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Abstract: Analysis of the meiotic spindle is an essential but time-consuming step
in the research of the effects of the oocyte-meiosis regulating proteins. In this
thesis, we propose a method for automated computation of the spindle volume
as a step towards a more efficient analysis pipeline.

The proposed method is based on convolutional neural networks. It consists of
two steps: segmentation of the spindle on a microscopic image and calculation of
its volume. The segmentation is performed by a modified 3D U-Net architecture,
which is trained on an augmented dataset of volumetric images.

The choice of architecture is supported by an in-depth analysis of the current
state-of-the-art methods for image segmentation with a focus on biomedical im-
ages and volumetric data. The hyperparameters are tuned for the best perfor-
mance on the dataset.

The model is evaluated on the testing dataset with respect to the segmentation
quality and the volume estimation accuracy. The results demonstrate the feasi-
bility of the proposed approach.
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Introduction
The spindle apparatus is an intracellular structure responsible for chromosome
separation during the act of nuclear division of a cell. The process of spindle
formation is very complex, and it is regulated by various proteins. The female
oocytes, which are responsible for reproductive cell production, are very sensitive
to errors in the process of spindle formation. Any malfunction can lead to severe
embryo damage or even miscarriage.

Because of these reasons, the processes of spindle formation and its develop-
ment and the regulatory mechanisms in mammalian oocytes are being thoroughly
studied by the scientific community. This results in large amounts of microscopic
image data, which need to be processed by a human expert in order to extract
relevant information. One of the key metrics used for evaluation is the volume of
the spindle apparatus over time currently computed by manual process, which is
a very time-consuming task. This makes the analysis process a good candidate
for at least partial automation.

The automation of biomedical image analysis is a very researched topic be-
cause of the vast amounts of data generated in this domain. Manual data pro-
cessing is very laborious and costly process, which requires the expertise of highly
qualified medical or scientific personnel. High-quality results are required, while
the human factor in processing inevitably introduces inconsistencies and errors.

Researchers have been investigating biomedical image processing since the
end of the 20th century, initially using traditional computer vision techniques
relying on low-level pixel processing. In recent years, deep learning methods have
been introduced to this field and quickly superseded the traditional methods in
accuracy, speed and scalability. Convolutional neural networks, in particular, are
very effective with image data.

However, using deep learning methods for bioimaging brings challenges of its
own. Contents of the image can be crowded, noisy, and difficult to distinguish.
Additionally, the need for large amounts of well-annotated data is often unmet
in this domain due to the high cost of manual annotation.

This thesis is focused on automating the analysis of the spindle apparatus
with convolutional neural networks. The goal is to create a model which will
be able to accurately compute the volume of the spindle from given volumetric
images of mice oocytes.

The thesis consists of 6 chapters: The importance of biological research on
spindle development is introduced in the first chapter. It is followed by the second
chapter describing the data used for the training and evaluation of the models.
The third chapter focuses on formulating the problem from the perspective of
deep learning and computer vision, and the fourth chapter provides an overview of
current state-of-the-art methods in biomedical image analysis with convolutional
neural networks. Chapters five and six describe our implementation of the models
and the results and evaluation of the experiments, respectively.
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1. Biology background

1.1 Introduction
During sexual reproduction, the genetic information of two parent organisms com-
bines to produce offspring genetically different from both parents. This process
introduces variability into the population and is crucial for evolution.

Organisms produce cells partaking in sexual reproduction, gametes, in the
process called meiosis. Meiosis is highly regulated by a number of proteins,
which are responsible for meiosis initiation, correct genetic material distribution
and genome integrity maintenance.

In this chapter, we will briefly describe meiosis and the importance of the
spindle apparatus. Additionally, we will introduce a family of regulatory proteins
and discuss their role in spindle formation based on current research.

1.2 Meiosis
Mitosis and meiosis are two distinct types of nuclear division that differ in their
products and purposes.

Mitosis occurs in all body cells, and its purpose is to increase the number of
cells, either for growth or repair. The two daughter cells generated by mitosis are
identical to their mother cell.

Meiosis, on the other hand, is unique for germ cells, and the products are
haploid gametes used for reproduction. It consists of two steps, Meiosis I and
Meiosis II. During Meiosis I, two haploid daughter cells are created from one
mother diploid cell, each inheriting one set of chromosomes. During Meiosis II,
these daughter cells divide again, but this time their chromosomes are split in
half because each half will belong to one of the next-generation daughter cells.
This way, four haploid daughter cells are created from one parent diploid cell.

Furthermore, meiosis products differ depending on sex. Male meiosis, sper-
matogenesis, is even and produces four haploid sperm cells, but female meiosis,
oogenesis, produces only one egg cell, which contains the majority of organelles
and cytoplasm, while other daughter cells (polar bodies) perish.

1.3 Role of spindle apparatus
Mitosis and meiosis both rely upon the spindle apparatus to ensure DNA in the
form of chromosomes will be separated evenly between daughter cells. In the case
of Meiosis I, the spindle apparatus is responsible for pulling apart a homologous
pair of chromosomes to facilitate cell division.

A spindle is a structure made from microtubules, protein molecules with tens
of micrometers in length, constructed from small subunits of the protein tubulin.
It has an oval shape with two poles. In animal cells, the spindle poles are gener-
ally organelles called centrosomes which contain Microtubule-organizing centers
(MTOC) made of centrioles and pericentriolar material (PCM). From MTOCs,
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microtubules grow towards the center of the spindle, where chromosomes are lo-
cated, but also to the cell’s membrane to anchor the complex and provide support.

During division, microtubules from opposite poles attach themselves to pro-
tein structures kinetochores located on the chromosomes, align all the chromo-
somes in an equatorial plane and pull them apart towards the poles.

1.3.1 Problems with spindle formation and maturation
and their consequences

Correct spindle formation is crucial during meiosis, as the spindle ensures an even
separation of a homolog pair of chromosomes into two daughter cells. An absence
of a bipolar spindle or its malformation during meiosis in female oocytes can lead
to aneuploidy, a genetic state in which the cells of an individual contain a non-
standard number of chromosomes. Most cases of aneuploidy are incompatible
with life, except for a few, e.g., trisomy of the 21st chromosome, more commonly
known as Down Syndrome. Aneuploidy is the leading cause of miscarriage for
the human species (Nagaoka et al. [2012]).

1.3.2 Spindle features of oocytes
Spindle formation in oocytes is different from other cells in the body because
oocytes lack centrioles which are eliminated during their development. Conse-
quently, the two centrosomes are not present to form the spindle. Instead, mul-
tiple aMTOCs (acentriolar Microtubule-organizing centers) are responsible for
microtubule nucleation and spindle creation.

The aMTOCs undergo many changes during the maturation of the oocyte,
including fragmentation, clustering into two poles, and migration to the cell’s
membrane. All of these processes are highly regulated and activated by appro-
priate proteins (Blengini et al. [2021]).

1.4 Aurora kinases
A family of three kinases, the Aurora kinases, is involved in the regulation of the
spindle formation and development in mouse oocytes.

The first member, Aurka, is suspected to be responsible for maintaining the
structure, number, and location of the aMTOCs at the poles of the spindle. Its
absence results in short and disorganized spindles with over-clustered aMTOCs.
Oocytes with such defects terminate their division process in the metaphase of
Meiosis I. Consequently, the individual lacking Aurka would be sterile.

Multiple aMTOCs are involved in microtubule nucleation and spindle cre-
ation, and Aurkc plays a role in the process of clustering them into two poles.
Failing in this task would result in a multipolar spindle and a higher risk of
aneuploidy.

