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Autor: Jakub Růžička
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Introduction
Speech is a natural way of expressing our needs and receiving information. Today
we are taking advantage of the progress achieved in natural language processing
and increasingly communicate with our devices using voice. We can ask our
devices to initiate a phone call while performing other tasks, such as driving a
car or cooking lunch.

We say our request, and the voice assistant processes it and responds to us.
This interaction, belonging to the domain of dialogue systems, has three main
parts: Processing the user input, resolving the request, and answering the user.
For more on this topic, we recommend McTear (2020).

This work will focus on the part where the assistant responds, specifically on
preparing the message to be read out by a speech synthesizer. Today the responses
from the assistants seem very natural to us because of significant advances in
neural network (NN) models used for text-to-speech (TTS) synthesis (Kaur and
Singh, 2022).

The first part of a TTS pipeline – text preparation or text preprocessing –
includes, among other things, normalization of text. One of the main tasks of nor-
malization is the transformation of abbreviations and numbers into their spoken
form (Zhang et al., 2019). This process removes many special cases a synthesizer
would struggle to deal with. For example, 42 is expanded to forty-two; there-
fore, the synthesizer can read it as a regular word. The task has an additional
challenge in morphologically rich languages such as Czech, where the correct form
depends on context. See Table 1.2 for examples.

This thesis aims to implement and evaluate a module for generating num-
bers for Czech in spoken form. The scope of the thesis also includes complex
forms containing numbers such as dates. The development is done in collabora-
tion with The Mama AI,1 where the module will be used in their TTS system.
The Mama AI provided the public API design for our module and supported the
author with countless consultations. Nevertheless, the herein described imple-
mentation is purely the work of the author.

We set the goal to create a Czech normalization module for at least cardinal
numbers, ordinal numbers, decimal numbers, dates, times, measures, and money
and evaluate the performance.

The text of the thesis is structured as follows: In Chapter 1, we will dive into
text normalization. Chapter 2 introduces all the theory used during implemen-
tation and evaluation. In Chapter 3, we present our design and implementation
for the Czech text normalization task. Chapter 4 describes the data used for
development and evaluation. Finally, Chapter 5 concludes the thesis with a sum-
mary of the results obtained and comparing the system with the Google TTS for
Czech.

1https://themama.ai/
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1. Text normalization
In this chapter, we present the task of text normalization (Section 1.1) and intro-
duce semiotic classes of expressions that frequently require normalization (Sec-
tion 1.2). We also discuss the general challenges of text normalization and show
difficulties that may arise specifically in Czech or other morphologically rich lan-
guages (Section 1.3).

1.1 Task of the text normalization
From the point of view of TTS, an ideal text would consist only of fully spelled
out words or names, and these spellings would be unambiguous, so that it would
be clear from the written text which exact word was intended. Following Sproat
et al. (2001), we name these fully spelled out expressions standard words. Un-
fortunately, texts often contain so-called non-standard words (NSWs) in addition
to common words and names. These include numbers, abbreviations, acronyms,
and all ideographic1 words. This introduces ambiguity when converting the text
into a spoken form: Take 123, for example; it should be read as one hundred
twenty-three in 123 pages, but as one twenty-three in 123 King Ave. Other
examples of NSWs are presented in Figure 1.1.

Replacing NSWs with the contextually appropriate standard word or sequence
of words is the task of text normalization. This process is necessary for automatic
speech recognition (ASR) and text-to-speech (TTS) systems (Sproat et al., 2001).
Based on the intended usage, we can further divide the text normalization task
into social media and TTS domains.

1.1.1 Social media
A category that has received much attention in recent years is the normalization
of social media texts – Hassan and Menezes (2013), Clark and Araki (2011), and
Baldwin and Li (2015).

The main concerns of this domain are unintentional typographical errors and
intentional non-canonical language, such as word-lengthening by duplication of
characters. As this is not of interest to this thesis, we present only a few examples2

to show the main idea, without discussing the topic deeper:

• abbreviation (“iirc” for “if I remember correctly”),

• internet slang (“that was well mint” for “that was very good”),

• phonetic substitutions and creative use of language (“gr8” for “great”),

• disguised vulgarities (“f***”),
1Representing an idea or concept directly, independent of any particular language, and

specific words or phrases. For instance, 20 kg is an ideograph representing the concept of 20
kilograms. The pronunciation may differ between languages – “twenty kilograms” in English,
but “dvacet kilogramů” in Czech. That is the difference from etc. representing the exact
phrase “Et cetera” albeit in an abbreviated form.

2The examples are inspired by Clark and Araki (2011).
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• wordplay (“slooooow” for “slow”),

• emoticons (“:)” for a smiling face emoji),

• omitted punctuation (“Im” for “I’m”).

We refer the reader to the works cited above for a more detailed explanation.

1.1.2 Text-to-speech
One of the main differences between the TTS domain and social media text
normalization is that some expressions, including most numerals, may be left un-
normalized in information extraction from social media. However, normalization
of such words is essential for TTS systems. On the other hand, the TTS normal-
ization does not have to address all the phenomena from social media, as they
can be directly pronounced.

Examples of sentences containing NSWs that need to be handled by TTS are
shown in Figure 1.1. The first sentence is quite unambiguous. Czech crowns and
billions are expanded, even though these may also be written in an abbreviated
form. This is typical for newswire texts, where the clarity of the text is of concern.
The second sentence is taken from Wikipedia, where number words and formulae
are more frequent. Moreover, the precision is more important than the readability,
and therefore the text is more prone to containing grammatically non-standard
variants. According to Czech standard orthography, there should be no space
between 40 and %. The last example is from an advertisement, where NSWs
tend to be frequently used.

(1) Ministerstvo očekává, že takto vybere 25 miliard korun.
Ministry expects that this way it-collects 25 billion crowns.
‘The ministry expects to collect 25 billion Czech crowns in this way.’

(2) Reaguje s 40 % H2SO4
Reacts with 40 % H2SO4
‘Reacts with 40% H2SO4’

(3) Kup cca 500 g za 125 Kč
Buy cca 500 g for 125 Kč
‘Buy ca. 500g for 125 CZK’

Figure 1.1: Examples containing NSWs (in bold) from various domains.

A TTS text normalization system should cope with all of these cases and
provide the correct spoken form. Before discussing the challenges, we will define
the semiotic class.

1.2 Semiotic classes of non-standard words
For text normalization, it is helpful to divide the possible cases into groups with
similar characteristics. In our text, we will use the term semiotic class to refer
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to a categorical division of non-standard words (NSWs) defined by Taylor (2009,
p. 93–95). Two taxonomies were introduced by Sproat et al. (2001) and van Esch
and Sproat (2017). The latter extends the former and updates it to account for
the changing form of texts on the internet.

The taxonomy we consider for domain-general normalization is shown in Ta-
ble 1.1. In addition to selected classes taken over from van Esch and Sproat
(2017), we include a new class labeled with suffix, i.e., expressions combining a
numeral with a suffix, expressing a unit or substance. An example is 15krát
meaning “15 times”. We added this class as we found it appropriate to have a
separate class for this phenomenon, occurring in Czech and most other Slavic
languages. The percentage, having an extra class in the original taxonomy is
considered as part of the measure class.

Tokens are divided into three main categories: alphabetical, numeric, and
miscellaneous. Within each category, tokens are subdivided depending on their
verbalization and functional considerations of how the token is used. Note that
some classes are not represented directly but are part of another class – e.g., Ro-
man numerals belong to cardinal or ordinal numbers, depending on the context.
Classes implemented by our solution in Chapter 3 are indicated in bold.

1.3 Challenges
We are facing several challenges when trying to normalize the text and number
formats in particular. Firstly, we discuss the problems of accuracy, we continue
with unrecoverable errors, and insufficient data, which are present in almost all
languages. We conclude with morphological agreement, which arises as a problem
in morphologically rich languages, including Czech.

1.3.1 Accuracy
An essential question for each system is the threshold from which the system
is usable in the praxis. In applications such as automatic generation of video
subtitles, we can also deploy the system when occasional errors occur. However,
even low error rates cannot be tolerated in the case of navigational systems of a
self-driving vehicle.

TTS systems are often among those where even rare errors are not tolerated.
Moreover, the user expectations tend to be high. As mentioned by Ebden and
Sproat (2015):

“...if the system gets it wrong, listeners will immediately notice. In
that case, it does not matter how good the voice quality is: at best,
the system will sound like a stupid reader who happened to have a
pleasant-sounding voice”

1.3.2 Unrecoverable errors
Unrecoverable errors are defined as linguistically coherent but not semantics-
preserving (Zhang et al., 2019). An example may be normalizing 200 € as “two

6



Category Class Examples

alphabetical abbreviation etc.
letter sequence OSN, EU
read as word NATO
misspelling geogaphy
verbatim #, *, =

numeric cardinal 12, +45, -12
ordinal 1., 123.
decimal 13,15 or 3,1415
date 12.12.2021, 7/4/2000
time 3:20, 19.45
measure 200 km, 40 Hz, 15 %
money 1000 CZK, 0 Kč
telephone +420604586567
identifier 042
mixed x220, 1080i50
street address Nerudova 42
score 4:5, 45:15
with suffix 24x, 20krát (20 times)
chemical formulae H2SO4
mathematical expressions 4 × 6−2

fractions and ratios 3:2, 4/5
miscellaneous funny spelling slooow

should be ignored formatting symbols
URL, Pathname, Email www.mff.cuni.cz

Table 1.1: Non-standard words divided into semiotic classes based on van Esch
and Sproat (2017) and updated by us for Czech language. Bold text denotes
semiotic classes addressed by our toolkit, as described in Section 3.3.

hundred pounds”. This type of error is not specific to the text normalization; for
instance, we can also find it in the machine translation task.3

Consider the following situations. A TTS system reads Take the 3rd exit
as “Take the three exit”, the user will undoubtedly notice that the response
is grammatically incorrect and therefore sounds unnatural, but will probably
understand the meaning. Nevertheless, if the system says “Take the fourth exit”,
the user is misinformed and has no way of finding out.

This is also a problem when using accuracy as an evaluation metric (Sec-
tion 2.2) because it simply cannot capture that not all mistakes are equally for-
givable, and therefore a thorough error analysis is needed.

3Also named catastrophic errors. Consult Specia et al. (2020) for the current approaches on
how these errors are mitigated in machine translation.
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1.3.3 Insufficient amount of data
Today, most linguistic tasks are solved using machine learning models. This
approach has the advantage of learning from data and removing the manual labor
of crafting rules for these tasks. Nevertheless, at the same time, obtaining training
data may be a problem. For state-of-the-art models such as BERT (Devlin et al.,
2018) or T5 (Xue et al., 2020), large datasets are usually needed.

