
BACHELOR THESIS

Artem Bakhtin

A tool for querying multi-model data

Department of Software Engineering

Supervisor of the bachelor thesis: Ing. Pavel Koupil, Ph.D.
Study programme: Computer Science

Study branch: Databases and Web Bc.

Prague 2023

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

ii

I extend my sincere appreciation to my supervisor for their invaluable help and
support throughout my bachelor project. To my relatives and close ones, your
unwavering support and belief in me have been a constant source of strength.
This achievement is a result of our collective efforts, and I am deeply grateful to
each and every one of you for being the guiding lights in my journey.

iii

iv

Title: A tool for querying multi-model data

Author: Artem Bakhtin

Department: Department of Software Engineering

Supervisor: Ing. Pavel Koupil, Ph.D., Department of Software Engineering

Abstract: Querying over multi-model data is a challenging task even for expert
users, as they typically need to master a number of query languages and be aware
of the logical representation of the data.

In this thesis, we propose a graphical query language over multi-model data and
implement it in the form of a prototype application. The proposed query language
primarily targets less experienced users, aiming at simple querying over data
with only knowledge of its structure. The work includes an attached prototype
that represents the data using a categorical representation strikingly similar to a
graph. We take advantage of this similarity and therefore store the data in the
Neo4j graph database. For proof of concept, we translate our proposed language
into Cypher and transitively query over the multi-model data stored using the
categorical representation in Neo4j.

Keywords: Multi-Model Data Graphical Querying Query by Example Neo4j
Novice Users

v

vi

Contents

Introduction 3

1 Graph query languages 5
1.1 Cypher . 5

1.1.1 Usage . 5
1.1.2 Cypher syntax features . 5
1.1.3 Visualization . 6

1.2 SPARQL . 8
1.2.1 Usage . 8
1.2.2 SPARQL syntax features 8
1.2.3 Visualization . 9

1.3 Gremlin . 10
1.3.1 Usage . 11
1.3.2 Gremlin syntax features 11
1.3.3 Visualization . 13

1.4 ArangoDB . 14
1.4.1 Usage . 14
1.4.2 AQL syntax features . 14
1.4.3 Comparison . 16
1.4.4 Visualization . 16

1.5 RavenDB . 17
1.5.1 Usage . 17
1.5.2 RQL syntax features . 17
1.5.3 Visualization . 19

2 Visual Query Language 21
2.1 Language Description . 21

2.1.1 Basic Operations . 21
2.1.2 Conditionals . 22
2.1.3 Transformations . 23
2.1.4 Set Operations . 24

2.2 Language Limitations . 25

3 Algorithms 27
3.1 Root finding algorithm . 27

3.1.1 JSON to Graph convert 27
3.1.2 Finding a root node in a graph 27

3.2 Graph to instruction set . 28

1

4 Programmer documentation 31
4.1 Intro . 31
4.2 MVC . 31
4.3 Front-end architecture . 32

4.3.1 Model . 32
4.3.2 Widgets . 32
4.3.3 Edges . 34
4.3.4 View . 34
4.3.5 Main functions . 35

4.4 Back-end architecture . 37
4.4.1 Main Classes and Functions 37
4.4.2 Model . 41
4.4.3 Use cases . 41

5 Testing 47
5.1 Introduction . 47
5.2 Unit tests . 47
5.3 Integration Tests . 47

5.3.1 Projection Test . 48
5.3.2 Selection Test . 48
5.3.3 Aggregation Test . 48
5.3.4 Multiple Selection Test . 49
5.3.5 Order By Test . 49
5.3.6 Order By Test . 50

6 User documentation 51
6.1 User Documentation . 51

6.1.1 Requirements . 51
6.1.2 Installation guide . 51
6.1.3 Application Installation 51
6.1.4 Interface of the web editor 55

Conclusion 59
6.2 Thesis Conclusion . 59
6.3 Future Work . 59

Bibliography 61

List of Figures 63

2

Introduction

Querying over data represented by a variety of logical models is a big challenge.
Typically, users must actively understand multiple query languages to be able to
query over data stored in different database systems (so-called polyglot persis-
tence [1]) and then must laboriously transform and piece together the query re-
sults. An alternative to this approach is multi-model DBMS [2], which integrate
multiple storage strategies within a single system and offer a unified interface.
However, in this case, these are often originally single-model systems that have
secondarily extended their storage strategy or adopted a new interface. Thus, the
way the system is extended is also reflected in the way the data is queried, where
the user often needs to be aware of the logical representation of the data and as-
semble the query accordingly. For example, PostgreSQL1, originally a relational
dbms and now a multi-model database supporting document models (namely
JSON [3] and XML [4]), uses the SQL/JSON and SQL/XML language to query
over multi-model data. If users want to query over a document model, they must
use language elements that allow them to traverse the hierarchical structure of
an embedded JSON document (i.e., an extension for JSON). The same applies
to XML documents and SQL language extensions towards querying over XML
data. However, you can’t use traditional SQL to query over JSON data directly
just as you can’t use extensions for JSON or XML to query over relational data.
In other words, users really need to be aware of the logical representation of the
data and not just the structure, as is common with single-model data.

Moreover, today we are talking about Industrial Revolution 4.0, where po-
tentially large numbers of employees will be changing employers in the coming
years. And as the interest in working with data has been growing recently, a
large number of them will be heading to this field. The assumption that people
will be trained to work with multi-model data and actively use multiple query
languages is misguided. This task is often challenging even for today’s expert
users of database systems. And it is also costly, since in practice we must have a
database expert for each system.

Thus, we need to create a unified query language over multi-model data,
where users will only work with a single data schema. Moreover, in order to
make querying over the data suitable for novice users, we will ideally also need a
graphical and simple representation of the queries (as inspired by [5]). The area
of unified representation of multi-model data is addressed, for example, in [6, 7],
and for querying over such data, the MM-quecat2 tool has been implemented to
support querying over data using the MMQL language [8, 9]. However, this is a
text-only language that is based on SPARQL [10], thus expert users are targeted.

1https://www.postgresql.org
2https://www.ksi.mff.cuni.cz/˜koupil/mm-quecat/index.html

3

https://www.postgresql.org
https://www.ksi.mff.cuni.cz/~koupil/mm-quecat/index.html

In this thesis, we focus on graphical querying over multi-model data and
propose a prototype of a simple query language and tool to query such data.
In the actual design of the graphical language, we take advantage of the design
properties of the unified representation of multi-model data [6], which represents
data as a small category [11] that structurally corresponds to a multigraph. The
individual goals of the bachelor thesis can be summarized as follows:

• Analysis of graph query languages We will analyze selected graph query
languages and their graphical visualization.

• Graphical query language We will propose the basics of a graphical query
language (VQL), taking inspiration from existing graphical query languages.

• Graphical query tool We design and implement a tool for graphical querying
over multi-model data.

Outline In Chapter 1, we survey popular graph query languages and their
graphical representations (if any exist). In Chapter 2, we use examples to il-
lustrate the design of a proposed graphical query language VQL over a unified
multi-model representation. In Chapter 3, we describe the basic algorithms for
translating VQL into the chosen graph query language. In Chapter 4, we provide
programming documentation for the querying tool over the data. In Chapter 5,
we describe test scenarios that verify the expressive power of the VQL language.
In Chapter 6, we provide user documentation. Finally, we conclude and outline
future work.

4

Chapter 1

Graph query languages

1.1 Cypher
Cypher [12] is the Neo4j’s1 declarative query language for graphs. Its language
syntax consists of clauses and functions that are familiar to developers experi-
enced with SQL.

1.1.1 Usage
Cypher is specifically designed for retrieving and processing data from graph
databases. Language is tightly integrated with Neo4j DBMS and cannot be eval-
uated independently of this database management system. Neo4j has various
applications in different technology sectors. For instance, the language is widely
used for fraud detection. The Cypher language has significant advantage over
relation databases, because of its effective mechanisms for crime detection. Ad-
ditionally, Neo4j is well-suited for applications in social networks and real-time
recommendations, as it one of the best at connecting individuals and their in-
terests. Furthermore, Neo4j is employed in various scenarios where efficient data
management and mastery of data management systems are crucial.

1.1.2 Cypher syntax features
Cypher offers a unique approach to matching patterns and relationships in graph
databases. It utilizes ASCII symbols, such as dashes and arrows, to represent the
connections between nodes. By using round brackets, users can define nodes and
their relationships, while square brackets allow for the specification of relationship
type and setting additional properties. Language supports default functions such
as sorting, filtering, aggregation and etc. Cypher is schema-less, meaning it does
not support Data Definition Language (DDL) for defining schemas. However, it
fully supports Data Manipulation Language (DML) operations, enabling users to
create, delete, and modify data. The Merge operation is particularly useful for
performing ”match or create” operations in Cypher. Another important feature
is database administration through Data Control Language (DCL). Cypher pro-
vides a set of commands, including GRANT, DENY, and REVOKE, to manage
administrative rights. It’s worth mention that these features are only available

1https://neo4j.com

5

https://neo4j.com

in the Enterprise Edition. Querying in Cypher resembles SQL queries, but with
specific clauses like OPTIONAL MATCH. Additionally, in implicit mode, users
can work with rollbacks and commits to ensure data integrity.

1.1.3 Visualization
Neon4j

The visualization of the language is built upon the Neo4j DBMS, a scalable
graph database known for its schema-free data model. Neo4j holds a dominant
position in the market as a graph database maager. It is the only DBMS that
offers visualization for the Cypher language, making it the obvious choice for
representing the language visually. With Neo4j, users can query data from both
desktop and web applications. The database excels at visualizing a wide range of
user queries. For instance, when working with a test database, simple queries like
retrieving a list of players or players with specific properties, as well as listing all
clubs or clubs with specific properties, are represented as individual floating nodes
in the visual output (refer to Figure 1.1). If there are relationships between the
resulting nodes, these connections will also be displayed in the resulting graph.

