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Introduction

Motivation
Notwork flows are an important part of combinatorial optimization [1], and after

a short reflection they can be found everywhere you look. Electrical and power

networks bring lighting into our homes. National highway systems, rail networks,

and airline service networks facilitate long-distance travel for work, and explo-

ration of new places. Manufacturing and distribution networks provide access

to essential goods and consumer products. Furthermore, computer and social

networks have revolutionized the way we share information and conduct our

business and personal lives.

In all these problem domains, and many others, the primary objective is

to move an entity (be it electricity, a product, a person, a vehicle, or a message)

from one point to another within the underlying network as efficiently as possible.

This efficiency is essential not only from the point of providing a good service

to its users, but also to optimize the utilization of the underlying and typically

expensive transmission facilities. Network flow problems, provide valuable insight

into developing effective solutions for these real-world challenges, making them

a vital aspect of combinatorial optimization.

The simplest variant of a network flow problem, the maximum flow (MF)

problem (see Section 1.3.1), aims to transport the maximum possible amount

of a commodity through a given network. This problem has been extensively

studied, and numerous algorithms, such as the algorithms of Ford and Fulkerson,

Dinitz, and Goldberg (see [2]), have been developed to find optimal solutions.

A natural extension of the maximum flow problem involves incorporating

costs for individual arcs within the network. Instead of maximizing the trans-

ported amount, the focus shifts to minimizing transportation costs for fixed

commodity demands. This leads to the minimum cost flow (MCF) problem (see Sec-

tion 1.3.2), for which an efficient combinatorial algorithm, the network simplex

algorithm exists (see [1]).

Further generalization of MCF brings us to the multicommodity min-cost

flow (MMCF) problem (see Section 1.3.3), where multiple commodities must be
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transported within a single network. Although the MMCF problem can be solved

using linear programming techniques, a combinatorial algorithm remains elusive.

The MF and MCF problems share the same constraint matrix, which is totally

unimodular, implying that the corresponding polyhedron has all vertices integral

vertices. It is not difficult to construct a linear programming problem with a

vertex containing a large denominator. The largest denominator present in a

coordinate among all vertices of a polyhedron is referred to as its fractionality
(see Definition 24). It is of significant interest to understand the fractionality of

the MMCF problem, both in general terms and for specific benchmark instances.

This investigation provides an opportunity to analyze various problem instances

and their fractionality, emphasizing the importance of this notion in the context

of the MMCF problem.

Our Contribution
In this thesis, we aim to make a contribution to the pursuit of a combinatorial

algorithm for the MMCF problem. According to the work of Hladík [3], MMCF

matrices exhibit large circuits of order 2Ω(n)
. This finding implies the existence

of linear programming (LP) problems with these matrices, characterized by inte-

gral inputs and high fractionality of the same order (refer to Lemma 2). However,

no MMCF problem with such high fractionality has been constructed.

In this study, we use the simplex method (refer to Section 1.4) to examine the

vertices of the polyhedron of feasible solutions for a collection of publicly available

MMCF instances [4]. To focus on the investigation of problem fractionality, we

first require a solver capable of solving the problem using exact arithmetic while

simultaneously being able to trace the solutions in each iteration of the algorithm.

As no existing freely available solver provides this functionality, one of our

primary contributions is the development of such a tool.

Using this tool, we investigate the distribution of fractionality in linear opti-

mization problems, focusing on the impact of different pivoting rules on MMCF

and benchmark problems from the Netlib library [5]. We observe that the Dantzig

rule (refer to Definition 20) exhibits a considerably higher mean fractionality

compared to other rules for MMCF instances, while for Netlib instances, all rules

produce similar fractionality levels.

Moreover, we investigate the relationship between problem complexity and

fractionality, considering the number of iterations and problem dimension as

complexity measures. The fractionality of a problem tends to increase with the

number of iterations, particularly for the Dantzig rule in MMCF instances. We also

observe a positive correlation between problem dimension and fractionality, with

the Dantzig rule having the most significant impact on this relationship in MMCF
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instances. In contrast, the Netlib dataset on a whole exhibits greater variation

and weaker relationships between fractionality and complexity measures, with

no significant difference between the effects of different pivoting rules.

We also focus on the question whether the fractionality is exponential or poly-

nomial with respect to increasing dimension. Our findings suggest that fraction-

ality exhibits exponential behavior.

Organization of the Thesis
Chapter 1 introduces the notation, terminology, and fundamental concepts of lin-

ear programming, the simplex method, and network flows. In Chapter 2, we

detail the efforts made to implement a simplex method with exact arithmetic

and the functionality to trace transient solutions, as well as our final approach

of addressing the problem. Chapter 3 contain the analysis, interpretation, and sum-

marization of the results obtained from the problem instances we have solved,

and the identification of potential avenues for future research. While the ex-

position of the simplex method in Chapter 1 provides a general understanding

of the method, Appendix A offers a more comprehensive overview of the simplex

algorithm necessary for making modifications to modern implementations. Lastly,

in Appendix B, we finish with a brief manual on using the software we have

developed.
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Chapter 1

Preliminaries

1.1 Notation

In this section, we introduce the notation that will be employed throughout

the following text.

For n ∈ Z we denote [n] to be the set {1, 2, . . . , n}.

Vectors are denoted in bold font (e.g., x, y), while their elements and all other

scalars are denoted in standard font (e.g., x1, x2, . . .; t). We denote x ∈ Fn
to be

an n-element vector from the field F, and similarly, we denote A ∈ Fm×n
to be

a matrix with m rows and n columns, with entries from the field F.

The coordinates of a vector may be indexed by a set, for example c ∈ RE
has

an entry ce for each e ∈ E. Such vector may also be thought of as a function

c : E → R and the value may be interchangeably expressed as ce = c(e).

It is assumed that the vector x is always a column vector, making its transpose

xT
a row vector. We use superscripts for indexing; for instance, a collection

of vectors x1, x2, . . . , xκ
implies that xi

j denotes the j-th entry of vector xi
. The i-

th row of matrix A ∈ Fm×n
is given by the vector Ai,∗ ∈ Fm

, and the j-th column

corresponds to the vector A∗,j ∈ Fn
. The identity matrix In ∈ Fn×n

is defined

as a matrix with Ii,i = 1 for all i = 1, 2, . . . , n and Ii,j = 0 for i ̸= j.

In certain cases, it is useful to refer to a subvector or submatrix induced by a set

of indices. Let x ∈ Fn
, A ∈ Fm×n

, and I = [n], with B ⊆ I . Then, AB represents

a new matrix formed by selecting the i-th column of A for all i ∈ B. For instance,

for B = {2, 4, 5}, we have:
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A =

⎛⎜⎜⎜⎜⎜⎜⎝
a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a34 a35
a41 a42 a43 a44 a45
a51 a52 a53 a54 a55

⎞⎟⎟⎟⎟⎟⎟⎠ → AB =

⎛⎜⎜⎜⎜⎜⎜⎝
a12 a14 a15
a22 a24 a25
a32 a34 a35
a42 a44 a45
a52 a54 a55

⎞⎟⎟⎟⎟⎟⎟⎠
The vector xB is defined in a similar manner. While the order of elements

in columns is not crucial, it is necessary to maintain consistency in the index set

usage. For instance, indices can be assumed to always be ordered by any chosen

linear ordering.

Furthermore, we adopt the standard notation x ≤ y to indicate that xi ≤ yi

for all i. Analogously, we use x = y, x < y, etc.

1.2 Linear Programming
The scope of this work is limited in its ability to fully explain all the details

of linear programming (LP). While we provide an overview of some of the key

concepts and techniques involved, there is much more we had to omit. For readers

interested in delving deeper into linear programming, we highly recommend

consulting the works of Matoušek [6] and Chvátal [7]. These authors have written

extensively on the subject, and their texts provide a comprehensive treatment

of the theory and applications of linear programming.

We note that while both books by Matoušek and Chvátal deal with the theory

of linear programming, they have slightly different emphases. Matoušek’s book is

more oriented towards the theoretical aspects of the subject, providing a rigorous

treatment of the mathematical underpinnings of linear programming. Chvátal’s

book, on the other hand, is invaluable for its insights into the practical implemen-

tation of algorithms and real-world usage of linear programming. Therefore, we

also source most of the theoretical results from the book of Matoušek and practical

results from Chvátal’s book.

Linear programming is a well-researched area of optimization problems due

to its versatility in modeling a wide range of real-world problems. In fact, lin-

ear programming has found extensive application in economics and corporate

management, where it is employed in tasks such as planning, production, trans-

portation, and decision-making [8]. These applications often involve maximizing

revenue or minimizing costs in production schemes.

Linear programming models have proven to be useful in approximating non-

linear real-world problems (for example [9]). In fact, many combinatorial prob-

lems, such as the shortest path, maximum flow, maximum matching and others
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can be formulated as linear programs (for these and many other applications refer

to [10]).

Beyond direct applications, linear programming is often utilized as a subrou-

tine in more complex algorithms. For instance, it is employed in approximation

algorithms such as LP SAT, Scheduling (see [11]) or optimization algorithms

(Frank-Wolfe [12]) to solve complex optimization problems.

The formal definition of a problem of linear programming follows.

Definition 1 (Linear Programming Problem). A Linear Programming problem

is a problem of mathematical optimization, such that the objective and constraint
functions are linear:

maximize cT x
subject to aT

i x ≤ bi, i = 1, . . . , m

or more concisely:

maximize cT x subject to Ax ≤ b (LP)

where c ∈ Rn is called the cost vector, A ∈ Rm×n is the constraint matrix (ai

being the i-th row) and b = (b1, . . . , bm) ∈ Rm is the right hand side, and x ∈ Rn

is the vector of decision variables.

Definition 2 (Feasible solution). Given an (LP), the vector x ∈ Rn is said to be
feasible if it satisfies all constraints, i.e., if Ax ≤ b.

Definition 3 (Optimal solution). Given an (LP) the feasible solution x∗ ∈ Rn

is said to be optimal if it yields the maximum objective value among all feasible
solutions, i.e.

cT x ≤ cT x∗

for all x ∈ R feasible.

Linear programming (LP) problems can be expressed in many forms. For sake

of simplicity of description, we will be assuming that an LP problem is given to us

in a so called standard form. This is without loss of generality as the problems

can be easily converted between different forms (see [6]).

Definition 4 (Standard Form). A LP problem is in standard form if it has the form

maximize cT x
subject to Ax ≤ b (LP-SF)

x ≥ 0
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For the use with the simplex algorithm (discussed in Section 1.4) a slightly

different formulation of the problem is required

Definition 5 (Computational Standard Form). An LP problem is in computational

standard form if it has the form

maximize cT x
subject to Ax = b (LP-CSF)

x ≥ 0

and additionally

• the system Ax = b has at least one solution;

• A has full row rank.

1.2.1 Geometric Interpretation
One particularly appealing aspect of linear programming problems is their rel-

atively simple geometric interpretation. The geometric perspective enables us

to comprehend problems from a different angle, often yielding new insights.

Consequently, we can consider the problem in more tangible terms rather than

relying solely on abstract vector descriptions.