The precise function of the AURK family members and their ability to re-
place each other are under recent research (Blengini et al. [2021]). To be able to
diagnose and explore the compensatory abilities and functions of the members of
this family, it is crucial to examine specific spindle properties.
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1.5 Evaluation methods
In order to discover the role of Aurka and diagnose whether other kinases would
compensate for its loss, experiments on mice were conducted. Blengini et al.
[2021] compared a strain of mice lacking this kinase in oocytes with a control
mouse strain.

Oocytes harvested from both types of mice were observed and compared in
various stages of maturation with an emphasis on the detection of certain events.
The first event which is observed during analysis is the germinal vesicle break-
down (GVBD) — the disassembly of the nuclear envelope and the release of the
chromosomes into the cytoplasm. After GVBD, the volume, shape and bipolar-
ity of the spindle are measured and compared because they serve as markers for
detecting if the oocyte is progressing through meiosis correctly.

In the absence of Aurka, some oocytes might not form spindles at all, other
have defects such as mono or multipolar spindles or bipolar spindles of short
lengths.

(a) (b)

Figure 1.1: (a) Spindle apparatus (blue) in a wild-type oocyte. The spindle
is bipolar, aMTOCs are clustered at the poles (green), and chromosomes are
aligned in the equatorial plane (red). (b) Spindle apparatus in an Aurka-deficient
oocyte. The spindle is monopolar, aMTOCs are over-clustered at one pole, and
chromosomes are disorganized.
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2. Data collection and
characteristics
During experiments with mice oocytes, their development is recorded over the
course of several hours. The data is collected in the form of a time series of
volumetric images.

The data we use in this thesis was collected with a light sheet fluorescence
microscope system Vivents LS1 Live. In this chapter, we explain the advantages
of light sheet microscopy for observing live cells and describe the properties of
data collected by this system.

2.1 Fluorescence microscopy
Fluorescence microscopy is an optical microscopy technique using the fluorescent
properties of molecules to visualize structures within a sample. Typically, anti-
bodies labelled with fluorescence dye are introduced into the sample; they bind
to molecules of interest and effectively label them. The prepared sample is then
illuminated with ultraviolet light, which is absorbed by the fluorophore. The
fluorophore emits emission light of a longer wavelength which is collected by a
detector.

All current methods of microscopy have to make some trade-offs between im-
age quality (resolution and contrast), acquisition speed, and light intensity. For
long-term live-cell imaging, light intensity is a crucial factor because continuous
exposition to light may result in the release of reactive oxygen, which is dangerous
to organelles and other cell structures and can even cause cell death. This phe-
nomenon is known as phototoxicity. Another inconvenience of light over-exposure
is photobleaching, a process during which the structure of fluorescent molecules
is gradually altered until they are no longer capable of emitting light.

Even advanced techniques, such as the laser-scanning confocal microscopy,
suffer from the detrimental effects of heavy light exposure in the conditions of
long-term live-cell microscopy. The reason is that the light travels through the
sample in the directions perpendicular to the plane of interest, so for each image
of a single plane, the whole sample is illuminated.

2.2 Data acquisition with light sheet microscope
The data used in this work was obtained with the light sheet microscopy tech-
nique. As follows from the description given below, imaging the whole slice in
one exposure reduces the total exposure time and drastically reduces light dosage.
These features make it suitable for fast 3D imaging of larger biological specimens.

In a light sheet microscope (see Figure 2.1), a laser beam goes through a
cylindrical lens, which shapes it into a several-micrometer-thin sheet. This sheet
of light then passes through the sample, illuminating only a slice without un-
necessarily exposing the surrounding volume. A detection device is positioned
perpendicularly to the illuminated plane to collect the light emitted by the fluo-
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Figure 2.1: Light sheet microscopy
Source:https://en.wikipedia.org/wiki/Light_sheet_fluorescence_microscopy,

Licence: CC BY-SA 3.0

rophores. The sample is moved by a motor drive so that the light sheet illuminates
multiple depth layers (slices), creating a 3D image. The process is then repeated
in intervals, allowing to capture sample development over time.

2.3 Data characteristics
The dataset consists of data from 6 experiments, each obtained from a different
mouse strain. From each experiment, we were provided with 5 to 20 oocyte
observations. This resulted in a total of 70 oocyte observations (see Figure 2.2).

all data
experiment1
experiment2

oocyte1
oocyte2
oocyte3
...

experiment3
...

Figure 2.2: Structure of the dataset

Each oocyte was observed for several hours, with its image being captured and
stored at an interval of 10 minutes. The resulting data for one oocyte observation
is a time series of more than 100 volumetric images, each containing 31 slices
(images) of 750 × 750 pixels. The distance between slices corresponds to 2 µm
and the distance between individual pixels to 0, 17 × 0, 17 µm.

Samples were colored with three fluorescent dyes to label distinct structures
within the cell. The emitted light was captured as three separate channels: chro-
mosome channel, microtubule channel, and aMTOC channel (Figure 2.3).
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Figure 2.3: Diagram of a single oocyte observation. A 3-channel volumetric image
is captured in an interval of 10 minutes. Each image has 31 slices of size 750×750
px.

In this thesis, only the microtubule channel is used for the task of predicting
the volume of the spindle. The dataset is partially labelled – it contains informa-
tion about the time of GVBD for each experiment and the volume and shape of
the spindle for every sixth frame starting at GVBD. The label is provided as a
segmentation mask of the spindle (Figure 2.4).

Figure 2.4: Microscopic image of the spindle with its segmentation mask. The
microtubule channel (left), segmentation mask of the spindle (middle), both im-
ages overlaid (right)
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3. Problem formulation
Because of the large amount of 3D microscopic images which have to be ana-
lyzed during Aurora kinase research, there is a strong need for automated data
processing, especially in the automation of spindle volume estimation.

Values of the spindle volume during cell division represent an essential indi-
cator of the cell’s development and health. They can be used to determine the
effect of Aurora kinases on the spindle development as described in Chapter 1.
Since each experiment contains over a hundred images for each cell, evaluating
the spindle volume is tedious. This is well illustrated by the fact that to make
analysis reasonably feasible, only every sixth spindle image is analyzed now.

In this chapter, we will introduce our data in the context of various 3D data
types. We will describe the most common tasks of computer vision and consider
them in the context of predicting the spindle volume. We will also introduce deep
learning as a suitable approach for solving our task. Finally, we will describe the
challenges of working with biomedical data, with a focus on volumetric data and
scarce annotations.

3.1 3D data types
3D image data come in many forms, each with specific properties, use cases and
processing methods. In the industrial domain, the technologies used to capture
images are only capable of scanning the surfaces and cannot penetrate the internal
structure. The most common representations are point clouds, polygon meshes,
and RGBD (RGB-Depth).

Figure 3.1: 3D data types visualized on the example of the Stanford bunny model.
Point cloud (left), voxel (middle, ours), and 3D triangle mesh (right). Source:
Hoang et al. [2019]

A remarkable property of biomedical image data is that we are able to capture
the internal structure, and often it is also necessary to do so for the task at hand.
The common modalities used to capture the internal structure of an organism
are X-ray technology, ultrasound or magnetic resonance in the case of bioimaging
or medical imaging and special microscopic techniques in the case of microscopy
imaging. These technologies typically capture multiple 2D layers of the object and
then stack them together to create a 3D volume, resulting in volumetric image
data represented by voxels. This is also the case with the data used throughout
this thesis.
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3.2 Computer vision task definitions
Problems targeted by computer vision research cover many fields of application.
In this thesis, we will focus on the tasks related to image analysis based on the
content of the image.

Such tasks are typically divided into these categories:

• image classification – assign an image to one of the predefined classes, based
on which one is the most likely to represent.

• object detection, localization – determine a position of an object in the image
and mark it with a bounding box.

• semantic segmentation – find the image mask, i.e. assign each pixel as
belonging to the class of the object it represents.

• instance segmentation – assign each pixel to a specific instance of an object.

