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Abstract: Optical microscopy has a diffraction limit that prevents imaging of
objects smaller than hundreds of nanometers, making it challenging to observe
certain biological samples. Interferometric scattering microscopy (iSCAT) has
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Introduction
Prior to the invention of the microscope, the functioning of the human body
and other living organisms was largely unknown and often attributed to myths.
The development of the first microscopes in the 17th century revolutionized our
understanding of biological processes and led to significant advancements in the
fields of biology and medicine. Despite these advancements, there remain certain
biological processes that are not yet fully understood due to the limitations of
optical microscopy, specifically its resolution, known as the diffraction limit.

There are several alternatives to optical microscopy, each with its own set
of constraints that limit their applicability for dynamic biological samples. For
instance, electron microscopy can achieve a resolution as high as 50 picometers
(Erni et al. [2009]) but requires that samples be measured in a vacuum. Cryogenic
electron microscopy allows for the study of static biological specimens but does
not permit observation of dynamic processes.

Another approach involves scanning a surface with a mechanical probe and
detecting its movement. Atomic force microscopy can achieve a resolution below
one nanometer (Giessibl [1995]) but is limited by its temporal resolution and can
only scan surfaces.

Optical microscopes remain the most suitable tool for studying dynamic bi-
ological samples, necessitating the development of techniques to overcome the
diffraction limit within them.

Fluorescence microscopy can achieve localization precision well below the
diffraction limit (Thompson et al. [2002]) by filtering emitted light from fluo-
rophores and fitting their point spread function (PSF) to the image. However,
this technique is limited by photobleaching, which reduces its spatial and tempo-
ral resolution.

Interferometric scattering microscopy (iSCAT) is conceptually similar to fluo-
rescence microscopy, however, instead of fluorescence it detects Rayleigh scattered
light from nano-particles and enhances it through interference with a reference
light field Amos and Amos [1991]. Rayleigh scattering however has the same
wavelength as the incident light making it difficult to filter the background.

The last two techniques usually rely on a sufficient distance between localized
particles and their contrast. High particle densities produce complex speckle
patterns, that are very difficult to impossible to analyze using current techniques.

In this thesis, we will be trying to deal with these speckle patterns in the
context of iSCAT microscopy.

First, we review the fundamentals of iSCAT microscopy and explore the po-
tential application of Deep Learning techniques for iSCAT data analysis.

Then, in the practical part, we simulate iSCAT image sequences of speckle
patterns from diffusing nano-particles and use them to train DNNs for their anal-
ysis and particle localization.
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1. Review part

1.1 Microscopy

1.1.1 Diffraction limit in Optical microscopy
In 1873 Ernst Abbe described the modern theory of image formation in the mi-
croscope in order to explore ways for improving the optical performance of the
microscope.

There he derived a resolution limit for microscopes, called the diffraction limit
( Lipson et al. [1981]).

s = λ

2n · sin θ
= λ

2 ·NA
(1.1)

where s is the diffraction limit, n is the refractive index of the medium, θ is
the half-angle of the range over which the system can accept the light, n · sin θ is
called the numerical aperture (NA) and λ is the wavelength of light, see Figure
1.1.

Figure 1.1: (a) resolvable light sources, (b) unresolvable light sources being closer
to each other than the Rayleigh criterion (a modification of the diffraction limit),
taken from Lipson et al. [1981], (c) NA = n1 · sin θ1 = n2 · sin θ2, taken from the
public domain

1.1.2 Fluorescence microscopy
Fluorescence

The first recorded observation of fluorescence was in 1845 by Sir Frederik William
Herschel, who noticed that a quinine solution emits a blue light under certain
conditions (Renz [2013]).

Fluorescence is the excitation cycle, in which electrons in a substance move
to a higher energy level due to radiation absorption and then return back while
causing light emission of a longer wavelength and smaller energy than the incident
radiation.

Substances capable of this effect are called fluorophores.
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After a certain number of excitation cycles the fluorophore molecules get chem-
ically altered resulting in the loss of fluorescence ability. This effect is called
photobleaching (Demchenko [2020]).

History and properties

Fluorescence microscopy, where we detect emitted light from fluorophores, is very
popular in biological applications, see Figure 1.2a,b.

The first fluorescence microscope was developed in 1911 by Oskar Heimstaedt.
But there was a problem that the emitted fluorescence was much weaker than
the incident and reflected light (Rusk [2009]).

Therefore in 1929 Philip Ellinger and August Hert further improved it with
a configuration known as epi-illumination. There the light beam passes through
the specimen in the opposite direction than the emitted light is detected, Figure
1.2c. The fact that the emitted light has a different wavelength than the incident
light can be used to suppress it using an emission filter that allows only a certain
wavelength to pass, resulting in an almost perfect background suppression.

Figure 1.2: (a) and (b) images of breast cancer cells in a fluorescence microscope,
taken from Kazantseva et al. [2016] (c) Epifluorescence, taken from Webb and
Brown [2012]

Further advancements in fluorescence microscopy reached single-molecule sen-
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sitivity in 1980’ sparking a new era in optical microscopy. With such sensitivity,
the fluorescent signal breaks down to individual contributions of single molecules
which was made possible to be imaged one at a time (Moerner and Kador [1989]).

When the distance between fluorophores is bigger than the diffraction limit,
then each fluorophore gets displayed with intensity distribution approximated by
a Gaussian function. This fact can be used to localize those fluorophores with
potentially unlimited precision by fitting the function over the displayed image
(Thompson et al. [2002]):

⟨︂
(∆x)2

⟩︂
= s2

N
+ a2

12N
+ 4
√

πs3b2

aN2 (1.2)

where s is the diffraction limit (1.1), a is the pixel size, N is the number of
detected photons and b is the background noise.