(a) (b)

Figure 1.1: Query that lists all players (a) and the resulting visualization of the
query (b)

The application also includes a drag-and-drop functionality for the floating
nodes, although its practical use is limited. Cypher, on the other hand, offers
the capability to perform complex graph traversals. For instance, with the sec-
ond query, users can find all the friends of friends for a given player (refer to
Figure 1.2). The resulting graph is visualized as a oriented connected graph,
showcasing four nodes in total. There is possibility set the depth of the traversal,
such option is a unique feature for graph database.

Neo4j is able to visualize any graph representation, until user keep nodes
integrity. However, it does not support visualization of aggregations. The results
of aggregations can only be viewed in table representation. Additionally, Neo4j
does not support the visualization of node properties or null data. Null values,
which often occur as a result of the query with OPTIONAL MATCH clause, have

6

(a) (b)

Figure 1.2: Query that finds player friends of friends (a) and the resulting visu-
alization of the query (b)

no representation in the resulting graph. An example of such a situation is show
on Figure 1.3.

(a) (b)

(c)

Figure 1.3: Query that finds English players in Chelsea club (a), result of query
as graph (b) and as a table (c)

On the other hand, visualization of nodes group is possible. Using UNWIND
clause user is allowed to work with lists. Grouping players of two teams in one
result in graph on Figure 1.4.

7

(a) (b)

Figure 1.4: Grouping players in one team (a) and result of the query (b)

1.2 SPARQL
SPARQL [10] is a semantic query language, which is developed for processing
data in RDF2 (Resource Description Framework) format. Unlike SQL, SPARQL
can be used to query both relational databases and NoSQL graph databases. One
of the key differences between SPARQL and SQL is that SPARQL queries can
be executed on multiple data stores, allowing for accessing and merging linked
data. Queries can access multiply data stores. Such feature is not accidental.
This feature helps achieve main goal of the language – to share and merge linked
data.

1.2.1 Usage
SPARQL language is used for analytics in graph databases. SPARQL extends
basic SQL analytics by graph examination of relationships. With SPARQL, it
becomes possible to perform operations such as friend-of-friend relationship anal-
ysis, finding the shortest path between nodes, and calculating PageRank scores.
These SPARQL features are actively used in Fraud Detection, Money Laundering
Detection, Social Network and Recommendation Engines. While the first three
areas are well-known from the Cypher language, the use of SPARQL in recom-
mendation systems is a newer application in the realm of graph databases. Both
SPARQL and Cypher serve similar purposes with some minor differences in their
respective fields of usage.

1.2.2 SPARQL syntax features
SPARQL does not have clauses such as INSERT, DELETE, or UPDATE, which
means that it cannot directly modify the graph by adding or removing infor-
mation. However, it does provide a specific syntax for graph traversal. Using

2https://www.w3.org/RDF/

8

https://www.w3.org/RDF/

OPTIONAL clause user can include necessary information or receive unknown
response. This is made possible through the use of three-valued logic. It’s impor-
tant to note that SPARQL does not support operations related to the database
schema, even though it can be used to work with relational databases.

1.2.3 Visualization
Sparql-vizualizer

Most web applications associated with the SPARQL language do not provide vi-
sualization capabilities. Instead, the query results are typically presented in a
tabular format. In my demonstration of the query results, I have used a sam-
ple database. The SELECT clause is the key component for data projection
in SPARQL, similar to its counterpart in SQL. However, the WHERE clause is
different in SPARQL, as it consists of RDF triples for specifying the selection
criteria (refer to Figure 1.5).

(a) (b)

Figure 1.5: SPARQL query listing all buses (a) and its result (b)

There is another way, how user can apply selection, using FILTER clause (see
Figure 1.6).

(a)

(b) (c)

Figure 1.6: SPARQL query that list all buses (a) and the resulting visualization
(b, c)

SPARQL also supports grouping and filtering grouped items (see Figure 1.7).
Also, UNION clause is supported for table view. Table can hold almost all

query results. The unusual behavior can be found in query with OPTION clause
(see Figure 1.8).

The query shown above may result in missing values in the output. In such
cases, the corresponding cells are left empty without a specific value. While

9

(a) (b)

(c)

Figure 1.7: Grouping and filtering grouped items (a,b) and the results (c,d)

Figure 1.8: Optional clause

exploring SPARQL visualization solutions, I found only one public project (as
depicted in Figure 1.9). The project is not commercial and was made for educa-
tional purpose. Project is publicly available on the web. Users can download the
source code and deploy the project on their own machines. The tool allows users
to define their own databases and query the data. The results of each query are
displayed in a dedicated area within the web application. The resulting graph
includes the complete query path next to each vertex, where each vertex repre-
sents an RDF object or subject. The connections between vertices represent RDF
triples, and the edges correspond to predicates. Each edge is presented by its full
URI, which can be shortened using predefined prefixes.

Unfortunately, the application is currently experiencing issues with displaying
its web page components. Despite this bugs, the tool shows great promise and
potential.

1.3 Gremlin
Gremlin [13] is a query language specifically designed for traversing and querying
graph databases. It is a graph traversal language that provides a uniform way
to interact with diverse graph databases, regardless of their underlying storage
structure Gremlin traversal can be written either in declarative or imperative
way. Also, the language works for both OLTP and OLAP based graph databases.
Gremlin language is based on Groovy, but it is supported by mostly mainstream

10

Figure 1.9: Graph visualization

programming languages.

1.3.1 Usage
Gremlin is primarily used for complicated graph traversals. The language pro-
vides a wide range of graph operations, such as calculating distances, performing
joins, finding paths, and executing graph analytics algorithms.

1.3.2 Gremlin syntax features
I utilize the Apache TinkerPop console to interact with the Gremlin server.
Apache TinkerPop is a graph library and system contributed by a third party. By
using the symbols ”:>” followed by the actual command written in the Groovy
language, users can send commands to the Gremlin server. To create a new graph
instance, users can use the command illustrated on Figure 1.10.

Figure 1.10: Initializing new graph

Next thing that should have be done is providing TraversalSource to new
created graph. I personally use predefined embedded traversal engine – graph
(see Figure 1.11).

Figure 1.11: Initializing new traversal

The new ’g’ graph is available for traversal. Before we proceed with the
traversal, some edges and vertices should be added to the graph. The language

11

also provides support for various graph operations, including remove, update,
delete, and insert. The user is able to create new vertex using addV() method.
To remove the vertex or edge exists drop() function can be used. To add a new
vertex, we first specify its type and then add the properties one by one. In this
example, I will use the same graph as shown in the Cypher example (refer to
Figure 1.12).

Figure 1.12: Adding vertices

Edges can be added using addE() method. Let’s add friends with and plays in
edges same as in cypher graph. Every plays in edge has contract expiration time
and friends with edge has duration of friendship indicated (see Figure 1.13).

Figure 1.13: Adding edges

Next, gremlin support aggregation functions such as count (see Figure 1.14).

Figure 1.14: Aggregate function count()

Gremlin allows user to query the graph in more succinct way than over graph
languages (see Figure 1.15).

Figure 1.15: Gremlin query

Command finds all edges plays in connected with player named Ngolo. In
other words, Gremlin traversals graph using only plays in edges (see Figure 1.16).

Figure 1.16: Query: Find all edges with contract expiring more than in two years

12

Additionally, the language enables users to perform depth-first traversal and
breadth-first traversal with ease. Gremlin is naturally designed for depth-first
traversal. If the graph structure is known, performing a depth-first traversal can
be achieved straightforwardly (refer to Figure 1.17). In the given graph, the
vertices to visit in a depth-first traversal are simply the first and fourth vertices.

Figure 1.17: Depth-first traversal

1.3.3 Visualization
Gephi

The Gephi3 desktop application has been chosen as graph visualizer for Gremlin
graph. Gephi is interactive visualizer tool. Using Streaming plugin user can
connect to Gephi via gremlin console (see Figure 1.18).

Figure 1.18: Gephi initialization

Once the connection successfully establish “:> graph” command sends the
graph to the visualizer tool (see Figure 1.19). Gephi allows editing graph and
executing traversal. Such feature is a must have for analyzing the graph. It also
offers built-in features that are highly valuable, including finding the shortest
path, generating heat maps, and performing weighted traversals.

Figure 1.19: Gephi interface

Another great feature is the option to choose from the various layouts and
additionally the user can adjust the graph visualization settings according to his

3https://gephi.org

13

https://gephi.org

needs. For instance, the tool enables users to adjust the size of labels for different
elements in the graph and choose which graph properties to display. Gephi is a
powerful tool, but it has a somewhat complex and outdated interface.

1.4 ArangoDB
ArangoDB4 is a NOSQL mutli-model graph DBMS. It provides native support
for graphs, JSON and key/value data format models. ArnagoDB has its own
SQL like language for querying called AQL (ArangoDB Query Language) [14].

1.4.1 Usage
ArangoDB, like many other graph databases, finds applications in fraud detec-
tion, network infrastructure operations, social network analytics and manage-
ment, recommendation engines, and more. However, what sets ArangoDB apart
from many other NoSQL databases is its ability to combine different data models
within a single database and execute queries that involve multiple data models
simultaneously. This feature provides users with a wide range of graph processing
capabilities, including graph traversal, shortest path finding, pattern matching,
and more.

1.4.2 AQL syntax features
ArangoDB offers multiple ways to access its functionality, including a web inter-
face, the terminal-based tool ”arangosh,” and various drivers. It’s important to
note that AQL (ArangoDB Query Language) is not a Data Definition Language
(DDL), so it cannot be used to modify database schemas or structures. Addi-
tionally, AQL does not support user creation or permission settings, making it
unsuitable as a Data Control Language (DCL). Because of its limitations in mak-
ing structural changes, AQL cannot be used to create document collections. In
my case, I used the web interface to interact with the database, where collections
can be created to store either documents or edges (as shown in Figure 1.20).