Moreover, there is a fundamental difference in collecting data for text normal-
ization from, for example, machine translation, which is trained using parallel
corpora. The emergence of translations included in parallel training corpora for
machine translation is natural. On the other hand, datasets for text normaliza-
tion must be specifically created or collected.

For social media text normalization (see Section 1.1.1), several training cor-
pora exist – Clark and Araki (2011), Pennell and Liu (2011), and Yang and
Eisenstein (2013). These include alternative spellings of words, such as slooow,
but do not include numbers that need to be transformed into spoken form.

For TTS normalization, English and Russian datasets were created for the
Google Text Normalization Challenge4 presented in Sproat and Jaitly (2016),
based on Google’s internal text normalization system. As the creation of datasets
for the text normalization task is expensive, datasets are usually not publicly
available for other languages.

1.3.4 Morphological agreement
As NSWs are abbreviated in nature, they typically omit any morphological in-
flection. The inflection, which is crucial for TTS, cannot be extracted easily and
must be inferred from context. This is especially true for ideograms. We can
observe this in English to some extent, where 1 kg should be pronounced as “one
kilogram”, and with higher integers, the plural form “kilograms” should be used.
However, the difficulty is most apparent in languages with a rich nominal inflec-
tion system, such as Czech, Polish or Russian. As opposed to English, where 2
is always spoken as “two”, in Czech, multiple valid spoken forms exist based on
the context (see Table 1.2).

Sentence in Czech Normalized sentence English translation Normalized translation
Vid́ım 2 psy. Vid́ım dva psy. I see 2 dogs. I see two dogs.

Vid́ım 2 kočky. Vid́ım dvě kočky. I see 2 cats. I see two cats.
S 2 psy. S dvěma psy. With 2 dogs. With two dogs.

Bez 2 dět́ı. S dvou dět́ı. Without 2 children. Without two children.

Table 1.2: The difference in morphological complexity arising in text normaliza-
tion for Czech and English.

4https://www.kaggle.com/datasets/google-nlu/text-normalization
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2. Theoretical background
This chapter introduces essential theoretical concepts used in the implementation
and evaluation of our normalization module. We begin with a discussion of ex-
isting systems and approaches for text normalization (Section 2.1). We continue
with a brief description of the evaluation metrics used (Section 2.2). Finally, we
present two concepts used in our implementation (see Chapter 3): finite-state
machines (Section 2.3) and language models (LMs) (Section 2.4).

2.1 Related work
Text normalization has been part of TTS systems since the first deployments.
Initially, hand-made rules were used. These developed into systems combining
rules with a language model. Our implementation also falls into this category.
The latest research focuses on neural networks.

2.1.1 Non-neural approaches
The first systematic research was presented by Sproat (1997), where the whole
process of TTS-synthesis is solved using the weighted finite-state transducer
(WFST) (Section 2.3). The architecture consists of two parts; Lexical analy-
sis phase, which converts input text into a sequence of words with possible an-
notations, and Grapheme to phoneme phase, transforming words into phones.
The Lexical analysis outputs all possible lexical categories for each word. To re-
move contextually inappropriate variants, language model transducers were used.
These were derived from rules and other linguistic descriptions that apply to con-
texts wider than the lexical word. Newly introduced was the usage of WFST
for digit and abbreviation expansion during the lexical analysis (in addition to
WFST application to morphology, phonology and syntax).

The Kestrel system (Ebden and Sproat, 2015) focused purely on text normal-
ization instead of the whole text-to-speech synthesis task. There are two main
differences from the previous systems. The first is the usage of a morphosyntac-
tic tagger instead of language model transducers. Still all possible forms marked
with their lexical categories are generated using a WFST and only at the end, the
correct variant is selected using the tagger. The second difference is splitting the
normalization into two stages. The first stage TokenizeAndClassify transforms
the input text into tokens, where each token is classified into one of the semiotic
classes (see Section 1.2). Based on the assigned class, the second stage Verbalize
produces the normalized form. Part of the Kestrel system was released under the
name Sparrowhawk.1

In 2019 a normalization system for Polish2 was published by Poswiata and
Perelkiewicz (2019). The architecture takes advantage of the existing Polish mor-
phological tagger (Wróbel, 2017), which is able to determine the morphosyntactic
categories for numeric tokens. But in contrast to previous use of tagger in Kestrel

1https://github.com/google/sparrowhawk
2Note that Polish and Czech are pretty similar concerning complexity. Furthermore, there

are no large dedicated datasets available for either.
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(Ebden and Sproat, 2015), morphological tagging is performed as a second step
after text tokenization. This allows the following components to generate just a
single normalization variant. Training the tagger on the National Corpus of Pol-
ish (Przepiórkowski, 2012) data was possible because morphological categories are
annotated for numeric tokens. This is different in Czech corpora, which typically
use the Czech positional morphological annotation (Hajic, 2004). This includes
the Prague Dependency Treebank (Hajic et al., 2006) and the Czech National
Corpus,3 where morphological categories for numeric tokens are omitted.

A recent approach proposed by Tyagi et al. (2021) builds on granular tok-
enization and two types of semiotic classes: (1) manually created classes capture
the most frequent semiotic classes, and (2) automatic classes are learned from
data. The tokenization starts by splitting at whitespace and then further on
changes in the unicode class. Therefore, complex tokens such as dates are split
into multiple consecutive tokens.

Each class defines which tokens it accepts and one particular way of translation
for the accepted tokens. The whole task of text normalization is then regarded as
a sentence tagging problem. There may be multiple matching classes for a single
token. On that end, the authors stated:

“In such cases of multiple matching classes, we pick the least frequent
class to increase the representation of infrequent classes. This com-
pensates for the imbalance present in the proportion of classes in the
training set.”

Whether this approach yields good results is not discussed in the paper and
is left for further research. Note that for morphologically rich languages, there
would be a separate class for each set of morphological properties.

2.1.2 Neural approaches
Since the year 2016, in which the Text Normalization Challenge competition was
held, the task attracted more attention and early attempts to utilize the neural
networks for this task were suggested (Sproat and Jaitly, 2016). The competition
was separated into two subcompetitions; one for English text4 as a representative
of a morphologically simple language and one for Russian5 as an example of a
language with complex morphology.

Two different architectures were presented by Sproat and Jaitly (2016). The
first consist of two long short-term memory (LSTM) based models: The first a
bidirectional sequence-to-sequence model, called the channel, generates the pos-
sible normalizations and their probabilities, and the second, called the language
model, chooses the correct normalization in the given context. During decoding,
any channel model output with a high probability (more than 98%) is directly
chosen. Also, outputs with a probability of less than 5% are pruned. Finally,
only the first n options are left if the channel model outputs multiple variants.
The language model is then used for selecting the correct variant in the context.

3https://www.korpus.cz/
4https://www.kaggle.com/c/text-normalization-challenge-english-language
5https://www.kaggle.com/c/text-normalization-challenge-russian-language
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The second architecture is attention-based (Mnih et al., 2014) sequence-to-
sequence model. Each token is placed in a window with three words to the left
and three to the right, and the to-be-normalized tokens are marked in the input
text.

Finite-state filters, i.e., rule-based systems generating possible verbalizations,
are presented as an option to prevent the models from producing unrecoverable
errors (Section 1.3.2).

The normalization task might seem like a simpler version of machine trans-
lation, where most words remain unmodified. Unfortunately, this is not true, as
mentioned by Zhang et al. (2019). Applying state-of-the-art architectures for ma-
chine translation does not produce satisfactory results in the text normalization
task, and specialized architectures are needed.

Zhang et al. (2019) thus introduce a specialized architecture for normalization
based on gated recurrent units (GRUs). The targeted problem is that both the
input and output are whole sentences,6 which makes it much more challenging to
correct the errors since it is hard to reconstruct, which output token(s) correspond
to which input token(s). This motivates the authors to treat each token sepa-
rately. The idea is to encode the left and right context into vectors using gated
recurrent unit (GRU) (Cho et al., 2014) and then generate the normalized text
for the token from the token itself and the context vectors using a bidirectional
encoder GRU.

The described architectures based on deep recurrent neural networks (RNNs)
achieve excellent results. Their significant advantage is the ability to learn from
data and the possibility of using the same architecture for multiple languages.

However, using other solely machine-based solutions in real applications is
complicated by two problems in particular, the lack of annotated data and the
unrecoverable errors, as discussed in Section 1.3. Unrecoverable errors prevent di-
rect use of neural models for text normalization, even in languages with sufficient
data.

To avoid unrecoverable errors, covering grammars were introduced by Gor-
man and Sproat (2016) and Ng et al. (2017). A neural model generates a nor-
malization of a NSW, and a hand-written grammar runs in parallel. The output
of the grammar limits the possible outputs from the neural model, thus guar-
anteeing semantic accuracy. Moreover, the covering grammar is fundamentally
language-universal, i.e., the developer only provides a lexicon of verbalizations
for individual terms (e.g., how PM is spelled out). On the other hand, covering
grammars produce a large number of disfluent variants and are thus unsuitable
for direct use for the task of text normalization.

2.2 Evaluation metrics
Multiple evaluation metrics have been adopted for the text normalization task
(Gorman and Sproat, 2016; Poswiata and Perelkiewicz, 2019; Tyagi et al., 2021).
The sentence error rate (SER) and word error rate (WER) are the most prominent
ones. Both are measured against reference sentences. The sentence error rate is

6Such tasks and corresponding architectures are called sequence-to-sequence problems and
architectures, respectively.

11



defined as:
SER = Wrong sentences

Total number of sentences .

If the expected and evaluated sentences differ, even in a single token, the sentence
is classified as wrong. The advantage of this metric is that it is easy to measure if
reference texts are available. On the other hand, in most cases, we cannot get the
accuracy per semiotic class as sentences may contain NSWs from multiple classes;
therefore, this metric is not ideal for error discussion. A sentence accuracy as a
complementary value to SER is also frequently used.

Another common option is the word error rate, derived from the Levenshtein
distance and can be computed as:

WER = Substitutions + Deletions + Insertions
Number of Words .

In this metric, we must realize that most words go through unnormalized in a
standard text. To accommodate this, we can use the number of words needing
normalization instead of the total number of words in the denominator.

The third option is computing accuracy per semiotic class. For this, token-
level semiotic class annotations are, of course, needed. Results provide us with
more information: We know which classes are good enough and which should be
worked on.