These tasks are illustrated in Figure 3.2.

Figure 3.2: Computer vision tasks. Source: He et al. [2017]

3.2.1 Spindle volume estimation with semantic segmenta-
tion

For predicting the spindle volume, we decided first to perform the semantic seg-
mentation of the spindle and then use the segmentation mask to determine the
spindle volume. This is the same strategy used to compute the spindle volume
manually. The volume will be calculated by counting the number of voxels be-
longing to the spindle and multiplying it by the volume of a single voxel.
The volume of one voxel is

Vvoxel = 0, 17 × 0, 17 × 2 = 0.0578 µm3
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The total volume of the spindle equals to:

Vspindle =
N∑︂

i=1
1{xi∈S} · Vvoxel

=
N∑︂

i=1
1{xi∈S} · 0.0578 µm3

Because there is only one object of interest in the image, the task of semantic
segmentation is equivalent to the task of binary semantic segmentation, i.e. to
assign each pixel to one of two classes:

• foreground – the pixel belongs to the spindle

• background – the pixel does not belong to the spindle

3.3 Deep learning for medical image analysis
Litjens et al. [2017] describes the progression of the medical image analysis field
from the early 1970s to the present times.

Initially, the methods were based on low-level pixel processing, mathematical
modelling and rule-based systems. With the increasing popularity of supervised
methods in the 1990s, the field had shifted towards the use of algorithms learning
from the training data to solve the tasks. In these pattern recognition and machine
learning systems, the computer learns to work with patterns and statistics based
on example data. The data is in the form of feature vectors extracted from the
images by hand by the domain experts.

To fully use the potential of the data, the deep learning methods were in-
troduced for automated feature extraction. Deep learning methods are based on
artificial neural networks, and with each layer of the network, they extract higher-
level features from the training data. Consequently, the models based on deep
learning, especially convolutional neural networks, have become a very successful
approach to medical image analysis.

We decided to use convolutional neural networks for the task of semantic
segmentation based on this success and their omnipresence in medical image
analysis literature.

3.4 Challenges of 3D biomedical image segmen-
tation

Biomedical data brings many challenges that need to be reflected in the meth-
ods used for processing it. The challenges are sometimes similar to the ones of
non-medical data, but they affect the process to a considerably higher degree.
Volumetric biomedical data take these problems even further, as described in
Niyas et al. [2022]. Following are the key challenges they identified:

• Expensive annotation process – Training a deep learning model requires
a large amount of labelled data. Biomedical data is difficult to annotate
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and often requires a domain expert for the task, which is time-consuming
and expensive. In the case of volumetric images, the annotation process
consists of annotating each slice of the volume separately so the work for
one data point is multiplied by the number of slices in the volume.

• Dataset limitations –For the reasons mentioned above, the datasets are
often not labelled perfectly. The two groups of imperfect labels mentioned in
Tajbakhsh et al. [2020] are scarce annotations, where only some observations
are (fully) annotated, and weak annotations, where only part of the image is
annotated. The latter includes sparse annotations (e.g. only some slices in a
3D image are annotated), scribble and point annotations, noisy annotations,
etc.

• Class imbalance – Some biomedical data is highly imbalanced in terms
of the number of voxels belonging to the different classes. Many methods
developed for non-medical images do not take this into account, which may
result in poor model performance due to ”over-segmentation of classes with
a high voxel share” (Niyas et al. [2022]).

• Noisy data – Due to the specifics of the acquisition process, the data
in bioimaging and fluorescence microscopy contains more noise than non-
medical images, often with rather complex structure (see Luisier et al.
[2011]).

• Computational cost – The final challenge presented in Niyas et al. [2022]
is the computation cost and substantial memory requirements of the models
designed for volumetric data.

3.4.1 Challenges specific to our data
Of the challenges mentioned above, many are present in our data. First, we face
the problem of scarce labels, as only every sixth image is annotated, resulting in
around 600 labelled data points in total. The spindle is also very small compared
to the size of the image, resulting in a very imbalanced dataset. The images are
high resolution and volumetric, so processing them is both computationally- and
memory-expensive.

Methods designed for biomedical image data need to be able to deal with
these imperfections and very active research is being conducted in this area. We
reflect on these challenges in the analytical part of our thesis in Chapter 4 as we
introduce common methods used in deep learning and analyze the properties of
the current state-of-the-art models. We will also try to address these challenges
in the design of our model in Chapter 5.

13



4. Convolutional architectures
In this chapter, we introduce Convolutional neural networks, which are among the
most popular methods for solving image segmentation problems nowadays. We
will then introduce two approaches to image segmentation using CNNs: Top-down
and bottom-up, along with respective examples and in the context of biomedical
data. Finally, we will mention two models suitable for segmenting volumetric
images with scarce or sparse annotations.

4.1 Convolutional neural networks
Deep convolutional neural networks (CNNs) are state-of-the-art for solving many
computer vision tasks. They are a type of neural network specialized for data
with grid-like topology, which includes images and volumetric data.

4.1.1 Overview of architecture
CNNs are composed of subsequent feature-extracting layers. Given an image,
the network extracts more complex features with each layer and uses the final
features to produce an output appropriate for the given task.

Each layer consists of three types of operations: convolution, non-linear acti-
vation and pooling. Usually, multiple convolutions are performed on the input in
parallel to produce a set of linear activations. The activations are passed through
a non-linear activation function to obtain a set of feature maps. The feature
maps, in turn, are pooled and enter the next layer of the network.

In some works, all convolutions, non-linear activations, and pooling are con-
sidered individual layers of the network.

Convolution

Convolution is used to extract activations from an input. During this operation,
a small tensor of trainable weights called a kernel or a filter, is applied to each
position of the input tensor to detect a specific local feature.

In the mathematical context, discrete convolution is a binary operation which
takes two input functions of discrete arguments and outputs another function.
For two discrete, binary functions x and w, the convolution is defined as:

s(i1, i2) =
∞∑︂

a1=−∞

∞∑︂
a2=−∞

x(a1, a2)w(i1 − a1, i2 − a2)

In CNNs, the inputs of convolution are finite multidimensional arrays, which
behave as functions in a way that we can index them (input) to retrieve a value
on a specific position (output). The values are defined as zero for indices out of
the bound of the arrays so that the convolution can be computed as a sum over a
finite number of elements. In the case of two-dimensional arrays, the convolution
can be written as:
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S(i, j) =
∑︂
m

∑︂
n

I(m, n)K(i − m, j − n)

=
∑︂
m

∑︂
n

I(i − m, j − n)K(m, n)

where I is the input tensor (the input image or output of the previous layer),
K is the convolutional kernel, and the output tensor S is one layer of the linear
activation. Because the kernel is small, the second equation more intuitive as
it represents the kernel sliding over the input image. It is valid because the
convolution is commutative.

Figure 4.1: Example of convolution. The kernel is applied to each position of the
input tensor to produce a linear activation output. In library implementations,
cross-correlation is used instead of convolution, defined as S(i, j) = ∑︁

m

∑︁
n I(i +

m, j + n)K(m, n). Source: Goodfellow et al. [2016]

Activation

Because the convolution is a linear operation, the activations produced by the
convolutional layers are always linear. To enable the network to learn non-linear
features, we have to use non-linear activation functions. The most common ac-
tivation function for the activation stage of CNNs is rectified linear unit (ReLU)
defined as f(x) = max(0, x). In the state-of-the-art networks, more versions of
ReLu are used to reduce the so-called ”dying ReLu problem”, e.g. Leaky ReLU,
ELU, PReLU, Swish.
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Pooling

Pooling is used to summarize the features extracted by the convolutions. It
shrinks the size of the feature map because it replaces certain regions of the
map with their summary statistics to make the feature maps invariant to small
translations of the input. The most common pooling operation is max pooling,
which uses the maximum value of each region as the summary statistic and is
used to determine if some feature is present in that region. Other options are
average pooling or L2-norm pooling.