As we can see the main constraint to the localization precision is the number
of detected photons. But there are only so many photons a fluorophore can emit
before suffering from the effect of photobleaching.

Summary and limitations

To conclude, while fluorescence microscopy has a perfect background suppression
thanks to the difference in wavelength between the incident and emitted light,
the photobleaching effect ultimately constrains the localization precision of the
fluorophores.

To reliably localize fluorophores, they must have sufficient distance from each
other. This fact significantly limits potential use cases.

1.1.3 Interferometric Scattering microscopy (iSCAT)
Rayleigh scattering

Elastic scattering of light appears when a photon interacts with a particle in such
a way that its direction changes while preserving the total kinetic energy of the
system.

A special case of this effect called Rayleigh scattering occurs when the particles
are smaller than the wavelength of light. A model of the Rayleigh scattering
considers particles as point-induced dipoles of polarizability α. The incident
oscillating electromagnetic field results in dipole radiation called scattered light
having the intensity (Seinfeld and Pandis [2006]):

I = I0
1 + cos θ2

2R2

(︃2π

λ

)︃4 (︄n2 − 1
n2 + 2

)︄2 (︄
d

2

)︄6

where I is the intensity of scattered light, I0 is the intensity of incident light with
wavelength λ, θ is the scattering angle, n is the refractive index, R is the distance
from the particle and d is the diameter of the particle.

History and properties

As scattering is the most fundamental interaction of light with matter, the history
of microscopy is the history of scattering intensity detection. Similarly, as in
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fluorescence, it is possible to block the illuminating light and detect only the
scattered light in a configuration coined a dark field. In this case, there are no
filters to separate the scattered light from the incident illumination based on
its wavelength, because there is no wavelength shift. However, it is possible to
separate the incident beam and the scattered beam geometrically, see Figure 1.3a.

There was great progress in improving the dark-field contrast over the last
decades, and recent dark-field imaging configurations offer contrast separation
comparable to the fluorescent microscope (Weigel et al. [2014]).

This approach was further improved by enhancing the scattered light by in-
terfering it with a reference beam (Amos and Amos [1991]), this became known
as iSCAT microscopy, see Figure 1.3b.

Figure 1.3: (a) Scheme of a Dark-field microscope, taken from Weigel et al. [2014]
and (b) Scheme of an iSCAT microscope, taken from Piliarik and Sandoghdar
[2014]

In iSCAT, the incident light is partially reflected from the glass surface and
then scattered from the sample. The reflected light, often called reference light,
interferes in the detector with the scattered light. The detected light intensity
can then be described as (Lindfors et al. [2004]):

Idet = |Er|2 + |Es|2 + 2ErEs cos ϕ

Er >> Es

where Idet is the detected light intensity, Er is the electric intensity of the reference
light, Es is the electric intensity of the scattered light and ϕ is the difference in
phase between them. The reference light has usually a much higher intensity
than the scattered light.

Since the reference light wave can be approximated as a constant plane light
wave, it can be easily removed from the image by normalizing it. The dominant
part of the result is then the interference part 2ErEs cos ϕ, where ϕ periodically
oscillates with the distance from the scattering particles resulting in a pattern of
light and dark circles around the particles.
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Individual particles with sufficient distance from each other can then be local-
ized the same way as in fluorescence microscopy with precision being limited by
the same formula (1.2). The main constraint still being the number of detected
photons N . However, in fluorescence microscopy, this was limited by a photo-
bleaching effect, here we can theoretically increase this variable as much as we
want by using a stronger laser for the incident light wave. The only limitation in
practice is the possibility of heat from the laser destroying the sample.

Localization of diffusing particles

One of many possible use cases for iSCAT microscopy is label-free single-molecule
tracking of membrane-associated proteins diffusing on supported lipid bilayers,
as demonstrated by several papers (Heermann et al. [2021], Foley et al. [2021]).

This technique makes it possible to study biomolecular mechanisms of membrane-
associated biological systems, see Figure 1.4.

Figure 1.4: iSCAT image sequences of protein complex dissociation (a) and as-
sociation (b) events, taken from Foley et al. [2021]

However, current localization techniques relying on PSF fitting require a suf-
ficient distance between particles that are being tracked. Making it impossible to
study samples with particle densities > 1 µm−2 (Foley et al. [2021]).

Summary and limitations

In iSCAT microscopy, background suppression is more difficult than in fluores-
cence microscopy, but the localization precision can be potentially much higher
since we are not limited by photobleaching. iSCAT microscopy is also able to
detect non-fluorophore particles, making its potential applications much more
diverse.

Current techniques for particle localization still require sufficient distance be-
tween them. This fact significantly limits potential use cases.
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1.2 Brownian motion
In 1827 Robert Brown discovered that particles of pollen immersed in water are
being randomly displaced in time. This phenomenon is caused by the force of
atomic bombardment with randomly changing direction (Brown [1828]).

This process can be approximated as a continuous random walk (Knight
[1962]), where the displacement of a particle in each dimension of movement
after time t is normally distributed (Einstein and Fürth [2011]):

∆x ∼ N (0, σ2)
σ2 = 2Dt

where ∆x is the particle’s displacement in one dimension, D is its diffusion coef-
ficient and t is the elapsed time.