2.3 Finite-state machines
In this section, the finite-state machines used in our implementation are intro-
duced in the form of examples. We start from a basic finite-state machine and
generalize the concept up to a weighted finite-state transducer (WFST). We rec-
ommend Gorman and Sproat (2021) for a more detailed description.

2.3.1 State machines
A state machine is an abstraction described solely in terms of a set of states and
oriented arcs, which represent transitions between those states. Each machine
must have an initial state and may or may not have a final state. The state can
be viewed as a memory of the machine, and the arcs as the operations.

Figure 2.1 shows an example of a state machine with two states (Locked,
Unlocked), and three arcs. Such an finite-state machine represents a turnstile.
The machine is initially in the Locked state. If the turnstile is pushed in this state,
nothing happens. When a coin is inserted, the state changes to the Unlocked
state, now if we push, we can pass it, and then the turnstile locks again.

2.3.2 Weighted finite-state acceptor
We now extend the finite-state machine idea to get a finite-state acceptor (FSA)
and then further to obtain weighted finite-state acceptor (WFSA). The aim of
a finite-state acceptor is to determine whether an input text corresponds to a
particular pattern. The same can be achieved using a regular expressions. The

12



Lockedstart Unlocked

insert coin

push

push

Figure 2.1: Example of a turnstile finite-state machine. The initial state is de-
noted with an arrow labeled “start” and there is no final state. The arcs are
labeled with action descriptions.

FSA accepts the input, i.e., the input fulfills the pattern, if there is a path starting
in the initial state and reaching the final state while reading the input string.

WFSAs allow the addition of weights to individual transitions and can be
viewed as state machines where every arc is associated with an operation and a
weight. Our goal is to find the shortest path or all paths from the initial to the
final state. Path length is typically defined in terms of edge weights, such as a
multiple of all edge weights along a path.

Instead of rigorously defining the WFSA (see details in Gorman and Sproat
(2021)), we present an example in Figure 2.2.

The example WFSA accepts time fomat strings in the shape hh : mm. To
demonstrate the WFSA’s operation, let us assume that we want to check whether
the string 02:11 satisfies the pattern. We start in the initial state S, then read
the first symbol of our text 0. From the text over the edges, we can see that
0 takes us to the state h. We continue reading the second symbol 2. The edge
from h accepts all digits; therefore, we can take it and are in state hh. Now we
read the colon and get to the state : . Then we continue in the same style. After
we read all the characters from the input text, we end up in the final state mm.
Therefore, our automaton accepts the text.

If we try reading symbols not present on any outgoing edges, we are not
accepting the text. An example of non-accepted inputs are 01:2a, 34:11 or en.

Note that the weights in the example WFSA are trivial (all equal to 1). The
use case for them is in case multiple paths exist from the initial to the final state.
The weights are used to assign a score to each path through the automaton. The
final score of a path is a function of the weights of the edges taken. If we take the
sum as a function, the score of the above-mentioned example 02:11 would be 5.

2.3.3 Weighted finite-state transducer
The weighted finite-state acceptor can be further generalized to a weighted finite-
state transducer (WFST). The main difference is that in a transducer, we can
rewrite the text using rewrite rules that are tied to the edge transitions. We apply
all the rules encountered during the best pass through the automaton. The result
of the operation is then not only accepted or refused, but we get the output text
capturing all the updates made by the individual edges.

In the example in Figure 2.3, we introduce a transducer for rewriting a number
consisting of three digits to a text where single digits are transformed into their

13



Sstart h hh : m mm

[0–1]/1

[20–24]/1

[0–9]/1
:/1

[0–5]/1 [0–9]/1

Figure 2.2: Example of a weighted finite-state acceptor for accepting time fomat
strings in the shape hh : mm. The final state is, by convention, denoted by a
double-struck line. Arcs labels consists of symbols and weights separated by a
slash.

spoken form. To simplify the figure, we expect the digits to be just 1,2,3.

Sstart d dd ddd

1:one/1
2:two/1

3:three/1

1:one/1
2:two/1

3:three/1

1:one/1
2:two/1

3:three/1

Figure 2.3: Example of a weighted finite-state transducer. Rewrite rules are
shown in the form “input:output/weight”. For instance, 123 gets rewritten into
“one two three”.

2.4 Language models
Language models are statistical models that assign probabilities to sequences of
words. The first language models were based on n-gram models (Shannon, 1948),
which given a context of N −1 words, predict the most probable word that follows.
These were followed by the architectures based on RNNs (Mikolov et al., 2010).
RNNs (Hochreiter and Schmidhuber, 1997) are designed to take sequences of text
as inputs or return sequences of text as outputs, or both. The name recurrent
comes from the fact that the output and state from each time step is used as
input for the next one.

The RNN architectures were improved using the attention mechanism pro-
posed by Bahdanau et al. (2015). This mechanism allows the model to choose
how much “attention” to give to each input, depending on the current computa-
tion step. Given the success of the attention mechanism, new architecture called
Transformer was introduced (Vaswani et al., 2017). The Transformer uses atten-
tion and fully connected layers to process input sequences. The main advantage
of Transformers over RNN with attention is that they can be trained in parallel
and are therefore faster to train.

The Transformer architecture is the basis of most of today’s so-called pre-
trained language models – BERT (Devlin et al., 2018), RoBERTa (Liu et al.,
2019), GPT-2 (Radford et al., 2019), T5 (Raffel et al., 2019) and more. These
are trained on vast datasets in a self-supervised fashion (i.e., no annotated data
was used for the training, only raw texts). During this process, the language
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model learns an internal representation of the language and can be further fine-
tuned to a specific task, but this time on a significantly smaller dataset.

These models are further divided based on the mode of training. The Masked
models are trained by guessing masked (removed) words from the sentence.

On the other hand, for Causal models such as GPT-2 (Radford et al., 2019),
the objective is different. Given a sequence of tokens, their task is to predict the
next token. Therefore only the left context is available as opposed to masked
models, where the sentence context can be used to predict the masked word.

It is important to mention, given our use of the language model in Chapter 3,
that causal models are more straightforward for computing the probability of a
sentence.
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3. Implementation
In this chapter, we present the architecture of our system, enclosed as Attach-
ment A.1, along with the decisions that motivated each design approach. We
start with a high-level architecture overview (Section 3.1). Then we present the
selected programming environment (Section 3.2), list of and changes made com-
pared to the theoretical division of semiotic classes (Section 3.3). We continue
with a detailed description of the individual components of the system (Sec-
tion 3.4–Section 3.8). At the end, the development dataset is briefly introduced
(Section 3.9)

3.1 System Architecture
The current version contains four components: preprocessor, tokenizer & clas-
sifier, verbalizer, and ranking module. The architecture diagram is shown in
Figure 3.1.

1. The input text is first processed by the preprocessor (Section 3.4), the
purpose of which is to standardize the text (e.g., quotation marks) and
clear text from formatting symbols (e.g., end of line). We refer to the
preprocessor result as standardized text because we need to distinguish it
from the result of the entire pipeline, which we call normalized text.

2. The standardized text is passed for tokenization (Section 3.5) and classifica-
tion (Section 3.6), which are done in a single step. The text is divided into
tokens suitable for further processing, and each token is assigned a semiotic
class.

3. Tokens are further processed by a verbalizer (Section 3.7) that assigns pos-
sible pronunciations (verbalizations) to each token requiring normalization
depending on its class.

4. The last step is the selection of the context-appropriate variant from the
generated options. The ranking module (Section 3.8) scores each option;
the lower the score the better the option.

Although none of the individual steps used are new, we are not aware of any
system using the same architecture as ours. From the Kestrel design (Ebden and
Sproat, 2015), we adopted the combination of tokenizer and classifier into one step
and separation of this step from the subsequent verbalization. The use of finite-
state machines (Section 2.3) in the implementation of these steps has also been
used in the past. We chose to generate possible spoken forms using rule-based
finite-state automata over neural networks (NNs) due to unrecoverable errors and
lack of training data (both described in Section 1.3). Compared to the Kestrel
architecture, we add an explicit preprocessing component that performs symbol
standardization. Furthermore, since we do not have a suitable morphological
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Preprocessor

Verbalizer

Ranking module

S 5 bratry

S 5 bratry

[(S, plain), (5, cardinal), (bratry, plain)]

[(S, plain), ([pět, pěti], cardinal), (bratry, plain)]

[(S, plain), ([(pět, 7.05), (pěti, 5.42)], cardinal), (bratry, plain)]
S pěti bratry

Tokenizer & Classifier

Figure 3.1: A high-level overview of the architecture with a Czech example of
the data generated by the individual components. The same sentence is used as
a running example when describing the individual components in the following
sections. The sentence means “With five brothers”, where “With” corresponds
to “S”, “five” to “pět” or “pěti” and “brothers” to “bratry”.

tagger1 available for Czech, we use a neural language model (Section 2.4), with
the GPT-2 architecture, to rank the individual variants. The architecture also
allows running without the ranking step and can generate output with fixed
morphological properties for each class.

As we were trying to make the individual components independent, it was
a natural solution to have stateless components and all normalization data ex-
tracted into a data class that the individual components modify.

The state of the normalization is kept in NormalizerData, containing the
original text, standardized text – a result of preprocessor – and tokens. Each
token consists of the original word, the semiotic class (Section 1.2) it belongs
to, a span in the standardized text, and verbalizations with their scores. Note
that the normalized text is not explicitly part of the class, as this can easily be
obtained by replacing the tokens with their verbalizations in the standardized
sentence.

3.2 Programming Environment
The first task was to choose a suitable programming language. We came up with
two choices from our initial research: Python and C++. We have chosen Python
because of its easy connectivity with machine learning and computational linguis-
tics libraries. Furthermore, the WFSTs can be defined and compiled in Python

1Morphological tagger is a tool that assigns morphological tags to each word in a text,
indicating its grammatical properties such as tense, grammatical case, number, and gender
(Abney, 1997).
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Our implementation Original division
Cardinal cardinal
Ordinal ordinal
Decimal decimal
Date date
Time time
Measure measure, percentage
Money money
Roman cardinal or ordinal
Score score
Telephone telephone
With suffix with suffix
Identifier identifier
Mixed mixed

Table 3.1: Overview of the implemented semiotic classes and the reference to the
theoretical division presented in Table 1.1.

thanks to the Pynini2 library, which is the most advanced library to work with
WFSTs, based on the comparison presented by Gorman (2016). For the language
model, we used PyTorch3 in combination with HuggingFace Transformers.4

3.3 Changes in semiotic classes
During the actual implementation, we made several changes from the original
theoretical division into semiotic classes (Table 1.1). An overview of the cate-
gories we implemented, including a reference to the original division, is given in
Table 3.1. Firstly, the alphabetic and miscellaneous categories were not part of
our focus, so we omitted them entirely. Also street addresses, chemical formulae,
mathematical expressions, and fractions and rations were not included in our im-
plementation. We merged percentages into the measure class because the use of
both of these categories seems to behave identically in Czech.