Figure 4.2: Two examples of pooling: Max Pooling and Average Pooling with a
2x2 pixel filter size. In max pooling, the maximum value of each region is used
as the summary statistic, while in average pooling, the average value is used.
Source: Yani et al. [2019], Available via license: CC BY 3.0

Backbones

The part of the convolutional neural network responsible for the feature extraction
is called the backbone. It is composed of multiple layers described in the previous
section. Backbones are sometimes pre-trained on large datasets and then fine-
tuned for a specific task. This is called transfer learning. Some of the most
famous backbones are VGG, ResNet, Inception, DenseNet, etc.

Backbone Classification head

Regression head

Segmentation head

Image Class probabilities

Bounding box coordinates

Segmentation mask

Figure 4.3: Example of a neural network with a backbone and multiple prediction
heads. Simplified drawing of Mask R-CNN architecture from He et al. [2017].
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Prediction heads

For each computer vision task, the neural network’s final output is different. Even
though the same backbone can extract the features maps, the requested output
might be a single class, a bounding box, a mask, etc. The layer of the network
responsible for producing the output is called the prediction head.

For tasks such as image classification, where the output is a vector of proba-
bilities, the prediction head consists of multiple fully connected layers which take
the flattened output of the backbone as an input.

Flattening would result in a loss of spatial information for the segmentation
tasks, where the output is a mask of the same size as the input image. The net-
work would not be able to reconstruct this mask to the image’s original resolution
(Long et al. [2015]).

The common approach to solve this problem is to use fully convolutional
networks (FCN) proposed in Long et al. [2015]. The result of the backbone is
passed to several layers of feature processing 1x1 convolutions (bottleneck) and
then increased in size to the image’s original resolution. This process is called
upsampling and is usually done by an operation called transposed or upscaling
convolution, which is considered to be the opposite of pooling.

4.1.2 Advantages of convolutional networks
The key idea behind the use of CNNs is that prior knowledge about the data
(grid-like topology, invariance to translation) is used to constrain the network
architecture to reduce the size of the search space of all possible networks without
reducing its capability to represent the desired function. This makes the training
faster and less prone to overfitting because many networks representing only the
training data, not the testing data, are eliminated (LeCun et al. [1989]).

The advantages of this restrictive architecture of CNNs are emphasized in
Goodfellow et al. [2016]. Firstly, CNNs have sparse interactions between layers
because only a small subset (of the size of the kernel) of input features participates
in the computation of each output. This reduces the number of parameters and
makes the training more efficient and less memory-demanding. What improves
these factors further is the sharing of the parameters of the kernel across all
positions because the network does not need to learn a separate set of parameters
for every location. In this way, parameter sharing ensures the equivariance to
translation because the features learned by the kernel are positionally indepen-
dent.

4.2 Training of convolutional neural networks

4.2.1 Performance metrics
Performance metrics are used for the evaluation of the performance of a model.
They should be determined by the problem and need to be picked very carefully.
In this section, we will discuss the common metrics used for binary segmentation
tasks. We use the usual terminology, where the number of correctly predicted
pixels belonging to the segmented object is the ”number of true positives” (TP ),
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and in a similar fashion we define true negatives (TN), false positives (FP ), and
false negatives (FN).

Accuracy
Pixel accuracy is a very intuitive metric for binary segmentation tasks. It
is computed as the ratio of the number of correctly predicted pixels to the
number of all pixels:

Accuracy = TP + TN

TP + TN + FP + FN

Accuracy, unfortunately, suffers from a problem of class imbalance. When
the segmented object occupies only a small portion of the image, and the
background is much larger, predicting many of the pixels as the background
will result in high accuracy.

Precision and recall
Precision and recall are two metrics which could be used for any binary
classification task, but when used alone, they can be misleading. They are
defined as:

Precision = TP

TP + FP

Recall = TP

TP + FN

In some cases, precision and recall can be 100% even though the prediction
is not very good. For precision, this is the case when a minimal number
of pixels is correctly predicted to belong to an object. On the other hand,
when the whole image is predicted as belonging to the object, the recall will
be 100%, even though the prediction is not very good.

F1 score, Dice coefficient
For the reasons mentioned above, precision and recall should always be

used together, to balance each other’s weaknesses. Mathematically, this
balance is achieved by the F1 score, which is defined as the harmonic mean
of precision and recall:

F1 = 2 · Precision · Recall

Precision + Recall
= 2 · TP

2 · TP + FP + FN

When used in the context of semantic segmentation, the F1 score is com-
monly referred to as the Dice coefficient, and it is used in cases of class
imbalance. It can be viewed as a measure of the similarity between the
predicted mask and the ground truth segmentation.

Jaccard index
A metric similar to the Dice coefficient is the Jaccard index (Intersection-
over-Union, IoU). As the name suggests, it is defined as the ratio of the
intersection of the predicted and ground truth masks to the union of the
two. It is defined as:

Jaccard = TP

TP + FP + FN
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4.2.2 Loss functions
Correct selection of a loss function is critical to train a neural network, and
it should be chosen in accordance with the metric used for evaluation. The
loss function is used to measure the difference between the label predicted by
the network and the ground truth. During training, the network’s weights are
updated based on the gradient of the loss function in order to minimize it.

While choosing a loss function, the class imbalance should always be taken
into account.

Binary cross-entropy loss
Binary cross-entropy is a loss function used for binary classification. It can
also be used for binary segmentation because it can be viewed as a binary
classification of each pixel.
Binary cross-entropy is justified by the information theory. When training
a model, we optimize it by finding the parameters which would fit the
training data well. This is called the maximum likelihood estimation of
the parameters. Maximizing this likelihood is mathematically equivalent to
minimizing the cross entropy:

w = argmaxwL(w) = argminwH(p̂data(X), pmodel(X; w))

where w are the model parameters, L(w) is the likelihood of weights,
p̂data(X) is the empirical distribution defined by the training data and
pmodel(X; w) is the probability distribution defined by the trained model.
In the case of the binary cross-entropy loss function, the probability dis-
tribution defined by the model is the Bernoulli distribution. Consequently,
the binary cross-entropy loss, which is minimized during training, is defined
as:

L(t, p) = − 1
N

N∑︂
i=1

tilog(pi) + (1 − ti)log(1 − pi)

where ti is the ground truth label for the i-th pixel, and pi is the predicted
probability of the pixel belonging to the segmented object.

Binary cross-entropy, however, struggles significantly with class imbalance.
Training models with this loss can be inefficient if there are many easy
negatives that do not contribute any useful learning signal. When the seg-
mented object is very small, the model learns to be biased towards the
majority background class (Lin et al. [2020]).

Focal loss
Focal loss (Lin et al. [2020]) is an extension of the cross-entropy loss which
addresses the class imbalance problem by introducing a focusing parameter
γ. It is defined as:

FL(t, p) = − 1
N

N∑︂
i=1

ti(1 − pi)γlog(pi) + (1 − ti)(pi)γlog(1 − pi)
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where ti is the i-th ground truth label, pi is the i-th predicted probability of
belonging to the segmented object, and γ is a tunable focusing parameter.
The focusing parameter down-weights the contribution of easy examples
(with high confidence pi) to the loss function because their scaling factor
decays to zero. Hard examples (with low confidence pi), on the other hand,
are scaled up by the focusing parameter. The model does not get over-
whelmed by the large number of easy negatives and can focus on the hard
positives.

