and j are planned to be at the same vertex at the same time step.

• Edge Conflict: An edge conflict is said to be present between two plans
πi and πj if and only if there exists a time step x such that πi[x] = πj[x]
and πi[x+ 1] = πj[x+ 1]. We can state this alternatively as being present if
the two agents i and j are planned to traverse the same edge, in the same
direction, at the same time step.

• Swapping Conflict: A swapping conflict is said to be present between
two plans πi and πj if and only if there exists a time step x such that
πi[x] = πj[x + 1] and πi[x + 1] = πj[x]. We can state this alternatively as
being present if the two agents are planned to traverse the same edge, in
opposite directions, at the same time step i.e. they swap position.

• Following Conflict: A following conflict is said to be present between two
plans πi and πj if and only if there exists a time step x such that πi[x+1] =
πj[x]. We can state this alternatively as being present when one agent plans
to occupy a vertex that was occupied by another agent in the previous time
step.

• Cycle Conflict: A cycle conflict is said to be present between a set of plans
πi, πi+1, ..., πj if and only if there exists a time step x such that πi[x+ 1] =
πi+1[x] and πi+1[x + 1] = πi+2[x] and ... and πj−1[x + 1] = πj[x] and
πj[x + 1] = πi[x]. We can state this alternatively as being present if and
only if every agent moves into a vertex occupied by a different agent in the
previous time step, thus forming a cycle.

Figure 1.2: Types of MAPF Conflicts (a) edge conflict (b) vertex conflict (c)
following conflict (d) cycle conflict (e) swapping conflict. Figure taken from Stern
et al. [2019]

From the definitions, we can see that some of the conflicts are related to each
other:

6

1. forbidding vertex conflicts implies that edge conflicts are automatically for-
bidden

2. forbidding following conflicts implies that both cycle conflicts and swapping
conflicts are forbidden

3. forbidding cycle conflicts implies that swapping conflicts are also forbidden
(a swapping conflict is a specific type of cycle conflict where the cycle is of
size 2)

These forward implications don’t necessarily mean the revere implications are
also true. This list is not exhaustive and there are other possible conflicts that
can occur. Further, not all of the defined conflicts need to be forbidden in an
MAPF problem. Conflicts can be allowed or forbidden depending on the situ-
ation. Most real-life situations involving physical agents such as warehouses or
cars at the very least disallow vertex, edge and swapping conflicts.

In this thesis, we will forbid vertex and swapping conflicts (therefore also
forbidding edge conflicts). We will allow following and cycle conflicts. This setting
is referred to as parallel motion (Svancara et al. [2022]). Another commonly
used setting is called pebble motion (Kornhauser et al. [1984]). Pebble motion
differs from parallel motion in that it not only forbids all the conflicts that are
forbidden in parallel motion but also specifically forbids the following conflict
(and by extension forbids cycle conflicts).

1.2.3 Agent Behaviour at Goal
It is necessary for us to define the agent’s behaviour after it has reached its
goal position. Each agent will reach its goal position at different time steps and
therefore, its behaviour at the goal position will influence the other agents’ plans.
There are two common assumptions for the types of behaviour exhibited:

• Disappear at goal: Once the agent reaches its goal position, it disappears.
This implies that the number of agents present on the map decreases over
time. This is usually the case when the agents have some physical location
that they can occupy, for example, a parking space (Svancara et al. [2019]).
Alternatively, if agents are assigned to specific tasks, they can be removed
from the map once the task is completed. Further, once an agent has
disappeared, its plan cannot conflict with any other agent’s plan.

• Stay at goal: If the agent is not set to disappear at its goal position, it
has two further options:

– Once an agent reaches its goal position, it stays at that vertex until
all other agents have reached their goal positions. This implies that
no other agent can pass through that vertex as it will result in a
vertex conflict. Formally, under this assumption, plans πi and πj will
have a vertex conflict if there exists a time step t > |πi| such that
πi[|πi|] = πj[t].

7

– Once an agent reaches its goal position, it may move away from its
goal temporarily to make way for another agent. This is the setting
that will be used in this thesis.

1.2.4 Metrics
The quality of MAPF solutions can be evaluated by an objective function. Two
common metrics often used in MAPF are Makespan and Sum of Costs. Makespan
is the distance between the time the first agent leaves its start position to the
time when the last agent has reached its goal position. The sum of costs is the
sum of the lengths of all the plans. Let us denote the last time step at which
agent ai reaches its goal position as Ti. Then, for a plan π for a set of agents
A, we can formally define the makespan metric as Mks(π) = maxai∈A Ti and the
Sum of Costs metric as SoC(π) = ∑︁

ai∈A Ti.

It is important to define how the agent’s behaviour at the goal position will
affect the objective function. If the agent’s behaviour is to stay at the goal posi-
tion but can temporarily move away to make way for other agents, and the chosen
objective function is the sum of costs, then one needs to specify how this would
impact the sum of costs. For instance, it may be defined that once an agent
reaches its goal position for the first time, it no longer incurs additional costs for
subsequent returns to that goal. This feature can be particularly useful in deliv-
ery scenarios, where only the initial delivery to the goal matters. Alternatively, if
the agents have limited fuel resources that are used during move actions, it may
be defined that all movements, regardless of whether or not a goal is reached,
contribute to the sum of costs. This type of cost function is often referred to as
the ”sum of fuel” in the literature.

Optimizing makespan and the sum of costs objective functions yields different
plans. This can be seen in Figure 1.3 where the plan on the top minimizes the
sum of costs while the plan on the bottom minimizes makespan. Further, opti-
mizing the makespan might increase the sum of costs and vice versa.

The choice of which objective function to optimize depends on the situation
being modelled. Makespan may be optimized in situations where the total time
may need to be minimal. This, however, can lead to unnecessary movements by
some agents. On the other hand, optimizing the sum of costs can be useful in
situations where agent actions are expensive and may need to be minimal. An
example of this is warehousing where agents use fuel for their actions.

We also note that for any solution S with makespan µ and sum of costs ε, we
have that µ ≤ ε. In other words, if there is only one single-agent plan, then the
makespan equals the sum of costs. Otherwise, it is always smaller than the sum
of costs.

In this thesis, the plans utilize the makespan metric. Once the agent arrives
at its goal position, it may either wait there for the other agents to also reach
their goal, or it may move to make way for other agents and return to its goal at

8

Figure 1.3: Sum of Costs vs Makespan. Figure taken from Barták and Svancara
[2019]

a later time step. This means the length of all the plans |πi| is the same.

1.2.5 Complexity
Many sub-optimal polynomial-time algorithms can be used to solve MAPF. A
brief overview of these will be given in the next chapter. Deciding if an MAPF
problem is solvable in a given time in NP-Complete since it is a generalisation
of the sliding tile puzzle which is NP-Complete Sharon et al. [2012]). Therefore,
finding the optimal solution, either with respect to the makespan Surynek [2010]
or the sum of costs Yu and LaValle [2013], is NP-Hard.

9

2. Approaches to Solving
Multi-Agent Path Finding
In this chapter, we discuss the different approaches that are currently used to
solve an MAPF problem. We then provide a brief overview of optimal MAPF
solvers before providing a more detailed section on solving MAPF through reduc-
tion.

Due to the computational complexity of finding optimal solutions for the
multi-agent path finding (MAPF) problem, which is NP-hard, one possible ap-
proach is to instead aim for sub-optimal solutions. This means that instead of
minimizing the makespan or the sum of costs, we prioritize finding a feasible
solution that meets the constraints of the problem. Another possible approach
is to aim for an optimal solution. In an optimal solution, we aim to minimize
the makespan or the sum of costs while still satisfying all of the constraints of
the problem. Figure 2.1 shows an example illustrating the difference between a
sub-optimal MAPF solution and an optimal MAPF solution.

Figure 2.1: An example of a sub-optimal vs optimal MAPF solution (Ivanashev
et al. [2022])

Sub-Optimal Solvers. In a sub-optimal solution approach, we create a plan
for each agent without considering the other agents. If a conflict is found dur-
ing execution, we compute the plans again. From this, we can see where the
sub-optimality comes from. Some sub-optimal solvers prioritize quickly finding
a solution, as opposed to ensuring it is as close as possible to the optimal so-
lution. These solvers are useful when the number of agents is high, but may
not be complete. Such algorithms are referred to as any-solution MAPF solvers,
several of which have been proposed by Ryan [2010], Cohen et al. [2015], Silver
[2005], Botea and Surynek [2015]and Sajid et al. [2012], including a polynomial
time any-solution MAPF solver by Luna and Bekris [2011] and de Wilde et al.