On the other hand, we chose to have a separate category for Roman numerals.
Although they are verbalized in the same way as cardinal or ordinal, they must
first be correctly recognized in the input text, and therefore it is beneficial to
study them as a separate class.

3.4 Preprocessor
The goal of the preprocessor is to prepare the text for subsequent processing, so
that we save ourselves from dealing with special cases irrelevant to our task in
later stages. The current version contains a few dozen rules we created to replace
different types of quotes, spaces, and dashes with uniform variants and to remove
non-printable characters and formatting symbols.

2https://www.openfst.org/twiki/bin/view/GRM/Pynini
3https://pypi.org/project/torch/
4https://pypi.org/project/transformers/

18

https://www.openfst.org/twiki/bin/view/GRM/Pynini
https://pypi.org/project/torch/
https://pypi.org/project/transformers/


S 5 bratry

↱

With 5 brothers

↱ → S 5 bratry
With 5 brothers

Figure 3.2: Preprocessing example, where the left sentence is transformed into the
right one. The ↱symbolizes a new line, which is stripped during the preprocessing.
This and all the following examples in this chapter contain the original Czech text
with a literal translation into English.

3.5 Tokenizer
The task of the tokenizer is to divide the input text into individual tokens, and
our goal is to make the individual tokens form a meaningful parts for subse-
quent components. The usual choice is to use an existing tool, such as Natural
Language Toolkit (NLTK)5 or split the text on spaces and then further on the
boundary of Unicode classes. The disadvantage of these options is the need to
merge some tokens afterward, as numerical expressions tend to include different
Unicode classes and need to be processed as a whole. An example is merging
1,/,1,/,2021 back into 1/1/2021 so that the token can be further processed as a
date. Therefore, our implementation combines tokenization with the subsequent
classification (see Section 3.6).

[ S, 5, bratry ]
With 5 brothers

Figure 3.3: Tokenization example. For this and all the following examples in
this chapter, the input is omitted as it corresponds to the output of the previous
component.

3.6 Classifier
The classifier should determine each token’s category (one of the semiotic classes
for NSWs defined in Section 1.2 or plain if the token does not need a normaliza-
tion).

We have implemented two classifiers. The first one is based on WFSTs (see
details below in Section 3.6.1), whose main characteristic is assigning each token
into just one category, and tokens cannot overlap.

The second one is based on regular expressions (Section 3.6.2), allowing over-
lapping tokens and thus assigning one piece of text into multiple categories. This
classifier was developed primarily for experimental purposes.

We also considered using a named entity recognition (NER) system for Czech:
Name Tag 2 (Straková et al., 2019). In this case, we would apply the NER system
and get the NSWs recognized with entity types supported by Name Tag 2. The
reason why we chose not to use this option is the effort to convert the recognized
entity types into semiotic classes, which is not straightforward as the annotation
schemes are not directly compatible.

5https://www.nltk.org/
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Furthermore, not all NSWs are recognized by Name Tag 2 as named entities.
This means that the remaining NSWs would then again have to be classified by
one of the options mentioned earlier.

[ (S, plain), (5, cardinal), (bratry, plain) ]
With 5 brothers

Figure 3.4: Classification output example. Each token corresponding to a semi-
otic class is given a corresponding label. If the token does not require normaliza-
tion, then it is labeled plain.

3.6.1 WFST
The first and, at the present time, the only practically usable classifier is imple-
mented using a WFST which tokenizes and classifies the input text simultane-
ously. The output of the finite-state automaton is an XML-tagged text.6 The
initial inspiration was taken from Sparrowhawk,7 which is a public example of the
Google’s internal TTS Kestrel normalization system (Ebden and Sproat, 2015).
The output tokens and corresponding labels are then extracted.

Both the tokenization and classification are performed by a single automaton,
which is defined on about 500 lines of code. As described in Section 2.3, each
possible path through the automaton is assigned a weight. The path with the
lowest weight determines the division of the sentence into tokens and also de-
termines the semiotic class of each token. All classes compete, and the weights
are carefully set up to select the desired class, i.e., class that is expected to be
the most frequent. If a part of text cannot be classified into any of the semiotic
classes, then it is marked as plain (meaning no normalization is required).

3.6.2 Regular Expressions
Hand-crafted regular expressions form the basis of the second classifier. We cre-
ated a general class called General with a single method accepts, which gets the
input text and returns all matches found, already in the correct format required
by the protocol.

For each semiotic class, an instance of the General class is initiated with
the corresponding regular expression, matching all considered expressions. The
accepts method is performed during the classification on all registered classes,
and the union of matched tokens is returned.

This solution performs tokenization in a looser sense, where the non-classified
text parts are considered a single token belonging to the plain class.

There are known shortcomings, for example, that not all digits are necessarily
normalized due to the language model choosing a different variant. Although we
publish the classifier to present another approach to the problem.

6The output format is solely our decision, as the WFSTs can perform arbitrary rewrites.
7https://github.com/google/sparrowhawk
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3.7 Verbalizer
The purpose of the verbalizer is to generate all allowable variants for NSW tokens.
Because the number of possible variants may be non-trivial, the verbalizer can be
configured to generate only a subset of expansions based on their morphological
properties. In the following, we will go through all supported semiotic classes and
their individual verbalizer implementation in our solution. There is a separate
Section 3.7.1 for the cardinal and ordinal numbers, as they are more complex. The
rest classes are described together in Section 3.7.2. For a verbalization example
of individual classes, see Figure 3.2.

[ (S, plain), ([pět, pěti ], cardinal), (bratry, plain) ]
With five.NOM five.INS brothers

Figure 3.5: Verbalization output example. We indicate in which grammatical
case the corresponding numeral is inflected (NOM stands for Nominative, INS
stands for Instrumental).

3.7.1 Cardinal and ordinal numbers
The difference between the cardinal and ordinal numbers from the other classes
comes from the fact that the verbalization of other classes depends on it. The
core of the verbalization are again WFSTs.

We use a split into two steps, factorization and verbalization, as described by
Ebden and Sproat (2015).

In the factorization step, we transform the numbers from their raw form into a
form where significant powers are explicitly marked, see Figure 3.6. Factorization
is complicated by the Czech nominal system, where the word for hundred, thou-
sand, etc. changes depending on multiple previous digits, e.g., 2000 is pronounced
as “dva tiśıce” (two thousand), but 22000 as “dvacet dva tiśıc” (twenty-two thou-
sand).

In the verbalization step, the factorization result is verbalized according to
the specified gender and case for cardinal numbers. Ordinal numbers add extra
grammatical category number.

10 → 1[E1]
1000000 → 1[E6]

1234 → 1[E3]2[E2]3[E1]4

Figure 3.6: Example of number factorization as perfomed by WFST. The [E6],
[E3], [E2] and [E1] symbolize the places where the words for million, thousand,
hundred, and tens, respectively, should be generated. Note that the following
verbalization still depends on the context: 1[E1] is expanded to “deset” (ten),
but 2[E1] to “dvacet” (twenty).
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3.7.2 Verbalizations of individual classes
Decimal number category builds upon the cardinal numbers and offers two
verbalization options. A long variant where a name for the fractional part (tenth,
hundredth, thousandth) is explicitly pronounced – 4,3 is expanded as “čtyři celé
tři desetiny” (four whole three tenths). The short variant omits the name of the
fractional part, resulting in “čtyři celé tři” (four whole three).

Date expressions offer a single variant, but still multiple expansions based on
the grammatical case. An arbitrary combination of day, month, and year can be
provided.

Time also offers short and long variants, with the long variant explicitly men-
tioning hours, minutes, and seconds – pronouncing 4:25 as “čtyři hodiny a dvacet
pět minut” (four hours and twenty-five minutes). And the short variant only reads
the numbers contained in the expression – transforming the above example into
“čtyři dvacet pět” (four twenty-five).

Measure class expressions verbalize both number and unit, thus ensuring gram-
matical congruency (in grammatical gender and case). The units are split into
two categories: (1) units that can have a prefix (mili, kilo, tera, etc.), such as hertz
(Hz), tesla (T), and gram (g), and (2) units that cannot, e.g., percent (%), hour
(h) and parts per million (ppm). Furthermore, the single units can be combined
into compound ones (e.g., km/h). For the compound units, we also distinguish
situations where “za” (per) and “na” (per) are used. Examples of this are to
be found in Figure 3.2. For the number verbalization, the rules for cardinal and
decimal numbers are used.

Money expressions are handled similarly to measures. In this case, the token
is split into number and currency. At the time of writing, we support the 25 most
traded currencies,8 including the Czech crown.

Score tokens are verbalized, either as two numbers, e.g., 3:3 as “tři tři” (three
three) or by adding “ku” (to) between the numbers and inflect the second accord-
ingly, e.g., “tři ku třem” (three to three).

Telephone numbers are verbalized digit-by-digit or by groups of three. If an
area code is present, it is read as a single number.

With-suffix words are always generated as a cardinal digit in the nominative
or the locative case concatenated with the suffix.

Identifier expressions are always verbalized with numbers spelled out digit-by-
digit.

8https://en.wikipedia.org/wiki/Currency
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Semiotic class Text Verbalization Translation
cardinal 35 třicet pět thirty-five

-3 mı́nus tři minus three
ordinal 321. tř́ı stý dvacátý prvńı three hundred and twenty-first

tř́ı stá dvacátá prvńı three hundred and twenty-first
decimal 14,2 čtrnáct celých dvě desetiny fourteen whole two tenths

čtrnáct celá dva fourteen whole two
date 12. března dvanáctého března the twelfth of March

3/12 třet́ıho prosince the third of December
time 3:20 tři hodiny dvacet minut three hours twenty minutes

3:20 tři dvacet three twenty
measures 100 m sto metr̊u hundred meters

5 m/s pět metr̊u za vteřinu five meters per second
5 Pa/m pět pascal̊u na metr five pascals per meter

money 1000 CZK tiśıc korun českých thousand Czech crowns
scores 4:5 čtyři ku pěti four to five

čtyři pět four five
telephone +420604586567 plus čtyři sta dvacet plus four hundred and twenty

šest set čtyři six hundred and four
pět set osmdesát šest five hundred and eighty-six
pět set šedesát sedm five hundred and sixty-seven

+420604586567 plus čtyři sta dvacet plus four hundred and twenty
šest nula čtyři pět osm six zero four five eight
šest pět šest sedm six five six seven

with suffix 20x dvacet krát twenty times
32bit třiceti dvou bitový thirty two bit

identifier 042 nula čtyřicet dva zero forty-two
mixed x220 x dvě stě dvacet x two hundred and twenty

x dva dva nula x two two zero

Table 3.2: Examples of verbalizations of semiotic classes. The variations shown
represent the possible phenomena described in Section 3.7.2.