1.3 Machine Learning

1.3.1 Supervised Learning
In supervised machine learning, we are trying to approximate a certain function
from a limited set of its input-output pairs called the training dataset (Russell
and Norvig [2016]).

We usually define a so-called loss function, which we use to evaluate our
model’s predictions with respect to our dataset. Then we optimize the parameters
of the model to minimize the loss.

However, if we minimize the loss too well, then we might face a problem called
overfitting, where our model performs well on the training dataset, but does not
generalize well on unseen data (see Figure 1.5).

The opposite problem of not performing well even on the training data is
called underfitting.

Techniques used for preventing overfitting are called regularizations.

Figure 1.5: Illustration of underfitting and overfitting, taken from Goodfellow
et al. [2016]
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1.3.2 Minibatch Stochastic Gradient Descent (SGD)
Usually, our loss function will take the form:

L (f (X; w) ,Y) = 1
N

N∑︂
i=0

L (f (xi; w) , yi)

where L is the loss function, X = {xi}N
i=0,Y = {yi}N

i=0, (xi, yi) are the input-
output pairs from the training dataset, w are parameters (weights) of the model
that we want to optimize, and f is the model being trained.

In order to optimize model parameters w we can use the Minibatch Stochastic
Gradient Descent algorithm, where we approximate the gradient of the loss with
respect to the weights as an average of its gradients across a randomly chosen
batch of samples (Goodfellow et al. [2016]):

∇wL(f(X; w),Y) ≈ 1
|B|

∑︂
(x,y)∈B

∇wL(f(x; w), y)

where B ⊂ {(xi, yi)}N
i=0 is a random subset of the training dataset, B is called a

batch.

Algorithm 1 Minibatch Stochastic Gradient Descent
Require: {xi, yi}N

i=0 ▷ Training dataset
Require: M ∈ N ▷ Number of algorithm iterations
Require: B ∈ N ▷ Batch size
Require: ∀α ∈ {αi}M

i=0 : α ≥ 0 ▷ Sequence of learning rates
w← Rand ▷ Random initialization of weights
for iter = 0, 1, . . . , M do

Randomly shuffle {xi, yi}N
i=0

for b = 0, 1, . . . , N
B
− 1 do

w← w− αiter · 1
B

∑︁(b+1)·s
i=b·s ∇wL(f(xi; w), yi) ▷ Gradient descend

end for
end for

1.3.3 Adaptive Momentum Estimation (Adam)
Empirically, SGD does not perform well in some cases of loss gradients. These
cases include, for example, steep gradients and saddle regions (see Figure 1.6a).

For this reason, modifications of SGD were developed, usually using some
form of scaling the gradients and using so-called momentum (= Some weighted
average of gradients from previous iterations) in addition to them (see Figure
1.6b).
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Figure 1.6: (a) Example of a loss, where SGD does not perform well, (b) Example
of SGD with momentum, black arrows showing the gradients and red lines the
optimization, taken from Goodfellow et al. [2016]

These modifications were perfected into a so-called Adam algorithm (Kingma
and Ba [2017]). This algorithm empirically performs well in most cases and is
currently one of the most widely used optimization algorithms in Deep Learning.

Algorithm 2 Adaptive Momentum Estimation (Adam)
Require: {xi, yi}N

i=0 ▷ Training dataset
Require: M ∈ N ▷ Number of algorithm iterations
Require: B ∈ N ▷ Batch size
Require: ∀α ∈ {αi}M

i=0 : α ≥ 0 ▷ Sequence of learning rates
Require: β1, β2 ∈ [0, 1) ▷ Exponential decay rates for the momentum
Require: ϵ > 0 ▷ A small constant for numerical stability

w← Rand ▷ Random initialization of weights
m← 0 ▷ 1st moment vector
v← 0 ▷ 2nd moment vector
t← 0 ▷ Timestep
for iter = 0, 1, . . . , M - 1 do

Randomly shuffle {xi, yi}N
i=0

for b = 0, 1, . . . , N
B
− 1 do

t← t + 1
g← 1

B

∑︁(b+1)·s
i=b·s ∇wL(f(xi; w), yi) ▷ Gradient approximation

m← β1 ·m + (1− β1) · g ▷ Update 1st moment
v← β2 · v + (1− β2) · g2 ▷ Update 2nd moment
m̂← m

1−βt
1

▷ Unbiased estimate of 1st moment
v̂← v

1−βt
2

▷ Unbiased estimate of 2nd moment
w← w− αiter · m̂√

v̂+ϵ
▷ Update weights

end for
end for

1.3.4 Multi-class Logistic Regression
The inputs to Multi-class Logistic regression are called features and we try to
classify their combinations into K classes by optimizing a matrix multiplication
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(that can be interpreted as K weighted averages of input values) and vector
addition. Finally, we apply Softmax function on the result, getting probability
prediction for each class. (Functions applied to layer outputs are called Activation
functions) (Bishop [2016]).

f(xi; W, b) = softmax
(︂
xi

T W + b
)︂

where xi ∈ Rm is the feature vector of the ith element from the training set, W
and b are parameters of the model, W ∈ Rm×k is the weight matrix and b ∈ Rk

is the bias vector.

(softmax (z))i = ezi∑︁K
j=0 ezj

the softmax function makes it possible to interpret the output of the model as a
probability.

