
BACHELOR THESIS

Tereza Kulichová

Configurable point rasterization
for large scatterplots

Department of Software Engineering

Supervisor of the bachelor thesis: doc. RNDr. David Hoksza, Ph.D.

Study programme: Computer Science

Study branch: Computer Graphics, Vision and

Game Development

Prague 2023

I declare that I carried out this bachelor thesis independently, and only with the

cited sources, literature and other professional sources. It has not been used to

obtain another or the same degree.

I understand that my work relates to the rights and obligations under the Act

No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the

Charles University has the right to conclude a license agreement on the use of this

work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .

Author’s signature

i

ii

Dedication. I am very grateful to David Hoksza and Miroslav Kratochvíl for their

consistent advice and help. Thanks should also go to my family for their support

during my studies.

iii

iv

Title: Configurable point rasterization

for large scatterplots

Author: Tereza Kulichová

Department: Department of Software Engineering

Supervisor: doc. RNDr. David Hoksza, Ph.D., Department of Software Engineering

Abstract: Scattermore is a simple R package used for scatterplot visualizations.

Before its reinvention, it gained popularity with the cytometric community be-

cause of its functionality and speed. The new version of scattermore offers a

highly customizable API. Again, it is much faster than the R standard plot function

because some parts of the code are implemented in C language. Plotting points

or lines, combining the data in various ways, and avoiding overplotting simul-

taneously are possible. Except for that, the conducted analysis offers potential

speed optimizations regarding cache utility and parallelization.

Keywords: scatterplots, visualization, rasterization, R language

v

vi

Contents

Introduction 3

1 Contemporary use of scatterplots 7
1.1 Common challenges . 8

1.1.1 Displaying density . 8

1.1.2 Interpretation of correlation and causation 9

1.1.3 Overplotting . 10

1.2 Improving visualization with image kernels 14

1.2.1 Gaussian filtering and its optimization 14

1.3 Histograms for scatterplot summarization 16

2 Redesign of scattermore 19
2.1 Input data formats . 20

2.1.1 Data formats for intermediate processing 22

2.2 Data operations . 23

2.2.1 Expanding pixels with image kernels 23

2.2.2 Merging and blending 25

2.3 Data formats for output and plotting 25

2.3.1 Data format conversions 26

2.3.2 Plotting and output . 26

2.4 Rendering performance and parallelization possibilities 27

2.4.1 Performance effects of data layout 27

2.4.2 SIMD for image processing 27

2.4.3 Cache effects and interface to R 29

2.4.4 Available parallelism . 30

3 Results and discussion 31
3.1 Performance of point scattering 33

3.2 Throughput of format conversion 34

3.3 Overhead of the R API . 34

3.4 Speedup of kernel application 35

1

3.5 New use cases for high-definition scatterplots 39

3.6 Practical usage of scattermore 42

Conclusion 49

Bibliography 53

A Using Scattermore 57

2

Introduction

R is a popular programming language that is used primarily in statistical analysis

and data visualization [1]. According to TIOBE index, R still belongs to one of

the most used programming languages
1
. R has many interesting packages that are

capable of analyzing large and complicated biological data, such as from scRNAseq

and single-cell cytometry in packages Seurat and FlowSOM, respectively [2, 3].

Users of such packages typically expect to be able to plot the huge processed

datasets. In the case of Seurat and FlowSOM, the common output form is a

scatterplot where every point represents one of the millions of cells, usually

extended by extra information in the form of colors and other point parameters.

Goals Scatterplotting large amounts of data without specialized tools is quite

challenging. It may take minutes to render the image with common R plotting

methods (such as ggplot2 [4] and the base plotting functionality). This is rather

uncomfortable for the users, especially when they need to interactively examine

many views of the data.

The R package scattermore has previously contributed to the solution to this

deficiency. Scattermore is sufficiently fast, owing to its optimized scatterplot

rasterization implemented in C. Solving the immediate problem, the package

gained popularity and became a recommended way to plot large-scale data in

several packages.

However, despite the utility, the first version of scattermore was a simple,

inflexible single-purpose package that only supported only the one most com-

mon way of plotting the data. This thesis aims to redesign and reimplement

scattermore to provide a highly flexible API that would allow users to construct

complex plotting pipelines freely. The redesigned version should be able to, e.g.,

produce good scatterplot density visualizations, provide data for plotting contours,

and allow customization of the scattered point shapes. Additionally, as the aim

of the scattermore is to provide good plotting performance, the thesis explores

the available sources of speedups in scatterplot processing (such as parallelization

and cache efficiency) and implements several of them.

1https://www.tiobe.com/tiobe-index

3

https://www.tiobe.com/tiobe-index

Outcomes As the main result of this thesis, we produce a new version of

scattermore that includes composable functionality such as summarizing and

colorizing histograms, applying kernels to both picture and histogram data to

provide smoothed-out and visually more desirable results, plotting specific point

shapes and lines, and combining multiple plotting results to produce more infor-

mative layered scatterplots. We describe and implement a pixel format RGBWT,

tailored to prevent plotting-order issues with alpha-blending, mitigate the over-

plotting (section 1.1.3) in the resulting plots, and provide additional flexibility.

Further in the thesis, we conduct experiments and measurements to get a

systematic overview of the performance and limits of the new implementation.

We observe that the data storage formats and data processing reorganization

have helped utilize the memory caches more efficiently. We further parallelize

the kernel application (typically used for blurring), gaining a significant speedup

for plotting scatterplots with large points.

The results of the thesis to this day are available in the GitHub repository
2

(as of May 2023) and are scheduled to be released to the official R CRAN package

repository.

The rest of the thesis is organized as follows: chapter 1 describes the usage

of scatterplots, their everyday use in science, and several known approaches

to address the commonly occurring issues. Chapter 2 describes the redesign of

scattermore, introducing all newly available operations and data structures and

showing the opportunities for performance improvements. Chapter 3 then sum-

marizes the results from optimization experiments and displays several examples

and use cases for high-volume scatterplotting.

Related work
Scattermore is currently used in several R packages such as ShinySOM [5],

scHOT3
and Seurat4

. At the same time, it is used in assorted bioinformatics

pipelines, such as the one for the creation of a retina single-cell transcriptome

dataset
5
.

Similar packages Many programming languages and environments have pack-

ages available that address similar problems as scattermore. As an example,

2https://github.com/teri934/scattermore-thesis
3https://github.com/shazanfar/scHOT
4
An up-to-date list of reverse dependencies of scattermore can be found at https://cran.r

studio.com/web/packages/scattermore/index.html.

5https://iovs.arvojournals.org/article.aspx?articleid=2773412

4

https://github.com/teri934/scattermore-thesis
https://github.com/shazanfar/scHOT
https://cran.rstudio.com/web/packages/scattermore/index.html
https://cran.rstudio.com/web/packages/scattermore/index.html
https://iovs.arvojournals.org/article.aspx?articleid=2773412

Datashader6
is a Python package that can visualize extensive data fast, utilizing

Numba [6] to compile the computation-intensive code written directly in Python

to optimize machine code, enabling it to approach the speeds of C or FORTRAN
7
.

Similarly, Julia ecosystem has GigaScatter.jl8
which can efficiently rasterize

points, enlarge them using kernels, and combine multiple rasters.

Use cases The main motivation for this thesis is software that needs to render

scatterplots quickly, typically for interactivity reasons. Correspondingly, the

original motivation for scattermore was single-cell data rendering in ShinySOM
package.

The web-based frontend of ShinySOM9
provides functionalities similar to

FlowSOM, but in a more straightforward and graphical form that is suitable for

biologists. ShinySOM aimed to minimize the computational delays by utilizing

and visualizing highly efficient versions of the analysis based on self-organizing

maps [7] from FlowSOM. In this setting, the R plotting routines form a major

bottleneck that severely limits the interface responsiveness.

Seurat10
is an R package designed for the analysis of single-cell RNA-seq

data, aiming to identify and interpret sources of heterogeneity in single-cell

transcriptomic measurements and to integrate single-cell data from different

experiments [2]. Typically, Seurat users view multiple renderings of the single-

cell data colored by different genes based on user selection, again placing a strong

requirement on fast scatterplotting.

GigaSOM.jl11
[8] is used for distributed clustering and analysis of extensive

cytometry data using Julia. It is similar to FlowSOM in its functionality and thus

faces the same plotting performance challenges. GigaScatter was implemented

as an immediate solution, allowing users to quickly plot partial scatterplots from

data slices residing at multiple distributed processes and efficiently merge them

at the coordinating process. Due to the simple implementation, GigaScatter
also suffers from overplotting issues.