Definition 6 (Feasible Region). For an (LP) we define the feasible region of the prob-
lem as

M = {x ∈ Rn | Ax ≤ b}

Definition 7 (Hyperplane, Half-Space). We define hyperplane

h = {x ∈ Rn | aT x = b}

and half-space as

h− = {x ∈ Rn | aT x ≤ b}
h+ = {x ∈ Rn | aT x ≥ b}

for a, x ∈ Rn and b ∈ R.

In other words, half-space is a region of space that includes all points on one

side of a hyperplane.

Each constraint of the problem defines a half-space. The feasible region, also

referred to as solution space, of a linear program can be understood geometrically
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P

h1

h2

h3

h4

h5

Figure 1.1 This figure presents a polyhedron P , which is formed by the intersection
of five half-spaces bounded by hyperplanes h1, h2, . . . , h5. The arrows indicate the re-
spective regions of the space spanned by each half-space.

as the intersection of half-spaces defined by the constraints of the problem. Simply

put, it is the region of space that satisfies all of the constraints simultaneously.

The feasible region can be represented as a polyhedron (see Figure 1.1), which

is the intersection of a finite number of half-spaces. The faces of a polyhedron

correspond to the half-spaces that define it. For more details see [6].

Of particular importance for us will be the definition of a vertex. As we will

see shortly, am optimal solution of a LP will be found by moving from one vertex

of the feasible region to another.

Definition 8 (Vertex). A vector v is called a vertex of a polyhedron P ⊆ Rn if
v ∈ P and there exists a nonzero vector c ∈ Rn such that cT v > cT y for all
y ∈ P − {v}. Geometrically it means that the hyperplane {x ∈ Rn : cT x = cT v}
touches the polyhedron P exactly at v.

This definition is illustrated by Figure 1.2.

By representing the feasible region as a polyhedron, we can easily visualize

the constraints of the problem and the optimal solutions that lie at its vertices.

This visualization can help us identify the most promising regions of the solution

space and guide our search for the optimal solution.

Definition 9 (Infeasibility). We say that (LP) is infeasible when there is no feasible
solution that satisfies all the constraints of the problem.

11



P

c

v

Figure 1.2 In accordance with Definition 8, this figure illustrates the relationship
between the polyhedron P and the vector c, which defines the vertex v. Specifically,
the definition says that the hyperplane, determined by the vector c, intersects P only
at the point v.
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Definition 10 (Unboundedness). We say that (LP) is unbounded if for every k ∈ R
there exists a feasible solution x, such that cT x ≥ k.

Linear programming unboundedness occurs when the objective function

of a linear program can be increased without limit, while satisfying all the con-

straints. In other words, the feasible region of the linear program is unbounded

in the direction of the objective function.

If a linear programming problem is infeasible or unbounded, it may be neces-

sary to relax some of the constraints or to reformulate the problem in a different

way to make it solvable. Alternatively, the problem may be abandoned if it is

determined that a feasible solution does not exist or if the cost of finding one is

too high.

1.3 Network Flows
In this section we introduce the basic notion of network flows together with some

standard definitions and formulations of different kinds of problems.

1.3.1 Maximum Flow
The most simple variant of a network flow problem is the maximum flow problem.

In general, we have some network represented by a graph with two designated

nodes. Each edge of the network has a capacity on how much it can transport.

More formally:

Definition 11 (Network). Network is the 5-tuple (V, E, s, t, c) where

• (V, E) is an oriented graph,

• c ∈ RE
+ is an assignment of capacities to edges,

• s, t ∈ V are distinct vertices of the graph. The vertex s is called source

or origin and t is called target or destination.

The notation and definitions are adopted from [13] and [2].

The objective is to identify the maximum amount of some commodity that can

be transported between the origin and the destination within the network. We do

this by finding an assignment f ∈ RE
with each entry representing the amount

of the commodity that flows through the corresponding edge.

The following definitions will be useful in formulating the problem.

Definition 12 (Inflow, Outflow, Excess). Given a network (V, E, s, t, c) and a vec-
tor f ∈ RE we define for all v ∈ V the:
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• Inflow

f+
v =

∑︂
e=(·,v)

fe

• Outflow

f−
v =

∑︂
e=(v,·)

fe

• Excess

f∆
v = f+

v − f−
v

The inflow, outflow and excess also implicitly define the vectors f−, f+, f∆ ∈
RV

. Note that f+
v , f−

v and f∆
v are all linear functions of f .

Definition 13 (Flow). For a given network (V, E, s, t, c) a vector f ∈ RE is a flow

if the following constraints hold:

1. capacity constraints
0 ≤ f ≤ c

2. Kirchhoff’s law
(∀v ∈ V − {s, t}) f∆

v = 0

The value of the flow |f | is defined as f∆
t . It can be shown that f∆

t = −f∆
s .

This problem can be then formulated as a linear program.

Definition 14 (Maximum Flow Problem). For a network N = (V, E, s, t, c),
the Maximum Flow (MF) problem is to find a flow f ∈ RE such that the |f | is
maximum possible.

maximize |f |
subject to f∆

v = 0 (∀v ∈ V − {s, t}) (MF)

0 ≤ f ≤ c

1.3.2 Minimum-Cost Flow
A generalization of the maximum flow problem is the minimum-cost flow problem.

This variant differs from the maximum flow problem in that each edge now has

an associated transportation cost along with its capacity. Additionally, each

vertex is associated with a demand, indicating how much commodity needs to be

transported or how much of the given commodity it supplies to the network.

The objective is to find the flow of minimum cost that satisfies the demand

constraints.
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Definition 15 (Minimum-Cost Flow Network). Let

• G = (V, E) be a directed (multi-)graph,

• c ∈ RE be a vector of capacities,

• w ∈ RE be a vector of edge weights or costs,

• d ∈ RV be a vector of vertex demands such that∑︂
v∈V

dv = 0

then (V, E, c, w, d) is called minimum-cost flow network for graph G. If for v ∈ V

• dv < 0, then we refer to v as supply node,

• dv > 0, then we refer to v as demand node,

• dv = 0, then we refer to v as transit node.

Definition 16 (Minimum-Cost Flow Problem). For a given minimum-cost flow
network (V, E, c, w, d) we define the mimimum-cost flow (MCF) problem as

minimize wT f
subject to f∆ = d (MCF)

0 ≤ f ≤ c

1.3.3 Multicommodity Min-Cost Flow
The multicommodity min-cost flow (MMCF) problem is a generalization of the or-

dinary (MCF) problem, in which flows of a different nature (commodities) must

be routed at minimal cost on a network, competing for the resources represented

by the arc capacities.

The number of commodities in real-life MMCFs ranges from just a few,

as in most distribution problems, to very many, such as the number of all the pos-

sible origin/destination pairs in some telecommunication models.

In a very general form, the problem can be defined as follows:

Definition 17 (Multicommodity Min-Cost Flow (MMCF) Problem). Let

• G = (V, E) be a directed (multi-)graph;

• K be set of commodities;
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• Nκ = (V, E, cκ, wκ, dκ) be a minimum-cost flow network for commodity
κ ∈ K;

• u ∈ RE is the upper bound on arc over all the commodities.

then the Multicommodity Min-Cost Flow Problem is defined as

minimize
∑︂
κ∈K

(wκ)T fκ

subject to fκ
∆ = dκ ∀ κ ∈ K (MMCF)∑︂
κ

fκ ≤ u

0 ≤ fκ ≤ cκ ∀ κ ∈ K

Although MMCF is a structured linear program, standard LP techniques often

fail to be efficient enough in practice, and several specialized algorithms have

been proposed for its solution [14].

1.4 The Simplex Algorithm
In 1947 G. B. Dantzig designed the simplex method for solving linear programming

formulations of U.S. Air Force planning problems. It has been added to the list

as one of the top ten algorithms with the greatest influence on the development

and practice of science and engineering in the 20th century [15].

Many efforts have been made since Dantzig’s initial proposed algorithm

in order to enhance the performance.

Why use the simplex method?

The choice of a specific algorithm for solving linear programming problems de-

pends on various factors, such as the size and structure of the problem, the desired

accuracy, and the available computing resources. While both the simplex method

and interior point methods (see Appendix A.1.2) are effective approaches for solv-

ing linear programming problems, there are some situations where the simplex

method may be preferred over interior point methods.

One advantage of the simplex method is that it is conceptually simpler and eas-

ier to implement than interior point methods, especially for small to medium-

sized problems. The simplex method works by iteratively moving along the edges

of the feasible region until an optimal solution is reached, and its geometric

interpretation makes it easy to understand and visualize.

Unfortunately, the simplex method has the disadvantage that its running time

is not guaranteed to be polynomial. In the worst case, the number of iterations
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needed to solve a linear program can grow exponentially with the size of the prob-

lem as shown by [16]. On the other hand, on real world problems the simplex

algorithm behaves surprisingly well and the number of iterations scales linearly

with the number of constraints.

1.4.1 Simplex Algorithm Idea
In this section, we introduce two variants of the simplex algorithm: the standard

simplex and the revised simplex algorithm. While both algorithms share the same

underlying principle and conceptually execute identical steps to find the optimal

solution, they diverge significantly in their computational approaches. Notably,

the standard simplex often becomes computationally infeasible for large, sparse

problems commonly encountered in real-world applications. The revised simplex

method is able to address this limitation.

The following sections will offer a fairly standard description of these algo-

rithms and our objective is to recapitulate the core ideas for the reader. However,

to fully comprehend the challenges associated with implementing these methods

in practice, and to be able to modify the source code of current simplex algo-

rithm implementations, a more in-depth understanding is necessary. To this

end, we have provided a more comprehensive explanation of the simplex method

in Appendix A, where readers can acquire a deeper insight of the algorithm’s

intricacies.

The idea of the simplex method is one of successive improvements. We aim

to traverse through the vertices 8 of the polyhedron that correspond to basic feasi-

ble solutions. Given optimal conditions, this process will converge to the optimal

solution in a finite number of steps, except under certain circumstances which

we will elaborate upon later.

Definition 18 (Basic feasible solution). A feasible solution x of (LP-CSF) is called
basic if there exists an m-element set B ⊆ [n] such that

• the submatrix AB is nonsingular.

• xj = 0 for all j /∈ B

The set B is called a basis of the LP. We will also sometimes denote the basis matrix

AB by B. The set of nonbasic column indices is denoted by N = [n] − B. The basis
might also be presented as a pair (B, N). A variable xj is called basic if j ∈ B
and nonbasic if j ∈ N .

In the context of geometric interpretation, basic feasible solutions hold par-

ticular significance as they precisely correspond to the vertices of the linear

programming problem. This relationship is encapsulated in the established theo-

rem given below as presented in [6]:

17



Theorem 1 (Basic Feasible Solution and Vertices). Let P be the polyhedron of all
feasible solutions of (LP-CSF). Then the following two conditions for a point v ∈ P
are equivalent:

1. v is a vertex of the polyhedron P ,

2. v is a basic feasible solution of the linear program.

The simplex algorithm begins with a feasible basis and uses a series of op-

erations on a description of a problem until an optimal solution is computed.

The algorithm searches for an optimal solution by moving from one adjacent fea-

sible solution to another, along the edges of the feasible region. It also guarantees

monotonicity of the objective value.