Since cross-entropy is usually used for comparing probability distributions,
a popular loss for classification tasks is the so-called Categorical Cross-entropy,
in case of each element being assigned to a single class we call it the Sparse
Categorical Cross-entropy:

CCE (f (X; w) ,Y) = − 1
N

N∑︂
i=0

K∑︂
k=0

δyik · log f(xi; w)k = − 1
N

N∑︂
i=0

log f(xi; w)yi

where CCE is the Categorical cross-entropy, X = {xi}N
i=0,Y = {yi}N

i=0, (xi, yi)
are the input-output pairs from the training dataset, yi being the index of the
class (between 0 and K), δyik represents the true probability of whether xi class
is assigned to the class k (1.0 if k = yi and 0.0 otherwise).

The layer, where we apply a matrix multiplication to the input, is called a
Dense layer.

In order to improve the performance of Logistic regression, a technique called
Feature engineering is employed, where we transform the features to make them
easier to process for the model.

Feature engineering techniques include one-hot encoding of integer values or
scaling of real values for a standardized mean and variance (usually 0 and 1).

1.3.5 Multi-Layer Perceptron
The most simple type of model in the Deep Learning family is the Multi-layer
Perceptron (MLP). This model is inspired by Logistic regression and builds upon
it by adding more dense layers between the input and output (these layers are
called hidden).

MLP with a single hidden layer would then look like as (Bishop [2016]):

f(xi; Wh, bh, Wo, bo) = ao

(︃(︂
ah

(︂
xi

T Wh + bh
)︂)︂T

Wo + bo
)︃

where ao is the activation function of the output layer and ah is the nonlinear
activation function of the hidden layer.

The MLP can be visualized as a neural network, see Figure 1.7.
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Figure 1.7: MLP with a single hidden layer visualization, taken from Pedregosa
et al. [2011]

We can interpret the hidden layers as models performing the feature engineer-
ing for us. Their outputs are therefore sometimes called Feature maps.

The universal approximation theorem states that MLP with just a single hid-
den layer with a nonlinear activation function can approximate any continuous
function to an arbitrary degree of accuracy (Russell and Norvig [2016]).

As we can see, the MLP should be able to approximate any continuous func-
tion. However, empirically it does not perform very well on dimensional data
such as images and videos.

1.3.6 Convolutional Neural Networks
These types of models contain so-called Convolutional layers.

The inputs and outputs of these layers have (n+1) dimensions, with one di-
mension being called channels, filters, or depth.

There are input channels times output channels fixed size n-dimensional ker-
nels, which get convolved with a specific channel of the input, with the result
being added to a specific channel of the output.

A two-dimensional convolution layer without stride would then look like (Good-
fellow et al. [2016]):

(K ⋆ V )i,j,o =
∑︂

m,n,c

Vi+m,j+n,cKm,n,c,o

where K ∈ RM,N,C,O is the kernel, V ∈ RI,J,C is the input to the layer with I, J
dimensions and C channels, (K ⋆ V ) ∈ RI,J,O is the output from the layer (See
Figure 1.8a).

In case we will use stride, then the processed tensor dimensions will be down-
scaled (See Figure 1.8n).

The better performance of these layers in processing dimensional data, when
compared to dense layers, is usually attributed to the built-in shift-invariance in
processing.

However, the more convolutional layers we stack, the less smooth its gradients
will become (See Figure 1.10c). So while we increase the capacity of the model,
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Figure 1.8: (a) Convolutional layer computation, taken from Goodfellow et al.
[2016], (b) Convolution with stride and padding, taken from vdumoulin [2019]

we make it more difficult to optimize by increasing the chances of getting stuck
in local minimums (He et al. [2015]) (See Figure 1.9).

Figure 1.9: Training error (left) and test error (right) on CIFAR-10 with 20-layer
and 56-layer “plain” convolutional networks. The deeper network has higher
training error, and thus test error. Taken from He et al. [2015]

1.3.7 Residual Networks
The aforementioned problem was solved with the invention of so-called residual
blocks. There we process the input to the block with just a few convolutional
layers and activation functions, usually two or three, then we add the original
input to the processed one, this step being called the residual or skip connection,
finally one more activation function is usually performed at the end of the block
(See Figure 1.10a).
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When stacking these blocks we usually don’t face the same problems as with
raw convolutional layers (See Figure 1.10b,d).

Figure 1.10: a,b (a) Residual block. (b) Training on ImageNet. Thin curves
denote training error, and bold curves denote validation error of networks of 18
and 34 layers. Taken from He et al. [2015]. c,d The loss surfaces of ResNet-56
(c) without and (d) with residual connections. Taken from Li et al. [2018].

1.3.8 U-Net Architecture
Transposed Convolutional Layers

Sometimes, however, we would instead like to upscale output dimensions. To
achieve this, an analog to a convolutional layer called transposed convolutional
layer was developed. When we use a stride here, then we upscale output dimen-
sions (See Figure 1.11).

Figure 1.11: Transposed convolutional layer with stride and padding, taken from
vdumoulin [2019]
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Architecture Overview

U-Net model tries to solve segmentation tasks, where we want to find objects
in images. This problem can be formulated as a classification of each pixel into
background/foreground or in multi-object detection into background/object class.

Its architecture uses a classification convolutional neural network as a back-
bone. First, we select a few pre-trained feature maps from the backbone, then
we take the smallest one and process it further using convolutional layers, up-
scale it using a transposed convolutional layer, and concatenate it with the next
feature map, then we repeat the same procedure with the result until we get a
segmentation map with the same dimensions as the input image (Ronneberger
et al. [2015]) (See Figure 1.12).