6https://datashader.org
7https://numba.pydata.org
8https://github.com/LCSB-BioCore/GigaScatter.jl
9https://github.com/exaexa/ShinySOM

10https://github.com/satijalab/seurat
11https://github.com/LCSB-BioCore/GigaSOM.jl

5

https://datashader.org
https://numba.pydata.org
https://github.com/LCSB-BioCore/GigaScatter.jl
https://github.com/exaexa/ShinySOM
https://github.com/satijalab/seurat
https://github.com/LCSB-BioCore/GigaSOM.jl

6

Chapter 1

Contemporary use of scatterplots

Scatterplots are plots that use dots to visualize values dependent on two numeric

variables. The position of a dot on the horizontal and vertical axis determines the

value for an individual data point. There is a lot of information to be gained from

scatterplots (figure 1.1) because they can show patterns in the data in addition

to the individual values. They are useful for various purposes, such as dividing

data points into groups according to how closely points are and forming clusters.

Scatterplots can also point out unexpected gaps in the data and find possible

outlier points
1
.

Figure 1.1 Examples of relationships between variables in scatterplots. From left to
right: strong, positive, linear; moderate, negative, linear; no relationship; strong, non-
linear. Scatterplots provide an intuitively comprehensible picture of this relationship.
Taken from chartio.com1.

Primarily, scatterplots are not suitable for showing density in the data. Density

in a scatterplot is the number of points assigned to an individual pixel. For the

purpose of displaying density, histograms and contour-based visualization may

supplement scatterplots to illustrate the density better, using color scales and

lines. This is one of the reasons why it is useful to transform scatterplots into

histograms.

1https://chartio.com/learn/charts/what-is-a-scatter-plot

7

https://chartio.com/learn/charts/what-is-a-scatter-plot

1.1 Common challenges

Scatterplots are useful in various fields and are a very good tool for data visual-

ization. However, some issues in the visualization process need to be handled.

We chose to analyze three of these challenges that we deemed to be the most

important in most use cases:

• Misinterpretation of correlation and causation in section 1.1.2.

• Speed. It is challenging for a generic plotting package to work with a billion

points in a reasonable time. That is why speed is a significant challenge.

For software where tasks require some interactions, e.g., ShinySOM [5],

it can even be problematic to analyze over 10 million points. However,

scattermore is suitable for this task because of its partial implementation

in C (chapter 3).

• Overplotting and density representation in section 1.1.3. The phenomenon

of overplotting is related to the already mentioned density representation –

the problem of dealing with many points on the same spot. 2D histograms

(section 1.3) offer a solution for this situation and are better for plotting

density than colorful scatterplots, but at times better techniques need to be

considered.

1.1.1 Displaying density

When analyzing data visualizations, one often has to choose between being able

to distinguish individual points and a good density estimation. With scatterplots,

smaller point sizes and low alpha values are suitable for satisfactory distribution

visualization, but it is challenging to see outliers. High alpha values with larger

point sizes offer a good discriminability of outliers; however, density estimation

is impossible (figure 1.2).

One of the possible solutions for this is to use hexagonal binning or scatterplots

combined with contour plots where density is depicted with changing intensity

values (section 1.1.3).

Alternatively, in this thesis, we argue that in an interactive visualization

environment, the ability to quickly rerender scatterplots based on user choice

of point size and alpha solves this problem for many use cases. If available, the

user may dynamically adjust the density rendering, allowing observation of the

desired density range.

8

Figure 1.2 Trade-offs between displaying density and outliers with plain scatterplots.
One possibility is to use a high alpha value with larger points (left) to make them more
distinguishable. Another way is to make them smaller with a low alpha value (right) to
ensure good density estimation.

1.1.2 Interpretation of correlation and causation

Correlation does not imply causation. Still, it is difficult not to forget the knowl-

edge when presented with actual data – assuming that the reason for that is

the combination of misunderstanding and expectations hoping to come true.

Bergstrom and West [9] say “correlations only hint at how the world might work;

causal relationships directly answer that question“ and even allow to suggest

possible actions to reach the desired outcome.

This fact is crucial when working with a scatterplot because its relationships

tend to misinterpret easily. The fundamental problem with scatterplots is their

depiction on the Cartesian plane, often used to display “cause-and-effect or de-

pendency relationships.“ Especially students tend to assume that the variable on

the horizontal axis somehow influences the value on the horizontal axis [9].

One of the solutions for the problem is to display the same data using diamond
plot (figure 1.3) visualization. The axes are rotated by 45◦

, so both have the same

importance. There is no distinction between the dependent and independent

variables, and the new format requires greater attention in the attempt to draw

causal conclusions [9].

Fast replotting is important when there is a need to redraw data because of

this possible misinterpretation.

9

Figure 1.3 An example of a diamond plot and ‘ordinary’ scatterplots with the same
data. The diamond plot does not have the tendency to create ‘false’ relationships between
variables. Taken from the article about diamond plots [9].

1.1.3 Overplotting
Overplotting is a scatterplot visualization problem where data points overlap so

much that it becomes challenging to distinguish the features in the data. Many

points, multiple data sets, and high-density regions create this problem. Even

when overplotting is not a prominent issue in some cases, the large amount of

information leads to visual clutter. Here, we illustrate three known methods for

reducing some of the adverse effects of overplotting: the combination of point
filtering and density or contour plots, binning, and point order mixing.

Points and plots Mayorga and Gleicher [10] introduced an innovative tech-

nique to avoid visual clutter when designing scatterplots. It also offers a nice way

to analyze density at the same time solving the problem mentioned in section 1.1.1.

In this method, two approaches:

• density or contour plots

• point filtering

are used to visualize the results as well as possible.

The phases are the following; density estimation and thresholding are applied

to aggregate the points into contours. Then the distance transform eliminates

10

Figure 1.4 An example of scatterplot visualization employing contour plots and point
filtering to reduce overplotting. Taken from the article about this technique [10].

the points lying too close to the contours. The next step is to color dense regions

forming a bounded smooth shape. Color choices must be easily distinguishable

and coexist well with the blending strategy. The CIE Lab color space is employed

because it is easier to differentiate between colors whose perceptual distances

can correspond to Euclidean distances [10].

Finally, the algorithm combines all sub-results and creates the scatterplot.

Changes in lightness and chroma (purity of color) parameters together with

alpha help to indicate between overlapping sets. After that, an operation must

identify outlier points to prevent visual clutter and overdrawing. Then a decision

occurs on which points participate in the sampling process [10]. This procedure

generates a new kind of visualization (figure 1.4).

Binning Another way to reduce overplotting uses hexagonal binning that

plots rather density than points, and colors display the number of points per a

heaxagon
2
. This method also solves the problem of density.

Compared to the previous one, this more straightforward technique is more

proper for visualizing cells when dealing with single-cell RNA-sequencing data.

In the process, Freytag and Lister [11] divide the plotting area into a regular grid

2https://datavizproject.com/data-type/hexagonal-binning

11

https://datavizproject.com/data-type/hexagonal-binning

of hexagons, and then cells are allocated to a ‘bin’ they belong to. The main

disadvantage of this technique is the resolution decrease. The package schex in

R makes the hexagonal plotting accessible to the scientific community [11].

Poing order mixing The simplest and the most popular method for reducing

overplotting utilizing point order mixing is point order mixing visualized by

figure 1.5. The technique is based on randomizing the plotting order of points to

mitigate this undesired phenomenon because it primitively simulates the color

mixing when laying the points of alternating color on each other. Nevertheless,

the resulting effect does not reflect reality well enough.

The figure 1.5 also illustrates the approach chosen by this thesis; mitigation

of overplotting with RGBWT matrix ensuring correct color mixing. For details,

please see chapter 2.

12

(a) Overplotting — yellow cluster completely

shadows the blue one.

(b) Symmetric case of overplotting.

(c) Simple mitigation of overplotting by random-

izing the point plotting order.

(d) Overplotting mitigation by using RGBWT

matrix.

Figure 1.5 Example of overplotting and techniques dealing with it. The first three
images are plotted using R’s default method, and the image (d) is plotted with
scattermore.

13

1.2 Improving visualization with image kernels
Image kernel is a 2D matrix filter used for traversing an image and getting infor-

mation from it. The filters have versatile usage when employing convolution in

the space domain. The process is shown in figure 1.6.

Kernels have been used for various purposes, such as detecting edges based

on first or second derivatives or reducing image noise. This is achieved by image

smoothing, removing high-frequency content, like edges and corners, from an

image [12].

With scatterplots, kernel filtering may be used to expand or smooth out the

points to improve visualization and to smoothen the point histograms in order to

make them more suitable for other visualization methods, such as heat maps or

contour plots.

For some convolution filters, it is essential to precompute them to avoid costly

repetitive computations. For example, evaluating the exponential in a Gaussian

function may be quite expensive, so the filtering cost can be quite high using this

technique. That is why approximation methods mentioned in the next section

are utilized.