1.4.2 Standard Simplex Algorithm

In this section, we discuss the standard simplex algorithm, the original method

for solving linear programming problems. While the algorithm can be expressed

in two primary forms – tableau and dictionary – we will concentrate on the dic-

tionary form, as both forms are equivalent and differ solely in data representation.

Definition 19 (Dictionary). Given a (LP-SF), we define a dictionary as a system
of equations

xn+i = bi −
n∑︂

j=1
aijxj i = 1, . . . , m

z =
n∑︂

j=1
cjxj

This conversion is done by first introducing slack variables xn+1, xn+2, . . . , xn+m,
putting them on the left hand side of the equations and setting z as the value objective
function.

The variables on left hand side are called basic and on the right hand side
nonbasic.

The dictionary presents a system of equations with solutions that correspond

to feasible solutions for the given problem. However, the dictionary cannot be

entirely arbitrary, as it must be associated with a basic solution. For further details,

please refer to Appendix A.3.1.
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Iteration of Standard Simplex

Each iteration of the simplex method will consist of the following steps

1. choosing an entering nonbasic variable

2. choosing a leaving basic variable

3. constructing next dictionary

The computational process of constructing a new dictionary is called pivoting.

Pivoting constitutes the most computationally demanding step. Although it is

relatively straightforward, the process involves selecting the row of a dictionary

corresponding to the leaving variable and expressing the entering variable using

this row and other variables in this row. Subsequently, this expression of the en-

tering variable is substituted into all the remaining occurrences of that variable.

For large values of m and n, updating the entire table can be very time-consuming.

Memory issues may also arise, as even a single iteration for sparse problems can

generate a dense matrix.

The following set of equations gives a conceptual idea how even a sparse set

of equations can lead to a dense one. We start with the dictionary on the left

and perform one pivoting step by choosing x1 to be the entering variable and x8
to be the leaving variable.

x5 = x1

x6 = x1

x7 = x1

x8 = −x1 + x2 + x3 + x4

z = x1

x5 = x2 + x3 + x4 − x8

x6 = x2 + x3 + x4 − x8

x7 = x2 + x3 + x4 − x8

x1 = x2 + x3 + x4 − x8

z = x2 + x3 + x4 − x8

1.4.3 Revised Simplex Algorithm
Next we move to the description of the revised simplex algorithm.

Conceptually the revised simplex method follows the exact same pattern

as the standard simplex method. Most notably, we will not be working with

dictionaries, which we used to guide our choice of entering and leaving variables

and which we updated after each iteration. Instead the only thing we vary between

iterations will be the set of indices of the current basis.

We start with the following observation. For a given basis (B, N) we can

write the system of equations as

ABxB + ANxN = b
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express the basic variables as

xB = A−1
B b − A−1

B ANxN

and the objective function as

z = cT
BA−1

B b + (cT
N − cT

BA−1
B AN)xN

Again, for details how to obtain this representation refer to Appendix A.4.

We shall see that each iteration of the revised simplex method requires solving

two systems of linear equations.

1. Solve the system yT AB = cB

2. Choose an entering column a. This may be any column of AN s.t. yT a is

less than the corresponding component of cN . If there is no such column,

then the current solution is optimal.

3. Solve ABd = a

4. Find the largest t s.t. x∗
B − td ≥ 0. If there is no such t, then the problem

is unbounded; otherwise, at least one component of x∗
B − td equals 0

and the corresponding variable is leaving the basis.

5. Set the value of the entering variable at t and replace the values of x∗
B

of the basic variables by x∗
B − td. Replace the leaving column of AB

by the entering column and in the basis heading, replace the leaving variable

by the entering variable.

The main speedup comes from the end of the iteration. Where standard

simplex has to do a laborious update of the whole dictionary, no such computation

is needed in the revised simplex method. We simply add the entering variable

and remove the leaving variable from the basis.

On large sparse problems encountered in practice, an iteration of the re-

vised simplex method takes less time than an iteration of the standard simplex

method. The revised simplex method beats the standard simplex method as soon

as the number of rows exceeds about 100 [7].

1.4.4 Pivoting Rules
In this section, the fundamental principles guiding the selection of an enter-

ing and leaving variable, are described. When multiple potential options exist,

a pivoting rule is employed to determine the entering variable.
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The performance of the simplex algorithm is highly dependent on the chosen

pivoting rule. The rule influences not only the number of iterations but also

the path the algorithm follows while navigating the vertices and edges of the poly-

hedron of feasible solutions 6 for the given problem. In this section, we introduce

several well-known rules used in the simplex algorithm.

Definition 20 (Dantzig Rule). For the entering variable choose a non-basic variable
xj with the largest coefficient.

The Dantzig rule is the oldest and perhaps most often used, as it builds upon

the basic idea of seeking the most substantial increase in the objective function

at each iteration. However, it does not guarantee the algorithm’s termination [7].

Definition 21 (Bland Rule). Select the non-basic entering variable xj with the small-
est possible index j, and the leaving variable xk with the smallest possible index
k.

The Bland rule aims to address the shortcomings of the Dantzig rule. It can

be shown that using this rule, the algorithm does not cycle [7].

Definition 22 (Largest Increase Rule). For the entering variable choose a non-basic
variable xj such that pivoting yields the largest absolute improvement in objective
function.

Although this rule guarantees the best local increase in the objective function

at each iteration, it is not often used due to its computational complexity. While it

often results in fewer iterations, the computational effort required may outweigh

the benefits, leading to simpler rules solving the problem more quickly despite

a higher iteration count.

Definition 23 (Random Rule). For the entering variable choose uniformly at random
from the available candidates.

This rule is of interest due to its unbiased property when traversing basic

solutions, showing no preference for any particular path.

1.4.5 Factorization of the Basis
We briefly touch upon the principle through which the main speedup of the revised

simplex method is achieved. The efficiency of the revised simplex algorithm

hinges upon the implementation of its first and third steps during each iteration

(see Section 1.4.3). As a general practice, the systems of equations involved are not

recomputed entirely from scratch. Rather, some device is employed to facilitate

the solution process, which is updated at the end of each iteration. The revised
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Figure 1.3 This visualization illustrates the change in the number of non-zero values
in a random sparse matrix after applying Gaussian elimination and LU factorization
methods. Each field in the matrix filled black represents a nonzero element of a matrix.
It is important to observe that even when the initial matrix has a small proportion
of non-zero values (indicated in parentheses), the quantity of non-zero values increases
rapidly upon applying different matrix operations. The example of the naive Gaussian
elimination method is particularly striking, as the matrix essentially becomes dense after
only a few iterations.

simplex algorithm encompasses a whole class of implementations, each of which

is dependant upon the selection of the device that aids in solving the two systems.

To naively solve a system of equations under general circumstances we inad-

vertently have to use some form of the Gaussian elimination. In large sparse prob-

lems, this is can become very slow and computationally intractable as the number

of non zero entries increases during the elimination. This phenomenon is called

fill-in and is visualized in Figure 1.3.

General idea

Let Bk denote the basis matrix obtained after k iterations of the simplex method.

We wish to exploit the fact that Bk differs from the preceding Bk−1 in only one

column. Consider a fixed k and say that p-th column is the one in which the basis

matrices differ. Note the p-th column is the entering column a of the k-th iteration

appearing on the right hand side of the system Bk−1d = a.
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By comparing the columns on both sides, it can be shown that

Bk = Bk−1Ek

with Ek standing for the identity matrix whose p-th column is replaced by d. We

call the matrix Ek an eta-matrix.

This equation is essential for the revised simplex method as no matter what

device we use, its update relies on this fact and that the eta-matrix Ek is always

readily available.

Let B0 be the initial basis matrix. Successive application of this observation

for k iterations yield B1 = B0E1, B2 = B0E1E2, . . . or

Bk = B0E1E2 · · · Ek

this eta factorization enables us to see the two systems of equations we are required

to solve as

(((yT B0)E1) · · · )Ek = cB

and

B0(E1(· · · (Ekd))) = a
Note that systems vT Ei = u and Eiv = u are extremely easy to solve. What

remains, is to be able to quickly solve the systems vT B0 = u and B0v = u.

The two most basic methods are to factorize this basis matrix are

• Product Form of Inverse (PFI) [17]

Historically the PFI has been introduced shortly after the simplex method.

The idea is to represent the basis inverse as a product of eta-matrices.

• LU factorization [18]

The idea is to represent the basis matrix B as a product of an upper triangular

matrix U and a lower triangular matrix L.

Both numerical stability and the number of non-zero elements, which is

created in the eta-matrices (see Figure 1.3), heavily depend on the choice

of the pivot element in the elimination process.

With these techniques, we are able to reuse the representation of the basis matrix

B0 in all successive iterations to quickly solve the system of equations.

However, with the number of eta-matrices numerical inaccuracies, storage

requirements and computational effort increase in every simplex iteration. There-

fore, a reinversion or refactorization of the current basis matrix is triggered either

when a certain number of iterations since the last inversion has passed or numer-

ical or storage problems occur. For more details refer to [7, 19].

Other more advanced techniques for basis factorization the exploit the sparsity

of the basis matrix, include:
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• Bertels and Golub [20]

• Forrest and Tomlin [21]

• Suhl and Suhl [22]

1.5 Circuits and Fractionality
Definition 24 (Fractionality). Fractionality of a number p/q ∈ Q is q if p, q are
co-prime. The fractionality of a vector x ∈ Qn is the maximum over the fractionality
over all of its entries xi.

Definition 25 (Circuit). Let A ∈ Zm×n. A vector c ∈ Zn is a circuit of A if its
entries are co-prime, it satisfies Ac = 0, and it is support-minimal, that is, there
does not exist any c′ ∈ Zn \ {0} with Ac′ = 0 such that supp(c′) ⊂ supp(c).

Lemma 2 (Large Circuits Mean Large Fractionality
1
). Let A ∈ Zm×n and c ∈ Zn

be a circuit of A. Then there exist b ∈ Zm, l, u ∈ Zn such that the polytope
P = {x | Ax = b, l ≤ x ≤ u} defined by the constraint matrix A contains a
vertex v with fractionality ∥c∥∞.

Proof. The idea is to enforce that P only contains two vertices: the origin 0 and a

scaled version of c, namely c/∥c∥∞. Specifically, let b = 0, and for every i ∈ [n],
if ci ≥ 0, let li = 0 and ui = 1, otherwise let li = −1 and ui = 0. Clearly 0 ∈ P .

Next observe that our setting of the bounds means that P only contains points

whose support is contained in supp(c). However, by the fact that c is a circuit,

there are no such non-zero points in P with support strictly contained in supp(c).

Thus, the only points contained in P are of the form λc for some λ ≥ 0, and the

largest λ for which λc ∈ P is λ = 1/∥c∥∞. Hence c/∥c∥∞ is an extreme point of

P , that is, a vertex. It remains to note that at least some entries of c/∥c∥∞ have

∥c∥∞ as their denominator because the entries of c are co-prime, thus, c/∥c∥∞
has fractionality ∥c∥∞.