10

[2014]. Another type of sub-optimal solution is what is known as bounded sub-
optimal. Solvers producing bounded sub-optimal solutions provide a guarantee
of the quality of the solution: the cost of the solution is ≤ (1 + ϵ) × copt, where
copt is the cost of the optimal solution and ϵ is a parameter, also called error, that
sets the level of sub-optimality that is desired.

Optimal Solvers. We can divide MAPF optimal solvers into three different
categories: searching a state-space, constraint-based search, and reduction to an-
other problem. We will first briefly describe algorithms that involve searching a
state-space and then delve into the other two types of algorithms.

2.1 Searching a state-space
Algorithms involving searching a state-space are usually based on the A* algo-
rithm. The A* algorithm, often seen as an extension of Dijkstra’s algorithm,
was first published in the paper ’A formal basis for the heuristic determination
of minimum cost paths’ by Hart et al. [1968]. However, while a common variant
of Dijkstra’s algorithm constructs the shortest path tree by finding the shortest
paths between the start position to all possible goal positions, the A* algorithm
finds the shortest path from the start position to the specified goal position, by
using heuristic estimates to guide its search. As described in the paper, heuristics
used by the A* algorithm are admissible and consistent. This means that they
will never overestimate the actual cost of reaching the goal position and hence
guarantee the optimality of A*.

The current positions of all agents are represented by states. The algorithm is
given the start state and the goal state, as well as the transition rules for moving
an agent from one state to another. All the open states, at each timestep, are
stored in a priority queue. At every timestep, the state which promises to yield
the best result is chosen to be explored. All possible states from the chosen state
are then added to the queue. This process is repeated until the goal state has
been reached.

This algorithm yields an optimal solution if the open states are explored in the
correct order. However, the disadvantage of this algorithm is its large branching
factor. One way to counter this disadvantage is to prevent all agents from moving
at once and instead move each agent one by one (Standley [2010]).

2.2 Constraint-based Search
Instead of searching all states, as in the A* algorithm mentioned above, we can
instead search over constraints on agents’ movements. The most often used al-
gorithm that achieves this is the Conflict Based Search (CBS) algorithm, which
is a complete and optimal algorithm (Sharon et al. [2012]). This algorithm was
introduced with the purpose of reducing the state-space over which the A* al-
gorithm searches. The CBS algorithm finds single-agent paths and performs an

11

exploration of the conflicts caused by these paths.

CBS is a two-level algorithm: it has a higher level and a lower level. The
higher-level search is performed over a binary constraint tree. The nodes of the
tree are constraints that are in the format Cons(ai, v, t), which means that agent
i cannot be at position v at time t. At best-first search is performed and at each
timestep, a node with the best cost is selected and explored. It checks that no
conflicts are present in the single-agent paths, and if this is true, then the solu-
tion is deemed valid and optimal. However, if a conflict is found, two child nodes
are created and are subsequently explored. The lower-level searches for a single-
agent optimal path that follows the constraints for all of the agents. This can be
found through any shortest pathfinding algorithm such as the A* algorithm or
Dijkstra’s algorithm.

Two improvements to the CBS algorithm were proposed by Sharon et al. [2012]
and Boyarski et al. [2015a]. The first one, called Meta-agent CBS merges small
groups of agents into meta-agents when it is favourable. This proved to reduce
the runtime. The second was an improvement on the Meta-agent CBS, called
the Bypass improvement. Instead of arbitrarily choosing paths, as in Meta-agent
CBS, the Bypass improvement tries to find an alternative path for an agent that
has a conflict. This proved to have a better runtime compared to the previous
version. A paper by Boyarski et al. [2015b] offered a further improvement on
CBS, called the Improved Conflict-Based Search (ICBS), that added to the two
previous improvements.

Another such algorithm is the Increasing Cost Tree Search (ICTS). The ICTS
algorithm runs on two levels, where the higher level performs a search over a
search tree called an increasing cost tree, and the lower level performs a goal
test on each of the nodes of the tree (Sharon et al. [2013]). Each node in the
increasing cost tree is a k-vector [C1, C2, ..., Ck]. This k-vector represents all the
possible solutions to the MAPF problem where for each agent ai, the cost of its
individual path is exactly equal to Ci. Experimental results show that in many
cases, the ICTS algorithm performs better than the A* algorithm by up to three
orders of magnitude (Sharon et al. [2013]).

2.3 Reduction to SAT
In the reduction to SAT approach, we construct a propositional formula φ(T)
such that it is satisfiable if and only if there exists a solution to the given MAPF
problem with makespan T . φ(T) is a complete propositional model of MAPF.
Further, φ(T) exactly represents the MAPF instance, and if it is satisfiable, the
solution can be reconstructed from a satisfying assignment of the formula.

We can define the formula formally as follows: Propositional formula φ(T) is
a complete propositional model of an MAPF problem if the following condition
holds: φ(T) is satisfiable, if and only if there exists a solution with makespan T .

12

2.3.1 Makespan Optimal Models
Since we don’t know the length of the plan in advance, we start with a restriction
on the length. In case the algorithm fails to find a solution in the given plan
length, we increment the length (Kautz and Selman [1992]). In the context of
finding the optimal makespan, we iteratively increase the makespan T until a
valid solution is found. This guarantees that no solution with a lower makespan
exists and hence gives us the optimal makespan.

Let us suppose that we are looking for a solution to an MAPF problem with
makespan T . We also impose restrictions on vertex conflicts, edge conflicts and
swapping conflicts. As mentioned in the background chapter, forbidding vertex
conflicts implies that edge conflicts are also forbidden. Therefore, we only check
for vertex conflicts and swapping conflicts. In this section, we define six different
encodings found in the literature relating to solving MAPF problems via reduc-
tion to SAT.

We use the idea of a time-expanded graph (TEG). The TEG consists of T
copies of the vertices in graph G. Each layer of the TEG corresponds to a spe-
cific timestep and indicates the positions of the agents at that time. We add
edges (ui, vi+1), where u is in the i-th layer of the TEG and v is in the i+1-th
layer, if and only if there is an edge (u, v) in the original graph G. These edges
represent an agent moving from one vertex to another vertex. We also add the
edges (ui, ui+1) for every vertex u. These edges correspond to agents waiting at
a vertex. In this graph, the agents start at the 0-th layer and move to the next
layer at each timestep.

Figure 2.2: Example of a 3-vertex graph being transformed to a T -layered time-
expanded graph (Barták and Svancara [2019])

Instead of starting the computation of the optimal makespan with T = 1,
we can speed up the computation by starting with a different lower bound. For
each agent ai, we find the shortest path Pi from its start position si and its goal

13

position gi. We can then use the longest of these shortest paths as the lower
bound for computing the makespan: LB(Mks) = maxai∈A|Pi|.

We present below six encodings that are found in the current literature. In the
encodings that utilize edges of the graph in the variable definition, an auxiliary
edge (v, v) is added to E for all vertices v ∈ V . This is done to enable the agents
to wait at a vertex.

Encoding 1

This encoding is inspired by two papers (Barták et al. [2017];Surynek [2021]). The
paper by Surynek [2021] does not explicitly forbid swapping conflicts. Instead, it
uses pebble motion for the agents. This forbids following conflicts, which implies
that swapping conflicts are also prohibited. However, we use parallel motion and
therefore, to remain consistent with the other encodings, we forbid swapping con-
flicts in this version of Encoding 1.

We define the variable At as follows: ∀t ∈ {0, ..., T},∀a ∈ A,∀v ∈ V ,
At(t, a, v) means that agent a is at vertex v at timestep t.

In order to reduce to MAPF problem to a SAT problem, we introduce the
following constraints:

∀a ∈ A : At(0, a, s(a)) (2.1)

∀a ∈ A : At(T, a, g(a)) (2.2)

∀t ∈ {0, ..., T},∀a ∈ A, ∀u, v ∈ V : ¬At(t, a, u) ∨ ¬At(t, a, v) (2.3)

∀t ∈ {0, ..., T},∀v ∈ V, ∀ai, a2 ∈ A : ¬At(t, a1, v) ∨ ¬At(t, a2, v) (2.4)

∀t ∈ {0, ..., T − 1},∀u ∈ V, ∀a ∈ A : At(t, a, u) =⇒
⋁︂

(u,v)∈E

At(t+ 1, a, v) (2.5)

∀t ∈ {0, ..., T − 1},∀(u, v) ∈ E,∀a1, a2 ∈ A : ¬At(t, a1, u) ∨ ¬At(t+ 1, a1, v)
∨ ¬At(t, a2, v) ∨ ¬At(t+ 1, a2, u) (2.6)

We ensure that all agents are at their start positions s(a) at the time 0 and
at their goal positions g(a) at the time T through constraints (2.1) and (2.2).
Constraint (2.3) states that no agent can be present at more than one vertex at
any timestep and constraint (2.4) defines the vertex conflict. The movements of
the agent are explained in constraint (2.5) which states that if an agent is at a
certain vertex at a particular timestep, then it is in one of the neighbours in the
next timestep. Lastly, in constraint (2.6), we define the swapping conflict.