Dice loss
Dice loss is a loss function which optimizes the Dice coefficient introduced
in the Section 4.2.1. It is defined as:

Dice(t, p) = 1 − 2 · ∑︁N
i=1 tipi + ϵ∑︁N

i=1 ti + ∑︁N
i=1 pi + ϵ

where ti is the ground truth label for the i-th pixel, and pi is the predicted
probability of if belonging to the object. ϵ is a small constant which avoids
division by zero.
This definition of the Dice loss is smoothed by using the predicted prob-
abilities and not the final binary predictions. If the final predictions were
used, the loss would not be differentiable because it would be defined only
for integer values, therefore, not continuous (Sudre et al. [2017]).

4.3 Top-down approaches for segmentation
There are two approaches towards image segmentation using convolutional neu-
ral networks: top-down and bottom-up. Models implementing the top-down
approach first detect the objects and their location in the image, classify them
and only then find the segmentation masks on the basis of this detection.

In this section, we will describe how the models using the top-down approach
are trained for object detection and show modifications which have to be made
to extend them to be capable of object segmentation.

4.3.1 Object detection
The object detection pipeline usually consists of three parts: the generation of
ROI (Regions-of-Interest) proposals, classification and localization of an object
on these proposals and pruning of the results.

Proposals are smaller regions of the original image in which objects of interest
might be present. The idea of generating the proposals stems from an observation
that by offering the network only a limited amount of interesting small regions, it
becomes computationally less expensive to train it. The detection of the proposals
is implemented by a CNN with two prediction heads: one for the classification
of the object and one for the prediction the exact location of its bounding box.
Sometimes the proposals overlap, and the same object is present in multiple
proposals. To avoid the detection of the same object multiple times, the results
are pruned using the non-maximum suppression method.
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This pipeline was first proposed in Girshick et al. [2014] as R-CNN. The
proposals were generated by a non-trainable algorithm (the selective search).
Since then, the prevailing opinion has been that using handcrafted features or
fixed algorithms instead of learning algorithms limits the network’s potential to
learn complex features that are difficult to detect by humans (Litjens et al. [2017]).
Consequently, in Faster R-CNN (Ren et al. [2017]), a separate network is trained
to generate the region proposals. Along with the performance improvements,
they report a significant speedup of the pipeline.

YOLO, a single stage object detection

Redmon et al. [2016] perform detection by a single YOLO model jointly opti-
mized for proposal generation and classification. Compared to Girshick et al.
[2014], Girshick [2015], and Ren et al. [2017], it is much faster in predicting be-
cause the image passes through the CNN only once. Because the complete image
is seen during training, YOLO is better at reasoning in the global context of
objects, and it is not as confused by background noise as region proposal ar-
chitectures are. While YOLO can be less accurate in the precise localization of
smaller objects, it is more accurate in object classification (Redmon et al. [2016]).

4.3.2 Mask R-CNN for instance segmentation
Mask R-CNN proposed in He et al. [2017] is a direct extension of the proposal-
based detection methods for the task of image segmentation. It uses Faster R-
CNN architecture and extends it by adding a separate head for segmentation im-
plemented by CNN terminated with a small, fully convolutional network (FCN).

Figure 4.4: Mask R-CNN architecture with one head for object detection and a
second head for mask prediction. Source: He et al. [2017]

For several years, Mask R-CNN and its modifications with varying backbones
were the state-of-the-art in instance segmentation (MetaAI [2023]).

4.3.3 Usability for bioimaging
Top-down methods usually need to be adjusted for biomedical data because the
bounding boxes are often axis aligned. Consequently, the methods work well

21



with natural images but perform poorly in some cases of biomedical data, which
are randomly oriented and very complex (Lalit et al. [2022]). In Schmidt et al.
[2018], the authors propose to localize the objects with star-convex polygons
which represent the shape of their data better. Overall, however, the top-down
methods are more suitable for the task of instance segmentation with multiple
objects in the image. This is not the case for our task.

4.4 Bottom-up approaches for segmentation
Bottom-up methods do not rely on image detection; instead, they predict class
probabilities for each pixel, and only then the classified pixels are grouped into
the final objects. Sometimes the grouping is not even necessary, especially in the
case of binary semantic segmentation, where the goal is to segment objects in the
foreground from the background.

In the seminal work Ronneberger et al. [2015], the U-Net architecture has been
proposed, which follows the bottom-up approach. Thanks to its performance in
semantic segmentation, it has soon become widely adopted in bioimaging and
related fields. It will be described in this section.

4.4.1 Fully convolutional networks for segmentation
Fully convolutional networks, as described earlier in this chapter, are at the core
of all models for segmentation. They can also be used for the bottom-up image
segmentation. The network architecture then usually consists of three parts: the
encoder, the decoder, and skip connections between them.

The responsibility of the encoder is to take an image and extract a high-
quality feature map, which is very semantically rich and contains a lot of context
information. With each subsequent layer, the encoder obtains a feature map with
a higher level of abstraction but lower spatial resolution (because of pooling). The
decoder — by the use of transposed convolutions — expands the encoded feature
map back to the original image size to produce the final segmentation mask.

Additionally, a convolutional bottleneck connects the encoder and the decoder
with a reduced number of parameters and forces the network to learn only the
most essential features.

Long et al. [2015] proposed the use of skip connections which combine fine-
grained spatial feature maps from the upper layers of the encoder with the seman-
tic, coarse-grained, upsampled feature maps from the lower levels of the decoder
to increase the spatial resolution of the final mask and incorporate detailed lo-
calization (see Figure 4.5).
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Figure 4.5: An example of FCN combining coarse, high-layer information with
fine, low-layer information. The results of the encoder pooling layers are shown on
the left with the appropriate resolution, upsampled result feature map is shown
on the right with arrows representing the upsampling and skip connections are
displayed by the summation signs. The intermediate convolution layers are omit-
ted. Source: Long et al. [2015]

4.4.2 U-Net
In Ronneberger et al. [2015], a novel architecture called U-Net was proposed, with
the aim of reducing the need for annotated data and providing accurate localiza-
tion of the segmented output. Similarly to previous FCNs, U-Net has a classical
encoder-decoder architecture. The main difference is that the decoder has a large
number of feature channels, which allow the network to propagate context in-
formation to higher-resolution layers. As a result, we obtain an approximately
symmetric U-shaped architecture (Figure 4.6).

Because of the typical application field in medicine, the desired result is often
a binary segmentation mask.

Figure 4.6: U-Net architecture. The contracting path on the left is the encoder,
expanding path on the right is the decoder. Skip connections are shown by grey
arrows. Source: Ronneberger et al. [2015]

23



4.4.3 Derivatives of U-Net
There are many derivatives of the U-Net architecture, with the aim to improve its
performance by implementing ideas which work in other architectures. Some of
them will be described in this section. A common theme shared by these examples
is the adjustment of skip connections. They are key to the U-Net architecture
but can be improved upon by adding more semantic meaning to the spatially
richer feature maps of the encoder.

U-Net++, U-Net 3+

Zhou et al. [2018] argue that the skip connections in classical U-Net are not
used to their full potential, because they combine feature maps from encoder
and decoder, which have a different semantic meaning (feature maps from the
encoder are less processed). The proposed architecture, U-Net++, uses a series
of nested, dense skip pathways to enrich the feature maps of the encoder and
unite their semantic meaning with the maps of the decoder. The model also uses
deep supervision (supervision on hidden layers) by averaging the results of all
skip pathways and applying the loss function to this average. Deep supervision
is used to improve the training process but also enables the model to be pruned
during inference because the more shallow pathways are more potent.

The resulting network can capture fine details more effectively and surpasses
the original U-Net in performance in many medical image segmentation tasks.