1.2.1 Gaussian filtering and its optimization
A Gaussian filter is a filter whose impulse response approximates a Gaussian

function.

Definition 1 (A Gaussian function). Let σ be a non-zero and µ a real constant.
Then the function

g(x) = 1
σ
√

2π
e− 1

2 (x−µ
σ

)2

is a Gaussian function3.

Computer vision often uses Gaussian smoothing: smoothed_image(x) =∑︁
y

valuey∗g(|x−y|)∑︁
y

g(|x−y|) .

Applying the Gaussian filter tends to be computationally more expensive

because the weight assigned to each pixel is calculated with the use of exponential

and square root operations (if the kernel is not precomputed). Additionally, the

Gaussian kernel has a larger kernel size compared to the simple square kernel

of ones to achieve the same level of smoothing; kernel support has to be large

enough to fit the essential part of the Gaussian [13].

That is why especially higher-resolution images require minimizing their

filtering costs. One of the solutions for that is to approximate the Gaussian

3https://en.wikipedia.org/wiki/Gaussian_function

14

https://en.wikipedia.org/wiki/Gaussian_function

Figure 1.6 An example of 2D convolution without kernel flipping. The kernel is ‘placed’
over the input data, and the output is computed according to the expressions in the
image [15].

filter through multiple averaging filters. Kovesi [14] describes the possibilities to

compute these filters in the space domain as follows.

Integral image, or a summed area table, “can be generated by computing the

cumulative sums along the rows of an image and then computing the

cumulative sums down the columns.“ So the value at any point (x, y) in the

integral image corresponds to the sum of all the image pixels above and

the left of (x, y), including the point itself. Then the sum of all image pixels

within an arbitrary rectangle is computed and divided by the number of

pixels in the rectangle resulting in an averaging filter [14].

Separability of the averaging filter and performing repeated moving average

filtering on the rows and columns of the image is another way to achieve

the desired results. The computational cost can reach similar results to

the method using integral pictures in case some division operations on the

repeated averaging passes are united. The possible solution is to have two

filter sizes and decide the number of passes according to σ [14].

When using integral images, three repeated averagings achieve a passable approx-

imation to a Gaussian, and the approximation becomes very good beyond four

repeated averagings. In the other case, e.g., for the approximation of a Gaussian

with σ = 40, five passes were sufficient, with the actual standard deviation being

39.983 [14].

15

Figure 1.7 Examples of a simple and 2D histogram45.

1.3 Histograms for scatterplot summarization
“A histogram is a picture history of a statistical distribution“ [16]. Histograms

consist of ‘bins’ created by dividing the entire range of values into a series of

intervals and then counting how many values fall into each gap. If the bins have

equal sizes, there is a corresponding rectangle to each ‘bucket’ with a height

proportional to the number of cases in each bin (figure 1.7). However, if the

containers do not have equal width, then the frequency is calculated from the

area of the rectangle
4
.

Histograms are suitable for estimating the precise data density compared

to scatterplots, providing good data structure visualization. However, most of

the time, both of the parameters are needed. Please see figure 1.8 for a possible

solution in R.

In addition to the use in scatterplot simplification, histogram data may serve

other purposes. These include, e.g., histogram equalization, which improves the

perceived contrast in the pictures [17] and may be beneficial in data science for

choosing good levels for contours. A method resulting in a good contrast provides

more gray-level values or more saturation values for the different color tones in

the image, but there is almost no image degradation.

Although histogram equalization gives good results, it is not a fool-proof

method, so other techniques exist to achieve an even better outcome. Wang and

Ye [18] introduce a process called brightness-preserving histogram equalization,

reaching a new image with similar brightness levels to the original one.

4https://en.wikipedia.org/wiki/Histogram
5https://ggplot2.tidyverse.org/reference/stat_summary_2d.html
6https://ggplot2.tidyverse.org/reference/geom_density_2d.html

16

https://en.wikipedia.org/wiki/Histogram
https://ggplot2.tidyverse.org/reference/stat_summary_2d.html
https://ggplot2.tidyverse.org/reference/geom_density_2d.html

Figure 1.8 Contours of a 2D density estimate6. R uses contours and alternating colorful
regions for density estimation, which can be useful for overplotted regions.

Then another way is to apply a procedure based on piece-wise linear transfor-

mation where the smooth version of the histogram created by a Gaussian filter

passing low frequencies finds the total number of segments [17].

17

18

Chapter 2

Redesign of scattermore

The original version of scattermore offered fast plotting of millions of points.

Compared to the R’s default plot function, it took only a few moments
1
. However,

the original API did not allow any further flexibility in configuring the rendering

procedure. Ideally, one would expect features such as combining scatterplots with

different datasets, improving scatterplot visualization with custom kernels, and

drawing lines.

In the next part, we describe our reimplementation of scattermore internals,

which features a comprehensive API and thus enables high customizability. This

chapter mainly concerns the structure of this API, the speed of the underlying

implementation, and the optimizations that we applied.

1https://academic.oup.com/bioinformatics/article/36/10/3288/5734646?log
in=false

19

https://academic.oup.com/bioinformatics/article/36/10/3288/5734646?login=false
https://academic.oup.com/bioinformatics/article/36/10/3288/5734646?login=false

2.1 Input data formats
This section introduces scattermore, its input formats, and the logic behind

their implementation.

Proper methods must accept data, either with or without color input, to be

able to visualize something later. The figure 2.1 shows this initial decision. The

two approaches to accomplish that are drawing points or lines, each having its

appropriate functions:

• Point drawing functions convert 2-coordinate point data into a raster grid of

a given size. The input for points consists of two coordinates, and the given

points ‘fall’ into the raster grid with assigned sizes. If there was no color

input, the process creates a histogram or, in the other case, an RGBWT data

structure. For more information, please see section 2.1.1.

– scatter_points_histogram outputs histogram data

– scatter_points_rgbwt also accepts a color description of points

and outputs the RGBWT matrix

• Line drawing functions convert line data into a raster grid of a given size.

The approach is similar to the case of only points but with something to add.

Information about lines comes from two pairs of start and end coordinates.

Bresenham’s line algorithm ensures the drawing of an arbitrary number

of lines. Its task is to approximate a straight line between two points

conveniently. It works only with cheap computer operations such as integer

addition, subtraction, and bit shifting
2
.

– scatter_lines_histogram

– scatter_lines_rgbwt

Drawing lines

We specifically chose to provide the explicit line drawing primitives because

sometimes it is not enough to plot only input points because the result does not

reflect expectations. With a given number of points, one can visualize the image

‘perfectly’ only if the bitmap size is sufficiently small. But, as figure 2.2 shows,

with the support for drawing lines, it is more likely to meet the expectations

because, for every pair of points, new points lying on a line between them are

drawn too.

2https://gitlab.cecs.anu.edu.au/pages/2018-S2/courses/comp1100/assignm
ents/02/Bresenham.pdf

20

https://gitlab.cecs.anu.edu.au/pages/2018-S2/courses/comp1100/assignments/02/Bresenham.pdf
https://gitlab.cecs.anu.edu.au/pages/2018-S2/courses/comp1100/assignments/02/Bresenham.pdf

Points without color input

Lines without color input

Points with color input

Lines with color input

Raster result

Histogram
raster

Kernelized
histogram

RGBWT
raster

RGBWT
raster

Merged
RGBWT

Kernelized
RGBWT

Integer
RGBA

Float
RGBA

Blended
float RGBA

scatter_points_histogram

scatter_lines_histogram

apply_kernel_histogram
histogram_to_rgbwthistogram_to_rgbwt

scatter_points_rgbwt

scatter_lines_rgbwt merge_rgbwt

merge_rgbwt

ap
pl

y_
ke

rn
el

_r
gb

wt

rgbwt_to_rgba_int

rgbwt_to_rgba_float

rg
bw

t_
to

_r
gb

a_
in

t

rg
bw

t_
to

_r
gb

a_
in

t

rgbwt_to_rgba_int

rgba_float_to_rgba_int

blend_rgba_float

rg
ba

_f
lo

at
_t

o_
rg

ba
_i

nt

rgba_int_to_raster

Figure 2.1 Overview of functions and data format conversions implemented in
scattermore.

21

Figure 2.2 Rendering the Lorenz attractor using points (left) and lines (right). Render-
ing multiple lines as a series of points creates visual artifacts that confuse the perception
of the structure and the apparent density is confusingly diminished in areas where the
attractor approximation ‘moves’ quickly. Both problems are most apparent in the top-left
area of the rendering.

2.1.1 Data formats for intermediate processing
The methods in scattermore are responsible for storing data in various ways

according to their usage. The primary data formats are histogram, RGBWT matrix,

and RGBA matrix.