14

Encoding 2

This encoding was introduced in a paper by Barták and Svancara [2019].

In Encoding 2, we use a combination of two variables to model the MAPF
problem. The first variable is the At variable, as defined in Encoding 1. We
define the second variable as follows: ∀t ∈ {0, ..., T − 1},∀a ∈ A,∀(u, v) ∈ E,
Move(t, a, (u, v)) means that agent a goes through edge (u, v) at timestep t. Note
that, the timesteps for this variable are defined between 0 and T − 1, unlike the
timesteps for the At variable. This is because the agents need to be at their goal
position at timestep T and not travelling through an edge.

In order to reduce to MAPF problem to a SAT problem, we introduce the
following constraints:

∀a ∈ A : At(0, a, s(a)) (2.7)

∀a ∈ A : At(T, a, g(a)) (2.8)

∀t ∈ {0, ..., T},∀a ∈ A, ∀u, v ∈ V : ¬At(t, a, u) ∨ ¬At(t, a, v) (2.9)

∀t ∈ {0, ..., T},∀v ∈ V, ∀ai, a2 ∈ A : ¬At(t, a1, v) ∨ ¬At(t, a2, v) (2.10)

∀t ∈ {0, ..., T − 1},∀(u, v) ∈ E,∀a1, a2 ∈ A : ¬Move(t, a1, (u, v))
∨ ¬Move(t, a2, (v, u)) (2.11)

∀t ∈ {0, ..., T −1},∀(u, v) ∈ E,∀a ∈ A : Move(t, a, (u, v)) =⇒ At(t+1, a, v)
(2.12)

∀t ∈ {0, ..., T − 1},∀u ∈ V, ∀a ∈ A : At(t, a, u) =⇒
⋁︂

(u,v)∈E

Move(t+ 1, a, (u, v))

(2.13)

We ensure that all agents are at their start positions s(a) at the time 0 and
at their goal positions g(a) at the time T through constraints (2.7) and (2.8).
Constraint (2.9) states that no agent can be present at more than one vertex at
any timestep and constraint (2.10) defines the vertex conflict. In (2.11) we define
the swapping conflict. Lastly, we explain the movements of the agents. Constraint
(2.12) states that if an agent moves through an edge (u, v) in timestep t, it will
be present at vertex v in the next timestep. Constraint (2.13) states that if an
agent is present at a vertex at a particular timestep, then it moves via one of the
vertex’s outgoing edges in the next timestep. This includes the self-loop, i.e. the
agent can wait at that vertex.

15

Encoding 3

This encoding was introduced in a paper by Achá et al. [2021].

In Encoding 3, we use a combination of the At variable, as defined in En-
coding 1, and the Shift variable. We define the Shift variable as follows:
∀t ∈ {0, ..., T−1},∀(u, v) ∈ E, Shift(t, (u, v)) means that agent a is goes through
edge (u, v) at timestep t. Like in Encoding 2, we note that the timesteps are be-
tween 0 and T − 1, and we add the auxiliary edge (v, v) for all vertices v to E so
that self-loops are included in the list of edges.

In order to reduce to MAPF problem to a SAT problem, we introduce the
following constraints:

∀a ∈ A : At(0, a, s(a)) (2.14)

∀a ∈ A : At(T, a, g(a)) (2.15)

∀t ∈ {0, ..., T},∀a ∈ A∀u, v ∈ V : ¬At(t, a, u) ∨ ¬At(t, a, v) (2.16)

∀t ∈ {0, ..., T},∀v ∈ V, ∀ai, a2 ∈ A : ¬At(t, a1, v) ∨ ¬At(t, a2, v) (2.17)

∀t ∈ {0, ..., T − 1},∀(u, v) ∈ E : ¬Shift(t, (u, v)) ∨ ¬Shift(t, (v, u)) (2.18)

∀t ∈ {0, ..., T − 1}, ∀(u, v) ∈ E,∀a ∈ A : At(t, a, u) ∧ Shift(t, (u, v))
=⇒ At(t+ 1, a, v) (2.19)

∀t ∈ {0, ..., T − 1},∀(u, v) ∈ E,∀a ∈ A : At(t, a, u) ∧ At(t+ 1, a, v)
=⇒ Shift(t, (u, v)) (2.20)

∀t ∈ {0, ..., T − 1},∀v such that (u, v) ∈ E,∀a ∈ A : At(t+ 1, a, v)
=⇒

∑︂
u:(u,v)∈E

At(t, a, u) (2.21)

We ensure that all agents are at their start positions s(a) at the time 0 and
at their goal positions g(a) at the time T through constraints (2.14) and (2.15).
Constraint (2.16) states that no agent can be present at more than one vertex
at any timestep and constraint (2.17) defines the vertex conflict. In constraint
(2.18), we define the swapping conflict. Lastly, we define the agents’ movements.

16

Constraint(2.19) can also be referred to as positive effects axiom (Reiter [2001]).
This states that if an agent a is at a vertex u at timestep t, and a shift occurs at
the same timestep from u to v, then agent a is at vertex v at the next timestep
t+1. Constraint (2.20) states that if an agent a is present at vertex u at timestep
t and at vertex v at timestep t + 1, then such a change can be explained by a
shift at time t between u and v. Constraint (2.21) states that if an agent a is at
a vertex u at timestep t+ 1, then in the previous time t, it must have been at a
predecessor of u.

Encodings 4, 5 and 6

In the previous three encodings, we included constraints to forbid all conflicts at
once initially. For the next three encodings, namely encoding 4, encoding 5, and
encoding 6, a slightly different approach is taken. The idea behind the encodings
in this subsection is taken from Surynek [2019].

In these encodings, we do not forbid any constraints at the beginning. In-
stead, we incrementally extend the propositional model when new conflicts are
detected. The hypothesis of this idea is that in many scenarios, we do not need to
add all constraints to form a propositional model and still obtain a conflict-free
solution. Examples of these scenarios would be large sparse environments with
few agents.

Encoding 4, 5 and 6 use this approach while using the base of encoding 1,
2 and 3 respectively. Certain constraints are present from the beginning of the
program. These include ensuring that all agents are at their start position at
timestep 0 (2.1), and all agents are at their goal position at timestep T (2.2).
Further, an agent cannot be at two vertices at the same timestep (2.3) and can
only move along edges present in the map (2.5). Constraints that forbid the ver-
tex conflict (2.4) and the swapping conflict (2.6) are added when necessary.

The benefit of such an approach is saving time on sparsely populated maps
as building and solving an incomplete propositional model takes less time. We
define an incomplete propositional formula as follows. Let ψ(T) be an incomplete
propositional formula of an MAPF problem. Then, ψ(T) is satisfiable ⇐ ∃ solu-
tion with makespan T .

See Algorithm 1 for a brief description of Encoding 4. Encoding 5 and En-
coding 6 are similar to this, but are based on variable combinations defined in
Encoding 2, and Encoding 3, respectively.

2.3.2 Sum of Costs Optimal Models
In the case of makespan optimal models, once we find the correct number of layers
in the time-expanded graph, we are guaranteed that it is the makespan optimal
solution. However, this guarantee does not extend to the sum of costs optimal
models. A good example of this can be seen in Figure 1.3 from the Background
chapter. We can see that when the Mks(Π) = 5, we don’t have the optimal SOC.
However, when we add another layer to the TEG, we get the optimal sum of costs

17

Algorithm 1 Encoding 4
function Encoding 4

T = lowerbound
conflicts dict← {vertex conflict : False, swapping conflict : False}
while True do

At← createDict()
addConstraint(all agents at start position at timestep 0)
addConstraint(all agents at goal position at timestep T)
addConstraint(agents can’t be at two different vertices at same timestep)
addConstraint(agents moves to vertex neighbour in next timestep)
if conflicts dict[vertex conflict] then

addConstraint(forbid vertex conflict)
end if
if conflicts dict[swapping conflict] then

addConstraint(forbid swapping conflict)
end if
solvable, res← trySolve()
if solvable then

if no conflicts then
results← res
return results

else
conflicts dict[vertex conflict] = True
conflicts dict[swapping conflict] = True
continue

end if
end if
T+ = 1

end while
end function

SOC(Π) = 9. It is unclear how many additional TEG layers are required for the
solution to be guaranteed to be optimal.