Figure 4.7: Comparison of U-Net (a), UNet++(b) and UNet 3+ (c). Source:
Huang et al. [2020]

Huang et al. [2020] builds on top of Unet++ and proposes a new architecture,
Unet 3+. Instead of dense skip connections, which combined information from
multiple layers of the encoder, U-Net 3+ uses full-scale skip connections. The new
skip connections connect all encoder layers to all decoder layers, which propagates
a lot of spatial information to semantically rich layers of the decoder. There are
also skip connections between decoder layers to keep the semantic information
strong. Each decoder layer is supervised by a loss function, and the network is
trained in a deep supervision manner.
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Attention Unet

When the object of interest is small and highly variable in shape and size or when
the image contains multiple objects, it is difficult for the vanilla U-Net to segment
it correctly.

In some cases, this is solved by using a two-stage approach, by stacking two
or more U-Net networks in a cascade manner. The first network is trained for
coarse localization and segmentation in the sense of region proposals, while the
second network is fed only with the proposals and performs fine segmentation.
So the task has been decomposed into separated localization and segmentation
steps.

This is, however, computationally expensive because segmentation is done
on the same image multiple times (Oktay et al. [2018]). Attention gating was
proposed in Oktay et al. [2018] to deal with this issue for a task of pancreas
segmentation on a CT scan crowded with other organs. The attention gates are
modules which are inserted into the skip connections of the U-Net architecture
(which is more spatial) to boost their semantic information by combining them
with more semantically rich feature maps.

Figure 4.8: Attention U-Net architecture. Source: Oktay et al. [2018]

In practice, attention gates learn to assign weights to the skip connection
feature maps to highlight their most important pixels. These weights can be
interpreted as soft region proposals for the layer of a decoder to which they are
connected. They learn to focus on the object of interest and don’t need any
additional supervision Oktay et al. [2018].

4.5 Architectures for 3D segmentation
Volumetric data is very common in biomedical imaging, and there is a high de-
mand for models capable of processing it. Even though some recently proposed
methods do contain pipelines for both 2D and 3D data, models for 3D data are
still much less common (Lalit et al. [2022]).

Even though 2D models can be used for 3D data by processing each slice
separately and combining the results, this approach is not optimal because it
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ignores the spatial information between the slices, which could be used to improve
the results.

Models designed for 2D data can be extended to process volumetric data
directly by replacing the 2D operations with the corresponding 3D operations.
Unfortunately, models operating on 3D data tend to be very computationally
expensive and require a lot of memory.

3D convolutions

It is important to distinguish between 2D data with multiple channels (e.g. RGB
images or fluorescence images with multiple dyes applied), and actual 3D data,
which might have only one channel. Both can be represented by a 3D tensor, but
the meaning of the third dimension is different, which should be reflected in their
processing.

For multi-channel 2D data, the convolutional kernel is a 3D tensor of weights
with the third dimension (the number of channels) of the same size as the input.
Each value of the output feature map is then a weighted combination of values
in all channels.

S(i, j) =
∑︂
m

∑︂
n

3∑︂
c

I(i + m, j + n, c)K(m, n, c)

where m, n are indices of the kernel’s two dimensions and c is the channel index,
usually of size 3.

For one-channel 3D data, the third dimension of the kernel is semantically
equivalent to the other two dimensions and is smaller than the corresponding
input dimension. The kernel is applied to the input image in all positions in all
three dimensions, which results in a 3D output feature map.

S(i, j, k) =
∑︂
m

∑︂
n

∑︂
o

I(i + m, j + n, k + o)K(m, n, o)

where m, n, o are indices of the kernel’s three dimensions.

3D U-Net

The direct extension of the 2D U-Net architecture for 3D data is the 3D U-Net
Çiçek et al. [2016]. The architecture is very similar to the 2D version, the only
major difference being the use of 3D convolutions, 3D max pooling and 3D up-
convolutions in place of their 2D counterparts.

Interestingly, the authors implement this 3D U-Net in a way that does not use
full annotations of the 3D volume. Instead, only several 2D slices are annotated
along each axis of the volume, and an indicator is used to apply the loss function
only in the annotated positions. This reflects the excessive cost of full annotation
of the 3D volumes.

Semi-supervised methods, the DenoiSeg algorithm

Buchholz et al. [2020] work with an assumption that while annotated data is hard
to get, unlabeled data is often available in large quantities. Their DenoiSeg is a
U-Net shaped architecture trained for the task of segmentation and simultaneous
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denoising to leverage the unlabeled data for improvement of the segmentation
performance. A custom loss function is introduced, which is a combination of
segmentation loss and denoising loss and is optimized jointly. It can be trained
with only a few annotated ground truth data.

For denoising loss, authors take inspiration from Noise2Void, a self-supervised
denoising model, which is able to remove noise from images without ever seeing
a clean image introduced in Krull et al. [2019]. It uses patches of images and, by
MSE loss function, is optimized to predict the central pixel of a patch from the
surrounding pixels.

They offer two versions of their DenoiSeg model, one of which uses 3D oper-
ations and is suitable for work with volumetric data.

4.6 Transformer based models
In current research studies, vision transformers are being proposed as a solution
to image analysis problems as an alternative to CNNs. On the COCO dataset
competition for image instance segmentation, the current second place is taken by
EVA (Fang et al. [2022]), a model employing the transformer-based architecture.
Other computer vision tasks are also dominated by transformer-based models
(MetaAI [2023])
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5. Implementation
In this chapter, we introduce our implementation for the task of semantic seg-
mentation of spindles in volumetric images. We first describe our data processing
pipeline, which we used to prepare the data for training and prediction. Then
we introduce the architecture of our Baseline model and the training process. Fi-
nally, we propose methods for improving the performance of the Baseline model
and for improving its generalization capabilities.

5.1 Data

5.1.1 Train and test sets
We trained our model on the dataset described in section 2.2, which we split
into training, validation, and testing sets. To obtain them, we split the original
dataset two times.

First, we separated the testing data from the rest of the dataset. Our goal
was to have a good testing set which would be independent of the training set
and which would represent well the distribution of real data. Let us remember
that the data, which is in the form of time-lapse records of volumetric images
was acquired by observing the development of individual oocytes over time. In
other words, each record contains images covering the evolution of a single oocyte
over the time points (see 2.2). It would not be correct to split the data into the
training and testing set randomly at the level of individual images because the
images of the same cell can be expected to be not independent and the model
would get some information about the testing data during training. Therefore,
we decided to first split the data on the level of oocyte observations (also called
“positions”).

It was also important to preserve the distribution of the data in both sets.
Cell observations so far come from 6 different experiments, each containing be-
tween 6 and 20 oocyte observations. To have all experiments represented in the
testing set, we used stratified sampling with the experiments as strata and cell
observation as a sample. Consequently, our test set contains Six cell observations,
one is randomly chosen from each experiment, each of which contains 11 to 12
volumetric images.

The rest of the data was used for training and validation. Their split was
done randomly on the level of individual images with a ratio of 80:20.

5.1.2 Data preprocessing
The typical preprocessing steps for image data are resizing, rescaling and crop-
ping. Layers for these operations are available in both the TensorFlow and the
PyTorch libraries and should be applied as needed to all images during both the
training and prediction phases. To preserve their original resolution and all spin-
dle details, we did not use image resizing. To lower the computation costs, we
crop the volumes and retain the centre, which contains the spindle image. This
was possible because the microscope was set to track the spindle structure during
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imaging. Rescaling was not necessary because the images were already in the
range [0, 1], which is ideal for neural networks.

Cropping and padding

The size of each image within our training data was 750×750×31 in x×y×z
dimensions respectively. This was relatively large in comparison to the size of the
spindle itself, and a large portion of the image was just an empty space. Cropping
the images to the region of 352×352×31 voxels in the centre of the image was
possible without losing any information. We can safely assume this will hold for
the testing data and any future real data because the spindle is always in the
centre of the image thanks to the tracking mechanism of the microscope.

Figure 5.1: Image before and after centre cropping

We also had to pad the images by one layer to 352×352×32, because each
dimension of the image should be divisible by 2n for n pooling layers.