Histogram

In scatermore, we use histograms represented by 2D arrays of integers that

count the number of points that were assigned to the particular bucket (or pixel)

in the grid. This format is useful when there is no available or required color input.

For more information about histograms, please see section 1.3. By assigning a

palette of colors to the histogram, an RGBWT matrix comes into existence.

RGBWT matrix

The RGBWT matrix is a 2D array of pixels where each pixel has 5 channels. Each

pixel has entries about red, green, blue, and alpha color channels
3
.

• The R, G, and B entries include information about the result pixel coloration

for each channel and their opacity (A as alpha channel). They are generated

3https://en.wikipedia.org/wiki/RGBA_color_model

22

https://en.wikipedia.org/wiki/RGBA_color_model

by multiplying the color channel’s value with the alpha channel’s value

for each pixel and eventually summing them together. This premultiplying
of alpha eliminates the need for additional computations when combining

more transparency values, which would involve repetitive multiplying and

dividing by A.

• The W entry stands for weight, and it stores the total color amount assigned

to the pixel, i.e., a sum of alpha values of all assigned points for each pixel.

• The T entry describes the total pixel transparency – pixels start with trans-

parency 1, and the transparency is multiplied by transparency (calculated

as 1-A) of all incoming pixels.

This data storage system preserves essential information lost in other formats,

e.g., the RGBA matrix (section 2.2.2). Crucially, separating the transparency and

weight value enables precise, order-independent mixing of individual pixel colors.

This solves the problem in figure 1.5 in section 1.1.3.

RGBA matrix

Like the RGBWT matrix, this data format stores information about the result

pixel coloration and its opacity for each channel. However, the information about

entries W and T from the RGBWT matrix is present in R, G, B, and A entries

in the new matrix form. Except for the alpha channel, the color channels store

information about alpha too, so A is again premultiplied to simplify possible

blending operations. This format is present in a float and an integer variant.

2.2 Data operations
This section describes possible data operations such as smoothing and two ways

of image combining.

2.2.1 Expanding pixels with image kernels
With scattermore, applying a kernel to the data is possible. Available filters

are in the shape of a square, circle, or Gaussian filter (section 1.2.1), and there

is an opportunity to design your mask. The kernel operation may be applied to

the histogram and RGBWT matrices, using methods apply_kernel_histogram
and apply_kernel_rgbwt (figure 2.1). The algorithm for smoothing alone is

implemented in C to provide sufficient performance.

23

(a) Scattered blue points. (b) Blue points made black

with maximal alpha chan-

nel capacity to make the

drawing more visible.

(c) Applying a large point

kernel on the image with

blue points.

(d) Scattered orange points. (e) Orange points made

black with maximal alpha

channel capacity to make

the drawing more visible.

(f) Applying a large point

kernel on the image with or-

ange points.

(g) RGBA blending of blue

points over the orange

ones.

(h) RGBA blending of or-

ange points over the blue

ones.

(i) RGBWT-based “fair“

merging of the individual

rasters.

Figure 2.3 Example of possible operations with scattermore.

24

Figure 2.4 Example of available masks in scattermore (left to right: circle, square,
Gaussian, and custom a custom user-defined heart mask.

Kernel application may be easily used to expand small single-pixel points

(e.g., the outputs of the scattering functions) to ones with a specific larger shape

(figure 2.4).

It can be especially useful when the number of points needed to be visualized

is larger than the number of pixels because the blurring is done on a bitmap of

already processed points, so a large number of points is not a speed hindrance.

However, even with fewer points, the post-expansion of points using a kernel

has a performance benefit because the kernel operation convolution can be easily

parallelized. Please see section 3.4 for details.

2.2.2 Merging and blending

Scattermore also offers a possibility to combine more visualizations together;

the methods merge_rgbwt and blend_rgba_float take care of the process.

When combining two RGBWT matrices, the result is an equivalent color

mixture, so there is no overplotting. All the matrix’s R, G, B, W, and T entries are

equally summed or multiplied together in the case of T, creating a new matrix.

This form of storing data is crucial for preventing overplotting (figure 1.5).

In contrast, when blending two RGBA matrices, one entry is more prioritized

than the other one depending on the value of A because when combining them,

the complement of A of the first one stands as the A value for the other. The

resulting visualization shows the inequality (figure 2.3).

2.3 Data formats for output and plotting

This section describes the possible conversions among formats, their usage, and

the eventual plotting with a simple example.

25

Listing 1 Example of plotting and saving a simple image.

library(scattermore)
library(magrittr)

png(filename = "your_path")
par(mar = c(0,0,0,0))
pts <- cbind(rnorm(1e5), rnorm(1e5))

high-level interface compatible
with original scattermore
pts %>% scattermore %>% plot(interpolate = F)

low-level customizable interface
pts %>% scatter_points_rgbwt %>% rgbwt_to_rgba_int %>%
rgba_int_to_raster %>% plot(interpolate = F)
dev.off()

2.3.1 Data format conversions
Conversions ensure high variability of the visualization process and its eventual

plotting. The histogram has to be converted to an RGBWT matrix using the

method histogram_to_rgbwt. The algorithm is written in C to allow its fast

conversion.

Then the RGBWT matrix can transform into the float RGBA matrix using

rgbwt_to_rgba_float and then rgba_float_to_rgba_int methods, or it is

possible to convert it into the integer RGBA matrix straight away with the function

rgbwt_to_rgba_int. The first case is valid when one wants to apply some

blending before the following visualization (figure 2.1).

The final transformation entails the change into the raster format with

rgba_int_to_raster utilizing R’s default function to support plotting.

2.3.2 Plotting and output
R takes care of the actual plotting with its plot function accepting a raster form

of the data
4
. The method is not just a straightforward function but a means to

call other methods dealing with the plotting or different process according to

the input parameters. Scattermore uses the plot function only at the end of the

process, changing the input data structure to a raster format, so no potentially

slow algorithms are employed on the data.

4https://www.rdocumentation.org/packages/graphics/versions/3.6.2/topics
/plot

26

https://www.rdocumentation.org/packages/graphics/versions/3.6.2/topics/plot
https://www.rdocumentation.org/packages/graphics/versions/3.6.2/topics/plot

Listing 2 Example of a structure of arrays. All individual R, G, and B components of a
pixel are grouped together and then stacked next to each other.

struct RGB_list {
int R[N];
int G[N];
int B[N];

};
struct RGB_list colors ;
int get_channel_R (int i) { return colors .R[i]; }

2.4 Rendering performance and parallelization
possibilities

There are various ways to improve the performance of implemented algorithms

and, consequently, the resulting plotting. Some methods include cache utility

optimization using different storage formats, SIMD, and parallelization techniques

for image blurring.

2.4.1 Performance effects of data layout
Structure of arrays or SoA 2 and array of structures or AoS 3 are data storage

formats. It is helpful to group data together in the best suitable form to improve

spatial locality. The spatial locality ensures that elements close to each other

are stored in the same memory block
5
. AoS is a more conventional data storage

method supported by most programming languages, whereas when using SoA,

there is a possibility to use SIMD instructions (section 2.4.2).

Array of structures of arrays 4 is a hybrid approach between the two formats.

It enables using SIMD while offering a good cache locality. The idea here is to

benefit from the locality at the outer level and unit-stride at the innermost level
6
.

2.4.2 SIMD for image processing
SIMD (Single Instruction/Multiple Data) is a computing method that enables

multiple data processing with a single instruction. It uses only one instruction to

achieve the same result as conventional scalar operations. Data types used for

SIMD operations are called vector types
7
.

5https://en.algorithmica.org/hpc/external-memory/locality
6https://www.intel.com/content/www/us/en/developer/articles/technical/m

emory-layout-transformations.html
7https://en.algorithmica.org/hpc/simd

27

https://en.algorithmica.org/hpc/external-memory/locality
https://www.intel.com/content/www/us/en/developer/articles/technical/memory-layout-transformations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/memory-layout-transformations.html
https://en.algorithmica.org/hpc/simd

Listing 3 Example of an array of structures. The pixel elements are stacked alongside
and all R, G, and B components of an individual pixel are stored next to each other.

struct RGB {
int R;
int G;
int B;

};
struct RGB colors [N];
int get_channel_R (int i) { return colors [i].R; }

Listing 4 Example of an array of structures of arrays. It is a hybrid approach between
the structure of arrays and the array of structures formats.

struct RGBx8 {
int R[8];
int G[8];
int B[8];

};
struct RGBx8 colors [(N +7)/8];
float get_channel_R (int i) { return colors [i/8].R[i%8]; }

In scattermore, we used SIMD in the SoA format to improve the speed of the

C method histogram_to_rgbwt. As seen in listing 5, SIMD instructions enable

access to more elements in the array at once. For example, _mm_loadu_ps extracts

four 32-bit floating-point elements
8
. The listing 6 shows that the ‘SIMD’ methods

are also effective in assembly because they have their own special instructions.