The following two models take this into consideration. To address this issue,
we add some additional constraints to the original constraints that were discussed
in the previous subsection.

The first model (Surynek et al. [2016]) finds a sum of costs optimal solution
by adding a constraint to bound both the makespan and the sum of costs. The
bounds are set to ensure that the first solvable formula yields the sum of costs
optimal solution. The model finds the shortest path for each agent. All the other
agents are ignored while this is being done. A valid lower bound for the makespan
is the maximum of the lengths of the paths and a valid lower bound for the sum of
costs is the sum of the lengths of all the paths. The algorithm then incrementally
allows extra movement for the agents. It starts with 0 extra movements and tries
to solve the problem using the chosen lower bounds. If a solution exists, then
we know that it must be a sum of costs optimal solution since the values chosen

18

for both the makespan and the sum of costs were the lower bounds. The extra
movement adds a layer to the TEG and allows some agent to take one extra step.

The second model starts in a similar way to the first model. It finds the
shortest path for each agent while ignoring all of the other agents on the map,
and sets the lower bounds for the makespan and the sum of costs. It then finds a
solution with an optimal makespan. The model sets the upper bound as the sum
of costs of this makespan-optimal solution. In this model (Barták and Svancara
[2019]), instead of iteratively increasing the extra allowed movement one by one,
it uses the lower bound and upper bound of the sum of costs to find an optimal
sum of costs.

19

3. Methodology
In this chapter, we describe the methodology used to implement the six encodings
from the previous chapter. First, we discuss the implementation process for the
algorithms, including the tools and data structures used. Then we state the pre-
processing done on the data, to optimise the data that is available to the SAT
solver. Next, we provide a detailed overview of the instances that were used for
testing and to conduct the experiments which will be highlighted in the next
chapter.

3.1 Implementation
We implemented each of the encodings described in the previous chapter using
the Python language. Python is an extremely popular programming language
due to its easy-to-read syntax and extensive library support. In the context of
MAPF, the language’s efficient data structures provide easy implementation of
algorithms. In our implementation, we construct CNF clauses for each encoding
and then use PySAT Glucose3 (Ignatiev et al. [2018]). PySAT Glucose3 is a
Python library that uses the Glucose3 SAT solver to solve propositional satisfia-
bility problems.

Python has four collection data types: lists, sets, tuples and dictionaries.
Python dictionaries are useful data structures that enable efficient storage. Fur-
ther, it has fast retrieval of key-value pairs with a time complexity of O(1) (Cor-
men et al. [2009]). This is useful in solving complex problems efficiently. In the
context of using the Glucose3 SAT solver, we store the variables as the dictionary
keys and their values are the respective integer values that can then be accepted
by the solver. This way, we can work with the variable names, instead of the
integer values, making the code more readable.

3.2 Optimisations
One of the ways that the computation has been enhanced is through the notion of
”feasible” variables. In the case of the At variable, At(t, ai, v) corresponds to an
agent ai being present at vertex v at timestep t. However, because we know that
the agent needs to be at its start position si at timestep 0 and at its goal position
gi at timestep T , we can deduce the agent cannot be present at certain positions
at certain timesteps. If a vertex v is at distance d away from start position si, we
know that the agent ai cannot be present at v at any timestep from {0, ..., d−1}.
Likewise, if a vertex v is distance d away from goal position gi, agent ai cannot be
present at v at timesteps {T − d+ 1, ..., T}. This is because in the first case, the
agent will have insufficient time to reach vertex v from its start position si, and
in the second case, the agent will have insufficient time to reach its goal position
gi from vertex v. These variables are referred to as unfeasible. If an agent can be
present at a specific vertex at a specific time, the variable representing that state
is referred to as ”feasible”.

20

Similarly, we can determine feasible variables for Move(t, a, (u, v)). An agent
can move through an edge (u, v) at timestep t if and only if the agent can be
present at the vertex u at timestep t and at vertex v at timestep t+ 1. Formally,
Move(t, a, (u, v))is feasible if and only if both At(t, a, u) and At(t + 1, a, v) are
feasible.

There is no pre-processing for the Shift variable. Since the Shift variable
does not refer to any specific agent, the vertex shift occurs irrespective of the
presence or absence of an agent there.

3.3 Instances
The instances used to test the encodings are from Moving AI Lab. A more de-
tailed overview of these benchmarks can be found in Stern et al. [2019]. There
are multiple maps from real-life cities, video games, open grids both with and
without obstacles, maze-like grids, and room-like grids. In Figure 3.1, we can see
examples of each type of map that is available.

Figure 3.1: Types of maps available at Moving AI Lab

Every map has 25 scenarios, each is a ∗.scen file. The first line of the scenario
file specifies its version number. Each line of the file after that has a single agent
and is of the format ’* *.map-file x-size-map y-size-map x-start y-start x-goal y-
goal *’. The program contains a scenario loader that reads each line of the ∗.scen
file and creates an agent object with a start position and a goal position. The
intended way to use these files is, for each map and scenario, to try and solve as
many agents as possible within the given time limit, adding them consecutively
in order. We first create an instance with one agent by choosing the first agent
from the scenario file and solve it with the encoding of choice. If it is solvable
within the given time limit, then create an instance with two agents, by choosing
the first two agents from the scenario file, and try to solve it. Repeat this until an
instance cannot be solved within the given time limit. Note that the time limit
is reset when a new instance is created.

Each scenario was created by randomly pairing all points in the largest reach-
able region of the map and then selecting the first 1000 of these. Therefore, any

21

subset of these pairs of start and goal positions can be chosen to create a scenario.

From the scenario file, we can get the file path of the map it corresponds to.
Each map is represented by a ∗.map file. Figure 3.2 shows an example of an 8x8
map file. All map files begin with these lines:

type octile
height y
width x
map

where x and y are the respective width and height of the map. The contents
of the map are in the form of an ASCII grid where ’.’ represents a space where
an agent can be present. All other symbols represent obstacles. An agent cannot
be present at a vertex marked as an obstacle at any given time.

Figure 3.2: Example of an 8x8 map file

The program contains a Maploader which reads each map file and creates a
map object with its associated height, width, file path, and the map itself. The
map is stored as a 2D array filled with 0s and -1s. The 0s represent spaces an
agent can occupy while the -1s represent obstacles.

22

4. Experiments and Results
In this chapter, we describe the experiments we conducted, along with the metrics
that were measured, as well as the challenges encountered and how we addressed
them. We present the results obtained from the experiments and an analysis of
them.

4.1 Experiments
We conducted experiments to evaluate the performance of the six encodings and
evaluate if there was any significant difference between them. The experiments
were run on three different types of maps: empty maps, random maps, and room-
like maps. Further, to see the effects of size on the performance of the encodings,
we chose maps of three different sizes: 8x8, 16x16, and 32x32, resulting in a total
of nine maps. Figure 4.1 shows visualisations of some of the maps that were
used. Some combinations of size and type were not available in the benchmark
set so we created our own maps and scenarios that follow the general structure of
the existing maps. For each map, we created three different scenarios to test the
performance of the algorithms on each scenario. The scenarios corresponding to
the 8x8 maps had thirty-two agents (certain 8x8 could not accommodate more
than thirty-two agents), while the 16x16 maps and the 32x32 maps had a hundred
agents each.

Figure 4.1: (a) 8x8 random map (b) 8x8 room map

The time limit for each instance was sixty seconds. For each scenario, we
executed the program using the six different encodings. For each run, we logged
the makespan and its lower bound, the time taken to build the clauses, the time
taken to solve the SAT problem, and the total run time into a CSV file.

The experiments were conducted on a laptop with an AMD Ryzen 7 PRO
processor and 16 GB RAM. Python 3.9.5 was used as the programing language.

Overall, these experiments aimed to provide an evaluation of the MAPF en-
codings’ performance and identify the most effective encoding for different map
types and scenarios. The results of these experiments are presented and analyzed
in the next section.