1
The proof of this lemma has been provided by Mgr. Martin Koutecký, Ph.D.
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Chapter 2

Implementation

Our goal is to analyze the fractionality of basic feasible solutions for various types

of LP problems, with a particular focus on (MMCF). To accomplish this, we need

a solver that operates with exact rational arithmetic and can access the basic

solution in each iteration.

This chapter outlines the steps taken to address the problem, detailing the dif-

ferent technologies explored and the approaches initially considered as potential

solutions but ultimately discarded, along with the reasoning behind their dis-

missal.

2.1 Initial Implementation and Problems
After an initial review of available linear programming solvers, several obser-

vations were made. Firstly, most solvers operate primarily with floating point

numbers, which is unsurprising given that the majority of practical applications

require working with real numbers. This is due to the fact that input data of-

ten represents measurements from real-world scenarios, which inherently carry

a margin of error, rendering exact arithmetic impractical. Modern CPUs are

also optimized for floating point operations, offering performance comparable

to integer arithmetic.

Moreover, existing solvers do not readily grant access to the internal state

of the simplex algorithm, which is reasonable since most applications solely

require only the final basic solution and objective function value. Exposing the in-

ternal workings of an algorithm may hinder flexibility in improving, extending,

or modifying it, and may also impose considerable maintenance requirements

on the library’s authors, making it potentially impractical if there is insufficient

demand for such functionality.

Consequently, the preliminary approach involved implementing the simplex
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algorithm from scratch. At the time, the authors were familiar with the standard

simplex algorithm 1.4.2 and opted to proceed with it. The programming language

of choice was Python due to its maturity, readability, rapid development capabili-

ties, and available support. Given that the primary goal was to solve instances

and trace parameters with ample time and computing power at hand, runtime

performance was not of primary concern.

Initially, the Python fractions standard library was employed for rational

arithmetic, as it is built on Python’s arbitrary large integers, which was convenient.

Data representation was handled using NumPy [23] arrays, which offer a robust

and comprehensive interface for working with data ranges and slices.

However, numerous challenges soon emerged. For instance, the standard

simplex algorithm is only efficient for small problems. Even for relatively small

and sparse problems (with row counts in the hundreds), updating the dictionary

becomes progressively slow and memory-intensive due to the fill-in issues (see Fig-

ure 1.3). This issue is worsened by the fact that Python’s fraction library prioritizes

ease of use over performance optimization. Additionally, since Fractions are

not a native NumPy type, calculations must be carried out in Python, degrading

performance due to frequent transitions between Python and C code and inherent

Python inefficiency.

There is no reason to use the standard simplex algorithm if the problem

description is not dense already. At this stage, memory consumption still remained

the primary concern, leading to a naive implementation of the revised simplex

method (see Section 1.4.3). Despite the change of the algorithm used, performance

and memory issues persisted (as we were not utilizing the factorization of the basis

at the time, which is so useful in the revised simplex method).

We tried to address this problem by the development of a more memory

efficient approach to rational arithmetic and storage of the problem descrip-

tion than the fractions library. We have come up with a solution we named

FractionArray, which was essentially implemented as a pair of NumPy arrays

containing the numerators and denominators of the input matrix problem descrip-

tion. Nevertheless, this was not enough to address the memory problems, which

persisted still as the input matrices become large very quickly. We have also

realized that even the storage of sufficiently large problems in memory presents

an issue.

One potential solution involved using the sparse arrays from the SciPy

library [24], which are a wrapper around NumPy arrays and offer multi-

ple sparse array types. However, incorporating our custom FractionArray
proved challenging, leading to the development of a custom implementation

SparseFractionArray of sparse arrays inspired by the SciPy library. A factor-

ization of the basis using the LU update has also been implemented.

Unfortunately, arbitrary precision arithmetic was still required, and, at the time
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of writing, no native NumPy support for arbitrary length integers was available.

Resorting to the standard Python int type introduced performance issues, a real-

ization that only occurred after much of the interface and functionality had been

implemented.

An attempt to rectify this involved using the C++ GNU MP library and bind-

ing it to Python, then employing Cython to transpile the code to C. Although

Cython offered the appealing combination of C’s speed and Python’s readability,

the authors’ inexperience with the tool led to numerous problems, ultimately

necessitating the abandonment of this approach.

Alternative options, such as implementing the project from scratch in an-

other language like C++ or Julia, were considered. Julia, a modern dynamically

compiled language with a rich ecosystem for scientific computing, combines

the performance of C with the readability of Python. However, due to our previ-

ous experience and newly acquired knowledge of the many implementation details

and pitfalls, it has been deemed easier to take an existing simplex implementation

and base our work on an already established project.

At first, we tried to look at the SageMath [25] system. SageMath is a com-

prehensive, open-source mathematics software system that relies on several

well-known open-source packages, such as NumPy, SciPy, Sympy [26], and others.

It offers a unified, Python-based language and direct access to these packages

through interfaces or wrappers.

SageMath’s Python-based implementation, maturity, and reputable develop-

ment team made it an attractive option. Within SageMath, the Interactive Simplex
Method module was identified as a potential solution for the project. However, it

became apparent that the module was intended for educational purposes only,

resulting in significantly slower performance compared to standard LP solvers.

A closer look at the source code revealed that the module did not even utilize

sparse representation of arrays and used standard simplex textbook method,

leading to similar issues previously faced in the project.

Recognizing that Python alone would not suffice for the project’s requirements,

alternative solutions were explored. The focus shifted to established solvers

or solvers in languages the authors were already familiar with.

During our investigation, several options were considered for obtaining exact

rational solutions of simplex. The following software packages and implementa-

tions were explored:

• Algorithm:Simplex [27] — A Perl module available that currently sup-

ports phase II of the simplex method, requiring a feasible solution to begin

with.

• qsopt-ex [28, 29] — A library written in C that provides floating-point
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solutions that can be continuously refined until the exact final basis is found

and the exact solution can be computed.

• GNU Linear Programming Toolkit (GLPK) [30] — A library for linear

and mixed-integer programming that includes an exact simplex algorithm

and is available under the GNU General Public License.

• cl-rational_simplex [31] — A Common Lisp implementation of the sim-

plex method that uses rational arithmetic.

The GLPK library was chosen for further consideration for several reasons,

including:

1. It is a mature and time-tested open-source library.

2. The library is written in the C programming language, which is known

for its performance benefits.

3. It has good documentation and a comprehensive reference manual, making

it easy to learn and understand.

4. The codebase is quite readable, which makes debugging and modification

easier.

5. Previous experience with the library, ensuring a smoother implementation

process.

Unfortunately, the GLPK library did not provide access to the basic solutions

during iterations, only offering the basic solution from the last iteration. To work

around this limitation, a somewhat improvised method was employed: the library

allowed setting an iteration limit for the algorithm, and if the number of iterations

exceeded this limit, the algorithm would stop. By setting the iteration limit to 1,

accessing the last basic solution (which, in this case, would be the first one),

incrementing the number of iterations by one, and running the algorithm again,

the full trace of basic solutions of the algorithm could be reconstructed.

This workaround, however, was highly inefficient for two main reasons:

1. The initialization step of the algorithm had to be performed for every

iteration instead of just once per run, introducing significant overhead.

2. If the number of iterations to solve the problem was k, this approach

essentially required running k2
iterations of the algorithm. This is infeasible

for problems that need millions of iterations to reach an optimal solution.
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Therefore, pausing the iteration of the algorithm and then continuing was not

a viable option.

However, upon examining the library’s source code, the authors determined

that it was possible to implement the required functionality to trace the state

of the simplex algorithm directly. Consequently, we proceeded to modify the GLPK

library to include this tracing functionality, addressing the inefficiencies and limi-

tations of the original workaround.

2.2 Implementation of GLPK Tracing Extension
In this section, we discuss the implementation of the extension for parameter

tracing for the GLPK library. We begin with a brief overview of the internal

methods used by GLPK, focusing on those associated with the exact simplex

implementation. This information is not readily available in the manual or other

documentation.

For guidance on working with GLPK methods, refer to [30], and for details

on using our extended version, refer to Appendix B.

The standard entry point for the exact simplex algorithm in GLPK is

the glp_exact function (see Figure 2.1). This function takes a glp_prob lp
object, which contains the problem description (stored internally using floating-

point numbers). After performing some initial checks (e.g., verifying control

parameters and variable bounds), the function creates a SSX ssx object, which

serves as the rational arithmetic counterpart of the lp object. GLPK uses the GNU

MP [32] library for rational arithmetic. The problem is then solved by passing it

to the ssx_driver function. After that, the solution is converted back to floating-

point numbers and saved in the lp object before being returned after some final

cleanup.

As we can see, the standard API does not provide a way for the user to ac-

cess even the final basic solution of the exact simplex algorithm. Therefore,

we extended this function to save the exact final solution to a user specified

file. Additionally, for the purposes of this thesis, we included an option to scale

the problems to make them integral by scaling them with the least common

multiple (LCM) of all denominators.

Next, we examine the ssx_driver function (refer to Figure 2.2). This function

sets up the simplex algorithm by computing the initial factorization of the basis

(GLPK uses the LU decomposition with the Markowitz pivoting strategy), cal-

culating the initial values of basic variables, and checking for feasibility. It also

manages the phases of the simplex algorithm (refer to Appendix A.3.3). Apart

from adjusting the parameters for tracing, no significant changes were made

to this function.
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Figure 2.1 This figure illustrates the flow of the glp_exact function, which serves
as the standard entry point for the exact simplex algorithm. The modifications we have
implemented are highlighted in green. Our extensions include the optional scaling
procedure and the capability to save the exact rational solution prior to its conversion
to floating-point numbers.

Lastly, we investigate the ssx_phase_I and ssx_phase_II function (see Fig-

ure 2.3). These functions implement the main loop of the simplex algorithm

as described in Appendix A.4.1. The majority of the modifications were imple-

mented in these functions. We have extended the function to trace the status

of the variables (whether the variable is basic or at one of its bounds, etc.), the val-

ues of all variables, and the values of the objective function in each iteration

of the algorithm. At the time of writing this thesis, the exact implementation

of GLPK supported only the Dantzig rule 20. We have added the Bland 21, best 22,

and random 23 rules.
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Figure 2.2 This figure illustrates the flow of the ssx_driver function, which serves
as the primary driver of the primal simplex algorithm. The crucial part of this function
was extended to incorporate necessary adjustments to support tracing (highlighted
in green), while leaving the core functionality mostly unaltered.
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No

extract basis for original problem (Phase I only)

cleanup
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ssx_phase_X_trace
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is optimal?
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Figure 2.3 This figure illustrates the flow of the ssx_phase_X functions (for Phase I
and Phase II) and the modifications made to them (highlighted in green). In addition
to tracing the current basic feasible solution, we have implemented additional pivoting
rules. Consequently, the setup and cleanup procedures of these functions have been
adjusted to accommodate these enhancements.
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Chapter 3

Results and discussion

Before we commence our analysis, we provide a short overview of the problem

instances used to in our analysis. For MMCF instances, we also include the

format parameter used to parse them into a LP problem using the Graph library

(found at [4]). This format is also used by the convert_problem tool we provide

(see Appendix B).