However, SIMD uses larger register files, increasing power consumption and

required chip area. Next, there can be restrictions on data alignment
9
. Then the

simultaneous access advantage makes it possible to use only a specific predefined

processing pattern, meaning it is impossible, e.g., to add some elements from

two groups of data and subtract others from the same two groups in a single

processing instruction
7
.

Nevertheless, there is a possibility to solve these issues. VeGen, a vector-

izer generator, enables practical usage of non-SIMD vector instructions making

it possible to use non-isomorphic and cross-lane operations. LLP (Lane Level

Parallelism) captures the parallelism model with SIMD and non-SIMD vector

instructions. It “automatically generates a vectorization pass to uncover target-

8https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.h
tml

9https://www.wikiwand.com/en/Single%20instruction,%20multiple%20data#Di
sadvantages

28

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.wikiwand.com/en/Single%20instruction,%20multiple%20data#Disadvantages
https://www.wikiwand.com/en/Single%20instruction,%20multiple%20data#Disadvantages

Listing 5 Example of the SIMD usage in scattermore. The code is taken from
histogram_to_rgbwt method implemented with vector instructions.

__m128 histogram_values = _mm_loadu_ps (histogram);
// normalize histogram_values
histogram_values =

_mm_mul_ps (_mm_sub_ps (histogram_values , minimums),
differences);

// palette indices multiplied by 4
__m128i palette_indices =

_mm_cvtps_epi32 (_mm_mul_ps (histogram_values , bins));
// correct if one of the indices is equal to size_palette
palette_indices = _mm_min_epi32 (palette_indices ,
sizes_palette);

Listing 6 Assembly code of the SIMD usage example5. The translated ‘SIMD’ functions
are represented in assembly by specific instructions.

vmovups (% rcx), %xmm3
addq $16 , %rcx
vsubps %xmm17 , %xmm3 , %xmm0
addq $16 , %rdx
vmulps %xmm5 , %xmm0 , %xmm0
vmulps %xmm18 , %xmm0 , %xmm0
vcvtps2dq %xmm0 , %xmm0
vpminsd %xmm16 , %xmm0 , %xmm0
vmovd %xmm0 , %eax
sall $2 , %eax
cltq

architecture-specific LLP in programs while using only instruction semantics as

input.“ This new approach to non-SIMD instructions can accelerate applications

in fields such as machine learning, image, and digital signal processing [19].

2.4.3 Cache effects and interface to R

The cache efficiency is an essential factor to be considered when analyzing perfor-

mance. When drawing a single point, more data must be loaded from the memory

because the processor cannot load individual bytes, so it has to be done by chunks

of data.

As mentioned in section 2.4.1, the structure of arrays and the array of struc-

tures enable different approaches for cache access, meaning that the resulting

29

speed depends on the storage format. Accessing the SoA storage format more

optimally is possible using SIMD. These data storage formats also influence the

conversion speed from R to C and another way around.

In our experiments, we also consider the kernel algorithm to improve the

cache utility, especially the looping movement of the kernel through the image.

2.4.4 Available parallelism
Another way how to improve the performance of operations in scattermore is

multithreading. Applying this concept to the scattering process and the kernel

algorithm could be helpful.

To parallelize the points scattering safely and avoid a race condition, it is

necessary to divide the image bitmap so that each part is accessible only by a

single thread and, in the end, merge the results. However, for every operation,

a random cache line has to be loaded to the memory, so the threads must wait

for it. Except for that, with sufficient threads, the memory bandwidth becomes a

bottleneck.
10

.

Nevertheless, the parallelization of the kernel algorithm is possible and rel-

atively straightforward. We do multithreading by dividing the image bitmap

into many blocks, assigning the neighboring block to another thread, and then

repeating this process. This means that the threads do not fight over the available

cache space.

10https://en.algorithmica.org/hpc/cpu-cache

30

https://en.algorithmica.org/hpc/cpu-cache

Chapter 3

Results and discussion

In this chapter, we verify the assumptions from section 2.4 by measuring the

performance of the following C methods in various scenarios.

• scatter_histogram

• scatter_singlecolor_rgbwt

• histogram_to_rgbwt

• kernel_histogram

• kernel_rgbwt

To summarize, the areas of scattermore taken into account are point scat-

tering, conversion from histogram to RGBWT format, and kernel application.

The results of the following benchmarks can tell us how much it is valuable and

convenient to implement these optimizations to scattermore.

For measuring the C methods, the C++ class high_resolution_clock was

employed, and for its R interface, the method system.time was utilized. All of the

measurements were performed on the hardware with the following specifications:

• Processor: 11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz, 2803 MHz, 4

Core(s), 8 Logical Processor(s)

• RAM: 16,0 GB (15,7 GB usable)

31

Performance evaluation methodology Most of the operations run quickly,

and many factors influence the benchmarking process: that is why we saw large

variances in the resulting speeds. Therefore, with the help of linear regression,

we decided to employ strategy from Haskell library Criterion1
to determine the

speed of operation from several measurements with different problem sizes.

Briefly, the time t needed to solve the problem composed of the initialization

part (taking time b) and N algorithm repetitions for solving N objects (each taking

time a) is N ∗ a + b + e where e is the randomly distributed error. We measured

most of the benchmarks in chapter 3 using a large number of problem sizes (with

different N), and we estimated values a a b with the help of OLS algorithm [20,

21]. Consequently, we reported time a in the plots.

Furthermore, OLS allowed us to estimate the accuracy of a and to report it

as the amount explained into variance – statistically R2
. In generated plots, we

also reported R2
with the help of point size, e.g., figure 3.2, which enabled us to

recognize parameters or conditions of the algorithm where the total time was

mostly determined by random events, e.g., such as page fault.

1https://github.com/haskell/criterion

32

https://github.com/haskell/criterion

Figure 3.1 Comparison of the speed difference when plotting points among R, RStudio,
original, and new scattermore’s version.

3.1 Performance of point scattering
The figure 3.1 clearly shows the contrast between plotting (without additional

operations) with scattermore and R’s default plot function. Scattermore is

slightly slower with smaller data, likely because of its API overhead. However,

when there are many points, the roles get reversed, and with millions of points, R

is slower by tens of seconds.

The original version of scattermore is slightly faster than the new one. The

reason for that, presumably, is the API overhead of the more complex processes

and bitmap allocations in the newer implementation.

Except for that, the figure compares the usage of R’s standard plot function

in R alone and its IDE, RStudio
2
. RStudio plotted the images into its window

interface, with many points being much slower than R plotting them and saving

them as png files.

The way how to parallelize the points scattering mentioned in the section 2.4.4,

when there are millions of them, does not help to improve the performance of

scattermore significantly, and to employ more threads with less-sized data

seems to be contra-productive (figure 3.2). Presumably, there is a significant

overhead for generating and assigning threads, so generally, multithreading is

not an optimal form to speed up the point scattering. However, when plotting

millions of points, it can be helpful to consider it.

In the plot, we measure scattering points to the RGBWT matrix with 1024

rows and columns using a single color, but other variants with color for each

point input and color palette would be similar.

2https://www.rstudio.com/products/rstudio

33

https://www.rstudio.com/products/rstudio

Figure 3.2 Comparison of the speed of the two C methods for scattering points to
the histogram and the RGBWT matrix using a single color. The size of the bitmap is
1024x1024 pixels.

3.2 Throughput of format conversion
The conversion from histogram to RGBWT matrix implemented by the C method

histogram_to_rgbwt belongs to the parts of scattermore that can be optimiz-

able.

In the benchmark, we analyze the speed of the C histogram_to_rgbwt
method with increasing bitmap size. Changing the data storage format results

in different function speeds (figure 3.3). Naturally, as described in section 2.4.3,

the SoA version with SIMD is faster than only the SoA version because of vector

instructions. Next, it appears that the proximity of data in the AoS format,

ensuring more positive accesses to a cache, is still worse than using the SoA

format with SIMD.

3.3 Overhead of the R API
When benchmarking the conversion from histogram to RGWBT matrix with

increasing bitmap size and considering the R part, the resulting algorithm is

fastest when implemented with the SoA format, which is improved by SIMD

(section 2.4.2). The vector instructions enable working with more data simultane-

ously without additional overhead, and the SoA format provides instant access to

34

Figure 3.3 Comparison of the speed of the C method histogram_to_rgbwt using
different storage formats: structure of arrays with or without SIMD and array of struc-
tures.

them (figure 3.4).

The plot shows that the conversion to column format, which is natural in R

because it enables working with more data at once, is costly; after the run of the

C histogram_to_rgbwt employing the AoS format, there must be conversion

to the column format before ultimately leaving the R method, so that is why the

SoA format is now faster than the AoS one in comparison to the previous case

(figure 3.3).