23

4.2 Results
An MAPF instance is considered solved if the algorithm found a collision-free
plan for every agent in that instance within the given time limit of sixty seconds.
We are interested to see the amount of time each encoding takes to find a solution
for a specific map type or size. Tables with the average times are provided below.
”Encoding” is abbreviated as ”E” in the column names. Further, all data is given
to two decimal places.

However, it is important to note that the encodings that did not manage to
solve many instances often have lower average runtimes compared to the encod-
ings that solved more instances. Therefore, trends in the data can be more easily
viewed in a graphical format. We sorted the instances in ascending order based
on their total runtime and plotted them for each encoding. Lower lines on the
graph indicate lower runtime for the instances, and therefore the lower the line
on the graph, the better the performance of the encoding.

Number of Solved Instances

In Table 4.1, we have the number of solved instances for each map type and for
each map size, as well as the total number of solved instances by each encoding.

E1 E2 E3 E4 E5 E6
8x8 267 263 270 269 263 270
16x16 471 352 545 426 272 462
32x32 95 36 107 61 30 74
Empty 284 225 316 262 187 273
Random 290 227 312 260 202 266
Room 259 199 294 234 176 267
Total Number of Solved Instances 833 651 922 756 565 806

Table 4.1: Number of solved instances by each encoding on different sizes and
types of maps.

Encoding 3 performed better than the rest of the encodings of every size and
type of map. It solved a total of 966 instances while Encoding 5 solved 565 in-
stances which was the least number of instances. Encoding 3 and Encoding 1
significantly outperformed Encoding 2. A similar trend can be seen among En-
coding 4, 5, and 6, where Encoding 4 and Encoding 6 outperformed Encoding 5.
This is not surprising given that Encoding 5 is modelled with the same variables
as Encoding 2.

However, what is surprising is that the first three encodings performed better
compared to their counterparts where the constraints were added ad hoc. We
conjecture that this is because while the first few instances with a small number
of agents were solvable without encountering any conflicts, the vast majority of
instances required the conflict clauses to be added. This resulted in an extra
iteration of clause-building for each instance.

24

Average clause-building Time

E1 E2 E3 E4 E5 E6
8x8 0.83 0.94 0.34 0.94 1.26 0.43
16x16 16.25 19.81 9.52 19.16 20.80 11.45
32x32 23.18 27.82 27.08 21.54 25.52 20.62
Empty 11.80 13.51 8.48 13.29 12.28 9.06
Random 11.75 11.82 7.83 12.56 11.30 7.38
Room 12.82 12.56 10.39 12.73 12.36 9.34
Average clause-building Time 12.10 12.63 8.87 12.867 11.95 8.60

Table 4.2: Average time (seconds) to build clauses for each encoding on different
sizes and types of maps.

Table 4.2 shows the average time that each instance took to build the clauses
that model the required constraints. Encoding 3 performed better than Encod-
ing 1 and Encoding 2, both of which took similar amounts of time to build their
clauses. A similar trend is noticeable among Encoding 4, Encoding 5, and En-
coding 6.

Encoding 3 and Encoding 6 have similar performances for most maps, al-
though a significant difference is present for 32x32 maps where Encoding 6 took
lesser time to build the clauses. This might be due to the fact that, compared to
smaller maps, larger maps with fewer agents tend to have fewer conflicts. There-
fore, adding conflict clauses ad hoc saves clause-building time for more instances
on the 32x32 maps compared to the other map sizes.

Figure 4.2: Average time to build clauses.

This trend is confirmed by the graph 4.2 where the solid green line (encoding
3) is the lowest, and therefore has the best performance, and the dotted blue line
(Encoding 5) is the highest and therefore has the worst performance.

25

Average Solving Time

E1 E2 E3 E4 E5 E6
8x8 1.04 0.66 1.30 1.23 0.71 1.20
16x16 1.36 1.27 10.11 2.01 1.01 9.30
32x32 0.33 0.075 1.54 0.15 0.07 0.66
Empty 0.65 0.57 8.03 0.97 0.43 5.80
Random 0.93 0.78 6.66 1.33 0.64 5.54
Room 1.91 1.61 4.79 2.56 1.45 6.05
Average Solving Time 1.14 0.96 6.53 1.58 0.82 5.80

Table 4.3: Average time (seconds) for the SAT solver to try to find a satisfying
assignment for each encoding on different sizes and types of maps.

Table 4.3 shows the average time that the SAT solver took to find a satisfying
assignment for the MAPF problem for each instance. With this metric, Encoding
1 and Encoding 2 performed significantly better than Encoding 3. Likewise, En-
coding 4 and Encoding 5 performed significantly better than Encoding 6. Overall
Encoding 5 had the best performance. However, this does not mean that Encod-
ing 5 had the best performance. These results can be attributed to the fact that
Encoding 5 solved the least number of instances and this positively impacted the
average solving time.

Figure 4.3: Average time for the SAT solver to find a satisfiable assignment.

From the graph 4.3, we can see that the dotted blue line (Encoding 5) had the
highest line, and despite what was indicated by the table, actually had the worst
performance. However, because the graph only plots the number of instances that
were successfully solved by all encodings, it is not possible to tell which encoding
had the best solving time.

26

That being said, the solving time for all encodings was significantly smaller
compared to the clause-building time, and therefore determining the relative per-
formance of the encodings in the context of average solving time is not very
useful.

Average Total Runtime

E1 E2 E3 E4 E5 E6
8x8 1.91 1.71 1.81 2.17 2.08 1.83
16x16 17.97 21.50 17.47 21.55 22.29 19.08
32x32 24.04 28.49 28.10 22.23 26.10 21.79
Empty 12.86 14.47 14.52 14.69 13.10 13.76
Random 13.08 13.03 13.50 14.32 12.32 12.27
Room 14.73 14.23 14.68 15.18 13.93 14.61
Average Runtime 13.52 13.90 14.22 14.71 13.08 13.55

Table 4.4: Average runtime (seconds) for each encoding on different sizes and
types of maps.

Table 4.4 shows the average total runtime for each encoding across maps of
different types and sizes. The average runtimes are similar for all encodings.
The first three encodings had better performance for the smaller 8x8 maps. The
encodings where the conflicts were added ad hoc (Encoding 4, Encoding 5, and
Encoding 6) performed better than the rest for the bigger 32x32 maps.

Figure 4.4: Average total runtime.

From the graph 4.4, we can deduce that Encoding 3 had the best performance
and Encoding 5 had the worst performance. This is in accordance with the re-
sults of the average clause-building time. So, compared to the solving time, the
time taken by each encoding to build its clauses had a greater contribution to its

27

overall performance.

Only 328 instances had a higher solving time compared to their clause-building
time, with an equal split of around 100 instances between the empty, random and
room maps. These instances were primarily on 16x16 maps (256 instances), with
some 8x8 maps (72 instances). All these instances were densely populated maps.
No instance with a 32x32 map had a higher solving time compared to the clause-
building time. However, this might have been because the instances of 32x32 maps
that were successfully solved within the given time limit were sparsely populated.
The algorithms were unable to find solutions for densely populated 32x32 maps
within the time limit of 60 seconds. From this, we can deduce that the clause-
building time has a bigger impact on the runtime for sparsely populated maps,
while the solving time has a bigger impact on the runtime for densely populated
maps.

IPC

We also compute the IPC score for each instance. It gets its name from the
International Planning Competition where it was introduced. The IPC score
ranges from 0 to 1, where 0 indicates that an encoding did not finish within the
given time. It is calculated as

IPC = best score
solver score

Therefore, the bigger the number, the better its performance. We sum up the
IPC scores of each of the instances and present them in table 4.5.

E1 E2 E3 E4 E5 E6
8x8 123.70 104.02 148.31 109.35 86.42 121.55
16x16 32.15 17.13 34.77 24.77 12.76 30.68
32x32 15.79 3.54 10.66 12.26 3.46 14.77
Empty 60.84 47.61 72.67 52.50 38.67 60.42
random 57.89 44.71 68.82 49.67 35.70 52.94
room 40.66 30.36 44.60 34.84 26.15 42.15
IPC Σ 157.71 121.38 184.09 135.57 99.48 153.96

Table 4.5: IPC Σ score for each encoding on different sizes and types of maps.

The table with the IPC sums shows the same results, with Encoding 3 having
the highest score of 184.09, and Encoding 5 having the lowest score of 99.48.

4.3 Limitations
It is important to acknowledge the limitations of these results. Even though we
chose maps of varying types and sizes to observe the changes in behaviour, the
experiments were conducted on a limited set of instances, so they may not gen-
eralize to all MAPF scenarios.