(a) (b)

Figure 1.20: Creation new collection

To create a new graph instance in ArangoDB, the user is required to have
a document collection and an edge collection that connects the documents. In

4https://www.arangodb.com

14

https://www.arangodb.com

my case, I chose to implement a simple graph representing friends. Data ma-
nipulation in the collection can be performed using operations such as INSERT,
UPDATE, REPLACE, REMOVE, and UPSERT (an example is illustrated in
Figure 1.21). Data can be inserted in collection by iterating over array of JSON
objects. Document object is an array of key/value attributes, where attributes
are separated with ”:”.

Figure 1.21: Crud operations

To create documents in ArangoDB, you can use two data types: string and
number. Additionally, ArangoDB supports data types such as null, boolean,
array, and object. Edges are created using the ” from” and ” to” attributes,
allowing for the creation of directed edges. In AQL, data projection can be
achieved using the RETURN operator. Data returns as array of JSON object,
but its possible to additionally wrap the data into array or into object. Return
data can be filtered, sorted and limited. Another feature is that documents
collection can be merged together by mapping attributes (see Figure 1.22).

For such purpose user should iterate over collection and merge individual at-
tributes. ArangoDB also provides a bunch of build-in functions to process dates,
objects, arrays, string, geo data and etc. Graph traversing can be done by iter-
ating over documents and setting INBOUND, OUTBOUND or ANY operating
with appropriate traversing depth. In my case, I can complete INBOUND traver-
sal to depth 1..1, in other words I get only friends of person with 1 id. In the
first query, you will receive the names Keith and Juan. By changing the depth
to 1..2, the resulting array will include the names Keith, Juan, and Alex, as the
friend of a friend is added to the return array (refer to Figure 1.23).

15

Figure 1.22: Data Projection

(a) (b)

Figure 1.23: Search friends (a) and Search additionally friends of friends (b)

1.4.3 Comparison
AQL (ArangoDB Query Language) shares many similarities with SQL. However,
there are some differences in the operators used, such as WHERE in SQL being
equivalent to FILTER in ArangoDB, SORT corresponding to ORDER BY, and
COLLECT to GROUP BY, among others. Additionaly, SQL is an DDL and
DCL meanwhile AQL is not. ArangoDB allows user to define its own schema,
but schemas are not mandatory unlike SQL. But the key difference is in data
models. ArangoDB is document-oriented meanwhile SQL is a relation database.
But it possible to say that collection correspond to tables in relation model as
well as for loops roughly corresponds to SELECT statements in SQL. AQL is
less power language then SQL, but it has unique ability to perform multi-model
query. Language allows to combine joins and graph traversals in one query and
easily switch between data-models.

1.4.4 Visualization
The web interface allows users to have an overview of the created graph (refer
to Figure 1.24). There are plenty of graph configuration options. The user can
choose displaying labels, graph coloring, layout type, arrows and lines type, limit
vertex displaying and etc. Web interface also provides possibilities to edit graph
inside visualisation. User is able to create new edge/vertex and edit existing one.
Web Interface has mostly visualisation tool, but there is also tool for starting
traversal from chosen node and user also can configure depth of this traversal.
Result of such traversal appears immediately on screen. User is able to perform
some sort of traversing using visualisation tool. Web interface does not support
AQL query visualisation or building visual queries. Results of all query returns

16

as array of JSON objects.

Figure 1.24: Graph visualisation

1.5 RavenDB
RavenDB5 iis a NoSQL document-based database that stores data in the JSON
format. However, it also provides built-in support for other data formats such
as XML and binary. The database can be deployed on a single node or a cluster
of nodes, offering scalability and flexibility. Each node in the cluster supports
master-master replication, allowing multiple nodes to host data. Unlike many
others NoSQL databses, RavenDB is ACID database.

1.5.1 Usage
Database uses for standart NoSQL cases such as fraud detection and identity
authentication, data management, IoT, sensor data and etc. Due to high perfor-
mance scalability, RavenDB is often used for effective scaling. One worth mention
feature of RavenDB is its ACID (Atomicity, Consistency, Isolation, Durability)
compliance. This means that the database guarantees transactional integrity
and reliability, ensuring that operations are executed reliably and consistently.
RavenDB provides a robust and versatile solution for managing and storing data
in various formats, with support for clustering and ACID compliance.

1.5.2 RQL syntax features
RavenDB is open-source database written in C#. Meanwhile database is cross-
platform and it is available for Linux/MAC OS/Windows systems. The docker
image also is available for Windows and Linux. I personally utilized Docker to
launch a RavenDB server on my local machine. The DBMS allows user to manage
database through GUI interface that can be accessed by browser using server URL
(see Figure 1.25).

RavenDB’s management studio provides a robust toolkit for efficiently man-
aging databases and servers. RavenDB has own specific language for querying a

5https://ravendb.net

17

https://ravendb.net

Figure 1.25: GUI Interface

data. RQL [15] is designed to efficiently execute query within RavenDB pipeline.
RQL in only DQL language with some features of DML language. While RQL al-
lows users to update existing data, it does not support the insertion of new data.
Two types of queries can be executed: dynamic queries and indexed queries. In
an indexed query, users specify the index to be utilized by the database, lead-
ing to enhanced performance. The management studio also provides users with
sample data, which I leveraged for testing purposes.

RQL syntax is very similar to SQL. RQL has such common methods as SE-
LECT, FROM, WHERE, GROUP BY, UPDATE and WITH (an example is
illustrated in Figure 1.26). They are almost identical to appropriate SQL meth-
ods. But there is no crucial method such as join. Technically RavenDB provides
user with INCLUDE method, but this method only fetch required document.
Also the databse doesn’t support foreign keys. Foreign keys in RavenDB repre-
sentation is just a string with other document id. One of the unique RavenDB
methods are LOAD and DECLARE.

Figure 1.26: Query examples

The LOAD operation in RavenDB allows for the loading of data from exter-
nal documents. On the other hand, the DECLARE method is utilized to create
JavaScript functions, which can be employed for data filtering and processing
within the UPDATE operation. Worth mention the fact that RavenDB SELECT
methods supports Javascript selects. RQL (Raven Query Language) incorporates
a variety of built-in functions to facilitate query operations. These functions cover

18

a range of functionalities, including text manipulation, aggregation, and math-
ematical operations. In addition to these common functions, RavenDB offers
spatial functions that are not commonly found in other databases. Moreover,
RavenDB introduces a unique function called MoreLikeThis, which retrieves doc-
uments similar to a given document (as demonstrated in Figure 1.27).

Figure 1.27: Spatial Query Example

1.5.3 Visualization
Management studio provides user with numerous statistical charts and diagrams.
But unfortunately, GUI does not provide user with visual query language or
visualisation of query results. Every query output is displayed in table format
(see Figure 1.28).

Figure 1.28: Query Result

User is able to filter output, export and display some statistic about query.
Also user can obtain visual statistic about each index performance. Another
visualization feature is map-reduce visualizer. Visualizer allows view internal
structure of map-reduce index by displaying relationships between the documents
and the result (see Figure 1.29).

Figure 1.29: Map-reduce relationship

19

20

Chapter 2

Visual Query Language

2.1 Language Description

2.1.1 Basic Operations
The design and implementation of a visual query language is on of the core
component of the tool. The Visual Query Language (referred as VQL below)
has to fulfill some crucial conditionals. It should be user friendly and intuitive,
allowing persons with no programming background to easily orient themselves
within it.

Each query in VQL is a directed connected graph. The graph consists of nodes
(entities) interconnected with edges. The nodes are represented as rectangles of
various colours. Different colors help a user distinguish between different node
types. The first and the the most important node type is basic vertex, which
serves as the foundation for each query and represents entities in graph, such
as players, cars, customers ant etc. The label of the entity is written inside the
rectangle.

Figure 2.1: Non-projection basic vertex

The basic vertex itself can be projection and non-projection. The non-proje-
ction basic vertex is represented as orange rectangle, while the projection basic
vertex is represented as grey rectangle. The VQL does not support the projection
of whole entity, so only non-projection basic vertices can be used to represent
entities. However, both projection and non-projection basic vertices can be used
to represent the properties of an entity. Non-projection basic vertex can be useful
in situation where a user wants to set conditionals on a property, but does not
want to return the property itself.

To create a relation between two nodes in VQL, an edge can be used. There
are various types of edges, but the basic edge is the most commonly used by
users to interconnect nodes. Other types of edges are parts of constructions such
as transformation or set operation and are automatically included within these

21

Figure 2.2: Projection basic vertex

structures. Therefore, users do not need to add them manually. To project any
property of an entity, the user should choose the entity node as the parent and
the property node as the children.

Figure 2.3: Simple relation

2.1.2 Conditionals
Entities in VQL may have multiple properties, which can be represented as ei-
ther non-projection or projection basic vertices. Both of the types can have a
conditional. The conditionals accepts strings and can distinguish between nu-
meric and text clauses. Text conditionals comparison is based on simple string
equality, while numeric clauses support equality, greater than and lower than
operations.

Figure 2.4: Simple condition

Two methods are available for representing conditionals in VQL. The first one
works for both text and numeric clauses. User can to set only one simple (without
AND and OR operators) condition for each property. Figure 3.4 provides an
example of such conditionals. The second method is specific to text conditionals.
User can combine multiple conditions into single one using OR operator.

Conditions can be also set for order by structure, but it is described in next
chapters.

22

Figure 2.5: Alternative text condition

2.1.3 Transformations
Visual Query Language supports transformation operations such as group by,
order by, skip and limit. These operations requires parent to be connected with.

Group by operation is a structure, which includes a blank vertex with group
by count label, a group by edge and a parent vertex. The group by edge holds
the property name on which group by is executed.