We can also see that small bitmaps take the longest time to convert because

they require the same R resources, but because of the bitmap size, no optimizations

are employed.

3.4 Speedup of kernel application
In the kernel algorithm for either histogram or RGBWT matrix, there is a possi-

bility to change the order of the for loops, so instead of the iterating mask over

the image bitmap, the image bitmap iterates over the mask. The figures 3.5 and

3.6 illustrate the speed difference between the implementations concerning the

increasing bitmap size for four kernel sizes. There are two cases: the mask iterates

over the image bitmap, or the image bitmap iterates over the mask.

In both cases, the plots show that variant with the mask over the image bitmap

is faster. This result is not surprising because when traversing the image bitmap

over the mask, some pixels do not have to be in a cache anymore because the

image size is much greater than the mask size.

35

Figure 3.4 Comparison of the speed of the R method histogram_to_rgbwt which
internally calls the C histogram_to_rgbwt method. The following storage formats are
considered: structure of arrays with or without SIMD and array of structures.

When applying multithreading to the kernel algorithm, it is crucial to consider

the distribution of the image bitmap to the threads. The goal is that the threads

are ‘close enough’, as explained in section 2.4.4.

In the plot, we measured the histogram and RGBWT version of the algorithm

with increasing threads and changing kernel size (figure 3.7). The results show

that two threads bring the most enormous speedup, and with more threads, the

benefit is less significant in both cases with every kernel size. This fact concludes

that the more overhead of the threads overwhelms their advantage.

It is also important to underline the fact that the new version of scattermore
starts to be faster than the original one when blurring one million points. The

reason is that the original version blurs the points one by one, whereas, in the

new one, only individual bitmap pixels are being blurred. In figure 3.8, we can

also see that when employing multithreading, the speed does not depend much

on the size of the kernel radius. The blurring operation is pretty regular so there

is only a constant overhead; most of it, presumably, is the calling of more methods

to perform the desired operations in the new API.

36

Figure 3.5 Comparison of the speed of the C kernel_histogram method in the
relationship between the bitmap size and kernel size (gray blocks). This measurement
has two variants depending on the order of the for loops.

Figure 3.6 Comparison of the speed of the C kernel_rgbwt method in the relationship
between the bitmap size and kernel size (gray blocks). This measurement has two variants
depending on the order of the for loops.

37

Figure 3.7 Comparison of the speed of the two C methods for applying kernel to the
histogram and the RGBWT matrix in the relationship between the number of threads
and kernel size (gray blocks). The size of the bitmap is 1024x1024 pixels.

Figure 3.8 Comparison of the speed of the new and original version of scattermore
with increasing kernel radius. The size of the bitmap is 512x512 pixels, and always a
million points are plotted. In this case, we also employ multithreading in the new version
of scattermore. In this benchmark, eight concurrent threads were utilized.

38

3.5 New use cases for high-definition scatterplots
Fast plotting of scatterplots is a useful tool for discovering new relationships in the

data. To illustrate, we describe a surprising example that we found coincidentally

during the preparation of the graphics for figure 3.12 (waterways).

Plotting the Czech waterway data points as a single long line (originally

by mistake) clearly reveals a block structure in the points. We found that this

visualization in figure 3.9 corresponds to the order in which the points are stored

in the dataset file, where the waterways are apparently organized by groups

separated by meridians.

Identifying such a dataset property would arguably be complicated unless we

knew the property in advance. Conversely, simple visualization of the dataset has

enabled us to generate a viable hypothesis about the data layout, which would be

later easy to test.

Next, creating a histogram from the data and applying a kernel to it enables

us to see the density of the data. Specifically, the image in figure 3.10 was created

from data where each entry consisted of two points forming a line and then a

Gaussian kernel with size ten. The black borders are contours that visualize the

density of the data, and their location corresponds to the changing colors in the

histogram palette so it is possible to use scattermore for density estimation.

For more information about original data visualization and their plotting speed,

please see section 3.6.

Density estimation is helpful in various other cases. One of them is shown by

figure 3.11. The line plotting of 102 400 entries in scattermore takes a few tenths

of a second compared to R, where the process is over two minutes long. Although

we plot the lines with not full opacity in the first image, it is pretty unclear what

the line/error distribution looks like in the red area. However, the situation can

be rectified again when representing data as a histogram and then using a palette.

39

Figure 3.9 Depiction of unequal data distribution concerning waterways in the Czech
Republic. Input data consist of 2 599 332 points used to create line entries for a histogram.
The bitmap size is 768x512 pixels.

Figure 3.10 Density visualization of highways in the Czech Republic. Input data
consist of 10 180 391. Then a palette colorized the data. The basis for the contours was
also done by scattermore. The bitmap size is 768x512 pixels. For original visualization,
see figure 3.12.

40

(a) Original image created by line scattering.

(b) Line density converted to a histogram, clearly com-

municating that the total error is most severe in the

lower left cluster.

Figure 3.11 The original image visualizes the correct position of data using red lines.
The data, black points, are not clearly visible because of many misalignments. A histogram
displays the number of lines in space to show their density, and blue points depict the
original data. Merging the points and the line histogram, we get the second image.
Bitmap sizes are 512x512 pixels.

41

3.6 Practical usage of scattermore
This section shows examples of nice outputs generated by scattermore. As

already mentioned in section 2.1, figure 3.13 demonstrates the usage of drawing

lines when plotting Lorenz attractor. Plotting the image with over one and a half

million line entries using a histogram took 0.27s ± 0.03s.

Again figure 3.12 depicts the usage of a histogram and lines together. Similarly

to the Lorenz attractor, both images’ visualization process is very fast. It took

between 0.18s and 0.23s to plot waterways and between 0.39s and 0.45s to plot

highways in the Czech Republic.

Figure 3.14 visualizes an example of trajectory inference [22] in single-cell

data. In order to achieve this, the R package tviblindi3
puts concepts from

graph theory and algebraic topology to practice. It took approximately 0.15s ±
0.06s to draw the blurred (Gaussian kernel of size five) point version. For the line

data, the time interval was similar.

In figure 3.15, the importance of blurring the image by an image kernel is

visible. After creating a histogram and applying a palette, the results in both cases

can be pretty unclear. Nevertheless, after applying a kernel of size five, it is easier

to observe the data density. Plotting the images without kernel took 0.13s ± 0.04s,

and with applying the kernel, on average, it was about 0.16s ± 0.05s.

We demonstrate the use of scattermore on very large datasets. Figure 3.16

shows visualizations of other attractor kinds. With scattermore, the plotting

process is relatively fast compared to the default R function. Specifically, it took

only between 0.75s and 1.05s to scatter 10 million points shown in figure 3.16

whereas the process takes over 100 seconds with employing the base R plot

function.

To illustrate realistic requirements on plotting speed, figure 3.17 shows an

example use of scatterplots for displaying results of data analysis from flow

cytometry. The scatterplot shows several types of cells organized into visually

distinguishable clusters in 2D by an embedding algorithm (the original dataset

has more than 30 dimensions). Importantly, scientists often need to replot the

dataset with a different coloring scheme to highlight features of interest. That

easily becomes a bottleneck of the data analysis — in the original study that

only utilized base R graphics [23], the plotting took more than ten minutes per

scatterplot.

Detailed descriptions of the image generation parameters are available in the

captions of the individual figures. The examples mentioned take much longer

to plot without scattermore; sometimes, the whole process can last for two

minutes. For repetitive replotting, this time interval is too long for practical use.

3https://github.com/stuchly/tviblindi

42

https://github.com/stuchly/tviblindi

(a) Highways. (b) Waterways.

Figure 3.12 Depictions of highways and waterways in the Czech Republic. Input data
consist of 10 180 391 and 2 599 332 line entries, respectively. Both images used a palette
to colorize the data. The bitmap sizes are 768x512 pixels5.

The scripts for image visualizations from this section and from section 3.5 are

available in the GitHub repository
4
.

Figure Objects Type Plotting time

figure 3.12 10,180,391 lines 0.39s – 0.45s
2,599,332 lines 0.18s – 0.23s

figure 3.13 1,666,667 lines 0.24s – 0.30s

figure 3.14 99,948 points 0.09s – 0.21s
280,103 lines 0.11s – 0.22s

figure 3.15 999,778 points 0.11s – 0.22s
499,470 points 0.12s – 0.20s

figure 3.16 10,000,000 points 0.75s – 1.05s

Table 3.1 Summarized results for some figures plotted with scattermore. Due to
the number of components in the complete plotting pipeline (including the R graphics
backend), the plotting times are hard to estimate precisely; we thus report the expectable
range of total plot rendering times.