28

The paper that Encodings 4-6 are based on (Surynek [2019]) claimed that
these encodings had significantly better performance. However, our findings do
not align with this. This might be because the largest maps we used were 32x32,
while the experiments in the paper used much larger game maps.

In a paper by Barták and Svancara [2019], Encoding 2 (and by extension En-
coding 5) perform well. This is in contradiction to the results obtained in this
thesis. However, we conjecture that this is due to the implementation differences.
In the paper, the authors use the Picat language to implement the encoding, while
we used the Python language. Picat is a logic-based programming language that
is similar to Prolog. Picat provides an easy representation of the constraints and
then automatically translates these into a propositional formula. Since we found
that the time taken to build clauses represents a big part of the runtime, using
Picat as opposed to Python could have potentially led to better performance of
the encoding.

These limitations provide the opportunity to improve the experiments and
can potentially yield more accurate, or even different, results.

29

5. Conclusion
In this thesis, we compared different ways of reducing a multi-agent pathfinding
(MAPF) problem to a SAT problem. We first introduced the MAPF problem,
including relevant definitions and a brief background on related topics. We also
explained the different possible behaviours of agents, the different conflicts, and
the different metrics to measure the optimality of an MAPF solution. Then, we
defined the specific settings that were used throughout this thesis. We forbade
vertex conflicts and swapping conflicts. Edge conflicts were implicitly forbidden.
The optimality of plans was measured using the makespan objective function.

An overview of the current research into MAPF was provided, with a more de-
tailed emphasis on approaches that involve a reduction to a SAT problem. Both
makespan optimal models and sum of costs optimal models were discussed, with
more detail in the former. Six different encodings from the existing literature
were introduced and implemented using the Python programming language. The
first three encodings, Encoding 1, Encoding 2, and Encoding 3 used different
combinations of variables to reduce the MAPF instance to a SAT problem. On
the other hand, Encoding 4, Encoding 5, and Encoding 6 were built upon the
previous three encodings but differed in that they added clauses to forbid conflicts
when a conflict was found rather than all at once in the beginning.

We ran experiments on maps of different sizes and types to see if there was any
performance difference between the encodings. The results we looked at were the
number of solved instances, and the average clause-building time, solving time,
and runtime. The results were presented in two ways: in a tabular format and a
graphical format. Additionally, the IPC scores for each instance were calculated
and their sums were presented in a table.

Our analysis showed that the clause-building time had a significant impact
on the overall performance of an encoding while the solving time had a minimal
impact for sparsely populated instances, and vice versa for densely populated
instances. We found that Encoding 3 had the best performance overall. The first
three encodings had better performance than the last three encodings in general,
except for the larger 32x32 maps (that tended to be more sparse), where adding
conflict clauses ad hoc proved to be beneficial in reducing the total runtime. This
trend was confirmed both by the graph and by the IPC score sums.

5.1 Future Work
In this thesis, we explored six different encodings to solve MAPF problems. This
was the combination of the variables At, Move, and Shift along with the option
of either starting by preventing all conflicts or by preventing conflicts once they
are found. There is still scope for further work in the same direction.

Currently, if the formula is not satisfiable in the given T , we increase the

30

value of T by 1 until it is satisfiable. We can implement variations of encodings
by changing the way we increment T . One such encoding can use binary search
to find the optimal T while another encoding could estimate the T value from
the agent’s position.

31

Bibliography
Roberto Javier Aśın Achá, Rodrigo López, Sebastián Hagedorn, and Jorge A.

Baier. A new boolean encoding for MAPF and its performance with ASP
and maxsat solvers. In Hang Ma and Ivan Serina, editors, Proceedings of the
Fourteenth International Symposium on Combinatorial Search, SOCS 2021,
Virtual Conference [Jinan, China], July 26-30, 2021, pages 11–19. AAAI Press,
2021. URL https://ojs.aaai.org/index.php/SOCS/article/view/18546.

Roman Barták and Jiŕı Svancara. On sat-based approaches for multi-agent path
finding with the sum-of-costs objective. In Pavel Surynek and William Yeoh,
editors, Proceedings of the Twelfth International Symposium on Combinatorial
Search, SOCS 2019, Napa, California, 16-17 July 2019, pages 10–17. AAAI
Press, 2019. URL https://aaai.org/ocs/index.php/SOCS/SOCS19/paper/
view/18323.

Roman Barták, Neng-Fa Zhou, Roni Stern, Eli Boyarski, and Pavel Surynek.
Modeling and solving the multi-agent pathfinding problem in picat. In 29th
IEEE International Conference on Tools with Artificial Intelligence, ICTAI
2017, Boston, MA, USA, November 6-8, 2017, pages 959–966. IEEE Computer
Society, 2017. doi: 10.1109/ICTAI.2017.00147. URL https://doi.org/10.
1109/ICTAI.2017.00147.

Adi Botea and Pavel Surynek. Multi-agent path finding on strongly bicon-
nected digraphs. In Blai Bonet and Sven Koenig, editors, Proceedings of
the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-
30, 2015, Austin, Texas, USA, pages 2024–2030. AAAI Press, 2015. URL
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9653.

Eli Boyarski, Ariel Felner, Guni Sharon, and Roni Stern. Don’t split, try to
work it out: Bypassing conflicts in multi-agent pathfinding. In Ronen I. Braf-
man, Carmel Domshlak, Patrik Haslum, and Shlomo Zilberstein, editors, Pro-
ceedings of the Twenty-Fifth International Conference on Automated Planning
and Scheduling, ICAPS 2015, Jerusalem, Israel, June 7-11, 2015, pages 47–
51. AAAI Press, 2015a. URL http://www.aaai.org/ocs/index.php/ICAPS/
ICAPS15/paper/view/10616.

Eli Boyarski, Ariel Felner, Roni Stern, Guni Sharon, David Tolpin, Oded Betzalel,
and Solomon Eyal Shimony. ICBS: improved conflict-based search algorithm
for multi-agent pathfinding. In Qiang Yang and Michael J. Wooldridge, editors,
Proceedings of the Twenty-Fourth International Joint Conference on Artificial
Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pages
740–746. AAAI Press, 2015b. URL http://ijcai.org/Abstract/15/110.

Liron Cohen, Tansel Uras, and Sven Koenig. Feasibility study: Using high-
ways for bounded-suboptimal multi-agent path finding. In Levi Lelis and Roni
Stern, editors, Proceedings of the Eighth Annual Symposium on Combinatorial
Search, SOCS 2015, 11-13 June 2015, Ein Gedi, the Dead Sea, Israel, pages
2–8. AAAI Press, 2015. URL http://www.aaai.org/ocs/index.php/SOCS/
SOCS15/paper/view/11301.

32

https://ojs.aaai.org/index.php/SOCS/article/view/18546
https://aaai.org/ocs/index.php/SOCS/SOCS19/paper/view/18323
https://aaai.org/ocs/index.php/SOCS/SOCS19/paper/view/18323
https://doi.org/10.1109/ICTAI.2017.00147
https://doi.org/10.1109/ICTAI.2017.00147
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9653
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS15/paper/view/10616
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS15/paper/view/10616
http://ijcai.org/Abstract/15/110
http://www.aaai.org/ocs/index.php/SOCS/SOCS15/paper/view/11301
http://www.aaai.org/ocs/index.php/SOCS/SOCS15/paper/view/11301

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-
ford Stein. Introduction to Algorithms, 3rd Edition. MIT Press,
2009. ISBN 978-0-262-03384-8. URL http://mitpress.mit.edu/books/
introduction-algorithms.

Boris de Wilde, Adriaan ter Mors, and Cees Witteveen. Push and rotate: a
complete multi-agent pathfinding algorithm. J. Artif. Intell. Res., 51:443–492,
2014. doi: 10.1613/jair.4447. URL https://doi.org/10.1613/jair.4447.

Martin Gebser, Philipp Obermeier, Torsten Schaub, Michel Ratsch-Heitmann,
and Mario Runge. Routing driverless transport vehicles in car assembly
with answer set programming. Theory Pract. Log. Program., 18(3-4):520–534,
2018. doi: 10.1017/S1471068418000182. URL https://doi.org/10.1017/
S1471068418000182.

Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cy-
bern., 4(2):100–107, 1968. doi: 10.1109/TSSC.1968.300136. URL https:
//doi.org/10.1109/TSSC.1968.300136.