MMCF Instances Description
1. Mnetgen problems: Mnetgen is a famous random generator of Multicom-

modity Min Cost Flow instances.

Graph library option: ’m’

2. PDS problems: PDS instances are from a military conflict transportation

model and are considered “hard”.

Graph library option: ’m’

3. JLF problems: JLF instances were collected for testing computational

approaches to MMCF. They contain six small groups of instances.

Graph library option: ’p’

4. Vance problems: Randomly generated instances on undirected graphs.

Contains three different groups of instances: small and easy, considerably

harder, and with fractional data.

Graph library option: ’o’

5. AerTranspo problems: These instances simulate real-world airline trans-

portation problems and have a relatively large number of commodities.

Graph library option: ’o’
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6. Planar and Grid problems: Two sets of test problems, planar networks

and grid networks with randomly chosen origin and destination nodes.

Graph library option: ’m’

Netlib Instances Description
The Netlib LP problems library [5] is a collection of LP problems in standardized

format, consisting of objective function and constraints, along with known opti-

mal solutions or a statement of infeasibility. It was compiled in the early 1990s

to provide a set of benchmark problems for testing LP algorithms. The library con-

tains a wide range of problems from various application areas, such as production

planning, transportation, and finance. The problems vary in size, ranging from

small to very large, and are available in both sparse and dense formats. The Netlib

library has been widely used to evaluate and compare the performance of linear

programming solvers.

As Netlib data encompasses a broader range of problem types, we use it

as a baseline for comparing MMCF instance solutions. The Netlib instances serve

as a benchmark for assessing the algorithm’s behavior on MMCF problems.

3.1 Data Description
Throughout the execution of the simplex algorithm, we monitored the maximum

fractionality of variables in the basic solution for each iteration. The denominators

we work with can get a length of hundreds of digits and the number of iterations

can get very large (we experienced traces for single problems in hundreds of giga-

bytes). To save hard drive space, we traced only the bit length of the denominators,

and while this does not give the exact value for the fractionality, it provides us

with a good upper bound. In other words given a basic solution xB for an iteration,

we tracked the value g = ⌈log2 q⌉, where q represents the maximum fractionality

over all basic solutions.

Subsequently, we computed summary statistics, such as the average and maxi-

mum fractionality of the basic solutions across all iterations. Using these summary

statistics inevitably leads to the loss of some data and information concerning

the fractionality during the problem-solving process. Nevertheless, these statistics

still provide valuable insights into the behavior of the problems.

Our primary focus is on integral problems, or (LP) problems which have

an integral right-hand side vector b. However, the problems we work with do

not adhere to this formulation. As our best effort to generate problems that do,

we scaled the problems by multiplying vector b by the least common multiple
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(LCM) of all the denominators. More specifically, for

b = (p1/q1, p2/q2, . . . , pn/qn)

we considered the problem

maximize cT x
subject to Ax ≤ k · b

x ≥ 0

where k = LCM(q1, q2, . . . , qn). This approach effectively scales the polyhedron

of feasible solutions by k.

We sourced the data from the MMCF and Netlib problems, running each

problem with four pivoting rules (Dantzig 20, Bland 21, random 23, and best 22).

In total, we solved approximately 1600 problems. Due to computational con-

straints, we excluded problems that required more than 4 GB of memory to solve.

We executed each problem on a single CPU system (since GLPK does not

support parallel processing) with 4 GB of memory and a maximum runtime of one

week. Consequently, the solutions of some problems did not reach completion.

Notably, the “best” pivoting rule, which is the most computationally intensive, is

underrepresented in the dataset.

We will further divide every analysis into two sections: Phase I and Phase II

solutions. This division is meaningful as the algorithm essentially solves different

problems in each phase due to differences in the objective function and additional

variables (see the two-phase method A.3.3). Sometimes, it may happen that

a problem may be solved to optimality in Phase I (for example, when the goal

of the problem is to find a feasible solution).

There is a also notable difference in the number of instances provided by dif-

ferent instance types, with Mnetgen contributing the most instances. As a result,

Mnetgen instances will have the greatest impact on our analysis. Additionally,

we may examine specific data subsets if they appear unusual or noteworthy.

Table 3.1presents the number of problems solved for each dataset for each

pivoting rule used.

Most of the plots presented will be on a log-log scale. To better understand

the result presented, note that relationships of the form y = axk
appear as straight

lines in a log-log graph, with the exponent k corresponding to the slope, and the co-

efficient a corresponding to the intercept.

First, we investigate the general trend of fractionality over the course of the al-

gorithm’s execution. In Figure 3.1, we depict the relationship between the bits

of fractionality and the increasing number of iterations for a small sample of sim-

ilarly sized MMCF problems. Note that, in most cases, the Dantzig rule results

in significantly higher fractionality.
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Figure 3.1 This figure illustrates the trend lines depicting the changes in fractionality of
basic solutions for a selected sample of MMCF instances. The objective is to illustrate the
general pattern of evolution throughout the solution process for the problem. Different
colors represent various pivoting rules. It is important to note that the number of
iterations is not identical for all pivoting rules even though it is depicted as such. Instead,
the pivoting rules have been stretched to span the entire length of the plot for easier
comparison between them. The absence of Phase II indicates that the problem was
resolved entirely during Phase I.
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Instance Count Out of Resources

Dataset Pivot Rule

mmcf best 254 178

bland 269 163

dantzig 331 101

random 382 50

netlib best 76 17

bland 70 23

dantzig 88 5

random 88 5

Table 3.1 Summary of the number of instances solved from each dataset, categorized
by pivoting rule.

3.2 Fractionality Distribution Analysis

In Figure 3.2, we display the distribution of fractionality, split by pivoting rules.

We include data from both MMCF and Netlib datasets in the comparison. Observe

that the Dantzig rule appears to have a considerably higher mean fractionality

compared to other rules for MMCF instances. Conversely, for Netlib instances,

all rules seem to produce similar fractionality levels.

Next, we investigate whether some pivoting rule exhibits higher maximum

fractionality in a statistically significant manner. First, we employ the Kruskal-

Wallis nonparametric test to determine if all pivoting rules have the same effect

on the fractionality.

Based on the results presented in Table 3.2 and considering a significance level

of α = 0.05, we can confidently reject the null hypothesis that the population

medians of all pivoting rules are equal for MMCF instances in both Phase I

and Phase II. This indicates that there is a significant difference between one

or more pivoting rules. On the other hand, for the Netlib instances, we cannot

reject the null hypothesis in neither Phase I nor Phase II, which implies that

the effect of all pivoting rules is relatively similar in this case.

Subsequently, we perform a post-hoc pairwise test for multiple comparisons

of mean rank sums (Dunn’s test) with Bonferroni correction to identify significant

differences between pairs of pivoting rules. The results in form of resulting p-

values are listed in Table 3.3. The results indicate that we can distinguish the effects

of the Dantzig rule from all other rules, as well as the best rule from the Bland

rule in Phase I. In Phase II, we are additionally able to differentiate the effects

of Bland’s rule from the best rule.
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Figure 3.2 The distribution of the maximum fractionality with respect to the pivoting
rule used to solve the instance. Data from Phase I and Phase II, as well as both the MMCF
and Netlib datasets, are shown. We observe that for MMCF problems the Dantzig rule
yields considerably higher maximum fractionality then other rules. On the other hand
in Netlib problems the rules behave more similarly. Note that the x-axis is scaled
logarithmically.

p-value Reject H0 (α = 0.05)

Dataset Phase

mmcf 1 0.000 Yes

2 0.000 Yes

netlib 1 0.857 No

2 0.969 No

Table 3.2 The results of the Kruskal-Wallis test, testing for null hypothesis of median
of maximum fractionality among all pivoting rules being the same. We provide the re-
sulting p-values rounded to 3 decimal places.
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best bland dantzig random

Dataset Phase Pivot Rule

mmcf 1 best 1.000 0.569 0.000 0.001

bland 0.569 1.000 0.000 0.166

dantzig 0.000 0.000 1.000 0.000

random 0.001 0.166 0.000 1.000

2 best 1.000 0.000 0.000 0.000

bland 0.000 1.000 0.000 1.000

dantzig 0.000 0.000 1.000 0.000

random 0.000 1.000 0.000 1.000

Table 3.3 The results of a post-hoc analysis using the Dunn test. We list the resulting
p-values rounded to 3 decimal places. We compare the effect on maximum fractionality
for all pairs of pivoting rules.

3.3 Relationship of Iterations and Fractionality
One potential measure of a problem’s complexity is the number of iterations

the simplex algorithm requires to find an optimal solution. We can view the num-

ber of iterations as a kind of practical, real-world indicator of problem complexity.

We anticipate that the fractionality of a problem will increase as the num-

ber of iterations grows. This intuition is based on the assumption that, during

the simplex method’s execution, the problem has time to accumulate increasingly

more fractional solutions.

In Figure 3.3, we illustrate the relationship between fractionality and the num-

ber of iterations performed in each phase. Additionally, we fit a regression line

to indicate the general trend of change for both datasets. Observe that the frac-

tionality of Netlib problems appears to be generally higher than that of MMCF

problems. Additionally, the regression lines appear to be parallel, suggesting

a similar asymptotic behavior.

3.3.1 MMCF
As visualized in Figure 3.4, different pivoting rules appear to have varying effects

on the rate at which fractionality changes as the number of iterations increases.

Notably, the Dantzig rule seems to exhibit the most significant effect. In Table 3.4,

we present the parameters of the fitted regression lines. This information is also

visualized in Figure 3.5 where we also include 95% confidence intervals. We

observe that, in both Phase I and Phase II, the Dantzig rule yields the largest slope

among all the rules. This finding is consistent with our previous results.
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Figure 3.3 The relationship of maximum fractionality with respect to the number
of iterations for different datasets. The results from all pivoting rules have been merged
together. Linear functions are fitted to show the general trends of the change. Observe
that the trend lines do appear to be parallel, suggesting similar asymptotic behavior
across the datasets. Note that the plots are on a log-log scale.
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Figure 3.4 The relationship between maximum fractionality and the number of itera-
tions for the MMCF dataset. The pivoting rules used to solve the instance are differenti-
ated by color. Observe the general increasing trend and note that the Dantzig rule trend
line has a significantly steeper slope. Note that the axes are on a log-log scale.
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Intercept Slope

Phase Pivot Rule

1 bland -0.278 0.143

best -0.441 0.208

random -0.437 0.218

dantzig -1.138 0.580

2 bland -0.400 0.174

best -0.714 0.260

random -0.658 0.277

dantzig -0.972 0.535

Table 3.4 A summary of the regression results for the log-log relationship between
maximum fractionality and the number of iterations as illustrated in Figure 3.4.
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Figure 3.5 This figure visualizes the 95% confidence intervals for the slopes of the re-
gression lines depicted in Figure 3.4.
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Intercept Slope

Phase Pivot Rule

1 bland 0.901 0.400

best 0.722 0.491

random 0.682 0.542

dantzig 0.692 0.630

2 best 1.051 0.364

random 0.998 0.458

bland 0.554 0.554

dantzig 0.241 0.818

Table 3.5 A summary of the regression for the log-log relationship between maximum
fractionality and the number of iterations for the Netlib instances depicted in Figure 3.6.