Figure 1.12: Example of a U-net model, taken from Ronneberger et al. [2015]

1.4 Deep Learning and iSCAT
While localization of particles with high contrast and distance from each other
can be done easily and reliably, resolving details smaller than the diffraction limit
or with low signal-to-noise ratios remains a challenge.

Label-free virus classification

Details that distinguish viruses are well below the diffraction limit, making it
difficult to classify them based on iSCAT images.

In 2021 (Goswami et al. [2021]) a U-Net architecture (See Figure 1.13a) was
trained to segment SARS-CoV-2, H1N1 (influenza-A virus), HAdV (adenovirus),
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and ZIKV (Zika virus) in the iSCAT image. the neural network was able to
identify SARS-CoV-2 vs. the other viruses with 96% accuracy (See Figure 1.13b).

Figure 1.13: (a) A modified version of U-Net. (b) Synthesized images of mixed
virus particles. (c) Ground truth label. (d) Model inference. Taken from
Goswami et al. [2021]

Pushing the sensitivity limit in label-free detection of single proteins

It was shown that an unsupervised machine learning isolation forest algorithm for
anomaly detection can push the mass sensitivity limit by a factor of 4 (Dahmardeh
et al. [2023]) (See Figure 1.14).
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Figure 1.14: a,c Outcome of differential rolling average (DRA) of 750 (a) and
250 (c) frames. The color bars show the iSCAT contrast, b,d Probability maps
based on the DNN approach for the DRA window sizes of 750 (b) and 250 (d)
frames. Insets show the corresponding binary masks. Scale bars 1.5 µm. Taken
from Dahmardeh et al. [2023]
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2. Practical part

2.1 Data simulation

2.1.1 Setup
iSCAT Setup

In the practical part, we will model the image signal of the iSCAT setup with the
following parameters. The setup uses a laser with a wavelength of 662 nm, the
objective has NA equal to 1.4, and one pixel of the image detected in the camera
will correspond to 23 nm.

We can see that the diffraction limit for this setup is equal to 236.4 nm or
approximately 10.27 px.

Hardware Setup

Everything will be executed on either one of the following two machines.
The first machine contains a 12-Core 2.9GHz Intel(R) Core(TM) i9-7920X

CPU, 128GB of 2400MHz DDR4 RAM, and NVIDIA GeForce GTX 1080 Ti
GPU with 11GB of VRAM.

The second machine contains a 32-Core 3.69 GHz AMD Ryzen Threadripper
3970X CPU, 256GB of 2400MHz DDR4 RAM, and NVIDIA GeForce RTX 3080
GPU with 10GB of VRAM.

Software Setup

The OS used is Ubuntu 22.04 with Python 3.9.16, Tensorflow 2.11 with GPU
support, cudatoolkit 11.2, cudnn 8.1, cython 0.29, and numpy 1.24.2.

2.1.2 Point Spread Function (PSF)
The image of a point source of light is called a Point Spread Function (PSF).

As we described in the review part 1.1.3, the image of a particle will consist
of periodically changing bright and dark circles around its position.

While FDTD simulations and vectorial diffraction models could be used for
rigorous PSF simulation (Mahmoodabadi et al. [2020]). PSF usually looks like
an Airy disc function. But for simplicity, we have decided to use approximation
with similar properties:

sin r

r

where r is the distance from the particle’s position.
In the next sections, we handle the PSF as a NumPy array and the results

should therefore be easily reproducible with more rigorous approximations as
well.
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Figure 2.1: (a) Particle positions. (b) Our PSF approximation ( sin r
r

). (c) Simu-
lated image in the microscope

2.1.3 Sparse Subpixel Convolution
The image in the microscope is equal to the convolution between the sample’s
scattering intensity map and the microscope’s point spread function.

Problem

However, if we would do the discrete convolution in the camera’s resolution, the
result would not appear very realistic. For example, in the case of nano-particles
moving smaller distances than a single pixel, the simulated image would stay the
same, although the sample changes.

We have therefore decided to apply convolution in a resolution higher than
the camera’s resolution by multiplying it with a constant, which we call subpixel
resolution. But then we face a problem with the time complexity of such approach.
If we would naively upscale the scattering intensity map of the sample, then use
built-in convolution functions, like those in NumPy, and downscale the result
back to the camera’s resolution, the time complexity would look approximately
like this:

O(r2
m · r2

o · s4)
where r2

m is the resolution of the scattering intensity map of the sample, r2
o is the

resolution of the camera and s4 is the subpixel resolution.

Proposed solution

To get around these limitations, we proposed the following algorithm. We save
our simulated PSF in slices with the same pixel size as the camera but with each
slice shifted by a subpixel distance. The count of those slices will be s2. Then for
each particle in the sample, we pick the correct subpixel-shifted PSF, multiply
it by the particle’s scattering intensity, and finally, add it to the output image
shifted by the particle’s pixel position. While achieving the same result as the
previous approach, here we get the time complexity equal to:

O(r2
o · p)

where p is the number of particles.
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As we can see, now the time complexity is not dependent on the resolution
of the simulated sample or subpixel resolution and in the computation, we use
particle positions directly without generating their scattering intensity map first.
We should therefore expect a performance increase by several orders of magnitude
compared with the previous approach.

Our implementation

We implemented our proposed algorithm for fast subpixel convolution into a
library.

For optimal performance, we have used the programming language C++ and
accelerated the computations using OpenMP for multi-threaded as well as SIMD
(Single Instruction/Multiple Data) optimizations.

We wrapped the C++ code using Cython to create a Python module, which
we named Sparse Subpixel Convolution, that can be easily imported into
Python scripts.