Contrast normalization

The global contrast of an image is computed as the standard deviation of all of
the pixels in the image (Goodfellow et al. [2016]). In fluorescence microscopy, it is
common for the images to have varying amounts of contrast based on the amount
of fluorescent dye in the sample. For contrast normalization, we used the function
per_image_standardization() included in the tensorflow.image package in
the TensorFlow library which linearly scales the image to have a mean of 0 and
variance of 1. Examples of images before and after contrast normalization are
shown in fig. 5.2 on the following page.

5.2 Architecture
For the task of spindle segmentation, we decided to use the 3D Unet architecture
described in Section 4.5 with several modifications. Our network was five layers
deep. In the encoder, each layer consisted of two convolutional blocks with (3, 3, 3)
kernels, ReLu activation and max pooling. The number of convolutional filters
was 8, 16, 32, 64, and 128, respectively.

During pooling, the size of an image is reduced by the factors defined by the
pooling kernel, which normally stays the same for all dimensions in all layers. Let
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Figure 5.2: Images from two different experiments before(top) and after(bottom)
contrast normalization. On the bottom images, only the values above 0 are shown
due to the limitations of the displaying software. Posterization is caused by the
displaying software, which is not able to display floating point values.

us recall that our image size is 352×352×32, and the z dimension has 10× lower
resolution than the other two dimensions, which is described in Section 2.3. For
this reason, we used a variable pooling kernel with dimensions (2, 2, 1) for the
first three layers and 2, 2, 2 for the remaining two layers.

The decoder was symmetric to the encoder, where pooling was replaced by
appropriate transposed convolution layers, and the number of filters was halved
in each layer.

In classical U-Net, valid convolutions are performed. We chose to use same
convolutions instead because we wanted to preserve the size of the image. The
resulting network had 1.4M parameters.

5.3 Performance metrics
To measure the performance of our model, we use the Dice coefficient metric,
which is described in Section 4.2.1 in more detail. For implementation purposes,
we adjusted the formula by adding a small constant to the nominator and de-
nominator to avoid division by zero.
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Dice = 2TP + ϵ

2TP + FP + FN + ϵ

We chose this metric because it is suitable for the task of binary segmentation
and handles class imbalance well. IoU would also be a suitable metric, but it is
positively correlated with the Dice coefficient, and therefore we decided to use
only the Dice coefficient.

5.4 Loss functions
While it is possible to use Binary Cross Entropy as a loss function for binary seg-
mentation, it is not suitable for tasks with high class imbalance. For this reason,
we decided to use the Focal Loss and the Dice Loss described in Section 4.2.2.

In order to combine the advantages of the Focal Loss and the Dice loss, a
combined loss function was used and computed as:

L(t, p) = αFL(t, p) + (1 − α)Dice(t, p)

where t is the ground truth segmentation, p is the predicted probability map of
the pixels belonging to the segmented object and α is a tunable parameter used to
balance the two loss functions. We used α = 0.5. The Focal Loss was computed
with coefficient γ = 2.

5.5 Training parameters
Optimizers and learning rate

For optimizing the objective function (minimizing the loss function), we used the
Adam optimizer algorithm implemented in the tensorflow.keras.optimizers
package. We have set the starting value of the learning rate to 5×10−5. Initially,
we tried higher starting values, but the training process was rather unstable.

The learning rate decay was implemented using the ReduceLROnPlateau call-
back from the tensorflow.keras.callbacks package. The decaying factor was
set to 0.5 and patience to 15, so the learning rate was halved every 15 epochs,
during which the validation loss did not improve. The minimal learning rate was
set to 10−6, as the model was not able to learn with lower values.

The Adam optimizer was chosen as it is often recommended as the default
optimizer and it is reported to give good results and be rather fast in comparison
with other optimizers.

5.6 Regularization techniques
During training, model’s weights are adjusted to minimize the loss function for
the training data. In cases when the amount of data is too small, the training
is long, or the model is too complex, the training process may overfit the model,
which will perform poorly on the test data.

To prevent overfitting and improve model’s performance on unseen data, reg-
ularization techniques are used.
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The regularization techniques aim to address the causes of overfitting. We
have used data augmentation to increase the amount of training data and dropout
to prevent the model from memorizing the training data (Goodfellow et al. [2016]).
Also, the use of convolutional neural networks can be considered a regularization
technique: as we discuss in Section 4.1.2, thanks to sparser connections, the CNN
architecture is less prone to overfitting.

5.6.1 Data augmentation
We perform data augmentation by random rotations and flipping of the image
slices. Each image from the training set had a 50% probability of being flipped
in the x and y dimensions and then an equal 25% probability of being rotated
by 0, 90, 180 or 270 degrees around the z-axis. By this data augmentation, we
increased the amount of data by a factor of 8.

We do not flip the images along the z-axis or rotate them in the x and y
dimensions, because the test pit, which holds the oocyte, may be visible in the
image and it has an approximately conical shape along the z-axis.

We decided not to use any other data augmentation techniques, such as shift-
ing, because the spindle is always in the centre of the image.

5.6.2 Dropout
Dropout is a regularization technique which randomly drops some fractions of
the network weights. In a dropout layer, each weight may be dropped out inde-
pendently with a probability of dropout rate p. In that case, it is not used during
the forward pass through the network in a given epoch. (Srivastava et al. [2014]).

Dropout is commonly used in fully connected layers, however, Karshiev et al.
[2020] describes its application in convolutional layers.

We used dropout layers for training in one of our models with a dropout rate
of 0.15. When the dropout layers were used, they were applied before each max
pooling in the encoder and before each transposed convolution in the decoder.

5.7 Attention gating
We have used attention gating described in Section 4.4.3 to improve the perfor-
mance of our Baseline model because the spindle is variable in size and shape.
When attention gates were used, they were applied only to the skip connections
in the first layer of the decoder.
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6. Experiments and Results
Our goal was to train a model which would be able to predict the volume of
the spindle apparatus in a 3D image of a cell. For this task, we chose to train
a model for semantic segmentation, which creates a segmentation mask of the
spindle. Based on this mask, the spindle volume is computed.

Based on our research, we have used a 3D U-Net architecture adjusted for the
needs of our data. We experimented with various hyperparameters to tune the
performance of our model to achieve the best results.

In this chapter, we describe our experiments with baseline model and compare
its performance with the performance of two other variants: model with dropouts
and model with attention-gating. We trained them until convergence and evalu-
ated the performance using the standard metrics for semantic segmentation and
volume prediction. We evaluate performance on individual images, but also in
the context of the time series of oocyte evolution and in the context of individual
experiments, which will be more accessible for the cooperating biologists.

6.1 Graph sources
Several of the graphs of model training performance presented in this chapter
were created using the TensorBoard visualization toolkit. They show the data
for both the training and validation datasets, with the data points computed for
each epoch. All of these graphs have a detailed description in the caption.

The remaining graphs were created using the matplotlib library.

6.2 Model training and performance
We have trained the models with various hyperparameters. In this chapter, we
compare the performance of four particular models to demonstrate the effects
of attention gating (A) and dropout (D). We refer to these models as baseline
model (architecture described in Section 5.2), model A and model D, respectively,
and, finally, model AD which combines both dropouts in the learning phase and
attention gates.

Models were trained with the same hyperparameters, all for a relatively short
time, with low patience in lowering the learning rate.

Model Name Attention gating Dropout
baseline model No No

model A Yes No
model D No Yes

model AD Yes Yes

Figure 6.1: Models used for comparison of effects of the attention gating and
dropout.
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Training

Figure 6.2a shows the training and validation loss for our baseline model, com-
puted by the combined loss function (see Section 5.4). We can see that both
losses are decreasing during the training, which means the model is learning to
predict correct values for the segmentation mask. After the 75th epoch, the rate
of decrease of the validation loss starts to slow down; however, the training loss
continues to decrease. This is a sign that we should use some regularisation
methods to prevent overfitting.