Mixed tokens, such as H12C8 are also verbalized in two variants, digit-by-digit
– “H jedna dva C osm” (H one two C eight) – or numeric sections are read as
cardinal numbers – “H dvanáct C osm” (H twelve C eight).

3.8 Ranking module
If the verbalizer generates multiple possible options, we must select the contex-
tually correct one from these options. This selection is the task of the ranking
module.

Our implementation supports two modes of operation, with and without a
language model (LM). If LM is not set and no verbalization is specified, then there
is a default setting that generates one variant for each class. In the variant without
a LM, the system assumes that the user has specified a single verbalization to be
generated for each class.9

The second mode uses the LM to score the verbalizations. The language model
can be present locally or downloaded from the HuggingFace website. In both
cases, it should be a causal language model, compatible with the HuggingFace

9If there is no LM and user allows multiple variants, then the first variant generated is
selected - but this is not how the system should be used.
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transformers library interface. We decided on three Czech models based on small
version of GPT-2 architecture because of the availability of these models and
the expectation of lower latency. The first is spital/gpt2-small-czech-cs10 trained
only on Czech Wikipedia and with a permissive license, also allowing commercial
use. The second is lchaloupsky/czech-gpt2-oscar11 trained on the Czech part of
the OSCAR12 dataset and also having an permissive license. The last model
considered is MU-NLPC/CzeGPT-2.13

We use the LM to score the sentence perplexities (Manning and Schütze,
2001, Section 2.2.8). Specially, we use a variant of the calculation for fixed-length
models as described by HuggingFace.14 If a model assigns a lower perplexity to
a sentence, it deems it to be more probable.

The situation is straightforward if the sentence contains only one token to
normalize. We replace the token with its verbalization and compute the sentence
perplexity. The resulting score is assigned to the verbalization used.

If multiple tokens requiring normalization are present, we tried three variants:

1. The first option is to only consider a single token in isolation and leave the
others in unnormalized form, then the perplexity is calculated in the same
way as in the case of a single token – we refer to this option as “individual
ranking”.

2. The second variant, called “left-to-right ranking”, goes from the start of the
sentence and finds the best verbalization for the first token found. When
the second token is evaluated, the already chosen verbalization of the first
token is inserted into the sentence.

3. The last and further not considered option was to replace all tokens with
the default verbalization, then continue as in the second option. In the
course of testing, this method proved to confuse the language model.

After assigning a score to each verbalization, the normalized sentence can be
built by selecting the verbalization with the lowest score (perplexity) for each
token.

[ (S, plain), ([ (pět, 7.05), (pěti, 5.42) ], cardinal), (bratry, plain) ]
With five.NOM five.INS brothers

Figure 3.7: An example of the output of a ranking module where, in the case of
multiple generated pronunciations, each of them is assigned a score. The lower
the score, the more suitable the variant is. We indicate in which grammatical
case the corresponding numeral is inflected (NOM stands for Nominative, INS
stands for Instrumental).

10https://huggingface.co/spital/gpt2-small-czech-cs
11https://huggingface.co/lchaloupsky/czech-gpt2-oscar
12https://huggingface.co/datasets/oscar
13https://huggingface.co/MU-NLPC/CzeGPT-2
14https://huggingface.co/transformers/v4.10.1/perplexity.html
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3.9 Development dataset
During the development process, a small dataset was gradually created on which
we tested our system and analyzed the errors. The dataset contains mainly
sentences from the Czech Wikipedia, but it also contains sentences from other
sources (e.g., Seznam news,15 iDnes16) or even sentences made-up or translated by
the author. For the evaluation it was necessary to annotate this dataset as well.
In this case, we chose a more time-efficient option than for the evaluation dataset
(Section 4.4). We let the normalizer generate possible annotations and then the
author reviewed and corrected them. In doing so, what was corrected were mainly
genuinely wrong forms or unrecognized entities, since the annotator (author)
was certainly influenced by the knowledge of the normalizer’s capabilities. The
resulting dataset contains 650 sentences.

Another important point was, that although we have implemented the ability
to generate many variants for most classes, in the end, we tried to reduce the
number of variants as much as possible. The reason is that increasing the number
of variants including infrequent ones makes it harder for the LM to choose the
correct one. The reduction proceeded as follows. First, we set the system to
generate the most frequent variant for each semiotic class. After running in this
setting on the development dataset, we went through the variants that were not
reachable and tried to add them to the system. After an update in the setting,
we checked if the accuracy increased and thus whether to include this change or
not.

15https://www.seznamzpravy.cz/
16https://www.idnes.cz/
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4. Data
Since we decided to obtain at least a minimum amount of human-annotated data,
which will form the first public Czech number normalization dataset to the best
of the author’s knowledge, it was necessary to prepare the raw sentences and set
up an annotation process. We used the newly created datasets to establish a
baseline and to determine whether changes to the implementation yield better
results.

We begin the chapter by discussing the possibility of harvesting data from
the web (Section 4.1). In Section 4.2, the annotated data format is introduced.
We continue by presenting the newly created data annotation application (Sec-
tion 4.3) and the associated annotation process (Section 4.4). Finally, the ob-
tained datasets are described in Section 4.5.

4.1 Harvesting from the web
Harvesting naturally occurring data from the web is a possible solution for collect-
ing a sufficient amount of data for some machine learning tasks, such as machine
translation. We also considered using web data harvesting to collect text normal-
ization data. Such an approach involves finding the already expanded forms of
numerals and then denormalizing them back into numbers.

Even though this approach works quite well for cardinals and ordinals (i.e.,
numerals fully spelled out as words) up to 100, coverage of other cases is far from
ideal. The major problem arises from the fact that some expressions are almost
always written in numerical form. While it is quite common to write 3,000,000
as three million, expressing 3,456,799 in the expanded form is very unusual.
This affects multiple other semiotic classes, such as time, measure, and money
expressions. Therefore, the most often normalized terms would be missing from
the datasets.

4.2 Data format
To decide on the annotation format, we first checked formats already in use –
specifically, the Polish normalization dataset1 (Poswiata and Perelkiewicz, 2019)
annotated by human annotators, and the Russian and English datasets created by
Google’s internal hand-written Kestrel normalization system (Sproat and Jaitly,
2016). While the Russian and English datasets do not fit our purpose,2 the Polish
structure fits without significant changes.

The dataset contains individual sentences, each containing an ID, the dataset
name, the original and the normalized sentence, and a list of to-be-normalized
tokens. Each such token consists of the unnormalized part of the text and its span

1https://github.com/rafalposwiata/text-normalization
2Their format requires splitting the text into tokens and classifying each into one of the

classes or marking it as plain (no normalization needed). This task is easy for a program. In
our case, it would mean either requiring human annotator to tokenize the text or suggesting a
possible tokenization and letting the annotator modify it. In either case, this is a redundant
task.
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in the original text, the corresponding semiotic class, and nested tokens called
children – making it possible to subdivide the to-be-normalized token (e.g., a date
can be further divided into a day, month and year), see Figure 4.1.

4.3 Annotation application
Apart from the data itself, we also lacked an appropriate annotation tool for
the task. Therefore, we decided to create a web application specially aimed at
annotating text normalization data. Because the application does not directly
depend on our normalizer implementation described in Chapter 3, we developed
it as an entirely independent project. The interface can be easily adjusted to
annotate data in any language and is freely available online.3 The annotation
process is shown in the Figure 4.2.

As part of the design, we created a manual for the human annotators, en-
closed as Attachment A.2. There, the annotation environment navigation and
functions are presented. Also, examples of the semiotic classes are shown along
with possible verbalizations. We tried to capture all the valid verbalizations we
could think of to avoid constraining the annotator. As the intentional users of
the application must have knowledge of Czech, both the system and manual are
in Czech.

4.4 Annotation workflow
We decided to obtain the raw data from the Czech Wikipedia4 and Czech Radio5

websites. Czech Radio represents arguably clean text with minimal normalization
requirements. On the other hand, Wikipedia represents more challenging text
requiring a lot of normalization and containing frequent non-standard word forms.

The WikiExtractor tool (Attardi, 2015) was used to extract data from the
Czech Wikipedia.6 The data was then processed using a preprocessing script,7
splitting the text into sentences and only extracting sentences containing numer-
als. NSWs not containing digits were not specifically searched, they are part of
the dataset due to their natural occurrence in sentences with numerals. Sentences
for annotation were selected at random from the data extracted.8 Data from the
Czech Radio website was scraped and then searched for digits manually.

To obtain data for the evaluation, we deployed the annotator application
on the author’s web server9 and asked family members to annotate (hundreds
of sentences). The reason for delegating this task to others was to limit our
knowledge about the test set.

A short individual training session was conducted with each annotator before
the actual annotation started. This consisted of a mock annotation of 10–15

3https://github.com/RuzickaJakub/text-normalization-annotation-application
4https://cs.wikipedia.org/
5https://portal.rozhlas.cz/
6The data extraction was performed on 20.02.2022
7Attached under tts normalization/scripts/prepare data.py.
8Script is attached under tts normalization/scripts/choose random sentences.py.
9A live annotation application is running on https://annotator.ruzickajakub.eu/.
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{
"dataset_name": "Example",
"sentence_id": 0,
"sentence_state": "Proposal",
"original_sentence": "Tato známá česká bioložka se narodila

27.4.2004.",
"normalized_sentence": "Tato známá česká bioložka se narodila

dvacátého sedmého dubna dva tisı́ce čtyři.",
"tokens": [

{
"text": "27.4.2004",
"normalized_text": "dvacátého sedmého dubna dva tisı́ce

čtyři",
"type": "Date",
"children": [

{
"text": "27.",
"normalized_text": "dvacátého sedmého",
"type": "Day",
"children": [],
"begin": 0,
"end": 3

},
{

"text": "4.",
"normalized_text": "dubna",
"type": "Month",
"children": [],
"begin": 3,
"end": 5

},
{

"text": "2004",
"normalized_text": "dva tisı́ce čtyři",
"type": "Year",
"children": [],
"begin": 5,
"end": 9

}
],
"begin": 38,
"end": 47

}
]

}

Figure 4.1: Example of an annotated sentence. The format is described in Sec-
tion 4.2. The original sentence can be translated as: This famous Czech biologist
was born on 27.4.2004.
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(a) First, the part of text needing annotation is interactively selected.