Figure 2.6: Group by

It is important to note that the term ”count” is used to specify group by
operation type due to its diverse representation in Cypher language. Since there
is no direct equivalent of group by operation in Cypher, aggregation functions
such as max, min, and count can be used to emulate the standard behavior of
group by operation. The count type is chose in VQL to represent group by
operation due to its similarity with the default behavior.

Having conditionals is also supported by the VQL. When creating a new group
by structure, users can specify the having conditional. Since there is no direct
representation of group by operation, having conditional is represented as a where
clause.

The next transformation operation in VQL is order by operation. The order
by structure consists of a blank vertex, an order by edge, and a parent vertex. The
order by edge holds the property name on which the ordering is executed. Unlike
the group by operation, it has directed equivalent in Cypher language. VQL
supports both ascending and descending types of order by, which are represented
by an orange rectangle with the ”order by ASC” or ”order by DESC” label.

The two remaining operations in VQL, SKIP and LIMIT, share a similar
structure. Both operations consist of a blank vertex, a skip or limit edge, and a

23

Figure 2.7: Group by with having conditionals

Figure 2.8: Group by with having conditionals

parent vertex. The skip or limit edge holds the number of skips or limits, respec-
tively. These operations have a direct equivalent in Cypher language, making
them easily translatable.

2.1.4 Set Operations
The VQL provides support for the union set operation, which is the only set
operation that is supported due to the complexity of translating cartesian square
and intersection to Cypher. Union has a direct alternative in Cypher, hence it was
chosen for support. The union operation has a slightly more complex structure
than the transformation operations. Union operation interconnects two parents
with vertex and two edges. However, the semantics remain the same - the union
operation merges the results of two queries.

The final operation supported by VQL is graph traversal, also known as the
”Join” operation. This operation is closely related to the graph structure and
is based on the Cypher functionality. However, due to its complexity, it only
allows traversal to neighbour nodes. The join structure in VQL consists of two
parent entities, two join edges, and a blank vertex with a path string. The path
string represents the name of the edge that connects two parent entities. The
join operation behaves in the same way as the () − []− > () pattern in Cypher
queries.

24

Figure 2.9: Skip and Limit operations

Figure 2.10: Union operations

2.2 Language Limitations

The limitations of the tool can be categorized into two groups: VQL limitations
and translation limitations. VQL limitations are related to the editor’s inability
to visually represent some features of the Cypher language. For example, com-
plex graph traversals are not supported, and the currently implemented traversal
only works for nearest neighbors that can be accessed via one edge. A complex
traversal such as a multiple edge traversal or finding data by complex traversal
patterns are not supported. Additionally, VQL does not support AS statements,
RETURN DISTINCT, WITH, and MERGE clauses. DML operations are not
support as well since the main objective of the thesis is to propose a query lan-
guage. DCL operations are not supported because they are not implemented
in Cypher language. It’s important to note that VQL operations is a subset of
Cypher language operations, and it does not extend Cypher language in any way.

Another limitation of the tool is related to the translation process. The editor
supports certain features that cannot be easily translated into Cypher language.
These limitations appeared during the design and implementation of the trans-
lation algorithms. Some features proved to be very difficult and time-consuming
to deal with during the Bachelor’s Thesis. For example, operations that do not

25

Figure 2.11: Union operations

have direct equivalents in Cypher language such as intersection and the Cartesian
square. Implementing such features can be challenging and may not result in a
practical solution. To fully implement these features, further research would need
to be conducted.

Limitations can be seen as opportunities for improvement, and the fact that
some features in the web interface are disabled but still visible brings an avenue for
quick reduction of these limitations. By identifying these partially implemented
features, further development and improvement can be easily accomplished to
enhance the overall functionality of the tool.

26

Chapter 3

Algorithms

3.1 Root finding algorithm

3.1.1 JSON to Graph convert
Before the root finding algorithm can be executed, it is necessary to preprocess
the JSON data. The algorithm takes data as a graph that contains a set of
nodes. Deserializing the JSON object to a graph involves iterating through the
JSONObjects and mapping them to the corresponding Java classes using the
Jackson library.These Java classes, also known as POJOs, are predefined and
correspond to the graph entities. Some POJOs can contain nested POJOs, which
are often conditional. If Jackson cannot resolve nesting automatically, the nested
elements must be parsed manually.

In addition, the nodes in the graph include a string field with the type name,
which helps to better distinguish between widgets The node neighbours are stored
as a adjacent list of pairs. Each pair consist of edge and neighbours node. These
preprocessing steps ensure that the data is properly formatted and ready for the
root finding algorithm to execute.

3.1.2 Finding a root node in a graph
The next step in the deserialization process involves identifying the root of the
given model. This is a crucial step, because the root node, is a key element in the
translation of the model into a set of CYPHER instructions. Once the root node
has been successfully identified, the model can be than easily translated into a
set of CYPHER instructions.

To identify the root node, a pre-built graph based on the given JSON model
is required. The graph should consist of nodes representing the widgets and a
list of neighbours connected by appropriate edge. The algorithm for root finding
is straightforward. We iterate over each node in the graph until we either reach
the end or find a node from which we can reach every other node in the graph.

To determine if a node is a desired root we can ran breadth-first search from
a chosen node, and if a set of crawled nodes is equal to our graph, then the node
is the desired root. The pseudocode for the algorithm is shown below.

If the iteration over the nodes is finished and no root is found, the graph is
considered to be rootless. In that case, the query is not valid. It’s important to

27

Algorithm 3.1: Root Finding Algorithm
Input: graph – graph representation of the query

1 foreach node in graph do
// get all nodes from this node

2 nodes = BFS(node)
// check if root is found

3 if nodes == graph.nodes then
4 return node

// no root is found
5 return null

keep in mind that the algorithm only returns one a single node and if there are
multiple root nodes present, an exception will be thrown.

3.2 Graph to instruction set
The next step in translating the JSON model into an actual Cypher query involves
converting the graph with a defined root node into a set of Cypher instructions.
Unlike BFS, which traverses the graph in a breadth-first manner, DFS explores
the graph in a depth-first manner. Starting from the root node, the algorithm
explores as far as possible along each branch before backtracking and moving on
to the next branch. Since oriented graph has a unlikely defined root node and all
nodes can be reached by the root node, the translation algorithm can guarantee
that all nodes and edges will be processed during the conversion and there is
no possibility of getting stuck in a cycle. Therefore, the translation algorithm
can safely convert the graph into a set of Cypher instructions, even for complex
graphs.

Every Cypher query consist of defined set of instructions, with the minimum
requirements being to have one entity in the MATCH clause and a corresponding
entity in the RETURN statement. Additional clauses such as MATCH OP-
TIONAL, SKIP, LIMIT, JOIN (graph traversal), ORDER BY and GROUP BY
are optional. The UNION operation is also available, which divides the query
into sub-queries. Each of these operations can be represented as an appropriate
data structure and used to construct the resulting query.

The translation algorithm starts by iterating through the graph, beginning
from the root node and processing each triplet, which consists of the parent
widget, child widget, and the edge connecting them. However, union and join
operations are exceptions to this rule and are known as split operations, which
require two child widgets, one parent widget, and two edges connecting the chil-
dren and the parent. At each iteration step of the algorithm, the triplets or
quintuples (in the case of split operations) are categorized into one of the clauses
listed before. The edge type, parent widget type and child widget type (in case
of split operation children widget types) are used to differentiate between various
patterns. For instance, a blank parent vertex connected to the base vertex or a
blank vertex through a edge of skip type is considered a SKIP clause. Further-
more, in such a case, the number of SKIP rows in the result is determined by the

28

edge.
To generate the final query, the translation algorithm processes all the rela-

tions in the graph and fills in the relevant clause data structures. The resulting
query will only contain non-empty clauses. To encapsulate all the clause data
structures and operations related to them, the Query class exists in the backend
of the tool. In addition, for union operations, sub-queries can be included within
one query. However, the number of union sub-queries is limited to two. The
pseudocode for the algorithm is presented below.

Algorithm 3.2: Graph To Instruction Set Algorithm
Input: graph – graph representation of the query
Input: query – resulting query
Input: node – current processing node
Input: variable – current variable marking entity

1 Function dispatchOperations(query, graph, node, variable):
// iterate through node neighbours

2 foreach pair in node do
3 child = pair.getV alue0()
4 edge = pair.getV alue1()
5 dispatchNonSplitNode(query, graph, node, variable)

// recursively process graph
6 rootFindingAlgortihm(query, graph, node, variable)

7 End Function
8 if node is a split operation then

// Process Union and Join operations
9 dispatchSplitOperations(node)

10 else
// dispatch non split operation

11 dispatchOperations(node)

The recursive nature of the algorithm is reflected in the presented pseudocode,
which only covers the processing of non-split operations. The handling of split
operations is very similar but requires additional sub-functions that cannot be
presented due to large function nesting in the given pseudocode. Once the trans-
lation algorithm completes, it returns the query parameter back to the main
function, which can then execute the query.

29

30

Chapter 4

Programmer documentation

4.1 Intro
The tool has a client/server architecture. The architecture is advantageous for
a queering tool as it allows multiple users connect to the server and interact
with a database. Additionally, this design enables a clear separation between the
edition and evaluation parts of the application, which is highly beneficial. The
tool’s architecture is divided into two parts: the front-end and the back-end. The
front-end application is responsible for creating, editing, and displaying query
results, while the back-end handles query deserialization and evaluation.

The application’s server-client communication relies on HTTP queries. The
client-side sends a graph object, represented as a JSON file, to the server and
receives a response in the same format. This graph object, also referred to as the
model, contains information about the user’s graph query, which will be further
discussed in subsequent chapters. In case of unexpected behaviour, the server
may also return an error response.