If we calculate particle positions in parallel as well, then each one of our
machines’ CPU is capable, using our library, to generate 524,288 frames with
64x64 image resolution and 170 diffusing particles in the sample in less than a
minute.

2.2 Data Analysis using Deep Neural Networks

2.2.1 The Dataset
We simulated image sequences of diffusing particles viewed by the iSCAT setup.

We chose the parameters of our dataset generation in such a way so that the
image sequences look physically plausible and contain speckle patterns complex
enough that their analysis using techniques such as PSF fitting would not be
possible most of the time.

The dataset generation

Since modern libraries specializing in machine learning use mainly GPU (or other
highly parallel computation units) for model training, the CPU is left available
during this computation.

Therefore, we can use our efficient implementation of the data simulation and
generate samples on the fly in parallel with the training, without any performance
penalty.

This way we will be able to have a different randomly generated dataset of
iSCAT samples in each epoch and the model will use each sample only once
during the whole training, eliminating the risk of overfitting.

Since overfitting will not be a problem, we don’t need to consider regulariza-
tion while designing our models at all, and we can just increase their capacity
until they reasonably fit in our VRAM.
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The dataset parameters

The dataset generated for each epoch contains 16,384 image sequences with frame
counts of 32, and camera FOV resolution 64x64.

We chose the subpixel resolution of convolutions as 64x64, for each possible
subpixel shift we generated PSF with a resolution of 512x512. The simulated
samples then have a size of 448x448 camera-sized pixels, so that the contribution
of particles on sample edges is accounted for in the generated PSF.

The time difference between subsequent frames is 0.1 s. The particle count in
the sample is random with a discrete uniform distribution U{30, 310}, each parti-
cle’s diffusion coefficient is ∼ U{1500, 3500}nm2s−1 ≈ U{2.8, 6.6}px2s−1, and its
scattering intensity ∼ U{0.6, 1.4}.

Examples of samples in our dataset are shown in Figure 2.2
In the next sections, we design and train models that count or localize particles

in the image sequences.
In the classification task, we will be predicting the count of particles that are

in the FOV in the 15th frame of the sequences.
In the localization task, we will be segmenting the 15th frame of the sequences

into pixels with and without particles.

Figure 2.2: Figure shows three pairs of images corresponding to a single frame of
some samples from our dataset. The top image shows the simulated sample, where
blue dots correspond to particle positions and the red square shows the camera’s
FOV. The bottom image is the simulated image in the camera, corresponding to
the sample, with red dots highlighting the particle positions. The samples have
particle counts equal to (a) 30 (lower bound in our dataset), (b) 170 (average),
and (c) 309 (upper bound).
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2.2.2 Classification
We will be classifying each image sequence into 8 classes. Classes 0, 1, 2, . . . , 6
correspond to particle counts of 0, 1, 2, . . . , 6 in the camera’s FOV (in the 15th
frame of the sequence), and class 7 corresponds to a particle count of 7 or higher.

All of our models will have a training dataset of 16,384 image sequences up-
dated during each epoch, and a validation dataset of 16,384 sequences generated
only once in the beginning.

As our loss function, we always selected the Sparse Categorical Crossentropy.
We will be evaluating each model by its accuracy, mean deviation, and con-

fusion matrix.
Accuracy is the ratio of correctly predicted classes to the number of elements

in the dataset. Mean deviation is calculated by subtracting predicted class in-
dices from true class indices and averaging the absolute value of the result. The
confusion matrix shows us how often the model predicts different classes for each
true class.

MLP

The first model we explored was the most simple one in the deep learning family
- The Multi-Layer Perceptron.

Our MLP contains only a single hidden layer. The input layer consists of
131,072 neurons (flattened input image sequences) with swish activation function,
the hidden layer contains 2000 neurons with swish activation, and the output layer
of 8 neurons with softmax activation.

The model has 262,162,008 parameters in total. Tensorflow summary of the
model:

Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #

=================================================================
flatten (Flatten) (None, 131072) 0

dense (Dense) (None, 2000) 262146000

dense_1 (Dense) (None, 8) 16008

=================================================================
Total params: 262,162,008
Trainable params: 262,162,008
Non-trainable params: 0
_________________________________________________________________

MLP - Training We trained the MLP in 200 epochs, with batch size 12. The
total number of image sequences used during the training is 3,276,800. We used
cosine learning rate decay, starting at value 5 · 10−4 and ending at 0 and Adam
optimizer with otherwise default TensorFlow parameters.

The progress of the model during the training is shown in Figure 2.3.
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Figure 2.3: The progress of our MLP through training epochs with the validation
loss (left) and the validation accuracy (right).

MLP - Evaluation The accuracy achieved by our MLP is 16.23% on the
validation dataset with a mean deviation of 1.9970.

We would expect a random generator to have an accuracy of 12.5% and a
mean deviation of 2.625.

We see that the MLP is just slightly better than a random generator at pre-
dicting the particle counts.

Upon closer inspection, we noticed that the MLP converged to predicting a
particle count of 2 all the time, which was indeed the most frequent class in our
dataset, see confusion matrices in Figure 2.4.

Figure 2.4: The confusion matrix of our MLP with absolute values (left) and
ratios with respect to the sample count of each class (right).

As we can see, the MLP is not going to help us with this task.

Two-dimensional ResNet

A much better approach is modifying the ResNet architecture, which was designed
to process images and dimensional data.