4https://github.com/teri934/scattermore-examples
5http://download.geofabrik.de/europe/czech-republic.html
6https://holoviews.org/gallery/demos/bokeh/lorenz_attractor_example.htm

l
7https://3d.si.edu
8https://examples.pyviz.org/attractors/attractors.html

43

https://github.com/teri934/scattermore-examples
http://download.geofabrik.de/europe/czech-republic.html
https://holoviews.org/gallery/demos/bokeh/lorenz_attractor_example.html
https://holoviews.org/gallery/demos/bokeh/lorenz_attractor_example.html
https://3d.si.edu
https://examples.pyviz.org/attractors/attractors.html

Figure 3.13 Lorenz attractor example from different angles. Histograms are created
using line drawing without color input and then applying a palette. Input data include 1
666 667 line entries, each consisting of two points, and the bitmap size is 512x512 pixels.
Inspired by an available example6.

44

(a) Blurred single-cell point data to estimate

density.

(b) Trajectory inference using line plotting.

(c) Blend of the previous two.

Figure 3.14 Visualizing projection of synthetic cellular-development pathway data
using package tviblindi3.6. Input data consist of 99 948 point and 280 103 line entries,
respectively. Both images used a palette to colorize the data. The bitmap sizes are
512x512 pixels.

45

(a) T-Rex skeleton. (b) Blurred T-Rex skeleton.

(c) Mammoth skeleton. (d) Blurred mammoth skeleton.

Figure 3.15 Images created using points without color input and then applying a
palette and a circle kernel to blur them. Data about mammoth and T-Rex skeletons have
999 778 and 499 470 points, respectively. The bitmap sizes are 512x512 pixels7.

46

(a) A Clifford attractor. (b) A Hopalong attractor.

(c) A Symmetric icon attractor. (d) A Svensson attractor.

Figure 3.16 Created using 10 000 000 points with color input for each attractor. The
bitmap sizes are 512x512 pixels. Parameters for individual attractors:
(a) 0, 0, -1.3, -1.3, -1.8, -1.9
(b) 0, 0, 7.8, 0.13, 8.15
(c) 0.01, 0.01, 10.0, -12.0, 1.0, 0.0, -2.195, 3
(d) 0, 0, 1.4, 1.56, 1.4, -6.56.
Inspired by available examples and algorithms about attractors8.

47

Figure 3.17 Example use of scatterplots to display high-volume data from cytometry
experiments. The scatterplot shows a 2D embedding of the multidimensional dataset
that describes the contents of peripheral blood in pregnant women; each of the 24 million
points corresponds to a single blood cell. Image provided by Kratochvíl et al. [23].

48

Conclusion

In this thesis, we have described a redesigned version of the R package

scattermore for fast rendering of scatterplots, which vastly improves the

range of supported use cases. As the main result, we have created a highly flexible

API that allows describing and running many new useful operations related to

the rendering of scatterplots.

The version of scattermore produced by this thesis is at this point merged

into the official repository of scattermore9
and is available to the users. The

main new features available after the redesign are as follows:

• New RGBWT pixel format described in section 2.1.1 solves the problem of

overplotting and allows order-independent alpha-blending, which can help

when combining many scatterplots.

• Layered API for scatterplotting enables the users to mix density-based

operations with alpha-blending operations in a single plotting pipeline.

Examples of applications can be found in section 2.2.

• Application of 2D image kernels benefits many common plotting tasks,

such as faster rendering of large points in scatterplots and computation of

smoothed histograms for contour drawing (section 2.2.1).

• Drawing of more complex primitives, mostly custom patterns (figure 2.4)

and lines (section 2.1), which improves the rendering of primarily line-based

data, such as Lorenz attractor visualizations or real-world maps (section 3.6).

Furthermore, we implemented all computationally difficult operations in

C language, which is transparently called from R enabling efficient execution

of most of the rasterization procedure. As a result, scattermore can be over

several hundred times faster when visualizing millions of points compared to the

R standard plotting function. Section 3.4 details the speedup compared to the

original version in several selected specific cases.

9https://github.com/teri934/scattermore-thesis

49

https://github.com/teri934/scattermore-thesis

The other goal of the thesis was to analyze and apply additional performance

optimizations of some operations in scattermore. We determined that paral-

lelization of the base point-scattering operations is actually contra-productive on

typical off-the-shelf CPUs, mainly because the operation is memory-bound (sec-

tion 3.1). Nevertheless, we improved the speed of several data conversion routines

by applying data structure and SIMD instruction optimizations (section 3.2). Most

importantly, we parallelized the kernel application (the most computationally

intensive operation) and found that when using the correct data layout and access

patterns, the result vastly outperforms the methodology used in the original

scattermore (figure 3.8), and scales sufficiently well to properly utilize the full

potential of the commonly available CPUs properly.

To summarize, the new version of scattermore is a high-performance R pack-

age for plotting scatterplots that offers a broad range of customizable operations

using a comprehensive API. We believe that it will provide a good, scalable, and

sustainable base for plotting huge, detailed scatterplots by the scientific packages

implemented in R.

Future work
Although we observed that the expense of data copying using the R .C function is

not large, it still poses some overhead. The future version of scattermore could

contain routines that work directly with 32-bit float data in a way similar to R

package tibble [24], avoiding the frequent conversions to 64-bit floats used in R.

This way, most of the unnecessary data conversion might be eliminated entirely.

The SIMD version of conversion between the histogram and RGBWT data

is faster than the version without vector instructions, but it is not optimal in all

cases and platforms. Although this is not currently an issue, future use cases

dealing with massive scatterplot processing might require different trade-offs and

thus substantiate additional future optimization. Similarly, since many operations

easily become memory-bound on CPU architectures, it would be interesting to

port these to GPUs, which offer much-improved memory data transfer rates.

As a natural extension, users might demand additional features such as plot-

ting Bezier curves and, more importantly, filled polygons. Although we did not

find a good use case for plotting exuberant amounts of small and overlapping

polygons, fast algorithms exist for optimized polygon plotting that can be imple-

mented. For example, GPUs typically employ tiling [25, 26] to improve the cache

efficiency of the rendering vastly. On CPU hardware, we expect that aggregating

the updates of large filled regions in a more complex data structure (such as a

quadtree that structures the bitmap into hierarchical regions that may aggregate

the updates [27]) might provide optimal performance. For drawing polygons,

50

various other algorithms are already used by the current plotting packages for

similar purposes; for example, the aforementioned Datashader uses trimesh-based

rasterization [28].

51

52

Bibliography

[1] Ross Ihaka and Robert Gentleman. “R: a language for data analysis and

graphics”. In: Journal of computational and graphical statistics 5.3 (1996),

pp. 299–314.

[2] Yuhan Hao et al. “Integrated analysis of multimodal single-cell data”. In:

Cell 184.13 (2021), pp. 3573–3587.

[3] Sofie Van Gassen et al. “FlowSOM: Using self-organizing maps for visual-

ization and interpretation of cytometry data”. In: Cytometry Part A 87.7

(2015), pp. 636–645.

[4] Hadley Wickham. “ggplot2”. In: Wiley interdisciplinary reviews: computa-
tional statistics 3.2 (2011), pp. 180–185.

[5] Miroslav Kratochvíl et al. “ShinySOM: graphical SOM-based analysis of

single-cell cytometry data”. In: Bioinformatics 36.10 (Feb. 2020), pp. 3288–

3289. issn: 1367-4803. doi: 10.1093/bioinformatics/btaa091. eprint:

https://academic.oup.com/bioinformatics/article-pdf/36/10
/3288/33204463/btaa091.pdf. url: https://doi.org/10.1093/bio
informatics/btaa091.

[6] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. “Numba: A llvm-based

python jit compiler”. In: Proceedings of the Second Workshop on the LLVM
Compiler Infrastructure in HPC. 2015, pp. 1–6.

[7] T. Kohonen. “The self-organizing map”. In: Proceedings of the IEEE 78.9

(1990), pp. 1464–1480. doi: 10.1109/5.58325.

[8] Miroslav Kratochvíl et al. “GigaSOM. jl: High-performance clustering

and visualization of huge cytometry datasets”. In: GigaScience 9.11 (2020),

giaa127.

[9] Carl T. Bergstrom and Jevin D. West. “Why scatter plots suggest causality,

and what we can do about it”. In: CoRR abs/1809.09328 (2018). arXiv: 1809
.09328. url: http://arxiv.org/abs/1809.09328.