4.2 MVC
The vanilla MVC pattern has been a fundamental pattern for web applications
and has dominated the software world in recent years. While there is a trend
towards more modern solutions such as MVVM or serverless applications, the
MVC pattern is a perfect fit for our application. Furthermore, using React with
a Redux library int he front-end brings a new perspective to this concept. The
combination of MVC and this technology stack can be extremely useful for man-
aging data and saving its immutability.

The front-end part of the application also employs an MVC pattern. This de-
cision was made because it simplifies operations with the query mode. Isolation
the query model from view helps achieve constituency of query model. Addi-
tionally, this approach facilitates easier extraction of models from the front-end
application and sending them to the server. Redux state container is added to the
application for the purpose of better data integrity and to avoid undesirable side
effects such as property drilling. Redux turns MVC drawbacks into advantages by
utilizing a circular flow to ensure data immutability. It also effectively separates
logic from view components, preventing any component from directly manipulat-
ing the model or data. React only serves a visualizer role, which perfectly fits

31

the MVC pattern. The application implements necessary changes only in slice
objects and saves data to the Redux store. The Redux logic can be distributed
among different utility files without affecting the overall concept.

4.3 Front-end architecture

4.3.1 Model
The model class is created to achieve query data integrity on front-end. The new
model object is created when the application starts. The model object composed
from two main nested objects: Widgets and Edges.

4.3.2 Widgets
Widgets are represented by three main elements: vertices, operations and con-
ditionals. The operations than consists of transformation and binary operation.
The main difference between them is that vertex widget contains only a single
vertex element, such as a base vertex, meanwhile an operation is a structure,
which consist of both vertices and edges. Conditionals are somewhat different
from the other two, as they are vertices but also function as a structure since
they always belong to a specific vertex.

Conditionals and widgets are built upon the vertices, which serve as their
foundation. The Vertex is a derived class of the Widget class. It extends base
class with following fields: id, style, data and position. The id field is a string
that stores the unique identifier of the vertex. The data property includes vertex
label, which is displayed on the vertex rectangle shape in the editor. The style
field contains the CSS styling of the vertex, while the position field specifies the
coordinates of the vertex on the editor layout.

Sub-classes of Vertex widget include blank vertex, base vertex, cartesian
square vertex, intersection vertex, union vertex, and join vertex. The blank
vertex is used in structures as a utility vertex in case when there are no other use
cases. The base vertex is used to represent entities and properties. In addition
to the base class fields, the base vertex class requires a vertex color to distinguish
between different vertex types, a conditional to filter the output result and an
isProjection boolean to signify if the value will be projected to the return clause of
a query. The conditional field can be left empty if no conditional is specified. The
remaining vertices are fundamental vertices in structures with the same name as
the vertex.

It would be reasonable to start by discussing transformation operations as
the first type of operation. This operation is a structure and it consists of three
parts: a transformer, a parent and an edge. The transformer is a vertex that
represents the type of transformation being applied. The parent is a vertex on
which the transformation is performed, and the edge is an edge of the appropriate
type that connects the parent and transformer. Transformations are operations
that modify the output result in some way. The operation includes order by,
group by, skip and limit operations. Because of the specific implementation of
group by, it is divided into group by count, group by min and group by max.
However, only group by count is available in the editor. Additionally, group by

32

Figure 4.1: Model Class Diagram

33

is distinct from other transformations in that it has conditionals. This is due to
the implementation of the having function in the group by operation.

The following type of operation is a superclass called binary operation. This
class represents operations that requires two parent widgets to be connected with.
Binary operation includes set operations and join operation. The superclass ex-
tends widget class with an operator vertex, left and right vertex operand and
two edges connecting the operator with operands. Set operations represent op-
erations performed on a set of results, such as intersection, union, and cartesian
square. Currently, only union is available in the editor, since it is not clear how
to translate intersection and cartesian square to cypher query. Join operations
represent graph traversals.

The preceding text mentioned the conditional widget twice already. This
widget serves as a container for string conditions and is connected to another
widget. Conditionals can be used in entity properties or in the group by having
operation.

4.3.3 Edges
Edges are elements that connect widgets in a query graph. The Edge superclass
includes a string edge ID, a source vertex, a target vertex, and style properties
that specify the arrow positions and color. The Edge superclass is further divided
into subclasses, that can be used to distinguish between different relationships
among widgets. Additionally, some edges require specific fields. There are six
different edge types, such as group by edge, skip edge, limit edge, optional edge,
order by edge, and basic edge. The basic edge is typically used to connect an
entity with its properties. The skip and limit edges are used in skip and limit op-
erations, respectively. These edges are similar because they require an additional
field indicating the number of rows to skip or limit in the output. The optional
edge is used connect entity with an optional property. The group by and order
by edges are also two similar edges. Both require an additional parameter field
that contains the property name used in the group by or order by operation.

Graph queries are constructed using widgets and edges, which are the fun-
damental elements. The resulting model objects consist of an array of widgets,
accessible under the ”widgets” key, and an array of edges, accessible under the
”edges” key. Worth mentions, that Edges array contains edges, which connects
entity with its properties. Edges, which are included in operations, are stick to
the operation and they are stored inside the operations.

4.3.4 View
The View class is a vital component of the MVC implementation. It processes
the model object and transmits the processed data to the React Flow library,
which then displays the graph in its editor. One of the main issues it addresses
is the use of different data types in the model and the Flow Chart visualizer
library. React Flow library requires the graph in the format of vertex array
and edge arrays, while the model object includes widgets array and edges array.
The View class parses the widget data and extracts the vertices and edges from
them. The models vertices and edges are desinged in a way that does not require

34

any additional mapping to React Flow’s vertices and edges. The View’s parsing
method is located in the updateView function, which is invoked every time the
model changes in the Redux state function.

4.3.5 Main functions
One of the most fundamental classes in the frontend application is the model class,
which was previously discussed. This class serves as a structure or container for
storing data and enables easy extraction of the data when needed. In this chapter
will be mentioned fundamental functions, which participate in query building and
editing.

Redux Functions

The majority of the frontend application’s logic is organized into functions and
stored within a Redux slice named ”mainSlice”. Each Redux function receives
state and action parameters. The state parameter contains all the states (fields)
used within the particular slice, while the action parameter is usually used to
pass arguments within it.

processBasicVertexCreation The function is executed after base or projec-
tion vertex create button is clicked. The function receives ”msg” and ”type”
parameters from the action object. The ”msg” parameter is a string message
that informs the user to specify the vertex label. Next the ”type” parameter is
used to add a new vertex to model using addVertex function.

addVertex The function receives new vertex as a payload of the action object.
The vertex than is added to models widgets array and the updateView function
is called to update application view objects.

processNodesChanges The function is responsible for handling any user in-
teraction with the widget. Depending on the action payload, the function calls
either processNodesPosition, deleteElement, or processNodesSelect functions.

processNodesPosition This function is responsible for updating the position
of a vertex based on a given widget id. It takes in a new widget id and new
coordinates as parameters. After the update is made, the component is reloaded
to reflect the updated position.

processNodesSelect This function is responsible for tracking the user’s clicks
on the widgets. If the user is currently in a waiting state, the function will
handle the user’s click event. Depending on the type of waiting object that needs
to be created, the function will either invoke processTransformationCreation or
processBinaryOperationCreation to create a transformation operation or a binary
operation, respectively.

35

processTransformationCreation The function is called during the process-
ing of a user click event. The function is invoked from processNodesSelect and it is
responsible for finding parent node for transformation operation based on parent
id. Once the parent vertex has been successfully found and the transformation
edge has been created using the waiting object type, the function proceeds with
creating a new transformation widget that includes the transformation edge, the
parent vertex, and the corresponding waiting object itself. Finally, the newly
created transformation widget is added to the model’s widget array. The find-
WidgetById function is utilized to find the parent vertex by its ID, while the
createTransformationEdge function is utilized for dispatching the creation of the
transformation edge. Finally, the createTransformation function is utilized for
dispatching the creation of transformation widget itself.

handleTranformationRequest The function is responsible for handling the
creation request for a transformation operation. It receives transformation vertex
id, label and type as the parameters. This function is called after the create new
transformation button is clicked. This function is responsible for setting the
waiting objects and their type. Additionally, it displays a notification to the
user, prompting them to select a parent vertex.

handleSetOperationRequest The function is similar to handleTranforma-
tionRequest, but it handles the creation request for a set operation and join
operation.

processBinaryOperationCreation This function is similar to processTrans-
formationCreation in terms of its invocation and responsibility, but instead of
creating transformation widgets, it creates binary widgets. TAdditionally, this
function requires two parents to be connected with a binary operator, and two
binary operation edges should be created to interconnect the parent vertices with
the binary operator vertex. Once both parent vertices have been successfully
located and the two binary operation edges and binary operator have been cre-
ated, the binary operation widgets can be created and then added to the model’s
widget array. To dispatch the binary operation widget creation, the createBina-
ryOperator function is utilized.

processNodeEdit The function is responsible for handling vertex editing. The
function is invoked when the vertex is double-clicked. The function creates a new
vertex based on the editor information and replaces the previous node with the
updated one.

processEdgeEdit The function is responsible for handling edge editing. The
utility function findEdgeBySourceAndTarget is used to find the old edge and then
creates a new one based on the edge type specified in the editor.

addEdge The function is responsible for handling creation of a new edge. The
function is invoked each time a new edge is created in the editor. The React Flow
library notifies the appropriate function when there is a change in the edge set of

36

the graph, which in our case is the addEdge function. Once the source, target,
and id variables are received, the function proceeds with creating the new edge
and adds it to the edge set.