3.3.2 Netlib
As depicted in Figure 3.6, similar to the MMCF dataset, there appears to be

a visible positive correlation between the number of iterations and fractionality

in the Netlib dataset. However, the variation is now much greater, and the fit

is not as strong. Additionally, there does not seem to be any significant differ-

ence between the different pivoting rules. This conclusion can also be drawn

from Table 3.5. Although we can order the coefficients by magnitude, the 95%

confidence intervals are much larger, as seen in Figure 3.7. Consequently, we

cannot claim any pronounced difference between the rules, which is consistent

with our previous results.

3.4 Relationship of Dimension and Fractionality
Next, we consider a more theoretical measure of problem complexity, namely

the problem dimension. Given the way the simplex algorithm works, the problem

becomes more complex to solve as the dimension increases. We will analyze

the effect of increasing dimension on the maximum fractionality of the instances.

The basic solutions are found in the vertices of the polyhedron of feasible

solutions. The vertices of the polyhedron are the points where at least the number

of rows (dimension) of the hyperplanes bounding the polyhedron meet. One

expectation to have is that the more hyperplanes we have, the more “complicated”

the vertices created will be. Consequently, we would expect the fractionality

to increase as the dimension of the problem increases.

Firstly, we assess how the dependence on dimension behaves between

the datasets. In Figure 3.8, we again observe a positive trend in both datasets.
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Figure 3.6 The relationship between maximum fractionality and the number of itera-
tions for the Netlib dataset, differentiating the pivoting rules used to solve the instances
by color. Note that the axes are on a log-log scale.
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Figure 3.7 This figure visualizes the 95% confidence interval for the slope of the re-
gression lines for Netlib instances depicted in Figure 3.6.

3.4.1 MMCF
In the MMCF dataset, there appears to be a strong positive correlation between

the dimension of the problem and the fractionality as demonstrated in Figure 3.9.

A similar increasing trend can be observed for all pivoting rules. The pivoting

rules, once again, affect the rate of change, with the Dantzig rule having the most

significant impact. This trend seems to be consistent between both Phase I

and Phase II. The strength of these effects is summarized again in Table 3.6

and Figure 3.10.

Additionally, the reader might observe certain groups of instances exhibiting

similar behavior and question whether these instances belong to the same type.

To address this issue, in Figure 3.11 we provide a visualization of the same rela-

tionship, but this time differentiating the instance types. This visualization aids in

understanding the relationship between instance types and their corresponding

behaviors.

3.4.2 Netlib
In the Netlib dataset, a positive correlation can also be observed between the di-

mension of the problem and the fractionality, as depicted in Figure 3.12. Unlike

the MMCF dataset, the slope appears to be consistent across all pivoting rules,

suggesting that the relationship between the problem dimension and fractional-

ity is not influenced by the choice of the pivoting rule in the case of the Netlib

instances. These effects are again summarized in Table 3.7 and Figure 3.13.
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Figure 3.8 In this figure, we compare the different datasets by examining the relation-
ship between maximum fractionality and the problem’s dimension. The results from all
pivoting rules have been merged together. A linear function is also fitted to demonstrate
the general trend of the change. We observe a positive trend in both cases. Note that
the plots are on a log-log scale.
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Figure 3.9 This figure illustrates the relationship between maximum fractionality
and dimension for the MMCF dataset. The pivoting rule used to solve the instance is
differentiated by color. For each pivoting rule we fit a trend line and observe a positive
trend. Note that the axes are on a log-log scale.
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Intercept Slope

Phase Pivot Rule

1 bland -0.120 0.108

best -0.263 0.148

random -0.217 0.177

dantzig -0.551 0.483

2 best -0.450 0.206

bland -0.343 0.207

random -0.335 0.249

dantzig -1.375 0.764

Table 3.6 A summary of the regression for the log-log relationship between maximum
fractionality and dimension in the MMCF instances, as illustrated in Figure 3.9.
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Figure 3.10 This figure visualizes the 95% confidence intervals for the slopes of the re-
gression lines from Figure 3.9.

48



100.0

100.5

101.0

101.5

102.0

102.5

g

Phase I
subtype

mnetgen
jlf
pds
grid
aer
hydro
vance
planar

102.0 102.5 103.0 103.5 104.0 104.5 105.0

Dimension

100.0

100.5

101.0

101.5

102.0

102.5

g

Phase II
subtype

mnetgen
jlf
grid
aer
hydro
vance
planar

Relationship of Maximum Fractionality and Dimension for MMCF by Instance Type

Figure 3.11 The relationship between maximum fractionality and dimension
for the MMCF dataset. Different instance types are differentiated by color. Note that
the axes are on a log-log scale.
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Figure 3.12 The relationship between maximum fractionality and dimension
for the Netlib dataset. We differentiate pivoting rules used to solve the instance by color.
We can see a positive trend for all rules used but not much of a significant difference
between the rules themselves. Note that the axes are on a log-log scale.

50



Intercept Slope

Phase Pivot Rule

1 bland 2.086 -0.039

best 1.505 0.150

random 1.343 0.324

dantzig 1.250 0.383

2 best 1.432 0.247

bland 1.097 0.417

random 0.596 0.665

dantzig 0.555 0.704

Table 3.7 A summary of the regression for the log-log relationship between maximum
fractionality and dimension for the Netlib instances, as depicted in Figure 3.9.
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Figure 3.13 This figure visualizes the 95% confidence intervals for the slopes of the re-
gression lines for the Netlib instances, as depicted in Figure 3.9.
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Figure 3.14 The quantity of occurrences corresponding to each achieved fractionality
value of the final basic solution. For counts that are hardly discernible, a gray-colored
label is provided, indicating the exact number of instances.

3.5 Fractionality of the Final Basic Solution
In Figure 3.14, we examine the distribution of fractionality for the final basic

solutions. The majority of the instances analyzed exhibit low fractionality, with

only a few instances demonstrating fractionality higher than a few bits. Upon

further investigation, we have not identified any specific connection between

these instances and a particular dataset or problem type. It is worth mentioning

that in only 6 out of 336 cases, the fractionality of the final solution varied between

the different pivoting rules used. In these instances, it was consistently the Dantzig

rule that yielded higher fractionality compared to the other pivoting rules.

3.6 Discussion
In our analysis of the results, we observe that the maximum fractionality

of the problems increases as expected with both the number of iterations and in-

creasing dimension. Interestingly, unlike the results from the Netlib dataset
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(in which we were unable to statistically determine any difference in the effect

of pivoting rules on fractionality), the MMCF data demonstrates a significant dif-

ference in how pivoting rules influence fractionality. More specifically, solutions

produced using the Dantzig rule result in significantly more fractional solutions.

This phenomenon does not seem to be present in the Netlib problems, and we do

not offer any specific explanation for this observation.

To further interpret the results, we examine the linear regression analysis

for the dependence on dimension in the MMCF dataset (refer to Table 3.6). Let n
represent the dimension of a problem. In a log-log plot we interpret the line with

intercept a and slope k as

log10 g = k log10 n + a

which translates to a power relationship

g = 10a · nk

By substituting g, we obtain the upper bound on maximum fractionality

q ≤ 1024a · 2(nk)

Specifically, for the Dantzig rule, we have a = −1.375 and k = 0.764, which

yields

q ≈ 7.26 · 10−5 · 2(n0.764) = Ω
(︂
2(n0.764)

)︂
Thus, in this case, fractionality grows exponentially with increasing dimension.

Other results can be interpreted similarly.

Additionally, due to the nature of the MMCF dataset, the problems we have

available often appear in groups with similar dimensions. When plotted on a graph

as in Figure 3.9, such problems can be identified by data points with similar x-

coordinates. If we assume that the dimension of a problem dictates its complexity

in terms of maximum fractionality, one might expect the maximum fractionality

to remain consistent for problems with similar dimensions. However, Figure 3.9

reveals an intriguing phenomenon where data points are grouped vertically,

indicating that problems with similar dimensions exhibit varying maximum

fractionality.

We hypothesize that the reason for this observation is as follows. When tracing

a path through the polyhedron of basic solutions for a problem, we essentially

explore only one specific path on the polyhedron and compute the maximum from

that path. Nonetheless, this does not necessarily imply that we have discovered

the most fractional path overall, as many paths can be taken to obtain the optimal

solution. Consequently, it is expected that some problems will yield higher
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measured values while others may produce lower values, even if they have similar

dimensions.

Finally, we did not observe any discernible trend in the fractionality of the final

basic solution. As illustrated in Figure 3.14, our analysis revealed that, for the ma-

jority of the examined data, the fractionality of the final solution was quite low,

with only a few exceptions. We were unable to attribute this observation to any

specific pivoting rule or subset of the data.
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Conclusion

In this thesis, we have presented an efficient approach for tracing basic solutions

during the execution of the simplex algorithm. We developed software that can be

used as a standalone application or through a library interface (see Appendix B).

In [3], Hladík discovered that MMCF matrices have large circuits (2Ω(n)
), which

implies the existence of LP problems with these matrices that possess integral

inputs and high fractionality (2Ω(n)
). However, he was unable to directly construct

an MMCF problem with a highly fractional vertex. Consequently, we investigated

the fractionality of MMCF problems, specifically whether the maximum frac-

tionality is exponential or polynomial with respect to dimension. Our analysis

suggests that the fractionality behaves on the order of 2(n0.764)
(for the Dantzig

rule), which unambiguously indicates an exponential relationship.

Future work
We now highlight some possible avenues for further research that exceeded

the scope of this work. These include:

• We observed that the Dantzig rule yields significantly greater fractionality

in MMCF problems, a fact that does not hold for general problems from

the Netlib library. It may be worthwhile to investigate why this is the case

and what the exact reason is for this discrepancy.

• We noted that during the solution construction of a problem, we explore

only one of many possible paths through the polyhedron of feasible solu-

tions. Therefore, the maximum fractionality we obtain is only an estimate.

To obtain a better estimate for a given problem, it might be useful to examine

many more possible paths. This could be accomplished through the tools

we provide by executing the problems multiple times using the random

rule or by devising new pivoting rules that employ randomness.

• Our results indicate that efforts should be directed toward constructing a

family of instances with fractionality exhibiting 2Ω(n)
behavior, rather than
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attempting to prove that fractionality is indeed polynomial.

• It would be worthwhile to manually analyze a selected instance with high

fractionality (ideally in the final solution) relative to its dimension. This

analysis aims to identify and understand the underlying factors contributing

to the observed fractionality in the instance. Such a targeted examination

could shed light on the characteristics of MMCF problems that give rise to

high fractionalities and inform the development of future algorithms and

approaches.

• It may be beneficial to explore the optimal solution space once the optimal

value z∗
is known. By adding a constraint cT x = z∗

, the optimal solutions

form a polyhedron, which could be investigated using the simplex method

with a random pivoting rule. This approach would enable the examination

of whether there are highly fractional optimal solutions (vertices) or provide

insights into other phenomena within the optimal solution space.
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Appendix A

The Simplex Algorithm

The main idea of the simplex algorithm is to begin with a certain feasible solution

and use a specific sequence of operations until an optimal solution is computed.