53

https://doi.org/10.1093/bioinformatics/btaa091
https://academic.oup.com/bioinformatics/article-pdf/36/10/3288/33204463/btaa091.pdf
https://academic.oup.com/bioinformatics/article-pdf/36/10/3288/33204463/btaa091.pdf
https://doi.org/10.1093/bioinformatics/btaa091
https://doi.org/10.1093/bioinformatics/btaa091
https://doi.org/10.1109/5.58325
https://arxiv.org/abs/1809.09328
https://arxiv.org/abs/1809.09328
http://arxiv.org/abs/1809.09328

[10] Adrian Mayorga and Michael Gleicher. “Splatterplots: Overcoming Over-

draw in Scatter Plots”. In: IEEE Transactions on Visualization and Computer
Graphics 19.9 (2013), pp. 1526–1538. doi: 10.1109/TVCG.2013.65.

[11] Saskia Freytag and Ryan Lister. “schex avoids overplotting for large single-

cell RNA-sequencing datasets”. In: Bioinformatics 36.7 (Dec. 2019), pp. 2291–

2292. issn: 1367-4803. doi: 10.1093/bioinformatics/btz907. eprint:

https://academic.oup.com/bioinformatics/article-pdf/36/7
/2291/33027528/btz907.pdf. url: https://doi.org/10.1093/bioi
nformatics/btz907.

[12] Raman Maini and Himanshu Aggarwal. “Study and comparison of vari-

ous image edge detection techniques”. In: International journal of image
processing (IJIP) 3.1 (2009), pp. 1–11.

[13] Ruchika Chandel and Gaurav Gupta. “Image filtering algorithms and tech-

niques: A review”. In: International Journal of Advanced Research in Com-
puter Science and Software Engineering 3.10 (2013).

[14] Peter Kovesi. “Fast Almost-Gaussian Filtering”. In: 2010 International Con-
ference on Digital Image Computing: Techniques and Applications. 2010,

pp. 121–125. doi: 10.1109/DICTA.2010.30.

[15] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http
://www.deeplearningbook.org. MIT Press, 2016.

[16] D Rufilanchas. “On the origin of Karl Pearson’s term" histogram”. In: Revista
Estadística Española 59.192 (2017), pp. 29–35.

[17] Gabriel Thomas, Daniel Flores-Tapia, and Stephen Pistorius. “Histogram

Specification: A Fast and Flexible Method to Process Digital Images”. In:

IEEE Transactions on Instrumentation and Measurement 60.5 (2011), pp. 1565–

1578. doi: 10.1109/TIM.2010.2089110.

[18] Chao Wang and Zhongfu Ye. “Brightness preserving histogram equalization

with maximum entropy: a variational perspective”. In: IEEE Transactions
on Consumer Electronics 51.4 (2005), pp. 1326–1334. doi: 10.1109/TCE.20
05.1561863.

[19] Yishen Chen et al. “VeGen: A Vectorizer Generator for SIMD and Beyond”.

In: Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems. ASPLOS ’21.

New York, NY, USA: Association for Computing Machinery, 2021, 902–914.

isbn: 9781450383172. doi: 10.1145/3445814.3446692. url: https://d
oi.org/10.1145/3445814.3446692.

[20] Henk AL Kiers. “Weighted least squares fitting using ordinary least squares

algorithms”. In: Psychometrika 62 (1997), pp. 251–266.

54

https://doi.org/10.1109/TVCG.2013.65
https://doi.org/10.1093/bioinformatics/btz907
https://academic.oup.com/bioinformatics/article-pdf/36/7/2291/33027528/btz907.pdf
https://academic.oup.com/bioinformatics/article-pdf/36/7/2291/33027528/btz907.pdf
https://doi.org/10.1093/bioinformatics/btz907
https://doi.org/10.1093/bioinformatics/btz907
https://doi.org/10.1109/DICTA.2010.30
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1109/TIM.2010.2089110
https://doi.org/10.1109/TCE.2005.1561863
https://doi.org/10.1109/TCE.2005.1561863
https://doi.org/10.1145/3445814.3446692
https://doi.org/10.1145/3445814.3446692
https://doi.org/10.1145/3445814.3446692

[21] Rasmus Bro, Nicholaos D Sidiropoulos, and Age K Smilde. “Maximum

likelihood fitting using ordinary least squares algorithms”. In: Journal of
Chemometrics: A Journal of the Chemometrics Society 16.8-10 (2002), pp. 387–

400.

[22] Wouter Saelens et al. “A comparison of single-cell trajectory inference

methods”. In: Nature biotechnology 37.5 (2019), pp. 547–554.

[23] M Kratochvıl et al. “SOM-based embedding improves efficiency of high-

dimensional cytometry data analysis”. In: biorxiv (2019).

[24] Hadley Wickham et al. “Welcome to the Tidyverse”. In: Journal of open
source software 4.43 (2019), p. 1686.

[25] Ola Olsson and Ulf Assarsson. “Tiled shading”. In: Journal of Graphics, GPU,
and Game Tools 15.4 (2011), pp. 235–251.

[26] Chang Xu, Steven R Kirk, and Samantha Jenkins. “Tiling for performance

tuning on different models of GPUs”. In: 2009 Second International Sympo-
sium on Information Science and Engineering. IEEE. 2009, pp. 500–504.

[27] Hanan Samet. “Algorithms for the Conversion of Quadtrees to Rasters”. In:

(1982).

[28] Juan Pineda. “A parallel algorithm for polygon rasterization”. In: Proceedings
of the 15th annual conference on Computer graphics and interactive techniques.
1988, pp. 17–20.

55

56

Appendix A

Using Scattermore

To be able to use scattermore, you need to install R software first
1
. Scattermore

was developed using R version 4.3.0. You can additionally install RStudio
2

(R’s

GUI).

Installing and running Scattermore

You may install the official CRAN version of scattermore by running the fol-

lowing in the R console (until the release of the new scattermore version, this

will install the original one with limited options):

install.packages("scattermore", repos = "http://cran.r-project.org",
build_vignettes = TRUE)

Another way is to install the development version from GitHub:

devtools::install_github("teri934/scattermore-thesis", build_vignettes = TRUE)

As an alternative, please see the enclosed zipped folder where the scattermore
folder is located. After unzipping the compressed folder, it is possible to run the

following in the local scattermore folder with its source files:

devtools::install("../scattermore", build_vignettes = TRUE)

To use the scattermore package, you need to type library("scattermore")
in the R console.

Now you should be able to use scattermore in R. You can use the following

code7 and the code from the thesis1 to try it. Or you can have a look at the

vignettes by writing browseVignettes("scattermore") in the R console:

1https://cran.r-project.org
2https://www.rstudio.com

57

https://cran.r-project.org
https://www.rstudio.com

Listing 7 Try scattermore with this code.

library(scattermore)
library(magrittr)

scatter points into a histogram

pts <- cbind(rnorm(1e5), rnorm(1e5))
pts %>% scatter_points_histogram %>%
{. ->> hst} %>% image

blur them with Gaussian kernel

hst %>%
apply_kernel_histogram(filter = "gauss", radius = 4) %>%
{. ->> gauss_blurred_hst} %>% image

convert and plot them

gauss_blurred_hst %>% histogram_to_rgbwt %>%
rgbwt_to_rgba_int %>% rgba_int_to_raster %>%
plot(interpolate = F)

scatter points

pts %>%
scatter_points_rgbwt(RGBA = c(0,128,192,50)) %>%
{. ->> rgbwt1}
pts %>%
scatter_points_rgbwt(RGBA = c(192,128,0,50)) %>%
{. ->> rgbwt2}

merge two RGBWT matrices

merged <- merge_rgbwt(list(rgbwt1, rgbwt2))
merged %>% rgbwt_to_rgba_int %>%
rgba_int_to_raster %>% plot(interpolate = F)

blend two RGBA float matrices

frgba1 <- rgbwt_to_rgba_float(rgbwt1)
frgba2 <- rgbwt_to_rgba_float(rgbwt2)
blended <- blend_rgba_float(list(frgba1, frgba2))
blended %>% rgba_float_to_rgba_int %>%
rgba_int_to_raster %>% plot(interpolate = F)

58

	Introduction
	Contemporary use of scatterplots
	Common challenges
	Displaying density
	Interpretation of correlation and causation
	Overplotting

	Improving visualization with image kernels
	Gaussian filtering and its optimization

	Histograms for scatterplot summarization

	Redesign of scattermore
	Input data formats
	Data formats for intermediate processing

	Data operations
	Expanding pixels with image kernels
	Merging and blending

	Data formats for output and plotting
	Data format conversions
	Plotting and output

	Rendering performance and parallelization possibilities
	Performance effects of data layout
	SIMD for image processing
	Cache effects and interface to R
	Available parallelism

	Results and discussion
	Performance of point scattering
	Throughput of format conversion
	Overhead of the R API
	Speedup of kernel application
	New use cases for high-definition scatterplots
	Practical usage of scattermore

	Conclusion
	Bibliography
	Using Scattermore