Utility functions

updateView The ”updateView” function belongs to the View class and is called
by the Redux mainSlice every time the model changes. It parses the widgets and
extracts the vertices and edges from them. The extracted data from widgets is
then merged with the model’s edge array and store into view object.

processTransformationCreation The function is different from the slice func-
tion with the same name, because it handles creation on a component level. The
purpose of this function is to create a transformation type operation. several
parameters, including the ID of the new transformation vertex, the type of trans-
formation being created, a label to be placed on the transformation vertex, and a
dispatch function. The function begins by creating a blank vertex to serve as the
transformation vertex, using the provided ID and label. It then sets this newly
created vertex as a waiting object. Once the user has selected the parent vertex
the processNodesSelect function is called. This creates a new transformation wid-
get with the waiting transformation vertex, the selected parent vertex, and the
appropriate edge. The dispatch function is utilized to invoke the slice function
outside of slice.

4.4 Back-end architecture
The application’s backend is developed in Java using the Spring Boot frame-
work and the Jackson library. Its primary responsibilities include handling user
requests with graph queries, deserializing graph queries from JSON format, man-
aging connections with the NEO4J database, executing translated queries on the
database, and returning the results to the user.

The backend application architecture follows the standard Spring Boot appli-
cation structure, consisting of layers such as presentation layer, service layer and
data access layer. The presentation layer is responsible for handling user requests
and is represented by the Controller class. The service layer contains the logic of
the entire application. This layer is represented by Processor and Parser class,
which are service components in the Spring context. The data access layer is
represented by a single Repository class, which handles communication with the
NEO4J database

By using the Dependency Injection pattern, the components are wired to-
gether, and with the help of Inverse Control Injection, these components are
managed by the Spring framework.

4.4.1 Main Classes and Functions
This subsection covers the primary classes, their methods, and the main func-
tions. The backend architecture’s class diagram is provided below, excluding

37

Figure 4.2: Backend Class Diagram

38

well-known classes such as Pair, Triplet, and Quadruplet, which have no effect
on the application logic and are implemented to simplify operations.

AppApplication

The class is the entry point of Spring Boot application and contains the main
method.

Controller

The class is responsible for dispatching user request. The class provides back-end
application API, which consists of ”/translate” POST endpoint and ”/execute”
POST endpoint. Once the request is received controller forward request to pro-
cessor or to parser class. Additionally, the controller is responsible for catching
any errors that may occur during query execution, and returns an error message
to the user.

Processor

The class is responsible for processing incoming queries. The parser logic is
provided by

processQueryExecution The function is responsible for handling incoming
query as JSON string. It accepts a single argument, which is the graph query
model in JSON string format. The string is processed using the Parser class, after
which it is passed on to the repository component for execution on the NEO4J
database. The function then returns the results of the execution to the user.

Parser

The class is responsible for translation the the incoming JSON string query into
a string query that can be executed in the NEO4J database. The Parser class
makes use of the Query class, which represents Cypher query. The queryTranslate
method serves as the single entry point for the class.

queryTranslate This function is the entry point for the Parser class, responsi-
ble for parsing JSON strings containing deserialized query models. The first step
is deserialization, where data objects from the JSON model string are mapped to
Java data objects. After a successful mapping, the function builds a graph using
these objects, which can then be translated to an executable Cypher query using
the getOperationsSet function.

extractEdges The function is responsible for edges deserialization. It extracts
edges from the JSON representation of the query model provided. Once the string
edges are extracted, they can be mapped to Java classes, similar to those on the
frontend. The function then returns the list of deserialized edges.

extractWidgets The function does similar job as the extractEdge function,
but for widgets.

39

buildGraph This function is responsible for constructing a new graph using
the extracted widgets and edges. It takes two arguments: an array of widgets
and an array of edges. The function then iterates over the widgets array and
constructs a graph based on it. To store constructed graph the Graph class with
nested Node class is used.

getOperationsSet The function is responsible for translation the deserialized
query graph into a set of Cypher instructions. It recursively processes each re-
lation in the graph and translates it into an instruction. The resulting set of
instructions is then stored in the Query class.

Graph

The class is responsible for handling the graph representation of the query. The
nodes of the graph are stored as a list of nested Node objects, with each Node
object representing a vertex in the graph query. Additionally, each Node object
contains a list of adjacent nodes along with their corresponding edges.

findRootNode The function is responsible for finding the root note of the
graph. Since the graph is the oriented graph representing the query, the root
node should be exactly one. The function return empty optional if no root is
found.

Query

The class is responsible to hold set of instructions. Each Cypher clause has its own
instruction set. Once the whole graph processed the ovverided toString method
can be called, to return a executable Cypher query.

toString This overridden function returns an executable Cypher query as a
string. The function merges all the instructions found into a query and returns
the resulting string.

Utils

The class is the container for general static functions. The Utils class provides
solution for identifying widget type, translating a object to JSON format and
more.

Repository

This class is responsible for communicating with the NEO4J database and exe-
cuting queries. The main entry point of the class is the executeQuery function,
which takes a Cypher query as input, executes it on a running instance of the
NEO4J database, and returns a list of records.

40

4.4.2 Model

The backend query model for the application consists of Widget and Edge super-
classes, which are identical to their frontend equivalents. These classes are used
to map serialized frontend graph queries to Java classes for processing.

The backend model class diagram is showed below. It differs from the fron-
tend model as it does not support intersection and Cartesian square operations,
which are not included in the diagram. Additionally, getter and setter boilerplate
functions are not shown in the diagram, but are replaced by ”getters and setters”
commented lines of code.

While the Jackson library can easily map nested classes using the JsonSub-
Types annotation, manual processing of objects is required for three or higher
levels of nesting. An example of this is the parsing of conditional SelectionVer-
tex, which is the third level of nesting. Custom functions like processConditionals
are used to map such objects in QueryByCount class and Vertex subclasses.

4.4.3 Use cases

The section describes a detailed description of the interactions between compo-
nents, classes, and users. Sequence diagrams are used for the better representation
of the textually described process. The sequence diagram illustrates the flow of
messages or method calls between different objects or actors in a chronological
order. The diagrams in this section focus on illustrating the interaction between
written parts of application, rather than interactions between various parts of
frameworks or libraries.

In our case, the diagrams represents the interaction between the user and the
application following a specific action. The user interacts with the application
through a browser application, which involves actions such as creating, deleting,
and editing vertices, as well as sending responses. Each of these processes will be
discussed in further detail.

As mentioned earlier, the initial and simplest user interaction involves editing
the graph query. Once the user wants to create a new vertex, they will click the
create new vertex button in the footer component. The creation of a basic vertex
will directly trigger an action in the Redux store. However, for the creation of
transformation or binary operation, additional handler functions will be used.
Once the corresponding Redux store function is called, it will handle the vertex
creation process within the Redux slice. During the creation of the vertex, ad-
ditional information such as the vertex label, parent node, or vertex parameters
may be requested for specification. The creation of a basic vertex is illustrated
in the sequence diagram below.

The basic vertex creation process requires from the user only to specify the
label name. However, for more complex operations, the user needs to specify
parent vertex/vertecies as well. To handle such The handle such asynchronous
response from the user, the handler functions are used. The handler function
is responsible for setting waiting object and its type. Once the parent vertex is
specified, the function responsible for processing operation creation is called. The
processing function then creates the necessary dependencies for the operation.
The utils file provides functions for creating these dependencies.

41

Figure 4.3: Creating Basic Query Sequence Diagram

42

Figure 4.4: Creating Complex Query Sequence Diagram

43

Figure 4.5: Backend Model Class Diagram

44

Once the user has finished editing the graph query, they can proceed to execute
it by clicking the execute button. The responsibility of the execute button is
to send the request to the server. After receiving the response, the Controller
component is responsible for handling it. The response is then forwarded to
the Processor component, where the query is deserialized and executed if the
deserialization was successful. The response from the execution is then returned
by the Controller component. However, if an error occurs during the process of
translation or execution, an error message is returned instead.

45

Figure 4.6: Query Execution Sequence Diagram

46

Chapter 5

Testing

5.1 Introduction

This chapter provides an overview of the testing methods used to ensure the
functionality correctness of the application. Two primary methods are used for
testing purposes: unit testing and integration testing. All of the tests can be
found within the test repository.

5.2 Unit tests

The application utilizes JUnit and Mockito test frameworks for performing unit
testing. Unit testing so far is used only on single findRootNode method, which is
responsible for identifying the root node of a given graph object. As for the other
public methods, they has no general use and therefore do not require testing. The
test cases for the findRootNode method can be found in the GraphTest class.
These tests verify the correctness of the findRootNode function by checking if
it can accurately determine the root of a simple graph. Additionally, the tests
validate that the function returns an error message in scenarios where no root is
found, the tested graph contains a cycle, or there are multiple roots present.

5.3 Integration Tests

Integration tests are the over type of test, which are used for testing the applica-
tion. Integration testing is a technique that validate correct interaction between
different components and modules. In case of our program, it primary tests cor-
rectness of the deserilized graph query translation. The translation aspect of the
integration tests is performed on the backend of the application and is encom-
passed within the ProcessorTest class. The description of the integration tests
includes a graphical representation of the query, which is the same as what the
user sees in the editor. Additionally, it displays the executable query in string
format, providing the user with a preview of the query before execution. Users
can perform integration tests using the examples provided below and the preview
function of the editor.

47

5.3.1 Projection Test
The test aims to validate correct translation of the simple query. The query
consists of a single entity ”Player” and a single projection property. Below is the
visual representation of the query:

Figure 5.1: Basic Projection

The result query should be as following: MATCH (a:Person) RETURN
a.Name;

5.3.2 Selection Test
The test aims to validate the correct translation of simple query with selection
included. The query consists of a single entity ”Player” and a single property
with selection conditional. Below is the visual representation of the query:

Figure 5.2: Basic Projection with Selection

The result query should be as following: MATCH (a:Player) WHERE
a.age >28 RETURN a.age;

5.3.3 Aggregation Test
The test aim to validate the aggregation function ”group by”, specifically the
”group by count” version. The query consists of a single entity ”Player” and
a transformation operation ”group by count”, which is applied to the ”nation”
property of the ”Player” entity. Additionally, the ”group by” operation includes
a conditional clause. Below is the visual representation of the query.