It searches for an optimal solution by moving from one adjacent feasible solution

to another, along the edges of the feasible region. It also guarantees monotonicity

of the objective value.

Unfortunately, the worst case complexity of the simplex method is exponen-

tial as shown in [16]. However, on real world problems the simplex behaves

surprisingly well and the number of iterations scales linearly with the number

of constraints.

Many efforts have been made since Dantzig’s initial proposed algorithm

in order to enhance the performance. A small overview of other algorithms

for solving linear programs follows.

A.1 Algorithms for Solving LP

A.1.1 Ellipsoid Method
In 1978 Khachiyan proposed the first exact polynomial algorithm for LP [33],

the so called ellipsoid method. The ellipsoid method has had a significant influence

on the theory of linear programming; however, in practice, its high execution time

per iteration renders it less competitive when compared to the simplex algorithm.

A.1.2 Interior Point Methods
Alternative approaches, such as interior point algorithms, were proposed to tra-

verse the feasible region’s interior. However, due to their costly execution time

per iteration and potential numerical instability, these methods initially struggled

to compete with the simplex algorithm in practice.
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In 1984, Karmarkar proposed the first interior point method that outperformed

the simplex algorithm [34]. Since then, numerous advancements have been

made in both the theory and practice of interior point methods. Karmarkar’s

polynomial-time LP method reported solution times consistently 50 times faster

than the simplex method.

This breakthrough revitalized the study of interior-point methods and barrier

problems, demonstrating the possibility of creating a linear programming algo-

rithm with polynomial complexity that could compete with the simplex method.

For a more comprehensive account of the history of interior point methods,

see [35].

A.2 Simplex Method

A.2.1 Computational Form of LP
In Section 1.2, we introduced the standard form and computational standard form

of the simplex algorithm. While the original simplex algorithm was developed

for problems in standard form, more recent modifications utilize a different form

known as the computational form. The computational form again fulfills further

requirements, i.e., the constraint matrix has to have full row rank and only equality

constraints are allowed.

To put (LP-SF) into a computational form, inequality constraints are trans-

formed into equality constraints by introducing slack-variables. In LP-systems

this is usually done in a standardized way by adding a complete identity matrix

to the constraint matrix [29].

Definition 26 (Computational Form). A problem is in computational form if it
has the form

maximize cT x
subject to Ax = b (LP-CF)

l ≤ x ≤ u

with A ∈ Rm×n having full row rank, b ∈ Rm, x ∈ Rn and l, u ∈ Rn being
respectively the lower and upper bounds on decision variables.

One advantage of the computational form is the separation of variable bounds

from constraints. The simplex algorithm is then adapted to handle these bounds

separately, incurring minimal additional overhead. The reduced size of the con-

straint matrix allows for faster computation. Although we will not delve into

the precise details of this modification, the necessary steps are described in [7].
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We will continue to use the standard form (LP-SF) and its computational

variant (LP-CSF) (with individual bounds assumed to be incorporated in the con-

straint matrix) for explanations of the algorithms. However, it is worth noting

that these forms are seldom employed in practice, as they hold limited significance

for practical LP systems.

A.3 Standard Simplex Algorithm
In this section, we will present a description of the standard simplex algorithm.

The standard simplex method can be presented in two main flavours, namely

the tableau and dictionary forms. Although both forms are equivalent and differ

only in their data representation, we will focus on the dictionary form in our

explanation.

The idea of the simplex method (in general) is one of successive improvements.

We aim to traverse through the vertices of the polyhedron that correspond to basic

feasible solutions. Given optimal conditions, this process will converge to the op-

timal solution in a finite number of steps, except under certain circumstances

which we will elaborate upon later.

A.3.1 Initialization
Suppose we are given a problem in standard form. An initial step of the method

involves introducing slack variables for converting each inequality into an equality.

In other words, we cast the problem from the standard form to the computational

form. However, we will approach this representation from a slightly different

perspective by introducing the concept of a dictionary.

Definition 27 (Dictionary). Given a (LP-SF), we define a dictionary as a system
of equations

xn+i = bi −
n∑︂

j=1
aijxj i = 1, . . . , m

z =
n∑︂

j=1
cjxj

Where xn+1, xn+2, . . . , xn+m are newly introduced slack variables and z being
a variable denoting as the objective function.

The variables on left hand side are called basic and on the right hand side
nonbasic.

Additionally, we require that
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1. every solution of the set of equations comprising a dictionary must also be
a solution of the original problem and vice versa,

2. the equations of every dictionary must express m of the variables and the ob-
jective function z in terms of the remaining n variables.

We will also require the property that this system of linear equations is associated
with one particular feasible solution, which we get by requiring one additional
property

3. Setting the nonbasic variables at zero and evaluating the left-hand side vari-
ables we arrive at a feasible solution.

A dictionary with property 3. is called a basic dictionary.

This dictionary as we described it is a basic feasible dictionary if and only if

all the coefficients bi are non-negative. We call such problems as problems with

feasible origin. For the moment we will consider only problems with feasible

origin and we will handle initialization for other kinds of problems later.

We do not care for the values of the slack variables provided they remain

non-negative. It can be observed that the set of feasible solutions for the original

decision variables does not change by introducing the slack variables.

When provided with a dictionary, obtaining the next feasible solution is rel-

atively straightforward. The general approach involves selecting a non-basic

variable and adjusting its value while still satisfying all constraints to produce an-

other feasible solution. The dictionary provides guidance in selecting the variable

xj and determining the appropriate change in its value.

After this step however, the challenge lies in discovering a feasible solution

that improves the objective value even further. The previous iteration’s ease was

rooted in the presence of not only a feasible solution but also the dictionary. Our

aim will be to construct a new feasible solution with an accompanying basic

feasible dictionary.

A.3.2 Iteration
Each iteration of the simplex method will consist of the following steps

1. choosing an entering nonbasic variable xj

2. choosing a leaving basic variable xk

3. constructing the next dictionary

The computational process of constructing a new dictionary is called pivoting.
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Choosing an entering variable

The choice of the entering variable will be motivated by our desire to improve

the value of the objective function z.

Definition 28 (Entering variable). The entering variable is a nonbasic variable xj

with a positive coefficient cj in the last row of the dictionary.

The idea is that the increase of xj will necessarily bring about the increase

of the objective function.

It is important to note that, unless there is only one variable with a positive

coefficient, this rule is ambiguous. If multiple candidates are available, any of them

may potentially serve as the entering variable. The rules used used in such cases

are discussed in Section 1.4.4.

Now only the case when no candidate is available for the entering vari-

able remains. Actually, in this situation, we have reached the optimal solution

(and the feasible solution is provided by the current basic feasible dictionary) [7].

Choosing a leaving variable

The way we can increase the value our chosen entering variable is not arbitrary.

The non-negativity of the basic variables imposes an upper bound on the incre-

ment of the entering variable.

Definition 29 (Leaving variable). The leaving variable is a basic variable whose
non-negativity imposes the most stringent upper bound on the increase of the entering
variable.

Let t be the current value of the entering variable xj . To determine the leaving

variable we increase the value t from zero to some positive value maintaining

the values of the remaining nonbasic variables at their zero levels and adjusting

the values of the basic variables so as to preserve the non-negativity of the basic

variables as presented in the current dictionary. As t increases the value of the ba-

sic variable changes until one hits its zero bound and this one will be the leaving

variable. Therefore we have to know the largest possible value of t.
We perform this choice by using the so called minimum ratio test. We choose

k such that − bk

akl
is minimal from all − bi

ail
for i ∈ B, ait < 0. The basic variable

xk will then be the leaving variable.

Note that the choice of k above is again ambiguous and the choice is again

further determined through the use of a pivoting rule (see Section 1.4.4).

Similarly, the issue of not having a suitable choice for the variable arises

again. In this instance, however, it signifies that there is no bound on the in-

crease of the entering variable. Consequently, there are no bounds on the value

of the objective function, rendering the problem unbounded (see 10).
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Pivoting

The final step of an iteration is the step of pivoting or creating a new dictionary. We

will update our basis by adding in the entering variable and removing the leaving

variable.

This step is conceptually simple. We choose the row of the dictionary corre-

sponding to the leaving variable. Using this row we now express the entering

variable using the other variables. We then substitute it to all remaining oc-

currences. Or more formally we add
bk

akl
· ail multiple of the k-th row to i-th

row.

By our definition of the dictionary the leaving variable must have the value

of zero, otherwise the resulting dictionary will not be basic feasible. This require-

ment is however guaranteed by the way we chose it the leaving variable sing

the minumum ratio test.

A.3.3 Problems that can arise

Degeneracy

During the course of the algorithm it may happen that we encounter a point

where we will have a basic solution with one or more basic variables at zero. Such

solutions and the corresponding linear programs are called degenerate. A situation

that forces a degenerate pivot step may occur only for a linear program in which

several feasible bases correspond to a single basic feasible solution. This has aside

effect that an increase of objective function can be zero. Simplex iterations that

do not change the basic solution are also called degenerate. Degeneracy is a rule

rather than an exception in LP problems, it has been said that nearly all problems

from practical applications yield degenerate steps at some stage of the simplex

method [7].

Termination

Next, we present the most troublesome possible case of degenerate iterations. It is

possible for the simplex algorithm to go through an endless sequence of iterations

without finding an optimal solution. The good news is that is is possible to avoid

cycling by using an appropriate pivoting rule (see 21). Moreover cycling is

a rare phenomenon. It is also the only way for the algorithm to fail to terminate

(for details see [7]).
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Two-phase simplex

So far we have discussed only problems with a feasible origin. However, we often

encounter problems that do not have this form. The question then becomes how

to find an initial basic feasible solution. Fortunately we will not have to devise

a specialized algorithm for this and we will be able to use the simplex method

itself to fix this. The idea is to apply the simplex method to an auxiliary problem,

whose solution will give us a feasible solution for our original problem.

Definition 30 (Auxiliary Problem). For a problem in computational standard
form 5

minimize cT x
subject to Ax = b

x ≥ 0

where x ∈ Rn, A ∈ Rm×n, b ∈ Rm. Assume b ≥ 0. We define the auxiliary

problem as

minimize
m∑︂

i=1
xn+i

subject to Ax = b (LP-AUX)

x ≥ 0

where A = (A | Im) and x = (x | xn+1, . . . , xn+m)T .

The auxiliary problem has an apparent basic feasible solution

x = (0, . . . , 0, b1, . . . , bm) ∈ Rn+m

We also observe that if

x = (x1, . . . , xn, 0, . . . , 0) ∈ Rn+m

is a basic solution obtained for (LP-AUX), it is also a basic solution for the original

problem. Consequently, when solving the auxiliary problem results in an objective

value of zero, we have found a basic solution for the original problem. This

outcome is valid only if none of the auxiliary variables are part of the basis.

However, if such variables are present in the basis, they can be removed through

a process called “driving out,” which is elaborated upon in [7].

To summarize, when solving a general LP problem, we will proceed in two

phases:
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• Phase I
We apply the simplex algorithm to an auxiliary LP problem in order to find

an initial feasible solution for the original problem.

• Phase II
We solve the original problem using the basis found in Phase I.

This approached is called the two-phase simplex method.