However, we are not classifying isolated images, instead, we take whole image
sequences into account. We decided, for the two-dimensional ResNet, that we
will handle the temporal dimension as the channel dimension (instead of colors).
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The model consists of the input layer, three stages of residual networks, and
the output layer.

Our residual blocks consist of two 2D convolutions with kernel size 3x3, two
batch normalizations, and two swish activations.

We decided that in the first step of the ResNet, we will keep the channel size
equal to 32, instead of the usual 16 channel size, to prevent loss of information.

In each stage of the model, we process the tensor using 20 residual blocks.
In the next two stages, we halve the image dimensions (using a stride) and

double the channel dimensions. So we process 64x32x32 Tensor in the second
stage and 128x16x16 Tensor in the third stage.

Then we use a global average pooling layer, where we average 2D Tensor slices
across the channel dimensions, resulting in 128 neurons.

Finally, we follow with the dense layer with the output of 8 neurons with
softmax activation function.

The model has 3,808,456 parameters in total. Cropped Tensorflow summary
of the model:

Model: "res_net"
______________________________________________________________
Layer (type) Output Shape Param #

==============================================================
input_1 (None, 32, 64, 64) 0
conv2d (None, 32, 64, 64) 9216
batch_normalization (None, 32, 64, 64) 256
activation (None, 32, 64, 64) 0

conv2d_1 (None, 32, 64, 64) 9216
batch_normalization_1 (None, 32, 64, 64) 256
activation_1 (None, 32, 64, 64) 0
conv2d_2 (None, 32, 64, 64) 9216
batch_normalization_2 (None, 32, 64, 64) 256
add (None, 32, 64, 64) 0
activation_2 (None, 32, 64, 64) 0

...
repeat the residual block above 19 times
...

conv2d_21 (None, 64, 32, 32) 18432
batch_normalization_21 (None, 64, 32, 32) 128
activation_21 (None, 64, 32, 32) 0
conv2d_23 (None, 64, 32, 32) 2048

...
repeat the residual block 20 times
...

conv2d_42 (None, 128, 16, 16) 73728
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batch_normalization_42 (None, 128, 16, 16) 64
activation_41 (None, 128, 16, 16) 0
conv2d_44 (None, 128, 16, 16) 8192

...
repeat the residual block 20 times
...

global_average_pooling2d (None, 128) 0
dense (None, 8) 1032

==============================================================
Total params: 3,808,456
Trainable params: 3,803,752
Non-trainable params: 4,704
______________________________________________________________

Two-dimensional ResNet - Training We trained the 2D ResNet in 200
epochs, with batch size 32. The total number of image sequences used during
the training is 3,276,800. We used cosine learning rate decay, starting at value
5 · 10−5 and ending at 0 and Adam optimizer with otherwise default TensorFlow
parameters.

The progress of the model during the training is shown in Figure 2.5.

Figure 2.5: The progress of our 2D ResNet through training epochs with the
validation loss (left) and the validation accuracy (right).

Two-dimensional ResNet - Evaluation The accuracy achieved by our 2D
ResNet is 78.2% with a mean deviation of 0.2354.

The confusion matrix of the model on validation dataset is shown in Figure
2.6.
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Figure 2.6: The confusion matrix of our ResNet with absolute values (left) and
ratios with respect to the sample count of each class (right).

We see that our 2D ResNet model performs very well.

Three-dimensional ResNet

The previous model contained 2-dimensional convolution layers, where we inter-
preted the temporal dimension of our data as a channel dimension. However,
since we have 3-dimensional data, with 2 spatial and 1 temporal resolution, it
might make more sense to use 3-dimensional convolution layers instead.

Now, we will take the architecture of our previous model and replace all 2-
dimensional convolutions with 3-dimensional. We will interpret the input as a
4-dimensional tensor with a channel size equal to 1.

At the beginning of the first stage, we upscale the input tensor into a tensor
with a channel size equal to 8. Then we proceed the same way as in the 2D
ResNet, working with 8x32x64x64 tensors in the first stage, 16x16x32x32 tensors
in the second stage, and 32x8x16x16 tensors in the third stage.

This model has 719,008 parameters in total. More than 5 times fewer param-
eters than the 2D ResNet, because of the much smaller channel size 8 instead of
32.

Three-dimensional ResNet - Training We trained the 3D ResNet in 100
epochs, with batch size 12. The total number of image sequences used during
the training is 1,638,400. We used cosine learning rate decay, starting at value
5 · 10−5 and ending at 0 and Adam optimizer with otherwise default TensorFlow
parameters.

The progress of the model during the training is shown in Figure 2.7.

26



Figure 2.7: The progress of our 3D ResNet through training epochs with the
validation loss (left) and the validation accuracy (right).

Three-dimensional ResNet - Evaluation The accuracy achieved by our 3D
ResNet is 77.84% with a mean deviation of 0.2352

As we can see, the performance of our 3D ResNet is almost the same as the
2D ResNet. However, it is necessary to point out, that this is achieved with more
than 5 times fewer parameters.

The reason for the small parameter count in this model is the increased time
complexity of 3-dimensional convolutions. Each epoch took around 15 minutes
to run, the total time of the whole training being around 25 hours.

The confusion matrix of the model on the validation dataset is shown in Figure
2.8.

Figure 2.8: The confusion matrix of our 3D ResNet with absolute values (left)
and ratios with respect to the sample count of each class (right).

Two-plus-one-dimensional ResNet

As we saw, the time complexity of 3-dimensional convolutions is very high. If
we could lower the time complexity of the 3D ResNet, then we could increase its
capacity and potentially surpass its performance.