(a) (b)

Figure 6.2: (a) Training (blue) and validation (orange) loss for the baseline model
as a function of the number of epochs. (b) Learning rate development for the
baseline model. Generated by TensorBoard.

We reduce the learning rate by a factor of 2 whenever the loss stagnates for
over 15 epochs. This can be seen in the graph as a sudden decrease in the loss
value. The learning rate decreased six times throughout the 250 epochs. When
the learning rate is as low as 10−6, the model cannot learn any more, and the loss
stagnates.

Metrics

In Figure 6.3, we display the performance of our models for the segmentation
task measured by the Dice coefficient metric over the course of training. During
the training of the baseline model, the validation Dice coefficient stops improving
approximately after 75 epochs. We have considered this a sign of the baseline
model overfitting, and we decided to employ the regularization techniques.

The model A with attention gating achieves better results for both training
and validation datasets than the baseline model and even narrow training and
validation gap.

Results of the model D and model AD models demonstrate the effects of the
dropout as a regularization method. While model A improved the gap between
the training and validation Dice coefficients, model D and model AD were able to
achieve even better results - their validation Dice coefficient reaches comparable
or even higher values than the training Dice coefficient of the baseline model and
model A.

We should note that the training Dice coefficients of model D and model
AD models are lower than their respective validation Dice coefficients. This is
considered normal behaviour, as dropout is applied during the training of these
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models, so they do not use all information available during training. Dropout
is not applied during validation; the models use all available information in this
phase and achieve better results.

Figure 6.3: Training and validation performance measured by the Dice coefficient.
The right column is a zoomed-in version of the left column. Values are smoothed
by an exponential weighted average with a factor of 0.9.

For illustration, we also provide a graph of the accuracy metric in Figure 6.4.
Considering the high imbalance of our data, accuracy is not a good metric. It
increases to 99.8% in the first epoch, and for the rest of the training, it only
changes in the fourth decimal place.
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Figure 6.4: Accuracy for the baseline model as a function of the number of epochs.
Generated by TensorBoard.

6.3 Extended training
To explore the effects of attention gating and dropout even further, we trained
model A and model AD for longer time, resulting in models A-long and AD-long.
In order to prevent the learning rate from dropping too quickly to a point where
effective learning ceases, we initiated the process with a higher learning rate of
10−4 and increased the patience of learning rate decay. We have also increased
the maximal number of epochs to 400, but the training has effectively stopped
early for both models, with the validation loss stagnating for the last 150 epochs.

For the AD-long model, we added more dropout layers to the bottleneck of
the U-Net architecture.

For the A-long model, the results did not provide any significant improvement
over the short training. However, by longer training and fine-tuning the hyper-
parameters, we were able to achieve a validation Dice coefficient of 0.989 for the
AD-long model. We give the training and validation loss and Dice coefficient in
the Figure 6.5.

(a) (b)

Figure 6.5: (a) Training loss (blue) and validation loss (orange) for the AD-long
model. Loss (vertical axis) is plotted against the number of epochs (horizontal
axis). (b) Dice coefficient plotted against the number of epochs. Generated by
TensorBoard.
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6.4 Results
The models with longer training (A-long and AD-long) were evaluated on the
test set consisting of seven time series (individual oocyte positions), altogether
accounting for 55 images.

6.4.1 Segmentation performance
In Figure 6.6, we display the comparison between the segmentation mask pre-
dicted by our model AD-long and the ground truth segmentation mask for a
single image from the test set. The model was able to predict the mask accu-
rately without any artefacts. This is not a cherry-picked example but a typical
result for our model. We present the results of the AD-long because it achieved
the best results on the testing data with the Dice coefficient of 0.947 in comparison
to 0.940 for the A-long model.

(a)

(b)

Figure 6.6: Examples of segmentation masks on the test set. Image without a
label(left), image with the ground truth segmentation mask(middle), image with
the predicted segmentation mask(right) for (a) image with background noise and
(b) image of a spindle with an elongated shape.
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6.4.2 Volume prediction performance
It is important for our task to predict the spindle volumes accurately and consis-
tently for each time series of oocyte observations. In Figure 6.7 on page 39, we
present the graphs of the volumes predicted by our two models for oocyte obser-
vations, along with their comparison to the ground truth volumes. The graphs
show a comparison of the spindle volumes after GVBD because the volumes be-
fore GVBD are not relevant from a biological point of view, and ground truth
masks and volumes were not provided.

In figure Figure 6.8 on page 40, we present the relative errors of the predicted
volumes for each time series. The most significant relative error is present in the
earlier time points, soon after GVBD when the spindle is small, so even a small
error in the segmentation mask can lead to a large relative error in the volume.
The relative error decreases as the spindle grows.

Interestingly, the dropout model AD-long is systematically worse at predicting
the volume of the spindle close to GVBD but better at predicting the volume of
the spindle later in the time series.

6.4.3 Discussion
The results of our experiments show that the AD-long model with attention gating
and dropout performs slightly better than the A-long model with only attention
gating. Both models, however, perform well on the tasks of segmentation and
volume prediction. The segmentation masks predicted by our models are accurate
and without artefacts. The volume predictions are consistent with the ground
truth volumes. The curve of the development of the spindle volume over time
has a similar shape to the ground truth curve for both models.

Based on these results, it is our opinion that the model can be considered for
deployment in the cooperating biology laboratory.
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Figure 6.7: Volumes predicted by model A-long as attn-gate and model AD-long
as attn-dropout for time series of oocyte observations with a comparison to the
reference volumes.
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Figure 6.8: Relative errors of the volumes predicted by models A-long and AD-
long in relation to reference volumes for time series of oocyte observations.
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Conclusion
Our task was to propose a method for the automated processing of microscopic
time-lapse images of the meiotic spindle in mice oocytes. The goal was to fa-
cilitate the analysis of the spindle evolution. We have decided to focus on the
prediction of the spindle volume because it is the most time-consuming step in the
manual analysis. In order to respect the pipeline of the current manual process,
we approached the problem as a segmentation task and the consequent volume
calculation. Additional advantages of this approach are that it is transparent to
the biologists and that it allows us to compare our results with the reference ones
obtained by manual processing.

We have performed research on the state-of-the-art methods for segmentation
and detection with a focus on bioimaging, microscopy imaging and processing of
volumetric data. We have reviewed convolutional neural networks as a powerful
tool used for many computer vision tasks and justified their use in our case. We
described several architectures suitable for semantic segmentation, along with
their advantages and disadvantages.

Based on this research, we have chosen a slightly customized 3D U-Net ar-
chitecture as our segmentation model. We have performed extensive experiments
to find the best hyperparameters, and we have also experimented with several
architecture updates to the model to improve its performance.

We have evaluated the best-performing models on the test set in terms of
segmentation performance and volume prediction and presented the results in
order to demonstrate the feasibility of our approach. We believe that our model
can be used as a part of an automated pipeline for the analysis of meiotic spindles
in mice oocytes.

To improve the volume prediction even further, we propose exploring the
possibility of using the DenoiSeg model, mentioned in Section 4.5, on the dataset.
This model leverages the unannotated data (which represents 5/6 of the dataset
volume) to improve the segmentation performance. Unfortunately, we were not
able to include the results of this model in this thesis because the official DenoiSeg
implementation did not support data as large as those contained in our dataset,
and the model would need to be reimplemented with modifications reflecting their
size.

In future work, the pipeline should be extended to cover more of the manual
steps, such as the detection of GVBD, detection of the start of chromosome
separation (anaphase) and determination of the spindle polarity.

Last but not least, an easy-to-use interface will be necessary for practical
deployment of the pipeline to be successful.
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