48

Figure 5.3: Basic Projection with Selection

The result query should be as following: MATCH (a:Player) WHERE
a.nation = ’France’ OR a.nation = ’England’ OR a.nation = ’Czech’
RETURN COUNT (a.nation);

5.3.4 Multiple Selection Test
The test aim to validate the handling of multiple conditionals. The query consists
of a single entity ”Player” and three projection properties of its node. Two of
these properties include conditionals. Below is the visual representation of the
query:

Figure 5.4: Basic Projection with Selection

The result query should be as following: MATCH (a:Player) WHERE
a.age >30 AND a.height >190 RETURN a.age,a.height,a.name;

5.3.5 Order By Test
The test aim to validate the translation of the order by operation. There are two
versions available: ascending and descending. In this example, the descending
version is used. The query consists of a single entity ”Player”, its property name,
and an order by descending operation performed on the name field. Below is the
visual representation of the query:

49

Figure 5.5: Basic Projection with Selection

The result query should be as following: MATCH (a:Player) RETURN
a.name ORDER BY a.name DESC;

5.3.6 Order By Test
The test aim to validate the translation of union operation. The query consists of
two entities, ”Player” and ”Manager”, connected with a union operation. Each
entity has a name selection property. Below is the visual representation of the
query:

Figure 5.6: Union

The result query should on of the following options: MATCH (a:Player)
RETURN a.name UNION MATCH (a:Manager) RETURN a.name; or
MATCH (a:Manager) RETURN a.name UNION MATCH (a:Player)
RETURN a.name;. Both options are considered correct due to the use of a
hash set in the implementation of the translation algorithm, which ensures that
the order of the entities in the union operation does not affect the final result.

50

Chapter 6

User documentation

6.1 User Documentation

6.1.1 Requirements
Java 17 or higher, npm 9.4.0 or higher, IntelliJ IDEA (installation can be done
with editor such as Visual Studio Code)

6.1.2 Installation guide
Due to specific authorization problems with the NEO4J database, a more manual
installation process is required, as it has been extensively tested and proven to
work reliably. The installation guide has been tested on macOS systems with
Java 17 installed, although lower versions of Java (from 11) also work without
any issues.

6.1.3 Application Installation
Once the user receives a zip file containing the source codes of the application, the
installation process of the application can begin. The first step in the installation
process is to unzip archived file with source code and open the extracted project
with an integrated development environment (IDE). The project is divided into
two subprojects: frontend and backend. The user can choose to use a single IDE
that supports both projects or use separate IDEs for each project. This approach
has been tested with editors such as Visual Studio Code and IDEs like IntelliJ
IDEA.

Neo4j database

The correct work of application requires the local instance of NEO4J database
running. To create a new instance of the database, you will need to install the
Neo4j Desktop application, which is freely available for mainstream operating
systems. You can download the application from their official website1. Once the
Neo4j application is installed, you can proceed to create a new database instance.

1https://neo4j.com/download/

51

https://neo4j.com/download/

To create a new database project, open the Neo4j Desktop application and
click on the ”New” button located in the top-right corner. Then, select ”Create
project” from the options. You can provide a suitable name for the project. The
next step is to create a new local database. Click on the ”Add” button and choose
the ”Local DBMS” option. It is crucial to set a password for the new database
during this step. The backend jar file is configured to use the default username
and ”password” as the password. If you wish to use a custom password, you will
need to recompile the backend jar files with the updated application properties.

Figure 6.1: Prject Creation

Figure 6.2: New Local DBMS creation

Once you have completed these steps, you can start the application by clicking
the ”Start” button that appears when you hover over the database label in the
Neo4j Desktop application. The Neo4j Desktop application provides full control
and management capabilities for the database instance. Once the database in-
stance has started successfully, you have the option to open the Neo4j browser to
interact with the database.

The next step is to load the necessary scripts or data into the database. If
the user does not have any prepared data, the application’s source code provides
you with demo data. The script for loading the demo data can be found at
”example/loadFootballDb.cypher”. To load the script’s content, you can open
the database browser by clicking the ”Open” button at the top of the Neo4j
Desktop application. Once the browser is open, you can copy and paste the
content of the script into the input area. After executing the script, the entities
will appear in the database.

Neo4j database Docker Another alternative for creating a new instance of
the NEO4J database is by initializing a Docker container. To accomplish this,

52

Figure 6.3: Uploading the script

the Docker Desktop application needs to be running, and the following command
should be executed:

"docker run -p7474:7474 -p7687:7687 -e NEO4J_AUTH=neo4j/password neo4j".

After the container is created, the Neo4j browser becomes accessible at local-
host (url http://localhost:7474/browser/). The browser can be used to load
scripts similar to the previous step.

Backend

The backend application already includes a preconfigured spring-boot-docker.jar
file, so there is typically no need to rebuild the project. However, in certain cases,
rebuilding the project can be useful. To rebuild the jar file, the user can navigate
to the backend application located at the path ’backend/app’ and execute the
following command: ’mvn clean package’. The backend application is built using
the Maven build tool, so Maven can be used to rebuild the jar files.

Alternatively, if you are using IntelliJ IDEA, you can leverage its build-in
support for Maven projects. To import the Maven project, you can click on the
pom.xml file and choose the option ”Add as Maven Project”. This will enable user
to build and manage the project using IntelliJ IDEA’s Maven integration. Please
note that during this process, reloading of the pom.xml file may be required in
order to install all the necessary dependencies.

Rebuilding can be required if in the user set the password to anything than
default ”password”. In this case user should navigate to

"backend/app/src/main/resources/application.properties"

file and set the spring.data.neo4j.password property to the password used
during database creation.

Shortly after that, a menu bar with script options on the right side will appear.
The user can initiate the rebuilding of the jar file by executing the ”clean” script
followed by the ”package” script.

The jar file can be executed either through an IDE or by running the fol-
lowing command from the ”backend/app” path: ”java -jar target/spring-boot-
docker.jar”. After successfully launching the jar file, the Spring Boot server will

53

Figure 6.4: Chinging the DB Password

(a) (b)

Figure 6.5: Import Maven Project (a) Maven Menu (b)

start listening on port 8080. This means that the backend application is now
ready to accept incoming requests.

Frontend

The frontend application is developed using JavaScript and utilizes React and
React Flow libraries. The project can be found in the frontend repository. To

54

run the frontend portion of the application, you need to navigate to the ”fron-
tend/app” directory and execute the ”npm install” command to install all the
necessary dependencies. Once the installation is complete, you can execute the
”npm start” command to run the React frontend application. Once the applica-
tion is running, it is available on port 3000. Worth mention that channgin the
port of the application can results in communication error, do not do this.

6.1.4 Interface of the web editor
In the web interface, users have the ability to create and edit new queries. The
application interface is consist of three main parts: the editor sandbox, header and
footer. The header section includes such part as a query preview, send preview
request button and console button. The preview window is placed in the upper
left-hand corner of the screen. The preview window provides user with a way to
preview a query before executing it. This feature helps prevent users from sending
meaningless queries to the server. To send a preview request, users can click the
button with the eye icon on it located in the upper right-hand corner. Also, there
is a console open button located near it The console serves as a response viewer,
allowing users to review all the response they receive.

Figure 6.6: 1. Preview window 2. Send preview request button 3. Show console
with outputs 4.

The footer of the web interface contains tools for adding and deleting nodes.
Creating new entities is possible with buttons located in the bottom part of win-
dow. The ”Vertices” button can be used to create basic projection and selection
node. Created node can be edited later. Node editor can be open by double click-
ing on a node. Node editor allows user to change label, set conditional and set
if the node is projection or not. Next button is transformations. Transformation
operations are order by, group by, skip and limit. These operations have default
behavior and requires one parent node to be connected with. Next block of op-
erations is set operations with only one currently supported operation available,

55

which is Union. The union set operation requires two parent nodes and has the
default behavior. This operation combine two sub queries. Near the set operation
button is join button, which represents Cypher graph traversal and requires two
parent nodes to be connected with. The execute button, located in the lower
right corner, sends the request to server and saves the response to the console.
Clear button can be used to clear whole editor sandbox and delete button is used
to remove individual part of the graph.

Vertices creation

To create a vertex, the user should access the vertices menu and select one of
the available options. The user can choose to create either a basic vertex or a
projection vertex.

After selecting the vertex type, the user needs to specify the name of the
vertex. Once the label name is set, the vertex will be created.

(a) (b)

Figure 6.7: Vertex Creation (a) Set Label Dialog (b)

Vertices connection

With the exception of conditional vertices, it is possible to connect every vertex to
each other using edges. To create an edge, the user can click on the dot located at
the top or bottom of a vertex and, while holding the right mouse button, connect
it to the desired vertex. The bottom dot represents the output, while the top dot
represents the input, as the graph follows an oriented graph structure.

Figure 6.8: Connect Vertices

56

Vertices and Edge editing

The user is able to edit a node or an edge by double clicking on it. Once user
clicks, the editor menu appears. In the node editor menu the user is able to
set new node label, set new conditional and change the vertex type from non-
projection to projection. The edge editor allows user to change edge label and its
type.

By double-clicking on a node or an edge, the user can access the editing
functionality. This action triggers the appearance of the editor menu. In the
node editor menu, the user can modify the node by setting a new label, defining
a new conditional, or changing the vertex type from non-projection to projection.
On the other hand, the edge editor enables the user to change the edge label and
its type.

Figure 6.9: Connect Vertices

Transformation Creation

The process of creating a transformation is similar to creating vertices, with the
exception of the configuration part. After selecting the desired transformation,
the user needs to specify the parent vertex. Depending on the chosen transfor-
mation, additional settings may be required. For example, the skip and limit
transformations require the user to specify the number of rows to skip or limit.
The order by transformation requires the user to set the order by property, while
the group by count transformation requires the user to set the group by property
and optionally provide a having conditional.