A.4 Revised Simplex Method
Next we move to the description of the revised simplex method. Conceptually

the revised simplex method follows the exact same pattern as the standard simplex

method. In each iteration we first choose the entering variable, then the leaving

variable and finally update the current basic feasible solution. However, as will be-

come apparent there are some fundamental differences that we are able to exploit

when solving real world problems.

Most notably, we will not be working with dictionaries, which we used to guide

our choice of entering and leaving variables and which we updated after each

iteration. Instead, the only thing we will have available will be the information

about which variables are currently in the basis.

We start with the following observation that will be essential in our description

of the algorithm

For given basis (B, N) we write the system

Ax = b

as

ABxB + ANxN = b

explicitly differentiating between basic and nonbasic variables. Since the matrix

AB is non-singular (see [7]), we are able to express the basic variables as

xB = A−1
B b − A−1

B ANxN (A.1)

We do the same with the objective function z = cT x = cT
BxB + cT

NxN . Substitut-

ing xB we obtain

z = cT
BA−1

B b + (cT
N − cT

BA−1
B AN)xN (A.2)

This, essentially allows us to compute the dictionary we have described in the stan-

dard simplex method for an arbitrary given basis (B, N).
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Note that as xN = 0, we can express the value of the basic variables for the cur-

rent basis as

xB = A−1
B b = B−1b

We shall see that each iteration of the revised simplex method requires solving

two systems of linear equations. Typically, these systems are not solved form

scratch, instead, some device facilitating their solution is used and updated in each

iteration (refer to Section 1.4.5).

Each iteration of the revised simplex method may or may not take less than

that the corresponding iteration of the standard simplex method which depends

on the particular implementation of the revised simplex method and the nature

of the data [7].

A.4.1 Iteration
Choosing the entering variable

In the standard simplex method, the objective function was readily available

in the last row of the dictionary. All we had to do was chose a variable with

a positive coefficient (according to some pivoting rule). However, it is not so

in the revised simplex method.

As in standard simplex method, an entering variable may be any nonbasic

variable with a positive coefficient. As seen in (A.2), the coefficients of nonbasic

variables can be computed as

cN − cT
BB−1AN

We compute this vector by substituting

y = cT
BB−1

and firstly solving the system

yT B = cB

and finally we calculate

cN − yT AN

We then proceed to choose the entering variable just as in the standard simplex

method.

Note that it is possible that individual components of cN − yT AN may be

calculated individually. For nonbasic variable xj corresponding to some coefficient

cj of cN and column a of AN the relevant component equals cj − yT a.

The entering variable may be any nonbasic variable xj for which yT a < cj .

This fact is used in many efficient implementations.

The corresponding column a of A is called the entering column.
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Choosing the leaving variable

In the standard simplex method we did the choosing of the leaving variable using

the minimal ratio test with information readily available in the dictionary.

Using the representation from Equation (A.1) we have

xB = x′
B − B−1ANxN

and so xB changes from x′
B to x′

B − td with d standing for the column of B−1A
that corresponds to the entering variable. Note d = B−1a where a is the entering

column.

We find the largest t such that x∗
B − td ≥ 0 (using the minumum ratio test), if

there is no such t, the problem is unbounded. Let k be the row index that attains

the bound of the minumum ratio test.

Basis update

So far it might seem that this method required too much unnecessary laborious

computation. We might ask whether this was worth it or not. The main speedup

comes from the end of the iteration. Where standard simplex has to do a laborious

update of the whole dictionary, no such computation is needed in the revised

simplex method. We simply add the entering variable and remove the leaving

variable from the basis:

B := (B − {xk}) ∪ {xj}
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Appendix B

Software Usage

B.1 Library Interface
This chapter presents the usage of the glpk-simplex-trace library, a fork

of the GLPK (GNU Linear Programming Kit) Version 4.64 library. This library has

been extended to enable the tracing of basic solutions of the exact simplex algo-

rithm provided with the original distribution. The library builds on the standard

GLPK API; for more details, please refer to the GLPK Manual [30].

The source code complete with installation instructions can be found on Github
at dkubek/glpk-simplex-trace.

The main method for running the solver with tracing is the glp_exact_trace
method. This method takes as arguments a glp_prob object containing

the problem, a glp_smcp object of standard control parameters for GLPK,

and a glp_ssxtrace tracer object. The tracer is then initialized using the

glp_create_ssxtrace method, by supplying it with a glp_stmcp object con-

taining tracer control parameters.

The tracer control parameters are as follows:

• store_mem: Controls whether to store the solution in memory (Phase II

only).

Possible values are:

– GLP_STORE_TRACE_MEM_ON – save solution in memory (default);

– GLP_STORE_TRACE_MEM_OFF – do not save solution in memory.

• objective_trace: Controls whether to store the objective values.

Possible values are:
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– GLP_OBJECTIVE_TRACE_ON – turn tracing of objective values ON (de-

fault);

– GLP_OBJECTIVE_TRACE_OFF – turn tracing of objective values OFF.

• basis_trace: Controls whether to store the values of basic variables.

Possible values are:

– GLP_BASIS_TRACE_ON – turn tracing of basic variable values ON (de-

fault);

– GLP_BASIS_TRACE_OFF – turn tracing of basic variable values OFF.

• status_trace: Controls whether to store the status of variables. Possible

values are:

– GLP_STATUS_TRACE_ON – turn tracing of basic variable values ON

(default);

– GLP_STATUS_TRACE_OFF – turn tracing of basic variable values OFF.

• pivot_rule: Pivoting rule to use.

Possible values are:

– GLP_TRACE_PIVOT_BEST – use the best (largest increase) rule 22;

– GLP_TRACE_PIVOT_BLAND – use Bland’s rule 21;

– GLP_TRACE_PIVOT_DANTZIG – use Dantzig’s (textbook) rule 20 (de-

fault);

– GLP_TRACE_PIVOT_RANDOM – use random rule 23.

• fractionality_bits_trace : Controls whether to only store fractional-

ity bits (intended exclusively for purposes of this thesis)

Possible values are:

– GLP_TRACE_BITS_ONLY_ON – turn tracing of bits ON;

– GLP_TRACE_BITS_ONLY_OFF – turn tracing of bits OFF (default)

• scale : Scale the problem by multiplying the right-hand side by LCM

of denominators (intended primarily for purposes of this thesis).

Possible values are:

– GLP_TRACE_SCALE_ON – turn scaling ON;
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– GLP_TRACE_SCALE_OFF – turn scaling OFF (default).

• X_file_basename (where X is one of objective, status, variable,

info) specifies the file where values are to be stored. If left empty, the values

will not be stored. All values are empty by default.

Note that do not recommend using the store_memory option, as the results

can get very large very quickly even for relatively small problems. It only supports

the phase II and storing the solution to a file is better in almost all cases.

For a small example of how to use the library refer to Listing 1. For a more

complete example refer to dkubek/glpsol_trace.

Listing 1 Example of using the library.

void solve (char* filename ) {
glp_prob *P;
P = glp_create_prob ();

// Use default Simplex Method Control Parameters (SMCP)
glp_smcp params = NULL;

// Read the~ problem from a~file in~an~LP format
glp_read_lp (P, NULL , filename );

// Construct initial basis
glp_adv_basis (P, 0);

// Use Simplex Trace Method Control Parameters to~ default
glp_stmcp trace_params = GLP_DEFAULT_STMCP ;

// Create a~trace object for~ storing information
glp_ssxtrace * trace = glp_create_ssxtrace (& trace_params );

// Solve using trace
glp_exact_trace (P, &params , trace );

// Cleanup
glp_ssxtrace_free (trace );
glp_delete_prob (P);

}

B.2 CLI Tool Usage

glpsol_trace
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glpsol_trace <MODEL_FILENAME > [ OPTION ...]

The available options are:

• –lp: Specifies the input type of MODEL_FILENAME to be the CPLEX LP

format.

• –mps: Specifies the input type of MODEL_FILENAME to be (FREE) MPS for-

mat.

• –pivot <RULE>: Specifies the pivoting rule to use. Available options

for RULE are dantzig, bland, best, and random.

• –info-file <FILENAME>: Specifies the file where to store problem infor-

mation and final solution.

• –obj-file <FILENAME>: Specifies the file where to store the trace of ob-

jective values.

• –status-file <FILENAME>: Specifies the file where to store the trace

of variable status.

• –var-file <FILENAME>: Specifies the file where to store the trace of vari-

able values.

• -h, –help: Print usage.

Additional options used mostly for internal purposes are:

• –info: Print problem info and exit.

• –bits-only: Print the number of fractionality bits only.

• –scale: Scale the problem to have integral RHS.

convert_problem

convert_problem [ OPTIONS ]

The available options are:
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• -i, –input <file>: Specify input filename.

• -f, –format <type>: Specify format type (s/c/p/o/d/u/m) for the Graph

library.

• -o, –output <file>: Specify output filename.

• -t, –out-format <fmt>: Specify output format mps/json (default: mps).

• -h, –help: Display this help message and exit.

One additional option used for internal purposes is:

• -c, –check-cost: Enable checking unified cost. This checks whether every

arc has the same cost for all commodities.

The source code complete with installation instructions and example usage

can be found on Github at dkubek/glpsol_trace.

B.3 Output Format

In this section, we describe the format of the output files. The output format

of a rational number is either an integer or two integers separated by a slash “/”.

The status of a variable can be one of five possible values:

• 1 – basic variable

• 2 – non-basic variable on lower bound

• 3 – non-basic variable on upper bound

• 4 – non-basic free (unbounded) variable

• 5 – non-basic fixed variable

A variable can be either logical or structural (for more information on struc-

tural and logical variables, refer to the GLPK Manual [30]).
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B.3.1 Info File Format
The info file output is split into two sections. The first section is right at the be-

ginning of the file, with each line containing a “key : value” pair. The possible

values listed are:

• rows: The number of rows of the problem matrix. Also represents the num-

ber of logical variables.

• cols: The number of columns of the problem matrix. Also represents

the number of structural variables.

• nonzeros: The number of nonzero values in the problem matrix.

• iterations: The number of iterations needed to solve the problem.

• status: The exit status of the solution.

• objective: The final objective value as a rational.

• scale (optional): Integer by which the problem has been scaled (if the “–

scale” option has been used). Dividing the objective value by this number

yields the objective value of the original problem.

The second part is delimited by:

--- BEGIN VARIABLES (TYPE -NAME -STATUS - VALUE) ---
...
--- END VARIABLES ---

Each line in this section contains three values separated by space in the order

type, name, status, value. The meaning of the field is as follows:

• type denotes whether the variable is logical (l) or structural (s);

• name denotes the name of the variable;

• status denotes the final status of the variable;

• value denotes the final value of the variable.
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B.3.2 Var File Format
The i-th line of the variable file contains a list of rational numbers separated

by space, representing the values of the variables in the i-th iteration. The order

of variables is as defined in the info file.

B.3.3 Obj File Format
The i-th line contains a single rational number representing the objective value

in the i-th iteration.

B.3.4 Status File Format
The i-th line of the variable file contains a list of integers separated by space,

representing the status of the variables in the i-th iteration. The order of variables

is as defined in the info file.
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