(b) In the second step, the original text is shown to the user in the top left corner.
The normalization of the text and corresponding semiotic class are filled in.

(c) When all the words to-be-normalized are marked, the annotator changes the sen-
tence state from Unannotated to Proposal

Figure 4.2: A description of the annotation process.
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sentences, where the annotator performed the annotation, and then the author
provided feedback.

All sentences were double-checked and agreed by two independent annotators.
In the first round, annotators were given a set of raw sentences and instructed
to mark the words needing normalization, assign them to one of the semiotic
classes, and write the contextually correct expanded form. In addition, the entire
sentence has been set as Proposal and, in exceptional cases, as Invalid if the
sentence is formed incorrectly. At this stage, the reported speed was between 20–
40 sentences per hour. The tediousness of the process was due to the occasional
need to find or think about the correct normalization.

In the second round, sentences marked as Proposal were selected from the
annotated datasets, and each annotator was given sentences processed by someone
else. An annotator who is already working with proposed sentences is called a
second annotator. If the second annotator agrees with the proposal, the sentence
is approved. If the second annotator disagrees with the proposed normalization,
the sentence is left in the Proposal state and therefore not used in the dataset.
Finally, if the second annotator agrees with the normalization, but it contains a
typographical error, e.g., “červnci” instead of “červenci” (July), then the second
annotator corrects the error and approves the sentence. The final datasets only
include sentences approved during the second round.

4.5 Newly created datasets
The result of the above process are two small datasets for two domains – Czech
Radio (News) and Wikipedia. The former contains 398 sentences and 599 to-be-
normalized tokens, the latter 1,484 sentences and 2,586 to-be-normalized tokens.
The numbers for each semiotic class are given in Table 4.1.

From the dataset generation process, it can be seen that the average repre-
sentation of each class in a given domain corresponds to the actual occurrence
rate among sentences with numerical expressions. Therefore, the accuracy on this
data should be close to the actual accuracy on data from the same domain.

Furthermore, it can be noticed that on the Wikipedia dataset, the classes are
more heterogeneous. In contrast, the Czech Radio dataset mainly comprises only
a few classes. Phone numbers do not appear even once in the dataset. Similarly,
some other classes (e.g., pathname, URL) are rare. A special dataset would be
needed for use in a domain with a frequent occurence of these classes.
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Semiotic class Tag Wikipedia Czech Radio (News)
cardinal Cardinal 1,220 367
ordinal Ordinal 236 58
decimal Decimal 32 39
date Date 291 48
time Time 17 15
measure Measure 212 5
money Money 16 5
roman Roman 50 2
telephone Telephone 0 0
score Score 15 32
with suffix WithSuffix 22 2
identifier Identifier 22 7
mixed Mixed 107 6
abbreviation Abbreviation 157 5
chemical formulae Chemistry 18 2
mathematical expressions Math 6 0
pathname Pathname 1 0
range Range 115 3
URL URL 2 3
verbatim Verbatim 38 0
other Other 9 0
Total to-be-normalized tokens - 2,586 599
Total sentences - 1,484 398

Table 4.1: Number of to-be-normalized tokens in our datasets.
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5. Evaluation
In this chapter, we present our evaluation results, comparing a baseline, variant
without language model and three variants with language models described in
Chapter 3, using the data described in Chapter 4 for evaluation. Firstly, we de-
scribe the system variants (Section 5.1) and our evaluation methods (Section 5.2).
We continue with a presentation of our results, detailed error analysis (Section 5.3
and Section 5.4) and comparison with Google TTS (Section 5.5). The chapter
concludes with a discussion of possible improvements (Section 5.6).

5.1 Compared system variants
During the evaluation, we consider the following system variants:

Baseline. The first variant is based on the num2words library1 for number to
words expansion, which we improved to provide us with a decent baseline.2

Without LM. In this variant, only one expansion is generated for each to-be-
normalized token.

Oracle. This option captures the idea that every time the correct verbalization
is produced, it is also chosen. Therefore, this option represents an upper
bound for our system. In some cases, not all variants the system is capable
of are generated, because with the rising number of variants, the task of
selecting the correct one becomes harder. This fact proves to be critical
during the development.

With LM. As we do not have an oracle to magically choose the correct vari-
ant, we tried three neural models – lchaloupsky/czech-gpt2-oscar, MU-
NLPC/CzeGPT-2, spital/gpt2-small-czech-cs – with two modes of scoring
– individually and left-to-right. For details check Section 3.8.

5.2 Evaluation methodology
The module was evaluated on the Wikipedia and Czech Radio datasets described
in Chapter 4 using the evaluation metrics described in Section 2.2. We computed
both the sentence accuracy and accuracy for the individual semiotic classes.3

The sentence accuracy for the oracle is a very close approximation because
sentences with a higher number of to-be-normalized tokens needing normalization
can generate a vast number of variants due to combinatorial explosion. If the
number of variants exceeds 100,000, we skip the sentence.4

1https://pypi.org/project/num2words/
2We created a pull request with our improvements to the original project (https://github.

com/savoirfairelinux/num2words/pull/504).
3The evaluation script can be found in the attached files.
4In our case, the number of skipped sentences is minimal – 2 and 3 sentences on Czech Radio

and Wikipedia dataset, respectively.
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5.3 Results
On the Wikipedia dataset, our module achieves a 81.67% sentence accuracy in
the best setting (model MU-NLPC/CzeGPT-2 with scoring variant left-to-right).
The oracle variant achieves approximately 91.98% sentence accuracy. Table 5.1
shows the accuracy for individual classes, including the number of occurrences in
the dataset.

Semiotic class #tokens baseline without oracle [%] spital oscar MU-NLPC
indi [%] left [%] indi [%] left [%] indi [%] left [%]

Sentence acc. 1209 11.99 72.79 91.98 69.31 70.31 77.42 78.74 80.56 81.47
Word accuracy

Cardinal 1207 36.04 89.48 98.09 83.60 83.35 91.96 92.29 93.95 93.54
Ordinal 234 8.97 20.94 95.30 70.09 70.09 70.94 70.51 75.21 75.21
Decimal 31 6.45 58.06 80.65 29.03 35.48 64.52 67.74 64.52 70.97
Date 291 5.50 94.50 97.25 67.01 65.98 79.38 81.44 81.10 82.13
Time 16 68.75 81.25 81.25 62.50 62.50 68.75 75.00 75.00 68.75
Measure 209 0.00 60.29 77.51 49.28 49.76 59.33 59.33 65.07 64.59
Money 16 0.00 50.00 62.50 50.00 50.00 43.75 43.75 43.75 43.75
Roman 49 0.00 57.14 75.51 46.94 48.98 53.06 55.10 55.10 53.06
Score 15 93.33 93.33 93.33 93.33 93.33 93.33 93.33 93.33 93.33
With suffix 22 0.00 31.82 86.36 45.45 45.45 45.45 50.00 63.64 45.45
Identifier 22 4.55 36.36 36.36 36.36 36.36 31.82 31.82 36.36 36.36
Mixed 99 0.00 94.95 95.96 89.90 89.90 89.90 90.91 88.89 91.92
All 2211 22.61 77.79 93.76 74.27 74.17 82.09 82.72 84.67 84.49

Table 5.1: Our system evaluation on the Wikipedia dataset. To fit the
space we use indi for individually and left for left-to-right scoring variant.
Individual language model are referenced using the following abbreviations:
spital (spital/gpt2-small-czech-cs), oscar (lchaloupsky/czech-gpt2-oscar), MU-
NLPC (MU-NLPC/CzeGPT-2).

On the Czech Radio dataset, we achieved the best results with the same config-
uration as on the Wikipedia dataset (model MU-NLPC/CzeGPT-2 with scoring
variant left-to-right). In this setting, our module achieves a 85.19% sentence ac-
curacy. Furthermore, the correct sentence variant is generated for approximately
92.73% of sentences. The complete results are shown in Table 5.2.

Our results provide a hint for future implementations, showing for which
classes it makes sense to generate a larger number of variants and for which
categories this option can be omitted, in exchange for a possible slight reduction
in accuracy. We can observe that for some of the classes, there is not a sufficient
number of to-be-normalized tokens to draw conclusions, especially in the Czech
Radio dataset.

The model comparison is clear-cut. The MU-NLPC/CzeGPT-2 outperforms
both other models on both datasets in terms of sentence and word accuracy. At
the same time, it achieves the best results in almost all semiotic classes (the only
exception being dates on the Czech Radio dataset). The lchaloupsky/czech-gpt2-
oscar performs only slightly worse than the MU-NLPC/CzeGPT-2 in terms of
both sentence and word accuracy. The third evaluated model, spital/gpt2-small-
czech-cs, achieves significantly lower accuracy, primarily due to poorer perfor-
mance on cardinal and ordinal numbers. However, it is worth noting that the
performance of the models can vary depending on the specific task and dataset.

In the following section, we discuss the results obtained using the best MU-
NLPC/CzeGPT-2 setup in the left-to-right scoring variant.
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Semiotic class #tokens baseline without oracle [%] spital oscar MU-NLPC
indi [%] left [%] indi [%] left [%] indi [%] left [%]

Sentence acc. 385 38.18 71.69 92.73 64.68 64.94 81.56 81.56 84.94 85.19
Word accuracy

Cardinal 367 64.31 80.65 96.73 78.20 78.47 90.74 91.28 92.64 92.64
Ordinal 58 37.93 10.34 98.28 62.07 58.62 74.14 79.31 87.93 79.31
Decimal 39 2.56 66.67 71.79 41.03 46.15 41.03 41.03 56.41 58.97
Dates 48 8.33 95.83 100.00 58.33 58.33 95.83 95.83 89.58 91.67
Time 15 6.67 80.00 80.00 53.33 60.00 66.67 66.67 73.33 73.33
Measure 5 0.00 40.00 60.00 0.00 0.00 20.00 20.00 20.00 20.00
Money 5 0.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00
Roman 2 0.00 0.00 100.00 50.00 50.00 50.00 50.00 50.00 50.00
Score 32 96.88 96.88 96.88 96.88 96.88 96.88 96.88 96.88 96.88
With suffix 2 0.00 0.00 100.00 50.00 50.00 50.00 50.00 50.00 50.00
Identifier 7 14.29 100.00 100.00 85.71 85.71 100.00 100.00 85.71 100.00
Mixed 6 0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
All 586 50.51 74.40 94.71 72.35 72.70 85.15 86.01 88.23 87.88

Table 5.2: Our system evaluation on the Czech Radio dataset. To fit the
space we use indi for individually and left for left-to-right scoring variant.
Individual language model are referenced using the following abbreviations:
spital (spital/gpt2-small-czech-cs), oscar (lchaloupsky/czech-gpt2-oscar), MU-
NLPC (MU-NLPC/CzeGPT-2).