Florence Ho, Rúben Geraldes, Artur Goncalves, Bastien Rigault, Benjamin
Sportich, Daisuke Kubo, Marc Cavazza, and Helmut Prendinger. Decentral-
ized multi-agent path finding for UAV traffic management. IEEE Trans. Intell.
Transp. Syst., 23(2):997–1008, 2022. doi: 10.1109/TITS.2020.3019397. URL
https://doi.org/10.1109/TITS.2020.3019397.

Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva. PySAT: A
Python toolkit for prototyping with SAT oracles. In SAT, pages 428–437,
2018. doi: 10.1007/978-3-319-94144-8 26. URL https://doi.org/10.1007/
978-3-319-94144-8_26.

Ilya Ivanashev, Anton Andreychuk, and Konstantin S. Yakovlev. Analysis of
the anytime MAPF solvers based on the combination of conflict-based search
(CBS) and focal search (FS). In Obdulia Pichardo-Lagunas, Juan Mart́ınez-
Miranda, and Bella Mart́ınez-Seis, editors, Advances in Computational Intelli-
gence - 21st Mexican International Conference on Artificial Intelligence, MI-
CAI 2022, Monterrey, Mexico, October 24-29, 2022, Proceedings, Part I, vol-
ume 13612 of Lecture Notes in Computer Science, pages 368–382. Springer,
2022. doi: 10.1007/978-3-031-19493-1\ 29. URL https://doi.org/10.1007/
978-3-031-19493-1_29.

Henry A. Kautz and Bart Selman. Planning as satisfiability. In Bernd Neumann,
editor, 10th European Conference on Artificial Intelligence, ECAI 92, Vienna,
Austria, August 3-7, 1992. Proceedings, pages 359–363. John Wiley and Sons,
1992.

Daniel Kornhauser, Gary L. Miller, and Paul G. Spirakis. Coordinating peb-
ble motion on graphs, the diameter of permutation groups, and applications.
In 25th Annual Symposium on Foundations of Computer Science, West Palm
Beach, Florida, USA, 24-26 October 1984, pages 241–250. IEEE Computer
Society, 1984. doi: 10.1109/SFCS.1984.715921. URL https://doi.org/10.
1109/SFCS.1984.715921.

33

http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
https://doi.org/10.1613/jair.4447
https://doi.org/10.1017/S1471068418000182
https://doi.org/10.1017/S1471068418000182
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1109/TITS.2020.3019397
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.1007/978-3-031-19493-1_29
https://doi.org/10.1007/978-3-031-19493-1_29
https://doi.org/10.1109/SFCS.1984.715921
https://doi.org/10.1109/SFCS.1984.715921

Jiaoyang Li, Zhe Chen, Yi Zheng, Shao-Hung Chan, Daniel Harabor, Peter J.
Stuckey, Hang Ma, and Sven Koenig. Scalable rail planning and replanning:
Winning the 2020 flatland challenge. In Susanne Biundo, Minh Do, Robert
Goldman, Michael Katz, Qiang Yang, and Hankz Hankui Zhuo, editors, Pro-
ceedings of the Thirty-First International Conference on Automated Planning
and Scheduling, ICAPS 2021, Guangzhou, China (virtual), August 2-13, 2021,
pages 477–485. AAAI Press, 2021. URL https://ojs.aaai.org/index.php/
ICAPS/article/view/15994.

Ryan Luna and Kostas E. Bekris. Push and swap: Fast cooperative path-finding
with completeness guarantees. In Toby Walsh, editor, IJCAI 2011, Proceedings
of the 22nd International Joint Conference on Artificial Intelligence, Barcelona,
Catalonia, Spain, July 16-22, 2011, pages 294–300. IJCAI/AAAI, 2011. doi:
10.5591/978-1-57735-516-8/IJCAI11-059. URL https://doi.org/10.5591/
978-1-57735-516-8/IJCAI11-059.

Raymond Reiter. On knowledge-based programming with sensing in the situation
calculus. ACM Trans. Comput. Log., 2(4):433–457, 2001. doi: 10.1145/383779.
383780. URL https://doi.org/10.1145/383779.383780.

Malcolm Ryan. Constraint-based multi-robot path planning. In IEEE In-
ternational Conference on Robotics and Automation, ICRA 2010, Anchor-
age, Alaska, USA, 3-7 May 2010, pages 922–928. IEEE, 2010. doi: 10.
1109/ROBOT.2010.5509582. URL https://doi.org/10.1109/ROBOT.2010.
5509582.

Qandeel Sajid, Ryan Luna, and Kostas E. Bekris. Multi-agent pathfinding with
simultaneous execution of single-agent primitives. In Daniel Borrajo, Ariel Fel-
ner, Richard E. Korf, Maxim Likhachev, Carlos Linares López, Wheeler Ruml,
and Nathan R. Sturtevant, editors, Proceedings of the Fifth Annual Symposium
on Combinatorial Search, SOCS 2012, Niagara Falls, Ontario, Canada, July
19-21, 2012. AAAI Press, 2012. URL http://www.aaai.org/ocs/index.php/
SOCS/SOCS12/paper/view/5385.

Guni Sharon, Roni Stern, Ariel Felner, and Nathan R. Sturtevant. Conflict-
based search for optimal multi-agent path finding. In Jörg Hoffmann and
Bart Selman, editors, Proceedings of the Twenty-Sixth AAAI Conference on
Artificial Intelligence, July 22-26, 2012, Toronto, Ontario, Canada. AAAI
Press, 2012. URL http://www.aaai.org/ocs/index.php/AAAI/AAAI12/
paper/view/5062.

Guni Sharon, Roni Stern, Meir Goldenberg, and Ariel Felner. The increasing
cost tree search for optimal multi-agent pathfinding. Artif. Intell., 195:470–495,
2013. doi: 10.1016/j.artint.2012.11.006. URL https://doi.org/10.1016/j.
artint.2012.11.006.

David Silver. Cooperative pathfinding. In R. Michael Young and John E. Laird,
editors, Proceedings of the First Artificial Intelligence and Interactive Digital
Entertainment Conference, June 1-5, 2005, Marina del Rey, California, USA,
pages 117–122. AAAI Press, 2005.

34

https://ojs.aaai.org/index.php/ICAPS/article/view/15994
https://ojs.aaai.org/index.php/ICAPS/article/view/15994
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-059
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-059
https://doi.org/10.1145/383779.383780
https://doi.org/10.1109/ROBOT.2010.5509582
https://doi.org/10.1109/ROBOT.2010.5509582
http://www.aaai.org/ocs/index.php/SOCS/SOCS12/paper/view/5385
http://www.aaai.org/ocs/index.php/SOCS/SOCS12/paper/view/5385
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5062
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5062
https://doi.org/10.1016/j.artint.2012.11.006
https://doi.org/10.1016/j.artint.2012.11.006

Trevor Scott Standley. Finding optimal solutions to cooperative pathfinding
problems. In Maria Fox and David Poole, editors, Proceedings of the Twenty-
Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta, Geor-
gia, USA, July 11-15, 2010. AAAI Press, 2010. URL http://www.aaai.org/
ocs/index.php/AAAI/AAAI10/paper/view/1926.

Roni Stern, Nathan R. Sturtevant, Ariel Felner, Sven Koenig, Hang Ma,
Thayne T. Walker, Jiaoyang Li, Dor Atzmon, Liron Cohen, T. K. Satish
Kumar, Roman Barták, and Eli Boyarski. Multi-agent pathfinding: Defini-
tions, variants, and benchmarks. In Pavel Surynek and William Yeoh, editors,
Proceedings of the Twelfth International Symposium on Combinatorial Search,
SOCS 2019, Napa, California, 16-17 July 2019, pages 151–159. AAAI Press,
2019. URL https://aaai.org/ocs/index.php/SOCS/SOCS19/paper/view/
18341.

Pavel Surynek. An optimization variant of multi-robot path planning is in-
tractable. In Maria Fox and David Poole, editors, Proceedings of the Twenty-
Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta, Geor-
gia, USA, July 11-15, 2010. AAAI Press, 2010. URL http://www.aaai.org/
ocs/index.php/AAAI/AAAI10/paper/view/1768.

Pavel Surynek. Unifying search-based and compilation-based approaches to multi-
agent path finding through satisfiability modulo theories. In Sarit Kraus, editor,
Proceedings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019, pages 1177–
1183. ijcai.org, 2019. doi: 10.24963/ijcai.2019/164. URL https://doi.org/
10.24963/ijcai.2019/164.