To work around this problem we can try to split 3-dimensional convolutions
into 2-dimensional convolutions in the spatial dimensions and 1-dimensional con-
volutions in the temporal dimension.
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Now, when the execution and training of our model are more efficient, we can
handle higher channel sizes.

We increased the channel size in the first stage three times to 24. So the
first stage deals with 24x32x64x64 tensors, the second stage with 48x16x32x32
tensors, and the third stage with 96x8x16x16 tensors.

This model has 2,867,168 parameters in total, around four times more than
the 3D ResNet.

Two-plus-one-dimensional ResNet - Training While the channel size in-
creased three times, the training time increased by only one-half to 23 minutes
per epoch or around 38 hours for the whole training.

We trained the (2+1)D ResNet using 100 epochs, with batch size 4. The total
number of image sequences used during the training is 1,638,400. We used cosine
learning rate decay, starting at value 5 ·10−5 and ending at 0 and Adam optimizer
with otherwise default TensorFlow parameters.

The progress of the model during the training is shown in Figure 2.9.

Figure 2.9: The progress of our (2+1)D ResNet through training epochs with the
validation loss (left) and the validation accuracy (right).

Two-plus-one-dimensional ResNet - Evaluation The accuracy achieved
by our (2+1)D ResNet is 81.47% with a mean deviation of 0.1924.

The confusion matrix of the model on the validation dataset is shown in Figure
2.10.
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Figure 2.10: The confusion matrix of our (2+1)D ResNet with absolute values
(left) and ratios with respect to the sample count of each class (right).

As we can see, this model with higher capacity, compared to 3D ResNet,
achieved higher accuracy as we expected.

2.2.3 Localization
We would like to localize particles in the FOV in the 15th frame of an image
sequence.

This problem can be formulated as a task of classifying image pixels into
whether they contain or do not contain particles.

All of our models will have a training dataset of 16,384 image sequences up-
dated during each epoch, and a validation dataset of 16,384 sequences gener-
ated only once in the beginning. As our loss function, we will select the Binary
Crossentropy.

U-net

In this section, we will be modifying the U-net architecture. Here, we will use
our 2D ResNet from the classification task as a backbone.

We extract feature maps of the last layers of each stage from our 2D ResNet.
This way, we get 128x16x16, 64x32x32, and 32x64x64 tensors (feature maps). We
use convolution and a transposed convolution layer on the 128x16x16 feature map
in such a way as to change its dimensions to be the same as the next feature map,
then we concatenate the result with the next feature map. We further process
the result with 30 residual blocks. Then we use the same procedure for the next
feature map as well.

Finally, we use a convolutional layer to get the output dimensions of 1x64x64,
we also use a sigmoid activation after.

This model has 6,734,753 parameters in total.

U-net - Training We trained in two stages. The first stage took 30 epochs
and the parameters of the backbone were frozen, so only the new parameters were
being trained. The second stage took 150 epochs and the whole model was being
trained. Both stages used cosine learning decay with starting learning rate of
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5 · 10−5 and ending at 0 and Adam optimizer with otherwise default TensorFlow
parameters. The total number of image sequences used during the training was
2,949,120.

The progress of the model during the training is shown in Figure 2.11.

Figure 2.11: The progress of our U-net through training epochs with the valida-
tion loss (left) and the validation accuracy (right).

U-net - Evaluation Our U-net achieves an accuracy of 99.931%, which corre-
sponds to 2.826 pixels incorrectly classified per sample on average.

Since the average particle count in the FOV is around 3.3, we can see that
the model must localize particles correctly at least sometimes to achieve this
accuracy.

However, when we plot the predictions and compare them with the correct
locations (Figure 2.12), we see that our model’s performance exceeds our expec-
tations.

We think that the reason for this amazing performance might be a possible
efficient use of the temporal information contained in image sequences.
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Figure 2.12: (a) 15th frame of the analyzed image sequence, with red dots high-
lighting particle positions. (b) Correct particle positions in each frame. (c) Pre-
dicted probabilities of particle locations.
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2.3 Code Availability
The code of our Python module Sparse Subpixel Convolution, for data sim-
ulation, can be found at https://github.com/luzny274/Sparse_Subpixel_
Convolution. The module is currently compiled for NumPy 1.24.2, but it can
be easily recompiled for other versions as well, using scripts pyrebuild.bat for
Windows systems and pyrebuild.sh for Linux systems.

The code of the rest of our scripts, from PSF approximation to neural net-
work training, can be found at https://github.com/luzny274/DeepLearning_
iSCAT. Weights of the MLP are not included, because of their enormous size
exceeding the Github file size limit.
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Conclusion
In conclusion, this thesis has demonstrated the potential of using deep neural
networks (DNNs) for the analysis of speckle patterns in iSCAT microscopy.

In the review part, we briefly described the fundamentals of iSCAT microscopy
and Deep Learning.

In the practical part, we developed a Python module in C++, that enables
us to efficiently simulate diffusing particles and their images in the iSCAT mi-
croscope. Making it possible to generate large datasets in a short amount of
time.

Then we successfully modified the ResNet architecture to classify simulated
iSCAT image sequences with accuracy up to 81.47% and modified the U-net
architecture to localize particles in the camera’s field of view. We attribute the
success of DNNs in these tasks to their ability to utilize the temporal information
and prior knowledge of the studied sample.

Although the demonstrated performance on simulated data may not be di-
rectly applicable to real-life experiments yet, it showcases the capability of DNNs
to investigate samples that were previously inaccessible for analysis.
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