Cardinal and ordinal number: For cardinal and ordinal numbers, it certainly
makes sense to use the language model, as it provides a non-trivial improvement
for cardinal numbers (4% on Wikipedia and 12% on Czech Radio) and a crucial
improvement in the case of ordinal numbers (54% on Wikipedia and 77% on
Czech Radio).

Decimal number: The result is not clear-cut for decimal numbers – 6% gain
on Wikipedia, but 10% loss on Czech Radio. Given the observed errors discussed
in Section 5.4, it is still advisable to choose the language model version here.

Date and time: It is better not to give the model a choice for dates and times
since, in most cases, a single version with particular morphosyntactical properties
is correct. Adding more options, in this case, on the other hand, reduces the
accuracy of the whole system – it results in 13% and 6% drop on dates and 6%
and 7% in case of times on Wikipedia and Czech Radio, respectively.

Measure: The system scored lower on the measures class than we expected,
based on development experience. The most significant shortcoming of our system
is the lack of rules for recognition of less typical units, such as horsepower.

Money: For money, even the oracle (i.e., the correct variant being reachable)
is already low. We observe a higher variety of pronunciation options than in
other classes and a less standard notation for some currencies. Although it is not
obvious from the scores, the use of the language model brings an improvement
on the test data (see Section 5.4).

Roman numerals: On the roman numerals, our system achieves similar scores
with and without the language model – 2% drop in accuracy when using the
language model on Wikipedia, the Czech Radio dataset is not indicative, as it
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contains only 2 roman numerals. We can observe, that by selecting a correct
variant from the proposed verbalizations we can achieve up to 22% improvement.

With-suffix: For the with-suffix class, the language model brings a clear im-
provement. Since most words with a suffix are in the nominative or locative case,
the language model only has to choose between two variants and its accuracy is
therefore higher.

Identifier and score: For the identifier and score classes, only a single variant
is generated as this proved to be the best solution during the development. The
results are thus the same in all columns.

5.4 Error analysis
This section looks at particular classes and errors we observed on the test datasets.
Specifically, we will look at why the correct variants were not reachable, even in
the oracle variant.

Cardinal, ordinal and decimal numbers: For cardinal, ordinal and decimal
numbers, most of the variants not generated correctly are due to generating a
different inflection variant. This means that the generated normalization is valid,
but the human annotators preferred another valid variant (see Table 5.3).

Text Annotation Generated Translation
118 sto.NOM osmnácti.GEN sta.GEN osmnácti.GEN one hundred and eighteen
302. tři.NOUN sta.NOUN druhá.ADJ tř́ı.ADJ stá.ADJ druhá.ADJ three hundred and second
11,1 jedenáct celá.SG jedna jedenáct celých.PL jedna eleven whole one

Table 5.3: Examples of differences in annotated and generated inflections for
cardinal, ordinal, and decimal numbers. The first example shows the differences
in inflection - NOM is nominative and GEN is genitive. The second one is an
example where either the whole expression or only a part of it can be inflected -
NOUN stands for noun and ADJ for adjective. The third example is an expression
where it is grammatically correct to use both the plural (PL) and the singular
(SG).

Another frequent cause of observed errors for decimal numbers is the lack of
a variant that would read “0.5” as “p̊ul” (half) instead of “celá pět” (point five),
see Table 5.4.

Text Annotation Generated Annotation - translation Generated - translation
118 dva a p̊ul dva celé pět two and a half two whole five

Table 5.4: Example where the decimal part of a number could be pronounced as
“p̊ul” (half).
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Text Annotation Generated Annotation - translation Generated - translation
7:00 sedmou sedm nula nula seven seven zero zero

19 Kčs devatenáct korun československých devatenáct Československých korun nineteen nineteen
Czechoslovak crowns Czechoslovak crowns

Table 5.5: Example of time and money classes where other permissible variants
are generated.

Time, money and measure: For the time and money classes, we also ob-
served that our system generated permissible variants, just not the ones chosen
by annotators; see Table 5.5 for examples.

For time expressions, we discovered a few cases where the correct semiotic class
was not recognized due to the use of a rare form (see Table 5.6). For measure
and money expressions, the same problem showed up as an non-recognition of
less common or non-standardly written units or currencies (see Table 5.6).

Text Annotation Generated Annotation - translation Generated - translation
12h11’ dvanáct hodin a jedenáct minut jedna dva h jedna jedna twelve hours and eleven minutes one two h one one
1 hp jedna koňská śıla jeden hp one horsepower one hp
5 zl pět zlotých pět zeptolitr̊u five zlotys five zeptoliters

Table 5.6: Examples of non-recognized time, measure unit, and currency. In the
last case, note that for zloty, the correct symbol is zl.

Roman numerals: There is also a problem with the recognition of Roman
numerals. This occurs, for example, in the cases of “Karel I. Veliký” (Charles I.
the Great), where our rule system cannot distinguish this situation from “I. P.
Pavlov”, where “I.” is, of course, an abbreviation of this person’s first name and
not a digit. Another example is the first-class road name “I/22”, which should
be pronounced “jedna lomeno dvacet dva” (one slash twenty-two) and not as “I
lomeno dvacet dva” (i slash twenty-two).

Identifier and mixed: As already mentioned, the same errors occur for the
identifier and mixed classes. The typical error is reading the identifier or mixed
word as the corresponding cardinal number; see Table 5.7.

Text Annotation Generated Annotation - translation Generated - translation
9101 devadesát jedna nula jedna devět tiśıc sto jedna ninety-one zero one nine thousand one hundred one

Table 5.7: Example where a tram identifier number should be digit-by-digit, but
is instead normalized as a cardinal number.

5.5 Comparison with Google TTS
We decided to compare our system with the commonly used Google TTS. The
choice fell on Google, because it supports Czech and at the same time is freely
accessible for short texts.

For a rigorous comparison, it would be useful to retrieve a larger number of
sentences from Google TTS, at least around 250, after they have been normalized,
but before the synthesis takes place. Since we do not have this option, we came up
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with two proposals, both of which perform speech synthesis using Google TTS in a
first step. This is followed by either listening and manually transcribing the audio
outputs or using ASR to convert the sentences into text form. Unfortunately, the
first option is too time-consuming, in addition to the listening time, we have to
take into account that we probably have to hear the sentence more than once, or
listen to it more slowly. The second one is error-prone due to the high number of
non-standard words.

Therefore, we decided on a qualitative comparison, where we selected twenty
sentences in which our system, according to the automatic evaluation, makes
mistakes. We sent these to Google TTS for input and manually transcribed them
into text form.

On these twenty difficult sentences, we observed that both systems erred in
recognizing or reading less standard units. Neither system can handle ot/min
(rpm) or 645 tis. where tis. should be converted to “tiśıc” (thousand). Of
course the systems differ in many errors, e.g., hp is not converted to “koňská
śıla” (horsepower) in our system, but Google handles it correctly. On the other
hand, Google normalizes certain units into their English form, which after running
through the Czech synthesizer become completely unintelligible, e.g., 6,120 ly.
For others, even a valid but nonsensical Czech word is created, e.g., 407.8 ppm
is read as “čtyři sta sedm celá osm pum” (four hundred and seven point eight
cougars).

For both systems, errors in determining the semiotic class of the token are also
visible. In the phrase “line 556001”, there should be a reading of the number digit-
by-digit by convention, which neither system performed. Similarly, the sentence
“jednotka Köln 137.852” (unit Köln 137.852) are not read correctly – as two
cardinal numbers separated by a dot – by either system. Our system classifies
the dot as a thousand separator and Google as a decimal separator. For the text
2005 12. 17. our system recognizes the date and reads the word December
correctly, while Google reads the two numbers with the period as ordinals.

Overall, both systems seem to normalize the basic semiotic classes well. In
the case of the more complex ones, our system produces more grammatical errors,
but without changes in meaning, which are more common in the case of Google.

5.6 Possible future improvements
Based on our system’s results (Table 5.1 and Table 5.2) and error analysis (Sec-
tion 5.4 and Section 5.5), we propose possible improvements, at least some of
which we plan to address in the future.

Scoring methods. The difference between the oracle and the individual lan-
guage models shows how much we can improve if we always choose the right
option. We can do this in two ways: The first one is reducing the number of
options the model have to choose from to make the model’s job easier, but by
doing so we also reduce the number of tokens that can be correctly normalized.
We would therefore prefer to further explore the second option, which is to im-
prove the scoring so that the correct option is selected more often even while
maintaining the number of options that cover more possibilities in general. A
possible approach may be to finetune the language models.
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Measure units coverage. We need to increase the coverage of measure units
since during the evaluation, it became clear that the units already included are
insufficient, e.g., ot/min (rpm), hp (horsepower) are not processed.

Annotation speedup. Due to the number of different phenomena that may
occur during text normalization, we would like to expand the number of sentences
in our datasets, possibly adding more specialized datasets. In this respect, it
would be helpful to achieve more efficiency in annotating the data, as the speed
reported by annotators of the current datasets – 20–40 sentences per hour – is
very low. Pre-generation of annotations by the system and subsequent correction
by human annotators could help here. Of course, this process may limit the
diversity of the obtained datasets, as a human annotator may keep the suggested
option in the dataset even though they would read the text differently when not
prompted. Therefore, we still aim to collect at least some portion of each dataset
from humans without pre-generated options.

Performance improvement. Speeding up the whole process, especially se-
lecting the contextually correct option, is essential for real-time running. In
our work, we addressed this problem by reducing the number of options gener-
ated. However, further reduction would certainly be appropriate, for example,
by changing the ranking module. Another possibility to reduce the latency is
training a tagger capable of determining morphosyntactic categories for numer-
ical tokens. This would allow the system to always generate only variants with
the correct morphosyntactic properties and thus significantly reduce the number
of variants produced.
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Conclusion
This thesis aimed to create a module for the Czech number normalization task
with the expected use as part of the TTS pipeline. We had successfully fulfilled
the goal set and created the Czech normalization module achieving more than
80% sentence accuracy on both Wikipedia and Czech Radio datasets.