Pavel Surynek. A sat-based approach to cooperative path-finding using all-
different constraints. Proceedings of the International Symposium on Com-
binatorial Search, 3(1):191–192, 2021. doi: 10.1609/socs.v3i1.18220.

Pavel Surynek, Ariel Felner, Roni Stern, and Eli Boyarski. Efficient SAT ap-
proach to multi-agent path finding under the sum of costs objective. In Gal A.
Kaminka, Maria Fox, Paolo Bouquet, Eyke Hüllermeier, Virginia Dignum,
Frank Dignum, and Frank van Harmelen, editors, ECAI 2016 - 22nd European
Conference on Artificial Intelligence, 29 August-2 September 2016, The Hague,
The Netherlands - Including Prestigious Applications of Artificial Intelligence
(PAIS 2016), volume 285 of Frontiers in Artificial Intelligence and Applica-
tions, pages 810–818. IOS Press, 2016. doi: 10.3233/978-1-61499-672-9-810.
URL https://doi.org/10.3233/978-1-61499-672-9-810.

Jiŕı Svancara, Marek Vlk, Roni Stern, Dor Atzmon, and Roman Barták. Online
multi-agent pathfinding. In The Thirty-Third AAAI Conference on Artificial
Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artifi-
cial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Ed-
ucational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii,
USA, January 27 - February 1, 2019, pages 7732–7739. AAAI Press, 2019.
doi: 10.1609/aaai.v33i01.33017732. URL https://doi.org/10.1609/aaai.
v33i01.33017732.

35

http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1926
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1926
https://aaai.org/ocs/index.php/SOCS/SOCS19/paper/view/18341
https://aaai.org/ocs/index.php/SOCS/SOCS19/paper/view/18341
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1768
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1768
https://doi.org/10.24963/ijcai.2019/164
https://doi.org/10.24963/ijcai.2019/164
https://doi.org/10.3233/978-1-61499-672-9-810
https://doi.org/10.1609/aaai.v33i01.33017732
https://doi.org/10.1609/aaai.v33i01.33017732

Jiŕı Svancara, Philipp Obermeier, Matej Husár, Roman Barták, and Torsten
Schaub. Multi-agent pathfinding on large maps using graph pruning: This way
or that way? (extended abstract). In Lukás Chrpa and Alessandro Saetti, ed-
itors, Proceedings of the Fifteenth International Symposium on Combinatorial
Search, SOCS 2022, Vienna, Austria, July 21-23, 2022, pages 320–322. AAAI
Press, 2022. URL https://ojs.aaai.org/index.php/SOCS/article/view/
21799.

Jingjin Yu and Steven M. LaValle. Structure and intractability of optimal
multi-robot path planning on graphs. In Marie desJardins and Michael L.
Littman, editors, Proceedings of the Twenty-Seventh AAAI Conference on
Artificial Intelligence, July 14-18, 2013, Bellevue, Washington, USA. AAAI
Press, 2013. URL http://www.aaai.org/ocs/index.php/AAAI/AAAI13/
paper/view/6111.

36

https://ojs.aaai.org/index.php/SOCS/article/view/21799
https://ojs.aaai.org/index.php/SOCS/article/view/21799
http://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6111
http://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6111

List of Figures

1.1 Example of an MAPF map where each cell is a vertex 5
1.2 Types of MAPF Conflicts (a) edge conflict (b) vertex conflict (c)

following conflict (d) cycle conflict (e) swapping conflict. Figure
taken from Stern et al. [2019] . 6

1.3 Sum of Costs vs Makespan. Figure taken from Barták and Svan-
cara [2019] . 9

2.1 An example of a sub-optimal vs optimal MAPF solution (Ivana-
shev et al. [2022]) . 10

2.2 Example of a 3-vertex graph being transformed to a T -layered
time-expanded graph (Barták and Svancara [2019]) 13

3.1 Types of maps available at Moving AI Lab 21
3.2 Example of an 8x8 map file . 22

4.1 (a) 8x8 random map (b) 8x8 room map 23
4.2 Average time to build clauses. 25
4.3 Average time for the SAT solver to find a satisfiable assignment. . 26
4.4 Average total runtime. 27

37

List of Tables

1.1 Example solution to the MAPF instance in Figure 1.1. The num-
bers correspond to the vertex each agent occupies at that timestep. 5

4.1 Number of solved instances by each encoding on different sizes and
types of maps. 24

4.2 Average time (seconds) to build clauses for each encoding on dif-
ferent sizes and types of maps. 25

4.3 Average time (seconds) for the SAT solver to try to find a satisfying
assignment for each encoding on different sizes and types of maps. 26

4.4 Average runtime (seconds) for each encoding on different sizes and
types of maps. 27

4.5 IPC Σ score for each encoding on different sizes and types of maps. 28

38

A. User Documentation

A.1 Introduction
This program reduces multi-agent pathfinding problems into SAT problems, using
a SAT solver to find valid solutions. There are six different encodings available
to reduce an MAPF problem to a SAT problem.

A.2 System Requirements
To use this program, you will need a computer with Python3 installed.

A.3 Getting Started
To use this program, follow these steps:

• Download the source code and instances (maps and scenarios) from the Git-
Lab repository https://gitlab.mff.cuni.cz/teaching/nprg045/svancara/
samyuktha-ramesh-isp.

• Install the necessary dependencies using pip.

• Open a terminal and navigate to the directory containing the code and
instances.

• Run the program by executing the ”Program.py” script, passing in any
desired arguments.

A.4 Arguments
This program accepts arguments while running the program. A list of possible
arguments is given below. Note that all arguments have a default value so the
program can be run without any arguments.

• --scen: Specifies the path to the file containing the MAPF scenario to be
solved. The path to the corresponding map file is present in the scenario
file so an additional argument is not necessary. The default file path is
”scenarios/empty-8-8-random-1.scen”.

• --number of agents: Specifies the number of agents to include in the
MAPF scenario. The program will select the first number of agents agents
in the scenario file. The default value is 1.

• --encoding: Specifies the name of the encoding function used to reduce
the MAPF problem to a SAT problem. The available encoding options
are ”encoding 1”, ”encoding 2”, ”encoding 3”, ”encoding 4”, ”encoding 5”,
and ”encoding 6”. The default encoding is ”encoding 1”.

39

https://gitlab.mff.cuni.cz/teaching/nprg045/svancara/samyuktha-ramesh-isp
https://gitlab.mff.cuni.cz/teaching/nprg045/svancara/samyuktha-ramesh-isp

• --timeout: Specifies the maximum number of seconds the solver will run
for before timing out. The default is 60 seconds.

• --increment: This specifies the number of agents to add at each iteration,
given that the previous iteration was solved in the given time limit. Note
that the increment value must be a positive integer greater than 0.

A.5 Using the Program
To solve an MAPF problem using this program, run the program specifying the
required arguments.

Here is an example command to run the program with a timeout of 200 sec-
onds, using encoding 2, and with 3 agents:

python src/Program.py --timeout 200 --number of agents 3 --encoding encoding 2

A.6 Instances
Compatible maps and scenarios that this program can try to solve can be found
at https://movingai.com/benchmarks/mapf/index.html.

40

https://movingai.com/benchmarks/mapf/index.html

B. Attachments
This thesis includes an attachment containing the source code for the program, as
well as the instances that the experiments were run on. The attachment can be
found on the Student Information System (SIS). A brief overview of the folders
is provided here:

• src - Source code containing the main file Program.py, a map loader MapLoader.py,
and a scenario loader ScenLoader.py. It also contains six different encodings,
as well as a file with code common to all encodings Encodings common.py,
and a conflict checker Conflict check.py.

• maps - Maps used in the experiments. Types: empty, random, room. Sizes:
8x8, 16x16, 32x32.

• scenarios - Scenarios used in the experiments. There are three scenarios
for every map.

• results - CSV files with the results of the experiments.

41

	Introduction
	Background
	Graphs
	Multi-agent Path Finding
	Agent
	Types of Conflicts
	Agent Behaviour at Goal
	Metrics
	Complexity

	Approaches to Solving Multi-Agent Path Finding
	Searching a state-space
	Constraint-based Search
	Reduction to SAT
	Makespan Optimal Models
	Sum of Costs Optimal Models

	Methodology
	Implementation
	Optimisations
	Instances

	Experiments and Results
	Experiments
	Results
	Limitations

	Conclusion
	Future Work

	Bibliography
	List of Figures
	List of Tables
	User Documentation
	Introduction
	System Requirements
	Getting Started
	Arguments
	Using the Program
	Instances

	Attachments