Set Operation and Join Creation

The process of creating a new instance of a set operation or join is similar to
creating a transformation, with the exception of the number of required parent
vertices. These operations specifically require the user to specify exactly two
parent vertices. Once the parents are specified, the join operation will prompt
the user to specify the path. The set operations require no additional information
except the parents vertices.

57

Figure 6.10: Order by name setting dialog

Delete and Clear Operations

The clear operation allows the user to clear the entire editor canvas, removing
all elements from the graph. On the other hand, the delete button is used to
remove specific elements from the graph. When the delete button is pressed, it
turns red to indicate that the delete state is active. The user can then hover over
the elements they want to delete, and those elements will become less visible as
a visual cue. Clicking on the elements will remove them from the graph. To exit
the delete mode, the user simply needs to click on the delete button again. This
will remove the red background and return the editor to its normal state. The
delete operation supports the deletion of both vertices and edges.

Console

The console tab enables the user to view the output received from the server in
chronological order. To access the console tab, the user can click on the node
located in the top right corner of the interface.

58

Conclusion

6.2 Thesis Conclusion
The main objective of the thesis was to develop a user-friendly tool that enables
individuals without technical expertise to query multi-model data. To simplify
the process, we leveraged the graph representation of unified data stored in Neo4j.
The work involved proposing a visual query language (VQL), designing and im-
plementing a web-based editor for creating and modifying VQL queries, as well
as designing and implementing the VQL to Cypher query translation algorithm.

The resulting VQL language has less expression power than the Cypher query
language, serving as a subset of Cypher. However, during the thesis work, chal-
lenges were encountered in translating certain aspects of VQL to Cypher, re-
sulting in some parts of the designed VQL language not being fully translatable
yet. Despite this, the VQL language has successfully achieved its objectives and
demonstrated its usability for querying multi-model data.

The developed VQL query editor successfully fulfills its goal of being intuitive
and understandable to non-expert users. It allows users to construct complex
queries using fundamental graph principles.

The translation algorithm demonstrated its capability to successfully translate
queries of varying complexity levels. Furthermore, translation process revealed
certain limitations of the Cypher query language.

6.3 Future Work
The future improvement can be connected with: expanding the expression power
of the designed VQL language

• Expanding the expression power of the designed VQL language The expres-
sion power of VQL can be extending by implementing support for additional
aggregation operations (such as mathematical functions) and incorporating
support for Data Manipulation Language (DML) operations, among other
features.

• Integrating tool into management tool family The tool can be integrated into
a comprehensive toolset that encompasses other tools for querying multi-
model data, such as MM-quecat [9], in order to provide a unified solution
for managing multi-model data.

• Multi-client application The tool can be improved to support multiple clients
on a single server, enabling the implementation of user accounts and the

59

ability to save users’ history for future reference. This improvement would
provide a more personalized and convenient experience for individual users.

60

Bibliography

[1] Pramod J. Sadalage and Martin Fowler. NoSQL Distilled: A Brief Guide to
the Emerging World of Polyglot Persistence. Addison-Wesley Professional,
2012.

[2] Jiaheng Lu and Irena Holubová. Multi-Model Databases: A New Journey
to Handle the Variety of Data. ACM Comput. Surv., 52(3), June 2019.

[3] Ecma International. JavaScript Object Notation (JSON), 2013. http://
www.JSON.org/.

[4] W3C. Extensible Markup Language (XML) 1.0 (Fifth Edition), 2008.

[5] Moshé M Zloof. Query by example. In Proceedings of the May 19-22, 1975,
national computer conference and exposition, pages 431–438, 1975.

[6] Martin Svoboda, Pavel Čontoš, and Irena Holubová. Categorical Modeling
of Multi-model Data: One Model to Rule Them All. In Proc. of MEDI ’21,
pages 190–198. Springer, 06 2021.

[7] Pavel Koupil and Irena Holubová. A Unified Representation and Transfor-
mation of Multi-Model Data using Category Theory. J. Big Data, 9(1):61,
2022.

[8] Daniel Crha. Unified Querying of Multi-Model Data. Master thesis, Charles
University, Czech Republic, 2022.

[9] Pavel Koupil, Daniel Crha, and Irena Holubová. MM-quecat: A Tool for
Unified Querying of Multi-Model Data. In Proceedings of the 26th Inter-
national Conference on Extending Database Technology, EDBT 2023, Ioan-
nina, Greece, pages 831–834. OpenProceedings.org, 2023.

[10] Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language for
RDF. W3C, January 2008. http://www.w3.org/TR/rdf-sparql-query/.

[11] Michael Barr and Charles Wells. Category Theory for Computing Science,
volume 49. Prentice Hall New York, 1990.

[12] Andrés Taylor. Cypher Query Language (Cypher), 2011. https://neo4j.
com/docs/cypher-manual/current/introduction/.

[13] Marko A. Rodriguez. Gremlin Query Language (Gremlin), 2009. https:
//tinkerpop.apache.org.

61

http://www.JSON.org/
http://www.JSON.org/
http://www.w3.org/TR/rdf-sparql-query/
https://neo4j.com/docs/cypher-manual/current/introduction/
https://neo4j.com/docs/cypher-manual/current/introduction/
https://tinkerpop.apache.org
https://tinkerpop.apache.org

[14] ArangoDb Query Language Query Language (AQL), 2009. https://www.
arangodb.com/docs/stable/aql/.

[15] Oren Eini. RavenDb Query Language Query Language (RQL), 2010. https:
//www.arangodb.com/docs/stable/aql/.

62

https://www.arangodb.com/docs/stable/aql/
https://www.arangodb.com/docs/stable/aql/
https://www.arangodb.com/docs/stable/aql/
https://www.arangodb.com/docs/stable/aql/

List of Figures

1.1 Query that lists all players (a) and the resulting visualization of
the query (b) . 6

1.2 Query that finds player friends of friends (a) and the resulting
visualization of the query (b) . 7

1.3 Query that finds English players in Chelsea club (a), result of query
as graph (b) and as a table (c) . 7

1.4 Grouping players in one team (a) and result of the query (b) . . . 8
1.5 SPARQL query listing all buses (a) and its result (b) 9
1.6 SPARQL query that list all buses (a) and the resulting visualiza-

tion (b, c) . 9
1.7 Grouping and filtering grouped items (a,b) and the results (c,d) . 10
1.8 Optional clause . 10
1.9 Graph visualization . 11
1.10 Initializing new graph . 11
1.11 Initializing new traversal . 11
1.12 Adding vertices . 12
1.13 Adding edges . 12
1.14 Aggregate function count() . 12
1.15 Gremlin query . 12
1.16 Query: Find all edges with contract expiring more than in two years 12
1.17 Depth-first traversal . 13
1.18 Gephi initialization . 13
1.19 Gephi interface . 13
1.20 Creation new collection . 14
1.21 Crud operations . 15
1.22 Data Projection . 16
1.23 Search friends (a) and Search additionally friends of friends (b) . . 16
1.24 Graph visualisation . 17
1.25 GUI Interface . 18
1.26 Query examples . 18
1.27 Spatial Query Example . 19
1.28 Query Result . 19
1.29 Map-reduce relationship . 19

2.1 Non-projection basic vertex . 21
2.2 Projection basic vertex . 22
2.3 Simple relation . 22
2.4 Simple condition . 22

63

2.5 Alternative text condition . 23
2.6 Group by . 23
2.7 Group by with having conditionals 24
2.8 Group by with having conditionals 24
2.9 Skip and Limit operations . 25
2.10 Union operations . 25
2.11 Union operations . 26

4.1 Model Class Diagram . 33
4.2 Backend Class Diagram . 38
4.3 Creating Basic Query Sequence Diagram 42
4.4 Creating Complex Query Sequence Diagram 43
4.5 Backend Model Class Diagram . 44
4.6 Query Execution Sequence Diagram 46

5.1 Basic Projection . 48
5.2 Basic Projection with Selection 48
5.3 Basic Projection with Selection 49
5.4 Basic Projection with Selection 49
5.5 Basic Projection with Selection 50
5.6 Union . 50

6.1 Prject Creation . 52
6.2 New Local DBMS creation . 52
6.3 Uploading the script . 53
6.4 Chinging the DB Password . 54
6.5 Import Maven Project (a) Maven Menu (b) 54
6.6 1. Preview window 2. Send preview request button 3. Show

console with outputs 4. 55
6.7 Vertex Creation (a) Set Label Dialog (b) 56
6.8 Connect Vertices . 56
6.9 Connect Vertices . 57
6.10 Order by name setting dialog . 58

64

	Introduction
	Graph query languages
	Cypher
	Usage
	Cypher syntax features
	Visualization

	SPARQL
	Usage
	SPARQL syntax features
	Visualization

	Gremlin
	Usage
	Gremlin syntax features
	Visualization

	ArangoDB
	Usage
	AQL syntax features
	Comparison
	Visualization

	RavenDB
	Usage
	RQL syntax features
	Visualization

	Visual Query Language
	 Language Description
	Basic Operations
	 Conditionals
	Transformations
	Set Operations

	 Language Limitations

	Algorithms
	Root finding algorithm
	JSON to Graph convert
	Finding a root node in a graph

	Graph to instruction set

	Programmer documentation
	Intro
	MVC
	Front-end architecture
	Model
	Widgets
	Edges
	View
	Main functions

	Back-end architecture
	Main Classes and Functions
	Model
	Use cases

	Testing
	Introduction
	Unit tests
	Integration Tests
	Projection Test
	Selection Test
	Aggregation Test
	Multiple Selection Test
	Order By Test
	Order By Test

	User documentation
	 User Documentation
	Requirements
	 Installation guide
	Application Installation
	 Interface of the web editor

	Conclusion
	Thesis Conclusion
	Future Work

	Bibliography
	List of Figures