We began by presenting the text normalization task and its challenges, with
particular attention to morphologically rich languages (Chapter 1). We continued
by introducing the theoretical concepts used in the implementation and discussing
related work for other languages (Chapter 2).

An essential Chapter 3 describes the architecture of our implemented system,
which consists of four steps - Preprocessor, Tokenizer & Classifier, Verbalizer and
Ranking module. In addition to a detailed description of each part, we provide
a number of examples, a description of the development dataset and the changes
made in the division into semiotic classes compared to the theoretical division
presented in Section 1.2.

As at least a moderate-sized dataset was required to evaluate our approach and
no Czech dataset was publicly available, we created a dedicated data annotation
application for text normalization purposes (Chapter 4). Since lack of data can
also be a problem in other languages, we publish our application.

Using the application, we have collected the first public Czech datasets for the
task: (1) Wikipedia containing 1,484 sentences and 2,586 to-be-normalized tokens
and (2) Czech Radio with 398 sentences and 599 tokens needing normalization.
Both datasets are published on Github.5

Finally, we evaluated our implementation using these datasets, carefully ex-
amined the results, and provided a thorough error analysis (Chapter 5). We are
aware that the newly developed system still has some shortcomings, which are
described in the section on future improvements (Section 5.6).

5https://github.com/RuzickaJakub/czech-number-normalization-datasets
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Glossary
ideogram A graphic symbol representing a concept directly, independent of any

particular language or phrasing. 8

non-standard word Words typically not found in dictionary and cannot be
pronounced by an application of ordinary “letter-to-sound rules”. 37

semiotic class A group of semantically related non-standard words. Examples
are cardinal numbers, dates or measures. 4, 5, 7, 9, 10, 12, 16–21, 23, 25,
27, 29–34, 36, 39, 46

44



Acronyms
ASR automatic speech recognition. 4, 37

FSA finite-state acceptor. 12, 13

GPT-2 Generative Pre-trained Transformer 2. 14, 15, 17, 24

GRU gated recurrent unit. 11

LM language model. 9, 14, 15, 17, 18, 20, 23–25, 32–35, 37

LSTM long short-term memory. 10

NER named entity recognition. 19

NN neural network. 3, 9, 10, 16

NSW non-standard word. 4–8, 11, 12, 19–21, 27, 44

RNN recurrent neural network. 11, 14

SER sentence error rate. 11, 12

TTS text-to-speech. 3–9, 20, 39

WER word error rate. 11, 12

WFSA weighted finite-state acceptor. 12–14

WFST weighted finite-state transducer. 9, 12–14, 17–21
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A. Attachments

A.1 Attached files
In Table A.1 the files attached to the thesis are listed. Each of the attached
folders contains a README.md file containing a description of the corresponding
component, including instructions for running it.

Filename Description

czech-number-normalization-datasets Directory containing the annotated datasets
tts-normalization Directory with source codes for the normalization module.
text-normalization-annotation-application Directory with source codes for the annotation application.

Table A.1: List of attached files.

A.2 Annotation manual
The following manual is part of the annotation application. It describes how
to use the application and examples of each semiotic class and its verbalizations.
The manual does not include instructions for installing and running the annotator,
this information is provided in the documentation for the source files.
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Anotační framework pro normalizaci textu - Manuál
Anotační framework pro vytváření anotačních sad pro účely normalizace textu s ohledem na normalizaci čísel.

Předpokládáme, že máte přístup k běžící instanci anotátoru.

Ovládání anotátoru
Přihlášení

1. Otevřete si v prohlížečí anotátor.
2. V pravém horním rohu klikněte na možnost přihlášení.
3. Vyplňte své přihlašovací jméno (přidělené administrátorem).

Nahrání datasetu

1. Na horní liště vyberte záložku Datasety.
2. Zvolte možnost Nahrát dataset a vyberte soubor s příponou .txt obsahující věty určené pro anotaci.
3. Pokud se Dataset neobjeví automaticky, klikněte na tlačítko obnovit.

Výběr datasetu

1. Na horní liště vyberte záložku Datasety.
2. Všechny zadané datasety jsou zobrazeny v seznamu společně s celkovým počtem vět a počtem již

anotovaných vět.
3. Anotování započnete kliknutím na ikonu start ( |--> svislá linka s šipkou směrem vpravo ).
4. Po vybrání datasetu se přeneseme do anotačního okna, na větu, která je v pořadí tolikátá, kolik je již

anotovaných vět. Předpokládá se postupný průchod od první věty do poslední.

Anotace

1. Máme otevřený vybraný dataset.
2. Pod lištou máme pořadí věty v datasetu a název dataset. Dále níže je editor s originální větou, tlačítka

pro pohyb v anotátoru. Případně i již vybrané části věty (tokeny) s normalizovanou formou a kategorií,
do které patří.

3. Myší označíme část textu, která vyžaduje normalizaci.
4. Po výběru se nám otevře okno, kde vyplníme, jak vypadá znormalizovaná forma a vybereme kategorii.
5. Uložíme změny, které se hned označí v původní větě a vybraný výraz se zadanými podrobnostmi se

přidá do seznamu výrazů vyžadujících normalizaci.
6. Po vybrání všech výrazů změny uložíme, kliknutím na tlačítko uložit.
7. Pokračujeme na další větu.

Export dat

1. Na záložce Datasety klikneme na tlačítko Stáhnout data.
2. Všechny datasety i uložené anotace ve formátu JSON jsou staženy na počítač ve formě zip archivu.

Import dat
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1. Na počítači máme uložen zip archive vyexportovaný z annotatoru.
2. Na záložce Datasety klikneme na tlačítko Nahrát dataset.
3. Vybereme zip archive z našeho počítače.
4. Datasety i anotace z archivu jsou nahrány na náš účet.

Semiotické třídy / Kategorie
Následující přehled zmiňuje všechny kategorie, které je možné anotovat. V případě, že žádná možnost
neodpovídá, pak zvolte možnost jiné (other), které je v přehledu zmíněno úplně na konci. U každé kategorie
jsou uvedeny příklady výrazů z dané kategorie a příklady verbalizací - jak by se daný výraz přečetl.

Základní funkce (Base features)

základní číslovka (cardinal number)
1; 100; 35 500; 432, +14, -20
35 -> třicet pět

řadová číslovka (ordinal number)
1.; 200.; 321.; Kapitola 8 (Kapitola není součástí čísla)
321. -> tří stý dvacátý první

desetinné číslo (decimal number)
1,123; 3,14; -14,1; 2.71 (with dot not correct in czech but used)
2,5 -> dva a půl
14,2 -> čtrnáct celých dvě desetiny
1,123 -> jedna celá sto dvacet tři
-3.43 -> mínus tři celé čtyřicet tři

sekvence číslic (digit sequence)
041
041 -> nula čtyři jedna

datum (date)
12. března; 12.10.2021; 10/12/2022; 2/10
12.10.2021 -> dvanáctého října dva tisíce dvacet jedna
1/2/1990 -> prvního druhý devatenáct set devadesát

čas (time)
13:20; 01:12; 9.45; 5'30"; 3h10m
13:20 -> třináct hodin dvacet minut
9.45 -> devět čtyřicet pět
5'30'' -> pět třicet

míra (measure)
100 m; 40 km/h; 90°; 2,8 g/cm3; 3×10−6 m/s2
100 m -> sto metrů
2,8 g/cm3 -> dva celá osm gramů na centimetr krychlový

peníze (money)
$200; 40 CHF; 30 Kč
40 CHF -> čtyřicet Švýcarských franků
30 Kč -> třicet korun českých

Rozšířené funkce - čísla (Extensions - connected to numbers))
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římská číslovka (roman number)
Karel V.; V; LCD (Karel není součástí čísla)
V. -> pátý

telefonní číslo (telephone number)
+420 604 586 567;+49 211 5684962;0211 5684962
+420 604 586 456 -> plus čtyři sta dvacet šest nula čtyři pět osm šest čtyři
pět šest

skóre (score)
4:4; 10:15;
4:4 -> čtyři čtyři
10:15 -> deset ku patnácti

s příponou (with-suffix)
13roční; 12stupňový; 2x; 2krát; 32bitových; 1,7x
13roční -> třinácti roční
1,7krát -> jedna celá sedm krát

identifikátor (identifier)
AK-47; NGC6542; M-IG-48-2; 1080i50; F-1
M-IG-48-2 -> M IG čtyřicet osm dva
747 -> sedm čtyři sedm

smíšené (mixed)
x220
x220 -> x dva dva nula

rozsah (range)
2019-2022; 40Hz–20kHz; 1913/14; 1917/1918
2019-2022 -> dva tisíce devatenáct až dva tisíce dvacet dva
40Hz-20kHz -> čtzřicet herzů až dvacet kiloherzů

matematický výraz (mathematical expression)
(x-1) / (x^2)
(x+1) -> levá závorka x plus jedna pravá závorka

chemický výraz (chemical expression)
CH4 + 2 O2 → CO2 + 2 H2O; CO2; (CuSO4 · H2O); ribulóza-1,5-bisfosfátu
C3H8 + 5O2 -> 3CO2 + 4H2O -> c tři h osm plus pětkrát o dva se přemění na
třikrát c o dva plus čtyřikrát h dvě o

Rozšířené funkce - jiné (Extensions - not connected to numbers)

zkratka (abbreviation)
atd.; sv.; s.r.o.; př. n. l.
atd. -> a tak dále
sv. -> svatý
př. n. l. -> před naším letopočtem

akronym (acronym)
ČR; NATO; ISO/IEC
NATO -> nato

URL
https://example.com; www.root.cz
https://example.com -> HTTPS dvojtečka lomeno lomeno example tečka COM
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www.root.cz -> WWW tečka root tečka CZ
email (email)

jiri+dva@protonmail.ch
nekdo+dva@matfyz.cz -> nekdo plus dva zavináč matfyz tečka CZ
karelb.nbk@cuni.cz -> karelb tečka n b k zavináč cuni tečka CZ

adresářová cesta (pathname)
/root/user; C:\windows\user\
C:\windows\user -> disk C adresář windows user
/root/var/log -> absolutní cesta root var log

vynechané/ignorované (ignored)
:-
: -> (normalizováno na prázdný řetězec)

název symbolu (verbatim - special symbol)
†, *
† -> umrtí
* -> narozena

jiné (other)
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